1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCISelLowering.h"
15 #include "PPCMachineFunctionInfo.h"
16 #include "PPCPerfectShuffle.h"
17 #include "PPCTargetMachine.h"
18 #include "MCTargetDesc/PPCPredicates.h"
19 #include "llvm/CallingConv.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Function.h"
23 #include "llvm/Intrinsics.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetOptions.h"
37 using namespace llvm;
38 
39 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
40                                      CCValAssign::LocInfo &LocInfo,
41                                      ISD::ArgFlagsTy &ArgFlags,
42                                      CCState &State);
43 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
44                                             MVT &LocVT,
45                                             CCValAssign::LocInfo &LocInfo,
46                                             ISD::ArgFlagsTy &ArgFlags,
47                                             CCState &State);
48 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
49                                               MVT &LocVT,
50                                               CCValAssign::LocInfo &LocInfo,
51                                               ISD::ArgFlagsTy &ArgFlags,
52                                               CCState &State);
53 
54 static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
55 cl::desc("enable preincrement load/store generation on PPC (experimental)"),
56                                      cl::Hidden);
57 
58 static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
59   if (TM.getSubtargetImpl()->isDarwin())
60     return new TargetLoweringObjectFileMachO();
61 
62   return new TargetLoweringObjectFileELF();
63 }
64 
65 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
66   : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
67 
68   setPow2DivIsCheap();
69 
70   // Use _setjmp/_longjmp instead of setjmp/longjmp.
71   setUseUnderscoreSetJmp(true);
72   setUseUnderscoreLongJmp(true);
73 
74   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
75   // arguments are at least 4/8 bytes aligned.
76   setMinStackArgumentAlignment(TM.getSubtarget<PPCSubtarget>().isPPC64() ? 8:4);
77 
78   // Set up the register classes.
79   addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
80   addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
81   addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
82 
83   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
84   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
85   setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
86 
87   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
88 
89   // PowerPC has pre-inc load and store's.
90   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
91   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
92   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
93   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
94   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
95   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
96   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
97   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
98   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
99   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
100 
101   // This is used in the ppcf128->int sequence.  Note it has different semantics
102   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
103   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
104 
105   // We do not currently implment this libm ops for PowerPC.
106   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
107   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
108   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
109   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
110   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
111 
112   // PowerPC has no SREM/UREM instructions
113   setOperationAction(ISD::SREM, MVT::i32, Expand);
114   setOperationAction(ISD::UREM, MVT::i32, Expand);
115   setOperationAction(ISD::SREM, MVT::i64, Expand);
116   setOperationAction(ISD::UREM, MVT::i64, Expand);
117 
118   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
119   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
120   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
121   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
122   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
123   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
124   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
125   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
126   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
127 
128   // We don't support sin/cos/sqrt/fmod/pow
129   setOperationAction(ISD::FSIN , MVT::f64, Expand);
130   setOperationAction(ISD::FCOS , MVT::f64, Expand);
131   setOperationAction(ISD::FREM , MVT::f64, Expand);
132   setOperationAction(ISD::FPOW , MVT::f64, Expand);
133   setOperationAction(ISD::FMA  , MVT::f64, Expand);
134   setOperationAction(ISD::FSIN , MVT::f32, Expand);
135   setOperationAction(ISD::FCOS , MVT::f32, Expand);
136   setOperationAction(ISD::FREM , MVT::f32, Expand);
137   setOperationAction(ISD::FPOW , MVT::f32, Expand);
138   setOperationAction(ISD::FMA  , MVT::f32, Expand);
139 
140   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
141 
142   // If we're enabling GP optimizations, use hardware square root
143   if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
144     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
145     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
146   }
147 
148   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
149   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
150 
151   // PowerPC does not have BSWAP, CTPOP or CTTZ
152   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
153   setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
154   setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
155   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
156   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
157   setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
158   setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
159   setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
160   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
161   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
162 
163   // PowerPC does not have ROTR
164   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
165   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
166 
167   // PowerPC does not have Select
168   setOperationAction(ISD::SELECT, MVT::i32, Expand);
169   setOperationAction(ISD::SELECT, MVT::i64, Expand);
170   setOperationAction(ISD::SELECT, MVT::f32, Expand);
171   setOperationAction(ISD::SELECT, MVT::f64, Expand);
172 
173   // PowerPC wants to turn select_cc of FP into fsel when possible.
174   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
175   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
176 
177   // PowerPC wants to optimize integer setcc a bit
178   setOperationAction(ISD::SETCC, MVT::i32, Custom);
179 
180   // PowerPC does not have BRCOND which requires SetCC
181   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
182 
183   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
184 
185   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
186   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
187 
188   // PowerPC does not have [U|S]INT_TO_FP
189   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
190   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
191 
192   setOperationAction(ISD::BITCAST, MVT::f32, Expand);
193   setOperationAction(ISD::BITCAST, MVT::i32, Expand);
194   setOperationAction(ISD::BITCAST, MVT::i64, Expand);
195   setOperationAction(ISD::BITCAST, MVT::f64, Expand);
196 
197   // We cannot sextinreg(i1).  Expand to shifts.
198   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
199 
200   setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
201   setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
202   setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
203   setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
204 
205 
206   // We want to legalize GlobalAddress and ConstantPool nodes into the
207   // appropriate instructions to materialize the address.
208   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
209   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
210   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
211   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
212   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
213   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
214   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
215   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
216   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
217   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
218 
219   // TRAP is legal.
220   setOperationAction(ISD::TRAP, MVT::Other, Legal);
221 
222   // TRAMPOLINE is custom lowered.
223   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
224   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
225 
226   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
227   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
228 
229   if (TM.getSubtarget<PPCSubtarget>().isSVR4ABI()) {
230     if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
231       // VAARG always uses double-word chunks, so promote anything smaller.
232       setOperationAction(ISD::VAARG, MVT::i1, Promote);
233       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
234       setOperationAction(ISD::VAARG, MVT::i8, Promote);
235       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
236       setOperationAction(ISD::VAARG, MVT::i16, Promote);
237       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
238       setOperationAction(ISD::VAARG, MVT::i32, Promote);
239       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
240       setOperationAction(ISD::VAARG, MVT::Other, Expand);
241     } else {
242       // VAARG is custom lowered with the 32-bit SVR4 ABI.
243       setOperationAction(ISD::VAARG, MVT::Other, Custom);
244       setOperationAction(ISD::VAARG, MVT::i64, Custom);
245     }
246   } else
247     setOperationAction(ISD::VAARG, MVT::Other, Expand);
248 
249   // Use the default implementation.
250   setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
251   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
252   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
253   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
254   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
255   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
256 
257   // We want to custom lower some of our intrinsics.
258   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
259 
260   // Comparisons that require checking two conditions.
261   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
262   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
263   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
264   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
265   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
266   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
267   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
268   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
269   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
270   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
271   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
272   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
273 
274   if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
275     // They also have instructions for converting between i64 and fp.
276     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
277     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
278     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
279     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
280     // This is just the low 32 bits of a (signed) fp->i64 conversion.
281     // We cannot do this with Promote because i64 is not a legal type.
282     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
283 
284     // FIXME: disable this lowered code.  This generates 64-bit register values,
285     // and we don't model the fact that the top part is clobbered by calls.  We
286     // need to flag these together so that the value isn't live across a call.
287     //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
288   } else {
289     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
290     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
291   }
292 
293   if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
294     // 64-bit PowerPC implementations can support i64 types directly
295     addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
296     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
297     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
298     // 64-bit PowerPC wants to expand i128 shifts itself.
299     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
300     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
301     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
302   } else {
303     // 32-bit PowerPC wants to expand i64 shifts itself.
304     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
305     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
306     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
307   }
308 
309   if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
310     // First set operation action for all vector types to expand. Then we
311     // will selectively turn on ones that can be effectively codegen'd.
312     for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
313          i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
314       MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
315 
316       // add/sub are legal for all supported vector VT's.
317       setOperationAction(ISD::ADD , VT, Legal);
318       setOperationAction(ISD::SUB , VT, Legal);
319 
320       // We promote all shuffles to v16i8.
321       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
322       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
323 
324       // We promote all non-typed operations to v4i32.
325       setOperationAction(ISD::AND   , VT, Promote);
326       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
327       setOperationAction(ISD::OR    , VT, Promote);
328       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
329       setOperationAction(ISD::XOR   , VT, Promote);
330       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
331       setOperationAction(ISD::LOAD  , VT, Promote);
332       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
333       setOperationAction(ISD::SELECT, VT, Promote);
334       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
335       setOperationAction(ISD::STORE, VT, Promote);
336       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
337 
338       // No other operations are legal.
339       setOperationAction(ISD::MUL , VT, Expand);
340       setOperationAction(ISD::SDIV, VT, Expand);
341       setOperationAction(ISD::SREM, VT, Expand);
342       setOperationAction(ISD::UDIV, VT, Expand);
343       setOperationAction(ISD::UREM, VT, Expand);
344       setOperationAction(ISD::FDIV, VT, Expand);
345       setOperationAction(ISD::FNEG, VT, Expand);
346       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
347       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
348       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
349       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
350       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
351       setOperationAction(ISD::UDIVREM, VT, Expand);
352       setOperationAction(ISD::SDIVREM, VT, Expand);
353       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
354       setOperationAction(ISD::FPOW, VT, Expand);
355       setOperationAction(ISD::CTPOP, VT, Expand);
356       setOperationAction(ISD::CTLZ, VT, Expand);
357       setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
358       setOperationAction(ISD::CTTZ, VT, Expand);
359       setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
360     }
361 
362     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
363     // with merges, splats, etc.
364     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
365 
366     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
367     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
368     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
369     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
370     setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
371     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
372 
373     addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
374     addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
375     addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
376     addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
377 
378     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
379     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
380     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
381     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
382 
383     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
384     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
385 
386     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
387     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
388     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
389     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
390   }
391 
392   setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
393   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
394 
395   setBooleanContents(ZeroOrOneBooleanContent);
396   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
397 
398   if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
399     setStackPointerRegisterToSaveRestore(PPC::X1);
400     setExceptionPointerRegister(PPC::X3);
401     setExceptionSelectorRegister(PPC::X4);
402   } else {
403     setStackPointerRegisterToSaveRestore(PPC::R1);
404     setExceptionPointerRegister(PPC::R3);
405     setExceptionSelectorRegister(PPC::R4);
406   }
407 
408   // We have target-specific dag combine patterns for the following nodes:
409   setTargetDAGCombine(ISD::SINT_TO_FP);
410   setTargetDAGCombine(ISD::STORE);
411   setTargetDAGCombine(ISD::BR_CC);
412   setTargetDAGCombine(ISD::BSWAP);
413 
414   // Darwin long double math library functions have $LDBL128 appended.
415   if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
416     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
417     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
418     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
419     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
420     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
421     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
422     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
423     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
424     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
425     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
426   }
427 
428   setMinFunctionAlignment(2);
429   if (PPCSubTarget.isDarwin())
430     setPrefFunctionAlignment(4);
431 
432   setInsertFencesForAtomic(true);
433 
434   setSchedulingPreference(Sched::Hybrid);
435 
436   computeRegisterProperties();
437 }
438 
439 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
440 /// function arguments in the caller parameter area.
441 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
442   const TargetMachine &TM = getTargetMachine();
443   // Darwin passes everything on 4 byte boundary.
444   if (TM.getSubtarget<PPCSubtarget>().isDarwin())
445     return 4;
446   // FIXME SVR4 TBD
447   return 4;
448 }
449 
450 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
451   switch (Opcode) {
452   default: return 0;
453   case PPCISD::FSEL:            return "PPCISD::FSEL";
454   case PPCISD::FCFID:           return "PPCISD::FCFID";
455   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
456   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
457   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
458   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
459   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
460   case PPCISD::VPERM:           return "PPCISD::VPERM";
461   case PPCISD::Hi:              return "PPCISD::Hi";
462   case PPCISD::Lo:              return "PPCISD::Lo";
463   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
464   case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
465   case PPCISD::LOAD:            return "PPCISD::LOAD";
466   case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
467   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
468   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
469   case PPCISD::SRL:             return "PPCISD::SRL";
470   case PPCISD::SRA:             return "PPCISD::SRA";
471   case PPCISD::SHL:             return "PPCISD::SHL";
472   case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
473   case PPCISD::STD_32:          return "PPCISD::STD_32";
474   case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
475   case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
476   case PPCISD::NOP:             return "PPCISD::NOP";
477   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
478   case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
479   case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
480   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
481   case PPCISD::MFCR:            return "PPCISD::MFCR";
482   case PPCISD::VCMP:            return "PPCISD::VCMP";
483   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
484   case PPCISD::LBRX:            return "PPCISD::LBRX";
485   case PPCISD::STBRX:           return "PPCISD::STBRX";
486   case PPCISD::LARX:            return "PPCISD::LARX";
487   case PPCISD::STCX:            return "PPCISD::STCX";
488   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
489   case PPCISD::MFFS:            return "PPCISD::MFFS";
490   case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
491   case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
492   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
493   case PPCISD::MTFSF:           return "PPCISD::MTFSF";
494   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
495   }
496 }
497 
498 EVT PPCTargetLowering::getSetCCResultType(EVT VT) const {
499   return MVT::i32;
500 }
501 
502 //===----------------------------------------------------------------------===//
503 // Node matching predicates, for use by the tblgen matching code.
504 //===----------------------------------------------------------------------===//
505 
506 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
507 static bool isFloatingPointZero(SDValue Op) {
508   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
509     return CFP->getValueAPF().isZero();
510   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
511     // Maybe this has already been legalized into the constant pool?
512     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
513       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
514         return CFP->getValueAPF().isZero();
515   }
516   return false;
517 }
518 
519 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
520 /// true if Op is undef or if it matches the specified value.
521 static bool isConstantOrUndef(int Op, int Val) {
522   return Op < 0 || Op == Val;
523 }
524 
525 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
526 /// VPKUHUM instruction.
527 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
528   if (!isUnary) {
529     for (unsigned i = 0; i != 16; ++i)
530       if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
531         return false;
532   } else {
533     for (unsigned i = 0; i != 8; ++i)
534       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
535           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
536         return false;
537   }
538   return true;
539 }
540 
541 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
542 /// VPKUWUM instruction.
543 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
544   if (!isUnary) {
545     for (unsigned i = 0; i != 16; i += 2)
546       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
547           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
548         return false;
549   } else {
550     for (unsigned i = 0; i != 8; i += 2)
551       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
552           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
553           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
554           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
555         return false;
556   }
557   return true;
558 }
559 
560 /// isVMerge - Common function, used to match vmrg* shuffles.
561 ///
562 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
563                      unsigned LHSStart, unsigned RHSStart) {
564   assert(N->getValueType(0) == MVT::v16i8 &&
565          "PPC only supports shuffles by bytes!");
566   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
567          "Unsupported merge size!");
568 
569   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
570     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
571       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
572                              LHSStart+j+i*UnitSize) ||
573           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
574                              RHSStart+j+i*UnitSize))
575         return false;
576     }
577   return true;
578 }
579 
580 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
581 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
582 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
583                              bool isUnary) {
584   if (!isUnary)
585     return isVMerge(N, UnitSize, 8, 24);
586   return isVMerge(N, UnitSize, 8, 8);
587 }
588 
589 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
590 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
591 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
592                              bool isUnary) {
593   if (!isUnary)
594     return isVMerge(N, UnitSize, 0, 16);
595   return isVMerge(N, UnitSize, 0, 0);
596 }
597 
598 
599 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
600 /// amount, otherwise return -1.
601 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
602   assert(N->getValueType(0) == MVT::v16i8 &&
603          "PPC only supports shuffles by bytes!");
604 
605   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
606 
607   // Find the first non-undef value in the shuffle mask.
608   unsigned i;
609   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
610     /*search*/;
611 
612   if (i == 16) return -1;  // all undef.
613 
614   // Otherwise, check to see if the rest of the elements are consecutively
615   // numbered from this value.
616   unsigned ShiftAmt = SVOp->getMaskElt(i);
617   if (ShiftAmt < i) return -1;
618   ShiftAmt -= i;
619 
620   if (!isUnary) {
621     // Check the rest of the elements to see if they are consecutive.
622     for (++i; i != 16; ++i)
623       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
624         return -1;
625   } else {
626     // Check the rest of the elements to see if they are consecutive.
627     for (++i; i != 16; ++i)
628       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
629         return -1;
630   }
631   return ShiftAmt;
632 }
633 
634 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
635 /// specifies a splat of a single element that is suitable for input to
636 /// VSPLTB/VSPLTH/VSPLTW.
637 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
638   assert(N->getValueType(0) == MVT::v16i8 &&
639          (EltSize == 1 || EltSize == 2 || EltSize == 4));
640 
641   // This is a splat operation if each element of the permute is the same, and
642   // if the value doesn't reference the second vector.
643   unsigned ElementBase = N->getMaskElt(0);
644 
645   // FIXME: Handle UNDEF elements too!
646   if (ElementBase >= 16)
647     return false;
648 
649   // Check that the indices are consecutive, in the case of a multi-byte element
650   // splatted with a v16i8 mask.
651   for (unsigned i = 1; i != EltSize; ++i)
652     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
653       return false;
654 
655   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
656     if (N->getMaskElt(i) < 0) continue;
657     for (unsigned j = 0; j != EltSize; ++j)
658       if (N->getMaskElt(i+j) != N->getMaskElt(j))
659         return false;
660   }
661   return true;
662 }
663 
664 /// isAllNegativeZeroVector - Returns true if all elements of build_vector
665 /// are -0.0.
666 bool PPC::isAllNegativeZeroVector(SDNode *N) {
667   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
668 
669   APInt APVal, APUndef;
670   unsigned BitSize;
671   bool HasAnyUndefs;
672 
673   if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
674     if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
675       return CFP->getValueAPF().isNegZero();
676 
677   return false;
678 }
679 
680 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
681 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
682 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
683   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
684   assert(isSplatShuffleMask(SVOp, EltSize));
685   return SVOp->getMaskElt(0) / EltSize;
686 }
687 
688 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
689 /// by using a vspltis[bhw] instruction of the specified element size, return
690 /// the constant being splatted.  The ByteSize field indicates the number of
691 /// bytes of each element [124] -> [bhw].
692 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
693   SDValue OpVal(0, 0);
694 
695   // If ByteSize of the splat is bigger than the element size of the
696   // build_vector, then we have a case where we are checking for a splat where
697   // multiple elements of the buildvector are folded together into a single
698   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
699   unsigned EltSize = 16/N->getNumOperands();
700   if (EltSize < ByteSize) {
701     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
702     SDValue UniquedVals[4];
703     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
704 
705     // See if all of the elements in the buildvector agree across.
706     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
707       if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
708       // If the element isn't a constant, bail fully out.
709       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
710 
711 
712       if (UniquedVals[i&(Multiple-1)].getNode() == 0)
713         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
714       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
715         return SDValue();  // no match.
716     }
717 
718     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
719     // either constant or undef values that are identical for each chunk.  See
720     // if these chunks can form into a larger vspltis*.
721 
722     // Check to see if all of the leading entries are either 0 or -1.  If
723     // neither, then this won't fit into the immediate field.
724     bool LeadingZero = true;
725     bool LeadingOnes = true;
726     for (unsigned i = 0; i != Multiple-1; ++i) {
727       if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
728 
729       LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
730       LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
731     }
732     // Finally, check the least significant entry.
733     if (LeadingZero) {
734       if (UniquedVals[Multiple-1].getNode() == 0)
735         return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
736       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
737       if (Val < 16)
738         return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
739     }
740     if (LeadingOnes) {
741       if (UniquedVals[Multiple-1].getNode() == 0)
742         return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
743       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
744       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
745         return DAG.getTargetConstant(Val, MVT::i32);
746     }
747 
748     return SDValue();
749   }
750 
751   // Check to see if this buildvec has a single non-undef value in its elements.
752   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
753     if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
754     if (OpVal.getNode() == 0)
755       OpVal = N->getOperand(i);
756     else if (OpVal != N->getOperand(i))
757       return SDValue();
758   }
759 
760   if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
761 
762   unsigned ValSizeInBytes = EltSize;
763   uint64_t Value = 0;
764   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
765     Value = CN->getZExtValue();
766   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
767     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
768     Value = FloatToBits(CN->getValueAPF().convertToFloat());
769   }
770 
771   // If the splat value is larger than the element value, then we can never do
772   // this splat.  The only case that we could fit the replicated bits into our
773   // immediate field for would be zero, and we prefer to use vxor for it.
774   if (ValSizeInBytes < ByteSize) return SDValue();
775 
776   // If the element value is larger than the splat value, cut it in half and
777   // check to see if the two halves are equal.  Continue doing this until we
778   // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
779   while (ValSizeInBytes > ByteSize) {
780     ValSizeInBytes >>= 1;
781 
782     // If the top half equals the bottom half, we're still ok.
783     if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
784          (Value                        & ((1 << (8*ValSizeInBytes))-1)))
785       return SDValue();
786   }
787 
788   // Properly sign extend the value.
789   int ShAmt = (4-ByteSize)*8;
790   int MaskVal = ((int)Value << ShAmt) >> ShAmt;
791 
792   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
793   if (MaskVal == 0) return SDValue();
794 
795   // Finally, if this value fits in a 5 bit sext field, return it
796   if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
797     return DAG.getTargetConstant(MaskVal, MVT::i32);
798   return SDValue();
799 }
800 
801 //===----------------------------------------------------------------------===//
802 //  Addressing Mode Selection
803 //===----------------------------------------------------------------------===//
804 
805 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
806 /// or 64-bit immediate, and if the value can be accurately represented as a
807 /// sign extension from a 16-bit value.  If so, this returns true and the
808 /// immediate.
809 static bool isIntS16Immediate(SDNode *N, short &Imm) {
810   if (N->getOpcode() != ISD::Constant)
811     return false;
812 
813   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
814   if (N->getValueType(0) == MVT::i32)
815     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
816   else
817     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
818 }
819 static bool isIntS16Immediate(SDValue Op, short &Imm) {
820   return isIntS16Immediate(Op.getNode(), Imm);
821 }
822 
823 
824 /// SelectAddressRegReg - Given the specified addressed, check to see if it
825 /// can be represented as an indexed [r+r] operation.  Returns false if it
826 /// can be more efficiently represented with [r+imm].
827 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
828                                             SDValue &Index,
829                                             SelectionDAG &DAG) const {
830   short imm = 0;
831   if (N.getOpcode() == ISD::ADD) {
832     if (isIntS16Immediate(N.getOperand(1), imm))
833       return false;    // r+i
834     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
835       return false;    // r+i
836 
837     Base = N.getOperand(0);
838     Index = N.getOperand(1);
839     return true;
840   } else if (N.getOpcode() == ISD::OR) {
841     if (isIntS16Immediate(N.getOperand(1), imm))
842       return false;    // r+i can fold it if we can.
843 
844     // If this is an or of disjoint bitfields, we can codegen this as an add
845     // (for better address arithmetic) if the LHS and RHS of the OR are provably
846     // disjoint.
847     APInt LHSKnownZero, LHSKnownOne;
848     APInt RHSKnownZero, RHSKnownOne;
849     DAG.ComputeMaskedBits(N.getOperand(0),
850                           APInt::getAllOnesValue(N.getOperand(0)
851                             .getValueSizeInBits()),
852                           LHSKnownZero, LHSKnownOne);
853 
854     if (LHSKnownZero.getBoolValue()) {
855       DAG.ComputeMaskedBits(N.getOperand(1),
856                             APInt::getAllOnesValue(N.getOperand(1)
857                               .getValueSizeInBits()),
858                             RHSKnownZero, RHSKnownOne);
859       // If all of the bits are known zero on the LHS or RHS, the add won't
860       // carry.
861       if (~(LHSKnownZero | RHSKnownZero) == 0) {
862         Base = N.getOperand(0);
863         Index = N.getOperand(1);
864         return true;
865       }
866     }
867   }
868 
869   return false;
870 }
871 
872 /// Returns true if the address N can be represented by a base register plus
873 /// a signed 16-bit displacement [r+imm], and if it is not better
874 /// represented as reg+reg.
875 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
876                                             SDValue &Base,
877                                             SelectionDAG &DAG) const {
878   // FIXME dl should come from parent load or store, not from address
879   DebugLoc dl = N.getDebugLoc();
880   // If this can be more profitably realized as r+r, fail.
881   if (SelectAddressRegReg(N, Disp, Base, DAG))
882     return false;
883 
884   if (N.getOpcode() == ISD::ADD) {
885     short imm = 0;
886     if (isIntS16Immediate(N.getOperand(1), imm)) {
887       Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
888       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
889         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
890       } else {
891         Base = N.getOperand(0);
892       }
893       return true; // [r+i]
894     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
895       // Match LOAD (ADD (X, Lo(G))).
896      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
897              && "Cannot handle constant offsets yet!");
898       Disp = N.getOperand(1).getOperand(0);  // The global address.
899       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
900              Disp.getOpcode() == ISD::TargetConstantPool ||
901              Disp.getOpcode() == ISD::TargetJumpTable);
902       Base = N.getOperand(0);
903       return true;  // [&g+r]
904     }
905   } else if (N.getOpcode() == ISD::OR) {
906     short imm = 0;
907     if (isIntS16Immediate(N.getOperand(1), imm)) {
908       // If this is an or of disjoint bitfields, we can codegen this as an add
909       // (for better address arithmetic) if the LHS and RHS of the OR are
910       // provably disjoint.
911       APInt LHSKnownZero, LHSKnownOne;
912       DAG.ComputeMaskedBits(N.getOperand(0),
913                             APInt::getAllOnesValue(N.getOperand(0)
914                                                    .getValueSizeInBits()),
915                             LHSKnownZero, LHSKnownOne);
916 
917       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
918         // If all of the bits are known zero on the LHS or RHS, the add won't
919         // carry.
920         Base = N.getOperand(0);
921         Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
922         return true;
923       }
924     }
925   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
926     // Loading from a constant address.
927 
928     // If this address fits entirely in a 16-bit sext immediate field, codegen
929     // this as "d, 0"
930     short Imm;
931     if (isIntS16Immediate(CN, Imm)) {
932       Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
933       Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
934                              CN->getValueType(0));
935       return true;
936     }
937 
938     // Handle 32-bit sext immediates with LIS + addr mode.
939     if (CN->getValueType(0) == MVT::i32 ||
940         (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
941       int Addr = (int)CN->getZExtValue();
942 
943       // Otherwise, break this down into an LIS + disp.
944       Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
945 
946       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
947       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
948       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
949       return true;
950     }
951   }
952 
953   Disp = DAG.getTargetConstant(0, getPointerTy());
954   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
955     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
956   else
957     Base = N;
958   return true;      // [r+0]
959 }
960 
961 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
962 /// represented as an indexed [r+r] operation.
963 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
964                                                 SDValue &Index,
965                                                 SelectionDAG &DAG) const {
966   // Check to see if we can easily represent this as an [r+r] address.  This
967   // will fail if it thinks that the address is more profitably represented as
968   // reg+imm, e.g. where imm = 0.
969   if (SelectAddressRegReg(N, Base, Index, DAG))
970     return true;
971 
972   // If the operand is an addition, always emit this as [r+r], since this is
973   // better (for code size, and execution, as the memop does the add for free)
974   // than emitting an explicit add.
975   if (N.getOpcode() == ISD::ADD) {
976     Base = N.getOperand(0);
977     Index = N.getOperand(1);
978     return true;
979   }
980 
981   // Otherwise, do it the hard way, using R0 as the base register.
982   Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
983                          N.getValueType());
984   Index = N;
985   return true;
986 }
987 
988 /// SelectAddressRegImmShift - Returns true if the address N can be
989 /// represented by a base register plus a signed 14-bit displacement
990 /// [r+imm*4].  Suitable for use by STD and friends.
991 bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
992                                                  SDValue &Base,
993                                                  SelectionDAG &DAG) const {
994   // FIXME dl should come from the parent load or store, not the address
995   DebugLoc dl = N.getDebugLoc();
996   // If this can be more profitably realized as r+r, fail.
997   if (SelectAddressRegReg(N, Disp, Base, DAG))
998     return false;
999 
1000   if (N.getOpcode() == ISD::ADD) {
1001     short imm = 0;
1002     if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
1003       Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1004       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1005         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1006       } else {
1007         Base = N.getOperand(0);
1008       }
1009       return true; // [r+i]
1010     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1011       // Match LOAD (ADD (X, Lo(G))).
1012      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1013              && "Cannot handle constant offsets yet!");
1014       Disp = N.getOperand(1).getOperand(0);  // The global address.
1015       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1016              Disp.getOpcode() == ISD::TargetConstantPool ||
1017              Disp.getOpcode() == ISD::TargetJumpTable);
1018       Base = N.getOperand(0);
1019       return true;  // [&g+r]
1020     }
1021   } else if (N.getOpcode() == ISD::OR) {
1022     short imm = 0;
1023     if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
1024       // If this is an or of disjoint bitfields, we can codegen this as an add
1025       // (for better address arithmetic) if the LHS and RHS of the OR are
1026       // provably disjoint.
1027       APInt LHSKnownZero, LHSKnownOne;
1028       DAG.ComputeMaskedBits(N.getOperand(0),
1029                             APInt::getAllOnesValue(N.getOperand(0)
1030                                                    .getValueSizeInBits()),
1031                             LHSKnownZero, LHSKnownOne);
1032       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1033         // If all of the bits are known zero on the LHS or RHS, the add won't
1034         // carry.
1035         Base = N.getOperand(0);
1036         Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1037         return true;
1038       }
1039     }
1040   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1041     // Loading from a constant address.  Verify low two bits are clear.
1042     if ((CN->getZExtValue() & 3) == 0) {
1043       // If this address fits entirely in a 14-bit sext immediate field, codegen
1044       // this as "d, 0"
1045       short Imm;
1046       if (isIntS16Immediate(CN, Imm)) {
1047         Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1048         Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
1049                                CN->getValueType(0));
1050         return true;
1051       }
1052 
1053       // Fold the low-part of 32-bit absolute addresses into addr mode.
1054       if (CN->getValueType(0) == MVT::i32 ||
1055           (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1056         int Addr = (int)CN->getZExtValue();
1057 
1058         // Otherwise, break this down into an LIS + disp.
1059         Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1060         Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1061         unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1062         Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1063         return true;
1064       }
1065     }
1066   }
1067 
1068   Disp = DAG.getTargetConstant(0, getPointerTy());
1069   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1070     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1071   else
1072     Base = N;
1073   return true;      // [r+0]
1074 }
1075 
1076 
1077 /// getPreIndexedAddressParts - returns true by value, base pointer and
1078 /// offset pointer and addressing mode by reference if the node's address
1079 /// can be legally represented as pre-indexed load / store address.
1080 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1081                                                   SDValue &Offset,
1082                                                   ISD::MemIndexedMode &AM,
1083                                                   SelectionDAG &DAG) const {
1084   // Disabled by default for now.
1085   if (!EnablePPCPreinc) return false;
1086 
1087   SDValue Ptr;
1088   EVT VT;
1089   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1090     Ptr = LD->getBasePtr();
1091     VT = LD->getMemoryVT();
1092 
1093   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1094     Ptr = ST->getBasePtr();
1095     VT  = ST->getMemoryVT();
1096   } else
1097     return false;
1098 
1099   // PowerPC doesn't have preinc load/store instructions for vectors.
1100   if (VT.isVector())
1101     return false;
1102 
1103   // TODO: Check reg+reg first.
1104 
1105   // LDU/STU use reg+imm*4, others use reg+imm.
1106   if (VT != MVT::i64) {
1107     // reg + imm
1108     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1109       return false;
1110   } else {
1111     // reg + imm * 4.
1112     if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1113       return false;
1114   }
1115 
1116   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1117     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1118     // sext i32 to i64 when addr mode is r+i.
1119     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1120         LD->getExtensionType() == ISD::SEXTLOAD &&
1121         isa<ConstantSDNode>(Offset))
1122       return false;
1123   }
1124 
1125   AM = ISD::PRE_INC;
1126   return true;
1127 }
1128 
1129 //===----------------------------------------------------------------------===//
1130 //  LowerOperation implementation
1131 //===----------------------------------------------------------------------===//
1132 
1133 /// GetLabelAccessInfo - Return true if we should reference labels using a
1134 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1135 static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1136                                unsigned &LoOpFlags, const GlobalValue *GV = 0) {
1137   HiOpFlags = PPCII::MO_HA16;
1138   LoOpFlags = PPCII::MO_LO16;
1139 
1140   // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1141   // non-darwin platform.  We don't support PIC on other platforms yet.
1142   bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1143                TM.getSubtarget<PPCSubtarget>().isDarwin();
1144   if (isPIC) {
1145     HiOpFlags |= PPCII::MO_PIC_FLAG;
1146     LoOpFlags |= PPCII::MO_PIC_FLAG;
1147   }
1148 
1149   // If this is a reference to a global value that requires a non-lazy-ptr, make
1150   // sure that instruction lowering adds it.
1151   if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1152     HiOpFlags |= PPCII::MO_NLP_FLAG;
1153     LoOpFlags |= PPCII::MO_NLP_FLAG;
1154 
1155     if (GV->hasHiddenVisibility()) {
1156       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1157       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1158     }
1159   }
1160 
1161   return isPIC;
1162 }
1163 
1164 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1165                              SelectionDAG &DAG) {
1166   EVT PtrVT = HiPart.getValueType();
1167   SDValue Zero = DAG.getConstant(0, PtrVT);
1168   DebugLoc DL = HiPart.getDebugLoc();
1169 
1170   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1171   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1172 
1173   // With PIC, the first instruction is actually "GR+hi(&G)".
1174   if (isPIC)
1175     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1176                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1177 
1178   // Generate non-pic code that has direct accesses to the constant pool.
1179   // The address of the global is just (hi(&g)+lo(&g)).
1180   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1181 }
1182 
1183 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1184                                              SelectionDAG &DAG) const {
1185   EVT PtrVT = Op.getValueType();
1186   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1187   const Constant *C = CP->getConstVal();
1188 
1189   unsigned MOHiFlag, MOLoFlag;
1190   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1191   SDValue CPIHi =
1192     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1193   SDValue CPILo =
1194     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1195   return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1196 }
1197 
1198 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1199   EVT PtrVT = Op.getValueType();
1200   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1201 
1202   unsigned MOHiFlag, MOLoFlag;
1203   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1204   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1205   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1206   return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1207 }
1208 
1209 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1210                                              SelectionDAG &DAG) const {
1211   EVT PtrVT = Op.getValueType();
1212 
1213   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1214 
1215   unsigned MOHiFlag, MOLoFlag;
1216   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1217   SDValue TgtBAHi = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOHiFlag);
1218   SDValue TgtBALo = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOLoFlag);
1219   return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1220 }
1221 
1222 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1223                                               SelectionDAG &DAG) const {
1224   EVT PtrVT = Op.getValueType();
1225   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1226   DebugLoc DL = GSDN->getDebugLoc();
1227   const GlobalValue *GV = GSDN->getGlobal();
1228 
1229   // 64-bit SVR4 ABI code is always position-independent.
1230   // The actual address of the GlobalValue is stored in the TOC.
1231   if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1232     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1233     return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1234                        DAG.getRegister(PPC::X2, MVT::i64));
1235   }
1236 
1237   unsigned MOHiFlag, MOLoFlag;
1238   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1239 
1240   SDValue GAHi =
1241     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1242   SDValue GALo =
1243     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1244 
1245   SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1246 
1247   // If the global reference is actually to a non-lazy-pointer, we have to do an
1248   // extra load to get the address of the global.
1249   if (MOHiFlag & PPCII::MO_NLP_FLAG)
1250     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1251                       false, false, false, 0);
1252   return Ptr;
1253 }
1254 
1255 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1256   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1257   DebugLoc dl = Op.getDebugLoc();
1258 
1259   // If we're comparing for equality to zero, expose the fact that this is
1260   // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1261   // fold the new nodes.
1262   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1263     if (C->isNullValue() && CC == ISD::SETEQ) {
1264       EVT VT = Op.getOperand(0).getValueType();
1265       SDValue Zext = Op.getOperand(0);
1266       if (VT.bitsLT(MVT::i32)) {
1267         VT = MVT::i32;
1268         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1269       }
1270       unsigned Log2b = Log2_32(VT.getSizeInBits());
1271       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1272       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1273                                 DAG.getConstant(Log2b, MVT::i32));
1274       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1275     }
1276     // Leave comparisons against 0 and -1 alone for now, since they're usually
1277     // optimized.  FIXME: revisit this when we can custom lower all setcc
1278     // optimizations.
1279     if (C->isAllOnesValue() || C->isNullValue())
1280       return SDValue();
1281   }
1282 
1283   // If we have an integer seteq/setne, turn it into a compare against zero
1284   // by xor'ing the rhs with the lhs, which is faster than setting a
1285   // condition register, reading it back out, and masking the correct bit.  The
1286   // normal approach here uses sub to do this instead of xor.  Using xor exposes
1287   // the result to other bit-twiddling opportunities.
1288   EVT LHSVT = Op.getOperand(0).getValueType();
1289   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1290     EVT VT = Op.getValueType();
1291     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1292                                 Op.getOperand(1));
1293     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1294   }
1295   return SDValue();
1296 }
1297 
1298 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1299                                       const PPCSubtarget &Subtarget) const {
1300   SDNode *Node = Op.getNode();
1301   EVT VT = Node->getValueType(0);
1302   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1303   SDValue InChain = Node->getOperand(0);
1304   SDValue VAListPtr = Node->getOperand(1);
1305   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1306   DebugLoc dl = Node->getDebugLoc();
1307 
1308   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
1309 
1310   // gpr_index
1311   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1312                                     VAListPtr, MachinePointerInfo(SV), MVT::i8,
1313                                     false, false, 0);
1314   InChain = GprIndex.getValue(1);
1315 
1316   if (VT == MVT::i64) {
1317     // Check if GprIndex is even
1318     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
1319                                  DAG.getConstant(1, MVT::i32));
1320     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
1321                                 DAG.getConstant(0, MVT::i32), ISD::SETNE);
1322     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
1323                                           DAG.getConstant(1, MVT::i32));
1324     // Align GprIndex to be even if it isn't
1325     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
1326                            GprIndex);
1327   }
1328 
1329   // fpr index is 1 byte after gpr
1330   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1331                                DAG.getConstant(1, MVT::i32));
1332 
1333   // fpr
1334   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1335                                     FprPtr, MachinePointerInfo(SV), MVT::i8,
1336                                     false, false, 0);
1337   InChain = FprIndex.getValue(1);
1338 
1339   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1340                                        DAG.getConstant(8, MVT::i32));
1341 
1342   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1343                                         DAG.getConstant(4, MVT::i32));
1344 
1345   // areas
1346   SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
1347                                      MachinePointerInfo(), false, false,
1348                                      false, 0);
1349   InChain = OverflowArea.getValue(1);
1350 
1351   SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
1352                                     MachinePointerInfo(), false, false,
1353                                     false, 0);
1354   InChain = RegSaveArea.getValue(1);
1355 
1356   // select overflow_area if index > 8
1357   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
1358                             DAG.getConstant(8, MVT::i32), ISD::SETLT);
1359 
1360   // adjustment constant gpr_index * 4/8
1361   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
1362                                     VT.isInteger() ? GprIndex : FprIndex,
1363                                     DAG.getConstant(VT.isInteger() ? 4 : 8,
1364                                                     MVT::i32));
1365 
1366   // OurReg = RegSaveArea + RegConstant
1367   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
1368                                RegConstant);
1369 
1370   // Floating types are 32 bytes into RegSaveArea
1371   if (VT.isFloatingPoint())
1372     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
1373                          DAG.getConstant(32, MVT::i32));
1374 
1375   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
1376   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
1377                                    VT.isInteger() ? GprIndex : FprIndex,
1378                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1,
1379                                                    MVT::i32));
1380 
1381   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
1382                               VT.isInteger() ? VAListPtr : FprPtr,
1383                               MachinePointerInfo(SV),
1384                               MVT::i8, false, false, 0);
1385 
1386   // determine if we should load from reg_save_area or overflow_area
1387   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
1388 
1389   // increase overflow_area by 4/8 if gpr/fpr > 8
1390   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
1391                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
1392                                           MVT::i32));
1393 
1394   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
1395                              OverflowAreaPlusN);
1396 
1397   InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
1398                               OverflowAreaPtr,
1399                               MachinePointerInfo(),
1400                               MVT::i32, false, false, 0);
1401 
1402   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
1403                      false, false, false, 0);
1404 }
1405 
1406 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
1407                                                   SelectionDAG &DAG) const {
1408   return Op.getOperand(0);
1409 }
1410 
1411 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
1412                                                 SelectionDAG &DAG) const {
1413   SDValue Chain = Op.getOperand(0);
1414   SDValue Trmp = Op.getOperand(1); // trampoline
1415   SDValue FPtr = Op.getOperand(2); // nested function
1416   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1417   DebugLoc dl = Op.getDebugLoc();
1418 
1419   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1420   bool isPPC64 = (PtrVT == MVT::i64);
1421   Type *IntPtrTy =
1422     DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1423                                                              *DAG.getContext());
1424 
1425   TargetLowering::ArgListTy Args;
1426   TargetLowering::ArgListEntry Entry;
1427 
1428   Entry.Ty = IntPtrTy;
1429   Entry.Node = Trmp; Args.push_back(Entry);
1430 
1431   // TrampSize == (isPPC64 ? 48 : 40);
1432   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1433                                isPPC64 ? MVT::i64 : MVT::i32);
1434   Args.push_back(Entry);
1435 
1436   Entry.Node = FPtr; Args.push_back(Entry);
1437   Entry.Node = Nest; Args.push_back(Entry);
1438 
1439   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1440   std::pair<SDValue, SDValue> CallResult =
1441     LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
1442                 false, false, false, false, 0, CallingConv::C,
1443                 /*isTailCall=*/false,
1444                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
1445                 DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1446                 Args, DAG, dl);
1447 
1448   return CallResult.second;
1449 }
1450 
1451 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1452                                         const PPCSubtarget &Subtarget) const {
1453   MachineFunction &MF = DAG.getMachineFunction();
1454   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1455 
1456   DebugLoc dl = Op.getDebugLoc();
1457 
1458   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1459     // vastart just stores the address of the VarArgsFrameIndex slot into the
1460     // memory location argument.
1461     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1462     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1463     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1464     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1465                         MachinePointerInfo(SV),
1466                         false, false, 0);
1467   }
1468 
1469   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1470   // We suppose the given va_list is already allocated.
1471   //
1472   // typedef struct {
1473   //  char gpr;     /* index into the array of 8 GPRs
1474   //                 * stored in the register save area
1475   //                 * gpr=0 corresponds to r3,
1476   //                 * gpr=1 to r4, etc.
1477   //                 */
1478   //  char fpr;     /* index into the array of 8 FPRs
1479   //                 * stored in the register save area
1480   //                 * fpr=0 corresponds to f1,
1481   //                 * fpr=1 to f2, etc.
1482   //                 */
1483   //  char *overflow_arg_area;
1484   //                /* location on stack that holds
1485   //                 * the next overflow argument
1486   //                 */
1487   //  char *reg_save_area;
1488   //               /* where r3:r10 and f1:f8 (if saved)
1489   //                * are stored
1490   //                */
1491   // } va_list[1];
1492 
1493 
1494   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1495   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1496 
1497 
1498   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1499 
1500   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1501                                             PtrVT);
1502   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1503                                  PtrVT);
1504 
1505   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1506   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1507 
1508   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1509   SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1510 
1511   uint64_t FPROffset = 1;
1512   SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1513 
1514   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1515 
1516   // Store first byte : number of int regs
1517   SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1518                                          Op.getOperand(1),
1519                                          MachinePointerInfo(SV),
1520                                          MVT::i8, false, false, 0);
1521   uint64_t nextOffset = FPROffset;
1522   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1523                                   ConstFPROffset);
1524 
1525   // Store second byte : number of float regs
1526   SDValue secondStore =
1527     DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1528                       MachinePointerInfo(SV, nextOffset), MVT::i8,
1529                       false, false, 0);
1530   nextOffset += StackOffset;
1531   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1532 
1533   // Store second word : arguments given on stack
1534   SDValue thirdStore =
1535     DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1536                  MachinePointerInfo(SV, nextOffset),
1537                  false, false, 0);
1538   nextOffset += FrameOffset;
1539   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1540 
1541   // Store third word : arguments given in registers
1542   return DAG.getStore(thirdStore, dl, FR, nextPtr,
1543                       MachinePointerInfo(SV, nextOffset),
1544                       false, false, 0);
1545 
1546 }
1547 
1548 #include "PPCGenCallingConv.inc"
1549 
1550 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1551                                      CCValAssign::LocInfo &LocInfo,
1552                                      ISD::ArgFlagsTy &ArgFlags,
1553                                      CCState &State) {
1554   return true;
1555 }
1556 
1557 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1558                                             MVT &LocVT,
1559                                             CCValAssign::LocInfo &LocInfo,
1560                                             ISD::ArgFlagsTy &ArgFlags,
1561                                             CCState &State) {
1562   static const uint16_t ArgRegs[] = {
1563     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1564     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1565   };
1566   const unsigned NumArgRegs = array_lengthof(ArgRegs);
1567 
1568   unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1569 
1570   // Skip one register if the first unallocated register has an even register
1571   // number and there are still argument registers available which have not been
1572   // allocated yet. RegNum is actually an index into ArgRegs, which means we
1573   // need to skip a register if RegNum is odd.
1574   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1575     State.AllocateReg(ArgRegs[RegNum]);
1576   }
1577 
1578   // Always return false here, as this function only makes sure that the first
1579   // unallocated register has an odd register number and does not actually
1580   // allocate a register for the current argument.
1581   return false;
1582 }
1583 
1584 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1585                                               MVT &LocVT,
1586                                               CCValAssign::LocInfo &LocInfo,
1587                                               ISD::ArgFlagsTy &ArgFlags,
1588                                               CCState &State) {
1589   static const uint16_t ArgRegs[] = {
1590     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1591     PPC::F8
1592   };
1593 
1594   const unsigned NumArgRegs = array_lengthof(ArgRegs);
1595 
1596   unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1597 
1598   // If there is only one Floating-point register left we need to put both f64
1599   // values of a split ppc_fp128 value on the stack.
1600   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1601     State.AllocateReg(ArgRegs[RegNum]);
1602   }
1603 
1604   // Always return false here, as this function only makes sure that the two f64
1605   // values a ppc_fp128 value is split into are both passed in registers or both
1606   // passed on the stack and does not actually allocate a register for the
1607   // current argument.
1608   return false;
1609 }
1610 
1611 /// GetFPR - Get the set of FP registers that should be allocated for arguments,
1612 /// on Darwin.
1613 static const uint16_t *GetFPR() {
1614   static const uint16_t FPR[] = {
1615     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1616     PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1617   };
1618 
1619   return FPR;
1620 }
1621 
1622 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
1623 /// the stack.
1624 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1625                                        unsigned PtrByteSize) {
1626   unsigned ArgSize = ArgVT.getSizeInBits()/8;
1627   if (Flags.isByVal())
1628     ArgSize = Flags.getByValSize();
1629   ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1630 
1631   return ArgSize;
1632 }
1633 
1634 SDValue
1635 PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1636                                         CallingConv::ID CallConv, bool isVarArg,
1637                                         const SmallVectorImpl<ISD::InputArg>
1638                                           &Ins,
1639                                         DebugLoc dl, SelectionDAG &DAG,
1640                                         SmallVectorImpl<SDValue> &InVals)
1641                                           const {
1642   if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
1643     return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
1644                                      dl, DAG, InVals);
1645   } else {
1646     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1647                                        dl, DAG, InVals);
1648   }
1649 }
1650 
1651 SDValue
1652 PPCTargetLowering::LowerFormalArguments_SVR4(
1653                                       SDValue Chain,
1654                                       CallingConv::ID CallConv, bool isVarArg,
1655                                       const SmallVectorImpl<ISD::InputArg>
1656                                         &Ins,
1657                                       DebugLoc dl, SelectionDAG &DAG,
1658                                       SmallVectorImpl<SDValue> &InVals) const {
1659 
1660   // 32-bit SVR4 ABI Stack Frame Layout:
1661   //              +-----------------------------------+
1662   //        +-->  |            Back chain             |
1663   //        |     +-----------------------------------+
1664   //        |     | Floating-point register save area |
1665   //        |     +-----------------------------------+
1666   //        |     |    General register save area     |
1667   //        |     +-----------------------------------+
1668   //        |     |          CR save word             |
1669   //        |     +-----------------------------------+
1670   //        |     |         VRSAVE save word          |
1671   //        |     +-----------------------------------+
1672   //        |     |         Alignment padding         |
1673   //        |     +-----------------------------------+
1674   //        |     |     Vector register save area     |
1675   //        |     +-----------------------------------+
1676   //        |     |       Local variable space        |
1677   //        |     +-----------------------------------+
1678   //        |     |        Parameter list area        |
1679   //        |     +-----------------------------------+
1680   //        |     |           LR save word            |
1681   //        |     +-----------------------------------+
1682   // SP-->  +---  |            Back chain             |
1683   //              +-----------------------------------+
1684   //
1685   // Specifications:
1686   //   System V Application Binary Interface PowerPC Processor Supplement
1687   //   AltiVec Technology Programming Interface Manual
1688 
1689   MachineFunction &MF = DAG.getMachineFunction();
1690   MachineFrameInfo *MFI = MF.getFrameInfo();
1691   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1692 
1693   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1694   // Potential tail calls could cause overwriting of argument stack slots.
1695   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
1696                        (CallConv == CallingConv::Fast));
1697   unsigned PtrByteSize = 4;
1698 
1699   // Assign locations to all of the incoming arguments.
1700   SmallVector<CCValAssign, 16> ArgLocs;
1701   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1702 		 getTargetMachine(), ArgLocs, *DAG.getContext());
1703 
1704   // Reserve space for the linkage area on the stack.
1705   CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
1706 
1707   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1708 
1709   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1710     CCValAssign &VA = ArgLocs[i];
1711 
1712     // Arguments stored in registers.
1713     if (VA.isRegLoc()) {
1714       const TargetRegisterClass *RC;
1715       EVT ValVT = VA.getValVT();
1716 
1717       switch (ValVT.getSimpleVT().SimpleTy) {
1718         default:
1719           llvm_unreachable("ValVT not supported by formal arguments Lowering");
1720         case MVT::i32:
1721           RC = PPC::GPRCRegisterClass;
1722           break;
1723         case MVT::f32:
1724           RC = PPC::F4RCRegisterClass;
1725           break;
1726         case MVT::f64:
1727           RC = PPC::F8RCRegisterClass;
1728           break;
1729         case MVT::v16i8:
1730         case MVT::v8i16:
1731         case MVT::v4i32:
1732         case MVT::v4f32:
1733           RC = PPC::VRRCRegisterClass;
1734           break;
1735       }
1736 
1737       // Transform the arguments stored in physical registers into virtual ones.
1738       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1739       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1740 
1741       InVals.push_back(ArgValue);
1742     } else {
1743       // Argument stored in memory.
1744       assert(VA.isMemLoc());
1745 
1746       unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1747       int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1748                                       isImmutable);
1749 
1750       // Create load nodes to retrieve arguments from the stack.
1751       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1752       InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1753                                    MachinePointerInfo(),
1754                                    false, false, false, 0));
1755     }
1756   }
1757 
1758   // Assign locations to all of the incoming aggregate by value arguments.
1759   // Aggregates passed by value are stored in the local variable space of the
1760   // caller's stack frame, right above the parameter list area.
1761   SmallVector<CCValAssign, 16> ByValArgLocs;
1762   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1763 		      getTargetMachine(), ByValArgLocs, *DAG.getContext());
1764 
1765   // Reserve stack space for the allocations in CCInfo.
1766   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1767 
1768   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1769 
1770   // Area that is at least reserved in the caller of this function.
1771   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1772 
1773   // Set the size that is at least reserved in caller of this function.  Tail
1774   // call optimized function's reserved stack space needs to be aligned so that
1775   // taking the difference between two stack areas will result in an aligned
1776   // stack.
1777   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1778 
1779   MinReservedArea =
1780     std::max(MinReservedArea,
1781              PPCFrameLowering::getMinCallFrameSize(false, false));
1782 
1783   unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
1784     getStackAlignment();
1785   unsigned AlignMask = TargetAlign-1;
1786   MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1787 
1788   FI->setMinReservedArea(MinReservedArea);
1789 
1790   SmallVector<SDValue, 8> MemOps;
1791 
1792   // If the function takes variable number of arguments, make a frame index for
1793   // the start of the first vararg value... for expansion of llvm.va_start.
1794   if (isVarArg) {
1795     static const uint16_t GPArgRegs[] = {
1796       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1797       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1798     };
1799     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1800 
1801     static const uint16_t FPArgRegs[] = {
1802       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1803       PPC::F8
1804     };
1805     const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1806 
1807     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
1808                                                           NumGPArgRegs));
1809     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
1810                                                           NumFPArgRegs));
1811 
1812     // Make room for NumGPArgRegs and NumFPArgRegs.
1813     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1814                 NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
1815 
1816     FuncInfo->setVarArgsStackOffset(
1817       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1818                              CCInfo.getNextStackOffset(), true));
1819 
1820     FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
1821     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1822 
1823     // The fixed integer arguments of a variadic function are stored to the
1824     // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
1825     // the result of va_next.
1826     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1827       // Get an existing live-in vreg, or add a new one.
1828       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
1829       if (!VReg)
1830         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1831 
1832       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1833       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1834                                    MachinePointerInfo(), false, false, 0);
1835       MemOps.push_back(Store);
1836       // Increment the address by four for the next argument to store
1837       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1838       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1839     }
1840 
1841     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1842     // is set.
1843     // The double arguments are stored to the VarArgsFrameIndex
1844     // on the stack.
1845     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1846       // Get an existing live-in vreg, or add a new one.
1847       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
1848       if (!VReg)
1849         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1850 
1851       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1852       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1853                                    MachinePointerInfo(), false, false, 0);
1854       MemOps.push_back(Store);
1855       // Increment the address by eight for the next argument to store
1856       SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1857                                          PtrVT);
1858       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1859     }
1860   }
1861 
1862   if (!MemOps.empty())
1863     Chain = DAG.getNode(ISD::TokenFactor, dl,
1864                         MVT::Other, &MemOps[0], MemOps.size());
1865 
1866   return Chain;
1867 }
1868 
1869 SDValue
1870 PPCTargetLowering::LowerFormalArguments_Darwin(
1871                                       SDValue Chain,
1872                                       CallingConv::ID CallConv, bool isVarArg,
1873                                       const SmallVectorImpl<ISD::InputArg>
1874                                         &Ins,
1875                                       DebugLoc dl, SelectionDAG &DAG,
1876                                       SmallVectorImpl<SDValue> &InVals) const {
1877   // TODO: add description of PPC stack frame format, or at least some docs.
1878   //
1879   MachineFunction &MF = DAG.getMachineFunction();
1880   MachineFrameInfo *MFI = MF.getFrameInfo();
1881   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1882 
1883   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1884   bool isPPC64 = PtrVT == MVT::i64;
1885   // Potential tail calls could cause overwriting of argument stack slots.
1886   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
1887                        (CallConv == CallingConv::Fast));
1888   unsigned PtrByteSize = isPPC64 ? 8 : 4;
1889 
1890   unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
1891   // Area that is at least reserved in caller of this function.
1892   unsigned MinReservedArea = ArgOffset;
1893 
1894   static const uint16_t GPR_32[] = {           // 32-bit registers.
1895     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1896     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1897   };
1898   static const uint16_t GPR_64[] = {           // 64-bit registers.
1899     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1900     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1901   };
1902 
1903   static const uint16_t *FPR = GetFPR();
1904 
1905   static const uint16_t VR[] = {
1906     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1907     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1908   };
1909 
1910   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1911   const unsigned Num_FPR_Regs = 13;
1912   const unsigned Num_VR_Regs  = array_lengthof( VR);
1913 
1914   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1915 
1916   const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
1917 
1918   // In 32-bit non-varargs functions, the stack space for vectors is after the
1919   // stack space for non-vectors.  We do not use this space unless we have
1920   // too many vectors to fit in registers, something that only occurs in
1921   // constructed examples:), but we have to walk the arglist to figure
1922   // that out...for the pathological case, compute VecArgOffset as the
1923   // start of the vector parameter area.  Computing VecArgOffset is the
1924   // entire point of the following loop.
1925   unsigned VecArgOffset = ArgOffset;
1926   if (!isVarArg && !isPPC64) {
1927     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
1928          ++ArgNo) {
1929       EVT ObjectVT = Ins[ArgNo].VT;
1930       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1931 
1932       if (Flags.isByVal()) {
1933         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1934         unsigned ObjSize = Flags.getByValSize();
1935         unsigned ArgSize =
1936                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1937         VecArgOffset += ArgSize;
1938         continue;
1939       }
1940 
1941       switch(ObjectVT.getSimpleVT().SimpleTy) {
1942       default: llvm_unreachable("Unhandled argument type!");
1943       case MVT::i32:
1944       case MVT::f32:
1945         VecArgOffset += isPPC64 ? 8 : 4;
1946         break;
1947       case MVT::i64:  // PPC64
1948       case MVT::f64:
1949         VecArgOffset += 8;
1950         break;
1951       case MVT::v4f32:
1952       case MVT::v4i32:
1953       case MVT::v8i16:
1954       case MVT::v16i8:
1955         // Nothing to do, we're only looking at Nonvector args here.
1956         break;
1957       }
1958     }
1959   }
1960   // We've found where the vector parameter area in memory is.  Skip the
1961   // first 12 parameters; these don't use that memory.
1962   VecArgOffset = ((VecArgOffset+15)/16)*16;
1963   VecArgOffset += 12*16;
1964 
1965   // Add DAG nodes to load the arguments or copy them out of registers.  On
1966   // entry to a function on PPC, the arguments start after the linkage area,
1967   // although the first ones are often in registers.
1968 
1969   SmallVector<SDValue, 8> MemOps;
1970   unsigned nAltivecParamsAtEnd = 0;
1971   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
1972     SDValue ArgVal;
1973     bool needsLoad = false;
1974     EVT ObjectVT = Ins[ArgNo].VT;
1975     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1976     unsigned ArgSize = ObjSize;
1977     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1978 
1979     unsigned CurArgOffset = ArgOffset;
1980 
1981     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1982     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1983         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1984       if (isVarArg || isPPC64) {
1985         MinReservedArea = ((MinReservedArea+15)/16)*16;
1986         MinReservedArea += CalculateStackSlotSize(ObjectVT,
1987                                                   Flags,
1988                                                   PtrByteSize);
1989       } else  nAltivecParamsAtEnd++;
1990     } else
1991       // Calculate min reserved area.
1992       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
1993                                                 Flags,
1994                                                 PtrByteSize);
1995 
1996     // FIXME the codegen can be much improved in some cases.
1997     // We do not have to keep everything in memory.
1998     if (Flags.isByVal()) {
1999       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2000       ObjSize = Flags.getByValSize();
2001       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2002       // Objects of size 1 and 2 are right justified, everything else is
2003       // left justified.  This means the memory address is adjusted forwards.
2004       if (ObjSize==1 || ObjSize==2) {
2005         CurArgOffset = CurArgOffset + (4 - ObjSize);
2006       }
2007       // The value of the object is its address.
2008       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2009       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2010       InVals.push_back(FIN);
2011       if (ObjSize==1 || ObjSize==2) {
2012         if (GPR_idx != Num_GPR_Regs) {
2013           unsigned VReg;
2014           if (isPPC64)
2015             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2016           else
2017             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2018           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2019           SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2020                                             MachinePointerInfo(),
2021                                             ObjSize==1 ? MVT::i8 : MVT::i16,
2022                                             false, false, 0);
2023           MemOps.push_back(Store);
2024           ++GPR_idx;
2025         }
2026 
2027         ArgOffset += PtrByteSize;
2028 
2029         continue;
2030       }
2031       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2032         // Store whatever pieces of the object are in registers
2033         // to memory.  ArgVal will be address of the beginning of
2034         // the object.
2035         if (GPR_idx != Num_GPR_Regs) {
2036           unsigned VReg;
2037           if (isPPC64)
2038             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2039           else
2040             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2041           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2042           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2043           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2044           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2045                                        MachinePointerInfo(),
2046                                        false, false, 0);
2047           MemOps.push_back(Store);
2048           ++GPR_idx;
2049           ArgOffset += PtrByteSize;
2050         } else {
2051           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
2052           break;
2053         }
2054       }
2055       continue;
2056     }
2057 
2058     switch (ObjectVT.getSimpleVT().SimpleTy) {
2059     default: llvm_unreachable("Unhandled argument type!");
2060     case MVT::i32:
2061       if (!isPPC64) {
2062         if (GPR_idx != Num_GPR_Regs) {
2063           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2064           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2065           ++GPR_idx;
2066         } else {
2067           needsLoad = true;
2068           ArgSize = PtrByteSize;
2069         }
2070         // All int arguments reserve stack space in the Darwin ABI.
2071         ArgOffset += PtrByteSize;
2072         break;
2073       }
2074       // FALLTHROUGH
2075     case MVT::i64:  // PPC64
2076       if (GPR_idx != Num_GPR_Regs) {
2077         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2078         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2079 
2080         if (ObjectVT == MVT::i32) {
2081           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2082           // value to MVT::i64 and then truncate to the correct register size.
2083           if (Flags.isSExt())
2084             ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
2085                                  DAG.getValueType(ObjectVT));
2086           else if (Flags.isZExt())
2087             ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
2088                                  DAG.getValueType(ObjectVT));
2089 
2090           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
2091         }
2092 
2093         ++GPR_idx;
2094       } else {
2095         needsLoad = true;
2096         ArgSize = PtrByteSize;
2097       }
2098       // All int arguments reserve stack space in the Darwin ABI.
2099       ArgOffset += 8;
2100       break;
2101 
2102     case MVT::f32:
2103     case MVT::f64:
2104       // Every 4 bytes of argument space consumes one of the GPRs available for
2105       // argument passing.
2106       if (GPR_idx != Num_GPR_Regs) {
2107         ++GPR_idx;
2108         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
2109           ++GPR_idx;
2110       }
2111       if (FPR_idx != Num_FPR_Regs) {
2112         unsigned VReg;
2113 
2114         if (ObjectVT == MVT::f32)
2115           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2116         else
2117           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2118 
2119         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2120         ++FPR_idx;
2121       } else {
2122         needsLoad = true;
2123       }
2124 
2125       // All FP arguments reserve stack space in the Darwin ABI.
2126       ArgOffset += isPPC64 ? 8 : ObjSize;
2127       break;
2128     case MVT::v4f32:
2129     case MVT::v4i32:
2130     case MVT::v8i16:
2131     case MVT::v16i8:
2132       // Note that vector arguments in registers don't reserve stack space,
2133       // except in varargs functions.
2134       if (VR_idx != Num_VR_Regs) {
2135         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2136         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2137         if (isVarArg) {
2138           while ((ArgOffset % 16) != 0) {
2139             ArgOffset += PtrByteSize;
2140             if (GPR_idx != Num_GPR_Regs)
2141               GPR_idx++;
2142           }
2143           ArgOffset += 16;
2144           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2145         }
2146         ++VR_idx;
2147       } else {
2148         if (!isVarArg && !isPPC64) {
2149           // Vectors go after all the nonvectors.
2150           CurArgOffset = VecArgOffset;
2151           VecArgOffset += 16;
2152         } else {
2153           // Vectors are aligned.
2154           ArgOffset = ((ArgOffset+15)/16)*16;
2155           CurArgOffset = ArgOffset;
2156           ArgOffset += 16;
2157         }
2158         needsLoad = true;
2159       }
2160       break;
2161     }
2162 
2163     // We need to load the argument to a virtual register if we determined above
2164     // that we ran out of physical registers of the appropriate type.
2165     if (needsLoad) {
2166       int FI = MFI->CreateFixedObject(ObjSize,
2167                                       CurArgOffset + (ArgSize - ObjSize),
2168                                       isImmutable);
2169       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2170       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2171                            false, false, false, 0);
2172     }
2173 
2174     InVals.push_back(ArgVal);
2175   }
2176 
2177   // Set the size that is at least reserved in caller of this function.  Tail
2178   // call optimized function's reserved stack space needs to be aligned so that
2179   // taking the difference between two stack areas will result in an aligned
2180   // stack.
2181   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2182   // Add the Altivec parameters at the end, if needed.
2183   if (nAltivecParamsAtEnd) {
2184     MinReservedArea = ((MinReservedArea+15)/16)*16;
2185     MinReservedArea += 16*nAltivecParamsAtEnd;
2186   }
2187   MinReservedArea =
2188     std::max(MinReservedArea,
2189              PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2190   unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2191     getStackAlignment();
2192   unsigned AlignMask = TargetAlign-1;
2193   MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2194   FI->setMinReservedArea(MinReservedArea);
2195 
2196   // If the function takes variable number of arguments, make a frame index for
2197   // the start of the first vararg value... for expansion of llvm.va_start.
2198   if (isVarArg) {
2199     int Depth = ArgOffset;
2200 
2201     FuncInfo->setVarArgsFrameIndex(
2202       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2203                              Depth, true));
2204     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2205 
2206     // If this function is vararg, store any remaining integer argument regs
2207     // to their spots on the stack so that they may be loaded by deferencing the
2208     // result of va_next.
2209     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2210       unsigned VReg;
2211 
2212       if (isPPC64)
2213         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2214       else
2215         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2216 
2217       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2218       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2219                                    MachinePointerInfo(), false, false, 0);
2220       MemOps.push_back(Store);
2221       // Increment the address by four for the next argument to store
2222       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2223       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2224     }
2225   }
2226 
2227   if (!MemOps.empty())
2228     Chain = DAG.getNode(ISD::TokenFactor, dl,
2229                         MVT::Other, &MemOps[0], MemOps.size());
2230 
2231   return Chain;
2232 }
2233 
2234 /// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2235 /// linkage area for the Darwin ABI.
2236 static unsigned
2237 CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2238                                      bool isPPC64,
2239                                      bool isVarArg,
2240                                      unsigned CC,
2241                                      const SmallVectorImpl<ISD::OutputArg>
2242                                        &Outs,
2243                                      const SmallVectorImpl<SDValue> &OutVals,
2244                                      unsigned &nAltivecParamsAtEnd) {
2245   // Count how many bytes are to be pushed on the stack, including the linkage
2246   // area, and parameter passing area.  We start with 24/48 bytes, which is
2247   // prereserved space for [SP][CR][LR][3 x unused].
2248   unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
2249   unsigned NumOps = Outs.size();
2250   unsigned PtrByteSize = isPPC64 ? 8 : 4;
2251 
2252   // Add up all the space actually used.
2253   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2254   // they all go in registers, but we must reserve stack space for them for
2255   // possible use by the caller.  In varargs or 64-bit calls, parameters are
2256   // assigned stack space in order, with padding so Altivec parameters are
2257   // 16-byte aligned.
2258   nAltivecParamsAtEnd = 0;
2259   for (unsigned i = 0; i != NumOps; ++i) {
2260     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2261     EVT ArgVT = Outs[i].VT;
2262     // Varargs Altivec parameters are padded to a 16 byte boundary.
2263     if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2264         ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2265       if (!isVarArg && !isPPC64) {
2266         // Non-varargs Altivec parameters go after all the non-Altivec
2267         // parameters; handle those later so we know how much padding we need.
2268         nAltivecParamsAtEnd++;
2269         continue;
2270       }
2271       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2272       NumBytes = ((NumBytes+15)/16)*16;
2273     }
2274     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2275   }
2276 
2277    // Allow for Altivec parameters at the end, if needed.
2278   if (nAltivecParamsAtEnd) {
2279     NumBytes = ((NumBytes+15)/16)*16;
2280     NumBytes += 16*nAltivecParamsAtEnd;
2281   }
2282 
2283   // The prolog code of the callee may store up to 8 GPR argument registers to
2284   // the stack, allowing va_start to index over them in memory if its varargs.
2285   // Because we cannot tell if this is needed on the caller side, we have to
2286   // conservatively assume that it is needed.  As such, make sure we have at
2287   // least enough stack space for the caller to store the 8 GPRs.
2288   NumBytes = std::max(NumBytes,
2289                       PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2290 
2291   // Tail call needs the stack to be aligned.
2292   if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){
2293     unsigned TargetAlign = DAG.getMachineFunction().getTarget().
2294       getFrameLowering()->getStackAlignment();
2295     unsigned AlignMask = TargetAlign-1;
2296     NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2297   }
2298 
2299   return NumBytes;
2300 }
2301 
2302 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2303 /// adjusted to accommodate the arguments for the tailcall.
2304 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2305                                    unsigned ParamSize) {
2306 
2307   if (!isTailCall) return 0;
2308 
2309   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2310   unsigned CallerMinReservedArea = FI->getMinReservedArea();
2311   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2312   // Remember only if the new adjustement is bigger.
2313   if (SPDiff < FI->getTailCallSPDelta())
2314     FI->setTailCallSPDelta(SPDiff);
2315 
2316   return SPDiff;
2317 }
2318 
2319 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2320 /// for tail call optimization. Targets which want to do tail call
2321 /// optimization should implement this function.
2322 bool
2323 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2324                                                      CallingConv::ID CalleeCC,
2325                                                      bool isVarArg,
2326                                       const SmallVectorImpl<ISD::InputArg> &Ins,
2327                                                      SelectionDAG& DAG) const {
2328   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
2329     return false;
2330 
2331   // Variable argument functions are not supported.
2332   if (isVarArg)
2333     return false;
2334 
2335   MachineFunction &MF = DAG.getMachineFunction();
2336   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2337   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2338     // Functions containing by val parameters are not supported.
2339     for (unsigned i = 0; i != Ins.size(); i++) {
2340        ISD::ArgFlagsTy Flags = Ins[i].Flags;
2341        if (Flags.isByVal()) return false;
2342     }
2343 
2344     // Non PIC/GOT  tail calls are supported.
2345     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2346       return true;
2347 
2348     // At the moment we can only do local tail calls (in same module, hidden
2349     // or protected) if we are generating PIC.
2350     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2351       return G->getGlobal()->hasHiddenVisibility()
2352           || G->getGlobal()->hasProtectedVisibility();
2353   }
2354 
2355   return false;
2356 }
2357 
2358 /// isCallCompatibleAddress - Return the immediate to use if the specified
2359 /// 32-bit value is representable in the immediate field of a BxA instruction.
2360 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2361   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2362   if (!C) return 0;
2363 
2364   int Addr = C->getZExtValue();
2365   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2366       (Addr << 6 >> 6) != Addr)
2367     return 0;  // Top 6 bits have to be sext of immediate.
2368 
2369   return DAG.getConstant((int)C->getZExtValue() >> 2,
2370                          DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2371 }
2372 
2373 namespace {
2374 
2375 struct TailCallArgumentInfo {
2376   SDValue Arg;
2377   SDValue FrameIdxOp;
2378   int       FrameIdx;
2379 
2380   TailCallArgumentInfo() : FrameIdx(0) {}
2381 };
2382 
2383 }
2384 
2385 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2386 static void
2387 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2388                                            SDValue Chain,
2389                    const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2390                    SmallVector<SDValue, 8> &MemOpChains,
2391                    DebugLoc dl) {
2392   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2393     SDValue Arg = TailCallArgs[i].Arg;
2394     SDValue FIN = TailCallArgs[i].FrameIdxOp;
2395     int FI = TailCallArgs[i].FrameIdx;
2396     // Store relative to framepointer.
2397     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2398                                        MachinePointerInfo::getFixedStack(FI),
2399                                        false, false, 0));
2400   }
2401 }
2402 
2403 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2404 /// the appropriate stack slot for the tail call optimized function call.
2405 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2406                                                MachineFunction &MF,
2407                                                SDValue Chain,
2408                                                SDValue OldRetAddr,
2409                                                SDValue OldFP,
2410                                                int SPDiff,
2411                                                bool isPPC64,
2412                                                bool isDarwinABI,
2413                                                DebugLoc dl) {
2414   if (SPDiff) {
2415     // Calculate the new stack slot for the return address.
2416     int SlotSize = isPPC64 ? 8 : 4;
2417     int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
2418                                                                    isDarwinABI);
2419     int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2420                                                           NewRetAddrLoc, true);
2421     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2422     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2423     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2424                          MachinePointerInfo::getFixedStack(NewRetAddr),
2425                          false, false, 0);
2426 
2427     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2428     // slot as the FP is never overwritten.
2429     if (isDarwinABI) {
2430       int NewFPLoc =
2431         SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2432       int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2433                                                           true);
2434       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2435       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2436                            MachinePointerInfo::getFixedStack(NewFPIdx),
2437                            false, false, 0);
2438     }
2439   }
2440   return Chain;
2441 }
2442 
2443 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2444 /// the position of the argument.
2445 static void
2446 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2447                          SDValue Arg, int SPDiff, unsigned ArgOffset,
2448                       SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2449   int Offset = ArgOffset + SPDiff;
2450   uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2451   int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2452   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2453   SDValue FIN = DAG.getFrameIndex(FI, VT);
2454   TailCallArgumentInfo Info;
2455   Info.Arg = Arg;
2456   Info.FrameIdxOp = FIN;
2457   Info.FrameIdx = FI;
2458   TailCallArguments.push_back(Info);
2459 }
2460 
2461 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2462 /// stack slot. Returns the chain as result and the loaded frame pointers in
2463 /// LROpOut/FPOpout. Used when tail calling.
2464 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2465                                                         int SPDiff,
2466                                                         SDValue Chain,
2467                                                         SDValue &LROpOut,
2468                                                         SDValue &FPOpOut,
2469                                                         bool isDarwinABI,
2470                                                         DebugLoc dl) const {
2471   if (SPDiff) {
2472     // Load the LR and FP stack slot for later adjusting.
2473     EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2474     LROpOut = getReturnAddrFrameIndex(DAG);
2475     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
2476                           false, false, false, 0);
2477     Chain = SDValue(LROpOut.getNode(), 1);
2478 
2479     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2480     // slot as the FP is never overwritten.
2481     if (isDarwinABI) {
2482       FPOpOut = getFramePointerFrameIndex(DAG);
2483       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
2484                             false, false, false, 0);
2485       Chain = SDValue(FPOpOut.getNode(), 1);
2486     }
2487   }
2488   return Chain;
2489 }
2490 
2491 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2492 /// by "Src" to address "Dst" of size "Size".  Alignment information is
2493 /// specified by the specific parameter attribute. The copy will be passed as
2494 /// a byval function parameter.
2495 /// Sometimes what we are copying is the end of a larger object, the part that
2496 /// does not fit in registers.
2497 static SDValue
2498 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2499                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2500                           DebugLoc dl) {
2501   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2502   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2503                        false, false, MachinePointerInfo(0),
2504                        MachinePointerInfo(0));
2505 }
2506 
2507 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2508 /// tail calls.
2509 static void
2510 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2511                  SDValue Arg, SDValue PtrOff, int SPDiff,
2512                  unsigned ArgOffset, bool isPPC64, bool isTailCall,
2513                  bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2514                  SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
2515                  DebugLoc dl) {
2516   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2517   if (!isTailCall) {
2518     if (isVector) {
2519       SDValue StackPtr;
2520       if (isPPC64)
2521         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2522       else
2523         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2524       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2525                            DAG.getConstant(ArgOffset, PtrVT));
2526     }
2527     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2528                                        MachinePointerInfo(), false, false, 0));
2529   // Calculate and remember argument location.
2530   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2531                                   TailCallArguments);
2532 }
2533 
2534 static
2535 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2536                      DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2537                      SDValue LROp, SDValue FPOp, bool isDarwinABI,
2538                      SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2539   MachineFunction &MF = DAG.getMachineFunction();
2540 
2541   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2542   // might overwrite each other in case of tail call optimization.
2543   SmallVector<SDValue, 8> MemOpChains2;
2544   // Do not flag preceding copytoreg stuff together with the following stuff.
2545   InFlag = SDValue();
2546   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2547                                     MemOpChains2, dl);
2548   if (!MemOpChains2.empty())
2549     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2550                         &MemOpChains2[0], MemOpChains2.size());
2551 
2552   // Store the return address to the appropriate stack slot.
2553   Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2554                                         isPPC64, isDarwinABI, dl);
2555 
2556   // Emit callseq_end just before tailcall node.
2557   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2558                              DAG.getIntPtrConstant(0, true), InFlag);
2559   InFlag = Chain.getValue(1);
2560 }
2561 
2562 static
2563 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2564                      SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2565                      SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2566                      SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
2567                      const PPCSubtarget &PPCSubTarget) {
2568 
2569   bool isPPC64 = PPCSubTarget.isPPC64();
2570   bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
2571 
2572   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2573   NodeTys.push_back(MVT::Other);   // Returns a chain
2574   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
2575 
2576   unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2577 
2578   bool needIndirectCall = true;
2579   if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
2580     // If this is an absolute destination address, use the munged value.
2581     Callee = SDValue(Dest, 0);
2582     needIndirectCall = false;
2583   }
2584 
2585   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2586     // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
2587     // Use indirect calls for ALL functions calls in JIT mode, since the
2588     // far-call stubs may be outside relocation limits for a BL instruction.
2589     if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
2590       unsigned OpFlags = 0;
2591       if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2592           (PPCSubTarget.getTargetTriple().isMacOSX() &&
2593            PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
2594           (G->getGlobal()->isDeclaration() ||
2595            G->getGlobal()->isWeakForLinker())) {
2596         // PC-relative references to external symbols should go through $stub,
2597         // unless we're building with the leopard linker or later, which
2598         // automatically synthesizes these stubs.
2599         OpFlags = PPCII::MO_DARWIN_STUB;
2600       }
2601 
2602       // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
2603       // every direct call is) turn it into a TargetGlobalAddress /
2604       // TargetExternalSymbol node so that legalize doesn't hack it.
2605       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2606                                           Callee.getValueType(),
2607                                           0, OpFlags);
2608       needIndirectCall = false;
2609     }
2610   }
2611 
2612   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2613     unsigned char OpFlags = 0;
2614 
2615     if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2616         (PPCSubTarget.getTargetTriple().isMacOSX() &&
2617          PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
2618       // PC-relative references to external symbols should go through $stub,
2619       // unless we're building with the leopard linker or later, which
2620       // automatically synthesizes these stubs.
2621       OpFlags = PPCII::MO_DARWIN_STUB;
2622     }
2623 
2624     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
2625                                          OpFlags);
2626     needIndirectCall = false;
2627   }
2628 
2629   if (needIndirectCall) {
2630     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2631     // to do the call, we can't use PPCISD::CALL.
2632     SDValue MTCTROps[] = {Chain, Callee, InFlag};
2633 
2634     if (isSVR4ABI && isPPC64) {
2635       // Function pointers in the 64-bit SVR4 ABI do not point to the function
2636       // entry point, but to the function descriptor (the function entry point
2637       // address is part of the function descriptor though).
2638       // The function descriptor is a three doubleword structure with the
2639       // following fields: function entry point, TOC base address and
2640       // environment pointer.
2641       // Thus for a call through a function pointer, the following actions need
2642       // to be performed:
2643       //   1. Save the TOC of the caller in the TOC save area of its stack
2644       //      frame (this is done in LowerCall_Darwin()).
2645       //   2. Load the address of the function entry point from the function
2646       //      descriptor.
2647       //   3. Load the TOC of the callee from the function descriptor into r2.
2648       //   4. Load the environment pointer from the function descriptor into
2649       //      r11.
2650       //   5. Branch to the function entry point address.
2651       //   6. On return of the callee, the TOC of the caller needs to be
2652       //      restored (this is done in FinishCall()).
2653       //
2654       // All those operations are flagged together to ensure that no other
2655       // operations can be scheduled in between. E.g. without flagging the
2656       // operations together, a TOC access in the caller could be scheduled
2657       // between the load of the callee TOC and the branch to the callee, which
2658       // results in the TOC access going through the TOC of the callee instead
2659       // of going through the TOC of the caller, which leads to incorrect code.
2660 
2661       // Load the address of the function entry point from the function
2662       // descriptor.
2663       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
2664       SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
2665                                         InFlag.getNode() ? 3 : 2);
2666       Chain = LoadFuncPtr.getValue(1);
2667       InFlag = LoadFuncPtr.getValue(2);
2668 
2669       // Load environment pointer into r11.
2670       // Offset of the environment pointer within the function descriptor.
2671       SDValue PtrOff = DAG.getIntPtrConstant(16);
2672 
2673       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
2674       SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
2675                                        InFlag);
2676       Chain = LoadEnvPtr.getValue(1);
2677       InFlag = LoadEnvPtr.getValue(2);
2678 
2679       SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
2680                                         InFlag);
2681       Chain = EnvVal.getValue(0);
2682       InFlag = EnvVal.getValue(1);
2683 
2684       // Load TOC of the callee into r2. We are using a target-specific load
2685       // with r2 hard coded, because the result of a target-independent load
2686       // would never go directly into r2, since r2 is a reserved register (which
2687       // prevents the register allocator from allocating it), resulting in an
2688       // additional register being allocated and an unnecessary move instruction
2689       // being generated.
2690       VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2691       SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
2692                                        Callee, InFlag);
2693       Chain = LoadTOCPtr.getValue(0);
2694       InFlag = LoadTOCPtr.getValue(1);
2695 
2696       MTCTROps[0] = Chain;
2697       MTCTROps[1] = LoadFuncPtr;
2698       MTCTROps[2] = InFlag;
2699     }
2700 
2701     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2702                         2 + (InFlag.getNode() != 0));
2703     InFlag = Chain.getValue(1);
2704 
2705     NodeTys.clear();
2706     NodeTys.push_back(MVT::Other);
2707     NodeTys.push_back(MVT::Glue);
2708     Ops.push_back(Chain);
2709     CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2710     Callee.setNode(0);
2711     // Add CTR register as callee so a bctr can be emitted later.
2712     if (isTailCall)
2713       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
2714   }
2715 
2716   // If this is a direct call, pass the chain and the callee.
2717   if (Callee.getNode()) {
2718     Ops.push_back(Chain);
2719     Ops.push_back(Callee);
2720   }
2721   // If this is a tail call add stack pointer delta.
2722   if (isTailCall)
2723     Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2724 
2725   // Add argument registers to the end of the list so that they are known live
2726   // into the call.
2727   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2728     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2729                                   RegsToPass[i].second.getValueType()));
2730 
2731   return CallOpc;
2732 }
2733 
2734 SDValue
2735 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2736                                    CallingConv::ID CallConv, bool isVarArg,
2737                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2738                                    DebugLoc dl, SelectionDAG &DAG,
2739                                    SmallVectorImpl<SDValue> &InVals) const {
2740 
2741   SmallVector<CCValAssign, 16> RVLocs;
2742   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2743 		    getTargetMachine(), RVLocs, *DAG.getContext());
2744   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2745 
2746   // Copy all of the result registers out of their specified physreg.
2747   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2748     CCValAssign &VA = RVLocs[i];
2749     EVT VT = VA.getValVT();
2750     assert(VA.isRegLoc() && "Can only return in registers!");
2751     Chain = DAG.getCopyFromReg(Chain, dl,
2752                                VA.getLocReg(), VT, InFlag).getValue(1);
2753     InVals.push_back(Chain.getValue(0));
2754     InFlag = Chain.getValue(2);
2755   }
2756 
2757   return Chain;
2758 }
2759 
2760 SDValue
2761 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
2762                               bool isTailCall, bool isVarArg,
2763                               SelectionDAG &DAG,
2764                               SmallVector<std::pair<unsigned, SDValue>, 8>
2765                                 &RegsToPass,
2766                               SDValue InFlag, SDValue Chain,
2767                               SDValue &Callee,
2768                               int SPDiff, unsigned NumBytes,
2769                               const SmallVectorImpl<ISD::InputArg> &Ins,
2770                               SmallVectorImpl<SDValue> &InVals) const {
2771   std::vector<EVT> NodeTys;
2772   SmallVector<SDValue, 8> Ops;
2773   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2774                                  isTailCall, RegsToPass, Ops, NodeTys,
2775                                  PPCSubTarget);
2776 
2777   // When performing tail call optimization the callee pops its arguments off
2778   // the stack. Account for this here so these bytes can be pushed back on in
2779   // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2780   int BytesCalleePops =
2781     (CallConv == CallingConv::Fast &&
2782      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
2783 
2784   // Add a register mask operand representing the call-preserved registers.
2785   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2786   const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2787   assert(Mask && "Missing call preserved mask for calling convention");
2788   Ops.push_back(DAG.getRegisterMask(Mask));
2789 
2790   if (InFlag.getNode())
2791     Ops.push_back(InFlag);
2792 
2793   // Emit tail call.
2794   if (isTailCall) {
2795     // If this is the first return lowered for this function, add the regs
2796     // to the liveout set for the function.
2797     if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2798       SmallVector<CCValAssign, 16> RVLocs;
2799       CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2800 		     getTargetMachine(), RVLocs, *DAG.getContext());
2801       CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2802       for (unsigned i = 0; i != RVLocs.size(); ++i)
2803         DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2804     }
2805 
2806     assert(((Callee.getOpcode() == ISD::Register &&
2807              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
2808             Callee.getOpcode() == ISD::TargetExternalSymbol ||
2809             Callee.getOpcode() == ISD::TargetGlobalAddress ||
2810             isa<ConstantSDNode>(Callee)) &&
2811     "Expecting an global address, external symbol, absolute value or register");
2812 
2813     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
2814   }
2815 
2816   Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2817   InFlag = Chain.getValue(1);
2818 
2819   // Add a NOP immediately after the branch instruction when using the 64-bit
2820   // SVR4 ABI. At link time, if caller and callee are in a different module and
2821   // thus have a different TOC, the call will be replaced with a call to a stub
2822   // function which saves the current TOC, loads the TOC of the callee and
2823   // branches to the callee. The NOP will be replaced with a load instruction
2824   // which restores the TOC of the caller from the TOC save slot of the current
2825   // stack frame. If caller and callee belong to the same module (and have the
2826   // same TOC), the NOP will remain unchanged.
2827   if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
2828     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2829     if (CallOpc == PPCISD::BCTRL_SVR4) {
2830       // This is a call through a function pointer.
2831       // Restore the caller TOC from the save area into R2.
2832       // See PrepareCall() for more information about calls through function
2833       // pointers in the 64-bit SVR4 ABI.
2834       // We are using a target-specific load with r2 hard coded, because the
2835       // result of a target-independent load would never go directly into r2,
2836       // since r2 is a reserved register (which prevents the register allocator
2837       // from allocating it), resulting in an additional register being
2838       // allocated and an unnecessary move instruction being generated.
2839       Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
2840       InFlag = Chain.getValue(1);
2841     } else {
2842       // Otherwise insert NOP.
2843       InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Glue, InFlag);
2844     }
2845   }
2846 
2847   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2848                              DAG.getIntPtrConstant(BytesCalleePops, true),
2849                              InFlag);
2850   if (!Ins.empty())
2851     InFlag = Chain.getValue(1);
2852 
2853   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2854                          Ins, dl, DAG, InVals);
2855 }
2856 
2857 SDValue
2858 PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2859                              CallingConv::ID CallConv, bool isVarArg,
2860                              bool doesNotRet, bool &isTailCall,
2861                              const SmallVectorImpl<ISD::OutputArg> &Outs,
2862                              const SmallVectorImpl<SDValue> &OutVals,
2863                              const SmallVectorImpl<ISD::InputArg> &Ins,
2864                              DebugLoc dl, SelectionDAG &DAG,
2865                              SmallVectorImpl<SDValue> &InVals) const {
2866   if (isTailCall)
2867     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
2868                                                    Ins, DAG);
2869 
2870   if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
2871     return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
2872                           isTailCall, Outs, OutVals, Ins,
2873                           dl, DAG, InVals);
2874 
2875   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
2876                           isTailCall, Outs, OutVals, Ins,
2877                           dl, DAG, InVals);
2878 }
2879 
2880 SDValue
2881 PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
2882                                   CallingConv::ID CallConv, bool isVarArg,
2883                                   bool isTailCall,
2884                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2885                                   const SmallVectorImpl<SDValue> &OutVals,
2886                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2887                                   DebugLoc dl, SelectionDAG &DAG,
2888                                   SmallVectorImpl<SDValue> &InVals) const {
2889   // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2890   // of the 32-bit SVR4 ABI stack frame layout.
2891 
2892   assert((CallConv == CallingConv::C ||
2893           CallConv == CallingConv::Fast) && "Unknown calling convention!");
2894 
2895   unsigned PtrByteSize = 4;
2896 
2897   MachineFunction &MF = DAG.getMachineFunction();
2898 
2899   // Mark this function as potentially containing a function that contains a
2900   // tail call. As a consequence the frame pointer will be used for dynamicalloc
2901   // and restoring the callers stack pointer in this functions epilog. This is
2902   // done because by tail calling the called function might overwrite the value
2903   // in this function's (MF) stack pointer stack slot 0(SP).
2904   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2905       CallConv == CallingConv::Fast)
2906     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2907 
2908   // Count how many bytes are to be pushed on the stack, including the linkage
2909   // area, parameter list area and the part of the local variable space which
2910   // contains copies of aggregates which are passed by value.
2911 
2912   // Assign locations to all of the outgoing arguments.
2913   SmallVector<CCValAssign, 16> ArgLocs;
2914   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2915 		 getTargetMachine(), ArgLocs, *DAG.getContext());
2916 
2917   // Reserve space for the linkage area on the stack.
2918   CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
2919 
2920   if (isVarArg) {
2921     // Handle fixed and variable vector arguments differently.
2922     // Fixed vector arguments go into registers as long as registers are
2923     // available. Variable vector arguments always go into memory.
2924     unsigned NumArgs = Outs.size();
2925 
2926     for (unsigned i = 0; i != NumArgs; ++i) {
2927       MVT ArgVT = Outs[i].VT;
2928       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2929       bool Result;
2930 
2931       if (Outs[i].IsFixed) {
2932         Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
2933                              CCInfo);
2934       } else {
2935         Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
2936                                     ArgFlags, CCInfo);
2937       }
2938 
2939       if (Result) {
2940 #ifndef NDEBUG
2941         errs() << "Call operand #" << i << " has unhandled type "
2942              << EVT(ArgVT).getEVTString() << "\n";
2943 #endif
2944         llvm_unreachable(0);
2945       }
2946     }
2947   } else {
2948     // All arguments are treated the same.
2949     CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
2950   }
2951 
2952   // Assign locations to all of the outgoing aggregate by value arguments.
2953   SmallVector<CCValAssign, 16> ByValArgLocs;
2954   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2955 		      getTargetMachine(), ByValArgLocs, *DAG.getContext());
2956 
2957   // Reserve stack space for the allocations in CCInfo.
2958   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2959 
2960   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
2961 
2962   // Size of the linkage area, parameter list area and the part of the local
2963   // space variable where copies of aggregates which are passed by value are
2964   // stored.
2965   unsigned NumBytes = CCByValInfo.getNextStackOffset();
2966 
2967   // Calculate by how many bytes the stack has to be adjusted in case of tail
2968   // call optimization.
2969   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2970 
2971   // Adjust the stack pointer for the new arguments...
2972   // These operations are automatically eliminated by the prolog/epilog pass
2973   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2974   SDValue CallSeqStart = Chain;
2975 
2976   // Load the return address and frame pointer so it can be moved somewhere else
2977   // later.
2978   SDValue LROp, FPOp;
2979   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
2980                                        dl);
2981 
2982   // Set up a copy of the stack pointer for use loading and storing any
2983   // arguments that may not fit in the registers available for argument
2984   // passing.
2985   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2986 
2987   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2988   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2989   SmallVector<SDValue, 8> MemOpChains;
2990 
2991   bool seenFloatArg = false;
2992   // Walk the register/memloc assignments, inserting copies/loads.
2993   for (unsigned i = 0, j = 0, e = ArgLocs.size();
2994        i != e;
2995        ++i) {
2996     CCValAssign &VA = ArgLocs[i];
2997     SDValue Arg = OutVals[i];
2998     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2999 
3000     if (Flags.isByVal()) {
3001       // Argument is an aggregate which is passed by value, thus we need to
3002       // create a copy of it in the local variable space of the current stack
3003       // frame (which is the stack frame of the caller) and pass the address of
3004       // this copy to the callee.
3005       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
3006       CCValAssign &ByValVA = ByValArgLocs[j++];
3007       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
3008 
3009       // Memory reserved in the local variable space of the callers stack frame.
3010       unsigned LocMemOffset = ByValVA.getLocMemOffset();
3011 
3012       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3013       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3014 
3015       // Create a copy of the argument in the local area of the current
3016       // stack frame.
3017       SDValue MemcpyCall =
3018         CreateCopyOfByValArgument(Arg, PtrOff,
3019                                   CallSeqStart.getNode()->getOperand(0),
3020                                   Flags, DAG, dl);
3021 
3022       // This must go outside the CALLSEQ_START..END.
3023       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3024                            CallSeqStart.getNode()->getOperand(1));
3025       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3026                              NewCallSeqStart.getNode());
3027       Chain = CallSeqStart = NewCallSeqStart;
3028 
3029       // Pass the address of the aggregate copy on the stack either in a
3030       // physical register or in the parameter list area of the current stack
3031       // frame to the callee.
3032       Arg = PtrOff;
3033     }
3034 
3035     if (VA.isRegLoc()) {
3036       seenFloatArg |= VA.getLocVT().isFloatingPoint();
3037       // Put argument in a physical register.
3038       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3039     } else {
3040       // Put argument in the parameter list area of the current stack frame.
3041       assert(VA.isMemLoc());
3042       unsigned LocMemOffset = VA.getLocMemOffset();
3043 
3044       if (!isTailCall) {
3045         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3046         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3047 
3048         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3049                                            MachinePointerInfo(),
3050                                            false, false, 0));
3051       } else {
3052         // Calculate and remember argument location.
3053         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
3054                                  TailCallArguments);
3055       }
3056     }
3057   }
3058 
3059   if (!MemOpChains.empty())
3060     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3061                         &MemOpChains[0], MemOpChains.size());
3062 
3063   // Set CR6 to true if this is a vararg call with floating args passed in
3064   // registers.
3065   if (isVarArg) {
3066     SDValue SetCR(DAG.getMachineNode(seenFloatArg ? PPC::CRSET : PPC::CRUNSET,
3067                                      dl, MVT::i32), 0);
3068     RegsToPass.push_back(std::make_pair(unsigned(PPC::CR1EQ), SetCR));
3069   }
3070 
3071   // Build a sequence of copy-to-reg nodes chained together with token chain
3072   // and flag operands which copy the outgoing args into the appropriate regs.
3073   SDValue InFlag;
3074   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3075     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3076                              RegsToPass[i].second, InFlag);
3077     InFlag = Chain.getValue(1);
3078   }
3079 
3080   if (isTailCall)
3081     PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
3082                     false, TailCallArguments);
3083 
3084   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3085                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3086                     Ins, InVals);
3087 }
3088 
3089 SDValue
3090 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
3091                                     CallingConv::ID CallConv, bool isVarArg,
3092                                     bool isTailCall,
3093                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
3094                                     const SmallVectorImpl<SDValue> &OutVals,
3095                                     const SmallVectorImpl<ISD::InputArg> &Ins,
3096                                     DebugLoc dl, SelectionDAG &DAG,
3097                                     SmallVectorImpl<SDValue> &InVals) const {
3098 
3099   unsigned NumOps  = Outs.size();
3100 
3101   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3102   bool isPPC64 = PtrVT == MVT::i64;
3103   unsigned PtrByteSize = isPPC64 ? 8 : 4;
3104 
3105   MachineFunction &MF = DAG.getMachineFunction();
3106 
3107   // Mark this function as potentially containing a function that contains a
3108   // tail call. As a consequence the frame pointer will be used for dynamicalloc
3109   // and restoring the callers stack pointer in this functions epilog. This is
3110   // done because by tail calling the called function might overwrite the value
3111   // in this function's (MF) stack pointer stack slot 0(SP).
3112   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3113       CallConv == CallingConv::Fast)
3114     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3115 
3116   unsigned nAltivecParamsAtEnd = 0;
3117 
3118   // Count how many bytes are to be pushed on the stack, including the linkage
3119   // area, and parameter passing area.  We start with 24/48 bytes, which is
3120   // prereserved space for [SP][CR][LR][3 x unused].
3121   unsigned NumBytes =
3122     CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
3123                                          Outs, OutVals,
3124                                          nAltivecParamsAtEnd);
3125 
3126   // Calculate by how many bytes the stack has to be adjusted in case of tail
3127   // call optimization.
3128   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3129 
3130   // To protect arguments on the stack from being clobbered in a tail call,
3131   // force all the loads to happen before doing any other lowering.
3132   if (isTailCall)
3133     Chain = DAG.getStackArgumentTokenFactor(Chain);
3134 
3135   // Adjust the stack pointer for the new arguments...
3136   // These operations are automatically eliminated by the prolog/epilog pass
3137   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3138   SDValue CallSeqStart = Chain;
3139 
3140   // Load the return address and frame pointer so it can be move somewhere else
3141   // later.
3142   SDValue LROp, FPOp;
3143   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
3144                                        dl);
3145 
3146   // Set up a copy of the stack pointer for use loading and storing any
3147   // arguments that may not fit in the registers available for argument
3148   // passing.
3149   SDValue StackPtr;
3150   if (isPPC64)
3151     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3152   else
3153     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3154 
3155   // Figure out which arguments are going to go in registers, and which in
3156   // memory.  Also, if this is a vararg function, floating point operations
3157   // must be stored to our stack, and loaded into integer regs as well, if
3158   // any integer regs are available for argument passing.
3159   unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
3160   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3161 
3162   static const uint16_t GPR_32[] = {           // 32-bit registers.
3163     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3164     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3165   };
3166   static const uint16_t GPR_64[] = {           // 64-bit registers.
3167     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3168     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3169   };
3170   static const uint16_t *FPR = GetFPR();
3171 
3172   static const uint16_t VR[] = {
3173     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3174     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3175   };
3176   const unsigned NumGPRs = array_lengthof(GPR_32);
3177   const unsigned NumFPRs = 13;
3178   const unsigned NumVRs  = array_lengthof(VR);
3179 
3180   const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
3181 
3182   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3183   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3184 
3185   SmallVector<SDValue, 8> MemOpChains;
3186   for (unsigned i = 0; i != NumOps; ++i) {
3187     SDValue Arg = OutVals[i];
3188     ISD::ArgFlagsTy Flags = Outs[i].Flags;
3189 
3190     // PtrOff will be used to store the current argument to the stack if a
3191     // register cannot be found for it.
3192     SDValue PtrOff;
3193 
3194     PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3195 
3196     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3197 
3198     // On PPC64, promote integers to 64-bit values.
3199     if (isPPC64 && Arg.getValueType() == MVT::i32) {
3200       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3201       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3202       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3203     }
3204 
3205     // FIXME memcpy is used way more than necessary.  Correctness first.
3206     if (Flags.isByVal()) {
3207       unsigned Size = Flags.getByValSize();
3208       if (Size==1 || Size==2) {
3209         // Very small objects are passed right-justified.
3210         // Everything else is passed left-justified.
3211         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
3212         if (GPR_idx != NumGPRs) {
3213           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3214                                         MachinePointerInfo(), VT,
3215                                         false, false, 0);
3216           MemOpChains.push_back(Load.getValue(1));
3217           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3218 
3219           ArgOffset += PtrByteSize;
3220         } else {
3221           SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
3222           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3223           SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
3224                                 CallSeqStart.getNode()->getOperand(0),
3225                                 Flags, DAG, dl);
3226           // This must go outside the CALLSEQ_START..END.
3227           SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3228                                CallSeqStart.getNode()->getOperand(1));
3229           DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3230                                  NewCallSeqStart.getNode());
3231           Chain = CallSeqStart = NewCallSeqStart;
3232           ArgOffset += PtrByteSize;
3233         }
3234         continue;
3235       }
3236       // Copy entire object into memory.  There are cases where gcc-generated
3237       // code assumes it is there, even if it could be put entirely into
3238       // registers.  (This is not what the doc says.)
3239       SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3240                             CallSeqStart.getNode()->getOperand(0),
3241                             Flags, DAG, dl);
3242       // This must go outside the CALLSEQ_START..END.
3243       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3244                            CallSeqStart.getNode()->getOperand(1));
3245       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
3246       Chain = CallSeqStart = NewCallSeqStart;
3247       // And copy the pieces of it that fit into registers.
3248       for (unsigned j=0; j<Size; j+=PtrByteSize) {
3249         SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3250         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3251         if (GPR_idx != NumGPRs) {
3252           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3253                                      MachinePointerInfo(),
3254                                      false, false, false, 0);
3255           MemOpChains.push_back(Load.getValue(1));
3256           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3257           ArgOffset += PtrByteSize;
3258         } else {
3259           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3260           break;
3261         }
3262       }
3263       continue;
3264     }
3265 
3266     switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3267     default: llvm_unreachable("Unexpected ValueType for argument!");
3268     case MVT::i32:
3269     case MVT::i64:
3270       if (GPR_idx != NumGPRs) {
3271         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3272       } else {
3273         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3274                          isPPC64, isTailCall, false, MemOpChains,
3275                          TailCallArguments, dl);
3276       }
3277       ArgOffset += PtrByteSize;
3278       break;
3279     case MVT::f32:
3280     case MVT::f64:
3281       if (FPR_idx != NumFPRs) {
3282         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3283 
3284         if (isVarArg) {
3285           SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3286                                        MachinePointerInfo(), false, false, 0);
3287           MemOpChains.push_back(Store);
3288 
3289           // Float varargs are always shadowed in available integer registers
3290           if (GPR_idx != NumGPRs) {
3291             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3292                                        MachinePointerInfo(), false, false,
3293                                        false, 0);
3294             MemOpChains.push_back(Load.getValue(1));
3295             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3296           }
3297           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
3298             SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3299             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3300             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3301                                        MachinePointerInfo(),
3302                                        false, false, false, 0);
3303             MemOpChains.push_back(Load.getValue(1));
3304             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3305           }
3306         } else {
3307           // If we have any FPRs remaining, we may also have GPRs remaining.
3308           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
3309           // GPRs.
3310           if (GPR_idx != NumGPRs)
3311             ++GPR_idx;
3312           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
3313               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
3314             ++GPR_idx;
3315         }
3316       } else {
3317         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3318                          isPPC64, isTailCall, false, MemOpChains,
3319                          TailCallArguments, dl);
3320       }
3321       if (isPPC64)
3322         ArgOffset += 8;
3323       else
3324         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
3325       break;
3326     case MVT::v4f32:
3327     case MVT::v4i32:
3328     case MVT::v8i16:
3329     case MVT::v16i8:
3330       if (isVarArg) {
3331         // These go aligned on the stack, or in the corresponding R registers
3332         // when within range.  The Darwin PPC ABI doc claims they also go in
3333         // V registers; in fact gcc does this only for arguments that are
3334         // prototyped, not for those that match the ...  We do it for all
3335         // arguments, seems to work.
3336         while (ArgOffset % 16 !=0) {
3337           ArgOffset += PtrByteSize;
3338           if (GPR_idx != NumGPRs)
3339             GPR_idx++;
3340         }
3341         // We could elide this store in the case where the object fits
3342         // entirely in R registers.  Maybe later.
3343         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3344                             DAG.getConstant(ArgOffset, PtrVT));
3345         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3346                                      MachinePointerInfo(), false, false, 0);
3347         MemOpChains.push_back(Store);
3348         if (VR_idx != NumVRs) {
3349           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
3350                                      MachinePointerInfo(),
3351                                      false, false, false, 0);
3352           MemOpChains.push_back(Load.getValue(1));
3353           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3354         }
3355         ArgOffset += 16;
3356         for (unsigned i=0; i<16; i+=PtrByteSize) {
3357           if (GPR_idx == NumGPRs)
3358             break;
3359           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3360                                   DAG.getConstant(i, PtrVT));
3361           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
3362                                      false, false, false, 0);
3363           MemOpChains.push_back(Load.getValue(1));
3364           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3365         }
3366         break;
3367       }
3368 
3369       // Non-varargs Altivec params generally go in registers, but have
3370       // stack space allocated at the end.
3371       if (VR_idx != NumVRs) {
3372         // Doesn't have GPR space allocated.
3373         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3374       } else if (nAltivecParamsAtEnd==0) {
3375         // We are emitting Altivec params in order.
3376         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3377                          isPPC64, isTailCall, true, MemOpChains,
3378                          TailCallArguments, dl);
3379         ArgOffset += 16;
3380       }
3381       break;
3382     }
3383   }
3384   // If all Altivec parameters fit in registers, as they usually do,
3385   // they get stack space following the non-Altivec parameters.  We
3386   // don't track this here because nobody below needs it.
3387   // If there are more Altivec parameters than fit in registers emit
3388   // the stores here.
3389   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3390     unsigned j = 0;
3391     // Offset is aligned; skip 1st 12 params which go in V registers.
3392     ArgOffset = ((ArgOffset+15)/16)*16;
3393     ArgOffset += 12*16;
3394     for (unsigned i = 0; i != NumOps; ++i) {
3395       SDValue Arg = OutVals[i];
3396       EVT ArgType = Outs[i].VT;
3397       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3398           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3399         if (++j > NumVRs) {
3400           SDValue PtrOff;
3401           // We are emitting Altivec params in order.
3402           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3403                            isPPC64, isTailCall, true, MemOpChains,
3404                            TailCallArguments, dl);
3405           ArgOffset += 16;
3406         }
3407       }
3408     }
3409   }
3410 
3411   if (!MemOpChains.empty())
3412     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3413                         &MemOpChains[0], MemOpChains.size());
3414 
3415   // Check if this is an indirect call (MTCTR/BCTRL).
3416   // See PrepareCall() for more information about calls through function
3417   // pointers in the 64-bit SVR4 ABI.
3418   if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() &&
3419       !dyn_cast<GlobalAddressSDNode>(Callee) &&
3420       !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3421       !isBLACompatibleAddress(Callee, DAG)) {
3422     // Load r2 into a virtual register and store it to the TOC save area.
3423     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
3424     // TOC save area offset.
3425     SDValue PtrOff = DAG.getIntPtrConstant(40);
3426     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3427     Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
3428                          false, false, 0);
3429   }
3430 
3431   // On Darwin, R12 must contain the address of an indirect callee.  This does
3432   // not mean the MTCTR instruction must use R12; it's easier to model this as
3433   // an extra parameter, so do that.
3434   if (!isTailCall &&
3435       !dyn_cast<GlobalAddressSDNode>(Callee) &&
3436       !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3437       !isBLACompatibleAddress(Callee, DAG))
3438     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
3439                                                    PPC::R12), Callee));
3440 
3441   // Build a sequence of copy-to-reg nodes chained together with token chain
3442   // and flag operands which copy the outgoing args into the appropriate regs.
3443   SDValue InFlag;
3444   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3445     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3446                              RegsToPass[i].second, InFlag);
3447     InFlag = Chain.getValue(1);
3448   }
3449 
3450   if (isTailCall)
3451     PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3452                     FPOp, true, TailCallArguments);
3453 
3454   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3455                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3456                     Ins, InVals);
3457 }
3458 
3459 bool
3460 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3461                                   MachineFunction &MF, bool isVarArg,
3462                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
3463                                   LLVMContext &Context) const {
3464   SmallVector<CCValAssign, 16> RVLocs;
3465   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
3466                  RVLocs, Context);
3467   return CCInfo.CheckReturn(Outs, RetCC_PPC);
3468 }
3469 
3470 SDValue
3471 PPCTargetLowering::LowerReturn(SDValue Chain,
3472                                CallingConv::ID CallConv, bool isVarArg,
3473                                const SmallVectorImpl<ISD::OutputArg> &Outs,
3474                                const SmallVectorImpl<SDValue> &OutVals,
3475                                DebugLoc dl, SelectionDAG &DAG) const {
3476 
3477   SmallVector<CCValAssign, 16> RVLocs;
3478   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3479 		 getTargetMachine(), RVLocs, *DAG.getContext());
3480   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3481 
3482   // If this is the first return lowered for this function, add the regs to the
3483   // liveout set for the function.
3484   if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3485     for (unsigned i = 0; i != RVLocs.size(); ++i)
3486       DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3487   }
3488 
3489   SDValue Flag;
3490 
3491   // Copy the result values into the output registers.
3492   for (unsigned i = 0; i != RVLocs.size(); ++i) {
3493     CCValAssign &VA = RVLocs[i];
3494     assert(VA.isRegLoc() && "Can only return in registers!");
3495     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3496                              OutVals[i], Flag);
3497     Flag = Chain.getValue(1);
3498   }
3499 
3500   if (Flag.getNode())
3501     return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3502   else
3503     return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3504 }
3505 
3506 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3507                                    const PPCSubtarget &Subtarget) const {
3508   // When we pop the dynamic allocation we need to restore the SP link.
3509   DebugLoc dl = Op.getDebugLoc();
3510 
3511   // Get the corect type for pointers.
3512   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3513 
3514   // Construct the stack pointer operand.
3515   bool isPPC64 = Subtarget.isPPC64();
3516   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
3517   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3518 
3519   // Get the operands for the STACKRESTORE.
3520   SDValue Chain = Op.getOperand(0);
3521   SDValue SaveSP = Op.getOperand(1);
3522 
3523   // Load the old link SP.
3524   SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
3525                                    MachinePointerInfo(),
3526                                    false, false, false, 0);
3527 
3528   // Restore the stack pointer.
3529   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3530 
3531   // Store the old link SP.
3532   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
3533                       false, false, 0);
3534 }
3535 
3536 
3537 
3538 SDValue
3539 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3540   MachineFunction &MF = DAG.getMachineFunction();
3541   bool isPPC64 = PPCSubTarget.isPPC64();
3542   bool isDarwinABI = PPCSubTarget.isDarwinABI();
3543   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3544 
3545   // Get current frame pointer save index.  The users of this index will be
3546   // primarily DYNALLOC instructions.
3547   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3548   int RASI = FI->getReturnAddrSaveIndex();
3549 
3550   // If the frame pointer save index hasn't been defined yet.
3551   if (!RASI) {
3552     // Find out what the fix offset of the frame pointer save area.
3553     int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
3554     // Allocate the frame index for frame pointer save area.
3555     RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
3556     // Save the result.
3557     FI->setReturnAddrSaveIndex(RASI);
3558   }
3559   return DAG.getFrameIndex(RASI, PtrVT);
3560 }
3561 
3562 SDValue
3563 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3564   MachineFunction &MF = DAG.getMachineFunction();
3565   bool isPPC64 = PPCSubTarget.isPPC64();
3566   bool isDarwinABI = PPCSubTarget.isDarwinABI();
3567   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3568 
3569   // Get current frame pointer save index.  The users of this index will be
3570   // primarily DYNALLOC instructions.
3571   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3572   int FPSI = FI->getFramePointerSaveIndex();
3573 
3574   // If the frame pointer save index hasn't been defined yet.
3575   if (!FPSI) {
3576     // Find out what the fix offset of the frame pointer save area.
3577     int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
3578                                                            isDarwinABI);
3579 
3580     // Allocate the frame index for frame pointer save area.
3581     FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
3582     // Save the result.
3583     FI->setFramePointerSaveIndex(FPSI);
3584   }
3585   return DAG.getFrameIndex(FPSI, PtrVT);
3586 }
3587 
3588 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3589                                          SelectionDAG &DAG,
3590                                          const PPCSubtarget &Subtarget) const {
3591   // Get the inputs.
3592   SDValue Chain = Op.getOperand(0);
3593   SDValue Size  = Op.getOperand(1);
3594   DebugLoc dl = Op.getDebugLoc();
3595 
3596   // Get the corect type for pointers.
3597   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3598   // Negate the size.
3599   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3600                                   DAG.getConstant(0, PtrVT), Size);
3601   // Construct a node for the frame pointer save index.
3602   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3603   // Build a DYNALLOC node.
3604   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3605   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3606   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3607 }
3608 
3609 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3610 /// possible.
3611 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
3612   // Not FP? Not a fsel.
3613   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3614       !Op.getOperand(2).getValueType().isFloatingPoint())
3615     return Op;
3616 
3617   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3618 
3619   // Cannot handle SETEQ/SETNE.
3620   if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3621 
3622   EVT ResVT = Op.getValueType();
3623   EVT CmpVT = Op.getOperand(0).getValueType();
3624   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3625   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
3626   DebugLoc dl = Op.getDebugLoc();
3627 
3628   // If the RHS of the comparison is a 0.0, we don't need to do the
3629   // subtraction at all.
3630   if (isFloatingPointZero(RHS))
3631     switch (CC) {
3632     default: break;       // SETUO etc aren't handled by fsel.
3633     case ISD::SETULT:
3634     case ISD::SETLT:
3635       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3636     case ISD::SETOGE:
3637     case ISD::SETGE:
3638       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3639         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3640       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3641     case ISD::SETUGT:
3642     case ISD::SETGT:
3643       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3644     case ISD::SETOLE:
3645     case ISD::SETLE:
3646       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3647         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3648       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3649                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3650     }
3651 
3652   SDValue Cmp;
3653   switch (CC) {
3654   default: break;       // SETUO etc aren't handled by fsel.
3655   case ISD::SETULT:
3656   case ISD::SETLT:
3657     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3658     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3659       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3660       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3661   case ISD::SETOGE:
3662   case ISD::SETGE:
3663     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3664     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3665       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3666       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3667   case ISD::SETUGT:
3668   case ISD::SETGT:
3669     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3670     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3671       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3672       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3673   case ISD::SETOLE:
3674   case ISD::SETLE:
3675     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3676     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3677       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3678       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3679   }
3680   return Op;
3681 }
3682 
3683 // FIXME: Split this code up when LegalizeDAGTypes lands.
3684 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3685                                            DebugLoc dl) const {
3686   assert(Op.getOperand(0).getValueType().isFloatingPoint());
3687   SDValue Src = Op.getOperand(0);
3688   if (Src.getValueType() == MVT::f32)
3689     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3690 
3691   SDValue Tmp;
3692   switch (Op.getValueType().getSimpleVT().SimpleTy) {
3693   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3694   case MVT::i32:
3695     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3696                                                          PPCISD::FCTIDZ,
3697                       dl, MVT::f64, Src);
3698     break;
3699   case MVT::i64:
3700     Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3701     break;
3702   }
3703 
3704   // Convert the FP value to an int value through memory.
3705   SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3706 
3707   // Emit a store to the stack slot.
3708   SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
3709                                MachinePointerInfo(), false, false, 0);
3710 
3711   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
3712   // add in a bias.
3713   if (Op.getValueType() == MVT::i32)
3714     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3715                         DAG.getConstant(4, FIPtr.getValueType()));
3716   return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(),
3717                      false, false, false, 0);
3718 }
3719 
3720 SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
3721                                            SelectionDAG &DAG) const {
3722   DebugLoc dl = Op.getDebugLoc();
3723   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3724   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3725     return SDValue();
3726 
3727   if (Op.getOperand(0).getValueType() == MVT::i64) {
3728     SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op.getOperand(0));
3729     SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3730     if (Op.getValueType() == MVT::f32)
3731       FP = DAG.getNode(ISD::FP_ROUND, dl,
3732                        MVT::f32, FP, DAG.getIntPtrConstant(0));
3733     return FP;
3734   }
3735 
3736   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3737          "Unhandled SINT_TO_FP type in custom expander!");
3738   // Since we only generate this in 64-bit mode, we can take advantage of
3739   // 64-bit registers.  In particular, sign extend the input value into the
3740   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3741   // then lfd it and fcfid it.
3742   MachineFunction &MF = DAG.getMachineFunction();
3743   MachineFrameInfo *FrameInfo = MF.getFrameInfo();
3744   int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
3745   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3746   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3747 
3748   SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3749                                 Op.getOperand(0));
3750 
3751   // STD the extended value into the stack slot.
3752   MachineMemOperand *MMO =
3753     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
3754                             MachineMemOperand::MOStore, 8, 8);
3755   SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
3756   SDValue Store =
3757     DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
3758                             Ops, 4, MVT::i64, MMO);
3759   // Load the value as a double.
3760   SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(),
3761                            false, false, false, 0);
3762 
3763   // FCFID it and return it.
3764   SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3765   if (Op.getValueType() == MVT::f32)
3766     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3767   return FP;
3768 }
3769 
3770 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3771                                             SelectionDAG &DAG) const {
3772   DebugLoc dl = Op.getDebugLoc();
3773   /*
3774    The rounding mode is in bits 30:31 of FPSR, and has the following
3775    settings:
3776      00 Round to nearest
3777      01 Round to 0
3778      10 Round to +inf
3779      11 Round to -inf
3780 
3781   FLT_ROUNDS, on the other hand, expects the following:
3782     -1 Undefined
3783      0 Round to 0
3784      1 Round to nearest
3785      2 Round to +inf
3786      3 Round to -inf
3787 
3788   To perform the conversion, we do:
3789     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3790   */
3791 
3792   MachineFunction &MF = DAG.getMachineFunction();
3793   EVT VT = Op.getValueType();
3794   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3795   std::vector<EVT> NodeTys;
3796   SDValue MFFSreg, InFlag;
3797 
3798   // Save FP Control Word to register
3799   NodeTys.push_back(MVT::f64);    // return register
3800   NodeTys.push_back(MVT::Glue);   // unused in this context
3801   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3802 
3803   // Save FP register to stack slot
3804   int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
3805   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3806   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3807                                StackSlot, MachinePointerInfo(), false, false,0);
3808 
3809   // Load FP Control Word from low 32 bits of stack slot.
3810   SDValue Four = DAG.getConstant(4, PtrVT);
3811   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
3812   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
3813                             false, false, false, 0);
3814 
3815   // Transform as necessary
3816   SDValue CWD1 =
3817     DAG.getNode(ISD::AND, dl, MVT::i32,
3818                 CWD, DAG.getConstant(3, MVT::i32));
3819   SDValue CWD2 =
3820     DAG.getNode(ISD::SRL, dl, MVT::i32,
3821                 DAG.getNode(ISD::AND, dl, MVT::i32,
3822                             DAG.getNode(ISD::XOR, dl, MVT::i32,
3823                                         CWD, DAG.getConstant(3, MVT::i32)),
3824                             DAG.getConstant(3, MVT::i32)),
3825                 DAG.getConstant(1, MVT::i32));
3826 
3827   SDValue RetVal =
3828     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3829 
3830   return DAG.getNode((VT.getSizeInBits() < 16 ?
3831                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3832 }
3833 
3834 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3835   EVT VT = Op.getValueType();
3836   unsigned BitWidth = VT.getSizeInBits();
3837   DebugLoc dl = Op.getDebugLoc();
3838   assert(Op.getNumOperands() == 3 &&
3839          VT == Op.getOperand(1).getValueType() &&
3840          "Unexpected SHL!");
3841 
3842   // Expand into a bunch of logical ops.  Note that these ops
3843   // depend on the PPC behavior for oversized shift amounts.
3844   SDValue Lo = Op.getOperand(0);
3845   SDValue Hi = Op.getOperand(1);
3846   SDValue Amt = Op.getOperand(2);
3847   EVT AmtVT = Amt.getValueType();
3848 
3849   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3850                              DAG.getConstant(BitWidth, AmtVT), Amt);
3851   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3852   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3853   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3854   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3855                              DAG.getConstant(-BitWidth, AmtVT));
3856   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3857   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3858   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3859   SDValue OutOps[] = { OutLo, OutHi };
3860   return DAG.getMergeValues(OutOps, 2, dl);
3861 }
3862 
3863 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3864   EVT VT = Op.getValueType();
3865   DebugLoc dl = Op.getDebugLoc();
3866   unsigned BitWidth = VT.getSizeInBits();
3867   assert(Op.getNumOperands() == 3 &&
3868          VT == Op.getOperand(1).getValueType() &&
3869          "Unexpected SRL!");
3870 
3871   // Expand into a bunch of logical ops.  Note that these ops
3872   // depend on the PPC behavior for oversized shift amounts.
3873   SDValue Lo = Op.getOperand(0);
3874   SDValue Hi = Op.getOperand(1);
3875   SDValue Amt = Op.getOperand(2);
3876   EVT AmtVT = Amt.getValueType();
3877 
3878   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3879                              DAG.getConstant(BitWidth, AmtVT), Amt);
3880   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3881   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3882   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3883   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3884                              DAG.getConstant(-BitWidth, AmtVT));
3885   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3886   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3887   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3888   SDValue OutOps[] = { OutLo, OutHi };
3889   return DAG.getMergeValues(OutOps, 2, dl);
3890 }
3891 
3892 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
3893   DebugLoc dl = Op.getDebugLoc();
3894   EVT VT = Op.getValueType();
3895   unsigned BitWidth = VT.getSizeInBits();
3896   assert(Op.getNumOperands() == 3 &&
3897          VT == Op.getOperand(1).getValueType() &&
3898          "Unexpected SRA!");
3899 
3900   // Expand into a bunch of logical ops, followed by a select_cc.
3901   SDValue Lo = Op.getOperand(0);
3902   SDValue Hi = Op.getOperand(1);
3903   SDValue Amt = Op.getOperand(2);
3904   EVT AmtVT = Amt.getValueType();
3905 
3906   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3907                              DAG.getConstant(BitWidth, AmtVT), Amt);
3908   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3909   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3910   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3911   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3912                              DAG.getConstant(-BitWidth, AmtVT));
3913   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3914   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3915   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3916                                   Tmp4, Tmp6, ISD::SETLE);
3917   SDValue OutOps[] = { OutLo, OutHi };
3918   return DAG.getMergeValues(OutOps, 2, dl);
3919 }
3920 
3921 //===----------------------------------------------------------------------===//
3922 // Vector related lowering.
3923 //
3924 
3925 /// BuildSplatI - Build a canonical splati of Val with an element size of
3926 /// SplatSize.  Cast the result to VT.
3927 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
3928                              SelectionDAG &DAG, DebugLoc dl) {
3929   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3930 
3931   static const EVT VTys[] = { // canonical VT to use for each size.
3932     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3933   };
3934 
3935   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3936 
3937   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3938   if (Val == -1)
3939     SplatSize = 1;
3940 
3941   EVT CanonicalVT = VTys[SplatSize-1];
3942 
3943   // Build a canonical splat for this value.
3944   SDValue Elt = DAG.getConstant(Val, MVT::i32);
3945   SmallVector<SDValue, 8> Ops;
3946   Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3947   SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3948                               &Ops[0], Ops.size());
3949   return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
3950 }
3951 
3952 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3953 /// specified intrinsic ID.
3954 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3955                                 SelectionDAG &DAG, DebugLoc dl,
3956                                 EVT DestVT = MVT::Other) {
3957   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3958   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3959                      DAG.getConstant(IID, MVT::i32), LHS, RHS);
3960 }
3961 
3962 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3963 /// specified intrinsic ID.
3964 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3965                                 SDValue Op2, SelectionDAG &DAG,
3966                                 DebugLoc dl, EVT DestVT = MVT::Other) {
3967   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3968   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3969                      DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3970 }
3971 
3972 
3973 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3974 /// amount.  The result has the specified value type.
3975 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3976                              EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3977   // Force LHS/RHS to be the right type.
3978   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
3979   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
3980 
3981   int Ops[16];
3982   for (unsigned i = 0; i != 16; ++i)
3983     Ops[i] = i + Amt;
3984   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3985   return DAG.getNode(ISD::BITCAST, dl, VT, T);
3986 }
3987 
3988 // If this is a case we can't handle, return null and let the default
3989 // expansion code take care of it.  If we CAN select this case, and if it
3990 // selects to a single instruction, return Op.  Otherwise, if we can codegen
3991 // this case more efficiently than a constant pool load, lower it to the
3992 // sequence of ops that should be used.
3993 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
3994                                              SelectionDAG &DAG) const {
3995   DebugLoc dl = Op.getDebugLoc();
3996   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3997   assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3998 
3999   // Check if this is a splat of a constant value.
4000   APInt APSplatBits, APSplatUndef;
4001   unsigned SplatBitSize;
4002   bool HasAnyUndefs;
4003   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
4004                              HasAnyUndefs, 0, true) || SplatBitSize > 32)
4005     return SDValue();
4006 
4007   unsigned SplatBits = APSplatBits.getZExtValue();
4008   unsigned SplatUndef = APSplatUndef.getZExtValue();
4009   unsigned SplatSize = SplatBitSize / 8;
4010 
4011   // First, handle single instruction cases.
4012 
4013   // All zeros?
4014   if (SplatBits == 0) {
4015     // Canonicalize all zero vectors to be v4i32.
4016     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
4017       SDValue Z = DAG.getConstant(0, MVT::i32);
4018       Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
4019       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
4020     }
4021     return Op;
4022   }
4023 
4024   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
4025   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
4026                     (32-SplatBitSize));
4027   if (SextVal >= -16 && SextVal <= 15)
4028     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
4029 
4030 
4031   // Two instruction sequences.
4032 
4033   // If this value is in the range [-32,30] and is even, use:
4034   //    tmp = VSPLTI[bhw], result = add tmp, tmp
4035   if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
4036     SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
4037     Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
4038     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4039   }
4040 
4041   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
4042   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
4043   // for fneg/fabs.
4044   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
4045     // Make -1 and vspltisw -1:
4046     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
4047 
4048     // Make the VSLW intrinsic, computing 0x8000_0000.
4049     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
4050                                    OnesV, DAG, dl);
4051 
4052     // xor by OnesV to invert it.
4053     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
4054     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4055   }
4056 
4057   // Check to see if this is a wide variety of vsplti*, binop self cases.
4058   static const signed char SplatCsts[] = {
4059     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
4060     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
4061   };
4062 
4063   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
4064     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
4065     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
4066     int i = SplatCsts[idx];
4067 
4068     // Figure out what shift amount will be used by altivec if shifted by i in
4069     // this splat size.
4070     unsigned TypeShiftAmt = i & (SplatBitSize-1);
4071 
4072     // vsplti + shl self.
4073     if (SextVal == (i << (int)TypeShiftAmt)) {
4074       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4075       static const unsigned IIDs[] = { // Intrinsic to use for each size.
4076         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
4077         Intrinsic::ppc_altivec_vslw
4078       };
4079       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4080       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4081     }
4082 
4083     // vsplti + srl self.
4084     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
4085       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4086       static const unsigned IIDs[] = { // Intrinsic to use for each size.
4087         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
4088         Intrinsic::ppc_altivec_vsrw
4089       };
4090       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4091       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4092     }
4093 
4094     // vsplti + sra self.
4095     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
4096       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4097       static const unsigned IIDs[] = { // Intrinsic to use for each size.
4098         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
4099         Intrinsic::ppc_altivec_vsraw
4100       };
4101       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4102       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4103     }
4104 
4105     // vsplti + rol self.
4106     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
4107                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
4108       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4109       static const unsigned IIDs[] = { // Intrinsic to use for each size.
4110         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
4111         Intrinsic::ppc_altivec_vrlw
4112       };
4113       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4114       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4115     }
4116 
4117     // t = vsplti c, result = vsldoi t, t, 1
4118     if (SextVal == ((i << 8) | (i < 0 ? 0xFF : 0))) {
4119       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4120       return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
4121     }
4122     // t = vsplti c, result = vsldoi t, t, 2
4123     if (SextVal == ((i << 16) | (i < 0 ? 0xFFFF : 0))) {
4124       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4125       return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
4126     }
4127     // t = vsplti c, result = vsldoi t, t, 3
4128     if (SextVal == ((i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
4129       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4130       return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
4131     }
4132   }
4133 
4134   // Three instruction sequences.
4135 
4136   // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
4137   if (SextVal >= 0 && SextVal <= 31) {
4138     SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
4139     SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
4140     LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
4141     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
4142   }
4143   // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
4144   if (SextVal >= -31 && SextVal <= 0) {
4145     SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
4146     SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
4147     LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
4148     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
4149   }
4150 
4151   return SDValue();
4152 }
4153 
4154 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4155 /// the specified operations to build the shuffle.
4156 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4157                                       SDValue RHS, SelectionDAG &DAG,
4158                                       DebugLoc dl) {
4159   unsigned OpNum = (PFEntry >> 26) & 0x0F;
4160   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4161   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4162 
4163   enum {
4164     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4165     OP_VMRGHW,
4166     OP_VMRGLW,
4167     OP_VSPLTISW0,
4168     OP_VSPLTISW1,
4169     OP_VSPLTISW2,
4170     OP_VSPLTISW3,
4171     OP_VSLDOI4,
4172     OP_VSLDOI8,
4173     OP_VSLDOI12
4174   };
4175 
4176   if (OpNum == OP_COPY) {
4177     if (LHSID == (1*9+2)*9+3) return LHS;
4178     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4179     return RHS;
4180   }
4181 
4182   SDValue OpLHS, OpRHS;
4183   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4184   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4185 
4186   int ShufIdxs[16];
4187   switch (OpNum) {
4188   default: llvm_unreachable("Unknown i32 permute!");
4189   case OP_VMRGHW:
4190     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
4191     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
4192     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
4193     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
4194     break;
4195   case OP_VMRGLW:
4196     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
4197     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
4198     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
4199     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
4200     break;
4201   case OP_VSPLTISW0:
4202     for (unsigned i = 0; i != 16; ++i)
4203       ShufIdxs[i] = (i&3)+0;
4204     break;
4205   case OP_VSPLTISW1:
4206     for (unsigned i = 0; i != 16; ++i)
4207       ShufIdxs[i] = (i&3)+4;
4208     break;
4209   case OP_VSPLTISW2:
4210     for (unsigned i = 0; i != 16; ++i)
4211       ShufIdxs[i] = (i&3)+8;
4212     break;
4213   case OP_VSPLTISW3:
4214     for (unsigned i = 0; i != 16; ++i)
4215       ShufIdxs[i] = (i&3)+12;
4216     break;
4217   case OP_VSLDOI4:
4218     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
4219   case OP_VSLDOI8:
4220     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
4221   case OP_VSLDOI12:
4222     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
4223   }
4224   EVT VT = OpLHS.getValueType();
4225   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
4226   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
4227   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
4228   return DAG.getNode(ISD::BITCAST, dl, VT, T);
4229 }
4230 
4231 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
4232 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
4233 /// return the code it can be lowered into.  Worst case, it can always be
4234 /// lowered into a vperm.
4235 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4236                                                SelectionDAG &DAG) const {
4237   DebugLoc dl = Op.getDebugLoc();
4238   SDValue V1 = Op.getOperand(0);
4239   SDValue V2 = Op.getOperand(1);
4240   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4241   EVT VT = Op.getValueType();
4242 
4243   // Cases that are handled by instructions that take permute immediates
4244   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
4245   // selected by the instruction selector.
4246   if (V2.getOpcode() == ISD::UNDEF) {
4247     if (PPC::isSplatShuffleMask(SVOp, 1) ||
4248         PPC::isSplatShuffleMask(SVOp, 2) ||
4249         PPC::isSplatShuffleMask(SVOp, 4) ||
4250         PPC::isVPKUWUMShuffleMask(SVOp, true) ||
4251         PPC::isVPKUHUMShuffleMask(SVOp, true) ||
4252         PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
4253         PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
4254         PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
4255         PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
4256         PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
4257         PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
4258         PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
4259       return Op;
4260     }
4261   }
4262 
4263   // Altivec has a variety of "shuffle immediates" that take two vector inputs
4264   // and produce a fixed permutation.  If any of these match, do not lower to
4265   // VPERM.
4266   if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
4267       PPC::isVPKUHUMShuffleMask(SVOp, false) ||
4268       PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
4269       PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
4270       PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
4271       PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
4272       PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
4273       PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
4274       PPC::isVMRGHShuffleMask(SVOp, 4, false))
4275     return Op;
4276 
4277   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
4278   // perfect shuffle table to emit an optimal matching sequence.
4279   ArrayRef<int> PermMask = SVOp->getMask();
4280 
4281   unsigned PFIndexes[4];
4282   bool isFourElementShuffle = true;
4283   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
4284     unsigned EltNo = 8;   // Start out undef.
4285     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
4286       if (PermMask[i*4+j] < 0)
4287         continue;   // Undef, ignore it.
4288 
4289       unsigned ByteSource = PermMask[i*4+j];
4290       if ((ByteSource & 3) != j) {
4291         isFourElementShuffle = false;
4292         break;
4293       }
4294 
4295       if (EltNo == 8) {
4296         EltNo = ByteSource/4;
4297       } else if (EltNo != ByteSource/4) {
4298         isFourElementShuffle = false;
4299         break;
4300       }
4301     }
4302     PFIndexes[i] = EltNo;
4303   }
4304 
4305   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
4306   // perfect shuffle vector to determine if it is cost effective to do this as
4307   // discrete instructions, or whether we should use a vperm.
4308   if (isFourElementShuffle) {
4309     // Compute the index in the perfect shuffle table.
4310     unsigned PFTableIndex =
4311       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4312 
4313     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4314     unsigned Cost  = (PFEntry >> 30);
4315 
4316     // Determining when to avoid vperm is tricky.  Many things affect the cost
4317     // of vperm, particularly how many times the perm mask needs to be computed.
4318     // For example, if the perm mask can be hoisted out of a loop or is already
4319     // used (perhaps because there are multiple permutes with the same shuffle
4320     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
4321     // the loop requires an extra register.
4322     //
4323     // As a compromise, we only emit discrete instructions if the shuffle can be
4324     // generated in 3 or fewer operations.  When we have loop information
4325     // available, if this block is within a loop, we should avoid using vperm
4326     // for 3-operation perms and use a constant pool load instead.
4327     if (Cost < 3)
4328       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4329   }
4330 
4331   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
4332   // vector that will get spilled to the constant pool.
4333   if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
4334 
4335   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
4336   // that it is in input element units, not in bytes.  Convert now.
4337   EVT EltVT = V1.getValueType().getVectorElementType();
4338   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
4339 
4340   SmallVector<SDValue, 16> ResultMask;
4341   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4342     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
4343 
4344     for (unsigned j = 0; j != BytesPerElement; ++j)
4345       ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
4346                                            MVT::i32));
4347   }
4348 
4349   SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
4350                                     &ResultMask[0], ResultMask.size());
4351   return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
4352 }
4353 
4354 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
4355 /// altivec comparison.  If it is, return true and fill in Opc/isDot with
4356 /// information about the intrinsic.
4357 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
4358                                   bool &isDot) {
4359   unsigned IntrinsicID =
4360     cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
4361   CompareOpc = -1;
4362   isDot = false;
4363   switch (IntrinsicID) {
4364   default: return false;
4365     // Comparison predicates.
4366   case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
4367   case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
4368   case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
4369   case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
4370   case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
4371   case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
4372   case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
4373   case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
4374   case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
4375   case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
4376   case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
4377   case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
4378   case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4379 
4380     // Normal Comparisons.
4381   case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
4382   case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
4383   case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
4384   case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
4385   case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
4386   case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
4387   case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
4388   case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
4389   case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
4390   case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
4391   case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
4392   case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
4393   case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
4394   }
4395   return true;
4396 }
4397 
4398 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4399 /// lower, do it, otherwise return null.
4400 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4401                                                    SelectionDAG &DAG) const {
4402   // If this is a lowered altivec predicate compare, CompareOpc is set to the
4403   // opcode number of the comparison.
4404   DebugLoc dl = Op.getDebugLoc();
4405   int CompareOpc;
4406   bool isDot;
4407   if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4408     return SDValue();    // Don't custom lower most intrinsics.
4409 
4410   // If this is a non-dot comparison, make the VCMP node and we are done.
4411   if (!isDot) {
4412     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4413                               Op.getOperand(1), Op.getOperand(2),
4414                               DAG.getConstant(CompareOpc, MVT::i32));
4415     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
4416   }
4417 
4418   // Create the PPCISD altivec 'dot' comparison node.
4419   SDValue Ops[] = {
4420     Op.getOperand(2),  // LHS
4421     Op.getOperand(3),  // RHS
4422     DAG.getConstant(CompareOpc, MVT::i32)
4423   };
4424   std::vector<EVT> VTs;
4425   VTs.push_back(Op.getOperand(2).getValueType());
4426   VTs.push_back(MVT::Glue);
4427   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4428 
4429   // Now that we have the comparison, emit a copy from the CR to a GPR.
4430   // This is flagged to the above dot comparison.
4431   SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4432                                 DAG.getRegister(PPC::CR6, MVT::i32),
4433                                 CompNode.getValue(1));
4434 
4435   // Unpack the result based on how the target uses it.
4436   unsigned BitNo;   // Bit # of CR6.
4437   bool InvertBit;   // Invert result?
4438   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4439   default:  // Can't happen, don't crash on invalid number though.
4440   case 0:   // Return the value of the EQ bit of CR6.
4441     BitNo = 0; InvertBit = false;
4442     break;
4443   case 1:   // Return the inverted value of the EQ bit of CR6.
4444     BitNo = 0; InvertBit = true;
4445     break;
4446   case 2:   // Return the value of the LT bit of CR6.
4447     BitNo = 2; InvertBit = false;
4448     break;
4449   case 3:   // Return the inverted value of the LT bit of CR6.
4450     BitNo = 2; InvertBit = true;
4451     break;
4452   }
4453 
4454   // Shift the bit into the low position.
4455   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4456                       DAG.getConstant(8-(3-BitNo), MVT::i32));
4457   // Isolate the bit.
4458   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4459                       DAG.getConstant(1, MVT::i32));
4460 
4461   // If we are supposed to, toggle the bit.
4462   if (InvertBit)
4463     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4464                         DAG.getConstant(1, MVT::i32));
4465   return Flags;
4466 }
4467 
4468 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4469                                                    SelectionDAG &DAG) const {
4470   DebugLoc dl = Op.getDebugLoc();
4471   // Create a stack slot that is 16-byte aligned.
4472   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4473   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
4474   EVT PtrVT = getPointerTy();
4475   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4476 
4477   // Store the input value into Value#0 of the stack slot.
4478   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4479                                Op.getOperand(0), FIdx, MachinePointerInfo(),
4480                                false, false, 0);
4481   // Load it out.
4482   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
4483                      false, false, false, 0);
4484 }
4485 
4486 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
4487   DebugLoc dl = Op.getDebugLoc();
4488   if (Op.getValueType() == MVT::v4i32) {
4489     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4490 
4491     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
4492     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4493 
4494     SDValue RHSSwap =   // = vrlw RHS, 16
4495       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4496 
4497     // Shrinkify inputs to v8i16.
4498     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
4499     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
4500     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
4501 
4502     // Low parts multiplied together, generating 32-bit results (we ignore the
4503     // top parts).
4504     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4505                                         LHS, RHS, DAG, dl, MVT::v4i32);
4506 
4507     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4508                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4509     // Shift the high parts up 16 bits.
4510     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4511                               Neg16, DAG, dl);
4512     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4513   } else if (Op.getValueType() == MVT::v8i16) {
4514     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4515 
4516     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4517 
4518     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4519                             LHS, RHS, Zero, DAG, dl);
4520   } else if (Op.getValueType() == MVT::v16i8) {
4521     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4522 
4523     // Multiply the even 8-bit parts, producing 16-bit sums.
4524     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4525                                            LHS, RHS, DAG, dl, MVT::v8i16);
4526     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
4527 
4528     // Multiply the odd 8-bit parts, producing 16-bit sums.
4529     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4530                                           LHS, RHS, DAG, dl, MVT::v8i16);
4531     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
4532 
4533     // Merge the results together.
4534     int Ops[16];
4535     for (unsigned i = 0; i != 8; ++i) {
4536       Ops[i*2  ] = 2*i+1;
4537       Ops[i*2+1] = 2*i+1+16;
4538     }
4539     return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4540   } else {
4541     llvm_unreachable("Unknown mul to lower!");
4542   }
4543 }
4544 
4545 /// LowerOperation - Provide custom lowering hooks for some operations.
4546 ///
4547 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4548   switch (Op.getOpcode()) {
4549   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4550   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4551   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
4552   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4553   case ISD::GlobalTLSAddress:   llvm_unreachable("TLS not implemented for PPC");
4554   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4555   case ISD::SETCC:              return LowerSETCC(Op, DAG);
4556   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
4557   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
4558   case ISD::VASTART:
4559     return LowerVASTART(Op, DAG, PPCSubTarget);
4560 
4561   case ISD::VAARG:
4562     return LowerVAARG(Op, DAG, PPCSubTarget);
4563 
4564   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4565   case ISD::DYNAMIC_STACKALLOC:
4566     return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4567 
4568   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
4569   case ISD::FP_TO_UINT:
4570   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
4571                                                        Op.getDebugLoc());
4572   case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4573   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
4574 
4575   // Lower 64-bit shifts.
4576   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
4577   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
4578   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
4579 
4580   // Vector-related lowering.
4581   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4582   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4583   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4584   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4585   case ISD::MUL:                return LowerMUL(Op, DAG);
4586 
4587   // Frame & Return address.
4588   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4589   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4590   }
4591 }
4592 
4593 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4594                                            SmallVectorImpl<SDValue>&Results,
4595                                            SelectionDAG &DAG) const {
4596   const TargetMachine &TM = getTargetMachine();
4597   DebugLoc dl = N->getDebugLoc();
4598   switch (N->getOpcode()) {
4599   default:
4600     llvm_unreachable("Do not know how to custom type legalize this operation!");
4601   case ISD::VAARG: {
4602     if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
4603         || TM.getSubtarget<PPCSubtarget>().isPPC64())
4604       return;
4605 
4606     EVT VT = N->getValueType(0);
4607 
4608     if (VT == MVT::i64) {
4609       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
4610 
4611       Results.push_back(NewNode);
4612       Results.push_back(NewNode.getValue(1));
4613     }
4614     return;
4615   }
4616   case ISD::FP_ROUND_INREG: {
4617     assert(N->getValueType(0) == MVT::ppcf128);
4618     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4619     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4620                              MVT::f64, N->getOperand(0),
4621                              DAG.getIntPtrConstant(0));
4622     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4623                              MVT::f64, N->getOperand(0),
4624                              DAG.getIntPtrConstant(1));
4625 
4626     // This sequence changes FPSCR to do round-to-zero, adds the two halves
4627     // of the long double, and puts FPSCR back the way it was.  We do not
4628     // actually model FPSCR.
4629     std::vector<EVT> NodeTys;
4630     SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4631 
4632     NodeTys.push_back(MVT::f64);   // Return register
4633     NodeTys.push_back(MVT::Glue);    // Returns a flag for later insns
4634     Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4635     MFFSreg = Result.getValue(0);
4636     InFlag = Result.getValue(1);
4637 
4638     NodeTys.clear();
4639     NodeTys.push_back(MVT::Glue);   // Returns a flag
4640     Ops[0] = DAG.getConstant(31, MVT::i32);
4641     Ops[1] = InFlag;
4642     Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4643     InFlag = Result.getValue(0);
4644 
4645     NodeTys.clear();
4646     NodeTys.push_back(MVT::Glue);   // Returns a flag
4647     Ops[0] = DAG.getConstant(30, MVT::i32);
4648     Ops[1] = InFlag;
4649     Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4650     InFlag = Result.getValue(0);
4651 
4652     NodeTys.clear();
4653     NodeTys.push_back(MVT::f64);    // result of add
4654     NodeTys.push_back(MVT::Glue);   // Returns a flag
4655     Ops[0] = Lo;
4656     Ops[1] = Hi;
4657     Ops[2] = InFlag;
4658     Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4659     FPreg = Result.getValue(0);
4660     InFlag = Result.getValue(1);
4661 
4662     NodeTys.clear();
4663     NodeTys.push_back(MVT::f64);
4664     Ops[0] = DAG.getConstant(1, MVT::i32);
4665     Ops[1] = MFFSreg;
4666     Ops[2] = FPreg;
4667     Ops[3] = InFlag;
4668     Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4669     FPreg = Result.getValue(0);
4670 
4671     // We know the low half is about to be thrown away, so just use something
4672     // convenient.
4673     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4674                                 FPreg, FPreg));
4675     return;
4676   }
4677   case ISD::FP_TO_SINT:
4678     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4679     return;
4680   }
4681 }
4682 
4683 
4684 //===----------------------------------------------------------------------===//
4685 //  Other Lowering Code
4686 //===----------------------------------------------------------------------===//
4687 
4688 MachineBasicBlock *
4689 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4690                                     bool is64bit, unsigned BinOpcode) const {
4691   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4692   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4693 
4694   const BasicBlock *LLVM_BB = BB->getBasicBlock();
4695   MachineFunction *F = BB->getParent();
4696   MachineFunction::iterator It = BB;
4697   ++It;
4698 
4699   unsigned dest = MI->getOperand(0).getReg();
4700   unsigned ptrA = MI->getOperand(1).getReg();
4701   unsigned ptrB = MI->getOperand(2).getReg();
4702   unsigned incr = MI->getOperand(3).getReg();
4703   DebugLoc dl = MI->getDebugLoc();
4704 
4705   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4706   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4707   F->insert(It, loopMBB);
4708   F->insert(It, exitMBB);
4709   exitMBB->splice(exitMBB->begin(), BB,
4710                   llvm::next(MachineBasicBlock::iterator(MI)),
4711                   BB->end());
4712   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4713 
4714   MachineRegisterInfo &RegInfo = F->getRegInfo();
4715   unsigned TmpReg = (!BinOpcode) ? incr :
4716     RegInfo.createVirtualRegister(
4717        is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4718                  (const TargetRegisterClass *) &PPC::GPRCRegClass);
4719 
4720   //  thisMBB:
4721   //   ...
4722   //   fallthrough --> loopMBB
4723   BB->addSuccessor(loopMBB);
4724 
4725   //  loopMBB:
4726   //   l[wd]arx dest, ptr
4727   //   add r0, dest, incr
4728   //   st[wd]cx. r0, ptr
4729   //   bne- loopMBB
4730   //   fallthrough --> exitMBB
4731   BB = loopMBB;
4732   BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4733     .addReg(ptrA).addReg(ptrB);
4734   if (BinOpcode)
4735     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4736   BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4737     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4738   BuildMI(BB, dl, TII->get(PPC::BCC))
4739     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4740   BB->addSuccessor(loopMBB);
4741   BB->addSuccessor(exitMBB);
4742 
4743   //  exitMBB:
4744   //   ...
4745   BB = exitMBB;
4746   return BB;
4747 }
4748 
4749 MachineBasicBlock *
4750 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4751                                             MachineBasicBlock *BB,
4752                                             bool is8bit,    // operation
4753                                             unsigned BinOpcode) const {
4754   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4755   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4756   // In 64 bit mode we have to use 64 bits for addresses, even though the
4757   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
4758   // registers without caring whether they're 32 or 64, but here we're
4759   // doing actual arithmetic on the addresses.
4760   bool is64bit = PPCSubTarget.isPPC64();
4761   unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
4762 
4763   const BasicBlock *LLVM_BB = BB->getBasicBlock();
4764   MachineFunction *F = BB->getParent();
4765   MachineFunction::iterator It = BB;
4766   ++It;
4767 
4768   unsigned dest = MI->getOperand(0).getReg();
4769   unsigned ptrA = MI->getOperand(1).getReg();
4770   unsigned ptrB = MI->getOperand(2).getReg();
4771   unsigned incr = MI->getOperand(3).getReg();
4772   DebugLoc dl = MI->getDebugLoc();
4773 
4774   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4775   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4776   F->insert(It, loopMBB);
4777   F->insert(It, exitMBB);
4778   exitMBB->splice(exitMBB->begin(), BB,
4779                   llvm::next(MachineBasicBlock::iterator(MI)),
4780                   BB->end());
4781   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4782 
4783   MachineRegisterInfo &RegInfo = F->getRegInfo();
4784   const TargetRegisterClass *RC =
4785     is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4786               (const TargetRegisterClass *) &PPC::GPRCRegClass;
4787   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4788   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4789   unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4790   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4791   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4792   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4793   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4794   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4795   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4796   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4797   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4798   unsigned Ptr1Reg;
4799   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4800 
4801   //  thisMBB:
4802   //   ...
4803   //   fallthrough --> loopMBB
4804   BB->addSuccessor(loopMBB);
4805 
4806   // The 4-byte load must be aligned, while a char or short may be
4807   // anywhere in the word.  Hence all this nasty bookkeeping code.
4808   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4809   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4810   //   xori shift, shift1, 24 [16]
4811   //   rlwinm ptr, ptr1, 0, 0, 29
4812   //   slw incr2, incr, shift
4813   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4814   //   slw mask, mask2, shift
4815   //  loopMBB:
4816   //   lwarx tmpDest, ptr
4817   //   add tmp, tmpDest, incr2
4818   //   andc tmp2, tmpDest, mask
4819   //   and tmp3, tmp, mask
4820   //   or tmp4, tmp3, tmp2
4821   //   stwcx. tmp4, ptr
4822   //   bne- loopMBB
4823   //   fallthrough --> exitMBB
4824   //   srw dest, tmpDest, shift
4825   if (ptrA != ZeroReg) {
4826     Ptr1Reg = RegInfo.createVirtualRegister(RC);
4827     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4828       .addReg(ptrA).addReg(ptrB);
4829   } else {
4830     Ptr1Reg = ptrB;
4831   }
4832   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4833       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4834   BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4835       .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4836   if (is64bit)
4837     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4838       .addReg(Ptr1Reg).addImm(0).addImm(61);
4839   else
4840     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4841       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4842   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4843       .addReg(incr).addReg(ShiftReg);
4844   if (is8bit)
4845     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4846   else {
4847     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4848     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4849   }
4850   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4851       .addReg(Mask2Reg).addReg(ShiftReg);
4852 
4853   BB = loopMBB;
4854   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4855     .addReg(ZeroReg).addReg(PtrReg);
4856   if (BinOpcode)
4857     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4858       .addReg(Incr2Reg).addReg(TmpDestReg);
4859   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4860     .addReg(TmpDestReg).addReg(MaskReg);
4861   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4862     .addReg(TmpReg).addReg(MaskReg);
4863   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4864     .addReg(Tmp3Reg).addReg(Tmp2Reg);
4865   BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4866     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
4867   BuildMI(BB, dl, TII->get(PPC::BCC))
4868     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4869   BB->addSuccessor(loopMBB);
4870   BB->addSuccessor(exitMBB);
4871 
4872   //  exitMBB:
4873   //   ...
4874   BB = exitMBB;
4875   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
4876     .addReg(ShiftReg);
4877   return BB;
4878 }
4879 
4880 MachineBasicBlock *
4881 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4882                                                MachineBasicBlock *BB) const {
4883   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4884 
4885   // To "insert" these instructions we actually have to insert their
4886   // control-flow patterns.
4887   const BasicBlock *LLVM_BB = BB->getBasicBlock();
4888   MachineFunction::iterator It = BB;
4889   ++It;
4890 
4891   MachineFunction *F = BB->getParent();
4892 
4893   if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4894       MI->getOpcode() == PPC::SELECT_CC_I8 ||
4895       MI->getOpcode() == PPC::SELECT_CC_F4 ||
4896       MI->getOpcode() == PPC::SELECT_CC_F8 ||
4897       MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4898 
4899     // The incoming instruction knows the destination vreg to set, the
4900     // condition code register to branch on, the true/false values to
4901     // select between, and a branch opcode to use.
4902 
4903     //  thisMBB:
4904     //  ...
4905     //   TrueVal = ...
4906     //   cmpTY ccX, r1, r2
4907     //   bCC copy1MBB
4908     //   fallthrough --> copy0MBB
4909     MachineBasicBlock *thisMBB = BB;
4910     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4911     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4912     unsigned SelectPred = MI->getOperand(4).getImm();
4913     DebugLoc dl = MI->getDebugLoc();
4914     F->insert(It, copy0MBB);
4915     F->insert(It, sinkMBB);
4916 
4917     // Transfer the remainder of BB and its successor edges to sinkMBB.
4918     sinkMBB->splice(sinkMBB->begin(), BB,
4919                     llvm::next(MachineBasicBlock::iterator(MI)),
4920                     BB->end());
4921     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4922 
4923     // Next, add the true and fallthrough blocks as its successors.
4924     BB->addSuccessor(copy0MBB);
4925     BB->addSuccessor(sinkMBB);
4926 
4927     BuildMI(BB, dl, TII->get(PPC::BCC))
4928       .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4929 
4930     //  copy0MBB:
4931     //   %FalseValue = ...
4932     //   # fallthrough to sinkMBB
4933     BB = copy0MBB;
4934 
4935     // Update machine-CFG edges
4936     BB->addSuccessor(sinkMBB);
4937 
4938     //  sinkMBB:
4939     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4940     //  ...
4941     BB = sinkMBB;
4942     BuildMI(*BB, BB->begin(), dl,
4943             TII->get(PPC::PHI), MI->getOperand(0).getReg())
4944       .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4945       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4946   }
4947   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4948     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4949   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4950     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4951   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4952     BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4953   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4954     BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4955 
4956   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4957     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4958   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4959     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4960   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4961     BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4962   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4963     BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4964 
4965   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4966     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4967   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4968     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4969   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4970     BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4971   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4972     BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4973 
4974   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4975     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4976   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4977     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4978   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4979     BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4980   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4981     BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4982 
4983   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4984     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4985   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4986     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4987   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4988     BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4989   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4990     BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4991 
4992   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4993     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4994   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4995     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4996   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4997     BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4998   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4999     BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
5000 
5001   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
5002     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
5003   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
5004     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
5005   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
5006     BB = EmitAtomicBinary(MI, BB, false, 0);
5007   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
5008     BB = EmitAtomicBinary(MI, BB, true, 0);
5009 
5010   else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
5011            MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
5012     bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
5013 
5014     unsigned dest   = MI->getOperand(0).getReg();
5015     unsigned ptrA   = MI->getOperand(1).getReg();
5016     unsigned ptrB   = MI->getOperand(2).getReg();
5017     unsigned oldval = MI->getOperand(3).getReg();
5018     unsigned newval = MI->getOperand(4).getReg();
5019     DebugLoc dl     = MI->getDebugLoc();
5020 
5021     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
5022     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
5023     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
5024     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5025     F->insert(It, loop1MBB);
5026     F->insert(It, loop2MBB);
5027     F->insert(It, midMBB);
5028     F->insert(It, exitMBB);
5029     exitMBB->splice(exitMBB->begin(), BB,
5030                     llvm::next(MachineBasicBlock::iterator(MI)),
5031                     BB->end());
5032     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5033 
5034     //  thisMBB:
5035     //   ...
5036     //   fallthrough --> loopMBB
5037     BB->addSuccessor(loop1MBB);
5038 
5039     // loop1MBB:
5040     //   l[wd]arx dest, ptr
5041     //   cmp[wd] dest, oldval
5042     //   bne- midMBB
5043     // loop2MBB:
5044     //   st[wd]cx. newval, ptr
5045     //   bne- loopMBB
5046     //   b exitBB
5047     // midMBB:
5048     //   st[wd]cx. dest, ptr
5049     // exitBB:
5050     BB = loop1MBB;
5051     BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
5052       .addReg(ptrA).addReg(ptrB);
5053     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
5054       .addReg(oldval).addReg(dest);
5055     BuildMI(BB, dl, TII->get(PPC::BCC))
5056       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
5057     BB->addSuccessor(loop2MBB);
5058     BB->addSuccessor(midMBB);
5059 
5060     BB = loop2MBB;
5061     BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5062       .addReg(newval).addReg(ptrA).addReg(ptrB);
5063     BuildMI(BB, dl, TII->get(PPC::BCC))
5064       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5065     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5066     BB->addSuccessor(loop1MBB);
5067     BB->addSuccessor(exitMBB);
5068 
5069     BB = midMBB;
5070     BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5071       .addReg(dest).addReg(ptrA).addReg(ptrB);
5072     BB->addSuccessor(exitMBB);
5073 
5074     //  exitMBB:
5075     //   ...
5076     BB = exitMBB;
5077   } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
5078              MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
5079     // We must use 64-bit registers for addresses when targeting 64-bit,
5080     // since we're actually doing arithmetic on them.  Other registers
5081     // can be 32-bit.
5082     bool is64bit = PPCSubTarget.isPPC64();
5083     bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
5084 
5085     unsigned dest   = MI->getOperand(0).getReg();
5086     unsigned ptrA   = MI->getOperand(1).getReg();
5087     unsigned ptrB   = MI->getOperand(2).getReg();
5088     unsigned oldval = MI->getOperand(3).getReg();
5089     unsigned newval = MI->getOperand(4).getReg();
5090     DebugLoc dl     = MI->getDebugLoc();
5091 
5092     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
5093     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
5094     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
5095     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5096     F->insert(It, loop1MBB);
5097     F->insert(It, loop2MBB);
5098     F->insert(It, midMBB);
5099     F->insert(It, exitMBB);
5100     exitMBB->splice(exitMBB->begin(), BB,
5101                     llvm::next(MachineBasicBlock::iterator(MI)),
5102                     BB->end());
5103     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5104 
5105     MachineRegisterInfo &RegInfo = F->getRegInfo();
5106     const TargetRegisterClass *RC =
5107       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5108                 (const TargetRegisterClass *) &PPC::GPRCRegClass;
5109     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
5110     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
5111     unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
5112     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
5113     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
5114     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
5115     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
5116     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
5117     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
5118     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
5119     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
5120     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
5121     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
5122     unsigned Ptr1Reg;
5123     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
5124     unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
5125     //  thisMBB:
5126     //   ...
5127     //   fallthrough --> loopMBB
5128     BB->addSuccessor(loop1MBB);
5129 
5130     // The 4-byte load must be aligned, while a char or short may be
5131     // anywhere in the word.  Hence all this nasty bookkeeping code.
5132     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
5133     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
5134     //   xori shift, shift1, 24 [16]
5135     //   rlwinm ptr, ptr1, 0, 0, 29
5136     //   slw newval2, newval, shift
5137     //   slw oldval2, oldval,shift
5138     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
5139     //   slw mask, mask2, shift
5140     //   and newval3, newval2, mask
5141     //   and oldval3, oldval2, mask
5142     // loop1MBB:
5143     //   lwarx tmpDest, ptr
5144     //   and tmp, tmpDest, mask
5145     //   cmpw tmp, oldval3
5146     //   bne- midMBB
5147     // loop2MBB:
5148     //   andc tmp2, tmpDest, mask
5149     //   or tmp4, tmp2, newval3
5150     //   stwcx. tmp4, ptr
5151     //   bne- loop1MBB
5152     //   b exitBB
5153     // midMBB:
5154     //   stwcx. tmpDest, ptr
5155     // exitBB:
5156     //   srw dest, tmpDest, shift
5157     if (ptrA != ZeroReg) {
5158       Ptr1Reg = RegInfo.createVirtualRegister(RC);
5159       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
5160         .addReg(ptrA).addReg(ptrB);
5161     } else {
5162       Ptr1Reg = ptrB;
5163     }
5164     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
5165         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
5166     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
5167         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
5168     if (is64bit)
5169       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
5170         .addReg(Ptr1Reg).addImm(0).addImm(61);
5171     else
5172       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
5173         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
5174     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
5175         .addReg(newval).addReg(ShiftReg);
5176     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
5177         .addReg(oldval).addReg(ShiftReg);
5178     if (is8bit)
5179       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
5180     else {
5181       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
5182       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
5183         .addReg(Mask3Reg).addImm(65535);
5184     }
5185     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5186         .addReg(Mask2Reg).addReg(ShiftReg);
5187     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
5188         .addReg(NewVal2Reg).addReg(MaskReg);
5189     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
5190         .addReg(OldVal2Reg).addReg(MaskReg);
5191 
5192     BB = loop1MBB;
5193     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5194         .addReg(ZeroReg).addReg(PtrReg);
5195     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
5196         .addReg(TmpDestReg).addReg(MaskReg);
5197     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
5198         .addReg(TmpReg).addReg(OldVal3Reg);
5199     BuildMI(BB, dl, TII->get(PPC::BCC))
5200         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
5201     BB->addSuccessor(loop2MBB);
5202     BB->addSuccessor(midMBB);
5203 
5204     BB = loop2MBB;
5205     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
5206         .addReg(TmpDestReg).addReg(MaskReg);
5207     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
5208         .addReg(Tmp2Reg).addReg(NewVal3Reg);
5209     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
5210         .addReg(ZeroReg).addReg(PtrReg);
5211     BuildMI(BB, dl, TII->get(PPC::BCC))
5212       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5213     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5214     BB->addSuccessor(loop1MBB);
5215     BB->addSuccessor(exitMBB);
5216 
5217     BB = midMBB;
5218     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
5219       .addReg(ZeroReg).addReg(PtrReg);
5220     BB->addSuccessor(exitMBB);
5221 
5222     //  exitMBB:
5223     //   ...
5224     BB = exitMBB;
5225     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
5226       .addReg(ShiftReg);
5227   } else {
5228     llvm_unreachable("Unexpected instr type to insert");
5229   }
5230 
5231   MI->eraseFromParent();   // The pseudo instruction is gone now.
5232   return BB;
5233 }
5234 
5235 //===----------------------------------------------------------------------===//
5236 // Target Optimization Hooks
5237 //===----------------------------------------------------------------------===//
5238 
5239 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
5240                                              DAGCombinerInfo &DCI) const {
5241   const TargetMachine &TM = getTargetMachine();
5242   SelectionDAG &DAG = DCI.DAG;
5243   DebugLoc dl = N->getDebugLoc();
5244   switch (N->getOpcode()) {
5245   default: break;
5246   case PPCISD::SHL:
5247     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5248       if (C->isNullValue())   // 0 << V -> 0.
5249         return N->getOperand(0);
5250     }
5251     break;
5252   case PPCISD::SRL:
5253     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5254       if (C->isNullValue())   // 0 >>u V -> 0.
5255         return N->getOperand(0);
5256     }
5257     break;
5258   case PPCISD::SRA:
5259     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5260       if (C->isNullValue() ||   //  0 >>s V -> 0.
5261           C->isAllOnesValue())    // -1 >>s V -> -1.
5262         return N->getOperand(0);
5263     }
5264     break;
5265 
5266   case ISD::SINT_TO_FP:
5267     if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
5268       if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
5269         // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
5270         // We allow the src/dst to be either f32/f64, but the intermediate
5271         // type must be i64.
5272         if (N->getOperand(0).getValueType() == MVT::i64 &&
5273             N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
5274           SDValue Val = N->getOperand(0).getOperand(0);
5275           if (Val.getValueType() == MVT::f32) {
5276             Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5277             DCI.AddToWorklist(Val.getNode());
5278           }
5279 
5280           Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
5281           DCI.AddToWorklist(Val.getNode());
5282           Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
5283           DCI.AddToWorklist(Val.getNode());
5284           if (N->getValueType(0) == MVT::f32) {
5285             Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
5286                               DAG.getIntPtrConstant(0));
5287             DCI.AddToWorklist(Val.getNode());
5288           }
5289           return Val;
5290         } else if (N->getOperand(0).getValueType() == MVT::i32) {
5291           // If the intermediate type is i32, we can avoid the load/store here
5292           // too.
5293         }
5294       }
5295     }
5296     break;
5297   case ISD::STORE:
5298     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
5299     if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
5300         !cast<StoreSDNode>(N)->isTruncatingStore() &&
5301         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
5302         N->getOperand(1).getValueType() == MVT::i32 &&
5303         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
5304       SDValue Val = N->getOperand(1).getOperand(0);
5305       if (Val.getValueType() == MVT::f32) {
5306         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5307         DCI.AddToWorklist(Val.getNode());
5308       }
5309       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
5310       DCI.AddToWorklist(Val.getNode());
5311 
5312       Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
5313                         N->getOperand(2), N->getOperand(3));
5314       DCI.AddToWorklist(Val.getNode());
5315       return Val;
5316     }
5317 
5318     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
5319     if (cast<StoreSDNode>(N)->isUnindexed() &&
5320         N->getOperand(1).getOpcode() == ISD::BSWAP &&
5321         N->getOperand(1).getNode()->hasOneUse() &&
5322         (N->getOperand(1).getValueType() == MVT::i32 ||
5323          N->getOperand(1).getValueType() == MVT::i16)) {
5324       SDValue BSwapOp = N->getOperand(1).getOperand(0);
5325       // Do an any-extend to 32-bits if this is a half-word input.
5326       if (BSwapOp.getValueType() == MVT::i16)
5327         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
5328 
5329       SDValue Ops[] = {
5330         N->getOperand(0), BSwapOp, N->getOperand(2),
5331         DAG.getValueType(N->getOperand(1).getValueType())
5332       };
5333       return
5334         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
5335                                 Ops, array_lengthof(Ops),
5336                                 cast<StoreSDNode>(N)->getMemoryVT(),
5337                                 cast<StoreSDNode>(N)->getMemOperand());
5338     }
5339     break;
5340   case ISD::BSWAP:
5341     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
5342     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5343         N->getOperand(0).hasOneUse() &&
5344         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
5345       SDValue Load = N->getOperand(0);
5346       LoadSDNode *LD = cast<LoadSDNode>(Load);
5347       // Create the byte-swapping load.
5348       SDValue Ops[] = {
5349         LD->getChain(),    // Chain
5350         LD->getBasePtr(),  // Ptr
5351         DAG.getValueType(N->getValueType(0)) // VT
5352       };
5353       SDValue BSLoad =
5354         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
5355                                 DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
5356                                 LD->getMemoryVT(), LD->getMemOperand());
5357 
5358       // If this is an i16 load, insert the truncate.
5359       SDValue ResVal = BSLoad;
5360       if (N->getValueType(0) == MVT::i16)
5361         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
5362 
5363       // First, combine the bswap away.  This makes the value produced by the
5364       // load dead.
5365       DCI.CombineTo(N, ResVal);
5366 
5367       // Next, combine the load away, we give it a bogus result value but a real
5368       // chain result.  The result value is dead because the bswap is dead.
5369       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5370 
5371       // Return N so it doesn't get rechecked!
5372       return SDValue(N, 0);
5373     }
5374 
5375     break;
5376   case PPCISD::VCMP: {
5377     // If a VCMPo node already exists with exactly the same operands as this
5378     // node, use its result instead of this node (VCMPo computes both a CR6 and
5379     // a normal output).
5380     //
5381     if (!N->getOperand(0).hasOneUse() &&
5382         !N->getOperand(1).hasOneUse() &&
5383         !N->getOperand(2).hasOneUse()) {
5384 
5385       // Scan all of the users of the LHS, looking for VCMPo's that match.
5386       SDNode *VCMPoNode = 0;
5387 
5388       SDNode *LHSN = N->getOperand(0).getNode();
5389       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
5390            UI != E; ++UI)
5391         if (UI->getOpcode() == PPCISD::VCMPo &&
5392             UI->getOperand(1) == N->getOperand(1) &&
5393             UI->getOperand(2) == N->getOperand(2) &&
5394             UI->getOperand(0) == N->getOperand(0)) {
5395           VCMPoNode = *UI;
5396           break;
5397         }
5398 
5399       // If there is no VCMPo node, or if the flag value has a single use, don't
5400       // transform this.
5401       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
5402         break;
5403 
5404       // Look at the (necessarily single) use of the flag value.  If it has a
5405       // chain, this transformation is more complex.  Note that multiple things
5406       // could use the value result, which we should ignore.
5407       SDNode *FlagUser = 0;
5408       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
5409            FlagUser == 0; ++UI) {
5410         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
5411         SDNode *User = *UI;
5412         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
5413           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
5414             FlagUser = User;
5415             break;
5416           }
5417         }
5418       }
5419 
5420       // If the user is a MFCR instruction, we know this is safe.  Otherwise we
5421       // give up for right now.
5422       if (FlagUser->getOpcode() == PPCISD::MFCR)
5423         return SDValue(VCMPoNode, 0);
5424     }
5425     break;
5426   }
5427   case ISD::BR_CC: {
5428     // If this is a branch on an altivec predicate comparison, lower this so
5429     // that we don't have to do a MFCR: instead, branch directly on CR6.  This
5430     // lowering is done pre-legalize, because the legalizer lowers the predicate
5431     // compare down to code that is difficult to reassemble.
5432     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5433     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5434     int CompareOpc;
5435     bool isDot;
5436 
5437     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5438         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5439         getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5440       assert(isDot && "Can't compare against a vector result!");
5441 
5442       // If this is a comparison against something other than 0/1, then we know
5443       // that the condition is never/always true.
5444       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5445       if (Val != 0 && Val != 1) {
5446         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
5447           return N->getOperand(0);
5448         // Always !=, turn it into an unconditional branch.
5449         return DAG.getNode(ISD::BR, dl, MVT::Other,
5450                            N->getOperand(0), N->getOperand(4));
5451       }
5452 
5453       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5454 
5455       // Create the PPCISD altivec 'dot' comparison node.
5456       std::vector<EVT> VTs;
5457       SDValue Ops[] = {
5458         LHS.getOperand(2),  // LHS of compare
5459         LHS.getOperand(3),  // RHS of compare
5460         DAG.getConstant(CompareOpc, MVT::i32)
5461       };
5462       VTs.push_back(LHS.getOperand(2).getValueType());
5463       VTs.push_back(MVT::Glue);
5464       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5465 
5466       // Unpack the result based on how the target uses it.
5467       PPC::Predicate CompOpc;
5468       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5469       default:  // Can't happen, don't crash on invalid number though.
5470       case 0:   // Branch on the value of the EQ bit of CR6.
5471         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5472         break;
5473       case 1:   // Branch on the inverted value of the EQ bit of CR6.
5474         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5475         break;
5476       case 2:   // Branch on the value of the LT bit of CR6.
5477         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5478         break;
5479       case 3:   // Branch on the inverted value of the LT bit of CR6.
5480         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5481         break;
5482       }
5483 
5484       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5485                          DAG.getConstant(CompOpc, MVT::i32),
5486                          DAG.getRegister(PPC::CR6, MVT::i32),
5487                          N->getOperand(4), CompNode.getValue(1));
5488     }
5489     break;
5490   }
5491   }
5492 
5493   return SDValue();
5494 }
5495 
5496 //===----------------------------------------------------------------------===//
5497 // Inline Assembly Support
5498 //===----------------------------------------------------------------------===//
5499 
5500 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5501                                                        const APInt &Mask,
5502                                                        APInt &KnownZero,
5503                                                        APInt &KnownOne,
5504                                                        const SelectionDAG &DAG,
5505                                                        unsigned Depth) const {
5506   KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5507   switch (Op.getOpcode()) {
5508   default: break;
5509   case PPCISD::LBRX: {
5510     // lhbrx is known to have the top bits cleared out.
5511     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
5512       KnownZero = 0xFFFF0000;
5513     break;
5514   }
5515   case ISD::INTRINSIC_WO_CHAIN: {
5516     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5517     default: break;
5518     case Intrinsic::ppc_altivec_vcmpbfp_p:
5519     case Intrinsic::ppc_altivec_vcmpeqfp_p:
5520     case Intrinsic::ppc_altivec_vcmpequb_p:
5521     case Intrinsic::ppc_altivec_vcmpequh_p:
5522     case Intrinsic::ppc_altivec_vcmpequw_p:
5523     case Intrinsic::ppc_altivec_vcmpgefp_p:
5524     case Intrinsic::ppc_altivec_vcmpgtfp_p:
5525     case Intrinsic::ppc_altivec_vcmpgtsb_p:
5526     case Intrinsic::ppc_altivec_vcmpgtsh_p:
5527     case Intrinsic::ppc_altivec_vcmpgtsw_p:
5528     case Intrinsic::ppc_altivec_vcmpgtub_p:
5529     case Intrinsic::ppc_altivec_vcmpgtuh_p:
5530     case Intrinsic::ppc_altivec_vcmpgtuw_p:
5531       KnownZero = ~1U;  // All bits but the low one are known to be zero.
5532       break;
5533     }
5534   }
5535   }
5536 }
5537 
5538 
5539 /// getConstraintType - Given a constraint, return the type of
5540 /// constraint it is for this target.
5541 PPCTargetLowering::ConstraintType
5542 PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5543   if (Constraint.size() == 1) {
5544     switch (Constraint[0]) {
5545     default: break;
5546     case 'b':
5547     case 'r':
5548     case 'f':
5549     case 'v':
5550     case 'y':
5551       return C_RegisterClass;
5552     }
5553   }
5554   return TargetLowering::getConstraintType(Constraint);
5555 }
5556 
5557 /// Examine constraint type and operand type and determine a weight value.
5558 /// This object must already have been set up with the operand type
5559 /// and the current alternative constraint selected.
5560 TargetLowering::ConstraintWeight
5561 PPCTargetLowering::getSingleConstraintMatchWeight(
5562     AsmOperandInfo &info, const char *constraint) const {
5563   ConstraintWeight weight = CW_Invalid;
5564   Value *CallOperandVal = info.CallOperandVal;
5565     // If we don't have a value, we can't do a match,
5566     // but allow it at the lowest weight.
5567   if (CallOperandVal == NULL)
5568     return CW_Default;
5569   Type *type = CallOperandVal->getType();
5570   // Look at the constraint type.
5571   switch (*constraint) {
5572   default:
5573     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
5574     break;
5575   case 'b':
5576     if (type->isIntegerTy())
5577       weight = CW_Register;
5578     break;
5579   case 'f':
5580     if (type->isFloatTy())
5581       weight = CW_Register;
5582     break;
5583   case 'd':
5584     if (type->isDoubleTy())
5585       weight = CW_Register;
5586     break;
5587   case 'v':
5588     if (type->isVectorTy())
5589       weight = CW_Register;
5590     break;
5591   case 'y':
5592     weight = CW_Register;
5593     break;
5594   }
5595   return weight;
5596 }
5597 
5598 std::pair<unsigned, const TargetRegisterClass*>
5599 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5600                                                 EVT VT) const {
5601   if (Constraint.size() == 1) {
5602     // GCC RS6000 Constraint Letters
5603     switch (Constraint[0]) {
5604     case 'b':   // R1-R31
5605     case 'r':   // R0-R31
5606       if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5607         return std::make_pair(0U, PPC::G8RCRegisterClass);
5608       return std::make_pair(0U, PPC::GPRCRegisterClass);
5609     case 'f':
5610       if (VT == MVT::f32)
5611         return std::make_pair(0U, PPC::F4RCRegisterClass);
5612       else if (VT == MVT::f64)
5613         return std::make_pair(0U, PPC::F8RCRegisterClass);
5614       break;
5615     case 'v':
5616       return std::make_pair(0U, PPC::VRRCRegisterClass);
5617     case 'y':   // crrc
5618       return std::make_pair(0U, PPC::CRRCRegisterClass);
5619     }
5620   }
5621 
5622   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5623 }
5624 
5625 
5626 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5627 /// vector.  If it is invalid, don't add anything to Ops.
5628 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5629                                                      std::string &Constraint,
5630                                                      std::vector<SDValue>&Ops,
5631                                                      SelectionDAG &DAG) const {
5632   SDValue Result(0,0);
5633 
5634   // Only support length 1 constraints.
5635   if (Constraint.length() > 1) return;
5636 
5637   char Letter = Constraint[0];
5638   switch (Letter) {
5639   default: break;
5640   case 'I':
5641   case 'J':
5642   case 'K':
5643   case 'L':
5644   case 'M':
5645   case 'N':
5646   case 'O':
5647   case 'P': {
5648     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5649     if (!CST) return; // Must be an immediate to match.
5650     unsigned Value = CST->getZExtValue();
5651     switch (Letter) {
5652     default: llvm_unreachable("Unknown constraint letter!");
5653     case 'I':  // "I" is a signed 16-bit constant.
5654       if ((short)Value == (int)Value)
5655         Result = DAG.getTargetConstant(Value, Op.getValueType());
5656       break;
5657     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
5658     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
5659       if ((short)Value == 0)
5660         Result = DAG.getTargetConstant(Value, Op.getValueType());
5661       break;
5662     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
5663       if ((Value >> 16) == 0)
5664         Result = DAG.getTargetConstant(Value, Op.getValueType());
5665       break;
5666     case 'M':  // "M" is a constant that is greater than 31.
5667       if (Value > 31)
5668         Result = DAG.getTargetConstant(Value, Op.getValueType());
5669       break;
5670     case 'N':  // "N" is a positive constant that is an exact power of two.
5671       if ((int)Value > 0 && isPowerOf2_32(Value))
5672         Result = DAG.getTargetConstant(Value, Op.getValueType());
5673       break;
5674     case 'O':  // "O" is the constant zero.
5675       if (Value == 0)
5676         Result = DAG.getTargetConstant(Value, Op.getValueType());
5677       break;
5678     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
5679       if ((short)-Value == (int)-Value)
5680         Result = DAG.getTargetConstant(Value, Op.getValueType());
5681       break;
5682     }
5683     break;
5684   }
5685   }
5686 
5687   if (Result.getNode()) {
5688     Ops.push_back(Result);
5689     return;
5690   }
5691 
5692   // Handle standard constraint letters.
5693   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5694 }
5695 
5696 // isLegalAddressingMode - Return true if the addressing mode represented
5697 // by AM is legal for this target, for a load/store of the specified type.
5698 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5699                                               Type *Ty) const {
5700   // FIXME: PPC does not allow r+i addressing modes for vectors!
5701 
5702   // PPC allows a sign-extended 16-bit immediate field.
5703   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5704     return false;
5705 
5706   // No global is ever allowed as a base.
5707   if (AM.BaseGV)
5708     return false;
5709 
5710   // PPC only support r+r,
5711   switch (AM.Scale) {
5712   case 0:  // "r+i" or just "i", depending on HasBaseReg.
5713     break;
5714   case 1:
5715     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
5716       return false;
5717     // Otherwise we have r+r or r+i.
5718     break;
5719   case 2:
5720     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
5721       return false;
5722     // Allow 2*r as r+r.
5723     break;
5724   default:
5725     // No other scales are supported.
5726     return false;
5727   }
5728 
5729   return true;
5730 }
5731 
5732 /// isLegalAddressImmediate - Return true if the integer value can be used
5733 /// as the offset of the target addressing mode for load / store of the
5734 /// given type.
5735 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{
5736   // PPC allows a sign-extended 16-bit immediate field.
5737   return (V > -(1 << 16) && V < (1 << 16)-1);
5738 }
5739 
5740 bool PPCTargetLowering::isLegalAddressImmediate(GlobalValue* GV) const {
5741   return false;
5742 }
5743 
5744 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
5745                                            SelectionDAG &DAG) const {
5746   MachineFunction &MF = DAG.getMachineFunction();
5747   MachineFrameInfo *MFI = MF.getFrameInfo();
5748   MFI->setReturnAddressIsTaken(true);
5749 
5750   DebugLoc dl = Op.getDebugLoc();
5751   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5752 
5753   // Make sure the function does not optimize away the store of the RA to
5754   // the stack.
5755   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5756   FuncInfo->setLRStoreRequired();
5757   bool isPPC64 = PPCSubTarget.isPPC64();
5758   bool isDarwinABI = PPCSubTarget.isDarwinABI();
5759 
5760   if (Depth > 0) {
5761     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5762     SDValue Offset =
5763 
5764       DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
5765                       isPPC64? MVT::i64 : MVT::i32);
5766     return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5767                        DAG.getNode(ISD::ADD, dl, getPointerTy(),
5768                                    FrameAddr, Offset),
5769                        MachinePointerInfo(), false, false, false, 0);
5770   }
5771 
5772   // Just load the return address off the stack.
5773   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5774   return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5775                      RetAddrFI, MachinePointerInfo(), false, false, false, 0);
5776 }
5777 
5778 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
5779                                           SelectionDAG &DAG) const {
5780   DebugLoc dl = Op.getDebugLoc();
5781   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5782 
5783   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5784   bool isPPC64 = PtrVT == MVT::i64;
5785 
5786   MachineFunction &MF = DAG.getMachineFunction();
5787   MachineFrameInfo *MFI = MF.getFrameInfo();
5788   MFI->setFrameAddressIsTaken(true);
5789   bool is31 = (getTargetMachine().Options.DisableFramePointerElim(MF) ||
5790                MFI->hasVarSizedObjects()) &&
5791                   MFI->getStackSize() &&
5792                   !MF.getFunction()->hasFnAttr(Attribute::Naked);
5793   unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) :
5794                                 (is31 ? PPC::R31 : PPC::R1);
5795   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
5796                                          PtrVT);
5797   while (Depth--)
5798     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
5799                             FrameAddr, MachinePointerInfo(), false, false,
5800                             false, 0);
5801   return FrameAddr;
5802 }
5803 
5804 bool
5805 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5806   // The PowerPC target isn't yet aware of offsets.
5807   return false;
5808 }
5809 
5810 /// getOptimalMemOpType - Returns the target specific optimal type for load
5811 /// and store operations as a result of memset, memcpy, and memmove
5812 /// lowering. If DstAlign is zero that means it's safe to destination
5813 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
5814 /// means there isn't a need to check it against alignment requirement,
5815 /// probably because the source does not need to be loaded. If
5816 /// 'IsZeroVal' is true, that means it's safe to return a
5817 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
5818 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
5819 /// constant so it does not need to be loaded.
5820 /// It returns EVT::Other if the type should be determined using generic
5821 /// target-independent logic.
5822 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
5823                                            unsigned DstAlign, unsigned SrcAlign,
5824                                            bool IsZeroVal,
5825                                            bool MemcpyStrSrc,
5826                                            MachineFunction &MF) const {
5827   if (this->PPCSubTarget.isPPC64()) {
5828     return MVT::i64;
5829   } else {
5830     return MVT::i32;
5831   }
5832 }
5833