1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/ValueTypes.h"
57 #include "llvm/IR/CallSite.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/Module.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/MC/MCContext.h"
74 #include "llvm/MC/MCExpr.h"
75 #include "llvm/MC/MCRegisterInfo.h"
76 #include "llvm/MC/MCSymbolXCOFF.h"
77 #include "llvm/Support/AtomicOrdering.h"
78 #include "llvm/Support/BranchProbability.h"
79 #include "llvm/Support/Casting.h"
80 #include "llvm/Support/CodeGen.h"
81 #include "llvm/Support/CommandLine.h"
82 #include "llvm/Support/Compiler.h"
83 #include "llvm/Support/Debug.h"
84 #include "llvm/Support/ErrorHandling.h"
85 #include "llvm/Support/Format.h"
86 #include "llvm/Support/KnownBits.h"
87 #include "llvm/Support/MachineValueType.h"
88 #include "llvm/Support/MathExtras.h"
89 #include "llvm/Support/raw_ostream.h"
90 #include "llvm/Target/TargetMachine.h"
91 #include "llvm/Target/TargetOptions.h"
92 #include <algorithm>
93 #include <cassert>
94 #include <cstdint>
95 #include <iterator>
96 #include <list>
97 #include <utility>
98 #include <vector>
99 
100 using namespace llvm;
101 
102 #define DEBUG_TYPE "ppc-lowering"
103 
104 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
105 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
106 
107 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
108 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
109 
110 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
111 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
112 
113 static cl::opt<bool> DisableSCO("disable-ppc-sco",
114 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
115 
116 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
117 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
118 
119 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
120 cl::desc("enable quad precision float support on ppc"), cl::Hidden);
121 
122 STATISTIC(NumTailCalls, "Number of tail calls");
123 STATISTIC(NumSiblingCalls, "Number of sibling calls");
124 
125 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
126 
127 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
128 
129 // FIXME: Remove this once the bug has been fixed!
130 extern cl::opt<bool> ANDIGlueBug;
131 
132 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
133                                      const PPCSubtarget &STI)
134     : TargetLowering(TM), Subtarget(STI) {
135   // Use _setjmp/_longjmp instead of setjmp/longjmp.
136   setUseUnderscoreSetJmp(true);
137   setUseUnderscoreLongJmp(true);
138 
139   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
140   // arguments are at least 4/8 bytes aligned.
141   bool isPPC64 = Subtarget.isPPC64();
142   setMinStackArgumentAlignment(isPPC64 ? 8:4);
143 
144   // Set up the register classes.
145   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
146   if (!useSoftFloat()) {
147     if (hasSPE()) {
148       addRegisterClass(MVT::f32, &PPC::SPE4RCRegClass);
149       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
150     } else {
151       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
152       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
153     }
154   }
155 
156   // Match BITREVERSE to customized fast code sequence in the td file.
157   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
158   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
159 
160   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
161   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
162 
163   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
164   for (MVT VT : MVT::integer_valuetypes()) {
165     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
166     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
167   }
168 
169   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
170 
171   // PowerPC has pre-inc load and store's.
172   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
173   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
174   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
175   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
176   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
177   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
178   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
179   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
180   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
181   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
182   if (!Subtarget.hasSPE()) {
183     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
184     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
185     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
186     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
187   }
188 
189   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
190   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
191   for (MVT VT : ScalarIntVTs) {
192     setOperationAction(ISD::ADDC, VT, Legal);
193     setOperationAction(ISD::ADDE, VT, Legal);
194     setOperationAction(ISD::SUBC, VT, Legal);
195     setOperationAction(ISD::SUBE, VT, Legal);
196   }
197 
198   if (Subtarget.useCRBits()) {
199     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
200 
201     if (isPPC64 || Subtarget.hasFPCVT()) {
202       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
203       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
204                          isPPC64 ? MVT::i64 : MVT::i32);
205       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
206       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
207                         isPPC64 ? MVT::i64 : MVT::i32);
208     } else {
209       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
210       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
211     }
212 
213     // PowerPC does not support direct load/store of condition registers.
214     setOperationAction(ISD::LOAD, MVT::i1, Custom);
215     setOperationAction(ISD::STORE, MVT::i1, Custom);
216 
217     // FIXME: Remove this once the ANDI glue bug is fixed:
218     if (ANDIGlueBug)
219       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
220 
221     for (MVT VT : MVT::integer_valuetypes()) {
222       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
223       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
224       setTruncStoreAction(VT, MVT::i1, Expand);
225     }
226 
227     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
228   }
229 
230   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
231   // PPC (the libcall is not available).
232   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
233   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
234 
235   // We do not currently implement these libm ops for PowerPC.
236   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
237   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
238   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
239   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
240   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
241   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
242 
243   // PowerPC has no SREM/UREM instructions unless we are on P9
244   // On P9 we may use a hardware instruction to compute the remainder.
245   // The instructions are not legalized directly because in the cases where the
246   // result of both the remainder and the division is required it is more
247   // efficient to compute the remainder from the result of the division rather
248   // than use the remainder instruction.
249   if (Subtarget.isISA3_0()) {
250     setOperationAction(ISD::SREM, MVT::i32, Custom);
251     setOperationAction(ISD::UREM, MVT::i32, Custom);
252     setOperationAction(ISD::SREM, MVT::i64, Custom);
253     setOperationAction(ISD::UREM, MVT::i64, Custom);
254   } else {
255     setOperationAction(ISD::SREM, MVT::i32, Expand);
256     setOperationAction(ISD::UREM, MVT::i32, Expand);
257     setOperationAction(ISD::SREM, MVT::i64, Expand);
258     setOperationAction(ISD::UREM, MVT::i64, Expand);
259   }
260 
261   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
262   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
263   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
264   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
265   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
266   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
267   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
268   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
269   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
270 
271   // We don't support sin/cos/sqrt/fmod/pow
272   setOperationAction(ISD::FSIN , MVT::f64, Expand);
273   setOperationAction(ISD::FCOS , MVT::f64, Expand);
274   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
275   setOperationAction(ISD::FREM , MVT::f64, Expand);
276   setOperationAction(ISD::FPOW , MVT::f64, Expand);
277   setOperationAction(ISD::FSIN , MVT::f32, Expand);
278   setOperationAction(ISD::FCOS , MVT::f32, Expand);
279   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
280   setOperationAction(ISD::FREM , MVT::f32, Expand);
281   setOperationAction(ISD::FPOW , MVT::f32, Expand);
282   if (Subtarget.hasSPE()) {
283     setOperationAction(ISD::FMA  , MVT::f64, Expand);
284     setOperationAction(ISD::FMA  , MVT::f32, Expand);
285   } else {
286     setOperationAction(ISD::FMA  , MVT::f64, Legal);
287     setOperationAction(ISD::FMA  , MVT::f32, Legal);
288   }
289 
290   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
291 
292   // If we're enabling GP optimizations, use hardware square root
293   if (!Subtarget.hasFSQRT() &&
294       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
295         Subtarget.hasFRE()))
296     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
297 
298   if (!Subtarget.hasFSQRT() &&
299       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
300         Subtarget.hasFRES()))
301     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
302 
303   if (Subtarget.hasFCPSGN()) {
304     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
305     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
306   } else {
307     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
308     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
309   }
310 
311   if (Subtarget.hasFPRND()) {
312     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
313     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
314     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
315     setOperationAction(ISD::FROUND, MVT::f64, Legal);
316 
317     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
318     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
319     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
320     setOperationAction(ISD::FROUND, MVT::f32, Legal);
321   }
322 
323   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
324   // to speed up scalar BSWAP64.
325   // CTPOP or CTTZ were introduced in P8/P9 respectively
326   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
327   if (Subtarget.hasP9Vector())
328     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
329   else
330     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
331   if (Subtarget.isISA3_0()) {
332     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
333     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
334   } else {
335     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
336     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
337   }
338 
339   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
340     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
341     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
342   } else {
343     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
344     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
345   }
346 
347   // PowerPC does not have ROTR
348   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
349   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
350 
351   if (!Subtarget.useCRBits()) {
352     // PowerPC does not have Select
353     setOperationAction(ISD::SELECT, MVT::i32, Expand);
354     setOperationAction(ISD::SELECT, MVT::i64, Expand);
355     setOperationAction(ISD::SELECT, MVT::f32, Expand);
356     setOperationAction(ISD::SELECT, MVT::f64, Expand);
357   }
358 
359   // PowerPC wants to turn select_cc of FP into fsel when possible.
360   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
361   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
362 
363   // PowerPC wants to optimize integer setcc a bit
364   if (!Subtarget.useCRBits())
365     setOperationAction(ISD::SETCC, MVT::i32, Custom);
366 
367   // PowerPC does not have BRCOND which requires SetCC
368   if (!Subtarget.useCRBits())
369     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
370 
371   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
372 
373   if (Subtarget.hasSPE()) {
374     // SPE has built-in conversions
375     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
376     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
377     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
378   } else {
379     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
380     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
381 
382     // PowerPC does not have [U|S]INT_TO_FP
383     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
384     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
385   }
386 
387   if (Subtarget.hasDirectMove() && isPPC64) {
388     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
389     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
390     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
391     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
392   } else {
393     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
394     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
395     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
396     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
397   }
398 
399   // We cannot sextinreg(i1).  Expand to shifts.
400   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
401 
402   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
403   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
404   // support continuation, user-level threading, and etc.. As a result, no
405   // other SjLj exception interfaces are implemented and please don't build
406   // your own exception handling based on them.
407   // LLVM/Clang supports zero-cost DWARF exception handling.
408   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
409   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
410 
411   // We want to legalize GlobalAddress and ConstantPool nodes into the
412   // appropriate instructions to materialize the address.
413   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
414   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
415   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
416   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
417   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
418   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
419   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
420   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
421   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
422   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
423 
424   // TRAP is legal.
425   setOperationAction(ISD::TRAP, MVT::Other, Legal);
426 
427   // TRAMPOLINE is custom lowered.
428   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
429   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
430 
431   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
432   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
433 
434   if (Subtarget.isSVR4ABI()) {
435     if (isPPC64) {
436       // VAARG always uses double-word chunks, so promote anything smaller.
437       setOperationAction(ISD::VAARG, MVT::i1, Promote);
438       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
439       setOperationAction(ISD::VAARG, MVT::i8, Promote);
440       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
441       setOperationAction(ISD::VAARG, MVT::i16, Promote);
442       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
443       setOperationAction(ISD::VAARG, MVT::i32, Promote);
444       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
445       setOperationAction(ISD::VAARG, MVT::Other, Expand);
446     } else {
447       // VAARG is custom lowered with the 32-bit SVR4 ABI.
448       setOperationAction(ISD::VAARG, MVT::Other, Custom);
449       setOperationAction(ISD::VAARG, MVT::i64, Custom);
450     }
451   } else
452     setOperationAction(ISD::VAARG, MVT::Other, Expand);
453 
454   if (Subtarget.isSVR4ABI() && !isPPC64)
455     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
456     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
457   else
458     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
459 
460   // Use the default implementation.
461   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
462   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
463   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
464   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
465   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
466   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
467   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
468   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
469   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
470 
471   // We want to custom lower some of our intrinsics.
472   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
473 
474   // To handle counter-based loop conditions.
475   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
476 
477   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
478   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
479   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
480   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
481 
482   // Comparisons that require checking two conditions.
483   if (Subtarget.hasSPE()) {
484     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
485     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
486     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
487     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
488   }
489   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
490   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
491   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
492   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
493   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
494   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
495   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
496   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
497   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
498   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
499   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
500   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
501 
502   if (Subtarget.has64BitSupport()) {
503     // They also have instructions for converting between i64 and fp.
504     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
505     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
506     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
507     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
508     // This is just the low 32 bits of a (signed) fp->i64 conversion.
509     // We cannot do this with Promote because i64 is not a legal type.
510     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
511 
512     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
513       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
514   } else {
515     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
516     if (Subtarget.hasSPE())
517       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
518     else
519       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
520   }
521 
522   // With the instructions enabled under FPCVT, we can do everything.
523   if (Subtarget.hasFPCVT()) {
524     if (Subtarget.has64BitSupport()) {
525       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
526       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
527       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
528       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
529     }
530 
531     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
532     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
533     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
534     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
535   }
536 
537   if (Subtarget.use64BitRegs()) {
538     // 64-bit PowerPC implementations can support i64 types directly
539     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
540     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
541     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
542     // 64-bit PowerPC wants to expand i128 shifts itself.
543     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
544     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
545     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
546   } else {
547     // 32-bit PowerPC wants to expand i64 shifts itself.
548     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
549     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
550     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
551   }
552 
553   if (Subtarget.hasAltivec()) {
554     // First set operation action for all vector types to expand. Then we
555     // will selectively turn on ones that can be effectively codegen'd.
556     for (MVT VT : MVT::vector_valuetypes()) {
557       // add/sub are legal for all supported vector VT's.
558       setOperationAction(ISD::ADD, VT, Legal);
559       setOperationAction(ISD::SUB, VT, Legal);
560 
561       // For v2i64, these are only valid with P8Vector. This is corrected after
562       // the loop.
563       setOperationAction(ISD::SMAX, VT, Legal);
564       setOperationAction(ISD::SMIN, VT, Legal);
565       setOperationAction(ISD::UMAX, VT, Legal);
566       setOperationAction(ISD::UMIN, VT, Legal);
567 
568       if (Subtarget.hasVSX()) {
569         setOperationAction(ISD::FMAXNUM, VT, Legal);
570         setOperationAction(ISD::FMINNUM, VT, Legal);
571       }
572 
573       // Vector instructions introduced in P8
574       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
575         setOperationAction(ISD::CTPOP, VT, Legal);
576         setOperationAction(ISD::CTLZ, VT, Legal);
577       }
578       else {
579         setOperationAction(ISD::CTPOP, VT, Expand);
580         setOperationAction(ISD::CTLZ, VT, Expand);
581       }
582 
583       // Vector instructions introduced in P9
584       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
585         setOperationAction(ISD::CTTZ, VT, Legal);
586       else
587         setOperationAction(ISD::CTTZ, VT, Expand);
588 
589       // We promote all shuffles to v16i8.
590       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
591       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
592 
593       // We promote all non-typed operations to v4i32.
594       setOperationAction(ISD::AND   , VT, Promote);
595       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
596       setOperationAction(ISD::OR    , VT, Promote);
597       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
598       setOperationAction(ISD::XOR   , VT, Promote);
599       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
600       setOperationAction(ISD::LOAD  , VT, Promote);
601       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
602       setOperationAction(ISD::SELECT, VT, Promote);
603       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
604       setOperationAction(ISD::VSELECT, VT, Legal);
605       setOperationAction(ISD::SELECT_CC, VT, Promote);
606       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
607       setOperationAction(ISD::STORE, VT, Promote);
608       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
609 
610       // No other operations are legal.
611       setOperationAction(ISD::MUL , VT, Expand);
612       setOperationAction(ISD::SDIV, VT, Expand);
613       setOperationAction(ISD::SREM, VT, Expand);
614       setOperationAction(ISD::UDIV, VT, Expand);
615       setOperationAction(ISD::UREM, VT, Expand);
616       setOperationAction(ISD::FDIV, VT, Expand);
617       setOperationAction(ISD::FREM, VT, Expand);
618       setOperationAction(ISD::FNEG, VT, Expand);
619       setOperationAction(ISD::FSQRT, VT, Expand);
620       setOperationAction(ISD::FLOG, VT, Expand);
621       setOperationAction(ISD::FLOG10, VT, Expand);
622       setOperationAction(ISD::FLOG2, VT, Expand);
623       setOperationAction(ISD::FEXP, VT, Expand);
624       setOperationAction(ISD::FEXP2, VT, Expand);
625       setOperationAction(ISD::FSIN, VT, Expand);
626       setOperationAction(ISD::FCOS, VT, Expand);
627       setOperationAction(ISD::FABS, VT, Expand);
628       setOperationAction(ISD::FFLOOR, VT, Expand);
629       setOperationAction(ISD::FCEIL,  VT, Expand);
630       setOperationAction(ISD::FTRUNC, VT, Expand);
631       setOperationAction(ISD::FRINT,  VT, Expand);
632       setOperationAction(ISD::FNEARBYINT, VT, Expand);
633       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
634       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
635       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
636       setOperationAction(ISD::MULHU, VT, Expand);
637       setOperationAction(ISD::MULHS, VT, Expand);
638       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
639       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
640       setOperationAction(ISD::UDIVREM, VT, Expand);
641       setOperationAction(ISD::SDIVREM, VT, Expand);
642       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
643       setOperationAction(ISD::FPOW, VT, Expand);
644       setOperationAction(ISD::BSWAP, VT, Expand);
645       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
646       setOperationAction(ISD::ROTL, VT, Expand);
647       setOperationAction(ISD::ROTR, VT, Expand);
648 
649       for (MVT InnerVT : MVT::vector_valuetypes()) {
650         setTruncStoreAction(VT, InnerVT, Expand);
651         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
652         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
653         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
654       }
655     }
656     if (!Subtarget.hasP8Vector()) {
657       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
658       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
659       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
660       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
661     }
662 
663     for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
664       setOperationAction(ISD::ABS, VT, Custom);
665 
666     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
667     // with merges, splats, etc.
668     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
669 
670     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
671     // are cheap, so handle them before they get expanded to scalar.
672     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
673     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
674     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
675     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
676     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
677 
678     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
679     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
680     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
681     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
682     setOperationAction(ISD::SELECT, MVT::v4i32,
683                        Subtarget.useCRBits() ? Legal : Expand);
684     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
685     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
686     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
687     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
688     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
689     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
690     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
691     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
692     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
693 
694     // Without hasP8Altivec set, v2i64 SMAX isn't available.
695     // But ABS custom lowering requires SMAX support.
696     if (!Subtarget.hasP8Altivec())
697       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
698 
699     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
700     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
701     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
702     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
703 
704     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
705     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
706 
707     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
708       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
709       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
710     }
711 
712     if (Subtarget.hasP8Altivec())
713       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
714     else
715       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
716 
717     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
718     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
719 
720     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
721     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
722 
723     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
724     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
725     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
726     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
727 
728     // Altivec does not contain unordered floating-point compare instructions
729     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
730     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
731     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
732     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
733 
734     if (Subtarget.hasVSX()) {
735       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
736       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
737       if (Subtarget.hasP8Vector()) {
738         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
739         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
740       }
741       if (Subtarget.hasDirectMove() && isPPC64) {
742         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
743         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
744         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
745         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
746         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
747         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
748         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
749         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
750       }
751       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
752 
753       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
754       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
755       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
756       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
757       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
758 
759       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
760 
761       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
762       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
763 
764       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
765       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
766 
767       // Share the Altivec comparison restrictions.
768       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
769       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
770       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
771       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
772 
773       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
774       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
775 
776       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
777 
778       if (Subtarget.hasP8Vector())
779         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
780 
781       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
782 
783       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
784       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
785       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
786 
787       if (Subtarget.hasP8Altivec()) {
788         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
789         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
790         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
791 
792         // 128 bit shifts can be accomplished via 3 instructions for SHL and
793         // SRL, but not for SRA because of the instructions available:
794         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
795         // doing
796         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
797         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
798         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
799 
800         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
801       }
802       else {
803         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
804         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
805         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
806 
807         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
808 
809         // VSX v2i64 only supports non-arithmetic operations.
810         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
811         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
812       }
813 
814       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
815       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
816       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
817       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
818 
819       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
820 
821       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
822       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
823       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
824       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
825 
826       // Custom handling for partial vectors of integers converted to
827       // floating point. We already have optimal handling for v2i32 through
828       // the DAG combine, so those aren't necessary.
829       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
830       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
831       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
832       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
833       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
834       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
835       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
836       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
837 
838       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
839       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
840       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
841       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
842 
843       if (Subtarget.hasDirectMove())
844         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
845       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
846 
847       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
848     }
849 
850     if (Subtarget.hasP8Altivec()) {
851       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
852       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
853     }
854 
855     if (Subtarget.hasP9Vector()) {
856       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
857       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
858 
859       // 128 bit shifts can be accomplished via 3 instructions for SHL and
860       // SRL, but not for SRA because of the instructions available:
861       // VS{RL} and VS{RL}O.
862       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
863       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
864       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
865 
866       if (EnableQuadPrecision) {
867         addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
868         setOperationAction(ISD::FADD, MVT::f128, Legal);
869         setOperationAction(ISD::FSUB, MVT::f128, Legal);
870         setOperationAction(ISD::FDIV, MVT::f128, Legal);
871         setOperationAction(ISD::FMUL, MVT::f128, Legal);
872         setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
873         // No extending loads to f128 on PPC.
874         for (MVT FPT : MVT::fp_valuetypes())
875           setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
876         setOperationAction(ISD::FMA, MVT::f128, Legal);
877         setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
878         setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
879         setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
880         setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
881         setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
882         setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
883 
884         setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
885         setOperationAction(ISD::FRINT, MVT::f128, Legal);
886         setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
887         setOperationAction(ISD::FCEIL, MVT::f128, Legal);
888         setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
889         setOperationAction(ISD::FROUND, MVT::f128, Legal);
890 
891         setOperationAction(ISD::SELECT, MVT::f128, Expand);
892         setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
893         setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
894         setTruncStoreAction(MVT::f128, MVT::f64, Expand);
895         setTruncStoreAction(MVT::f128, MVT::f32, Expand);
896         setOperationAction(ISD::BITCAST, MVT::i128, Custom);
897         // No implementation for these ops for PowerPC.
898         setOperationAction(ISD::FSIN , MVT::f128, Expand);
899         setOperationAction(ISD::FCOS , MVT::f128, Expand);
900         setOperationAction(ISD::FPOW, MVT::f128, Expand);
901         setOperationAction(ISD::FPOWI, MVT::f128, Expand);
902         setOperationAction(ISD::FREM, MVT::f128, Expand);
903       }
904       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
905 
906     }
907 
908     if (Subtarget.hasP9Altivec()) {
909       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
910       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
911     }
912   }
913 
914   if (Subtarget.hasQPX()) {
915     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
916     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
917     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
918     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
919 
920     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
921     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
922 
923     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
924     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
925 
926     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
927     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
928 
929     if (!Subtarget.useCRBits())
930       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
931     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
932 
933     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
934     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
935     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
936     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
937     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
938     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
939     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
940 
941     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
942     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
943 
944     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
945     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
946     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
947 
948     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
949     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
950     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
951     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
952     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
953     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
954     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
955     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
956     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
957     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
958 
959     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
960     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
961 
962     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
963     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
964 
965     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
966 
967     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
968     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
969     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
970     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
971 
972     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
973     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
974 
975     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
976     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
977 
978     if (!Subtarget.useCRBits())
979       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
980     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
981 
982     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
983     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
984     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
985     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
986     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
987     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
988     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
989 
990     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
991     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
992 
993     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
994     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
995     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
996     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
997     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
998     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
999     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
1000     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
1001     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
1002     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
1003 
1004     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1005     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1006 
1007     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
1008     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
1009 
1010     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
1011 
1012     setOperationAction(ISD::AND , MVT::v4i1, Legal);
1013     setOperationAction(ISD::OR , MVT::v4i1, Legal);
1014     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
1015 
1016     if (!Subtarget.useCRBits())
1017       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
1018     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
1019 
1020     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
1021     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
1022 
1023     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
1024     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
1025     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
1026     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
1027     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
1028     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
1029     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
1030 
1031     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
1032     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
1033 
1034     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
1035 
1036     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
1037     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
1038     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
1039     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
1040 
1041     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
1042     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
1043     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
1044     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1045 
1046     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
1047     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
1048 
1049     // These need to set FE_INEXACT, and so cannot be vectorized here.
1050     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
1051     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
1052 
1053     if (TM.Options.UnsafeFPMath) {
1054       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1055       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1056 
1057       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
1058       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
1059     } else {
1060       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
1061       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
1062 
1063       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
1064       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
1065     }
1066   }
1067 
1068   if (Subtarget.has64BitSupport())
1069     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1070 
1071   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1072 
1073   if (!isPPC64) {
1074     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1075     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1076   }
1077 
1078   setBooleanContents(ZeroOrOneBooleanContent);
1079 
1080   if (Subtarget.hasAltivec()) {
1081     // Altivec instructions set fields to all zeros or all ones.
1082     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1083   }
1084 
1085   if (!isPPC64) {
1086     // These libcalls are not available in 32-bit.
1087     setLibcallName(RTLIB::SHL_I128, nullptr);
1088     setLibcallName(RTLIB::SRL_I128, nullptr);
1089     setLibcallName(RTLIB::SRA_I128, nullptr);
1090   }
1091 
1092   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1093 
1094   // We have target-specific dag combine patterns for the following nodes:
1095   setTargetDAGCombine(ISD::ADD);
1096   setTargetDAGCombine(ISD::SHL);
1097   setTargetDAGCombine(ISD::SRA);
1098   setTargetDAGCombine(ISD::SRL);
1099   setTargetDAGCombine(ISD::MUL);
1100   setTargetDAGCombine(ISD::SINT_TO_FP);
1101   setTargetDAGCombine(ISD::BUILD_VECTOR);
1102   if (Subtarget.hasFPCVT())
1103     setTargetDAGCombine(ISD::UINT_TO_FP);
1104   setTargetDAGCombine(ISD::LOAD);
1105   setTargetDAGCombine(ISD::STORE);
1106   setTargetDAGCombine(ISD::BR_CC);
1107   if (Subtarget.useCRBits())
1108     setTargetDAGCombine(ISD::BRCOND);
1109   setTargetDAGCombine(ISD::BSWAP);
1110   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1111   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1112   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1113 
1114   setTargetDAGCombine(ISD::SIGN_EXTEND);
1115   setTargetDAGCombine(ISD::ZERO_EXTEND);
1116   setTargetDAGCombine(ISD::ANY_EXTEND);
1117 
1118   setTargetDAGCombine(ISD::TRUNCATE);
1119 
1120   if (Subtarget.useCRBits()) {
1121     setTargetDAGCombine(ISD::TRUNCATE);
1122     setTargetDAGCombine(ISD::SETCC);
1123     setTargetDAGCombine(ISD::SELECT_CC);
1124   }
1125 
1126   // Use reciprocal estimates.
1127   if (TM.Options.UnsafeFPMath) {
1128     setTargetDAGCombine(ISD::FDIV);
1129     setTargetDAGCombine(ISD::FSQRT);
1130   }
1131 
1132   if (Subtarget.hasP9Altivec()) {
1133     setTargetDAGCombine(ISD::ABS);
1134     setTargetDAGCombine(ISD::VSELECT);
1135   }
1136 
1137   // Darwin long double math library functions have $LDBL128 appended.
1138   if (Subtarget.isDarwin()) {
1139     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
1140     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
1141     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
1142     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
1143     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
1144     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
1145     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
1146     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
1147     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
1148     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
1149   }
1150 
1151   if (EnableQuadPrecision) {
1152     setLibcallName(RTLIB::LOG_F128, "logf128");
1153     setLibcallName(RTLIB::LOG2_F128, "log2f128");
1154     setLibcallName(RTLIB::LOG10_F128, "log10f128");
1155     setLibcallName(RTLIB::EXP_F128, "expf128");
1156     setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1157     setLibcallName(RTLIB::SIN_F128, "sinf128");
1158     setLibcallName(RTLIB::COS_F128, "cosf128");
1159     setLibcallName(RTLIB::POW_F128, "powf128");
1160     setLibcallName(RTLIB::FMIN_F128, "fminf128");
1161     setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1162     setLibcallName(RTLIB::POWI_F128, "__powikf2");
1163     setLibcallName(RTLIB::REM_F128, "fmodf128");
1164   }
1165 
1166   // With 32 condition bits, we don't need to sink (and duplicate) compares
1167   // aggressively in CodeGenPrep.
1168   if (Subtarget.useCRBits()) {
1169     setHasMultipleConditionRegisters();
1170     setJumpIsExpensive();
1171   }
1172 
1173   setMinFunctionAlignment(2);
1174   if (Subtarget.isDarwin())
1175     setPrefFunctionAlignment(4);
1176 
1177   switch (Subtarget.getDarwinDirective()) {
1178   default: break;
1179   case PPC::DIR_970:
1180   case PPC::DIR_A2:
1181   case PPC::DIR_E500:
1182   case PPC::DIR_E500mc:
1183   case PPC::DIR_E5500:
1184   case PPC::DIR_PWR4:
1185   case PPC::DIR_PWR5:
1186   case PPC::DIR_PWR5X:
1187   case PPC::DIR_PWR6:
1188   case PPC::DIR_PWR6X:
1189   case PPC::DIR_PWR7:
1190   case PPC::DIR_PWR8:
1191   case PPC::DIR_PWR9:
1192     setPrefFunctionAlignment(4);
1193     setPrefLoopAlignment(4);
1194     break;
1195   }
1196 
1197   if (Subtarget.enableMachineScheduler())
1198     setSchedulingPreference(Sched::Source);
1199   else
1200     setSchedulingPreference(Sched::Hybrid);
1201 
1202   computeRegisterProperties(STI.getRegisterInfo());
1203 
1204   // The Freescale cores do better with aggressive inlining of memcpy and
1205   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1206   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
1207       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
1208     MaxStoresPerMemset = 32;
1209     MaxStoresPerMemsetOptSize = 16;
1210     MaxStoresPerMemcpy = 32;
1211     MaxStoresPerMemcpyOptSize = 8;
1212     MaxStoresPerMemmove = 32;
1213     MaxStoresPerMemmoveOptSize = 8;
1214   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
1215     // The A2 also benefits from (very) aggressive inlining of memcpy and
1216     // friends. The overhead of a the function call, even when warm, can be
1217     // over one hundred cycles.
1218     MaxStoresPerMemset = 128;
1219     MaxStoresPerMemcpy = 128;
1220     MaxStoresPerMemmove = 128;
1221     MaxLoadsPerMemcmp = 128;
1222   } else {
1223     MaxLoadsPerMemcmp = 8;
1224     MaxLoadsPerMemcmpOptSize = 4;
1225   }
1226 }
1227 
1228 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1229 /// the desired ByVal argument alignment.
1230 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1231                              unsigned MaxMaxAlign) {
1232   if (MaxAlign == MaxMaxAlign)
1233     return;
1234   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1235     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
1236       MaxAlign = 32;
1237     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
1238       MaxAlign = 16;
1239   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1240     unsigned EltAlign = 0;
1241     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1242     if (EltAlign > MaxAlign)
1243       MaxAlign = EltAlign;
1244   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1245     for (auto *EltTy : STy->elements()) {
1246       unsigned EltAlign = 0;
1247       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1248       if (EltAlign > MaxAlign)
1249         MaxAlign = EltAlign;
1250       if (MaxAlign == MaxMaxAlign)
1251         break;
1252     }
1253   }
1254 }
1255 
1256 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1257 /// function arguments in the caller parameter area.
1258 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1259                                                   const DataLayout &DL) const {
1260   // Darwin passes everything on 4 byte boundary.
1261   if (Subtarget.isDarwin())
1262     return 4;
1263 
1264   // 16byte and wider vectors are passed on 16byte boundary.
1265   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1266   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1267   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1268     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1269   return Align;
1270 }
1271 
1272 bool PPCTargetLowering::useSoftFloat() const {
1273   return Subtarget.useSoftFloat();
1274 }
1275 
1276 bool PPCTargetLowering::hasSPE() const {
1277   return Subtarget.hasSPE();
1278 }
1279 
1280 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1281   switch ((PPCISD::NodeType)Opcode) {
1282   case PPCISD::FIRST_NUMBER:    break;
1283   case PPCISD::FSEL:            return "PPCISD::FSEL";
1284   case PPCISD::FCFID:           return "PPCISD::FCFID";
1285   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1286   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1287   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1288   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1289   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1290   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1291   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1292   case PPCISD::FP_TO_UINT_IN_VSR:
1293                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1294   case PPCISD::FP_TO_SINT_IN_VSR:
1295                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1296   case PPCISD::FRE:             return "PPCISD::FRE";
1297   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1298   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1299   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1300   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1301   case PPCISD::VPERM:           return "PPCISD::VPERM";
1302   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1303   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1304   case PPCISD::XXREVERSE:       return "PPCISD::XXREVERSE";
1305   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1306   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1307   case PPCISD::CMPB:            return "PPCISD::CMPB";
1308   case PPCISD::Hi:              return "PPCISD::Hi";
1309   case PPCISD::Lo:              return "PPCISD::Lo";
1310   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1311   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1312   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1313   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1314   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1315   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1316   case PPCISD::SRL:             return "PPCISD::SRL";
1317   case PPCISD::SRA:             return "PPCISD::SRA";
1318   case PPCISD::SHL:             return "PPCISD::SHL";
1319   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1320   case PPCISD::CALL:            return "PPCISD::CALL";
1321   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1322   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1323   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1324   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1325   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1326   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1327   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1328   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1329   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1330   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1331   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1332   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1333   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1334   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1335   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
1336   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
1337   case PPCISD::VCMP:            return "PPCISD::VCMP";
1338   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1339   case PPCISD::LBRX:            return "PPCISD::LBRX";
1340   case PPCISD::STBRX:           return "PPCISD::STBRX";
1341   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1342   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1343   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1344   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1345   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1346   case PPCISD::SExtVElems:      return "PPCISD::SExtVElems";
1347   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1348   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1349   case PPCISD::ST_VSR_SCAL_INT:
1350                                 return "PPCISD::ST_VSR_SCAL_INT";
1351   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1352   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1353   case PPCISD::BDZ:             return "PPCISD::BDZ";
1354   case PPCISD::MFFS:            return "PPCISD::MFFS";
1355   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1356   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1357   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1358   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1359   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1360   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1361   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1362   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1363   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1364   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1365   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1366   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1367   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1368   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1369   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1370   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1371   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1372   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1373   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1374   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1375   case PPCISD::SC:              return "PPCISD::SC";
1376   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1377   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1378   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1379   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1380   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1381   case PPCISD::VABSD:           return "PPCISD::VABSD";
1382   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1383   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1384   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1385   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1386   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1387   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1388   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1389   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1390   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1391   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1392   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1393   case PPCISD::FP_EXTEND_LH:    return "PPCISD::FP_EXTEND_LH";
1394   }
1395   return nullptr;
1396 }
1397 
1398 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1399                                           EVT VT) const {
1400   if (!VT.isVector())
1401     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1402 
1403   if (Subtarget.hasQPX())
1404     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1405 
1406   return VT.changeVectorElementTypeToInteger();
1407 }
1408 
1409 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1410   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1411   return true;
1412 }
1413 
1414 //===----------------------------------------------------------------------===//
1415 // Node matching predicates, for use by the tblgen matching code.
1416 //===----------------------------------------------------------------------===//
1417 
1418 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1419 static bool isFloatingPointZero(SDValue Op) {
1420   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1421     return CFP->getValueAPF().isZero();
1422   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1423     // Maybe this has already been legalized into the constant pool?
1424     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1425       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1426         return CFP->getValueAPF().isZero();
1427   }
1428   return false;
1429 }
1430 
1431 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1432 /// true if Op is undef or if it matches the specified value.
1433 static bool isConstantOrUndef(int Op, int Val) {
1434   return Op < 0 || Op == Val;
1435 }
1436 
1437 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1438 /// VPKUHUM instruction.
1439 /// The ShuffleKind distinguishes between big-endian operations with
1440 /// two different inputs (0), either-endian operations with two identical
1441 /// inputs (1), and little-endian operations with two different inputs (2).
1442 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1443 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1444                                SelectionDAG &DAG) {
1445   bool IsLE = DAG.getDataLayout().isLittleEndian();
1446   if (ShuffleKind == 0) {
1447     if (IsLE)
1448       return false;
1449     for (unsigned i = 0; i != 16; ++i)
1450       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1451         return false;
1452   } else if (ShuffleKind == 2) {
1453     if (!IsLE)
1454       return false;
1455     for (unsigned i = 0; i != 16; ++i)
1456       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1457         return false;
1458   } else if (ShuffleKind == 1) {
1459     unsigned j = IsLE ? 0 : 1;
1460     for (unsigned i = 0; i != 8; ++i)
1461       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1462           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1463         return false;
1464   }
1465   return true;
1466 }
1467 
1468 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1469 /// VPKUWUM instruction.
1470 /// The ShuffleKind distinguishes between big-endian operations with
1471 /// two different inputs (0), either-endian operations with two identical
1472 /// inputs (1), and little-endian operations with two different inputs (2).
1473 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1474 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1475                                SelectionDAG &DAG) {
1476   bool IsLE = DAG.getDataLayout().isLittleEndian();
1477   if (ShuffleKind == 0) {
1478     if (IsLE)
1479       return false;
1480     for (unsigned i = 0; i != 16; i += 2)
1481       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1482           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1483         return false;
1484   } else if (ShuffleKind == 2) {
1485     if (!IsLE)
1486       return false;
1487     for (unsigned i = 0; i != 16; i += 2)
1488       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1489           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1490         return false;
1491   } else if (ShuffleKind == 1) {
1492     unsigned j = IsLE ? 0 : 2;
1493     for (unsigned i = 0; i != 8; i += 2)
1494       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1495           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1496           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1497           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1498         return false;
1499   }
1500   return true;
1501 }
1502 
1503 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1504 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1505 /// current subtarget.
1506 ///
1507 /// The ShuffleKind distinguishes between big-endian operations with
1508 /// two different inputs (0), either-endian operations with two identical
1509 /// inputs (1), and little-endian operations with two different inputs (2).
1510 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1511 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1512                                SelectionDAG &DAG) {
1513   const PPCSubtarget& Subtarget =
1514     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1515   if (!Subtarget.hasP8Vector())
1516     return false;
1517 
1518   bool IsLE = DAG.getDataLayout().isLittleEndian();
1519   if (ShuffleKind == 0) {
1520     if (IsLE)
1521       return false;
1522     for (unsigned i = 0; i != 16; i += 4)
1523       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1524           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1525           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1526           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1527         return false;
1528   } else if (ShuffleKind == 2) {
1529     if (!IsLE)
1530       return false;
1531     for (unsigned i = 0; i != 16; i += 4)
1532       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1533           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1534           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1535           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1536         return false;
1537   } else if (ShuffleKind == 1) {
1538     unsigned j = IsLE ? 0 : 4;
1539     for (unsigned i = 0; i != 8; i += 4)
1540       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1541           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1542           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1543           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1544           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1545           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1546           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1547           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1548         return false;
1549   }
1550   return true;
1551 }
1552 
1553 /// isVMerge - Common function, used to match vmrg* shuffles.
1554 ///
1555 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1556                      unsigned LHSStart, unsigned RHSStart) {
1557   if (N->getValueType(0) != MVT::v16i8)
1558     return false;
1559   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1560          "Unsupported merge size!");
1561 
1562   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1563     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1564       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1565                              LHSStart+j+i*UnitSize) ||
1566           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1567                              RHSStart+j+i*UnitSize))
1568         return false;
1569     }
1570   return true;
1571 }
1572 
1573 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1574 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1575 /// The ShuffleKind distinguishes between big-endian merges with two
1576 /// different inputs (0), either-endian merges with two identical inputs (1),
1577 /// and little-endian merges with two different inputs (2).  For the latter,
1578 /// the input operands are swapped (see PPCInstrAltivec.td).
1579 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1580                              unsigned ShuffleKind, SelectionDAG &DAG) {
1581   if (DAG.getDataLayout().isLittleEndian()) {
1582     if (ShuffleKind == 1) // unary
1583       return isVMerge(N, UnitSize, 0, 0);
1584     else if (ShuffleKind == 2) // swapped
1585       return isVMerge(N, UnitSize, 0, 16);
1586     else
1587       return false;
1588   } else {
1589     if (ShuffleKind == 1) // unary
1590       return isVMerge(N, UnitSize, 8, 8);
1591     else if (ShuffleKind == 0) // normal
1592       return isVMerge(N, UnitSize, 8, 24);
1593     else
1594       return false;
1595   }
1596 }
1597 
1598 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1599 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1600 /// The ShuffleKind distinguishes between big-endian merges with two
1601 /// different inputs (0), either-endian merges with two identical inputs (1),
1602 /// and little-endian merges with two different inputs (2).  For the latter,
1603 /// the input operands are swapped (see PPCInstrAltivec.td).
1604 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1605                              unsigned ShuffleKind, SelectionDAG &DAG) {
1606   if (DAG.getDataLayout().isLittleEndian()) {
1607     if (ShuffleKind == 1) // unary
1608       return isVMerge(N, UnitSize, 8, 8);
1609     else if (ShuffleKind == 2) // swapped
1610       return isVMerge(N, UnitSize, 8, 24);
1611     else
1612       return false;
1613   } else {
1614     if (ShuffleKind == 1) // unary
1615       return isVMerge(N, UnitSize, 0, 0);
1616     else if (ShuffleKind == 0) // normal
1617       return isVMerge(N, UnitSize, 0, 16);
1618     else
1619       return false;
1620   }
1621 }
1622 
1623 /**
1624  * Common function used to match vmrgew and vmrgow shuffles
1625  *
1626  * The indexOffset determines whether to look for even or odd words in
1627  * the shuffle mask. This is based on the of the endianness of the target
1628  * machine.
1629  *   - Little Endian:
1630  *     - Use offset of 0 to check for odd elements
1631  *     - Use offset of 4 to check for even elements
1632  *   - Big Endian:
1633  *     - Use offset of 0 to check for even elements
1634  *     - Use offset of 4 to check for odd elements
1635  * A detailed description of the vector element ordering for little endian and
1636  * big endian can be found at
1637  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1638  * Targeting your applications - what little endian and big endian IBM XL C/C++
1639  * compiler differences mean to you
1640  *
1641  * The mask to the shuffle vector instruction specifies the indices of the
1642  * elements from the two input vectors to place in the result. The elements are
1643  * numbered in array-access order, starting with the first vector. These vectors
1644  * are always of type v16i8, thus each vector will contain 16 elements of size
1645  * 8. More info on the shuffle vector can be found in the
1646  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1647  * Language Reference.
1648  *
1649  * The RHSStartValue indicates whether the same input vectors are used (unary)
1650  * or two different input vectors are used, based on the following:
1651  *   - If the instruction uses the same vector for both inputs, the range of the
1652  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1653  *     be 0.
1654  *   - If the instruction has two different vectors then the range of the
1655  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1656  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1657  *     to 31 specify elements in the second vector).
1658  *
1659  * \param[in] N The shuffle vector SD Node to analyze
1660  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1661  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1662  * vector to the shuffle_vector instruction
1663  * \return true iff this shuffle vector represents an even or odd word merge
1664  */
1665 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1666                      unsigned RHSStartValue) {
1667   if (N->getValueType(0) != MVT::v16i8)
1668     return false;
1669 
1670   for (unsigned i = 0; i < 2; ++i)
1671     for (unsigned j = 0; j < 4; ++j)
1672       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1673                              i*RHSStartValue+j+IndexOffset) ||
1674           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1675                              i*RHSStartValue+j+IndexOffset+8))
1676         return false;
1677   return true;
1678 }
1679 
1680 /**
1681  * Determine if the specified shuffle mask is suitable for the vmrgew or
1682  * vmrgow instructions.
1683  *
1684  * \param[in] N The shuffle vector SD Node to analyze
1685  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1686  * \param[in] ShuffleKind Identify the type of merge:
1687  *   - 0 = big-endian merge with two different inputs;
1688  *   - 1 = either-endian merge with two identical inputs;
1689  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1690  *     little-endian merges).
1691  * \param[in] DAG The current SelectionDAG
1692  * \return true iff this shuffle mask
1693  */
1694 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1695                               unsigned ShuffleKind, SelectionDAG &DAG) {
1696   if (DAG.getDataLayout().isLittleEndian()) {
1697     unsigned indexOffset = CheckEven ? 4 : 0;
1698     if (ShuffleKind == 1) // Unary
1699       return isVMerge(N, indexOffset, 0);
1700     else if (ShuffleKind == 2) // swapped
1701       return isVMerge(N, indexOffset, 16);
1702     else
1703       return false;
1704   }
1705   else {
1706     unsigned indexOffset = CheckEven ? 0 : 4;
1707     if (ShuffleKind == 1) // Unary
1708       return isVMerge(N, indexOffset, 0);
1709     else if (ShuffleKind == 0) // Normal
1710       return isVMerge(N, indexOffset, 16);
1711     else
1712       return false;
1713   }
1714   return false;
1715 }
1716 
1717 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1718 /// amount, otherwise return -1.
1719 /// The ShuffleKind distinguishes between big-endian operations with two
1720 /// different inputs (0), either-endian operations with two identical inputs
1721 /// (1), and little-endian operations with two different inputs (2).  For the
1722 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1723 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1724                              SelectionDAG &DAG) {
1725   if (N->getValueType(0) != MVT::v16i8)
1726     return -1;
1727 
1728   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1729 
1730   // Find the first non-undef value in the shuffle mask.
1731   unsigned i;
1732   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1733     /*search*/;
1734 
1735   if (i == 16) return -1;  // all undef.
1736 
1737   // Otherwise, check to see if the rest of the elements are consecutively
1738   // numbered from this value.
1739   unsigned ShiftAmt = SVOp->getMaskElt(i);
1740   if (ShiftAmt < i) return -1;
1741 
1742   ShiftAmt -= i;
1743   bool isLE = DAG.getDataLayout().isLittleEndian();
1744 
1745   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1746     // Check the rest of the elements to see if they are consecutive.
1747     for (++i; i != 16; ++i)
1748       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1749         return -1;
1750   } else if (ShuffleKind == 1) {
1751     // Check the rest of the elements to see if they are consecutive.
1752     for (++i; i != 16; ++i)
1753       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1754         return -1;
1755   } else
1756     return -1;
1757 
1758   if (isLE)
1759     ShiftAmt = 16 - ShiftAmt;
1760 
1761   return ShiftAmt;
1762 }
1763 
1764 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1765 /// specifies a splat of a single element that is suitable for input to
1766 /// VSPLTB/VSPLTH/VSPLTW.
1767 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1768   assert(N->getValueType(0) == MVT::v16i8 &&
1769          (EltSize == 1 || EltSize == 2 || EltSize == 4));
1770 
1771   // The consecutive indices need to specify an element, not part of two
1772   // different elements.  So abandon ship early if this isn't the case.
1773   if (N->getMaskElt(0) % EltSize != 0)
1774     return false;
1775 
1776   // This is a splat operation if each element of the permute is the same, and
1777   // if the value doesn't reference the second vector.
1778   unsigned ElementBase = N->getMaskElt(0);
1779 
1780   // FIXME: Handle UNDEF elements too!
1781   if (ElementBase >= 16)
1782     return false;
1783 
1784   // Check that the indices are consecutive, in the case of a multi-byte element
1785   // splatted with a v16i8 mask.
1786   for (unsigned i = 1; i != EltSize; ++i)
1787     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1788       return false;
1789 
1790   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1791     if (N->getMaskElt(i) < 0) continue;
1792     for (unsigned j = 0; j != EltSize; ++j)
1793       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1794         return false;
1795   }
1796   return true;
1797 }
1798 
1799 /// Check that the mask is shuffling N byte elements. Within each N byte
1800 /// element of the mask, the indices could be either in increasing or
1801 /// decreasing order as long as they are consecutive.
1802 /// \param[in] N the shuffle vector SD Node to analyze
1803 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1804 /// Word/DoubleWord/QuadWord).
1805 /// \param[in] StepLen the delta indices number among the N byte element, if
1806 /// the mask is in increasing/decreasing order then it is 1/-1.
1807 /// \return true iff the mask is shuffling N byte elements.
1808 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1809                                    int StepLen) {
1810   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1811          "Unexpected element width.");
1812   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1813 
1814   unsigned NumOfElem = 16 / Width;
1815   unsigned MaskVal[16]; //  Width is never greater than 16
1816   for (unsigned i = 0; i < NumOfElem; ++i) {
1817     MaskVal[0] = N->getMaskElt(i * Width);
1818     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1819       return false;
1820     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1821       return false;
1822     }
1823 
1824     for (unsigned int j = 1; j < Width; ++j) {
1825       MaskVal[j] = N->getMaskElt(i * Width + j);
1826       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1827         return false;
1828       }
1829     }
1830   }
1831 
1832   return true;
1833 }
1834 
1835 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1836                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1837   if (!isNByteElemShuffleMask(N, 4, 1))
1838     return false;
1839 
1840   // Now we look at mask elements 0,4,8,12
1841   unsigned M0 = N->getMaskElt(0) / 4;
1842   unsigned M1 = N->getMaskElt(4) / 4;
1843   unsigned M2 = N->getMaskElt(8) / 4;
1844   unsigned M3 = N->getMaskElt(12) / 4;
1845   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1846   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1847 
1848   // Below, let H and L be arbitrary elements of the shuffle mask
1849   // where H is in the range [4,7] and L is in the range [0,3].
1850   // H, 1, 2, 3 or L, 5, 6, 7
1851   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1852       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1853     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1854     InsertAtByte = IsLE ? 12 : 0;
1855     Swap = M0 < 4;
1856     return true;
1857   }
1858   // 0, H, 2, 3 or 4, L, 6, 7
1859   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1860       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1861     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1862     InsertAtByte = IsLE ? 8 : 4;
1863     Swap = M1 < 4;
1864     return true;
1865   }
1866   // 0, 1, H, 3 or 4, 5, L, 7
1867   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1868       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1869     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1870     InsertAtByte = IsLE ? 4 : 8;
1871     Swap = M2 < 4;
1872     return true;
1873   }
1874   // 0, 1, 2, H or 4, 5, 6, L
1875   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1876       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1877     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1878     InsertAtByte = IsLE ? 0 : 12;
1879     Swap = M3 < 4;
1880     return true;
1881   }
1882 
1883   // If both vector operands for the shuffle are the same vector, the mask will
1884   // contain only elements from the first one and the second one will be undef.
1885   if (N->getOperand(1).isUndef()) {
1886     ShiftElts = 0;
1887     Swap = true;
1888     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1889     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1890       InsertAtByte = IsLE ? 12 : 0;
1891       return true;
1892     }
1893     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1894       InsertAtByte = IsLE ? 8 : 4;
1895       return true;
1896     }
1897     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1898       InsertAtByte = IsLE ? 4 : 8;
1899       return true;
1900     }
1901     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1902       InsertAtByte = IsLE ? 0 : 12;
1903       return true;
1904     }
1905   }
1906 
1907   return false;
1908 }
1909 
1910 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1911                                bool &Swap, bool IsLE) {
1912   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1913   // Ensure each byte index of the word is consecutive.
1914   if (!isNByteElemShuffleMask(N, 4, 1))
1915     return false;
1916 
1917   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
1918   unsigned M0 = N->getMaskElt(0) / 4;
1919   unsigned M1 = N->getMaskElt(4) / 4;
1920   unsigned M2 = N->getMaskElt(8) / 4;
1921   unsigned M3 = N->getMaskElt(12) / 4;
1922 
1923   // If both vector operands for the shuffle are the same vector, the mask will
1924   // contain only elements from the first one and the second one will be undef.
1925   if (N->getOperand(1).isUndef()) {
1926     assert(M0 < 4 && "Indexing into an undef vector?");
1927     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
1928       return false;
1929 
1930     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
1931     Swap = false;
1932     return true;
1933   }
1934 
1935   // Ensure each word index of the ShuffleVector Mask is consecutive.
1936   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
1937     return false;
1938 
1939   if (IsLE) {
1940     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
1941       // Input vectors don't need to be swapped if the leading element
1942       // of the result is one of the 3 left elements of the second vector
1943       // (or if there is no shift to be done at all).
1944       Swap = false;
1945       ShiftElts = (8 - M0) % 8;
1946     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
1947       // Input vectors need to be swapped if the leading element
1948       // of the result is one of the 3 left elements of the first vector
1949       // (or if we're shifting by 4 - thereby simply swapping the vectors).
1950       Swap = true;
1951       ShiftElts = (4 - M0) % 4;
1952     }
1953 
1954     return true;
1955   } else {                                          // BE
1956     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
1957       // Input vectors don't need to be swapped if the leading element
1958       // of the result is one of the 4 elements of the first vector.
1959       Swap = false;
1960       ShiftElts = M0;
1961     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
1962       // Input vectors need to be swapped if the leading element
1963       // of the result is one of the 4 elements of the right vector.
1964       Swap = true;
1965       ShiftElts = M0 - 4;
1966     }
1967 
1968     return true;
1969   }
1970 }
1971 
1972 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
1973   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1974 
1975   if (!isNByteElemShuffleMask(N, Width, -1))
1976     return false;
1977 
1978   for (int i = 0; i < 16; i += Width)
1979     if (N->getMaskElt(i) != i + Width - 1)
1980       return false;
1981 
1982   return true;
1983 }
1984 
1985 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
1986   return isXXBRShuffleMaskHelper(N, 2);
1987 }
1988 
1989 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
1990   return isXXBRShuffleMaskHelper(N, 4);
1991 }
1992 
1993 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
1994   return isXXBRShuffleMaskHelper(N, 8);
1995 }
1996 
1997 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
1998   return isXXBRShuffleMaskHelper(N, 16);
1999 }
2000 
2001 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2002 /// if the inputs to the instruction should be swapped and set \p DM to the
2003 /// value for the immediate.
2004 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2005 /// AND element 0 of the result comes from the first input (LE) or second input
2006 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2007 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2008 /// mask.
2009 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2010                                bool &Swap, bool IsLE) {
2011   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2012 
2013   // Ensure each byte index of the double word is consecutive.
2014   if (!isNByteElemShuffleMask(N, 8, 1))
2015     return false;
2016 
2017   unsigned M0 = N->getMaskElt(0) / 8;
2018   unsigned M1 = N->getMaskElt(8) / 8;
2019   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2020 
2021   // If both vector operands for the shuffle are the same vector, the mask will
2022   // contain only elements from the first one and the second one will be undef.
2023   if (N->getOperand(1).isUndef()) {
2024     if ((M0 | M1) < 2) {
2025       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2026       Swap = false;
2027       return true;
2028     } else
2029       return false;
2030   }
2031 
2032   if (IsLE) {
2033     if (M0 > 1 && M1 < 2) {
2034       Swap = false;
2035     } else if (M0 < 2 && M1 > 1) {
2036       M0 = (M0 + 2) % 4;
2037       M1 = (M1 + 2) % 4;
2038       Swap = true;
2039     } else
2040       return false;
2041 
2042     // Note: if control flow comes here that means Swap is already set above
2043     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2044     return true;
2045   } else { // BE
2046     if (M0 < 2 && M1 > 1) {
2047       Swap = false;
2048     } else if (M0 > 1 && M1 < 2) {
2049       M0 = (M0 + 2) % 4;
2050       M1 = (M1 + 2) % 4;
2051       Swap = true;
2052     } else
2053       return false;
2054 
2055     // Note: if control flow comes here that means Swap is already set above
2056     DM = (M0 << 1) + (M1 & 1);
2057     return true;
2058   }
2059 }
2060 
2061 
2062 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
2063 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
2064 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
2065                                 SelectionDAG &DAG) {
2066   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2067   assert(isSplatShuffleMask(SVOp, EltSize));
2068   if (DAG.getDataLayout().isLittleEndian())
2069     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2070   else
2071     return SVOp->getMaskElt(0) / EltSize;
2072 }
2073 
2074 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2075 /// by using a vspltis[bhw] instruction of the specified element size, return
2076 /// the constant being splatted.  The ByteSize field indicates the number of
2077 /// bytes of each element [124] -> [bhw].
2078 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2079   SDValue OpVal(nullptr, 0);
2080 
2081   // If ByteSize of the splat is bigger than the element size of the
2082   // build_vector, then we have a case where we are checking for a splat where
2083   // multiple elements of the buildvector are folded together into a single
2084   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2085   unsigned EltSize = 16/N->getNumOperands();
2086   if (EltSize < ByteSize) {
2087     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2088     SDValue UniquedVals[4];
2089     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2090 
2091     // See if all of the elements in the buildvector agree across.
2092     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2093       if (N->getOperand(i).isUndef()) continue;
2094       // If the element isn't a constant, bail fully out.
2095       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2096 
2097       if (!UniquedVals[i&(Multiple-1)].getNode())
2098         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2099       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2100         return SDValue();  // no match.
2101     }
2102 
2103     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2104     // either constant or undef values that are identical for each chunk.  See
2105     // if these chunks can form into a larger vspltis*.
2106 
2107     // Check to see if all of the leading entries are either 0 or -1.  If
2108     // neither, then this won't fit into the immediate field.
2109     bool LeadingZero = true;
2110     bool LeadingOnes = true;
2111     for (unsigned i = 0; i != Multiple-1; ++i) {
2112       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2113 
2114       LeadingZero &= isNullConstant(UniquedVals[i]);
2115       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2116     }
2117     // Finally, check the least significant entry.
2118     if (LeadingZero) {
2119       if (!UniquedVals[Multiple-1].getNode())
2120         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2121       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2122       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2123         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2124     }
2125     if (LeadingOnes) {
2126       if (!UniquedVals[Multiple-1].getNode())
2127         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2128       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2129       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2130         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2131     }
2132 
2133     return SDValue();
2134   }
2135 
2136   // Check to see if this buildvec has a single non-undef value in its elements.
2137   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2138     if (N->getOperand(i).isUndef()) continue;
2139     if (!OpVal.getNode())
2140       OpVal = N->getOperand(i);
2141     else if (OpVal != N->getOperand(i))
2142       return SDValue();
2143   }
2144 
2145   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2146 
2147   unsigned ValSizeInBytes = EltSize;
2148   uint64_t Value = 0;
2149   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2150     Value = CN->getZExtValue();
2151   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2152     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2153     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2154   }
2155 
2156   // If the splat value is larger than the element value, then we can never do
2157   // this splat.  The only case that we could fit the replicated bits into our
2158   // immediate field for would be zero, and we prefer to use vxor for it.
2159   if (ValSizeInBytes < ByteSize) return SDValue();
2160 
2161   // If the element value is larger than the splat value, check if it consists
2162   // of a repeated bit pattern of size ByteSize.
2163   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2164     return SDValue();
2165 
2166   // Properly sign extend the value.
2167   int MaskVal = SignExtend32(Value, ByteSize * 8);
2168 
2169   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2170   if (MaskVal == 0) return SDValue();
2171 
2172   // Finally, if this value fits in a 5 bit sext field, return it
2173   if (SignExtend32<5>(MaskVal) == MaskVal)
2174     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2175   return SDValue();
2176 }
2177 
2178 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2179 /// amount, otherwise return -1.
2180 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2181   EVT VT = N->getValueType(0);
2182   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2183     return -1;
2184 
2185   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2186 
2187   // Find the first non-undef value in the shuffle mask.
2188   unsigned i;
2189   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2190     /*search*/;
2191 
2192   if (i == 4) return -1;  // all undef.
2193 
2194   // Otherwise, check to see if the rest of the elements are consecutively
2195   // numbered from this value.
2196   unsigned ShiftAmt = SVOp->getMaskElt(i);
2197   if (ShiftAmt < i) return -1;
2198   ShiftAmt -= i;
2199 
2200   // Check the rest of the elements to see if they are consecutive.
2201   for (++i; i != 4; ++i)
2202     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2203       return -1;
2204 
2205   return ShiftAmt;
2206 }
2207 
2208 //===----------------------------------------------------------------------===//
2209 //  Addressing Mode Selection
2210 //===----------------------------------------------------------------------===//
2211 
2212 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2213 /// or 64-bit immediate, and if the value can be accurately represented as a
2214 /// sign extension from a 16-bit value.  If so, this returns true and the
2215 /// immediate.
2216 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2217   if (!isa<ConstantSDNode>(N))
2218     return false;
2219 
2220   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2221   if (N->getValueType(0) == MVT::i32)
2222     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2223   else
2224     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2225 }
2226 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2227   return isIntS16Immediate(Op.getNode(), Imm);
2228 }
2229 
2230 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2231 /// can be represented as an indexed [r+r] operation.  Returns false if it
2232 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2233 /// non-zero and N can be represented by a base register plus a signed 16-bit
2234 /// displacement, make a more precise judgement by checking (displacement % \p
2235 /// EncodingAlignment).
2236 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2237                                             SDValue &Index, SelectionDAG &DAG,
2238                                             unsigned EncodingAlignment) const {
2239   int16_t imm = 0;
2240   if (N.getOpcode() == ISD::ADD) {
2241     if (isIntS16Immediate(N.getOperand(1), imm) &&
2242         (!EncodingAlignment || !(imm % EncodingAlignment)))
2243       return false; // r+i
2244     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2245       return false;    // r+i
2246 
2247     Base = N.getOperand(0);
2248     Index = N.getOperand(1);
2249     return true;
2250   } else if (N.getOpcode() == ISD::OR) {
2251     if (isIntS16Immediate(N.getOperand(1), imm) &&
2252         (!EncodingAlignment || !(imm % EncodingAlignment)))
2253       return false; // r+i can fold it if we can.
2254 
2255     // If this is an or of disjoint bitfields, we can codegen this as an add
2256     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2257     // disjoint.
2258     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2259 
2260     if (LHSKnown.Zero.getBoolValue()) {
2261       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2262       // If all of the bits are known zero on the LHS or RHS, the add won't
2263       // carry.
2264       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2265         Base = N.getOperand(0);
2266         Index = N.getOperand(1);
2267         return true;
2268       }
2269     }
2270   }
2271 
2272   return false;
2273 }
2274 
2275 // If we happen to be doing an i64 load or store into a stack slot that has
2276 // less than a 4-byte alignment, then the frame-index elimination may need to
2277 // use an indexed load or store instruction (because the offset may not be a
2278 // multiple of 4). The extra register needed to hold the offset comes from the
2279 // register scavenger, and it is possible that the scavenger will need to use
2280 // an emergency spill slot. As a result, we need to make sure that a spill slot
2281 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2282 // stack slot.
2283 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2284   // FIXME: This does not handle the LWA case.
2285   if (VT != MVT::i64)
2286     return;
2287 
2288   // NOTE: We'll exclude negative FIs here, which come from argument
2289   // lowering, because there are no known test cases triggering this problem
2290   // using packed structures (or similar). We can remove this exclusion if
2291   // we find such a test case. The reason why this is so test-case driven is
2292   // because this entire 'fixup' is only to prevent crashes (from the
2293   // register scavenger) on not-really-valid inputs. For example, if we have:
2294   //   %a = alloca i1
2295   //   %b = bitcast i1* %a to i64*
2296   //   store i64* a, i64 b
2297   // then the store should really be marked as 'align 1', but is not. If it
2298   // were marked as 'align 1' then the indexed form would have been
2299   // instruction-selected initially, and the problem this 'fixup' is preventing
2300   // won't happen regardless.
2301   if (FrameIdx < 0)
2302     return;
2303 
2304   MachineFunction &MF = DAG.getMachineFunction();
2305   MachineFrameInfo &MFI = MF.getFrameInfo();
2306 
2307   unsigned Align = MFI.getObjectAlignment(FrameIdx);
2308   if (Align >= 4)
2309     return;
2310 
2311   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2312   FuncInfo->setHasNonRISpills();
2313 }
2314 
2315 /// Returns true if the address N can be represented by a base register plus
2316 /// a signed 16-bit displacement [r+imm], and if it is not better
2317 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2318 /// displacements that are multiples of that value.
2319 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2320                                             SDValue &Base,
2321                                             SelectionDAG &DAG,
2322                                             unsigned EncodingAlignment) const {
2323   // FIXME dl should come from parent load or store, not from address
2324   SDLoc dl(N);
2325   // If this can be more profitably realized as r+r, fail.
2326   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2327     return false;
2328 
2329   if (N.getOpcode() == ISD::ADD) {
2330     int16_t imm = 0;
2331     if (isIntS16Immediate(N.getOperand(1), imm) &&
2332         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2333       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2334       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2335         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2336         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2337       } else {
2338         Base = N.getOperand(0);
2339       }
2340       return true; // [r+i]
2341     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2342       // Match LOAD (ADD (X, Lo(G))).
2343       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2344              && "Cannot handle constant offsets yet!");
2345       Disp = N.getOperand(1).getOperand(0);  // The global address.
2346       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2347              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2348              Disp.getOpcode() == ISD::TargetConstantPool ||
2349              Disp.getOpcode() == ISD::TargetJumpTable);
2350       Base = N.getOperand(0);
2351       return true;  // [&g+r]
2352     }
2353   } else if (N.getOpcode() == ISD::OR) {
2354     int16_t imm = 0;
2355     if (isIntS16Immediate(N.getOperand(1), imm) &&
2356         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2357       // If this is an or of disjoint bitfields, we can codegen this as an add
2358       // (for better address arithmetic) if the LHS and RHS of the OR are
2359       // provably disjoint.
2360       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2361 
2362       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2363         // If all of the bits are known zero on the LHS or RHS, the add won't
2364         // carry.
2365         if (FrameIndexSDNode *FI =
2366               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2367           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2368           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2369         } else {
2370           Base = N.getOperand(0);
2371         }
2372         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2373         return true;
2374       }
2375     }
2376   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2377     // Loading from a constant address.
2378 
2379     // If this address fits entirely in a 16-bit sext immediate field, codegen
2380     // this as "d, 0"
2381     int16_t Imm;
2382     if (isIntS16Immediate(CN, Imm) &&
2383         (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) {
2384       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2385       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2386                              CN->getValueType(0));
2387       return true;
2388     }
2389 
2390     // Handle 32-bit sext immediates with LIS + addr mode.
2391     if ((CN->getValueType(0) == MVT::i32 ||
2392          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2393         (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) {
2394       int Addr = (int)CN->getZExtValue();
2395 
2396       // Otherwise, break this down into an LIS + disp.
2397       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2398 
2399       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2400                                    MVT::i32);
2401       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2402       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2403       return true;
2404     }
2405   }
2406 
2407   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2408   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2409     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2410     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2411   } else
2412     Base = N;
2413   return true;      // [r+0]
2414 }
2415 
2416 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2417 /// represented as an indexed [r+r] operation.
2418 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2419                                                 SDValue &Index,
2420                                                 SelectionDAG &DAG) const {
2421   // Check to see if we can easily represent this as an [r+r] address.  This
2422   // will fail if it thinks that the address is more profitably represented as
2423   // reg+imm, e.g. where imm = 0.
2424   if (SelectAddressRegReg(N, Base, Index, DAG))
2425     return true;
2426 
2427   // If the address is the result of an add, we will utilize the fact that the
2428   // address calculation includes an implicit add.  However, we can reduce
2429   // register pressure if we do not materialize a constant just for use as the
2430   // index register.  We only get rid of the add if it is not an add of a
2431   // value and a 16-bit signed constant and both have a single use.
2432   int16_t imm = 0;
2433   if (N.getOpcode() == ISD::ADD &&
2434       (!isIntS16Immediate(N.getOperand(1), imm) ||
2435        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2436     Base = N.getOperand(0);
2437     Index = N.getOperand(1);
2438     return true;
2439   }
2440 
2441   // Otherwise, do it the hard way, using R0 as the base register.
2442   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2443                          N.getValueType());
2444   Index = N;
2445   return true;
2446 }
2447 
2448 /// Returns true if we should use a direct load into vector instruction
2449 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2450 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2451 
2452   // If there are any other uses other than scalar to vector, then we should
2453   // keep it as a scalar load -> direct move pattern to prevent multiple
2454   // loads.
2455   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2456   if (!LD)
2457     return false;
2458 
2459   EVT MemVT = LD->getMemoryVT();
2460   if (!MemVT.isSimple())
2461     return false;
2462   switch(MemVT.getSimpleVT().SimpleTy) {
2463   case MVT::i64:
2464     break;
2465   case MVT::i32:
2466     if (!ST.hasP8Vector())
2467       return false;
2468     break;
2469   case MVT::i16:
2470   case MVT::i8:
2471     if (!ST.hasP9Vector())
2472       return false;
2473     break;
2474   default:
2475     return false;
2476   }
2477 
2478   SDValue LoadedVal(N, 0);
2479   if (!LoadedVal.hasOneUse())
2480     return false;
2481 
2482   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2483        UI != UE; ++UI)
2484     if (UI.getUse().get().getResNo() == 0 &&
2485         UI->getOpcode() != ISD::SCALAR_TO_VECTOR)
2486       return false;
2487 
2488   return true;
2489 }
2490 
2491 /// getPreIndexedAddressParts - returns true by value, base pointer and
2492 /// offset pointer and addressing mode by reference if the node's address
2493 /// can be legally represented as pre-indexed load / store address.
2494 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2495                                                   SDValue &Offset,
2496                                                   ISD::MemIndexedMode &AM,
2497                                                   SelectionDAG &DAG) const {
2498   if (DisablePPCPreinc) return false;
2499 
2500   bool isLoad = true;
2501   SDValue Ptr;
2502   EVT VT;
2503   unsigned Alignment;
2504   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2505     Ptr = LD->getBasePtr();
2506     VT = LD->getMemoryVT();
2507     Alignment = LD->getAlignment();
2508   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2509     Ptr = ST->getBasePtr();
2510     VT  = ST->getMemoryVT();
2511     Alignment = ST->getAlignment();
2512     isLoad = false;
2513   } else
2514     return false;
2515 
2516   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2517   // instructions because we can fold these into a more efficient instruction
2518   // instead, (such as LXSD).
2519   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2520     return false;
2521   }
2522 
2523   // PowerPC doesn't have preinc load/store instructions for vectors (except
2524   // for QPX, which does have preinc r+r forms).
2525   if (VT.isVector()) {
2526     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2527       return false;
2528     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2529       AM = ISD::PRE_INC;
2530       return true;
2531     }
2532   }
2533 
2534   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2535     // Common code will reject creating a pre-inc form if the base pointer
2536     // is a frame index, or if N is a store and the base pointer is either
2537     // the same as or a predecessor of the value being stored.  Check for
2538     // those situations here, and try with swapped Base/Offset instead.
2539     bool Swap = false;
2540 
2541     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2542       Swap = true;
2543     else if (!isLoad) {
2544       SDValue Val = cast<StoreSDNode>(N)->getValue();
2545       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2546         Swap = true;
2547     }
2548 
2549     if (Swap)
2550       std::swap(Base, Offset);
2551 
2552     AM = ISD::PRE_INC;
2553     return true;
2554   }
2555 
2556   // LDU/STU can only handle immediates that are a multiple of 4.
2557   if (VT != MVT::i64) {
2558     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2559       return false;
2560   } else {
2561     // LDU/STU need an address with at least 4-byte alignment.
2562     if (Alignment < 4)
2563       return false;
2564 
2565     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2566       return false;
2567   }
2568 
2569   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2570     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2571     // sext i32 to i64 when addr mode is r+i.
2572     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2573         LD->getExtensionType() == ISD::SEXTLOAD &&
2574         isa<ConstantSDNode>(Offset))
2575       return false;
2576   }
2577 
2578   AM = ISD::PRE_INC;
2579   return true;
2580 }
2581 
2582 //===----------------------------------------------------------------------===//
2583 //  LowerOperation implementation
2584 //===----------------------------------------------------------------------===//
2585 
2586 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2587 /// and LoOpFlags to the target MO flags.
2588 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2589                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2590                                const GlobalValue *GV = nullptr) {
2591   HiOpFlags = PPCII::MO_HA;
2592   LoOpFlags = PPCII::MO_LO;
2593 
2594   // Don't use the pic base if not in PIC relocation model.
2595   if (IsPIC) {
2596     HiOpFlags |= PPCII::MO_PIC_FLAG;
2597     LoOpFlags |= PPCII::MO_PIC_FLAG;
2598   }
2599 
2600   // If this is a reference to a global value that requires a non-lazy-ptr, make
2601   // sure that instruction lowering adds it.
2602   if (GV && Subtarget.hasLazyResolverStub(GV)) {
2603     HiOpFlags |= PPCII::MO_NLP_FLAG;
2604     LoOpFlags |= PPCII::MO_NLP_FLAG;
2605 
2606     if (GV->hasHiddenVisibility()) {
2607       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2608       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2609     }
2610   }
2611 }
2612 
2613 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2614                              SelectionDAG &DAG) {
2615   SDLoc DL(HiPart);
2616   EVT PtrVT = HiPart.getValueType();
2617   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2618 
2619   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2620   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2621 
2622   // With PIC, the first instruction is actually "GR+hi(&G)".
2623   if (isPIC)
2624     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2625                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2626 
2627   // Generate non-pic code that has direct accesses to the constant pool.
2628   // The address of the global is just (hi(&g)+lo(&g)).
2629   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2630 }
2631 
2632 static void setUsesTOCBasePtr(MachineFunction &MF) {
2633   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2634   FuncInfo->setUsesTOCBasePtr();
2635 }
2636 
2637 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2638   setUsesTOCBasePtr(DAG.getMachineFunction());
2639 }
2640 
2641 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit,
2642                            SDValue GA) {
2643   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2644   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
2645                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2646 
2647   SDValue Ops[] = { GA, Reg };
2648   return DAG.getMemIntrinsicNode(
2649       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2650       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
2651       MachineMemOperand::MOLoad);
2652 }
2653 
2654 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2655                                              SelectionDAG &DAG) const {
2656   EVT PtrVT = Op.getValueType();
2657   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2658   const Constant *C = CP->getConstVal();
2659 
2660   // 64-bit SVR4 ABI code is always position-independent.
2661   // The actual address of the GlobalValue is stored in the TOC.
2662   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2663     setUsesTOCBasePtr(DAG);
2664     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2665     return getTOCEntry(DAG, SDLoc(CP), true, GA);
2666   }
2667 
2668   unsigned MOHiFlag, MOLoFlag;
2669   bool IsPIC = isPositionIndependent();
2670   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2671 
2672   if (IsPIC && Subtarget.isSVR4ABI()) {
2673     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2674                                            PPCII::MO_PIC_FLAG);
2675     return getTOCEntry(DAG, SDLoc(CP), false, GA);
2676   }
2677 
2678   SDValue CPIHi =
2679     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2680   SDValue CPILo =
2681     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2682   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2683 }
2684 
2685 // For 64-bit PowerPC, prefer the more compact relative encodings.
2686 // This trades 32 bits per jump table entry for one or two instructions
2687 // on the jump site.
2688 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2689   if (isJumpTableRelative())
2690     return MachineJumpTableInfo::EK_LabelDifference32;
2691 
2692   return TargetLowering::getJumpTableEncoding();
2693 }
2694 
2695 bool PPCTargetLowering::isJumpTableRelative() const {
2696   if (Subtarget.isPPC64())
2697     return true;
2698   return TargetLowering::isJumpTableRelative();
2699 }
2700 
2701 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2702                                                     SelectionDAG &DAG) const {
2703   if (!Subtarget.isPPC64())
2704     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2705 
2706   switch (getTargetMachine().getCodeModel()) {
2707   case CodeModel::Small:
2708   case CodeModel::Medium:
2709     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2710   default:
2711     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2712                        getPointerTy(DAG.getDataLayout()));
2713   }
2714 }
2715 
2716 const MCExpr *
2717 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2718                                                 unsigned JTI,
2719                                                 MCContext &Ctx) const {
2720   if (!Subtarget.isPPC64())
2721     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2722 
2723   switch (getTargetMachine().getCodeModel()) {
2724   case CodeModel::Small:
2725   case CodeModel::Medium:
2726     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2727   default:
2728     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2729   }
2730 }
2731 
2732 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2733   EVT PtrVT = Op.getValueType();
2734   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2735 
2736   // 64-bit SVR4 ABI code is always position-independent.
2737   // The actual address of the GlobalValue is stored in the TOC.
2738   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2739     setUsesTOCBasePtr(DAG);
2740     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2741     return getTOCEntry(DAG, SDLoc(JT), true, GA);
2742   }
2743 
2744   unsigned MOHiFlag, MOLoFlag;
2745   bool IsPIC = isPositionIndependent();
2746   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2747 
2748   if (IsPIC && Subtarget.isSVR4ABI()) {
2749     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2750                                         PPCII::MO_PIC_FLAG);
2751     return getTOCEntry(DAG, SDLoc(GA), false, GA);
2752   }
2753 
2754   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2755   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2756   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2757 }
2758 
2759 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2760                                              SelectionDAG &DAG) const {
2761   EVT PtrVT = Op.getValueType();
2762   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2763   const BlockAddress *BA = BASDN->getBlockAddress();
2764 
2765   // 64-bit SVR4 ABI code is always position-independent.
2766   // The actual BlockAddress is stored in the TOC.
2767   if (Subtarget.isSVR4ABI() &&
2768       (Subtarget.isPPC64() || isPositionIndependent())) {
2769     if (Subtarget.isPPC64())
2770       setUsesTOCBasePtr(DAG);
2771     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2772     return getTOCEntry(DAG, SDLoc(BASDN), Subtarget.isPPC64(), GA);
2773   }
2774 
2775   unsigned MOHiFlag, MOLoFlag;
2776   bool IsPIC = isPositionIndependent();
2777   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2778   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2779   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2780   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2781 }
2782 
2783 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2784                                               SelectionDAG &DAG) const {
2785   // FIXME: TLS addresses currently use medium model code sequences,
2786   // which is the most useful form.  Eventually support for small and
2787   // large models could be added if users need it, at the cost of
2788   // additional complexity.
2789   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2790   if (DAG.getTarget().useEmulatedTLS())
2791     return LowerToTLSEmulatedModel(GA, DAG);
2792 
2793   SDLoc dl(GA);
2794   const GlobalValue *GV = GA->getGlobal();
2795   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2796   bool is64bit = Subtarget.isPPC64();
2797   const Module *M = DAG.getMachineFunction().getFunction().getParent();
2798   PICLevel::Level picLevel = M->getPICLevel();
2799 
2800   const TargetMachine &TM = getTargetMachine();
2801   TLSModel::Model Model = TM.getTLSModel(GV);
2802 
2803   if (Model == TLSModel::LocalExec) {
2804     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2805                                                PPCII::MO_TPREL_HA);
2806     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2807                                                PPCII::MO_TPREL_LO);
2808     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2809                              : DAG.getRegister(PPC::R2, MVT::i32);
2810 
2811     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2812     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2813   }
2814 
2815   if (Model == TLSModel::InitialExec) {
2816     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2817     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2818                                                 PPCII::MO_TLS);
2819     SDValue GOTPtr;
2820     if (is64bit) {
2821       setUsesTOCBasePtr(DAG);
2822       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2823       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2824                            PtrVT, GOTReg, TGA);
2825     } else {
2826       if (!TM.isPositionIndependent())
2827         GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2828       else if (picLevel == PICLevel::SmallPIC)
2829         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2830       else
2831         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2832     }
2833     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2834                                    PtrVT, TGA, GOTPtr);
2835     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2836   }
2837 
2838   if (Model == TLSModel::GeneralDynamic) {
2839     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2840     SDValue GOTPtr;
2841     if (is64bit) {
2842       setUsesTOCBasePtr(DAG);
2843       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2844       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2845                                    GOTReg, TGA);
2846     } else {
2847       if (picLevel == PICLevel::SmallPIC)
2848         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2849       else
2850         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2851     }
2852     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2853                        GOTPtr, TGA, TGA);
2854   }
2855 
2856   if (Model == TLSModel::LocalDynamic) {
2857     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2858     SDValue GOTPtr;
2859     if (is64bit) {
2860       setUsesTOCBasePtr(DAG);
2861       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2862       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2863                            GOTReg, TGA);
2864     } else {
2865       if (picLevel == PICLevel::SmallPIC)
2866         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2867       else
2868         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2869     }
2870     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2871                                   PtrVT, GOTPtr, TGA, TGA);
2872     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2873                                       PtrVT, TLSAddr, TGA);
2874     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2875   }
2876 
2877   llvm_unreachable("Unknown TLS model!");
2878 }
2879 
2880 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2881                                               SelectionDAG &DAG) const {
2882   EVT PtrVT = Op.getValueType();
2883   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2884   SDLoc DL(GSDN);
2885   const GlobalValue *GV = GSDN->getGlobal();
2886 
2887   // 64-bit SVR4 ABI code is always position-independent.
2888   // The actual address of the GlobalValue is stored in the TOC.
2889   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2890     setUsesTOCBasePtr(DAG);
2891     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2892     return getTOCEntry(DAG, DL, true, GA);
2893   }
2894 
2895   unsigned MOHiFlag, MOLoFlag;
2896   bool IsPIC = isPositionIndependent();
2897   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2898 
2899   if (IsPIC && Subtarget.isSVR4ABI()) {
2900     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2901                                             GSDN->getOffset(),
2902                                             PPCII::MO_PIC_FLAG);
2903     return getTOCEntry(DAG, DL, false, GA);
2904   }
2905 
2906   SDValue GAHi =
2907     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2908   SDValue GALo =
2909     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2910 
2911   SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
2912 
2913   // If the global reference is actually to a non-lazy-pointer, we have to do an
2914   // extra load to get the address of the global.
2915   if (MOHiFlag & PPCII::MO_NLP_FLAG)
2916     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2917   return Ptr;
2918 }
2919 
2920 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2921   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2922   SDLoc dl(Op);
2923 
2924   if (Op.getValueType() == MVT::v2i64) {
2925     // When the operands themselves are v2i64 values, we need to do something
2926     // special because VSX has no underlying comparison operations for these.
2927     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2928       // Equality can be handled by casting to the legal type for Altivec
2929       // comparisons, everything else needs to be expanded.
2930       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2931         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2932                  DAG.getSetCC(dl, MVT::v4i32,
2933                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2934                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2935                    CC));
2936       }
2937 
2938       return SDValue();
2939     }
2940 
2941     // We handle most of these in the usual way.
2942     return Op;
2943   }
2944 
2945   // If we're comparing for equality to zero, expose the fact that this is
2946   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
2947   // fold the new nodes.
2948   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
2949     return V;
2950 
2951   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2952     // Leave comparisons against 0 and -1 alone for now, since they're usually
2953     // optimized.  FIXME: revisit this when we can custom lower all setcc
2954     // optimizations.
2955     if (C->isAllOnesValue() || C->isNullValue())
2956       return SDValue();
2957   }
2958 
2959   // If we have an integer seteq/setne, turn it into a compare against zero
2960   // by xor'ing the rhs with the lhs, which is faster than setting a
2961   // condition register, reading it back out, and masking the correct bit.  The
2962   // normal approach here uses sub to do this instead of xor.  Using xor exposes
2963   // the result to other bit-twiddling opportunities.
2964   EVT LHSVT = Op.getOperand(0).getValueType();
2965   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2966     EVT VT = Op.getValueType();
2967     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2968                                 Op.getOperand(1));
2969     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
2970   }
2971   return SDValue();
2972 }
2973 
2974 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2975   SDNode *Node = Op.getNode();
2976   EVT VT = Node->getValueType(0);
2977   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2978   SDValue InChain = Node->getOperand(0);
2979   SDValue VAListPtr = Node->getOperand(1);
2980   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2981   SDLoc dl(Node);
2982 
2983   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
2984 
2985   // gpr_index
2986   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2987                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
2988   InChain = GprIndex.getValue(1);
2989 
2990   if (VT == MVT::i64) {
2991     // Check if GprIndex is even
2992     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
2993                                  DAG.getConstant(1, dl, MVT::i32));
2994     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
2995                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
2996     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
2997                                           DAG.getConstant(1, dl, MVT::i32));
2998     // Align GprIndex to be even if it isn't
2999     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3000                            GprIndex);
3001   }
3002 
3003   // fpr index is 1 byte after gpr
3004   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3005                                DAG.getConstant(1, dl, MVT::i32));
3006 
3007   // fpr
3008   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3009                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3010   InChain = FprIndex.getValue(1);
3011 
3012   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3013                                        DAG.getConstant(8, dl, MVT::i32));
3014 
3015   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3016                                         DAG.getConstant(4, dl, MVT::i32));
3017 
3018   // areas
3019   SDValue OverflowArea =
3020       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3021   InChain = OverflowArea.getValue(1);
3022 
3023   SDValue RegSaveArea =
3024       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3025   InChain = RegSaveArea.getValue(1);
3026 
3027   // select overflow_area if index > 8
3028   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3029                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3030 
3031   // adjustment constant gpr_index * 4/8
3032   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3033                                     VT.isInteger() ? GprIndex : FprIndex,
3034                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3035                                                     MVT::i32));
3036 
3037   // OurReg = RegSaveArea + RegConstant
3038   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3039                                RegConstant);
3040 
3041   // Floating types are 32 bytes into RegSaveArea
3042   if (VT.isFloatingPoint())
3043     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3044                          DAG.getConstant(32, dl, MVT::i32));
3045 
3046   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3047   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3048                                    VT.isInteger() ? GprIndex : FprIndex,
3049                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3050                                                    MVT::i32));
3051 
3052   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3053                               VT.isInteger() ? VAListPtr : FprPtr,
3054                               MachinePointerInfo(SV), MVT::i8);
3055 
3056   // determine if we should load from reg_save_area or overflow_area
3057   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3058 
3059   // increase overflow_area by 4/8 if gpr/fpr > 8
3060   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3061                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3062                                           dl, MVT::i32));
3063 
3064   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3065                              OverflowAreaPlusN);
3066 
3067   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3068                               MachinePointerInfo(), MVT::i32);
3069 
3070   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3071 }
3072 
3073 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3074   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3075 
3076   // We have to copy the entire va_list struct:
3077   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3078   return DAG.getMemcpy(Op.getOperand(0), Op,
3079                        Op.getOperand(1), Op.getOperand(2),
3080                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
3081                        false, MachinePointerInfo(), MachinePointerInfo());
3082 }
3083 
3084 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3085                                                   SelectionDAG &DAG) const {
3086   return Op.getOperand(0);
3087 }
3088 
3089 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3090                                                 SelectionDAG &DAG) const {
3091   SDValue Chain = Op.getOperand(0);
3092   SDValue Trmp = Op.getOperand(1); // trampoline
3093   SDValue FPtr = Op.getOperand(2); // nested function
3094   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3095   SDLoc dl(Op);
3096 
3097   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3098   bool isPPC64 = (PtrVT == MVT::i64);
3099   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3100 
3101   TargetLowering::ArgListTy Args;
3102   TargetLowering::ArgListEntry Entry;
3103 
3104   Entry.Ty = IntPtrTy;
3105   Entry.Node = Trmp; Args.push_back(Entry);
3106 
3107   // TrampSize == (isPPC64 ? 48 : 40);
3108   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3109                                isPPC64 ? MVT::i64 : MVT::i32);
3110   Args.push_back(Entry);
3111 
3112   Entry.Node = FPtr; Args.push_back(Entry);
3113   Entry.Node = Nest; Args.push_back(Entry);
3114 
3115   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3116   TargetLowering::CallLoweringInfo CLI(DAG);
3117   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3118       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3119       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3120 
3121   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3122   return CallResult.second;
3123 }
3124 
3125 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3126   MachineFunction &MF = DAG.getMachineFunction();
3127   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3128   EVT PtrVT = getPointerTy(MF.getDataLayout());
3129 
3130   SDLoc dl(Op);
3131 
3132   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
3133     // vastart just stores the address of the VarArgsFrameIndex slot into the
3134     // memory location argument.
3135     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3136     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3137     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3138                         MachinePointerInfo(SV));
3139   }
3140 
3141   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3142   // We suppose the given va_list is already allocated.
3143   //
3144   // typedef struct {
3145   //  char gpr;     /* index into the array of 8 GPRs
3146   //                 * stored in the register save area
3147   //                 * gpr=0 corresponds to r3,
3148   //                 * gpr=1 to r4, etc.
3149   //                 */
3150   //  char fpr;     /* index into the array of 8 FPRs
3151   //                 * stored in the register save area
3152   //                 * fpr=0 corresponds to f1,
3153   //                 * fpr=1 to f2, etc.
3154   //                 */
3155   //  char *overflow_arg_area;
3156   //                /* location on stack that holds
3157   //                 * the next overflow argument
3158   //                 */
3159   //  char *reg_save_area;
3160   //               /* where r3:r10 and f1:f8 (if saved)
3161   //                * are stored
3162   //                */
3163   // } va_list[1];
3164 
3165   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3166   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3167   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3168                                             PtrVT);
3169   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3170                                  PtrVT);
3171 
3172   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3173   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3174 
3175   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3176   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3177 
3178   uint64_t FPROffset = 1;
3179   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3180 
3181   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3182 
3183   // Store first byte : number of int regs
3184   SDValue firstStore =
3185       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3186                         MachinePointerInfo(SV), MVT::i8);
3187   uint64_t nextOffset = FPROffset;
3188   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3189                                   ConstFPROffset);
3190 
3191   // Store second byte : number of float regs
3192   SDValue secondStore =
3193       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3194                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3195   nextOffset += StackOffset;
3196   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3197 
3198   // Store second word : arguments given on stack
3199   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3200                                     MachinePointerInfo(SV, nextOffset));
3201   nextOffset += FrameOffset;
3202   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3203 
3204   // Store third word : arguments given in registers
3205   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3206                       MachinePointerInfo(SV, nextOffset));
3207 }
3208 
3209 /// FPR - The set of FP registers that should be allocated for arguments,
3210 /// on Darwin.
3211 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3212                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3213                                 PPC::F11, PPC::F12, PPC::F13};
3214 
3215 /// QFPR - The set of QPX registers that should be allocated for arguments.
3216 static const MCPhysReg QFPR[] = {
3217     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3218     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3219 
3220 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3221 /// the stack.
3222 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3223                                        unsigned PtrByteSize) {
3224   unsigned ArgSize = ArgVT.getStoreSize();
3225   if (Flags.isByVal())
3226     ArgSize = Flags.getByValSize();
3227 
3228   // Round up to multiples of the pointer size, except for array members,
3229   // which are always packed.
3230   if (!Flags.isInConsecutiveRegs())
3231     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3232 
3233   return ArgSize;
3234 }
3235 
3236 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3237 /// on the stack.
3238 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3239                                             ISD::ArgFlagsTy Flags,
3240                                             unsigned PtrByteSize) {
3241   unsigned Align = PtrByteSize;
3242 
3243   // Altivec parameters are padded to a 16 byte boundary.
3244   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3245       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3246       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3247       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3248     Align = 16;
3249   // QPX vector types stored in double-precision are padded to a 32 byte
3250   // boundary.
3251   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3252     Align = 32;
3253 
3254   // ByVal parameters are aligned as requested.
3255   if (Flags.isByVal()) {
3256     unsigned BVAlign = Flags.getByValAlign();
3257     if (BVAlign > PtrByteSize) {
3258       if (BVAlign % PtrByteSize != 0)
3259           llvm_unreachable(
3260             "ByVal alignment is not a multiple of the pointer size");
3261 
3262       Align = BVAlign;
3263     }
3264   }
3265 
3266   // Array members are always packed to their original alignment.
3267   if (Flags.isInConsecutiveRegs()) {
3268     // If the array member was split into multiple registers, the first
3269     // needs to be aligned to the size of the full type.  (Except for
3270     // ppcf128, which is only aligned as its f64 components.)
3271     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3272       Align = OrigVT.getStoreSize();
3273     else
3274       Align = ArgVT.getStoreSize();
3275   }
3276 
3277   return Align;
3278 }
3279 
3280 /// CalculateStackSlotUsed - Return whether this argument will use its
3281 /// stack slot (instead of being passed in registers).  ArgOffset,
3282 /// AvailableFPRs, and AvailableVRs must hold the current argument
3283 /// position, and will be updated to account for this argument.
3284 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3285                                    ISD::ArgFlagsTy Flags,
3286                                    unsigned PtrByteSize,
3287                                    unsigned LinkageSize,
3288                                    unsigned ParamAreaSize,
3289                                    unsigned &ArgOffset,
3290                                    unsigned &AvailableFPRs,
3291                                    unsigned &AvailableVRs, bool HasQPX) {
3292   bool UseMemory = false;
3293 
3294   // Respect alignment of argument on the stack.
3295   unsigned Align =
3296     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3297   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3298   // If there's no space left in the argument save area, we must
3299   // use memory (this check also catches zero-sized arguments).
3300   if (ArgOffset >= LinkageSize + ParamAreaSize)
3301     UseMemory = true;
3302 
3303   // Allocate argument on the stack.
3304   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3305   if (Flags.isInConsecutiveRegsLast())
3306     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3307   // If we overran the argument save area, we must use memory
3308   // (this check catches arguments passed partially in memory)
3309   if (ArgOffset > LinkageSize + ParamAreaSize)
3310     UseMemory = true;
3311 
3312   // However, if the argument is actually passed in an FPR or a VR,
3313   // we don't use memory after all.
3314   if (!Flags.isByVal()) {
3315     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3316         // QPX registers overlap with the scalar FP registers.
3317         (HasQPX && (ArgVT == MVT::v4f32 ||
3318                     ArgVT == MVT::v4f64 ||
3319                     ArgVT == MVT::v4i1)))
3320       if (AvailableFPRs > 0) {
3321         --AvailableFPRs;
3322         return false;
3323       }
3324     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3325         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3326         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3327         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3328       if (AvailableVRs > 0) {
3329         --AvailableVRs;
3330         return false;
3331       }
3332   }
3333 
3334   return UseMemory;
3335 }
3336 
3337 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3338 /// ensure minimum alignment required for target.
3339 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3340                                      unsigned NumBytes) {
3341   unsigned TargetAlign = Lowering->getStackAlignment();
3342   unsigned AlignMask = TargetAlign - 1;
3343   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
3344   return NumBytes;
3345 }
3346 
3347 SDValue PPCTargetLowering::LowerFormalArguments(
3348     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3349     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3350     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3351   if (Subtarget.isSVR4ABI()) {
3352     if (Subtarget.isPPC64())
3353       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
3354                                          dl, DAG, InVals);
3355     else
3356       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
3357                                          dl, DAG, InVals);
3358   } else {
3359     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
3360                                        dl, DAG, InVals);
3361   }
3362 }
3363 
3364 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3365     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3366     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3367     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3368 
3369   // 32-bit SVR4 ABI Stack Frame Layout:
3370   //              +-----------------------------------+
3371   //        +-->  |            Back chain             |
3372   //        |     +-----------------------------------+
3373   //        |     | Floating-point register save area |
3374   //        |     +-----------------------------------+
3375   //        |     |    General register save area     |
3376   //        |     +-----------------------------------+
3377   //        |     |          CR save word             |
3378   //        |     +-----------------------------------+
3379   //        |     |         VRSAVE save word          |
3380   //        |     +-----------------------------------+
3381   //        |     |         Alignment padding         |
3382   //        |     +-----------------------------------+
3383   //        |     |     Vector register save area     |
3384   //        |     +-----------------------------------+
3385   //        |     |       Local variable space        |
3386   //        |     +-----------------------------------+
3387   //        |     |        Parameter list area        |
3388   //        |     +-----------------------------------+
3389   //        |     |           LR save word            |
3390   //        |     +-----------------------------------+
3391   // SP-->  +---  |            Back chain             |
3392   //              +-----------------------------------+
3393   //
3394   // Specifications:
3395   //   System V Application Binary Interface PowerPC Processor Supplement
3396   //   AltiVec Technology Programming Interface Manual
3397 
3398   MachineFunction &MF = DAG.getMachineFunction();
3399   MachineFrameInfo &MFI = MF.getFrameInfo();
3400   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3401 
3402   EVT PtrVT = getPointerTy(MF.getDataLayout());
3403   // Potential tail calls could cause overwriting of argument stack slots.
3404   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3405                        (CallConv == CallingConv::Fast));
3406   unsigned PtrByteSize = 4;
3407 
3408   // Assign locations to all of the incoming arguments.
3409   SmallVector<CCValAssign, 16> ArgLocs;
3410   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3411                  *DAG.getContext());
3412 
3413   // Reserve space for the linkage area on the stack.
3414   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3415   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3416   if (useSoftFloat())
3417     CCInfo.PreAnalyzeFormalArguments(Ins);
3418 
3419   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3420   CCInfo.clearWasPPCF128();
3421 
3422   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3423     CCValAssign &VA = ArgLocs[i];
3424 
3425     // Arguments stored in registers.
3426     if (VA.isRegLoc()) {
3427       const TargetRegisterClass *RC;
3428       EVT ValVT = VA.getValVT();
3429 
3430       switch (ValVT.getSimpleVT().SimpleTy) {
3431         default:
3432           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3433         case MVT::i1:
3434         case MVT::i32:
3435           RC = &PPC::GPRCRegClass;
3436           break;
3437         case MVT::f32:
3438           if (Subtarget.hasP8Vector())
3439             RC = &PPC::VSSRCRegClass;
3440           else if (Subtarget.hasSPE())
3441             RC = &PPC::SPE4RCRegClass;
3442           else
3443             RC = &PPC::F4RCRegClass;
3444           break;
3445         case MVT::f64:
3446           if (Subtarget.hasVSX())
3447             RC = &PPC::VSFRCRegClass;
3448           else if (Subtarget.hasSPE())
3449             // SPE passes doubles in GPR pairs.
3450             RC = &PPC::GPRCRegClass;
3451           else
3452             RC = &PPC::F8RCRegClass;
3453           break;
3454         case MVT::v16i8:
3455         case MVT::v8i16:
3456         case MVT::v4i32:
3457           RC = &PPC::VRRCRegClass;
3458           break;
3459         case MVT::v4f32:
3460           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3461           break;
3462         case MVT::v2f64:
3463         case MVT::v2i64:
3464           RC = &PPC::VRRCRegClass;
3465           break;
3466         case MVT::v4f64:
3467           RC = &PPC::QFRCRegClass;
3468           break;
3469         case MVT::v4i1:
3470           RC = &PPC::QBRCRegClass;
3471           break;
3472       }
3473 
3474       SDValue ArgValue;
3475       // Transform the arguments stored in physical registers into
3476       // virtual ones.
3477       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3478         assert(i + 1 < e && "No second half of double precision argument");
3479         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3480         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3481         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3482         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3483         if (!Subtarget.isLittleEndian())
3484           std::swap (ArgValueLo, ArgValueHi);
3485         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3486                                ArgValueHi);
3487       } else {
3488         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3489         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3490                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
3491         if (ValVT == MVT::i1)
3492           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3493       }
3494 
3495       InVals.push_back(ArgValue);
3496     } else {
3497       // Argument stored in memory.
3498       assert(VA.isMemLoc());
3499 
3500       // Get the extended size of the argument type in stack
3501       unsigned ArgSize = VA.getLocVT().getStoreSize();
3502       // Get the actual size of the argument type
3503       unsigned ObjSize = VA.getValVT().getStoreSize();
3504       unsigned ArgOffset = VA.getLocMemOffset();
3505       // Stack objects in PPC32 are right justified.
3506       ArgOffset += ArgSize - ObjSize;
3507       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3508 
3509       // Create load nodes to retrieve arguments from the stack.
3510       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3511       InVals.push_back(
3512           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3513     }
3514   }
3515 
3516   // Assign locations to all of the incoming aggregate by value arguments.
3517   // Aggregates passed by value are stored in the local variable space of the
3518   // caller's stack frame, right above the parameter list area.
3519   SmallVector<CCValAssign, 16> ByValArgLocs;
3520   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3521                       ByValArgLocs, *DAG.getContext());
3522 
3523   // Reserve stack space for the allocations in CCInfo.
3524   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3525 
3526   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3527 
3528   // Area that is at least reserved in the caller of this function.
3529   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3530   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3531 
3532   // Set the size that is at least reserved in caller of this function.  Tail
3533   // call optimized function's reserved stack space needs to be aligned so that
3534   // taking the difference between two stack areas will result in an aligned
3535   // stack.
3536   MinReservedArea =
3537       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3538   FuncInfo->setMinReservedArea(MinReservedArea);
3539 
3540   SmallVector<SDValue, 8> MemOps;
3541 
3542   // If the function takes variable number of arguments, make a frame index for
3543   // the start of the first vararg value... for expansion of llvm.va_start.
3544   if (isVarArg) {
3545     static const MCPhysReg GPArgRegs[] = {
3546       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3547       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3548     };
3549     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3550 
3551     static const MCPhysReg FPArgRegs[] = {
3552       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3553       PPC::F8
3554     };
3555     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3556 
3557     if (useSoftFloat() || hasSPE())
3558        NumFPArgRegs = 0;
3559 
3560     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3561     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3562 
3563     // Make room for NumGPArgRegs and NumFPArgRegs.
3564     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3565                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3566 
3567     FuncInfo->setVarArgsStackOffset(
3568       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3569                             CCInfo.getNextStackOffset(), true));
3570 
3571     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3572     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3573 
3574     // The fixed integer arguments of a variadic function are stored to the
3575     // VarArgsFrameIndex on the stack so that they may be loaded by
3576     // dereferencing the result of va_next.
3577     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3578       // Get an existing live-in vreg, or add a new one.
3579       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3580       if (!VReg)
3581         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3582 
3583       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3584       SDValue Store =
3585           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3586       MemOps.push_back(Store);
3587       // Increment the address by four for the next argument to store
3588       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3589       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3590     }
3591 
3592     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3593     // is set.
3594     // The double arguments are stored to the VarArgsFrameIndex
3595     // on the stack.
3596     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3597       // Get an existing live-in vreg, or add a new one.
3598       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3599       if (!VReg)
3600         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3601 
3602       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3603       SDValue Store =
3604           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3605       MemOps.push_back(Store);
3606       // Increment the address by eight for the next argument to store
3607       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3608                                          PtrVT);
3609       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3610     }
3611   }
3612 
3613   if (!MemOps.empty())
3614     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3615 
3616   return Chain;
3617 }
3618 
3619 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3620 // value to MVT::i64 and then truncate to the correct register size.
3621 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3622                                              EVT ObjectVT, SelectionDAG &DAG,
3623                                              SDValue ArgVal,
3624                                              const SDLoc &dl) const {
3625   if (Flags.isSExt())
3626     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3627                          DAG.getValueType(ObjectVT));
3628   else if (Flags.isZExt())
3629     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3630                          DAG.getValueType(ObjectVT));
3631 
3632   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3633 }
3634 
3635 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3636     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3637     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3638     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3639   // TODO: add description of PPC stack frame format, or at least some docs.
3640   //
3641   bool isELFv2ABI = Subtarget.isELFv2ABI();
3642   bool isLittleEndian = Subtarget.isLittleEndian();
3643   MachineFunction &MF = DAG.getMachineFunction();
3644   MachineFrameInfo &MFI = MF.getFrameInfo();
3645   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3646 
3647   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3648          "fastcc not supported on varargs functions");
3649 
3650   EVT PtrVT = getPointerTy(MF.getDataLayout());
3651   // Potential tail calls could cause overwriting of argument stack slots.
3652   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3653                        (CallConv == CallingConv::Fast));
3654   unsigned PtrByteSize = 8;
3655   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3656 
3657   static const MCPhysReg GPR[] = {
3658     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3659     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3660   };
3661   static const MCPhysReg VR[] = {
3662     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3663     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3664   };
3665 
3666   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3667   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3668   const unsigned Num_VR_Regs  = array_lengthof(VR);
3669   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3670 
3671   // Do a first pass over the arguments to determine whether the ABI
3672   // guarantees that our caller has allocated the parameter save area
3673   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3674   // in the ELFv2 ABI, it is true if this is a vararg function or if
3675   // any parameter is located in a stack slot.
3676 
3677   bool HasParameterArea = !isELFv2ABI || isVarArg;
3678   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3679   unsigned NumBytes = LinkageSize;
3680   unsigned AvailableFPRs = Num_FPR_Regs;
3681   unsigned AvailableVRs = Num_VR_Regs;
3682   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3683     if (Ins[i].Flags.isNest())
3684       continue;
3685 
3686     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3687                                PtrByteSize, LinkageSize, ParamAreaSize,
3688                                NumBytes, AvailableFPRs, AvailableVRs,
3689                                Subtarget.hasQPX()))
3690       HasParameterArea = true;
3691   }
3692 
3693   // Add DAG nodes to load the arguments or copy them out of registers.  On
3694   // entry to a function on PPC, the arguments start after the linkage area,
3695   // although the first ones are often in registers.
3696 
3697   unsigned ArgOffset = LinkageSize;
3698   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3699   unsigned &QFPR_idx = FPR_idx;
3700   SmallVector<SDValue, 8> MemOps;
3701   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3702   unsigned CurArgIdx = 0;
3703   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3704     SDValue ArgVal;
3705     bool needsLoad = false;
3706     EVT ObjectVT = Ins[ArgNo].VT;
3707     EVT OrigVT = Ins[ArgNo].ArgVT;
3708     unsigned ObjSize = ObjectVT.getStoreSize();
3709     unsigned ArgSize = ObjSize;
3710     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3711     if (Ins[ArgNo].isOrigArg()) {
3712       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3713       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3714     }
3715     // We re-align the argument offset for each argument, except when using the
3716     // fast calling convention, when we need to make sure we do that only when
3717     // we'll actually use a stack slot.
3718     unsigned CurArgOffset, Align;
3719     auto ComputeArgOffset = [&]() {
3720       /* Respect alignment of argument on the stack.  */
3721       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3722       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3723       CurArgOffset = ArgOffset;
3724     };
3725 
3726     if (CallConv != CallingConv::Fast) {
3727       ComputeArgOffset();
3728 
3729       /* Compute GPR index associated with argument offset.  */
3730       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3731       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3732     }
3733 
3734     // FIXME the codegen can be much improved in some cases.
3735     // We do not have to keep everything in memory.
3736     if (Flags.isByVal()) {
3737       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3738 
3739       if (CallConv == CallingConv::Fast)
3740         ComputeArgOffset();
3741 
3742       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3743       ObjSize = Flags.getByValSize();
3744       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3745       // Empty aggregate parameters do not take up registers.  Examples:
3746       //   struct { } a;
3747       //   union  { } b;
3748       //   int c[0];
3749       // etc.  However, we have to provide a place-holder in InVals, so
3750       // pretend we have an 8-byte item at the current address for that
3751       // purpose.
3752       if (!ObjSize) {
3753         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3754         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3755         InVals.push_back(FIN);
3756         continue;
3757       }
3758 
3759       // Create a stack object covering all stack doublewords occupied
3760       // by the argument.  If the argument is (fully or partially) on
3761       // the stack, or if the argument is fully in registers but the
3762       // caller has allocated the parameter save anyway, we can refer
3763       // directly to the caller's stack frame.  Otherwise, create a
3764       // local copy in our own frame.
3765       int FI;
3766       if (HasParameterArea ||
3767           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3768         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3769       else
3770         FI = MFI.CreateStackObject(ArgSize, Align, false);
3771       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3772 
3773       // Handle aggregates smaller than 8 bytes.
3774       if (ObjSize < PtrByteSize) {
3775         // The value of the object is its address, which differs from the
3776         // address of the enclosing doubleword on big-endian systems.
3777         SDValue Arg = FIN;
3778         if (!isLittleEndian) {
3779           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3780           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3781         }
3782         InVals.push_back(Arg);
3783 
3784         if (GPR_idx != Num_GPR_Regs) {
3785           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3786           FuncInfo->addLiveInAttr(VReg, Flags);
3787           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3788           SDValue Store;
3789 
3790           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3791             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3792                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3793             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3794                                       MachinePointerInfo(&*FuncArg), ObjType);
3795           } else {
3796             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3797             // store the whole register as-is to the parameter save area
3798             // slot.
3799             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3800                                  MachinePointerInfo(&*FuncArg));
3801           }
3802 
3803           MemOps.push_back(Store);
3804         }
3805         // Whether we copied from a register or not, advance the offset
3806         // into the parameter save area by a full doubleword.
3807         ArgOffset += PtrByteSize;
3808         continue;
3809       }
3810 
3811       // The value of the object is its address, which is the address of
3812       // its first stack doubleword.
3813       InVals.push_back(FIN);
3814 
3815       // Store whatever pieces of the object are in registers to memory.
3816       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3817         if (GPR_idx == Num_GPR_Regs)
3818           break;
3819 
3820         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3821         FuncInfo->addLiveInAttr(VReg, Flags);
3822         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3823         SDValue Addr = FIN;
3824         if (j) {
3825           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3826           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3827         }
3828         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3829                                      MachinePointerInfo(&*FuncArg, j));
3830         MemOps.push_back(Store);
3831         ++GPR_idx;
3832       }
3833       ArgOffset += ArgSize;
3834       continue;
3835     }
3836 
3837     switch (ObjectVT.getSimpleVT().SimpleTy) {
3838     default: llvm_unreachable("Unhandled argument type!");
3839     case MVT::i1:
3840     case MVT::i32:
3841     case MVT::i64:
3842       if (Flags.isNest()) {
3843         // The 'nest' parameter, if any, is passed in R11.
3844         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3845         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3846 
3847         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3848           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3849 
3850         break;
3851       }
3852 
3853       // These can be scalar arguments or elements of an integer array type
3854       // passed directly.  Clang may use those instead of "byval" aggregate
3855       // types to avoid forcing arguments to memory unnecessarily.
3856       if (GPR_idx != Num_GPR_Regs) {
3857         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3858         FuncInfo->addLiveInAttr(VReg, Flags);
3859         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3860 
3861         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3862           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3863           // value to MVT::i64 and then truncate to the correct register size.
3864           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3865       } else {
3866         if (CallConv == CallingConv::Fast)
3867           ComputeArgOffset();
3868 
3869         needsLoad = true;
3870         ArgSize = PtrByteSize;
3871       }
3872       if (CallConv != CallingConv::Fast || needsLoad)
3873         ArgOffset += 8;
3874       break;
3875 
3876     case MVT::f32:
3877     case MVT::f64:
3878       // These can be scalar arguments or elements of a float array type
3879       // passed directly.  The latter are used to implement ELFv2 homogenous
3880       // float aggregates.
3881       if (FPR_idx != Num_FPR_Regs) {
3882         unsigned VReg;
3883 
3884         if (ObjectVT == MVT::f32)
3885           VReg = MF.addLiveIn(FPR[FPR_idx],
3886                               Subtarget.hasP8Vector()
3887                                   ? &PPC::VSSRCRegClass
3888                                   : &PPC::F4RCRegClass);
3889         else
3890           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3891                                                 ? &PPC::VSFRCRegClass
3892                                                 : &PPC::F8RCRegClass);
3893 
3894         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3895         ++FPR_idx;
3896       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3897         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3898         // once we support fp <-> gpr moves.
3899 
3900         // This can only ever happen in the presence of f32 array types,
3901         // since otherwise we never run out of FPRs before running out
3902         // of GPRs.
3903         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3904         FuncInfo->addLiveInAttr(VReg, Flags);
3905         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3906 
3907         if (ObjectVT == MVT::f32) {
3908           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3909             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3910                                  DAG.getConstant(32, dl, MVT::i32));
3911           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3912         }
3913 
3914         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3915       } else {
3916         if (CallConv == CallingConv::Fast)
3917           ComputeArgOffset();
3918 
3919         needsLoad = true;
3920       }
3921 
3922       // When passing an array of floats, the array occupies consecutive
3923       // space in the argument area; only round up to the next doubleword
3924       // at the end of the array.  Otherwise, each float takes 8 bytes.
3925       if (CallConv != CallingConv::Fast || needsLoad) {
3926         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3927         ArgOffset += ArgSize;
3928         if (Flags.isInConsecutiveRegsLast())
3929           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3930       }
3931       break;
3932     case MVT::v4f32:
3933     case MVT::v4i32:
3934     case MVT::v8i16:
3935     case MVT::v16i8:
3936     case MVT::v2f64:
3937     case MVT::v2i64:
3938     case MVT::v1i128:
3939     case MVT::f128:
3940       if (!Subtarget.hasQPX()) {
3941         // These can be scalar arguments or elements of a vector array type
3942         // passed directly.  The latter are used to implement ELFv2 homogenous
3943         // vector aggregates.
3944         if (VR_idx != Num_VR_Regs) {
3945           unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3946           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3947           ++VR_idx;
3948         } else {
3949           if (CallConv == CallingConv::Fast)
3950             ComputeArgOffset();
3951           needsLoad = true;
3952         }
3953         if (CallConv != CallingConv::Fast || needsLoad)
3954           ArgOffset += 16;
3955         break;
3956       } // not QPX
3957 
3958       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3959              "Invalid QPX parameter type");
3960       LLVM_FALLTHROUGH;
3961 
3962     case MVT::v4f64:
3963     case MVT::v4i1:
3964       // QPX vectors are treated like their scalar floating-point subregisters
3965       // (except that they're larger).
3966       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3967       if (QFPR_idx != Num_QFPR_Regs) {
3968         const TargetRegisterClass *RC;
3969         switch (ObjectVT.getSimpleVT().SimpleTy) {
3970         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
3971         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
3972         default:         RC = &PPC::QBRCRegClass; break;
3973         }
3974 
3975         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
3976         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3977         ++QFPR_idx;
3978       } else {
3979         if (CallConv == CallingConv::Fast)
3980           ComputeArgOffset();
3981         needsLoad = true;
3982       }
3983       if (CallConv != CallingConv::Fast || needsLoad)
3984         ArgOffset += Sz;
3985       break;
3986     }
3987 
3988     // We need to load the argument to a virtual register if we determined
3989     // above that we ran out of physical registers of the appropriate type.
3990     if (needsLoad) {
3991       if (ObjSize < ArgSize && !isLittleEndian)
3992         CurArgOffset += ArgSize - ObjSize;
3993       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
3994       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3995       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
3996     }
3997 
3998     InVals.push_back(ArgVal);
3999   }
4000 
4001   // Area that is at least reserved in the caller of this function.
4002   unsigned MinReservedArea;
4003   if (HasParameterArea)
4004     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4005   else
4006     MinReservedArea = LinkageSize;
4007 
4008   // Set the size that is at least reserved in caller of this function.  Tail
4009   // call optimized functions' reserved stack space needs to be aligned so that
4010   // taking the difference between two stack areas will result in an aligned
4011   // stack.
4012   MinReservedArea =
4013       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4014   FuncInfo->setMinReservedArea(MinReservedArea);
4015 
4016   // If the function takes variable number of arguments, make a frame index for
4017   // the start of the first vararg value... for expansion of llvm.va_start.
4018   if (isVarArg) {
4019     int Depth = ArgOffset;
4020 
4021     FuncInfo->setVarArgsFrameIndex(
4022       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4023     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4024 
4025     // If this function is vararg, store any remaining integer argument regs
4026     // to their spots on the stack so that they may be loaded by dereferencing
4027     // the result of va_next.
4028     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4029          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4030       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4031       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4032       SDValue Store =
4033           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4034       MemOps.push_back(Store);
4035       // Increment the address by four for the next argument to store
4036       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4037       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4038     }
4039   }
4040 
4041   if (!MemOps.empty())
4042     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4043 
4044   return Chain;
4045 }
4046 
4047 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4048     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4049     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4050     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4051   // TODO: add description of PPC stack frame format, or at least some docs.
4052   //
4053   MachineFunction &MF = DAG.getMachineFunction();
4054   MachineFrameInfo &MFI = MF.getFrameInfo();
4055   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4056 
4057   EVT PtrVT = getPointerTy(MF.getDataLayout());
4058   bool isPPC64 = PtrVT == MVT::i64;
4059   // Potential tail calls could cause overwriting of argument stack slots.
4060   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4061                        (CallConv == CallingConv::Fast));
4062   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4063   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4064   unsigned ArgOffset = LinkageSize;
4065   // Area that is at least reserved in caller of this function.
4066   unsigned MinReservedArea = ArgOffset;
4067 
4068   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4069     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4070     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4071   };
4072   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4073     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4074     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4075   };
4076   static const MCPhysReg VR[] = {
4077     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4078     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4079   };
4080 
4081   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4082   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4083   const unsigned Num_VR_Regs  = array_lengthof( VR);
4084 
4085   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4086 
4087   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4088 
4089   // In 32-bit non-varargs functions, the stack space for vectors is after the
4090   // stack space for non-vectors.  We do not use this space unless we have
4091   // too many vectors to fit in registers, something that only occurs in
4092   // constructed examples:), but we have to walk the arglist to figure
4093   // that out...for the pathological case, compute VecArgOffset as the
4094   // start of the vector parameter area.  Computing VecArgOffset is the
4095   // entire point of the following loop.
4096   unsigned VecArgOffset = ArgOffset;
4097   if (!isVarArg && !isPPC64) {
4098     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4099          ++ArgNo) {
4100       EVT ObjectVT = Ins[ArgNo].VT;
4101       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4102 
4103       if (Flags.isByVal()) {
4104         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4105         unsigned ObjSize = Flags.getByValSize();
4106         unsigned ArgSize =
4107                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4108         VecArgOffset += ArgSize;
4109         continue;
4110       }
4111 
4112       switch(ObjectVT.getSimpleVT().SimpleTy) {
4113       default: llvm_unreachable("Unhandled argument type!");
4114       case MVT::i1:
4115       case MVT::i32:
4116       case MVT::f32:
4117         VecArgOffset += 4;
4118         break;
4119       case MVT::i64:  // PPC64
4120       case MVT::f64:
4121         // FIXME: We are guaranteed to be !isPPC64 at this point.
4122         // Does MVT::i64 apply?
4123         VecArgOffset += 8;
4124         break;
4125       case MVT::v4f32:
4126       case MVT::v4i32:
4127       case MVT::v8i16:
4128       case MVT::v16i8:
4129         // Nothing to do, we're only looking at Nonvector args here.
4130         break;
4131       }
4132     }
4133   }
4134   // We've found where the vector parameter area in memory is.  Skip the
4135   // first 12 parameters; these don't use that memory.
4136   VecArgOffset = ((VecArgOffset+15)/16)*16;
4137   VecArgOffset += 12*16;
4138 
4139   // Add DAG nodes to load the arguments or copy them out of registers.  On
4140   // entry to a function on PPC, the arguments start after the linkage area,
4141   // although the first ones are often in registers.
4142 
4143   SmallVector<SDValue, 8> MemOps;
4144   unsigned nAltivecParamsAtEnd = 0;
4145   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4146   unsigned CurArgIdx = 0;
4147   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4148     SDValue ArgVal;
4149     bool needsLoad = false;
4150     EVT ObjectVT = Ins[ArgNo].VT;
4151     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4152     unsigned ArgSize = ObjSize;
4153     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4154     if (Ins[ArgNo].isOrigArg()) {
4155       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4156       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4157     }
4158     unsigned CurArgOffset = ArgOffset;
4159 
4160     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4161     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4162         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4163       if (isVarArg || isPPC64) {
4164         MinReservedArea = ((MinReservedArea+15)/16)*16;
4165         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4166                                                   Flags,
4167                                                   PtrByteSize);
4168       } else  nAltivecParamsAtEnd++;
4169     } else
4170       // Calculate min reserved area.
4171       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4172                                                 Flags,
4173                                                 PtrByteSize);
4174 
4175     // FIXME the codegen can be much improved in some cases.
4176     // We do not have to keep everything in memory.
4177     if (Flags.isByVal()) {
4178       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4179 
4180       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4181       ObjSize = Flags.getByValSize();
4182       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4183       // Objects of size 1 and 2 are right justified, everything else is
4184       // left justified.  This means the memory address is adjusted forwards.
4185       if (ObjSize==1 || ObjSize==2) {
4186         CurArgOffset = CurArgOffset + (4 - ObjSize);
4187       }
4188       // The value of the object is its address.
4189       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4190       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4191       InVals.push_back(FIN);
4192       if (ObjSize==1 || ObjSize==2) {
4193         if (GPR_idx != Num_GPR_Regs) {
4194           unsigned VReg;
4195           if (isPPC64)
4196             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4197           else
4198             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4199           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4200           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4201           SDValue Store =
4202               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4203                                 MachinePointerInfo(&*FuncArg), ObjType);
4204           MemOps.push_back(Store);
4205           ++GPR_idx;
4206         }
4207 
4208         ArgOffset += PtrByteSize;
4209 
4210         continue;
4211       }
4212       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4213         // Store whatever pieces of the object are in registers
4214         // to memory.  ArgOffset will be the address of the beginning
4215         // of the object.
4216         if (GPR_idx != Num_GPR_Regs) {
4217           unsigned VReg;
4218           if (isPPC64)
4219             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4220           else
4221             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4222           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4223           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4224           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4225           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4226                                        MachinePointerInfo(&*FuncArg, j));
4227           MemOps.push_back(Store);
4228           ++GPR_idx;
4229           ArgOffset += PtrByteSize;
4230         } else {
4231           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4232           break;
4233         }
4234       }
4235       continue;
4236     }
4237 
4238     switch (ObjectVT.getSimpleVT().SimpleTy) {
4239     default: llvm_unreachable("Unhandled argument type!");
4240     case MVT::i1:
4241     case MVT::i32:
4242       if (!isPPC64) {
4243         if (GPR_idx != Num_GPR_Regs) {
4244           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4245           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4246 
4247           if (ObjectVT == MVT::i1)
4248             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4249 
4250           ++GPR_idx;
4251         } else {
4252           needsLoad = true;
4253           ArgSize = PtrByteSize;
4254         }
4255         // All int arguments reserve stack space in the Darwin ABI.
4256         ArgOffset += PtrByteSize;
4257         break;
4258       }
4259       LLVM_FALLTHROUGH;
4260     case MVT::i64:  // PPC64
4261       if (GPR_idx != Num_GPR_Regs) {
4262         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4263         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4264 
4265         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4266           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4267           // value to MVT::i64 and then truncate to the correct register size.
4268           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4269 
4270         ++GPR_idx;
4271       } else {
4272         needsLoad = true;
4273         ArgSize = PtrByteSize;
4274       }
4275       // All int arguments reserve stack space in the Darwin ABI.
4276       ArgOffset += 8;
4277       break;
4278 
4279     case MVT::f32:
4280     case MVT::f64:
4281       // Every 4 bytes of argument space consumes one of the GPRs available for
4282       // argument passing.
4283       if (GPR_idx != Num_GPR_Regs) {
4284         ++GPR_idx;
4285         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4286           ++GPR_idx;
4287       }
4288       if (FPR_idx != Num_FPR_Regs) {
4289         unsigned VReg;
4290 
4291         if (ObjectVT == MVT::f32)
4292           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4293         else
4294           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4295 
4296         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4297         ++FPR_idx;
4298       } else {
4299         needsLoad = true;
4300       }
4301 
4302       // All FP arguments reserve stack space in the Darwin ABI.
4303       ArgOffset += isPPC64 ? 8 : ObjSize;
4304       break;
4305     case MVT::v4f32:
4306     case MVT::v4i32:
4307     case MVT::v8i16:
4308     case MVT::v16i8:
4309       // Note that vector arguments in registers don't reserve stack space,
4310       // except in varargs functions.
4311       if (VR_idx != Num_VR_Regs) {
4312         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4313         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4314         if (isVarArg) {
4315           while ((ArgOffset % 16) != 0) {
4316             ArgOffset += PtrByteSize;
4317             if (GPR_idx != Num_GPR_Regs)
4318               GPR_idx++;
4319           }
4320           ArgOffset += 16;
4321           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4322         }
4323         ++VR_idx;
4324       } else {
4325         if (!isVarArg && !isPPC64) {
4326           // Vectors go after all the nonvectors.
4327           CurArgOffset = VecArgOffset;
4328           VecArgOffset += 16;
4329         } else {
4330           // Vectors are aligned.
4331           ArgOffset = ((ArgOffset+15)/16)*16;
4332           CurArgOffset = ArgOffset;
4333           ArgOffset += 16;
4334         }
4335         needsLoad = true;
4336       }
4337       break;
4338     }
4339 
4340     // We need to load the argument to a virtual register if we determined above
4341     // that we ran out of physical registers of the appropriate type.
4342     if (needsLoad) {
4343       int FI = MFI.CreateFixedObject(ObjSize,
4344                                      CurArgOffset + (ArgSize - ObjSize),
4345                                      isImmutable);
4346       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4347       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4348     }
4349 
4350     InVals.push_back(ArgVal);
4351   }
4352 
4353   // Allow for Altivec parameters at the end, if needed.
4354   if (nAltivecParamsAtEnd) {
4355     MinReservedArea = ((MinReservedArea+15)/16)*16;
4356     MinReservedArea += 16*nAltivecParamsAtEnd;
4357   }
4358 
4359   // Area that is at least reserved in the caller of this function.
4360   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4361 
4362   // Set the size that is at least reserved in caller of this function.  Tail
4363   // call optimized functions' reserved stack space needs to be aligned so that
4364   // taking the difference between two stack areas will result in an aligned
4365   // stack.
4366   MinReservedArea =
4367       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4368   FuncInfo->setMinReservedArea(MinReservedArea);
4369 
4370   // If the function takes variable number of arguments, make a frame index for
4371   // the start of the first vararg value... for expansion of llvm.va_start.
4372   if (isVarArg) {
4373     int Depth = ArgOffset;
4374 
4375     FuncInfo->setVarArgsFrameIndex(
4376       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4377                             Depth, true));
4378     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4379 
4380     // If this function is vararg, store any remaining integer argument regs
4381     // to their spots on the stack so that they may be loaded by dereferencing
4382     // the result of va_next.
4383     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4384       unsigned VReg;
4385 
4386       if (isPPC64)
4387         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4388       else
4389         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4390 
4391       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4392       SDValue Store =
4393           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4394       MemOps.push_back(Store);
4395       // Increment the address by four for the next argument to store
4396       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4397       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4398     }
4399   }
4400 
4401   if (!MemOps.empty())
4402     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4403 
4404   return Chain;
4405 }
4406 
4407 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4408 /// adjusted to accommodate the arguments for the tailcall.
4409 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4410                                    unsigned ParamSize) {
4411 
4412   if (!isTailCall) return 0;
4413 
4414   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4415   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4416   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4417   // Remember only if the new adjustment is bigger.
4418   if (SPDiff < FI->getTailCallSPDelta())
4419     FI->setTailCallSPDelta(SPDiff);
4420 
4421   return SPDiff;
4422 }
4423 
4424 static bool isFunctionGlobalAddress(SDValue Callee);
4425 
4426 static bool
4427 callsShareTOCBase(const Function *Caller, SDValue Callee,
4428                     const TargetMachine &TM) {
4429   // Need a GlobalValue to determine if a Caller and Callee share the same
4430   // TOCBase.
4431   const GlobalValue *GV = nullptr;
4432 
4433   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4434     GV = G->getGlobal();
4435   } else if (MCSymbolSDNode *M = dyn_cast<MCSymbolSDNode>(Callee)) {
4436     // On AIX only, we replace GlobalAddressSDNode with MCSymbolSDNode for
4437     // the callee of a direct function call. The MCSymbolSDNode contains the
4438     // MCSymbol for the funtion entry point.
4439     const auto *S = cast<MCSymbolXCOFF>(M->getMCSymbol());
4440     GV = S->getGlobalValue();
4441   }
4442 
4443   // If we failed to get a GlobalValue, then pessimistically assume they do not
4444   // share a TOCBase.
4445   if (!GV)
4446     return false;
4447 
4448   // The medium and large code models are expected to provide a sufficiently
4449   // large TOC to provide all data addressing needs of a module with a
4450   // single TOC. Since each module will be addressed with a single TOC then we
4451   // only need to check that caller and callee don't cross dso boundaries.
4452   if (CodeModel::Medium == TM.getCodeModel() ||
4453       CodeModel::Large == TM.getCodeModel())
4454     return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV);
4455 
4456   // Otherwise we need to ensure callee and caller are in the same section,
4457   // since the linker may allocate multiple TOCs, and we don't know which
4458   // sections will belong to the same TOC base.
4459 
4460   if (!GV->isStrongDefinitionForLinker())
4461     return false;
4462 
4463   // Any explicitly-specified sections and section prefixes must also match.
4464   // Also, if we're using -ffunction-sections, then each function is always in
4465   // a different section (the same is true for COMDAT functions).
4466   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4467       GV->getSection() != Caller->getSection())
4468     return false;
4469   if (const auto *F = dyn_cast<Function>(GV)) {
4470     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4471       return false;
4472   }
4473 
4474   // If the callee might be interposed, then we can't assume the ultimate call
4475   // target will be in the same section. Even in cases where we can assume that
4476   // interposition won't happen, in any case where the linker might insert a
4477   // stub to allow for interposition, we must generate code as though
4478   // interposition might occur. To understand why this matters, consider a
4479   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4480   // in the same section, but a is in a different module (i.e. has a different
4481   // TOC base pointer). If the linker allows for interposition between b and c,
4482   // then it will generate a stub for the call edge between b and c which will
4483   // save the TOC pointer into the designated stack slot allocated by b. If we
4484   // return true here, and therefore allow a tail call between b and c, that
4485   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4486   // pointer into the stack slot allocated by a (where the a -> b stub saved
4487   // a's TOC base pointer). If we're not considering a tail call, but rather,
4488   // whether a nop is needed after the call instruction in b, because the linker
4489   // will insert a stub, it might complain about a missing nop if we omit it
4490   // (although many don't complain in this case).
4491   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4492     return false;
4493 
4494   return true;
4495 }
4496 
4497 static bool
4498 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4499                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4500   assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
4501 
4502   const unsigned PtrByteSize = 8;
4503   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4504 
4505   static const MCPhysReg GPR[] = {
4506     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4507     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4508   };
4509   static const MCPhysReg VR[] = {
4510     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4511     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4512   };
4513 
4514   const unsigned NumGPRs = array_lengthof(GPR);
4515   const unsigned NumFPRs = 13;
4516   const unsigned NumVRs = array_lengthof(VR);
4517   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4518 
4519   unsigned NumBytes = LinkageSize;
4520   unsigned AvailableFPRs = NumFPRs;
4521   unsigned AvailableVRs = NumVRs;
4522 
4523   for (const ISD::OutputArg& Param : Outs) {
4524     if (Param.Flags.isNest()) continue;
4525 
4526     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4527                                PtrByteSize, LinkageSize, ParamAreaSize,
4528                                NumBytes, AvailableFPRs, AvailableVRs,
4529                                Subtarget.hasQPX()))
4530       return true;
4531   }
4532   return false;
4533 }
4534 
4535 static bool
4536 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
4537   if (CS.arg_size() != CallerFn->arg_size())
4538     return false;
4539 
4540   ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
4541   ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
4542   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4543 
4544   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4545     const Value* CalleeArg = *CalleeArgIter;
4546     const Value* CallerArg = &(*CallerArgIter);
4547     if (CalleeArg == CallerArg)
4548       continue;
4549 
4550     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4551     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4552     //      }
4553     // 1st argument of callee is undef and has the same type as caller.
4554     if (CalleeArg->getType() == CallerArg->getType() &&
4555         isa<UndefValue>(CalleeArg))
4556       continue;
4557 
4558     return false;
4559   }
4560 
4561   return true;
4562 }
4563 
4564 // Returns true if TCO is possible between the callers and callees
4565 // calling conventions.
4566 static bool
4567 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4568                                     CallingConv::ID CalleeCC) {
4569   // Tail calls are possible with fastcc and ccc.
4570   auto isTailCallableCC  = [] (CallingConv::ID CC){
4571       return  CC == CallingConv::C || CC == CallingConv::Fast;
4572   };
4573   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4574     return false;
4575 
4576   // We can safely tail call both fastcc and ccc callees from a c calling
4577   // convention caller. If the caller is fastcc, we may have less stack space
4578   // than a non-fastcc caller with the same signature so disable tail-calls in
4579   // that case.
4580   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4581 }
4582 
4583 bool
4584 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4585                                     SDValue Callee,
4586                                     CallingConv::ID CalleeCC,
4587                                     ImmutableCallSite CS,
4588                                     bool isVarArg,
4589                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4590                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4591                                     SelectionDAG& DAG) const {
4592   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4593 
4594   if (DisableSCO && !TailCallOpt) return false;
4595 
4596   // Variadic argument functions are not supported.
4597   if (isVarArg) return false;
4598 
4599   auto &Caller = DAG.getMachineFunction().getFunction();
4600   // Check that the calling conventions are compatible for tco.
4601   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4602     return false;
4603 
4604   // Caller contains any byval parameter is not supported.
4605   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4606     return false;
4607 
4608   // Callee contains any byval parameter is not supported, too.
4609   // Note: This is a quick work around, because in some cases, e.g.
4610   // caller's stack size > callee's stack size, we are still able to apply
4611   // sibling call optimization. For example, gcc is able to do SCO for caller1
4612   // in the following example, but not for caller2.
4613   //   struct test {
4614   //     long int a;
4615   //     char ary[56];
4616   //   } gTest;
4617   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4618   //     b->a = v.a;
4619   //     return 0;
4620   //   }
4621   //   void caller1(struct test a, struct test c, struct test *b) {
4622   //     callee(gTest, b); }
4623   //   void caller2(struct test *b) { callee(gTest, b); }
4624   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4625     return false;
4626 
4627   // If callee and caller use different calling conventions, we cannot pass
4628   // parameters on stack since offsets for the parameter area may be different.
4629   if (Caller.getCallingConv() != CalleeCC &&
4630       needStackSlotPassParameters(Subtarget, Outs))
4631     return false;
4632 
4633   // No TCO/SCO on indirect call because Caller have to restore its TOC
4634   if (!isFunctionGlobalAddress(Callee) &&
4635       !isa<ExternalSymbolSDNode>(Callee))
4636     return false;
4637 
4638   // If the caller and callee potentially have different TOC bases then we
4639   // cannot tail call since we need to restore the TOC pointer after the call.
4640   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4641   if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4642     return false;
4643 
4644   // TCO allows altering callee ABI, so we don't have to check further.
4645   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4646     return true;
4647 
4648   if (DisableSCO) return false;
4649 
4650   // If callee use the same argument list that caller is using, then we can
4651   // apply SCO on this case. If it is not, then we need to check if callee needs
4652   // stack for passing arguments.
4653   if (!hasSameArgumentList(&Caller, CS) &&
4654       needStackSlotPassParameters(Subtarget, Outs)) {
4655     return false;
4656   }
4657 
4658   return true;
4659 }
4660 
4661 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4662 /// for tail call optimization. Targets which want to do tail call
4663 /// optimization should implement this function.
4664 bool
4665 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4666                                                      CallingConv::ID CalleeCC,
4667                                                      bool isVarArg,
4668                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4669                                                      SelectionDAG& DAG) const {
4670   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4671     return false;
4672 
4673   // Variable argument functions are not supported.
4674   if (isVarArg)
4675     return false;
4676 
4677   MachineFunction &MF = DAG.getMachineFunction();
4678   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4679   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4680     // Functions containing by val parameters are not supported.
4681     for (unsigned i = 0; i != Ins.size(); i++) {
4682        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4683        if (Flags.isByVal()) return false;
4684     }
4685 
4686     // Non-PIC/GOT tail calls are supported.
4687     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4688       return true;
4689 
4690     // At the moment we can only do local tail calls (in same module, hidden
4691     // or protected) if we are generating PIC.
4692     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4693       return G->getGlobal()->hasHiddenVisibility()
4694           || G->getGlobal()->hasProtectedVisibility();
4695   }
4696 
4697   return false;
4698 }
4699 
4700 /// isCallCompatibleAddress - Return the immediate to use if the specified
4701 /// 32-bit value is representable in the immediate field of a BxA instruction.
4702 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4703   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4704   if (!C) return nullptr;
4705 
4706   int Addr = C->getZExtValue();
4707   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4708       SignExtend32<26>(Addr) != Addr)
4709     return nullptr;  // Top 6 bits have to be sext of immediate.
4710 
4711   return DAG
4712       .getConstant(
4713           (int)C->getZExtValue() >> 2, SDLoc(Op),
4714           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4715       .getNode();
4716 }
4717 
4718 namespace {
4719 
4720 struct TailCallArgumentInfo {
4721   SDValue Arg;
4722   SDValue FrameIdxOp;
4723   int FrameIdx = 0;
4724 
4725   TailCallArgumentInfo() = default;
4726 };
4727 
4728 } // end anonymous namespace
4729 
4730 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4731 static void StoreTailCallArgumentsToStackSlot(
4732     SelectionDAG &DAG, SDValue Chain,
4733     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4734     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4735   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4736     SDValue Arg = TailCallArgs[i].Arg;
4737     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4738     int FI = TailCallArgs[i].FrameIdx;
4739     // Store relative to framepointer.
4740     MemOpChains.push_back(DAG.getStore(
4741         Chain, dl, Arg, FIN,
4742         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4743   }
4744 }
4745 
4746 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4747 /// the appropriate stack slot for the tail call optimized function call.
4748 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4749                                              SDValue OldRetAddr, SDValue OldFP,
4750                                              int SPDiff, const SDLoc &dl) {
4751   if (SPDiff) {
4752     // Calculate the new stack slot for the return address.
4753     MachineFunction &MF = DAG.getMachineFunction();
4754     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4755     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4756     bool isPPC64 = Subtarget.isPPC64();
4757     int SlotSize = isPPC64 ? 8 : 4;
4758     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4759     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4760                                                          NewRetAddrLoc, true);
4761     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4762     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4763     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4764                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4765 
4766     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4767     // slot as the FP is never overwritten.
4768     if (Subtarget.isDarwinABI()) {
4769       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4770       int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
4771                                                          true);
4772       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4773       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
4774                            MachinePointerInfo::getFixedStack(
4775                                DAG.getMachineFunction(), NewFPIdx));
4776     }
4777   }
4778   return Chain;
4779 }
4780 
4781 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4782 /// the position of the argument.
4783 static void
4784 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4785                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4786                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4787   int Offset = ArgOffset + SPDiff;
4788   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4789   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4790   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4791   SDValue FIN = DAG.getFrameIndex(FI, VT);
4792   TailCallArgumentInfo Info;
4793   Info.Arg = Arg;
4794   Info.FrameIdxOp = FIN;
4795   Info.FrameIdx = FI;
4796   TailCallArguments.push_back(Info);
4797 }
4798 
4799 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4800 /// stack slot. Returns the chain as result and the loaded frame pointers in
4801 /// LROpOut/FPOpout. Used when tail calling.
4802 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4803     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4804     SDValue &FPOpOut, const SDLoc &dl) const {
4805   if (SPDiff) {
4806     // Load the LR and FP stack slot for later adjusting.
4807     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4808     LROpOut = getReturnAddrFrameIndex(DAG);
4809     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4810     Chain = SDValue(LROpOut.getNode(), 1);
4811 
4812     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4813     // slot as the FP is never overwritten.
4814     if (Subtarget.isDarwinABI()) {
4815       FPOpOut = getFramePointerFrameIndex(DAG);
4816       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
4817       Chain = SDValue(FPOpOut.getNode(), 1);
4818     }
4819   }
4820   return Chain;
4821 }
4822 
4823 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4824 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4825 /// specified by the specific parameter attribute. The copy will be passed as
4826 /// a byval function parameter.
4827 /// Sometimes what we are copying is the end of a larger object, the part that
4828 /// does not fit in registers.
4829 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4830                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4831                                          SelectionDAG &DAG, const SDLoc &dl) {
4832   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4833   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4834                        false, false, false, MachinePointerInfo(),
4835                        MachinePointerInfo());
4836 }
4837 
4838 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4839 /// tail calls.
4840 static void LowerMemOpCallTo(
4841     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4842     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4843     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4844     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4845   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4846   if (!isTailCall) {
4847     if (isVector) {
4848       SDValue StackPtr;
4849       if (isPPC64)
4850         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4851       else
4852         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4853       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4854                            DAG.getConstant(ArgOffset, dl, PtrVT));
4855     }
4856     MemOpChains.push_back(
4857         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4858     // Calculate and remember argument location.
4859   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4860                                   TailCallArguments);
4861 }
4862 
4863 static void
4864 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4865                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4866                 SDValue FPOp,
4867                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4868   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4869   // might overwrite each other in case of tail call optimization.
4870   SmallVector<SDValue, 8> MemOpChains2;
4871   // Do not flag preceding copytoreg stuff together with the following stuff.
4872   InFlag = SDValue();
4873   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4874                                     MemOpChains2, dl);
4875   if (!MemOpChains2.empty())
4876     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4877 
4878   // Store the return address to the appropriate stack slot.
4879   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4880 
4881   // Emit callseq_end just before tailcall node.
4882   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4883                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4884   InFlag = Chain.getValue(1);
4885 }
4886 
4887 // Is this global address that of a function that can be called by name? (as
4888 // opposed to something that must hold a descriptor for an indirect call).
4889 static bool isFunctionGlobalAddress(SDValue Callee) {
4890   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4891     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4892         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4893       return false;
4894 
4895     return G->getGlobal()->getValueType()->isFunctionTy();
4896   }
4897 
4898   return false;
4899 }
4900 
4901 static unsigned
4902 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
4903             SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
4904             bool isPatchPoint, bool hasNest,
4905             SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
4906             SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4907             ImmutableCallSite CS, const PPCSubtarget &Subtarget) {
4908   bool isPPC64 = Subtarget.isPPC64();
4909   bool isSVR4ABI = Subtarget.isSVR4ABI();
4910   bool isELFv2ABI = Subtarget.isELFv2ABI();
4911   bool isAIXABI = Subtarget.isAIXABI();
4912 
4913   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4914   NodeTys.push_back(MVT::Other);   // Returns a chain
4915   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
4916 
4917   unsigned CallOpc = PPCISD::CALL;
4918 
4919   bool needIndirectCall = true;
4920   if (!isSVR4ABI || !isPPC64)
4921     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4922       // If this is an absolute destination address, use the munged value.
4923       Callee = SDValue(Dest, 0);
4924       needIndirectCall = false;
4925     }
4926 
4927   // PC-relative references to external symbols should go through $stub, unless
4928   // we're building with the leopard linker or later, which automatically
4929   // synthesizes these stubs.
4930   const TargetMachine &TM = DAG.getTarget();
4931   MachineFunction &MF = DAG.getMachineFunction();
4932   const Module *Mod = MF.getFunction().getParent();
4933   const GlobalValue *GV = nullptr;
4934   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
4935     GV = G->getGlobal();
4936   bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
4937   bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64;
4938 
4939   if (isFunctionGlobalAddress(Callee)) {
4940     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4941 
4942     if (TM.getTargetTriple().isOSAIX()) {
4943       // Direct function calls reference the symbol for the function's entry
4944       // point, which is named by inserting a "." before the function's
4945       // C-linkage name.
4946       auto &Context = MF.getMMI().getContext();
4947       MCSymbol *S = Context.getOrCreateSymbol(Twine(".") +
4948                                               Twine(G->getGlobal()->getName()));
4949       cast<MCSymbolXCOFF>(S)->setGlobalValue(GV);
4950       Callee = DAG.getMCSymbol(S, PtrVT);
4951     } else {
4952       // A call to a TLS address is actually an indirect call to a
4953       // thread-specific pointer.
4954       unsigned OpFlags = 0;
4955       if (UsePlt)
4956         OpFlags = PPCII::MO_PLT;
4957 
4958       // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4959       // every direct call is) turn it into a TargetGlobalAddress /
4960       // TargetExternalSymbol node so that legalize doesn't hack it.
4961       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4962                                           Callee.getValueType(), 0, OpFlags);
4963     }
4964     needIndirectCall = false;
4965   }
4966 
4967   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4968     unsigned char OpFlags = 0;
4969 
4970     if (UsePlt)
4971       OpFlags = PPCII::MO_PLT;
4972 
4973     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
4974                                          OpFlags);
4975     needIndirectCall = false;
4976   }
4977 
4978   if (isPatchPoint) {
4979     // We'll form an invalid direct call when lowering a patchpoint; the full
4980     // sequence for an indirect call is complicated, and many of the
4981     // instructions introduced might have side effects (and, thus, can't be
4982     // removed later). The call itself will be removed as soon as the
4983     // argument/return lowering is complete, so the fact that it has the wrong
4984     // kind of operands should not really matter.
4985     needIndirectCall = false;
4986   }
4987 
4988   if (needIndirectCall) {
4989     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
4990     // to do the call, we can't use PPCISD::CALL.
4991     SDValue MTCTROps[] = {Chain, Callee, InFlag};
4992 
4993     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
4994       // Function pointers in the 64-bit SVR4 ABI do not point to the function
4995       // entry point, but to the function descriptor (the function entry point
4996       // address is part of the function descriptor though).
4997       // The function descriptor is a three doubleword structure with the
4998       // following fields: function entry point, TOC base address and
4999       // environment pointer.
5000       // Thus for a call through a function pointer, the following actions need
5001       // to be performed:
5002       //   1. Save the TOC of the caller in the TOC save area of its stack
5003       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5004       //   2. Load the address of the function entry point from the function
5005       //      descriptor.
5006       //   3. Load the TOC of the callee from the function descriptor into r2.
5007       //   4. Load the environment pointer from the function descriptor into
5008       //      r11.
5009       //   5. Branch to the function entry point address.
5010       //   6. On return of the callee, the TOC of the caller needs to be
5011       //      restored (this is done in FinishCall()).
5012       //
5013       // The loads are scheduled at the beginning of the call sequence, and the
5014       // register copies are flagged together to ensure that no other
5015       // operations can be scheduled in between. E.g. without flagging the
5016       // copies together, a TOC access in the caller could be scheduled between
5017       // the assignment of the callee TOC and the branch to the callee, which
5018       // results in the TOC access going through the TOC of the callee instead
5019       // of going through the TOC of the caller, which leads to incorrect code.
5020 
5021       // Load the address of the function entry point from the function
5022       // descriptor.
5023       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
5024       if (LDChain.getValueType() == MVT::Glue)
5025         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
5026 
5027       auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5028                           ? (MachineMemOperand::MODereferenceable |
5029                              MachineMemOperand::MOInvariant)
5030                           : MachineMemOperand::MONone;
5031 
5032       MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
5033       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
5034                                         /* Alignment = */ 8, MMOFlags);
5035 
5036       // Load environment pointer into r11.
5037       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
5038       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
5039       SDValue LoadEnvPtr =
5040           DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16),
5041                       /* Alignment = */ 8, MMOFlags);
5042 
5043       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
5044       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
5045       SDValue TOCPtr =
5046           DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8),
5047                       /* Alignment = */ 8, MMOFlags);
5048 
5049       setUsesTOCBasePtr(DAG);
5050       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
5051                                         InFlag);
5052       Chain = TOCVal.getValue(0);
5053       InFlag = TOCVal.getValue(1);
5054 
5055       // If the function call has an explicit 'nest' parameter, it takes the
5056       // place of the environment pointer.
5057       if (!hasNest) {
5058         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
5059                                           InFlag);
5060 
5061         Chain = EnvVal.getValue(0);
5062         InFlag = EnvVal.getValue(1);
5063       }
5064 
5065       MTCTROps[0] = Chain;
5066       MTCTROps[1] = LoadFuncPtr;
5067       MTCTROps[2] = InFlag;
5068     }
5069 
5070     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
5071                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
5072     InFlag = Chain.getValue(1);
5073 
5074     NodeTys.clear();
5075     NodeTys.push_back(MVT::Other);
5076     NodeTys.push_back(MVT::Glue);
5077     Ops.push_back(Chain);
5078     CallOpc = PPCISD::BCTRL;
5079     Callee.setNode(nullptr);
5080     // Add use of X11 (holding environment pointer)
5081     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
5082       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
5083     // Add CTR register as callee so a bctr can be emitted later.
5084     if (isTailCall)
5085       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
5086   }
5087 
5088   // If this is a direct call, pass the chain and the callee.
5089   if (Callee.getNode()) {
5090     Ops.push_back(Chain);
5091     Ops.push_back(Callee);
5092   }
5093   // If this is a tail call add stack pointer delta.
5094   if (isTailCall)
5095     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5096 
5097   // Add argument registers to the end of the list so that they are known live
5098   // into the call.
5099   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5100     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5101                                   RegsToPass[i].second.getValueType()));
5102 
5103   // All calls, in the AIX ABI and 64-bit ELF ABIs, need the TOC register
5104   // live into the call.
5105   // We do need to reserve R2/X2 to appease the verifier for the PATCHPOINT.
5106   if ((isSVR4ABI && isPPC64) || isAIXABI) {
5107     setUsesTOCBasePtr(DAG);
5108 
5109     // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5110     // no way to mark dependencies as implicit here.
5111     // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5112     if (!isPatchPoint)
5113       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::X2
5114                                             : PPC::R2, PtrVT));
5115   }
5116 
5117   return CallOpc;
5118 }
5119 
5120 SDValue PPCTargetLowering::LowerCallResult(
5121     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5122     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5123     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5124   SmallVector<CCValAssign, 16> RVLocs;
5125   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5126                     *DAG.getContext());
5127 
5128   CCRetInfo.AnalyzeCallResult(
5129       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5130                ? RetCC_PPC_Cold
5131                : RetCC_PPC);
5132 
5133   // Copy all of the result registers out of their specified physreg.
5134   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5135     CCValAssign &VA = RVLocs[i];
5136     assert(VA.isRegLoc() && "Can only return in registers!");
5137 
5138     SDValue Val;
5139 
5140     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5141       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5142                                       InFlag);
5143       Chain = Lo.getValue(1);
5144       InFlag = Lo.getValue(2);
5145       VA = RVLocs[++i]; // skip ahead to next loc
5146       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5147                                       InFlag);
5148       Chain = Hi.getValue(1);
5149       InFlag = Hi.getValue(2);
5150       if (!Subtarget.isLittleEndian())
5151         std::swap (Lo, Hi);
5152       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5153     } else {
5154       Val = DAG.getCopyFromReg(Chain, dl,
5155                                VA.getLocReg(), VA.getLocVT(), InFlag);
5156       Chain = Val.getValue(1);
5157       InFlag = Val.getValue(2);
5158     }
5159 
5160     switch (VA.getLocInfo()) {
5161     default: llvm_unreachable("Unknown loc info!");
5162     case CCValAssign::Full: break;
5163     case CCValAssign::AExt:
5164       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5165       break;
5166     case CCValAssign::ZExt:
5167       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5168                         DAG.getValueType(VA.getValVT()));
5169       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5170       break;
5171     case CCValAssign::SExt:
5172       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5173                         DAG.getValueType(VA.getValVT()));
5174       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5175       break;
5176     }
5177 
5178     InVals.push_back(Val);
5179   }
5180 
5181   return Chain;
5182 }
5183 
5184 SDValue PPCTargetLowering::FinishCall(
5185     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
5186     bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
5187     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
5188     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5189     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5190     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
5191   std::vector<EVT> NodeTys;
5192   SmallVector<SDValue, 8> Ops;
5193   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
5194                                  SPDiff, isTailCall, isPatchPoint, hasNest,
5195                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
5196 
5197   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5198   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
5199     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5200 
5201   // When performing tail call optimization the callee pops its arguments off
5202   // the stack. Account for this here so these bytes can be pushed back on in
5203   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5204   int BytesCalleePops =
5205     (CallConv == CallingConv::Fast &&
5206      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
5207 
5208   // Add a register mask operand representing the call-preserved registers.
5209   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5210   const uint32_t *Mask =
5211       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
5212   assert(Mask && "Missing call preserved mask for calling convention");
5213   Ops.push_back(DAG.getRegisterMask(Mask));
5214 
5215   if (InFlag.getNode())
5216     Ops.push_back(InFlag);
5217 
5218   // Emit tail call.
5219   if (isTailCall) {
5220     assert(((Callee.getOpcode() == ISD::Register &&
5221              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5222             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5223             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5224             isa<ConstantSDNode>(Callee)) &&
5225     "Expecting an global address, external symbol, absolute value or register");
5226 
5227     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5228     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
5229   }
5230 
5231   // Add a NOP immediately after the branch instruction when using the 64-bit
5232   // SVR4 or the AIX ABI.
5233   // At link time, if caller and callee are in a different module and
5234   // thus have a different TOC, the call will be replaced with a call to a stub
5235   // function which saves the current TOC, loads the TOC of the callee and
5236   // branches to the callee. The NOP will be replaced with a load instruction
5237   // which restores the TOC of the caller from the TOC save slot of the current
5238   // stack frame. If caller and callee belong to the same module (and have the
5239   // same TOC), the NOP will remain unchanged, or become some other NOP.
5240 
5241   MachineFunction &MF = DAG.getMachineFunction();
5242   if (!isTailCall && !isPatchPoint &&
5243       ((Subtarget.isSVR4ABI() && Subtarget.isPPC64()) ||
5244        Subtarget.isAIXABI())) {
5245     if (CallOpc == PPCISD::BCTRL) {
5246       if (Subtarget.isAIXABI())
5247         report_fatal_error("Indirect call on AIX is not implemented.");
5248 
5249       // This is a call through a function pointer.
5250       // Restore the caller TOC from the save area into R2.
5251       // See PrepareCall() for more information about calls through function
5252       // pointers in the 64-bit SVR4 ABI.
5253       // We are using a target-specific load with r2 hard coded, because the
5254       // result of a target-independent load would never go directly into r2,
5255       // since r2 is a reserved register (which prevents the register allocator
5256       // from allocating it), resulting in an additional register being
5257       // allocated and an unnecessary move instruction being generated.
5258       CallOpc = PPCISD::BCTRL_LOAD_TOC;
5259 
5260       EVT PtrVT = getPointerTy(DAG.getDataLayout());
5261       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
5262       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5263       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5264       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
5265 
5266       // The address needs to go after the chain input but before the flag (or
5267       // any other variadic arguments).
5268       Ops.insert(std::next(Ops.begin()), AddTOC);
5269     } else if (CallOpc == PPCISD::CALL &&
5270       !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) {
5271       // Otherwise insert NOP for non-local calls.
5272       CallOpc = PPCISD::CALL_NOP;
5273     }
5274   }
5275 
5276   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
5277   InFlag = Chain.getValue(1);
5278 
5279   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5280                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5281                              InFlag, dl);
5282   if (!Ins.empty())
5283     InFlag = Chain.getValue(1);
5284 
5285   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
5286                          Ins, dl, DAG, InVals);
5287 }
5288 
5289 SDValue
5290 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5291                              SmallVectorImpl<SDValue> &InVals) const {
5292   SelectionDAG &DAG                     = CLI.DAG;
5293   SDLoc &dl                             = CLI.DL;
5294   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5295   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5296   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5297   SDValue Chain                         = CLI.Chain;
5298   SDValue Callee                        = CLI.Callee;
5299   bool &isTailCall                      = CLI.IsTailCall;
5300   CallingConv::ID CallConv              = CLI.CallConv;
5301   bool isVarArg                         = CLI.IsVarArg;
5302   bool isPatchPoint                     = CLI.IsPatchPoint;
5303   ImmutableCallSite CS                  = CLI.CS;
5304 
5305   if (isTailCall) {
5306     if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
5307       isTailCall = false;
5308     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5309       isTailCall =
5310         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
5311                                                  isVarArg, Outs, Ins, DAG);
5312     else
5313       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5314                                                      Ins, DAG);
5315     if (isTailCall) {
5316       ++NumTailCalls;
5317       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5318         ++NumSiblingCalls;
5319 
5320       assert(isa<GlobalAddressSDNode>(Callee) &&
5321              "Callee should be an llvm::Function object.");
5322       LLVM_DEBUG(
5323           const GlobalValue *GV =
5324               cast<GlobalAddressSDNode>(Callee)->getGlobal();
5325           const unsigned Width =
5326               80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0");
5327           dbgs() << "TCO caller: "
5328                  << left_justify(DAG.getMachineFunction().getName(), Width)
5329                  << ", callee linkage: " << GV->getVisibility() << ", "
5330                  << GV->getLinkage() << "\n");
5331     }
5332   }
5333 
5334   if (!isTailCall && CS && CS.isMustTailCall())
5335     report_fatal_error("failed to perform tail call elimination on a call "
5336                        "site marked musttail");
5337 
5338   // When long calls (i.e. indirect calls) are always used, calls are always
5339   // made via function pointer. If we have a function name, first translate it
5340   // into a pointer.
5341   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5342       !isTailCall)
5343     Callee = LowerGlobalAddress(Callee, DAG);
5344 
5345   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5346     return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
5347                             isTailCall, isPatchPoint, Outs, OutVals, Ins,
5348                             dl, DAG, InVals, CS);
5349 
5350   if (Subtarget.isSVR4ABI())
5351     return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
5352                             isTailCall, isPatchPoint, Outs, OutVals, Ins,
5353                             dl, DAG, InVals, CS);
5354 
5355   if (Subtarget.isAIXABI())
5356     return LowerCall_AIX(Chain, Callee, CallConv, isVarArg,
5357                          isTailCall, isPatchPoint, Outs, OutVals, Ins,
5358                          dl, DAG, InVals, CS);
5359 
5360   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
5361                           isTailCall, isPatchPoint, Outs, OutVals, Ins,
5362                           dl, DAG, InVals, CS);
5363 }
5364 
5365 SDValue PPCTargetLowering::LowerCall_32SVR4(
5366     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5367     bool isTailCall, bool isPatchPoint,
5368     const SmallVectorImpl<ISD::OutputArg> &Outs,
5369     const SmallVectorImpl<SDValue> &OutVals,
5370     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5371     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5372     ImmutableCallSite CS) const {
5373   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5374   // of the 32-bit SVR4 ABI stack frame layout.
5375 
5376   assert((CallConv == CallingConv::C ||
5377           CallConv == CallingConv::Cold ||
5378           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5379 
5380   unsigned PtrByteSize = 4;
5381 
5382   MachineFunction &MF = DAG.getMachineFunction();
5383 
5384   // Mark this function as potentially containing a function that contains a
5385   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5386   // and restoring the callers stack pointer in this functions epilog. This is
5387   // done because by tail calling the called function might overwrite the value
5388   // in this function's (MF) stack pointer stack slot 0(SP).
5389   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5390       CallConv == CallingConv::Fast)
5391     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5392 
5393   // Count how many bytes are to be pushed on the stack, including the linkage
5394   // area, parameter list area and the part of the local variable space which
5395   // contains copies of aggregates which are passed by value.
5396 
5397   // Assign locations to all of the outgoing arguments.
5398   SmallVector<CCValAssign, 16> ArgLocs;
5399   PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
5400 
5401   // Reserve space for the linkage area on the stack.
5402   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5403                        PtrByteSize);
5404   if (useSoftFloat())
5405     CCInfo.PreAnalyzeCallOperands(Outs);
5406 
5407   if (isVarArg) {
5408     // Handle fixed and variable vector arguments differently.
5409     // Fixed vector arguments go into registers as long as registers are
5410     // available. Variable vector arguments always go into memory.
5411     unsigned NumArgs = Outs.size();
5412 
5413     for (unsigned i = 0; i != NumArgs; ++i) {
5414       MVT ArgVT = Outs[i].VT;
5415       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5416       bool Result;
5417 
5418       if (Outs[i].IsFixed) {
5419         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5420                                CCInfo);
5421       } else {
5422         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5423                                       ArgFlags, CCInfo);
5424       }
5425 
5426       if (Result) {
5427 #ifndef NDEBUG
5428         errs() << "Call operand #" << i << " has unhandled type "
5429              << EVT(ArgVT).getEVTString() << "\n";
5430 #endif
5431         llvm_unreachable(nullptr);
5432       }
5433     }
5434   } else {
5435     // All arguments are treated the same.
5436     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5437   }
5438   CCInfo.clearWasPPCF128();
5439 
5440   // Assign locations to all of the outgoing aggregate by value arguments.
5441   SmallVector<CCValAssign, 16> ByValArgLocs;
5442   CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
5443 
5444   // Reserve stack space for the allocations in CCInfo.
5445   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
5446 
5447   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5448 
5449   // Size of the linkage area, parameter list area and the part of the local
5450   // space variable where copies of aggregates which are passed by value are
5451   // stored.
5452   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5453 
5454   // Calculate by how many bytes the stack has to be adjusted in case of tail
5455   // call optimization.
5456   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5457 
5458   // Adjust the stack pointer for the new arguments...
5459   // These operations are automatically eliminated by the prolog/epilog pass
5460   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5461   SDValue CallSeqStart = Chain;
5462 
5463   // Load the return address and frame pointer so it can be moved somewhere else
5464   // later.
5465   SDValue LROp, FPOp;
5466   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5467 
5468   // Set up a copy of the stack pointer for use loading and storing any
5469   // arguments that may not fit in the registers available for argument
5470   // passing.
5471   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5472 
5473   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5474   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5475   SmallVector<SDValue, 8> MemOpChains;
5476 
5477   bool seenFloatArg = false;
5478   // Walk the register/memloc assignments, inserting copies/loads.
5479   // i - Tracks the index into the list of registers allocated for the call
5480   // RealArgIdx - Tracks the index into the list of actual function arguments
5481   // j - Tracks the index into the list of byval arguments
5482   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5483        i != e;
5484        ++i, ++RealArgIdx) {
5485     CCValAssign &VA = ArgLocs[i];
5486     SDValue Arg = OutVals[RealArgIdx];
5487     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5488 
5489     if (Flags.isByVal()) {
5490       // Argument is an aggregate which is passed by value, thus we need to
5491       // create a copy of it in the local variable space of the current stack
5492       // frame (which is the stack frame of the caller) and pass the address of
5493       // this copy to the callee.
5494       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5495       CCValAssign &ByValVA = ByValArgLocs[j++];
5496       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5497 
5498       // Memory reserved in the local variable space of the callers stack frame.
5499       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5500 
5501       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5502       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5503                            StackPtr, PtrOff);
5504 
5505       // Create a copy of the argument in the local area of the current
5506       // stack frame.
5507       SDValue MemcpyCall =
5508         CreateCopyOfByValArgument(Arg, PtrOff,
5509                                   CallSeqStart.getNode()->getOperand(0),
5510                                   Flags, DAG, dl);
5511 
5512       // This must go outside the CALLSEQ_START..END.
5513       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5514                                                      SDLoc(MemcpyCall));
5515       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5516                              NewCallSeqStart.getNode());
5517       Chain = CallSeqStart = NewCallSeqStart;
5518 
5519       // Pass the address of the aggregate copy on the stack either in a
5520       // physical register or in the parameter list area of the current stack
5521       // frame to the callee.
5522       Arg = PtrOff;
5523     }
5524 
5525     // When useCRBits() is true, there can be i1 arguments.
5526     // It is because getRegisterType(MVT::i1) => MVT::i1,
5527     // and for other integer types getRegisterType() => MVT::i32.
5528     // Extend i1 and ensure callee will get i32.
5529     if (Arg.getValueType() == MVT::i1)
5530       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5531                         dl, MVT::i32, Arg);
5532 
5533     if (VA.isRegLoc()) {
5534       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5535       // Put argument in a physical register.
5536       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5537         bool IsLE = Subtarget.isLittleEndian();
5538         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5539                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5540         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5541         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5542                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5543         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5544                              SVal.getValue(0)));
5545       } else
5546         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5547     } else {
5548       // Put argument in the parameter list area of the current stack frame.
5549       assert(VA.isMemLoc());
5550       unsigned LocMemOffset = VA.getLocMemOffset();
5551 
5552       if (!isTailCall) {
5553         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5554         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5555                              StackPtr, PtrOff);
5556 
5557         MemOpChains.push_back(
5558             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5559       } else {
5560         // Calculate and remember argument location.
5561         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5562                                  TailCallArguments);
5563       }
5564     }
5565   }
5566 
5567   if (!MemOpChains.empty())
5568     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5569 
5570   // Build a sequence of copy-to-reg nodes chained together with token chain
5571   // and flag operands which copy the outgoing args into the appropriate regs.
5572   SDValue InFlag;
5573   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5574     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5575                              RegsToPass[i].second, InFlag);
5576     InFlag = Chain.getValue(1);
5577   }
5578 
5579   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5580   // registers.
5581   if (isVarArg) {
5582     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5583     SDValue Ops[] = { Chain, InFlag };
5584 
5585     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5586                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5587 
5588     InFlag = Chain.getValue(1);
5589   }
5590 
5591   if (isTailCall)
5592     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5593                     TailCallArguments);
5594 
5595   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5596                     /* unused except on PPC64 ELFv1 */ false, DAG,
5597                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5598                     NumBytes, Ins, InVals, CS);
5599 }
5600 
5601 // Copy an argument into memory, being careful to do this outside the
5602 // call sequence for the call to which the argument belongs.
5603 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5604     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5605     SelectionDAG &DAG, const SDLoc &dl) const {
5606   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5607                         CallSeqStart.getNode()->getOperand(0),
5608                         Flags, DAG, dl);
5609   // The MEMCPY must go outside the CALLSEQ_START..END.
5610   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5611   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5612                                                  SDLoc(MemcpyCall));
5613   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5614                          NewCallSeqStart.getNode());
5615   return NewCallSeqStart;
5616 }
5617 
5618 SDValue PPCTargetLowering::LowerCall_64SVR4(
5619     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5620     bool isTailCall, bool isPatchPoint,
5621     const SmallVectorImpl<ISD::OutputArg> &Outs,
5622     const SmallVectorImpl<SDValue> &OutVals,
5623     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5624     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5625     ImmutableCallSite CS) const {
5626   bool isELFv2ABI = Subtarget.isELFv2ABI();
5627   bool isLittleEndian = Subtarget.isLittleEndian();
5628   unsigned NumOps = Outs.size();
5629   bool hasNest = false;
5630   bool IsSibCall = false;
5631 
5632   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5633   unsigned PtrByteSize = 8;
5634 
5635   MachineFunction &MF = DAG.getMachineFunction();
5636 
5637   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5638     IsSibCall = true;
5639 
5640   // Mark this function as potentially containing a function that contains a
5641   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5642   // and restoring the callers stack pointer in this functions epilog. This is
5643   // done because by tail calling the called function might overwrite the value
5644   // in this function's (MF) stack pointer stack slot 0(SP).
5645   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5646       CallConv == CallingConv::Fast)
5647     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5648 
5649   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5650          "fastcc not supported on varargs functions");
5651 
5652   // Count how many bytes are to be pushed on the stack, including the linkage
5653   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5654   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5655   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5656   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5657   unsigned NumBytes = LinkageSize;
5658   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5659   unsigned &QFPR_idx = FPR_idx;
5660 
5661   static const MCPhysReg GPR[] = {
5662     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5663     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5664   };
5665   static const MCPhysReg VR[] = {
5666     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5667     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5668   };
5669 
5670   const unsigned NumGPRs = array_lengthof(GPR);
5671   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5672   const unsigned NumVRs  = array_lengthof(VR);
5673   const unsigned NumQFPRs = NumFPRs;
5674 
5675   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5676   // can be passed to the callee in registers.
5677   // For the fast calling convention, there is another check below.
5678   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5679   bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
5680   if (!HasParameterArea) {
5681     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5682     unsigned AvailableFPRs = NumFPRs;
5683     unsigned AvailableVRs = NumVRs;
5684     unsigned NumBytesTmp = NumBytes;
5685     for (unsigned i = 0; i != NumOps; ++i) {
5686       if (Outs[i].Flags.isNest()) continue;
5687       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5688                                 PtrByteSize, LinkageSize, ParamAreaSize,
5689                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
5690                                 Subtarget.hasQPX()))
5691         HasParameterArea = true;
5692     }
5693   }
5694 
5695   // When using the fast calling convention, we don't provide backing for
5696   // arguments that will be in registers.
5697   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5698 
5699   // Avoid allocating parameter area for fastcc functions if all the arguments
5700   // can be passed in the registers.
5701   if (CallConv == CallingConv::Fast)
5702     HasParameterArea = false;
5703 
5704   // Add up all the space actually used.
5705   for (unsigned i = 0; i != NumOps; ++i) {
5706     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5707     EVT ArgVT = Outs[i].VT;
5708     EVT OrigVT = Outs[i].ArgVT;
5709 
5710     if (Flags.isNest())
5711       continue;
5712 
5713     if (CallConv == CallingConv::Fast) {
5714       if (Flags.isByVal()) {
5715         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5716         if (NumGPRsUsed > NumGPRs)
5717           HasParameterArea = true;
5718       } else {
5719         switch (ArgVT.getSimpleVT().SimpleTy) {
5720         default: llvm_unreachable("Unexpected ValueType for argument!");
5721         case MVT::i1:
5722         case MVT::i32:
5723         case MVT::i64:
5724           if (++NumGPRsUsed <= NumGPRs)
5725             continue;
5726           break;
5727         case MVT::v4i32:
5728         case MVT::v8i16:
5729         case MVT::v16i8:
5730         case MVT::v2f64:
5731         case MVT::v2i64:
5732         case MVT::v1i128:
5733         case MVT::f128:
5734           if (++NumVRsUsed <= NumVRs)
5735             continue;
5736           break;
5737         case MVT::v4f32:
5738           // When using QPX, this is handled like a FP register, otherwise, it
5739           // is an Altivec register.
5740           if (Subtarget.hasQPX()) {
5741             if (++NumFPRsUsed <= NumFPRs)
5742               continue;
5743           } else {
5744             if (++NumVRsUsed <= NumVRs)
5745               continue;
5746           }
5747           break;
5748         case MVT::f32:
5749         case MVT::f64:
5750         case MVT::v4f64: // QPX
5751         case MVT::v4i1:  // QPX
5752           if (++NumFPRsUsed <= NumFPRs)
5753             continue;
5754           break;
5755         }
5756         HasParameterArea = true;
5757       }
5758     }
5759 
5760     /* Respect alignment of argument on the stack.  */
5761     unsigned Align =
5762       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5763     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5764 
5765     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5766     if (Flags.isInConsecutiveRegsLast())
5767       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5768   }
5769 
5770   unsigned NumBytesActuallyUsed = NumBytes;
5771 
5772   // In the old ELFv1 ABI,
5773   // the prolog code of the callee may store up to 8 GPR argument registers to
5774   // the stack, allowing va_start to index over them in memory if its varargs.
5775   // Because we cannot tell if this is needed on the caller side, we have to
5776   // conservatively assume that it is needed.  As such, make sure we have at
5777   // least enough stack space for the caller to store the 8 GPRs.
5778   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5779   // really requires memory operands, e.g. a vararg function.
5780   if (HasParameterArea)
5781     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5782   else
5783     NumBytes = LinkageSize;
5784 
5785   // Tail call needs the stack to be aligned.
5786   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5787       CallConv == CallingConv::Fast)
5788     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5789 
5790   int SPDiff = 0;
5791 
5792   // Calculate by how many bytes the stack has to be adjusted in case of tail
5793   // call optimization.
5794   if (!IsSibCall)
5795     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5796 
5797   // To protect arguments on the stack from being clobbered in a tail call,
5798   // force all the loads to happen before doing any other lowering.
5799   if (isTailCall)
5800     Chain = DAG.getStackArgumentTokenFactor(Chain);
5801 
5802   // Adjust the stack pointer for the new arguments...
5803   // These operations are automatically eliminated by the prolog/epilog pass
5804   if (!IsSibCall)
5805     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5806   SDValue CallSeqStart = Chain;
5807 
5808   // Load the return address and frame pointer so it can be move somewhere else
5809   // later.
5810   SDValue LROp, FPOp;
5811   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5812 
5813   // Set up a copy of the stack pointer for use loading and storing any
5814   // arguments that may not fit in the registers available for argument
5815   // passing.
5816   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5817 
5818   // Figure out which arguments are going to go in registers, and which in
5819   // memory.  Also, if this is a vararg function, floating point operations
5820   // must be stored to our stack, and loaded into integer regs as well, if
5821   // any integer regs are available for argument passing.
5822   unsigned ArgOffset = LinkageSize;
5823 
5824   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5825   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5826 
5827   SmallVector<SDValue, 8> MemOpChains;
5828   for (unsigned i = 0; i != NumOps; ++i) {
5829     SDValue Arg = OutVals[i];
5830     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5831     EVT ArgVT = Outs[i].VT;
5832     EVT OrigVT = Outs[i].ArgVT;
5833 
5834     // PtrOff will be used to store the current argument to the stack if a
5835     // register cannot be found for it.
5836     SDValue PtrOff;
5837 
5838     // We re-align the argument offset for each argument, except when using the
5839     // fast calling convention, when we need to make sure we do that only when
5840     // we'll actually use a stack slot.
5841     auto ComputePtrOff = [&]() {
5842       /* Respect alignment of argument on the stack.  */
5843       unsigned Align =
5844         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5845       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
5846 
5847       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5848 
5849       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5850     };
5851 
5852     if (CallConv != CallingConv::Fast) {
5853       ComputePtrOff();
5854 
5855       /* Compute GPR index associated with argument offset.  */
5856       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5857       GPR_idx = std::min(GPR_idx, NumGPRs);
5858     }
5859 
5860     // Promote integers to 64-bit values.
5861     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5862       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5863       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5864       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5865     }
5866 
5867     // FIXME memcpy is used way more than necessary.  Correctness first.
5868     // Note: "by value" is code for passing a structure by value, not
5869     // basic types.
5870     if (Flags.isByVal()) {
5871       // Note: Size includes alignment padding, so
5872       //   struct x { short a; char b; }
5873       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
5874       // These are the proper values we need for right-justifying the
5875       // aggregate in a parameter register.
5876       unsigned Size = Flags.getByValSize();
5877 
5878       // An empty aggregate parameter takes up no storage and no
5879       // registers.
5880       if (Size == 0)
5881         continue;
5882 
5883       if (CallConv == CallingConv::Fast)
5884         ComputePtrOff();
5885 
5886       // All aggregates smaller than 8 bytes must be passed right-justified.
5887       if (Size==1 || Size==2 || Size==4) {
5888         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
5889         if (GPR_idx != NumGPRs) {
5890           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5891                                         MachinePointerInfo(), VT);
5892           MemOpChains.push_back(Load.getValue(1));
5893           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5894 
5895           ArgOffset += PtrByteSize;
5896           continue;
5897         }
5898       }
5899 
5900       if (GPR_idx == NumGPRs && Size < 8) {
5901         SDValue AddPtr = PtrOff;
5902         if (!isLittleEndian) {
5903           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5904                                           PtrOff.getValueType());
5905           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5906         }
5907         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5908                                                           CallSeqStart,
5909                                                           Flags, DAG, dl);
5910         ArgOffset += PtrByteSize;
5911         continue;
5912       }
5913       // Copy entire object into memory.  There are cases where gcc-generated
5914       // code assumes it is there, even if it could be put entirely into
5915       // registers.  (This is not what the doc says.)
5916 
5917       // FIXME: The above statement is likely due to a misunderstanding of the
5918       // documents.  All arguments must be copied into the parameter area BY
5919       // THE CALLEE in the event that the callee takes the address of any
5920       // formal argument.  That has not yet been implemented.  However, it is
5921       // reasonable to use the stack area as a staging area for the register
5922       // load.
5923 
5924       // Skip this for small aggregates, as we will use the same slot for a
5925       // right-justified copy, below.
5926       if (Size >= 8)
5927         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5928                                                           CallSeqStart,
5929                                                           Flags, DAG, dl);
5930 
5931       // When a register is available, pass a small aggregate right-justified.
5932       if (Size < 8 && GPR_idx != NumGPRs) {
5933         // The easiest way to get this right-justified in a register
5934         // is to copy the structure into the rightmost portion of a
5935         // local variable slot, then load the whole slot into the
5936         // register.
5937         // FIXME: The memcpy seems to produce pretty awful code for
5938         // small aggregates, particularly for packed ones.
5939         // FIXME: It would be preferable to use the slot in the
5940         // parameter save area instead of a new local variable.
5941         SDValue AddPtr = PtrOff;
5942         if (!isLittleEndian) {
5943           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5944           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5945         }
5946         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5947                                                           CallSeqStart,
5948                                                           Flags, DAG, dl);
5949 
5950         // Load the slot into the register.
5951         SDValue Load =
5952             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
5953         MemOpChains.push_back(Load.getValue(1));
5954         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5955 
5956         // Done with this argument.
5957         ArgOffset += PtrByteSize;
5958         continue;
5959       }
5960 
5961       // For aggregates larger than PtrByteSize, copy the pieces of the
5962       // object that fit into registers from the parameter save area.
5963       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5964         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5965         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5966         if (GPR_idx != NumGPRs) {
5967           SDValue Load =
5968               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
5969           MemOpChains.push_back(Load.getValue(1));
5970           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5971           ArgOffset += PtrByteSize;
5972         } else {
5973           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5974           break;
5975         }
5976       }
5977       continue;
5978     }
5979 
5980     switch (Arg.getSimpleValueType().SimpleTy) {
5981     default: llvm_unreachable("Unexpected ValueType for argument!");
5982     case MVT::i1:
5983     case MVT::i32:
5984     case MVT::i64:
5985       if (Flags.isNest()) {
5986         // The 'nest' parameter, if any, is passed in R11.
5987         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
5988         hasNest = true;
5989         break;
5990       }
5991 
5992       // These can be scalar arguments or elements of an integer array type
5993       // passed directly.  Clang may use those instead of "byval" aggregate
5994       // types to avoid forcing arguments to memory unnecessarily.
5995       if (GPR_idx != NumGPRs) {
5996         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5997       } else {
5998         if (CallConv == CallingConv::Fast)
5999           ComputePtrOff();
6000 
6001         assert(HasParameterArea &&
6002                "Parameter area must exist to pass an argument in memory.");
6003         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6004                          true, isTailCall, false, MemOpChains,
6005                          TailCallArguments, dl);
6006         if (CallConv == CallingConv::Fast)
6007           ArgOffset += PtrByteSize;
6008       }
6009       if (CallConv != CallingConv::Fast)
6010         ArgOffset += PtrByteSize;
6011       break;
6012     case MVT::f32:
6013     case MVT::f64: {
6014       // These can be scalar arguments or elements of a float array type
6015       // passed directly.  The latter are used to implement ELFv2 homogenous
6016       // float aggregates.
6017 
6018       // Named arguments go into FPRs first, and once they overflow, the
6019       // remaining arguments go into GPRs and then the parameter save area.
6020       // Unnamed arguments for vararg functions always go to GPRs and
6021       // then the parameter save area.  For now, put all arguments to vararg
6022       // routines always in both locations (FPR *and* GPR or stack slot).
6023       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
6024       bool NeededLoad = false;
6025 
6026       // First load the argument into the next available FPR.
6027       if (FPR_idx != NumFPRs)
6028         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6029 
6030       // Next, load the argument into GPR or stack slot if needed.
6031       if (!NeedGPROrStack)
6032         ;
6033       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
6034         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6035         // once we support fp <-> gpr moves.
6036 
6037         // In the non-vararg case, this can only ever happen in the
6038         // presence of f32 array types, since otherwise we never run
6039         // out of FPRs before running out of GPRs.
6040         SDValue ArgVal;
6041 
6042         // Double values are always passed in a single GPR.
6043         if (Arg.getValueType() != MVT::f32) {
6044           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6045 
6046         // Non-array float values are extended and passed in a GPR.
6047         } else if (!Flags.isInConsecutiveRegs()) {
6048           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6049           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6050 
6051         // If we have an array of floats, we collect every odd element
6052         // together with its predecessor into one GPR.
6053         } else if (ArgOffset % PtrByteSize != 0) {
6054           SDValue Lo, Hi;
6055           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6056           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6057           if (!isLittleEndian)
6058             std::swap(Lo, Hi);
6059           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6060 
6061         // The final element, if even, goes into the first half of a GPR.
6062         } else if (Flags.isInConsecutiveRegsLast()) {
6063           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6064           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6065           if (!isLittleEndian)
6066             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6067                                  DAG.getConstant(32, dl, MVT::i32));
6068 
6069         // Non-final even elements are skipped; they will be handled
6070         // together the with subsequent argument on the next go-around.
6071         } else
6072           ArgVal = SDValue();
6073 
6074         if (ArgVal.getNode())
6075           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6076       } else {
6077         if (CallConv == CallingConv::Fast)
6078           ComputePtrOff();
6079 
6080         // Single-precision floating-point values are mapped to the
6081         // second (rightmost) word of the stack doubleword.
6082         if (Arg.getValueType() == MVT::f32 &&
6083             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6084           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6085           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6086         }
6087 
6088         assert(HasParameterArea &&
6089                "Parameter area must exist to pass an argument in memory.");
6090         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6091                          true, isTailCall, false, MemOpChains,
6092                          TailCallArguments, dl);
6093 
6094         NeededLoad = true;
6095       }
6096       // When passing an array of floats, the array occupies consecutive
6097       // space in the argument area; only round up to the next doubleword
6098       // at the end of the array.  Otherwise, each float takes 8 bytes.
6099       if (CallConv != CallingConv::Fast || NeededLoad) {
6100         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6101                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6102         if (Flags.isInConsecutiveRegsLast())
6103           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6104       }
6105       break;
6106     }
6107     case MVT::v4f32:
6108     case MVT::v4i32:
6109     case MVT::v8i16:
6110     case MVT::v16i8:
6111     case MVT::v2f64:
6112     case MVT::v2i64:
6113     case MVT::v1i128:
6114     case MVT::f128:
6115       if (!Subtarget.hasQPX()) {
6116       // These can be scalar arguments or elements of a vector array type
6117       // passed directly.  The latter are used to implement ELFv2 homogenous
6118       // vector aggregates.
6119 
6120       // For a varargs call, named arguments go into VRs or on the stack as
6121       // usual; unnamed arguments always go to the stack or the corresponding
6122       // GPRs when within range.  For now, we always put the value in both
6123       // locations (or even all three).
6124       if (isVarArg) {
6125         assert(HasParameterArea &&
6126                "Parameter area must exist if we have a varargs call.");
6127         // We could elide this store in the case where the object fits
6128         // entirely in R registers.  Maybe later.
6129         SDValue Store =
6130             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6131         MemOpChains.push_back(Store);
6132         if (VR_idx != NumVRs) {
6133           SDValue Load =
6134               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6135           MemOpChains.push_back(Load.getValue(1));
6136           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6137         }
6138         ArgOffset += 16;
6139         for (unsigned i=0; i<16; i+=PtrByteSize) {
6140           if (GPR_idx == NumGPRs)
6141             break;
6142           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6143                                    DAG.getConstant(i, dl, PtrVT));
6144           SDValue Load =
6145               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6146           MemOpChains.push_back(Load.getValue(1));
6147           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6148         }
6149         break;
6150       }
6151 
6152       // Non-varargs Altivec params go into VRs or on the stack.
6153       if (VR_idx != NumVRs) {
6154         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6155       } else {
6156         if (CallConv == CallingConv::Fast)
6157           ComputePtrOff();
6158 
6159         assert(HasParameterArea &&
6160                "Parameter area must exist to pass an argument in memory.");
6161         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6162                          true, isTailCall, true, MemOpChains,
6163                          TailCallArguments, dl);
6164         if (CallConv == CallingConv::Fast)
6165           ArgOffset += 16;
6166       }
6167 
6168       if (CallConv != CallingConv::Fast)
6169         ArgOffset += 16;
6170       break;
6171       } // not QPX
6172 
6173       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
6174              "Invalid QPX parameter type");
6175 
6176       LLVM_FALLTHROUGH;
6177     case MVT::v4f64:
6178     case MVT::v4i1: {
6179       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
6180       if (isVarArg) {
6181         assert(HasParameterArea &&
6182                "Parameter area must exist if we have a varargs call.");
6183         // We could elide this store in the case where the object fits
6184         // entirely in R registers.  Maybe later.
6185         SDValue Store =
6186             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6187         MemOpChains.push_back(Store);
6188         if (QFPR_idx != NumQFPRs) {
6189           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
6190                                      PtrOff, MachinePointerInfo());
6191           MemOpChains.push_back(Load.getValue(1));
6192           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
6193         }
6194         ArgOffset += (IsF32 ? 16 : 32);
6195         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
6196           if (GPR_idx == NumGPRs)
6197             break;
6198           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6199                                    DAG.getConstant(i, dl, PtrVT));
6200           SDValue Load =
6201               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6202           MemOpChains.push_back(Load.getValue(1));
6203           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6204         }
6205         break;
6206       }
6207 
6208       // Non-varargs QPX params go into registers or on the stack.
6209       if (QFPR_idx != NumQFPRs) {
6210         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
6211       } else {
6212         if (CallConv == CallingConv::Fast)
6213           ComputePtrOff();
6214 
6215         assert(HasParameterArea &&
6216                "Parameter area must exist to pass an argument in memory.");
6217         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6218                          true, isTailCall, true, MemOpChains,
6219                          TailCallArguments, dl);
6220         if (CallConv == CallingConv::Fast)
6221           ArgOffset += (IsF32 ? 16 : 32);
6222       }
6223 
6224       if (CallConv != CallingConv::Fast)
6225         ArgOffset += (IsF32 ? 16 : 32);
6226       break;
6227       }
6228     }
6229   }
6230 
6231   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6232          "mismatch in size of parameter area");
6233   (void)NumBytesActuallyUsed;
6234 
6235   if (!MemOpChains.empty())
6236     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6237 
6238   // Check if this is an indirect call (MTCTR/BCTRL).
6239   // See PrepareCall() for more information about calls through function
6240   // pointers in the 64-bit SVR4 ABI.
6241   if (!isTailCall && !isPatchPoint &&
6242       !isFunctionGlobalAddress(Callee) &&
6243       !isa<ExternalSymbolSDNode>(Callee)) {
6244     // Load r2 into a virtual register and store it to the TOC save area.
6245     setUsesTOCBasePtr(DAG);
6246     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6247     // TOC save area offset.
6248     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6249     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6250     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6251     Chain = DAG.getStore(
6252         Val.getValue(1), dl, Val, AddPtr,
6253         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
6254     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6255     // This does not mean the MTCTR instruction must use R12; it's easier
6256     // to model this as an extra parameter, so do that.
6257     if (isELFv2ABI && !isPatchPoint)
6258       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6259   }
6260 
6261   // Build a sequence of copy-to-reg nodes chained together with token chain
6262   // and flag operands which copy the outgoing args into the appropriate regs.
6263   SDValue InFlag;
6264   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6265     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6266                              RegsToPass[i].second, InFlag);
6267     InFlag = Chain.getValue(1);
6268   }
6269 
6270   if (isTailCall && !IsSibCall)
6271     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6272                     TailCallArguments);
6273 
6274   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
6275                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
6276                     SPDiff, NumBytes, Ins, InVals, CS);
6277 }
6278 
6279 SDValue PPCTargetLowering::LowerCall_Darwin(
6280     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
6281     bool isTailCall, bool isPatchPoint,
6282     const SmallVectorImpl<ISD::OutputArg> &Outs,
6283     const SmallVectorImpl<SDValue> &OutVals,
6284     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6285     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6286     ImmutableCallSite CS) const {
6287   unsigned NumOps = Outs.size();
6288 
6289   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6290   bool isPPC64 = PtrVT == MVT::i64;
6291   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6292 
6293   MachineFunction &MF = DAG.getMachineFunction();
6294 
6295   // Mark this function as potentially containing a function that contains a
6296   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6297   // and restoring the callers stack pointer in this functions epilog. This is
6298   // done because by tail calling the called function might overwrite the value
6299   // in this function's (MF) stack pointer stack slot 0(SP).
6300   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6301       CallConv == CallingConv::Fast)
6302     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6303 
6304   // Count how many bytes are to be pushed on the stack, including the linkage
6305   // area, and parameter passing area.  We start with 24/48 bytes, which is
6306   // prereserved space for [SP][CR][LR][3 x unused].
6307   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6308   unsigned NumBytes = LinkageSize;
6309 
6310   // Add up all the space actually used.
6311   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6312   // they all go in registers, but we must reserve stack space for them for
6313   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6314   // assigned stack space in order, with padding so Altivec parameters are
6315   // 16-byte aligned.
6316   unsigned nAltivecParamsAtEnd = 0;
6317   for (unsigned i = 0; i != NumOps; ++i) {
6318     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6319     EVT ArgVT = Outs[i].VT;
6320     // Varargs Altivec parameters are padded to a 16 byte boundary.
6321     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6322         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6323         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6324       if (!isVarArg && !isPPC64) {
6325         // Non-varargs Altivec parameters go after all the non-Altivec
6326         // parameters; handle those later so we know how much padding we need.
6327         nAltivecParamsAtEnd++;
6328         continue;
6329       }
6330       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6331       NumBytes = ((NumBytes+15)/16)*16;
6332     }
6333     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6334   }
6335 
6336   // Allow for Altivec parameters at the end, if needed.
6337   if (nAltivecParamsAtEnd) {
6338     NumBytes = ((NumBytes+15)/16)*16;
6339     NumBytes += 16*nAltivecParamsAtEnd;
6340   }
6341 
6342   // The prolog code of the callee may store up to 8 GPR argument registers to
6343   // the stack, allowing va_start to index over them in memory if its varargs.
6344   // Because we cannot tell if this is needed on the caller side, we have to
6345   // conservatively assume that it is needed.  As such, make sure we have at
6346   // least enough stack space for the caller to store the 8 GPRs.
6347   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6348 
6349   // Tail call needs the stack to be aligned.
6350   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6351       CallConv == CallingConv::Fast)
6352     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6353 
6354   // Calculate by how many bytes the stack has to be adjusted in case of tail
6355   // call optimization.
6356   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
6357 
6358   // To protect arguments on the stack from being clobbered in a tail call,
6359   // force all the loads to happen before doing any other lowering.
6360   if (isTailCall)
6361     Chain = DAG.getStackArgumentTokenFactor(Chain);
6362 
6363   // Adjust the stack pointer for the new arguments...
6364   // These operations are automatically eliminated by the prolog/epilog pass
6365   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6366   SDValue CallSeqStart = Chain;
6367 
6368   // Load the return address and frame pointer so it can be move somewhere else
6369   // later.
6370   SDValue LROp, FPOp;
6371   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6372 
6373   // Set up a copy of the stack pointer for use loading and storing any
6374   // arguments that may not fit in the registers available for argument
6375   // passing.
6376   SDValue StackPtr;
6377   if (isPPC64)
6378     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6379   else
6380     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6381 
6382   // Figure out which arguments are going to go in registers, and which in
6383   // memory.  Also, if this is a vararg function, floating point operations
6384   // must be stored to our stack, and loaded into integer regs as well, if
6385   // any integer regs are available for argument passing.
6386   unsigned ArgOffset = LinkageSize;
6387   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6388 
6389   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6390     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6391     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6392   };
6393   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6394     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6395     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6396   };
6397   static const MCPhysReg VR[] = {
6398     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6399     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6400   };
6401   const unsigned NumGPRs = array_lengthof(GPR_32);
6402   const unsigned NumFPRs = 13;
6403   const unsigned NumVRs  = array_lengthof(VR);
6404 
6405   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6406 
6407   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6408   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6409 
6410   SmallVector<SDValue, 8> MemOpChains;
6411   for (unsigned i = 0; i != NumOps; ++i) {
6412     SDValue Arg = OutVals[i];
6413     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6414 
6415     // PtrOff will be used to store the current argument to the stack if a
6416     // register cannot be found for it.
6417     SDValue PtrOff;
6418 
6419     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6420 
6421     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6422 
6423     // On PPC64, promote integers to 64-bit values.
6424     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6425       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6426       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6427       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6428     }
6429 
6430     // FIXME memcpy is used way more than necessary.  Correctness first.
6431     // Note: "by value" is code for passing a structure by value, not
6432     // basic types.
6433     if (Flags.isByVal()) {
6434       unsigned Size = Flags.getByValSize();
6435       // Very small objects are passed right-justified.  Everything else is
6436       // passed left-justified.
6437       if (Size==1 || Size==2) {
6438         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6439         if (GPR_idx != NumGPRs) {
6440           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6441                                         MachinePointerInfo(), VT);
6442           MemOpChains.push_back(Load.getValue(1));
6443           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6444 
6445           ArgOffset += PtrByteSize;
6446         } else {
6447           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6448                                           PtrOff.getValueType());
6449           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6450           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6451                                                             CallSeqStart,
6452                                                             Flags, DAG, dl);
6453           ArgOffset += PtrByteSize;
6454         }
6455         continue;
6456       }
6457       // Copy entire object into memory.  There are cases where gcc-generated
6458       // code assumes it is there, even if it could be put entirely into
6459       // registers.  (This is not what the doc says.)
6460       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6461                                                         CallSeqStart,
6462                                                         Flags, DAG, dl);
6463 
6464       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6465       // copy the pieces of the object that fit into registers from the
6466       // parameter save area.
6467       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6468         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6469         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6470         if (GPR_idx != NumGPRs) {
6471           SDValue Load =
6472               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6473           MemOpChains.push_back(Load.getValue(1));
6474           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6475           ArgOffset += PtrByteSize;
6476         } else {
6477           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6478           break;
6479         }
6480       }
6481       continue;
6482     }
6483 
6484     switch (Arg.getSimpleValueType().SimpleTy) {
6485     default: llvm_unreachable("Unexpected ValueType for argument!");
6486     case MVT::i1:
6487     case MVT::i32:
6488     case MVT::i64:
6489       if (GPR_idx != NumGPRs) {
6490         if (Arg.getValueType() == MVT::i1)
6491           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6492 
6493         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6494       } else {
6495         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6496                          isPPC64, isTailCall, false, MemOpChains,
6497                          TailCallArguments, dl);
6498       }
6499       ArgOffset += PtrByteSize;
6500       break;
6501     case MVT::f32:
6502     case MVT::f64:
6503       if (FPR_idx != NumFPRs) {
6504         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6505 
6506         if (isVarArg) {
6507           SDValue Store =
6508               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6509           MemOpChains.push_back(Store);
6510 
6511           // Float varargs are always shadowed in available integer registers
6512           if (GPR_idx != NumGPRs) {
6513             SDValue Load =
6514                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6515             MemOpChains.push_back(Load.getValue(1));
6516             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6517           }
6518           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6519             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6520             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6521             SDValue Load =
6522                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6523             MemOpChains.push_back(Load.getValue(1));
6524             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6525           }
6526         } else {
6527           // If we have any FPRs remaining, we may also have GPRs remaining.
6528           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6529           // GPRs.
6530           if (GPR_idx != NumGPRs)
6531             ++GPR_idx;
6532           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6533               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6534             ++GPR_idx;
6535         }
6536       } else
6537         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6538                          isPPC64, isTailCall, false, MemOpChains,
6539                          TailCallArguments, dl);
6540       if (isPPC64)
6541         ArgOffset += 8;
6542       else
6543         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6544       break;
6545     case MVT::v4f32:
6546     case MVT::v4i32:
6547     case MVT::v8i16:
6548     case MVT::v16i8:
6549       if (isVarArg) {
6550         // These go aligned on the stack, or in the corresponding R registers
6551         // when within range.  The Darwin PPC ABI doc claims they also go in
6552         // V registers; in fact gcc does this only for arguments that are
6553         // prototyped, not for those that match the ...  We do it for all
6554         // arguments, seems to work.
6555         while (ArgOffset % 16 !=0) {
6556           ArgOffset += PtrByteSize;
6557           if (GPR_idx != NumGPRs)
6558             GPR_idx++;
6559         }
6560         // We could elide this store in the case where the object fits
6561         // entirely in R registers.  Maybe later.
6562         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6563                              DAG.getConstant(ArgOffset, dl, PtrVT));
6564         SDValue Store =
6565             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6566         MemOpChains.push_back(Store);
6567         if (VR_idx != NumVRs) {
6568           SDValue Load =
6569               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6570           MemOpChains.push_back(Load.getValue(1));
6571           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6572         }
6573         ArgOffset += 16;
6574         for (unsigned i=0; i<16; i+=PtrByteSize) {
6575           if (GPR_idx == NumGPRs)
6576             break;
6577           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6578                                    DAG.getConstant(i, dl, PtrVT));
6579           SDValue Load =
6580               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6581           MemOpChains.push_back(Load.getValue(1));
6582           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6583         }
6584         break;
6585       }
6586 
6587       // Non-varargs Altivec params generally go in registers, but have
6588       // stack space allocated at the end.
6589       if (VR_idx != NumVRs) {
6590         // Doesn't have GPR space allocated.
6591         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6592       } else if (nAltivecParamsAtEnd==0) {
6593         // We are emitting Altivec params in order.
6594         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6595                          isPPC64, isTailCall, true, MemOpChains,
6596                          TailCallArguments, dl);
6597         ArgOffset += 16;
6598       }
6599       break;
6600     }
6601   }
6602   // If all Altivec parameters fit in registers, as they usually do,
6603   // they get stack space following the non-Altivec parameters.  We
6604   // don't track this here because nobody below needs it.
6605   // If there are more Altivec parameters than fit in registers emit
6606   // the stores here.
6607   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
6608     unsigned j = 0;
6609     // Offset is aligned; skip 1st 12 params which go in V registers.
6610     ArgOffset = ((ArgOffset+15)/16)*16;
6611     ArgOffset += 12*16;
6612     for (unsigned i = 0; i != NumOps; ++i) {
6613       SDValue Arg = OutVals[i];
6614       EVT ArgType = Outs[i].VT;
6615       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6616           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6617         if (++j > NumVRs) {
6618           SDValue PtrOff;
6619           // We are emitting Altivec params in order.
6620           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6621                            isPPC64, isTailCall, true, MemOpChains,
6622                            TailCallArguments, dl);
6623           ArgOffset += 16;
6624         }
6625       }
6626     }
6627   }
6628 
6629   if (!MemOpChains.empty())
6630     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6631 
6632   // On Darwin, R12 must contain the address of an indirect callee.  This does
6633   // not mean the MTCTR instruction must use R12; it's easier to model this as
6634   // an extra parameter, so do that.
6635   if (!isTailCall &&
6636       !isFunctionGlobalAddress(Callee) &&
6637       !isa<ExternalSymbolSDNode>(Callee) &&
6638       !isBLACompatibleAddress(Callee, DAG))
6639     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6640                                                    PPC::R12), Callee));
6641 
6642   // Build a sequence of copy-to-reg nodes chained together with token chain
6643   // and flag operands which copy the outgoing args into the appropriate regs.
6644   SDValue InFlag;
6645   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6646     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6647                              RegsToPass[i].second, InFlag);
6648     InFlag = Chain.getValue(1);
6649   }
6650 
6651   if (isTailCall)
6652     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6653                     TailCallArguments);
6654 
6655   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6656                     /* unused except on PPC64 ELFv1 */ false, DAG,
6657                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6658                     NumBytes, Ins, InVals, CS);
6659 }
6660 
6661 
6662 SDValue PPCTargetLowering::LowerCall_AIX(
6663     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
6664     bool isTailCall, bool isPatchPoint,
6665     const SmallVectorImpl<ISD::OutputArg> &Outs,
6666     const SmallVectorImpl<SDValue> &OutVals,
6667     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6668     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6669     ImmutableCallSite CS) const {
6670 
6671   assert((CallConv == CallingConv::C || CallConv == CallingConv::Fast) &&
6672          "Unimplemented calling convention!");
6673   if (isVarArg || isPatchPoint)
6674     report_fatal_error("This call type is unimplemented on AIX.");
6675 
6676   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6677   bool isPPC64 = PtrVT == MVT::i64;
6678   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6679   unsigned NumOps = Outs.size();
6680 
6681 
6682   // Count how many bytes are to be pushed on the stack, including the linkage
6683   // area, parameter list area.
6684   // On XCOFF, we start with 24/48, which is reserved space for
6685   // [SP][CR][LR][2 x reserved][TOC].
6686   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6687 
6688   // The prolog code of the callee may store up to 8 GPR argument registers to
6689   // the stack, allowing va_start to index over them in memory if the callee
6690   // is variadic.
6691   // Because we cannot tell if this is needed on the caller side, we have to
6692   // conservatively assume that it is needed.  As such, make sure we have at
6693   // least enough stack space for the caller to store the 8 GPRs.
6694   unsigned NumBytes = LinkageSize + 8 * PtrByteSize;
6695 
6696   // Adjust the stack pointer for the new arguments...
6697   // These operations are automatically eliminated by the prolog/epilog
6698   // inserter pass.
6699   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6700   SDValue CallSeqStart = Chain;
6701 
6702   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6703     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6704     PPC::R7, PPC::R8, PPC::R9, PPC::R10
6705   };
6706   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6707     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6708     PPC::X7, PPC::X8, PPC::X9, PPC::X10
6709   };
6710 
6711   const unsigned NumGPRs = isPPC64 ? array_lengthof(GPR_64)
6712                                    : array_lengthof(GPR_32);
6713   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6714   unsigned GPR_idx = 0;
6715 
6716   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6717 
6718   if (isTailCall)
6719     report_fatal_error("Handling of tail call is unimplemented!");
6720   int SPDiff = 0;
6721 
6722   for (unsigned i = 0; i != NumOps; ++i) {
6723     SDValue Arg = OutVals[i];
6724     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6725 
6726     // Promote integers if needed.
6727     if (Arg.getValueType() == MVT::i1 ||
6728         (isPPC64 && Arg.getValueType() == MVT::i32)) {
6729       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6730       Arg = DAG.getNode(ExtOp, dl, PtrVT, Arg);
6731     }
6732 
6733     // Note: "by value" is code for passing a structure by value, not
6734     // basic types.
6735     if (Flags.isByVal())
6736       report_fatal_error("Passing structure by value is unimplemented!");
6737 
6738     switch (Arg.getSimpleValueType().SimpleTy) {
6739     default: llvm_unreachable("Unexpected ValueType for argument!");
6740     case MVT::i1:
6741     case MVT::i32:
6742     case MVT::i64:
6743       if (GPR_idx != NumGPRs)
6744         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6745       else
6746         report_fatal_error("Handling of placing parameters on the stack is "
6747                            "unimplemented!");
6748       break;
6749     case MVT::f32:
6750     case MVT::f64:
6751     case MVT::v4f32:
6752     case MVT::v4i32:
6753     case MVT::v8i16:
6754     case MVT::v16i8:
6755     case MVT::v2f64:
6756     case MVT::v2i64:
6757     case MVT::v1i128:
6758     case MVT::f128:
6759     case MVT::v4f64:
6760     case MVT::v4i1:
6761       report_fatal_error("Handling of this parameter type is unimplemented!");
6762     }
6763   }
6764 
6765   if (!isFunctionGlobalAddress(Callee) &&
6766       !isa<ExternalSymbolSDNode>(Callee))
6767     report_fatal_error("Handling of indirect call is unimplemented!");
6768 
6769   // Build a sequence of copy-to-reg nodes chained together with token chain
6770   // and flag operands which copy the outgoing args into the appropriate regs.
6771   SDValue InFlag;
6772   for (auto Reg : RegsToPass) {
6773     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
6774     InFlag = Chain.getValue(1);
6775   }
6776 
6777   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6778                     /* unused except on PPC64 ELFv1 */ false, DAG,
6779                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6780                     NumBytes, Ins, InVals, CS);
6781 }
6782 
6783 bool
6784 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
6785                                   MachineFunction &MF, bool isVarArg,
6786                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
6787                                   LLVMContext &Context) const {
6788   SmallVector<CCValAssign, 16> RVLocs;
6789   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
6790   return CCInfo.CheckReturn(
6791       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6792                 ? RetCC_PPC_Cold
6793                 : RetCC_PPC);
6794 }
6795 
6796 SDValue
6797 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
6798                                bool isVarArg,
6799                                const SmallVectorImpl<ISD::OutputArg> &Outs,
6800                                const SmallVectorImpl<SDValue> &OutVals,
6801                                const SDLoc &dl, SelectionDAG &DAG) const {
6802   SmallVector<CCValAssign, 16> RVLocs;
6803   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
6804                  *DAG.getContext());
6805   CCInfo.AnalyzeReturn(Outs,
6806                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6807                            ? RetCC_PPC_Cold
6808                            : RetCC_PPC);
6809 
6810   SDValue Flag;
6811   SmallVector<SDValue, 4> RetOps(1, Chain);
6812 
6813   // Copy the result values into the output registers.
6814   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
6815     CCValAssign &VA = RVLocs[i];
6816     assert(VA.isRegLoc() && "Can only return in registers!");
6817 
6818     SDValue Arg = OutVals[RealResIdx];
6819 
6820     switch (VA.getLocInfo()) {
6821     default: llvm_unreachable("Unknown loc info!");
6822     case CCValAssign::Full: break;
6823     case CCValAssign::AExt:
6824       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
6825       break;
6826     case CCValAssign::ZExt:
6827       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
6828       break;
6829     case CCValAssign::SExt:
6830       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
6831       break;
6832     }
6833     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
6834       bool isLittleEndian = Subtarget.isLittleEndian();
6835       // Legalize ret f64 -> ret 2 x i32.
6836       SDValue SVal =
6837           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
6838                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
6839       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
6840       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6841       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
6842                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
6843       Flag = Chain.getValue(1);
6844       VA = RVLocs[++i]; // skip ahead to next loc
6845       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
6846     } else
6847       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
6848     Flag = Chain.getValue(1);
6849     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6850   }
6851 
6852   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
6853   const MCPhysReg *I =
6854     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
6855   if (I) {
6856     for (; *I; ++I) {
6857 
6858       if (PPC::G8RCRegClass.contains(*I))
6859         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
6860       else if (PPC::F8RCRegClass.contains(*I))
6861         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
6862       else if (PPC::CRRCRegClass.contains(*I))
6863         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
6864       else if (PPC::VRRCRegClass.contains(*I))
6865         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
6866       else
6867         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
6868     }
6869   }
6870 
6871   RetOps[0] = Chain;  // Update chain.
6872 
6873   // Add the flag if we have it.
6874   if (Flag.getNode())
6875     RetOps.push_back(Flag);
6876 
6877   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
6878 }
6879 
6880 SDValue
6881 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
6882                                                 SelectionDAG &DAG) const {
6883   SDLoc dl(Op);
6884 
6885   // Get the correct type for integers.
6886   EVT IntVT = Op.getValueType();
6887 
6888   // Get the inputs.
6889   SDValue Chain = Op.getOperand(0);
6890   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6891   // Build a DYNAREAOFFSET node.
6892   SDValue Ops[2] = {Chain, FPSIdx};
6893   SDVTList VTs = DAG.getVTList(IntVT);
6894   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
6895 }
6896 
6897 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
6898                                              SelectionDAG &DAG) const {
6899   // When we pop the dynamic allocation we need to restore the SP link.
6900   SDLoc dl(Op);
6901 
6902   // Get the correct type for pointers.
6903   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6904 
6905   // Construct the stack pointer operand.
6906   bool isPPC64 = Subtarget.isPPC64();
6907   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
6908   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
6909 
6910   // Get the operands for the STACKRESTORE.
6911   SDValue Chain = Op.getOperand(0);
6912   SDValue SaveSP = Op.getOperand(1);
6913 
6914   // Load the old link SP.
6915   SDValue LoadLinkSP =
6916       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
6917 
6918   // Restore the stack pointer.
6919   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
6920 
6921   // Store the old link SP.
6922   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
6923 }
6924 
6925 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
6926   MachineFunction &MF = DAG.getMachineFunction();
6927   bool isPPC64 = Subtarget.isPPC64();
6928   EVT PtrVT = getPointerTy(MF.getDataLayout());
6929 
6930   // Get current frame pointer save index.  The users of this index will be
6931   // primarily DYNALLOC instructions.
6932   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6933   int RASI = FI->getReturnAddrSaveIndex();
6934 
6935   // If the frame pointer save index hasn't been defined yet.
6936   if (!RASI) {
6937     // Find out what the fix offset of the frame pointer save area.
6938     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
6939     // Allocate the frame index for frame pointer save area.
6940     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
6941     // Save the result.
6942     FI->setReturnAddrSaveIndex(RASI);
6943   }
6944   return DAG.getFrameIndex(RASI, PtrVT);
6945 }
6946 
6947 SDValue
6948 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
6949   MachineFunction &MF = DAG.getMachineFunction();
6950   bool isPPC64 = Subtarget.isPPC64();
6951   EVT PtrVT = getPointerTy(MF.getDataLayout());
6952 
6953   // Get current frame pointer save index.  The users of this index will be
6954   // primarily DYNALLOC instructions.
6955   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6956   int FPSI = FI->getFramePointerSaveIndex();
6957 
6958   // If the frame pointer save index hasn't been defined yet.
6959   if (!FPSI) {
6960     // Find out what the fix offset of the frame pointer save area.
6961     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
6962     // Allocate the frame index for frame pointer save area.
6963     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
6964     // Save the result.
6965     FI->setFramePointerSaveIndex(FPSI);
6966   }
6967   return DAG.getFrameIndex(FPSI, PtrVT);
6968 }
6969 
6970 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6971                                                    SelectionDAG &DAG) const {
6972   // Get the inputs.
6973   SDValue Chain = Op.getOperand(0);
6974   SDValue Size  = Op.getOperand(1);
6975   SDLoc dl(Op);
6976 
6977   // Get the correct type for pointers.
6978   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6979   // Negate the size.
6980   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
6981                                 DAG.getConstant(0, dl, PtrVT), Size);
6982   // Construct a node for the frame pointer save index.
6983   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6984   // Build a DYNALLOC node.
6985   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
6986   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
6987   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
6988 }
6989 
6990 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
6991                                                      SelectionDAG &DAG) const {
6992   MachineFunction &MF = DAG.getMachineFunction();
6993 
6994   bool isPPC64 = Subtarget.isPPC64();
6995   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6996 
6997   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
6998   return DAG.getFrameIndex(FI, PtrVT);
6999 }
7000 
7001 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7002                                                SelectionDAG &DAG) const {
7003   SDLoc DL(Op);
7004   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7005                      DAG.getVTList(MVT::i32, MVT::Other),
7006                      Op.getOperand(0), Op.getOperand(1));
7007 }
7008 
7009 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7010                                                 SelectionDAG &DAG) const {
7011   SDLoc DL(Op);
7012   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7013                      Op.getOperand(0), Op.getOperand(1));
7014 }
7015 
7016 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7017   if (Op.getValueType().isVector())
7018     return LowerVectorLoad(Op, DAG);
7019 
7020   assert(Op.getValueType() == MVT::i1 &&
7021          "Custom lowering only for i1 loads");
7022 
7023   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7024 
7025   SDLoc dl(Op);
7026   LoadSDNode *LD = cast<LoadSDNode>(Op);
7027 
7028   SDValue Chain = LD->getChain();
7029   SDValue BasePtr = LD->getBasePtr();
7030   MachineMemOperand *MMO = LD->getMemOperand();
7031 
7032   SDValue NewLD =
7033       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7034                      BasePtr, MVT::i8, MMO);
7035   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7036 
7037   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7038   return DAG.getMergeValues(Ops, dl);
7039 }
7040 
7041 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7042   if (Op.getOperand(1).getValueType().isVector())
7043     return LowerVectorStore(Op, DAG);
7044 
7045   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7046          "Custom lowering only for i1 stores");
7047 
7048   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7049 
7050   SDLoc dl(Op);
7051   StoreSDNode *ST = cast<StoreSDNode>(Op);
7052 
7053   SDValue Chain = ST->getChain();
7054   SDValue BasePtr = ST->getBasePtr();
7055   SDValue Value = ST->getValue();
7056   MachineMemOperand *MMO = ST->getMemOperand();
7057 
7058   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7059                       Value);
7060   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7061 }
7062 
7063 // FIXME: Remove this once the ANDI glue bug is fixed:
7064 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7065   assert(Op.getValueType() == MVT::i1 &&
7066          "Custom lowering only for i1 results");
7067 
7068   SDLoc DL(Op);
7069   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
7070                      Op.getOperand(0));
7071 }
7072 
7073 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7074                                                SelectionDAG &DAG) const {
7075 
7076   // Implements a vector truncate that fits in a vector register as a shuffle.
7077   // We want to legalize vector truncates down to where the source fits in
7078   // a vector register (and target is therefore smaller than vector register
7079   // size).  At that point legalization will try to custom lower the sub-legal
7080   // result and get here - where we can contain the truncate as a single target
7081   // operation.
7082 
7083   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7084   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7085   //
7086   // We will implement it for big-endian ordering as this (where x denotes
7087   // undefined):
7088   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7089   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7090   //
7091   // The same operation in little-endian ordering will be:
7092   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7093   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7094 
7095   assert(Op.getValueType().isVector() && "Vector type expected.");
7096 
7097   SDLoc DL(Op);
7098   SDValue N1 = Op.getOperand(0);
7099   unsigned SrcSize = N1.getValueType().getSizeInBits();
7100   assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector");
7101   SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7102 
7103   EVT TrgVT = Op.getValueType();
7104   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7105   EVT EltVT = TrgVT.getVectorElementType();
7106   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7107   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7108 
7109   // First list the elements we want to keep.
7110   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7111   SmallVector<int, 16> ShuffV;
7112   if (Subtarget.isLittleEndian())
7113     for (unsigned i = 0; i < TrgNumElts; ++i)
7114       ShuffV.push_back(i * SizeMult);
7115   else
7116     for (unsigned i = 1; i <= TrgNumElts; ++i)
7117       ShuffV.push_back(i * SizeMult - 1);
7118 
7119   // Populate the remaining elements with undefs.
7120   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7121     // ShuffV.push_back(i + WideNumElts);
7122     ShuffV.push_back(WideNumElts + 1);
7123 
7124   SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc);
7125   return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV);
7126 }
7127 
7128 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7129 /// possible.
7130 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7131   // Not FP? Not a fsel.
7132   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
7133       !Op.getOperand(2).getValueType().isFloatingPoint())
7134     return Op;
7135 
7136   // We might be able to do better than this under some circumstances, but in
7137   // general, fsel-based lowering of select is a finite-math-only optimization.
7138   // For more information, see section F.3 of the 2.06 ISA specification.
7139   if (!DAG.getTarget().Options.NoInfsFPMath ||
7140       !DAG.getTarget().Options.NoNaNsFPMath)
7141     return Op;
7142   // TODO: Propagate flags from the select rather than global settings.
7143   SDNodeFlags Flags;
7144   Flags.setNoInfs(true);
7145   Flags.setNoNaNs(true);
7146 
7147   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7148 
7149   EVT ResVT = Op.getValueType();
7150   EVT CmpVT = Op.getOperand(0).getValueType();
7151   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7152   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7153   SDLoc dl(Op);
7154 
7155   // If the RHS of the comparison is a 0.0, we don't need to do the
7156   // subtraction at all.
7157   SDValue Sel1;
7158   if (isFloatingPointZero(RHS))
7159     switch (CC) {
7160     default: break;       // SETUO etc aren't handled by fsel.
7161     case ISD::SETNE:
7162       std::swap(TV, FV);
7163       LLVM_FALLTHROUGH;
7164     case ISD::SETEQ:
7165       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7166         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7167       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7168       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7169         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7170       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7171                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7172     case ISD::SETULT:
7173     case ISD::SETLT:
7174       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7175       LLVM_FALLTHROUGH;
7176     case ISD::SETOGE:
7177     case ISD::SETGE:
7178       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7179         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7180       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7181     case ISD::SETUGT:
7182     case ISD::SETGT:
7183       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7184       LLVM_FALLTHROUGH;
7185     case ISD::SETOLE:
7186     case ISD::SETLE:
7187       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7188         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7189       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7190                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7191     }
7192 
7193   SDValue Cmp;
7194   switch (CC) {
7195   default: break;       // SETUO etc aren't handled by fsel.
7196   case ISD::SETNE:
7197     std::swap(TV, FV);
7198     LLVM_FALLTHROUGH;
7199   case ISD::SETEQ:
7200     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7201     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7202       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7203     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7204     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7205       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7206     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7207                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7208   case ISD::SETULT:
7209   case ISD::SETLT:
7210     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7211     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7212       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7213     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7214   case ISD::SETOGE:
7215   case ISD::SETGE:
7216     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7217     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7218       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7219     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7220   case ISD::SETUGT:
7221   case ISD::SETGT:
7222     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7223     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7224       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7225     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7226   case ISD::SETOLE:
7227   case ISD::SETLE:
7228     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7229     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7230       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7231     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7232   }
7233   return Op;
7234 }
7235 
7236 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
7237                                                SelectionDAG &DAG,
7238                                                const SDLoc &dl) const {
7239   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7240   SDValue Src = Op.getOperand(0);
7241   if (Src.getValueType() == MVT::f32)
7242     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7243 
7244   SDValue Tmp;
7245   switch (Op.getSimpleValueType().SimpleTy) {
7246   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7247   case MVT::i32:
7248     Tmp = DAG.getNode(
7249         Op.getOpcode() == ISD::FP_TO_SINT
7250             ? PPCISD::FCTIWZ
7251             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7252         dl, MVT::f64, Src);
7253     break;
7254   case MVT::i64:
7255     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7256            "i64 FP_TO_UINT is supported only with FPCVT");
7257     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7258                                                         PPCISD::FCTIDUZ,
7259                       dl, MVT::f64, Src);
7260     break;
7261   }
7262 
7263   // Convert the FP value to an int value through memory.
7264   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
7265     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
7266   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
7267   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
7268   MachinePointerInfo MPI =
7269       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
7270 
7271   // Emit a store to the stack slot.
7272   SDValue Chain;
7273   if (i32Stack) {
7274     MachineFunction &MF = DAG.getMachineFunction();
7275     MachineMemOperand *MMO =
7276       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
7277     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
7278     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7279               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
7280   } else
7281     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
7282 
7283   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
7284   // add in a bias on big endian.
7285   if (Op.getValueType() == MVT::i32 && !i32Stack) {
7286     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
7287                         DAG.getConstant(4, dl, FIPtr.getValueType()));
7288     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
7289   }
7290 
7291   RLI.Chain = Chain;
7292   RLI.Ptr = FIPtr;
7293   RLI.MPI = MPI;
7294 }
7295 
7296 /// Custom lowers floating point to integer conversions to use
7297 /// the direct move instructions available in ISA 2.07 to avoid the
7298 /// need for load/store combinations.
7299 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
7300                                                     SelectionDAG &DAG,
7301                                                     const SDLoc &dl) const {
7302   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7303   SDValue Src = Op.getOperand(0);
7304 
7305   if (Src.getValueType() == MVT::f32)
7306     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7307 
7308   SDValue Tmp;
7309   switch (Op.getSimpleValueType().SimpleTy) {
7310   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7311   case MVT::i32:
7312     Tmp = DAG.getNode(
7313         Op.getOpcode() == ISD::FP_TO_SINT
7314             ? PPCISD::FCTIWZ
7315             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7316         dl, MVT::f64, Src);
7317     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
7318     break;
7319   case MVT::i64:
7320     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7321            "i64 FP_TO_UINT is supported only with FPCVT");
7322     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7323                                                         PPCISD::FCTIDUZ,
7324                       dl, MVT::f64, Src);
7325     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
7326     break;
7327   }
7328   return Tmp;
7329 }
7330 
7331 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
7332                                           const SDLoc &dl) const {
7333 
7334   // FP to INT conversions are legal for f128.
7335   if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
7336     return Op;
7337 
7338   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
7339   // PPC (the libcall is not available).
7340   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
7341     if (Op.getValueType() == MVT::i32) {
7342       if (Op.getOpcode() == ISD::FP_TO_SINT) {
7343         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7344                                  MVT::f64, Op.getOperand(0),
7345                                  DAG.getIntPtrConstant(0, dl));
7346         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7347                                  MVT::f64, Op.getOperand(0),
7348                                  DAG.getIntPtrConstant(1, dl));
7349 
7350         // Add the two halves of the long double in round-to-zero mode.
7351         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
7352 
7353         // Now use a smaller FP_TO_SINT.
7354         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
7355       }
7356       if (Op.getOpcode() == ISD::FP_TO_UINT) {
7357         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
7358         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
7359         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
7360         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
7361         // FIXME: generated code sucks.
7362         // TODO: Are there fast-math-flags to propagate to this FSUB?
7363         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
7364                                    Op.getOperand(0), Tmp);
7365         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
7366         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
7367                            DAG.getConstant(0x80000000, dl, MVT::i32));
7368         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
7369                                     Op.getOperand(0));
7370         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
7371                                ISD::SETGE);
7372       }
7373     }
7374 
7375     return SDValue();
7376   }
7377 
7378   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
7379     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
7380 
7381   ReuseLoadInfo RLI;
7382   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7383 
7384   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7385                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7386 }
7387 
7388 // We're trying to insert a regular store, S, and then a load, L. If the
7389 // incoming value, O, is a load, we might just be able to have our load use the
7390 // address used by O. However, we don't know if anything else will store to
7391 // that address before we can load from it. To prevent this situation, we need
7392 // to insert our load, L, into the chain as a peer of O. To do this, we give L
7393 // the same chain operand as O, we create a token factor from the chain results
7394 // of O and L, and we replace all uses of O's chain result with that token
7395 // factor (see spliceIntoChain below for this last part).
7396 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
7397                                             ReuseLoadInfo &RLI,
7398                                             SelectionDAG &DAG,
7399                                             ISD::LoadExtType ET) const {
7400   SDLoc dl(Op);
7401   if (ET == ISD::NON_EXTLOAD &&
7402       (Op.getOpcode() == ISD::FP_TO_UINT ||
7403        Op.getOpcode() == ISD::FP_TO_SINT) &&
7404       isOperationLegalOrCustom(Op.getOpcode(),
7405                                Op.getOperand(0).getValueType())) {
7406 
7407     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7408     return true;
7409   }
7410 
7411   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
7412   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
7413       LD->isNonTemporal())
7414     return false;
7415   if (LD->getMemoryVT() != MemVT)
7416     return false;
7417 
7418   RLI.Ptr = LD->getBasePtr();
7419   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
7420     assert(LD->getAddressingMode() == ISD::PRE_INC &&
7421            "Non-pre-inc AM on PPC?");
7422     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
7423                           LD->getOffset());
7424   }
7425 
7426   RLI.Chain = LD->getChain();
7427   RLI.MPI = LD->getPointerInfo();
7428   RLI.IsDereferenceable = LD->isDereferenceable();
7429   RLI.IsInvariant = LD->isInvariant();
7430   RLI.Alignment = LD->getAlignment();
7431   RLI.AAInfo = LD->getAAInfo();
7432   RLI.Ranges = LD->getRanges();
7433 
7434   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
7435   return true;
7436 }
7437 
7438 // Given the head of the old chain, ResChain, insert a token factor containing
7439 // it and NewResChain, and make users of ResChain now be users of that token
7440 // factor.
7441 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
7442 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
7443                                         SDValue NewResChain,
7444                                         SelectionDAG &DAG) const {
7445   if (!ResChain)
7446     return;
7447 
7448   SDLoc dl(NewResChain);
7449 
7450   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7451                            NewResChain, DAG.getUNDEF(MVT::Other));
7452   assert(TF.getNode() != NewResChain.getNode() &&
7453          "A new TF really is required here");
7454 
7455   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
7456   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
7457 }
7458 
7459 /// Analyze profitability of direct move
7460 /// prefer float load to int load plus direct move
7461 /// when there is no integer use of int load
7462 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
7463   SDNode *Origin = Op.getOperand(0).getNode();
7464   if (Origin->getOpcode() != ISD::LOAD)
7465     return true;
7466 
7467   // If there is no LXSIBZX/LXSIHZX, like Power8,
7468   // prefer direct move if the memory size is 1 or 2 bytes.
7469   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
7470   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
7471     return true;
7472 
7473   for (SDNode::use_iterator UI = Origin->use_begin(),
7474                             UE = Origin->use_end();
7475        UI != UE; ++UI) {
7476 
7477     // Only look at the users of the loaded value.
7478     if (UI.getUse().get().getResNo() != 0)
7479       continue;
7480 
7481     if (UI->getOpcode() != ISD::SINT_TO_FP &&
7482         UI->getOpcode() != ISD::UINT_TO_FP)
7483       return true;
7484   }
7485 
7486   return false;
7487 }
7488 
7489 /// Custom lowers integer to floating point conversions to use
7490 /// the direct move instructions available in ISA 2.07 to avoid the
7491 /// need for load/store combinations.
7492 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
7493                                                     SelectionDAG &DAG,
7494                                                     const SDLoc &dl) const {
7495   assert((Op.getValueType() == MVT::f32 ||
7496           Op.getValueType() == MVT::f64) &&
7497          "Invalid floating point type as target of conversion");
7498   assert(Subtarget.hasFPCVT() &&
7499          "Int to FP conversions with direct moves require FPCVT");
7500   SDValue FP;
7501   SDValue Src = Op.getOperand(0);
7502   bool SinglePrec = Op.getValueType() == MVT::f32;
7503   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
7504   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
7505   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
7506                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
7507 
7508   if (WordInt) {
7509     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
7510                      dl, MVT::f64, Src);
7511     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7512   }
7513   else {
7514     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
7515     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7516   }
7517 
7518   return FP;
7519 }
7520 
7521 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
7522 
7523   EVT VecVT = Vec.getValueType();
7524   assert(VecVT.isVector() && "Expected a vector type.");
7525   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
7526 
7527   EVT EltVT = VecVT.getVectorElementType();
7528   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7529   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7530 
7531   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
7532   SmallVector<SDValue, 16> Ops(NumConcat);
7533   Ops[0] = Vec;
7534   SDValue UndefVec = DAG.getUNDEF(VecVT);
7535   for (unsigned i = 1; i < NumConcat; ++i)
7536     Ops[i] = UndefVec;
7537 
7538   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
7539 }
7540 
7541 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
7542                                                 const SDLoc &dl) const {
7543 
7544   unsigned Opc = Op.getOpcode();
7545   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
7546          "Unexpected conversion type");
7547   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
7548          "Supports conversions to v2f64/v4f32 only.");
7549 
7550   bool SignedConv = Opc == ISD::SINT_TO_FP;
7551   bool FourEltRes = Op.getValueType() == MVT::v4f32;
7552 
7553   SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
7554   EVT WideVT = Wide.getValueType();
7555   unsigned WideNumElts = WideVT.getVectorNumElements();
7556   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
7557 
7558   SmallVector<int, 16> ShuffV;
7559   for (unsigned i = 0; i < WideNumElts; ++i)
7560     ShuffV.push_back(i + WideNumElts);
7561 
7562   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
7563   int SaveElts = FourEltRes ? 4 : 2;
7564   if (Subtarget.isLittleEndian())
7565     for (int i = 0; i < SaveElts; i++)
7566       ShuffV[i * Stride] = i;
7567   else
7568     for (int i = 1; i <= SaveElts; i++)
7569       ShuffV[i * Stride - 1] = i - 1;
7570 
7571   SDValue ShuffleSrc2 =
7572       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
7573   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
7574   unsigned ExtendOp =
7575       SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST;
7576 
7577   SDValue Extend;
7578   if (!Subtarget.hasP9Altivec() && SignedConv) {
7579     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
7580     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
7581                          DAG.getValueType(Op.getOperand(0).getValueType()));
7582   } else
7583     Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange);
7584 
7585   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
7586 }
7587 
7588 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
7589                                           SelectionDAG &DAG) const {
7590   SDLoc dl(Op);
7591 
7592   EVT InVT = Op.getOperand(0).getValueType();
7593   EVT OutVT = Op.getValueType();
7594   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
7595       isOperationCustom(Op.getOpcode(), InVT))
7596     return LowerINT_TO_FPVector(Op, DAG, dl);
7597 
7598   // Conversions to f128 are legal.
7599   if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
7600     return Op;
7601 
7602   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
7603     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
7604       return SDValue();
7605 
7606     SDValue Value = Op.getOperand(0);
7607     // The values are now known to be -1 (false) or 1 (true). To convert this
7608     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7609     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7610     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7611 
7612     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
7613 
7614     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7615 
7616     if (Op.getValueType() != MVT::v4f64)
7617       Value = DAG.getNode(ISD::FP_ROUND, dl,
7618                           Op.getValueType(), Value,
7619                           DAG.getIntPtrConstant(1, dl));
7620     return Value;
7621   }
7622 
7623   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
7624   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
7625     return SDValue();
7626 
7627   if (Op.getOperand(0).getValueType() == MVT::i1)
7628     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
7629                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
7630                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
7631 
7632   // If we have direct moves, we can do all the conversion, skip the store/load
7633   // however, without FPCVT we can't do most conversions.
7634   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
7635       Subtarget.isPPC64() && Subtarget.hasFPCVT())
7636     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
7637 
7638   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
7639          "UINT_TO_FP is supported only with FPCVT");
7640 
7641   // If we have FCFIDS, then use it when converting to single-precision.
7642   // Otherwise, convert to double-precision and then round.
7643   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7644                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
7645                                                             : PPCISD::FCFIDS)
7646                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
7647                                                             : PPCISD::FCFID);
7648   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7649                   ? MVT::f32
7650                   : MVT::f64;
7651 
7652   if (Op.getOperand(0).getValueType() == MVT::i64) {
7653     SDValue SINT = Op.getOperand(0);
7654     // When converting to single-precision, we actually need to convert
7655     // to double-precision first and then round to single-precision.
7656     // To avoid double-rounding effects during that operation, we have
7657     // to prepare the input operand.  Bits that might be truncated when
7658     // converting to double-precision are replaced by a bit that won't
7659     // be lost at this stage, but is below the single-precision rounding
7660     // position.
7661     //
7662     // However, if -enable-unsafe-fp-math is in effect, accept double
7663     // rounding to avoid the extra overhead.
7664     if (Op.getValueType() == MVT::f32 &&
7665         !Subtarget.hasFPCVT() &&
7666         !DAG.getTarget().Options.UnsafeFPMath) {
7667 
7668       // Twiddle input to make sure the low 11 bits are zero.  (If this
7669       // is the case, we are guaranteed the value will fit into the 53 bit
7670       // mantissa of an IEEE double-precision value without rounding.)
7671       // If any of those low 11 bits were not zero originally, make sure
7672       // bit 12 (value 2048) is set instead, so that the final rounding
7673       // to single-precision gets the correct result.
7674       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7675                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
7676       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
7677                           Round, DAG.getConstant(2047, dl, MVT::i64));
7678       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
7679       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7680                           Round, DAG.getConstant(-2048, dl, MVT::i64));
7681 
7682       // However, we cannot use that value unconditionally: if the magnitude
7683       // of the input value is small, the bit-twiddling we did above might
7684       // end up visibly changing the output.  Fortunately, in that case, we
7685       // don't need to twiddle bits since the original input will convert
7686       // exactly to double-precision floating-point already.  Therefore,
7687       // construct a conditional to use the original value if the top 11
7688       // bits are all sign-bit copies, and use the rounded value computed
7689       // above otherwise.
7690       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
7691                                  SINT, DAG.getConstant(53, dl, MVT::i32));
7692       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
7693                          Cond, DAG.getConstant(1, dl, MVT::i64));
7694       Cond = DAG.getSetCC(dl, MVT::i32,
7695                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
7696 
7697       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
7698     }
7699 
7700     ReuseLoadInfo RLI;
7701     SDValue Bits;
7702 
7703     MachineFunction &MF = DAG.getMachineFunction();
7704     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
7705       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7706                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7707       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7708     } else if (Subtarget.hasLFIWAX() &&
7709                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
7710       MachineMemOperand *MMO =
7711         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7712                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7713       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7714       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
7715                                      DAG.getVTList(MVT::f64, MVT::Other),
7716                                      Ops, MVT::i32, MMO);
7717       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7718     } else if (Subtarget.hasFPCVT() &&
7719                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
7720       MachineMemOperand *MMO =
7721         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7722                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7723       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7724       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
7725                                      DAG.getVTList(MVT::f64, MVT::Other),
7726                                      Ops, MVT::i32, MMO);
7727       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7728     } else if (((Subtarget.hasLFIWAX() &&
7729                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
7730                 (Subtarget.hasFPCVT() &&
7731                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
7732                SINT.getOperand(0).getValueType() == MVT::i32) {
7733       MachineFrameInfo &MFI = MF.getFrameInfo();
7734       EVT PtrVT = getPointerTy(DAG.getDataLayout());
7735 
7736       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7737       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7738 
7739       SDValue Store =
7740           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
7741                        MachinePointerInfo::getFixedStack(
7742                            DAG.getMachineFunction(), FrameIdx));
7743 
7744       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7745              "Expected an i32 store");
7746 
7747       RLI.Ptr = FIdx;
7748       RLI.Chain = Store;
7749       RLI.MPI =
7750           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7751       RLI.Alignment = 4;
7752 
7753       MachineMemOperand *MMO =
7754         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7755                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7756       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7757       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
7758                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
7759                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
7760                                      Ops, MVT::i32, MMO);
7761     } else
7762       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
7763 
7764     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
7765 
7766     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7767       FP = DAG.getNode(ISD::FP_ROUND, dl,
7768                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
7769     return FP;
7770   }
7771 
7772   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
7773          "Unhandled INT_TO_FP type in custom expander!");
7774   // Since we only generate this in 64-bit mode, we can take advantage of
7775   // 64-bit registers.  In particular, sign extend the input value into the
7776   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
7777   // then lfd it and fcfid it.
7778   MachineFunction &MF = DAG.getMachineFunction();
7779   MachineFrameInfo &MFI = MF.getFrameInfo();
7780   EVT PtrVT = getPointerTy(MF.getDataLayout());
7781 
7782   SDValue Ld;
7783   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
7784     ReuseLoadInfo RLI;
7785     bool ReusingLoad;
7786     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
7787                                             DAG))) {
7788       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7789       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7790 
7791       SDValue Store =
7792           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
7793                        MachinePointerInfo::getFixedStack(
7794                            DAG.getMachineFunction(), FrameIdx));
7795 
7796       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7797              "Expected an i32 store");
7798 
7799       RLI.Ptr = FIdx;
7800       RLI.Chain = Store;
7801       RLI.MPI =
7802           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7803       RLI.Alignment = 4;
7804     }
7805 
7806     MachineMemOperand *MMO =
7807       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7808                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7809     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7810     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
7811                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
7812                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
7813                                  Ops, MVT::i32, MMO);
7814     if (ReusingLoad)
7815       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
7816   } else {
7817     assert(Subtarget.isPPC64() &&
7818            "i32->FP without LFIWAX supported only on PPC64");
7819 
7820     int FrameIdx = MFI.CreateStackObject(8, 8, false);
7821     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7822 
7823     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
7824                                 Op.getOperand(0));
7825 
7826     // STD the extended value into the stack slot.
7827     SDValue Store = DAG.getStore(
7828         DAG.getEntryNode(), dl, Ext64, FIdx,
7829         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7830 
7831     // Load the value as a double.
7832     Ld = DAG.getLoad(
7833         MVT::f64, dl, Store, FIdx,
7834         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7835   }
7836 
7837   // FCFID it and return it.
7838   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
7839   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7840     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
7841                      DAG.getIntPtrConstant(0, dl));
7842   return FP;
7843 }
7844 
7845 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7846                                             SelectionDAG &DAG) const {
7847   SDLoc dl(Op);
7848   /*
7849    The rounding mode is in bits 30:31 of FPSR, and has the following
7850    settings:
7851      00 Round to nearest
7852      01 Round to 0
7853      10 Round to +inf
7854      11 Round to -inf
7855 
7856   FLT_ROUNDS, on the other hand, expects the following:
7857     -1 Undefined
7858      0 Round to 0
7859      1 Round to nearest
7860      2 Round to +inf
7861      3 Round to -inf
7862 
7863   To perform the conversion, we do:
7864     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
7865   */
7866 
7867   MachineFunction &MF = DAG.getMachineFunction();
7868   EVT VT = Op.getValueType();
7869   EVT PtrVT = getPointerTy(MF.getDataLayout());
7870 
7871   // Save FP Control Word to register
7872   EVT NodeTys[] = {
7873     MVT::f64,    // return register
7874     MVT::Glue    // unused in this context
7875   };
7876   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
7877 
7878   // Save FP register to stack slot
7879   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
7880   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
7881   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
7882                                MachinePointerInfo());
7883 
7884   // Load FP Control Word from low 32 bits of stack slot.
7885   SDValue Four = DAG.getConstant(4, dl, PtrVT);
7886   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
7887   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
7888 
7889   // Transform as necessary
7890   SDValue CWD1 =
7891     DAG.getNode(ISD::AND, dl, MVT::i32,
7892                 CWD, DAG.getConstant(3, dl, MVT::i32));
7893   SDValue CWD2 =
7894     DAG.getNode(ISD::SRL, dl, MVT::i32,
7895                 DAG.getNode(ISD::AND, dl, MVT::i32,
7896                             DAG.getNode(ISD::XOR, dl, MVT::i32,
7897                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
7898                             DAG.getConstant(3, dl, MVT::i32)),
7899                 DAG.getConstant(1, dl, MVT::i32));
7900 
7901   SDValue RetVal =
7902     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
7903 
7904   return DAG.getNode((VT.getSizeInBits() < 16 ?
7905                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7906 }
7907 
7908 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7909   EVT VT = Op.getValueType();
7910   unsigned BitWidth = VT.getSizeInBits();
7911   SDLoc dl(Op);
7912   assert(Op.getNumOperands() == 3 &&
7913          VT == Op.getOperand(1).getValueType() &&
7914          "Unexpected SHL!");
7915 
7916   // Expand into a bunch of logical ops.  Note that these ops
7917   // depend on the PPC behavior for oversized shift amounts.
7918   SDValue Lo = Op.getOperand(0);
7919   SDValue Hi = Op.getOperand(1);
7920   SDValue Amt = Op.getOperand(2);
7921   EVT AmtVT = Amt.getValueType();
7922 
7923   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7924                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7925   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
7926   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
7927   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
7928   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7929                              DAG.getConstant(-BitWidth, dl, AmtVT));
7930   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
7931   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7932   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
7933   SDValue OutOps[] = { OutLo, OutHi };
7934   return DAG.getMergeValues(OutOps, dl);
7935 }
7936 
7937 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7938   EVT VT = Op.getValueType();
7939   SDLoc dl(Op);
7940   unsigned BitWidth = VT.getSizeInBits();
7941   assert(Op.getNumOperands() == 3 &&
7942          VT == Op.getOperand(1).getValueType() &&
7943          "Unexpected SRL!");
7944 
7945   // Expand into a bunch of logical ops.  Note that these ops
7946   // depend on the PPC behavior for oversized shift amounts.
7947   SDValue Lo = Op.getOperand(0);
7948   SDValue Hi = Op.getOperand(1);
7949   SDValue Amt = Op.getOperand(2);
7950   EVT AmtVT = Amt.getValueType();
7951 
7952   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7953                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7954   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7955   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7956   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7957   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7958                              DAG.getConstant(-BitWidth, dl, AmtVT));
7959   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
7960   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7961   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
7962   SDValue OutOps[] = { OutLo, OutHi };
7963   return DAG.getMergeValues(OutOps, dl);
7964 }
7965 
7966 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
7967   SDLoc dl(Op);
7968   EVT VT = Op.getValueType();
7969   unsigned BitWidth = VT.getSizeInBits();
7970   assert(Op.getNumOperands() == 3 &&
7971          VT == Op.getOperand(1).getValueType() &&
7972          "Unexpected SRA!");
7973 
7974   // Expand into a bunch of logical ops, followed by a select_cc.
7975   SDValue Lo = Op.getOperand(0);
7976   SDValue Hi = Op.getOperand(1);
7977   SDValue Amt = Op.getOperand(2);
7978   EVT AmtVT = Amt.getValueType();
7979 
7980   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7981                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7982   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7983   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7984   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7985   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7986                              DAG.getConstant(-BitWidth, dl, AmtVT));
7987   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
7988   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
7989   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
7990                                   Tmp4, Tmp6, ISD::SETLE);
7991   SDValue OutOps[] = { OutLo, OutHi };
7992   return DAG.getMergeValues(OutOps, dl);
7993 }
7994 
7995 //===----------------------------------------------------------------------===//
7996 // Vector related lowering.
7997 //
7998 
7999 /// BuildSplatI - Build a canonical splati of Val with an element size of
8000 /// SplatSize.  Cast the result to VT.
8001 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
8002                            SelectionDAG &DAG, const SDLoc &dl) {
8003   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
8004 
8005   static const MVT VTys[] = { // canonical VT to use for each size.
8006     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8007   };
8008 
8009   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8010 
8011   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
8012   if (Val == -1)
8013     SplatSize = 1;
8014 
8015   EVT CanonicalVT = VTys[SplatSize-1];
8016 
8017   // Build a canonical splat for this value.
8018   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8019 }
8020 
8021 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8022 /// specified intrinsic ID.
8023 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8024                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8025   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8026   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8027                      DAG.getConstant(IID, dl, MVT::i32), Op);
8028 }
8029 
8030 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8031 /// specified intrinsic ID.
8032 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8033                                 SelectionDAG &DAG, const SDLoc &dl,
8034                                 EVT DestVT = MVT::Other) {
8035   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8036   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8037                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8038 }
8039 
8040 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8041 /// specified intrinsic ID.
8042 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8043                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8044                                 EVT DestVT = MVT::Other) {
8045   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8046   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8047                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8048 }
8049 
8050 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8051 /// amount.  The result has the specified value type.
8052 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8053                            SelectionDAG &DAG, const SDLoc &dl) {
8054   // Force LHS/RHS to be the right type.
8055   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8056   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8057 
8058   int Ops[16];
8059   for (unsigned i = 0; i != 16; ++i)
8060     Ops[i] = i + Amt;
8061   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8062   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8063 }
8064 
8065 /// Do we have an efficient pattern in a .td file for this node?
8066 ///
8067 /// \param V - pointer to the BuildVectorSDNode being matched
8068 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8069 ///
8070 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8071 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8072 /// the opposite is true (expansion is beneficial) are:
8073 /// - The node builds a vector out of integers that are not 32 or 64-bits
8074 /// - The node builds a vector out of constants
8075 /// - The node is a "load-and-splat"
8076 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8077 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8078                                             bool HasDirectMove,
8079                                             bool HasP8Vector) {
8080   EVT VecVT = V->getValueType(0);
8081   bool RightType = VecVT == MVT::v2f64 ||
8082     (HasP8Vector && VecVT == MVT::v4f32) ||
8083     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
8084   if (!RightType)
8085     return false;
8086 
8087   bool IsSplat = true;
8088   bool IsLoad = false;
8089   SDValue Op0 = V->getOperand(0);
8090 
8091   // This function is called in a block that confirms the node is not a constant
8092   // splat. So a constant BUILD_VECTOR here means the vector is built out of
8093   // different constants.
8094   if (V->isConstant())
8095     return false;
8096   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
8097     if (V->getOperand(i).isUndef())
8098       return false;
8099     // We want to expand nodes that represent load-and-splat even if the
8100     // loaded value is a floating point truncation or conversion to int.
8101     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
8102         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
8103          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8104         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
8105          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8106         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
8107          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
8108       IsLoad = true;
8109     // If the operands are different or the input is not a load and has more
8110     // uses than just this BV node, then it isn't a splat.
8111     if (V->getOperand(i) != Op0 ||
8112         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
8113       IsSplat = false;
8114   }
8115   return !(IsSplat && IsLoad);
8116 }
8117 
8118 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
8119 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
8120 
8121   SDLoc dl(Op);
8122   SDValue Op0 = Op->getOperand(0);
8123 
8124   if (!EnableQuadPrecision ||
8125       (Op.getValueType() != MVT::f128 ) ||
8126       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
8127       (Op0.getOperand(0).getValueType() !=  MVT::i64) ||
8128       (Op0.getOperand(1).getValueType() != MVT::i64))
8129     return SDValue();
8130 
8131   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
8132                      Op0.getOperand(1));
8133 }
8134 
8135 // If this is a case we can't handle, return null and let the default
8136 // expansion code take care of it.  If we CAN select this case, and if it
8137 // selects to a single instruction, return Op.  Otherwise, if we can codegen
8138 // this case more efficiently than a constant pool load, lower it to the
8139 // sequence of ops that should be used.
8140 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
8141                                              SelectionDAG &DAG) const {
8142   SDLoc dl(Op);
8143   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
8144   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
8145 
8146   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
8147     // We first build an i32 vector, load it into a QPX register,
8148     // then convert it to a floating-point vector and compare it
8149     // to a zero vector to get the boolean result.
8150     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8151     int FrameIdx = MFI.CreateStackObject(16, 16, false);
8152     MachinePointerInfo PtrInfo =
8153         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8154     EVT PtrVT = getPointerTy(DAG.getDataLayout());
8155     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8156 
8157     assert(BVN->getNumOperands() == 4 &&
8158       "BUILD_VECTOR for v4i1 does not have 4 operands");
8159 
8160     bool IsConst = true;
8161     for (unsigned i = 0; i < 4; ++i) {
8162       if (BVN->getOperand(i).isUndef()) continue;
8163       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
8164         IsConst = false;
8165         break;
8166       }
8167     }
8168 
8169     if (IsConst) {
8170       Constant *One =
8171         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
8172       Constant *NegOne =
8173         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
8174 
8175       Constant *CV[4];
8176       for (unsigned i = 0; i < 4; ++i) {
8177         if (BVN->getOperand(i).isUndef())
8178           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
8179         else if (isNullConstant(BVN->getOperand(i)))
8180           CV[i] = NegOne;
8181         else
8182           CV[i] = One;
8183       }
8184 
8185       Constant *CP = ConstantVector::get(CV);
8186       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
8187                                           16 /* alignment */);
8188 
8189       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
8190       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
8191       return DAG.getMemIntrinsicNode(
8192           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
8193           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
8194     }
8195 
8196     SmallVector<SDValue, 4> Stores;
8197     for (unsigned i = 0; i < 4; ++i) {
8198       if (BVN->getOperand(i).isUndef()) continue;
8199 
8200       unsigned Offset = 4*i;
8201       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
8202       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
8203 
8204       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
8205       if (StoreSize > 4) {
8206         Stores.push_back(
8207             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
8208                               PtrInfo.getWithOffset(Offset), MVT::i32));
8209       } else {
8210         SDValue StoreValue = BVN->getOperand(i);
8211         if (StoreSize < 4)
8212           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
8213 
8214         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
8215                                       PtrInfo.getWithOffset(Offset)));
8216       }
8217     }
8218 
8219     SDValue StoreChain;
8220     if (!Stores.empty())
8221       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8222     else
8223       StoreChain = DAG.getEntryNode();
8224 
8225     // Now load from v4i32 into the QPX register; this will extend it to
8226     // v4i64 but not yet convert it to a floating point. Nevertheless, this
8227     // is typed as v4f64 because the QPX register integer states are not
8228     // explicitly represented.
8229 
8230     SDValue Ops[] = {StoreChain,
8231                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
8232                      FIdx};
8233     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
8234 
8235     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
8236       dl, VTs, Ops, MVT::v4i32, PtrInfo);
8237     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
8238       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
8239       LoadedVect);
8240 
8241     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
8242 
8243     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
8244   }
8245 
8246   // All other QPX vectors are handled by generic code.
8247   if (Subtarget.hasQPX())
8248     return SDValue();
8249 
8250   // Check if this is a splat of a constant value.
8251   APInt APSplatBits, APSplatUndef;
8252   unsigned SplatBitSize;
8253   bool HasAnyUndefs;
8254   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
8255                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
8256       SplatBitSize > 32) {
8257     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
8258     // lowered to VSX instructions under certain conditions.
8259     // Without VSX, there is no pattern more efficient than expanding the node.
8260     if (Subtarget.hasVSX() &&
8261         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
8262                                         Subtarget.hasP8Vector()))
8263       return Op;
8264     return SDValue();
8265   }
8266 
8267   unsigned SplatBits = APSplatBits.getZExtValue();
8268   unsigned SplatUndef = APSplatUndef.getZExtValue();
8269   unsigned SplatSize = SplatBitSize / 8;
8270 
8271   // First, handle single instruction cases.
8272 
8273   // All zeros?
8274   if (SplatBits == 0) {
8275     // Canonicalize all zero vectors to be v4i32.
8276     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
8277       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
8278       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
8279     }
8280     return Op;
8281   }
8282 
8283   // We have XXSPLTIB for constant splats one byte wide
8284   if (Subtarget.hasP9Vector() && SplatSize == 1) {
8285     // This is a splat of 1-byte elements with some elements potentially undef.
8286     // Rather than trying to match undef in the SDAG patterns, ensure that all
8287     // elements are the same constant.
8288     if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) {
8289       SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits,
8290                                                        dl, MVT::i32));
8291       SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops);
8292       if (Op.getValueType() != MVT::v16i8)
8293         return DAG.getBitcast(Op.getValueType(), NewBV);
8294       return NewBV;
8295     }
8296 
8297     // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll
8298     // detect that constant splats like v8i16: 0xABAB are really just splats
8299     // of a 1-byte constant. In this case, we need to convert the node to a
8300     // splat of v16i8 and a bitcast.
8301     if (Op.getValueType() != MVT::v16i8)
8302       return DAG.getBitcast(Op.getValueType(),
8303                             DAG.getConstant(SplatBits, dl, MVT::v16i8));
8304 
8305     return Op;
8306   }
8307 
8308   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
8309   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
8310                     (32-SplatBitSize));
8311   if (SextVal >= -16 && SextVal <= 15)
8312     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
8313 
8314   // Two instruction sequences.
8315 
8316   // If this value is in the range [-32,30] and is even, use:
8317   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
8318   // If this value is in the range [17,31] and is odd, use:
8319   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
8320   // If this value is in the range [-31,-17] and is odd, use:
8321   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
8322   // Note the last two are three-instruction sequences.
8323   if (SextVal >= -32 && SextVal <= 31) {
8324     // To avoid having these optimizations undone by constant folding,
8325     // we convert to a pseudo that will be expanded later into one of
8326     // the above forms.
8327     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
8328     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
8329               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
8330     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
8331     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
8332     if (VT == Op.getValueType())
8333       return RetVal;
8334     else
8335       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
8336   }
8337 
8338   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
8339   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
8340   // for fneg/fabs.
8341   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
8342     // Make -1 and vspltisw -1:
8343     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
8344 
8345     // Make the VSLW intrinsic, computing 0x8000_0000.
8346     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
8347                                    OnesV, DAG, dl);
8348 
8349     // xor by OnesV to invert it.
8350     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
8351     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8352   }
8353 
8354   // Check to see if this is a wide variety of vsplti*, binop self cases.
8355   static const signed char SplatCsts[] = {
8356     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
8357     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
8358   };
8359 
8360   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
8361     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
8362     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
8363     int i = SplatCsts[idx];
8364 
8365     // Figure out what shift amount will be used by altivec if shifted by i in
8366     // this splat size.
8367     unsigned TypeShiftAmt = i & (SplatBitSize-1);
8368 
8369     // vsplti + shl self.
8370     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
8371       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8372       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8373         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
8374         Intrinsic::ppc_altivec_vslw
8375       };
8376       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8377       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8378     }
8379 
8380     // vsplti + srl self.
8381     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8382       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8383       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8384         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
8385         Intrinsic::ppc_altivec_vsrw
8386       };
8387       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8388       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8389     }
8390 
8391     // vsplti + sra self.
8392     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8393       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8394       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8395         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
8396         Intrinsic::ppc_altivec_vsraw
8397       };
8398       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8399       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8400     }
8401 
8402     // vsplti + rol self.
8403     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
8404                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
8405       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8406       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8407         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
8408         Intrinsic::ppc_altivec_vrlw
8409       };
8410       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8411       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8412     }
8413 
8414     // t = vsplti c, result = vsldoi t, t, 1
8415     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
8416       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8417       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
8418       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8419     }
8420     // t = vsplti c, result = vsldoi t, t, 2
8421     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
8422       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8423       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
8424       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8425     }
8426     // t = vsplti c, result = vsldoi t, t, 3
8427     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
8428       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8429       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
8430       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8431     }
8432   }
8433 
8434   return SDValue();
8435 }
8436 
8437 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8438 /// the specified operations to build the shuffle.
8439 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8440                                       SDValue RHS, SelectionDAG &DAG,
8441                                       const SDLoc &dl) {
8442   unsigned OpNum = (PFEntry >> 26) & 0x0F;
8443   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8444   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8445 
8446   enum {
8447     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8448     OP_VMRGHW,
8449     OP_VMRGLW,
8450     OP_VSPLTISW0,
8451     OP_VSPLTISW1,
8452     OP_VSPLTISW2,
8453     OP_VSPLTISW3,
8454     OP_VSLDOI4,
8455     OP_VSLDOI8,
8456     OP_VSLDOI12
8457   };
8458 
8459   if (OpNum == OP_COPY) {
8460     if (LHSID == (1*9+2)*9+3) return LHS;
8461     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8462     return RHS;
8463   }
8464 
8465   SDValue OpLHS, OpRHS;
8466   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8467   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8468 
8469   int ShufIdxs[16];
8470   switch (OpNum) {
8471   default: llvm_unreachable("Unknown i32 permute!");
8472   case OP_VMRGHW:
8473     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
8474     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
8475     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
8476     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
8477     break;
8478   case OP_VMRGLW:
8479     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
8480     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
8481     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
8482     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
8483     break;
8484   case OP_VSPLTISW0:
8485     for (unsigned i = 0; i != 16; ++i)
8486       ShufIdxs[i] = (i&3)+0;
8487     break;
8488   case OP_VSPLTISW1:
8489     for (unsigned i = 0; i != 16; ++i)
8490       ShufIdxs[i] = (i&3)+4;
8491     break;
8492   case OP_VSPLTISW2:
8493     for (unsigned i = 0; i != 16; ++i)
8494       ShufIdxs[i] = (i&3)+8;
8495     break;
8496   case OP_VSPLTISW3:
8497     for (unsigned i = 0; i != 16; ++i)
8498       ShufIdxs[i] = (i&3)+12;
8499     break;
8500   case OP_VSLDOI4:
8501     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
8502   case OP_VSLDOI8:
8503     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
8504   case OP_VSLDOI12:
8505     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
8506   }
8507   EVT VT = OpLHS.getValueType();
8508   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
8509   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
8510   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
8511   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8512 }
8513 
8514 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
8515 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
8516 /// SDValue.
8517 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
8518                                            SelectionDAG &DAG) const {
8519   const unsigned BytesInVector = 16;
8520   bool IsLE = Subtarget.isLittleEndian();
8521   SDLoc dl(N);
8522   SDValue V1 = N->getOperand(0);
8523   SDValue V2 = N->getOperand(1);
8524   unsigned ShiftElts = 0, InsertAtByte = 0;
8525   bool Swap = false;
8526 
8527   // Shifts required to get the byte we want at element 7.
8528   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
8529                                    0, 15, 14, 13, 12, 11, 10, 9};
8530   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
8531                                 1, 2,  3,  4,  5,  6,  7,  8};
8532 
8533   ArrayRef<int> Mask = N->getMask();
8534   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
8535 
8536   // For each mask element, find out if we're just inserting something
8537   // from V2 into V1 or vice versa.
8538   // Possible permutations inserting an element from V2 into V1:
8539   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8540   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8541   //   ...
8542   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
8543   // Inserting from V1 into V2 will be similar, except mask range will be
8544   // [16,31].
8545 
8546   bool FoundCandidate = false;
8547   // If both vector operands for the shuffle are the same vector, the mask
8548   // will contain only elements from the first one and the second one will be
8549   // undef.
8550   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
8551   // Go through the mask of half-words to find an element that's being moved
8552   // from one vector to the other.
8553   for (unsigned i = 0; i < BytesInVector; ++i) {
8554     unsigned CurrentElement = Mask[i];
8555     // If 2nd operand is undefined, we should only look for element 7 in the
8556     // Mask.
8557     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
8558       continue;
8559 
8560     bool OtherElementsInOrder = true;
8561     // Examine the other elements in the Mask to see if they're in original
8562     // order.
8563     for (unsigned j = 0; j < BytesInVector; ++j) {
8564       if (j == i)
8565         continue;
8566       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
8567       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
8568       // in which we always assume we're always picking from the 1st operand.
8569       int MaskOffset =
8570           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
8571       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
8572         OtherElementsInOrder = false;
8573         break;
8574       }
8575     }
8576     // If other elements are in original order, we record the number of shifts
8577     // we need to get the element we want into element 7. Also record which byte
8578     // in the vector we should insert into.
8579     if (OtherElementsInOrder) {
8580       // If 2nd operand is undefined, we assume no shifts and no swapping.
8581       if (V2.isUndef()) {
8582         ShiftElts = 0;
8583         Swap = false;
8584       } else {
8585         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
8586         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
8587                          : BigEndianShifts[CurrentElement & 0xF];
8588         Swap = CurrentElement < BytesInVector;
8589       }
8590       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
8591       FoundCandidate = true;
8592       break;
8593     }
8594   }
8595 
8596   if (!FoundCandidate)
8597     return SDValue();
8598 
8599   // Candidate found, construct the proper SDAG sequence with VINSERTB,
8600   // optionally with VECSHL if shift is required.
8601   if (Swap)
8602     std::swap(V1, V2);
8603   if (V2.isUndef())
8604     V2 = V1;
8605   if (ShiftElts) {
8606     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8607                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8608     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
8609                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
8610   }
8611   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
8612                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
8613 }
8614 
8615 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
8616 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
8617 /// SDValue.
8618 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
8619                                            SelectionDAG &DAG) const {
8620   const unsigned NumHalfWords = 8;
8621   const unsigned BytesInVector = NumHalfWords * 2;
8622   // Check that the shuffle is on half-words.
8623   if (!isNByteElemShuffleMask(N, 2, 1))
8624     return SDValue();
8625 
8626   bool IsLE = Subtarget.isLittleEndian();
8627   SDLoc dl(N);
8628   SDValue V1 = N->getOperand(0);
8629   SDValue V2 = N->getOperand(1);
8630   unsigned ShiftElts = 0, InsertAtByte = 0;
8631   bool Swap = false;
8632 
8633   // Shifts required to get the half-word we want at element 3.
8634   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
8635   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
8636 
8637   uint32_t Mask = 0;
8638   uint32_t OriginalOrderLow = 0x1234567;
8639   uint32_t OriginalOrderHigh = 0x89ABCDEF;
8640   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
8641   // 32-bit space, only need 4-bit nibbles per element.
8642   for (unsigned i = 0; i < NumHalfWords; ++i) {
8643     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8644     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
8645   }
8646 
8647   // For each mask element, find out if we're just inserting something
8648   // from V2 into V1 or vice versa.  Possible permutations inserting an element
8649   // from V2 into V1:
8650   //   X, 1, 2, 3, 4, 5, 6, 7
8651   //   0, X, 2, 3, 4, 5, 6, 7
8652   //   0, 1, X, 3, 4, 5, 6, 7
8653   //   0, 1, 2, X, 4, 5, 6, 7
8654   //   0, 1, 2, 3, X, 5, 6, 7
8655   //   0, 1, 2, 3, 4, X, 6, 7
8656   //   0, 1, 2, 3, 4, 5, X, 7
8657   //   0, 1, 2, 3, 4, 5, 6, X
8658   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
8659 
8660   bool FoundCandidate = false;
8661   // Go through the mask of half-words to find an element that's being moved
8662   // from one vector to the other.
8663   for (unsigned i = 0; i < NumHalfWords; ++i) {
8664     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8665     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
8666     uint32_t MaskOtherElts = ~(0xF << MaskShift);
8667     uint32_t TargetOrder = 0x0;
8668 
8669     // If both vector operands for the shuffle are the same vector, the mask
8670     // will contain only elements from the first one and the second one will be
8671     // undef.
8672     if (V2.isUndef()) {
8673       ShiftElts = 0;
8674       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
8675       TargetOrder = OriginalOrderLow;
8676       Swap = false;
8677       // Skip if not the correct element or mask of other elements don't equal
8678       // to our expected order.
8679       if (MaskOneElt == VINSERTHSrcElem &&
8680           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8681         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8682         FoundCandidate = true;
8683         break;
8684       }
8685     } else { // If both operands are defined.
8686       // Target order is [8,15] if the current mask is between [0,7].
8687       TargetOrder =
8688           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
8689       // Skip if mask of other elements don't equal our expected order.
8690       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8691         // We only need the last 3 bits for the number of shifts.
8692         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
8693                          : BigEndianShifts[MaskOneElt & 0x7];
8694         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8695         Swap = MaskOneElt < NumHalfWords;
8696         FoundCandidate = true;
8697         break;
8698       }
8699     }
8700   }
8701 
8702   if (!FoundCandidate)
8703     return SDValue();
8704 
8705   // Candidate found, construct the proper SDAG sequence with VINSERTH,
8706   // optionally with VECSHL if shift is required.
8707   if (Swap)
8708     std::swap(V1, V2);
8709   if (V2.isUndef())
8710     V2 = V1;
8711   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8712   if (ShiftElts) {
8713     // Double ShiftElts because we're left shifting on v16i8 type.
8714     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8715                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
8716     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
8717     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8718                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8719     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8720   }
8721   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
8722   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8723                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
8724   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8725 }
8726 
8727 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
8728 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
8729 /// return the code it can be lowered into.  Worst case, it can always be
8730 /// lowered into a vperm.
8731 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
8732                                                SelectionDAG &DAG) const {
8733   SDLoc dl(Op);
8734   SDValue V1 = Op.getOperand(0);
8735   SDValue V2 = Op.getOperand(1);
8736   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8737   EVT VT = Op.getValueType();
8738   bool isLittleEndian = Subtarget.isLittleEndian();
8739 
8740   unsigned ShiftElts, InsertAtByte;
8741   bool Swap = false;
8742   if (Subtarget.hasP9Vector() &&
8743       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
8744                            isLittleEndian)) {
8745     if (Swap)
8746       std::swap(V1, V2);
8747     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8748     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
8749     if (ShiftElts) {
8750       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
8751                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
8752       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
8753                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
8754       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8755     }
8756     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
8757                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8758     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8759   }
8760 
8761   if (Subtarget.hasP9Altivec()) {
8762     SDValue NewISDNode;
8763     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
8764       return NewISDNode;
8765 
8766     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
8767       return NewISDNode;
8768   }
8769 
8770   if (Subtarget.hasVSX() &&
8771       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8772     if (Swap)
8773       std::swap(V1, V2);
8774     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8775     SDValue Conv2 =
8776         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
8777 
8778     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
8779                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8780     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
8781   }
8782 
8783   if (Subtarget.hasVSX() &&
8784     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8785     if (Swap)
8786       std::swap(V1, V2);
8787     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8788     SDValue Conv2 =
8789         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
8790 
8791     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
8792                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8793     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
8794   }
8795 
8796   if (Subtarget.hasP9Vector()) {
8797      if (PPC::isXXBRHShuffleMask(SVOp)) {
8798       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8799       SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv);
8800       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
8801     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
8802       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8803       SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv);
8804       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
8805     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
8806       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8807       SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv);
8808       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
8809     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
8810       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
8811       SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv);
8812       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
8813     }
8814   }
8815 
8816   if (Subtarget.hasVSX()) {
8817     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
8818       int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG);
8819 
8820       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8821       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
8822                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
8823       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
8824     }
8825 
8826     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
8827     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
8828       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
8829       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
8830       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
8831     }
8832   }
8833 
8834   if (Subtarget.hasQPX()) {
8835     if (VT.getVectorNumElements() != 4)
8836       return SDValue();
8837 
8838     if (V2.isUndef()) V2 = V1;
8839 
8840     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
8841     if (AlignIdx != -1) {
8842       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
8843                          DAG.getConstant(AlignIdx, dl, MVT::i32));
8844     } else if (SVOp->isSplat()) {
8845       int SplatIdx = SVOp->getSplatIndex();
8846       if (SplatIdx >= 4) {
8847         std::swap(V1, V2);
8848         SplatIdx -= 4;
8849       }
8850 
8851       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
8852                          DAG.getConstant(SplatIdx, dl, MVT::i32));
8853     }
8854 
8855     // Lower this into a qvgpci/qvfperm pair.
8856 
8857     // Compute the qvgpci literal
8858     unsigned idx = 0;
8859     for (unsigned i = 0; i < 4; ++i) {
8860       int m = SVOp->getMaskElt(i);
8861       unsigned mm = m >= 0 ? (unsigned) m : i;
8862       idx |= mm << (3-i)*3;
8863     }
8864 
8865     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
8866                              DAG.getConstant(idx, dl, MVT::i32));
8867     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
8868   }
8869 
8870   // Cases that are handled by instructions that take permute immediates
8871   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
8872   // selected by the instruction selector.
8873   if (V2.isUndef()) {
8874     if (PPC::isSplatShuffleMask(SVOp, 1) ||
8875         PPC::isSplatShuffleMask(SVOp, 2) ||
8876         PPC::isSplatShuffleMask(SVOp, 4) ||
8877         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
8878         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
8879         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
8880         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
8881         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
8882         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
8883         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
8884         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
8885         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
8886         (Subtarget.hasP8Altivec() && (
8887          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
8888          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
8889          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
8890       return Op;
8891     }
8892   }
8893 
8894   // Altivec has a variety of "shuffle immediates" that take two vector inputs
8895   // and produce a fixed permutation.  If any of these match, do not lower to
8896   // VPERM.
8897   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
8898   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8899       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8900       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
8901       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8902       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8903       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8904       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8905       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8906       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8907       (Subtarget.hasP8Altivec() && (
8908        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8909        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
8910        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
8911     return Op;
8912 
8913   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
8914   // perfect shuffle table to emit an optimal matching sequence.
8915   ArrayRef<int> PermMask = SVOp->getMask();
8916 
8917   unsigned PFIndexes[4];
8918   bool isFourElementShuffle = true;
8919   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
8920     unsigned EltNo = 8;   // Start out undef.
8921     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
8922       if (PermMask[i*4+j] < 0)
8923         continue;   // Undef, ignore it.
8924 
8925       unsigned ByteSource = PermMask[i*4+j];
8926       if ((ByteSource & 3) != j) {
8927         isFourElementShuffle = false;
8928         break;
8929       }
8930 
8931       if (EltNo == 8) {
8932         EltNo = ByteSource/4;
8933       } else if (EltNo != ByteSource/4) {
8934         isFourElementShuffle = false;
8935         break;
8936       }
8937     }
8938     PFIndexes[i] = EltNo;
8939   }
8940 
8941   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
8942   // perfect shuffle vector to determine if it is cost effective to do this as
8943   // discrete instructions, or whether we should use a vperm.
8944   // For now, we skip this for little endian until such time as we have a
8945   // little-endian perfect shuffle table.
8946   if (isFourElementShuffle && !isLittleEndian) {
8947     // Compute the index in the perfect shuffle table.
8948     unsigned PFTableIndex =
8949       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8950 
8951     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8952     unsigned Cost  = (PFEntry >> 30);
8953 
8954     // Determining when to avoid vperm is tricky.  Many things affect the cost
8955     // of vperm, particularly how many times the perm mask needs to be computed.
8956     // For example, if the perm mask can be hoisted out of a loop or is already
8957     // used (perhaps because there are multiple permutes with the same shuffle
8958     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
8959     // the loop requires an extra register.
8960     //
8961     // As a compromise, we only emit discrete instructions if the shuffle can be
8962     // generated in 3 or fewer operations.  When we have loop information
8963     // available, if this block is within a loop, we should avoid using vperm
8964     // for 3-operation perms and use a constant pool load instead.
8965     if (Cost < 3)
8966       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8967   }
8968 
8969   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
8970   // vector that will get spilled to the constant pool.
8971   if (V2.isUndef()) V2 = V1;
8972 
8973   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
8974   // that it is in input element units, not in bytes.  Convert now.
8975 
8976   // For little endian, the order of the input vectors is reversed, and
8977   // the permutation mask is complemented with respect to 31.  This is
8978   // necessary to produce proper semantics with the big-endian-biased vperm
8979   // instruction.
8980   EVT EltVT = V1.getValueType().getVectorElementType();
8981   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
8982 
8983   SmallVector<SDValue, 16> ResultMask;
8984   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
8985     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
8986 
8987     for (unsigned j = 0; j != BytesPerElement; ++j)
8988       if (isLittleEndian)
8989         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
8990                                              dl, MVT::i32));
8991       else
8992         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
8993                                              MVT::i32));
8994   }
8995 
8996   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
8997   if (isLittleEndian)
8998     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8999                        V2, V1, VPermMask);
9000   else
9001     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9002                        V1, V2, VPermMask);
9003 }
9004 
9005 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
9006 /// vector comparison.  If it is, return true and fill in Opc/isDot with
9007 /// information about the intrinsic.
9008 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
9009                                  bool &isDot, const PPCSubtarget &Subtarget) {
9010   unsigned IntrinsicID =
9011       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
9012   CompareOpc = -1;
9013   isDot = false;
9014   switch (IntrinsicID) {
9015   default:
9016     return false;
9017   // Comparison predicates.
9018   case Intrinsic::ppc_altivec_vcmpbfp_p:
9019     CompareOpc = 966;
9020     isDot = true;
9021     break;
9022   case Intrinsic::ppc_altivec_vcmpeqfp_p:
9023     CompareOpc = 198;
9024     isDot = true;
9025     break;
9026   case Intrinsic::ppc_altivec_vcmpequb_p:
9027     CompareOpc = 6;
9028     isDot = true;
9029     break;
9030   case Intrinsic::ppc_altivec_vcmpequh_p:
9031     CompareOpc = 70;
9032     isDot = true;
9033     break;
9034   case Intrinsic::ppc_altivec_vcmpequw_p:
9035     CompareOpc = 134;
9036     isDot = true;
9037     break;
9038   case Intrinsic::ppc_altivec_vcmpequd_p:
9039     if (Subtarget.hasP8Altivec()) {
9040       CompareOpc = 199;
9041       isDot = true;
9042     } else
9043       return false;
9044     break;
9045   case Intrinsic::ppc_altivec_vcmpneb_p:
9046   case Intrinsic::ppc_altivec_vcmpneh_p:
9047   case Intrinsic::ppc_altivec_vcmpnew_p:
9048   case Intrinsic::ppc_altivec_vcmpnezb_p:
9049   case Intrinsic::ppc_altivec_vcmpnezh_p:
9050   case Intrinsic::ppc_altivec_vcmpnezw_p:
9051     if (Subtarget.hasP9Altivec()) {
9052       switch (IntrinsicID) {
9053       default:
9054         llvm_unreachable("Unknown comparison intrinsic.");
9055       case Intrinsic::ppc_altivec_vcmpneb_p:
9056         CompareOpc = 7;
9057         break;
9058       case Intrinsic::ppc_altivec_vcmpneh_p:
9059         CompareOpc = 71;
9060         break;
9061       case Intrinsic::ppc_altivec_vcmpnew_p:
9062         CompareOpc = 135;
9063         break;
9064       case Intrinsic::ppc_altivec_vcmpnezb_p:
9065         CompareOpc = 263;
9066         break;
9067       case Intrinsic::ppc_altivec_vcmpnezh_p:
9068         CompareOpc = 327;
9069         break;
9070       case Intrinsic::ppc_altivec_vcmpnezw_p:
9071         CompareOpc = 391;
9072         break;
9073       }
9074       isDot = true;
9075     } else
9076       return false;
9077     break;
9078   case Intrinsic::ppc_altivec_vcmpgefp_p:
9079     CompareOpc = 454;
9080     isDot = true;
9081     break;
9082   case Intrinsic::ppc_altivec_vcmpgtfp_p:
9083     CompareOpc = 710;
9084     isDot = true;
9085     break;
9086   case Intrinsic::ppc_altivec_vcmpgtsb_p:
9087     CompareOpc = 774;
9088     isDot = true;
9089     break;
9090   case Intrinsic::ppc_altivec_vcmpgtsh_p:
9091     CompareOpc = 838;
9092     isDot = true;
9093     break;
9094   case Intrinsic::ppc_altivec_vcmpgtsw_p:
9095     CompareOpc = 902;
9096     isDot = true;
9097     break;
9098   case Intrinsic::ppc_altivec_vcmpgtsd_p:
9099     if (Subtarget.hasP8Altivec()) {
9100       CompareOpc = 967;
9101       isDot = true;
9102     } else
9103       return false;
9104     break;
9105   case Intrinsic::ppc_altivec_vcmpgtub_p:
9106     CompareOpc = 518;
9107     isDot = true;
9108     break;
9109   case Intrinsic::ppc_altivec_vcmpgtuh_p:
9110     CompareOpc = 582;
9111     isDot = true;
9112     break;
9113   case Intrinsic::ppc_altivec_vcmpgtuw_p:
9114     CompareOpc = 646;
9115     isDot = true;
9116     break;
9117   case Intrinsic::ppc_altivec_vcmpgtud_p:
9118     if (Subtarget.hasP8Altivec()) {
9119       CompareOpc = 711;
9120       isDot = true;
9121     } else
9122       return false;
9123     break;
9124 
9125   // VSX predicate comparisons use the same infrastructure
9126   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9127   case Intrinsic::ppc_vsx_xvcmpgedp_p:
9128   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9129   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9130   case Intrinsic::ppc_vsx_xvcmpgesp_p:
9131   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9132     if (Subtarget.hasVSX()) {
9133       switch (IntrinsicID) {
9134       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9135         CompareOpc = 99;
9136         break;
9137       case Intrinsic::ppc_vsx_xvcmpgedp_p:
9138         CompareOpc = 115;
9139         break;
9140       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9141         CompareOpc = 107;
9142         break;
9143       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9144         CompareOpc = 67;
9145         break;
9146       case Intrinsic::ppc_vsx_xvcmpgesp_p:
9147         CompareOpc = 83;
9148         break;
9149       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9150         CompareOpc = 75;
9151         break;
9152       }
9153       isDot = true;
9154     } else
9155       return false;
9156     break;
9157 
9158   // Normal Comparisons.
9159   case Intrinsic::ppc_altivec_vcmpbfp:
9160     CompareOpc = 966;
9161     break;
9162   case Intrinsic::ppc_altivec_vcmpeqfp:
9163     CompareOpc = 198;
9164     break;
9165   case Intrinsic::ppc_altivec_vcmpequb:
9166     CompareOpc = 6;
9167     break;
9168   case Intrinsic::ppc_altivec_vcmpequh:
9169     CompareOpc = 70;
9170     break;
9171   case Intrinsic::ppc_altivec_vcmpequw:
9172     CompareOpc = 134;
9173     break;
9174   case Intrinsic::ppc_altivec_vcmpequd:
9175     if (Subtarget.hasP8Altivec())
9176       CompareOpc = 199;
9177     else
9178       return false;
9179     break;
9180   case Intrinsic::ppc_altivec_vcmpneb:
9181   case Intrinsic::ppc_altivec_vcmpneh:
9182   case Intrinsic::ppc_altivec_vcmpnew:
9183   case Intrinsic::ppc_altivec_vcmpnezb:
9184   case Intrinsic::ppc_altivec_vcmpnezh:
9185   case Intrinsic::ppc_altivec_vcmpnezw:
9186     if (Subtarget.hasP9Altivec())
9187       switch (IntrinsicID) {
9188       default:
9189         llvm_unreachable("Unknown comparison intrinsic.");
9190       case Intrinsic::ppc_altivec_vcmpneb:
9191         CompareOpc = 7;
9192         break;
9193       case Intrinsic::ppc_altivec_vcmpneh:
9194         CompareOpc = 71;
9195         break;
9196       case Intrinsic::ppc_altivec_vcmpnew:
9197         CompareOpc = 135;
9198         break;
9199       case Intrinsic::ppc_altivec_vcmpnezb:
9200         CompareOpc = 263;
9201         break;
9202       case Intrinsic::ppc_altivec_vcmpnezh:
9203         CompareOpc = 327;
9204         break;
9205       case Intrinsic::ppc_altivec_vcmpnezw:
9206         CompareOpc = 391;
9207         break;
9208       }
9209     else
9210       return false;
9211     break;
9212   case Intrinsic::ppc_altivec_vcmpgefp:
9213     CompareOpc = 454;
9214     break;
9215   case Intrinsic::ppc_altivec_vcmpgtfp:
9216     CompareOpc = 710;
9217     break;
9218   case Intrinsic::ppc_altivec_vcmpgtsb:
9219     CompareOpc = 774;
9220     break;
9221   case Intrinsic::ppc_altivec_vcmpgtsh:
9222     CompareOpc = 838;
9223     break;
9224   case Intrinsic::ppc_altivec_vcmpgtsw:
9225     CompareOpc = 902;
9226     break;
9227   case Intrinsic::ppc_altivec_vcmpgtsd:
9228     if (Subtarget.hasP8Altivec())
9229       CompareOpc = 967;
9230     else
9231       return false;
9232     break;
9233   case Intrinsic::ppc_altivec_vcmpgtub:
9234     CompareOpc = 518;
9235     break;
9236   case Intrinsic::ppc_altivec_vcmpgtuh:
9237     CompareOpc = 582;
9238     break;
9239   case Intrinsic::ppc_altivec_vcmpgtuw:
9240     CompareOpc = 646;
9241     break;
9242   case Intrinsic::ppc_altivec_vcmpgtud:
9243     if (Subtarget.hasP8Altivec())
9244       CompareOpc = 711;
9245     else
9246       return false;
9247     break;
9248   }
9249   return true;
9250 }
9251 
9252 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
9253 /// lower, do it, otherwise return null.
9254 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
9255                                                    SelectionDAG &DAG) const {
9256   unsigned IntrinsicID =
9257     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9258 
9259   SDLoc dl(Op);
9260 
9261   if (IntrinsicID == Intrinsic::thread_pointer) {
9262     // Reads the thread pointer register, used for __builtin_thread_pointer.
9263     if (Subtarget.isPPC64())
9264       return DAG.getRegister(PPC::X13, MVT::i64);
9265     return DAG.getRegister(PPC::R2, MVT::i32);
9266   }
9267 
9268   // If this is a lowered altivec predicate compare, CompareOpc is set to the
9269   // opcode number of the comparison.
9270   int CompareOpc;
9271   bool isDot;
9272   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
9273     return SDValue();    // Don't custom lower most intrinsics.
9274 
9275   // If this is a non-dot comparison, make the VCMP node and we are done.
9276   if (!isDot) {
9277     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
9278                               Op.getOperand(1), Op.getOperand(2),
9279                               DAG.getConstant(CompareOpc, dl, MVT::i32));
9280     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
9281   }
9282 
9283   // Create the PPCISD altivec 'dot' comparison node.
9284   SDValue Ops[] = {
9285     Op.getOperand(2),  // LHS
9286     Op.getOperand(3),  // RHS
9287     DAG.getConstant(CompareOpc, dl, MVT::i32)
9288   };
9289   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
9290   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
9291 
9292   // Now that we have the comparison, emit a copy from the CR to a GPR.
9293   // This is flagged to the above dot comparison.
9294   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
9295                                 DAG.getRegister(PPC::CR6, MVT::i32),
9296                                 CompNode.getValue(1));
9297 
9298   // Unpack the result based on how the target uses it.
9299   unsigned BitNo;   // Bit # of CR6.
9300   bool InvertBit;   // Invert result?
9301   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
9302   default:  // Can't happen, don't crash on invalid number though.
9303   case 0:   // Return the value of the EQ bit of CR6.
9304     BitNo = 0; InvertBit = false;
9305     break;
9306   case 1:   // Return the inverted value of the EQ bit of CR6.
9307     BitNo = 0; InvertBit = true;
9308     break;
9309   case 2:   // Return the value of the LT bit of CR6.
9310     BitNo = 2; InvertBit = false;
9311     break;
9312   case 3:   // Return the inverted value of the LT bit of CR6.
9313     BitNo = 2; InvertBit = true;
9314     break;
9315   }
9316 
9317   // Shift the bit into the low position.
9318   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
9319                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
9320   // Isolate the bit.
9321   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
9322                       DAG.getConstant(1, dl, MVT::i32));
9323 
9324   // If we are supposed to, toggle the bit.
9325   if (InvertBit)
9326     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
9327                         DAG.getConstant(1, dl, MVT::i32));
9328   return Flags;
9329 }
9330 
9331 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
9332                                                SelectionDAG &DAG) const {
9333   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
9334   // the beginning of the argument list.
9335   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
9336   SDLoc DL(Op);
9337   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
9338   case Intrinsic::ppc_cfence: {
9339     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
9340     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
9341     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
9342                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
9343                                                   Op.getOperand(ArgStart + 1)),
9344                                       Op.getOperand(0)),
9345                    0);
9346   }
9347   default:
9348     break;
9349   }
9350   return SDValue();
9351 }
9352 
9353 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
9354   // Check for a DIV with the same operands as this REM.
9355   for (auto UI : Op.getOperand(1)->uses()) {
9356     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
9357         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
9358       if (UI->getOperand(0) == Op.getOperand(0) &&
9359           UI->getOperand(1) == Op.getOperand(1))
9360         return SDValue();
9361   }
9362   return Op;
9363 }
9364 
9365 // Lower scalar BSWAP64 to xxbrd.
9366 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
9367   SDLoc dl(Op);
9368   // MTVSRDD
9369   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
9370                    Op.getOperand(0));
9371   // XXBRD
9372   Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op);
9373   // MFVSRD
9374   int VectorIndex = 0;
9375   if (Subtarget.isLittleEndian())
9376     VectorIndex = 1;
9377   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
9378                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
9379   return Op;
9380 }
9381 
9382 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
9383 // compared to a value that is atomically loaded (atomic loads zero-extend).
9384 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
9385                                                 SelectionDAG &DAG) const {
9386   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
9387          "Expecting an atomic compare-and-swap here.");
9388   SDLoc dl(Op);
9389   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
9390   EVT MemVT = AtomicNode->getMemoryVT();
9391   if (MemVT.getSizeInBits() >= 32)
9392     return Op;
9393 
9394   SDValue CmpOp = Op.getOperand(2);
9395   // If this is already correctly zero-extended, leave it alone.
9396   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
9397   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
9398     return Op;
9399 
9400   // Clear the high bits of the compare operand.
9401   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
9402   SDValue NewCmpOp =
9403     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
9404                 DAG.getConstant(MaskVal, dl, MVT::i32));
9405 
9406   // Replace the existing compare operand with the properly zero-extended one.
9407   SmallVector<SDValue, 4> Ops;
9408   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
9409     Ops.push_back(AtomicNode->getOperand(i));
9410   Ops[2] = NewCmpOp;
9411   MachineMemOperand *MMO = AtomicNode->getMemOperand();
9412   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
9413   auto NodeTy =
9414     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
9415   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
9416 }
9417 
9418 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
9419                                                  SelectionDAG &DAG) const {
9420   SDLoc dl(Op);
9421   // Create a stack slot that is 16-byte aligned.
9422   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9423   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9424   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9425   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9426 
9427   // Store the input value into Value#0 of the stack slot.
9428   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
9429                                MachinePointerInfo());
9430   // Load it out.
9431   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
9432 }
9433 
9434 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
9435                                                   SelectionDAG &DAG) const {
9436   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
9437          "Should only be called for ISD::INSERT_VECTOR_ELT");
9438 
9439   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
9440   // We have legal lowering for constant indices but not for variable ones.
9441   if (!C)
9442     return SDValue();
9443 
9444   EVT VT = Op.getValueType();
9445   SDLoc dl(Op);
9446   SDValue V1 = Op.getOperand(0);
9447   SDValue V2 = Op.getOperand(1);
9448   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
9449   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
9450     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
9451     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
9452     unsigned InsertAtElement = C->getZExtValue();
9453     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
9454     if (Subtarget.isLittleEndian()) {
9455       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
9456     }
9457     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
9458                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9459   }
9460   return Op;
9461 }
9462 
9463 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
9464                                                    SelectionDAG &DAG) const {
9465   SDLoc dl(Op);
9466   SDNode *N = Op.getNode();
9467 
9468   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
9469          "Unknown extract_vector_elt type");
9470 
9471   SDValue Value = N->getOperand(0);
9472 
9473   // The first part of this is like the store lowering except that we don't
9474   // need to track the chain.
9475 
9476   // The values are now known to be -1 (false) or 1 (true). To convert this
9477   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9478   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9479   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9480 
9481   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9482   // understand how to form the extending load.
9483   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9484 
9485   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9486 
9487   // Now convert to an integer and store.
9488   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9489     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9490     Value);
9491 
9492   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9493   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9494   MachinePointerInfo PtrInfo =
9495       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9496   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9497   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9498 
9499   SDValue StoreChain = DAG.getEntryNode();
9500   SDValue Ops[] = {StoreChain,
9501                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9502                    Value, FIdx};
9503   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9504 
9505   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9506     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9507 
9508   // Extract the value requested.
9509   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9510   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9511   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9512 
9513   SDValue IntVal =
9514       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
9515 
9516   if (!Subtarget.useCRBits())
9517     return IntVal;
9518 
9519   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
9520 }
9521 
9522 /// Lowering for QPX v4i1 loads
9523 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
9524                                            SelectionDAG &DAG) const {
9525   SDLoc dl(Op);
9526   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
9527   SDValue LoadChain = LN->getChain();
9528   SDValue BasePtr = LN->getBasePtr();
9529 
9530   if (Op.getValueType() == MVT::v4f64 ||
9531       Op.getValueType() == MVT::v4f32) {
9532     EVT MemVT = LN->getMemoryVT();
9533     unsigned Alignment = LN->getAlignment();
9534 
9535     // If this load is properly aligned, then it is legal.
9536     if (Alignment >= MemVT.getStoreSize())
9537       return Op;
9538 
9539     EVT ScalarVT = Op.getValueType().getScalarType(),
9540         ScalarMemVT = MemVT.getScalarType();
9541     unsigned Stride = ScalarMemVT.getStoreSize();
9542 
9543     SDValue Vals[4], LoadChains[4];
9544     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9545       SDValue Load;
9546       if (ScalarVT != ScalarMemVT)
9547         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
9548                               BasePtr,
9549                               LN->getPointerInfo().getWithOffset(Idx * Stride),
9550                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9551                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
9552       else
9553         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
9554                            LN->getPointerInfo().getWithOffset(Idx * Stride),
9555                            MinAlign(Alignment, Idx * Stride),
9556                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
9557 
9558       if (Idx == 0 && LN->isIndexed()) {
9559         assert(LN->getAddressingMode() == ISD::PRE_INC &&
9560                "Unknown addressing mode on vector load");
9561         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
9562                                   LN->getAddressingMode());
9563       }
9564 
9565       Vals[Idx] = Load;
9566       LoadChains[Idx] = Load.getValue(1);
9567 
9568       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9569                             DAG.getConstant(Stride, dl,
9570                                             BasePtr.getValueType()));
9571     }
9572 
9573     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9574     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
9575 
9576     if (LN->isIndexed()) {
9577       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
9578       return DAG.getMergeValues(RetOps, dl);
9579     }
9580 
9581     SDValue RetOps[] = { Value, TF };
9582     return DAG.getMergeValues(RetOps, dl);
9583   }
9584 
9585   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
9586   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
9587 
9588   // To lower v4i1 from a byte array, we load the byte elements of the
9589   // vector and then reuse the BUILD_VECTOR logic.
9590 
9591   SDValue VectElmts[4], VectElmtChains[4];
9592   for (unsigned i = 0; i < 4; ++i) {
9593     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9594     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9595 
9596     VectElmts[i] = DAG.getExtLoad(
9597         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
9598         LN->getPointerInfo().getWithOffset(i), MVT::i8,
9599         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
9600     VectElmtChains[i] = VectElmts[i].getValue(1);
9601   }
9602 
9603   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
9604   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
9605 
9606   SDValue RVals[] = { Value, LoadChain };
9607   return DAG.getMergeValues(RVals, dl);
9608 }
9609 
9610 /// Lowering for QPX v4i1 stores
9611 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
9612                                             SelectionDAG &DAG) const {
9613   SDLoc dl(Op);
9614   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
9615   SDValue StoreChain = SN->getChain();
9616   SDValue BasePtr = SN->getBasePtr();
9617   SDValue Value = SN->getValue();
9618 
9619   if (Value.getValueType() == MVT::v4f64 ||
9620       Value.getValueType() == MVT::v4f32) {
9621     EVT MemVT = SN->getMemoryVT();
9622     unsigned Alignment = SN->getAlignment();
9623 
9624     // If this store is properly aligned, then it is legal.
9625     if (Alignment >= MemVT.getStoreSize())
9626       return Op;
9627 
9628     EVT ScalarVT = Value.getValueType().getScalarType(),
9629         ScalarMemVT = MemVT.getScalarType();
9630     unsigned Stride = ScalarMemVT.getStoreSize();
9631 
9632     SDValue Stores[4];
9633     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9634       SDValue Ex = DAG.getNode(
9635           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
9636           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
9637       SDValue Store;
9638       if (ScalarVT != ScalarMemVT)
9639         Store =
9640             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
9641                               SN->getPointerInfo().getWithOffset(Idx * Stride),
9642                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9643                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
9644       else
9645         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
9646                              SN->getPointerInfo().getWithOffset(Idx * Stride),
9647                              MinAlign(Alignment, Idx * Stride),
9648                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
9649 
9650       if (Idx == 0 && SN->isIndexed()) {
9651         assert(SN->getAddressingMode() == ISD::PRE_INC &&
9652                "Unknown addressing mode on vector store");
9653         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
9654                                     SN->getAddressingMode());
9655       }
9656 
9657       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9658                             DAG.getConstant(Stride, dl,
9659                                             BasePtr.getValueType()));
9660       Stores[Idx] = Store;
9661     }
9662 
9663     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9664 
9665     if (SN->isIndexed()) {
9666       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
9667       return DAG.getMergeValues(RetOps, dl);
9668     }
9669 
9670     return TF;
9671   }
9672 
9673   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
9674   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
9675 
9676   // The values are now known to be -1 (false) or 1 (true). To convert this
9677   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9678   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9679   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9680 
9681   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9682   // understand how to form the extending load.
9683   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9684 
9685   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9686 
9687   // Now convert to an integer and store.
9688   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9689     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9690     Value);
9691 
9692   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9693   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9694   MachinePointerInfo PtrInfo =
9695       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9696   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9697   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9698 
9699   SDValue Ops[] = {StoreChain,
9700                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9701                    Value, FIdx};
9702   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9703 
9704   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9705     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9706 
9707   // Move data into the byte array.
9708   SDValue Loads[4], LoadChains[4];
9709   for (unsigned i = 0; i < 4; ++i) {
9710     unsigned Offset = 4*i;
9711     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9712     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9713 
9714     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
9715                            PtrInfo.getWithOffset(Offset));
9716     LoadChains[i] = Loads[i].getValue(1);
9717   }
9718 
9719   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9720 
9721   SDValue Stores[4];
9722   for (unsigned i = 0; i < 4; ++i) {
9723     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9724     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9725 
9726     Stores[i] = DAG.getTruncStore(
9727         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
9728         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
9729         SN->getAAInfo());
9730   }
9731 
9732   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9733 
9734   return StoreChain;
9735 }
9736 
9737 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9738   SDLoc dl(Op);
9739   if (Op.getValueType() == MVT::v4i32) {
9740     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9741 
9742     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
9743     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
9744 
9745     SDValue RHSSwap =   // = vrlw RHS, 16
9746       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
9747 
9748     // Shrinkify inputs to v8i16.
9749     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
9750     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
9751     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
9752 
9753     // Low parts multiplied together, generating 32-bit results (we ignore the
9754     // top parts).
9755     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
9756                                         LHS, RHS, DAG, dl, MVT::v4i32);
9757 
9758     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
9759                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
9760     // Shift the high parts up 16 bits.
9761     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
9762                               Neg16, DAG, dl);
9763     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
9764   } else if (Op.getValueType() == MVT::v8i16) {
9765     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9766 
9767     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
9768 
9769     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
9770                             LHS, RHS, Zero, DAG, dl);
9771   } else if (Op.getValueType() == MVT::v16i8) {
9772     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9773     bool isLittleEndian = Subtarget.isLittleEndian();
9774 
9775     // Multiply the even 8-bit parts, producing 16-bit sums.
9776     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
9777                                            LHS, RHS, DAG, dl, MVT::v8i16);
9778     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
9779 
9780     // Multiply the odd 8-bit parts, producing 16-bit sums.
9781     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
9782                                           LHS, RHS, DAG, dl, MVT::v8i16);
9783     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
9784 
9785     // Merge the results together.  Because vmuleub and vmuloub are
9786     // instructions with a big-endian bias, we must reverse the
9787     // element numbering and reverse the meaning of "odd" and "even"
9788     // when generating little endian code.
9789     int Ops[16];
9790     for (unsigned i = 0; i != 8; ++i) {
9791       if (isLittleEndian) {
9792         Ops[i*2  ] = 2*i;
9793         Ops[i*2+1] = 2*i+16;
9794       } else {
9795         Ops[i*2  ] = 2*i+1;
9796         Ops[i*2+1] = 2*i+1+16;
9797       }
9798     }
9799     if (isLittleEndian)
9800       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
9801     else
9802       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
9803   } else {
9804     llvm_unreachable("Unknown mul to lower!");
9805   }
9806 }
9807 
9808 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
9809 
9810   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
9811 
9812   EVT VT = Op.getValueType();
9813   assert(VT.isVector() &&
9814          "Only set vector abs as custom, scalar abs shouldn't reach here!");
9815   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
9816           VT == MVT::v16i8) &&
9817          "Unexpected vector element type!");
9818   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
9819          "Current subtarget doesn't support smax v2i64!");
9820 
9821   // For vector abs, it can be lowered to:
9822   // abs x
9823   // ==>
9824   // y = -x
9825   // smax(x, y)
9826 
9827   SDLoc dl(Op);
9828   SDValue X = Op.getOperand(0);
9829   SDValue Zero = DAG.getConstant(0, dl, VT);
9830   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
9831 
9832   // SMAX patch https://reviews.llvm.org/D47332
9833   // hasn't landed yet, so use intrinsic first here.
9834   // TODO: Should use SMAX directly once SMAX patch landed
9835   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
9836   if (VT == MVT::v2i64)
9837     BifID = Intrinsic::ppc_altivec_vmaxsd;
9838   else if (VT == MVT::v8i16)
9839     BifID = Intrinsic::ppc_altivec_vmaxsh;
9840   else if (VT == MVT::v16i8)
9841     BifID = Intrinsic::ppc_altivec_vmaxsb;
9842 
9843   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
9844 }
9845 
9846 // Custom lowering for fpext vf32 to v2f64
9847 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
9848 
9849   assert(Op.getOpcode() == ISD::FP_EXTEND &&
9850          "Should only be called for ISD::FP_EXTEND");
9851 
9852   // We only want to custom lower an extend from v2f32 to v2f64.
9853   if (Op.getValueType() != MVT::v2f64 ||
9854       Op.getOperand(0).getValueType() != MVT::v2f32)
9855     return SDValue();
9856 
9857   SDLoc dl(Op);
9858   SDValue Op0 = Op.getOperand(0);
9859 
9860   switch (Op0.getOpcode()) {
9861   default:
9862     return SDValue();
9863   case ISD::FADD:
9864   case ISD::FMUL:
9865   case ISD::FSUB: {
9866     SDValue NewLoad[2];
9867     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
9868       // Ensure both input are loads.
9869       SDValue LdOp = Op0.getOperand(i);
9870       if (LdOp.getOpcode() != ISD::LOAD)
9871         return SDValue();
9872       // Generate new load node.
9873       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
9874       SDValue LoadOps[] = { LD->getChain(), LD->getBasePtr() };
9875       NewLoad[i] =
9876         DAG.getMemIntrinsicNode(PPCISD::LD_VSX_LH, dl,
9877                                 DAG.getVTList(MVT::v4f32, MVT::Other),
9878                                 LoadOps, LD->getMemoryVT(),
9879                                 LD->getMemOperand());
9880     }
9881     SDValue NewOp = DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32,
9882                               NewLoad[0], NewLoad[1],
9883                               Op0.getNode()->getFlags());
9884     return DAG.getNode(PPCISD::FP_EXTEND_LH, dl, MVT::v2f64, NewOp);
9885   }
9886   case ISD::LOAD: {
9887     LoadSDNode *LD = cast<LoadSDNode>(Op0);
9888     SDValue LoadOps[] = { LD->getChain(), LD->getBasePtr() };
9889     SDValue NewLd =
9890       DAG.getMemIntrinsicNode(PPCISD::LD_VSX_LH, dl,
9891                               DAG.getVTList(MVT::v4f32, MVT::Other),
9892                               LoadOps, LD->getMemoryVT(), LD->getMemOperand());
9893     return DAG.getNode(PPCISD::FP_EXTEND_LH, dl, MVT::v2f64, NewLd);
9894   }
9895   }
9896   llvm_unreachable("ERROR:Should return for all cases within swtich.");
9897 }
9898 
9899 /// LowerOperation - Provide custom lowering hooks for some operations.
9900 ///
9901 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9902   switch (Op.getOpcode()) {
9903   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
9904   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9905   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9906   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9907   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9908   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9909   case ISD::SETCC:              return LowerSETCC(Op, DAG);
9910   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
9911   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
9912 
9913   // Variable argument lowering.
9914   case ISD::VASTART:            return LowerVASTART(Op, DAG);
9915   case ISD::VAARG:              return LowerVAARG(Op, DAG);
9916   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
9917 
9918   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
9919   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
9920   case ISD::GET_DYNAMIC_AREA_OFFSET:
9921     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
9922 
9923   // Exception handling lowering.
9924   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
9925   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
9926   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
9927 
9928   case ISD::LOAD:               return LowerLOAD(Op, DAG);
9929   case ISD::STORE:              return LowerSTORE(Op, DAG);
9930   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
9931   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
9932   case ISD::FP_TO_UINT:
9933   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
9934   case ISD::UINT_TO_FP:
9935   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
9936   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9937 
9938   // Lower 64-bit shifts.
9939   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
9940   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
9941   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
9942 
9943   // Vector-related lowering.
9944   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9945   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9946   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9947   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9948   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9949   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9950   case ISD::MUL:                return LowerMUL(Op, DAG);
9951   case ISD::ABS:                return LowerABS(Op, DAG);
9952   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
9953 
9954   // For counter-based loop handling.
9955   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
9956 
9957   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
9958 
9959   // Frame & Return address.
9960   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9961   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9962 
9963   case ISD::INTRINSIC_VOID:
9964     return LowerINTRINSIC_VOID(Op, DAG);
9965   case ISD::SREM:
9966   case ISD::UREM:
9967     return LowerREM(Op, DAG);
9968   case ISD::BSWAP:
9969     return LowerBSWAP(Op, DAG);
9970   case ISD::ATOMIC_CMP_SWAP:
9971     return LowerATOMIC_CMP_SWAP(Op, DAG);
9972   }
9973 }
9974 
9975 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
9976                                            SmallVectorImpl<SDValue>&Results,
9977                                            SelectionDAG &DAG) const {
9978   SDLoc dl(N);
9979   switch (N->getOpcode()) {
9980   default:
9981     llvm_unreachable("Do not know how to custom type legalize this operation!");
9982   case ISD::READCYCLECOUNTER: {
9983     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9984     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
9985 
9986     Results.push_back(RTB);
9987     Results.push_back(RTB.getValue(1));
9988     Results.push_back(RTB.getValue(2));
9989     break;
9990   }
9991   case ISD::INTRINSIC_W_CHAIN: {
9992     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
9993         Intrinsic::loop_decrement)
9994       break;
9995 
9996     assert(N->getValueType(0) == MVT::i1 &&
9997            "Unexpected result type for CTR decrement intrinsic");
9998     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
9999                                  N->getValueType(0));
10000     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
10001     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
10002                                  N->getOperand(1));
10003 
10004     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
10005     Results.push_back(NewInt.getValue(1));
10006     break;
10007   }
10008   case ISD::VAARG: {
10009     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
10010       return;
10011 
10012     EVT VT = N->getValueType(0);
10013 
10014     if (VT == MVT::i64) {
10015       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
10016 
10017       Results.push_back(NewNode);
10018       Results.push_back(NewNode.getValue(1));
10019     }
10020     return;
10021   }
10022   case ISD::FP_TO_SINT:
10023   case ISD::FP_TO_UINT:
10024     // LowerFP_TO_INT() can only handle f32 and f64.
10025     if (N->getOperand(0).getValueType() == MVT::ppcf128)
10026       return;
10027     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
10028     return;
10029   case ISD::TRUNCATE: {
10030     EVT TrgVT = N->getValueType(0);
10031     if (TrgVT.isVector() &&
10032         isOperationCustom(N->getOpcode(), TrgVT) &&
10033         N->getOperand(0).getValueType().getSizeInBits() <= 128)
10034       Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG));
10035     return;
10036   }
10037   case ISD::BITCAST:
10038     // Don't handle bitcast here.
10039     return;
10040   }
10041 }
10042 
10043 //===----------------------------------------------------------------------===//
10044 //  Other Lowering Code
10045 //===----------------------------------------------------------------------===//
10046 
10047 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
10048   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10049   Function *Func = Intrinsic::getDeclaration(M, Id);
10050   return Builder.CreateCall(Func, {});
10051 }
10052 
10053 // The mappings for emitLeading/TrailingFence is taken from
10054 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
10055 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
10056                                                  Instruction *Inst,
10057                                                  AtomicOrdering Ord) const {
10058   if (Ord == AtomicOrdering::SequentiallyConsistent)
10059     return callIntrinsic(Builder, Intrinsic::ppc_sync);
10060   if (isReleaseOrStronger(Ord))
10061     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10062   return nullptr;
10063 }
10064 
10065 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
10066                                                   Instruction *Inst,
10067                                                   AtomicOrdering Ord) const {
10068   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
10069     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
10070     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
10071     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
10072     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
10073       return Builder.CreateCall(
10074           Intrinsic::getDeclaration(
10075               Builder.GetInsertBlock()->getParent()->getParent(),
10076               Intrinsic::ppc_cfence, {Inst->getType()}),
10077           {Inst});
10078     // FIXME: Can use isync for rmw operation.
10079     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10080   }
10081   return nullptr;
10082 }
10083 
10084 MachineBasicBlock *
10085 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
10086                                     unsigned AtomicSize,
10087                                     unsigned BinOpcode,
10088                                     unsigned CmpOpcode,
10089                                     unsigned CmpPred) const {
10090   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10091   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10092 
10093   auto LoadMnemonic = PPC::LDARX;
10094   auto StoreMnemonic = PPC::STDCX;
10095   switch (AtomicSize) {
10096   default:
10097     llvm_unreachable("Unexpected size of atomic entity");
10098   case 1:
10099     LoadMnemonic = PPC::LBARX;
10100     StoreMnemonic = PPC::STBCX;
10101     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10102     break;
10103   case 2:
10104     LoadMnemonic = PPC::LHARX;
10105     StoreMnemonic = PPC::STHCX;
10106     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10107     break;
10108   case 4:
10109     LoadMnemonic = PPC::LWARX;
10110     StoreMnemonic = PPC::STWCX;
10111     break;
10112   case 8:
10113     LoadMnemonic = PPC::LDARX;
10114     StoreMnemonic = PPC::STDCX;
10115     break;
10116   }
10117 
10118   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10119   MachineFunction *F = BB->getParent();
10120   MachineFunction::iterator It = ++BB->getIterator();
10121 
10122   unsigned dest = MI.getOperand(0).getReg();
10123   unsigned ptrA = MI.getOperand(1).getReg();
10124   unsigned ptrB = MI.getOperand(2).getReg();
10125   unsigned incr = MI.getOperand(3).getReg();
10126   DebugLoc dl = MI.getDebugLoc();
10127 
10128   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10129   MachineBasicBlock *loop2MBB =
10130     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10131   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10132   F->insert(It, loopMBB);
10133   if (CmpOpcode)
10134     F->insert(It, loop2MBB);
10135   F->insert(It, exitMBB);
10136   exitMBB->splice(exitMBB->begin(), BB,
10137                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10138   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10139 
10140   MachineRegisterInfo &RegInfo = F->getRegInfo();
10141   unsigned TmpReg = (!BinOpcode) ? incr :
10142     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
10143                                            : &PPC::GPRCRegClass);
10144 
10145   //  thisMBB:
10146   //   ...
10147   //   fallthrough --> loopMBB
10148   BB->addSuccessor(loopMBB);
10149 
10150   //  loopMBB:
10151   //   l[wd]arx dest, ptr
10152   //   add r0, dest, incr
10153   //   st[wd]cx. r0, ptr
10154   //   bne- loopMBB
10155   //   fallthrough --> exitMBB
10156 
10157   // For max/min...
10158   //  loopMBB:
10159   //   l[wd]arx dest, ptr
10160   //   cmpl?[wd] incr, dest
10161   //   bgt exitMBB
10162   //  loop2MBB:
10163   //   st[wd]cx. dest, ptr
10164   //   bne- loopMBB
10165   //   fallthrough --> exitMBB
10166 
10167   BB = loopMBB;
10168   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10169     .addReg(ptrA).addReg(ptrB);
10170   if (BinOpcode)
10171     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
10172   if (CmpOpcode) {
10173     // Signed comparisons of byte or halfword values must be sign-extended.
10174     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
10175       unsigned ExtReg =  RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10176       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
10177               ExtReg).addReg(dest);
10178       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10179         .addReg(incr).addReg(ExtReg);
10180     } else
10181       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10182         .addReg(incr).addReg(dest);
10183 
10184     BuildMI(BB, dl, TII->get(PPC::BCC))
10185       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
10186     BB->addSuccessor(loop2MBB);
10187     BB->addSuccessor(exitMBB);
10188     BB = loop2MBB;
10189   }
10190   BuildMI(BB, dl, TII->get(StoreMnemonic))
10191     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
10192   BuildMI(BB, dl, TII->get(PPC::BCC))
10193     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
10194   BB->addSuccessor(loopMBB);
10195   BB->addSuccessor(exitMBB);
10196 
10197   //  exitMBB:
10198   //   ...
10199   BB = exitMBB;
10200   return BB;
10201 }
10202 
10203 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
10204     MachineInstr &MI, MachineBasicBlock *BB,
10205     bool is8bit, // operation
10206     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
10207   // If we support part-word atomic mnemonics, just use them
10208   if (Subtarget.hasPartwordAtomics())
10209     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
10210                             CmpPred);
10211 
10212   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10213   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10214   // In 64 bit mode we have to use 64 bits for addresses, even though the
10215   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
10216   // registers without caring whether they're 32 or 64, but here we're
10217   // doing actual arithmetic on the addresses.
10218   bool is64bit = Subtarget.isPPC64();
10219   bool isLittleEndian = Subtarget.isLittleEndian();
10220   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10221 
10222   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10223   MachineFunction *F = BB->getParent();
10224   MachineFunction::iterator It = ++BB->getIterator();
10225 
10226   unsigned dest = MI.getOperand(0).getReg();
10227   unsigned ptrA = MI.getOperand(1).getReg();
10228   unsigned ptrB = MI.getOperand(2).getReg();
10229   unsigned incr = MI.getOperand(3).getReg();
10230   DebugLoc dl = MI.getDebugLoc();
10231 
10232   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10233   MachineBasicBlock *loop2MBB =
10234       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10235   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10236   F->insert(It, loopMBB);
10237   if (CmpOpcode)
10238     F->insert(It, loop2MBB);
10239   F->insert(It, exitMBB);
10240   exitMBB->splice(exitMBB->begin(), BB,
10241                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10242   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10243 
10244   MachineRegisterInfo &RegInfo = F->getRegInfo();
10245   const TargetRegisterClass *RC =
10246       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10247   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
10248 
10249   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
10250   unsigned Shift1Reg = RegInfo.createVirtualRegister(GPRC);
10251   unsigned ShiftReg =
10252       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
10253   unsigned Incr2Reg = RegInfo.createVirtualRegister(GPRC);
10254   unsigned MaskReg = RegInfo.createVirtualRegister(GPRC);
10255   unsigned Mask2Reg = RegInfo.createVirtualRegister(GPRC);
10256   unsigned Mask3Reg = RegInfo.createVirtualRegister(GPRC);
10257   unsigned Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
10258   unsigned Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
10259   unsigned Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
10260   unsigned TmpDestReg = RegInfo.createVirtualRegister(GPRC);
10261   unsigned Ptr1Reg;
10262   unsigned TmpReg =
10263       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
10264 
10265   //  thisMBB:
10266   //   ...
10267   //   fallthrough --> loopMBB
10268   BB->addSuccessor(loopMBB);
10269 
10270   // The 4-byte load must be aligned, while a char or short may be
10271   // anywhere in the word.  Hence all this nasty bookkeeping code.
10272   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10273   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10274   //   xori shift, shift1, 24 [16]
10275   //   rlwinm ptr, ptr1, 0, 0, 29
10276   //   slw incr2, incr, shift
10277   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10278   //   slw mask, mask2, shift
10279   //  loopMBB:
10280   //   lwarx tmpDest, ptr
10281   //   add tmp, tmpDest, incr2
10282   //   andc tmp2, tmpDest, mask
10283   //   and tmp3, tmp, mask
10284   //   or tmp4, tmp3, tmp2
10285   //   stwcx. tmp4, ptr
10286   //   bne- loopMBB
10287   //   fallthrough --> exitMBB
10288   //   srw dest, tmpDest, shift
10289   if (ptrA != ZeroReg) {
10290     Ptr1Reg = RegInfo.createVirtualRegister(RC);
10291     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10292         .addReg(ptrA)
10293         .addReg(ptrB);
10294   } else {
10295     Ptr1Reg = ptrB;
10296   }
10297   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
10298   // mode.
10299   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
10300       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
10301       .addImm(3)
10302       .addImm(27)
10303       .addImm(is8bit ? 28 : 27);
10304   if (!isLittleEndian)
10305     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
10306         .addReg(Shift1Reg)
10307         .addImm(is8bit ? 24 : 16);
10308   if (is64bit)
10309     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10310         .addReg(Ptr1Reg)
10311         .addImm(0)
10312         .addImm(61);
10313   else
10314     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10315         .addReg(Ptr1Reg)
10316         .addImm(0)
10317         .addImm(0)
10318         .addImm(29);
10319   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
10320   if (is8bit)
10321     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10322   else {
10323     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10324     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10325         .addReg(Mask3Reg)
10326         .addImm(65535);
10327   }
10328   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10329       .addReg(Mask2Reg)
10330       .addReg(ShiftReg);
10331 
10332   BB = loopMBB;
10333   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10334       .addReg(ZeroReg)
10335       .addReg(PtrReg);
10336   if (BinOpcode)
10337     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
10338         .addReg(Incr2Reg)
10339         .addReg(TmpDestReg);
10340   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10341       .addReg(TmpDestReg)
10342       .addReg(MaskReg);
10343   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
10344   if (CmpOpcode) {
10345     // For unsigned comparisons, we can directly compare the shifted values.
10346     // For signed comparisons we shift and sign extend.
10347     unsigned SReg = RegInfo.createVirtualRegister(GPRC);
10348     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
10349         .addReg(TmpDestReg)
10350         .addReg(MaskReg);
10351     unsigned ValueReg = SReg;
10352     unsigned CmpReg = Incr2Reg;
10353     if (CmpOpcode == PPC::CMPW) {
10354       ValueReg = RegInfo.createVirtualRegister(GPRC);
10355       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
10356           .addReg(SReg)
10357           .addReg(ShiftReg);
10358       unsigned ValueSReg = RegInfo.createVirtualRegister(GPRC);
10359       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
10360           .addReg(ValueReg);
10361       ValueReg = ValueSReg;
10362       CmpReg = incr;
10363     }
10364     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10365         .addReg(CmpReg)
10366         .addReg(ValueReg);
10367     BuildMI(BB, dl, TII->get(PPC::BCC))
10368         .addImm(CmpPred)
10369         .addReg(PPC::CR0)
10370         .addMBB(exitMBB);
10371     BB->addSuccessor(loop2MBB);
10372     BB->addSuccessor(exitMBB);
10373     BB = loop2MBB;
10374   }
10375   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
10376   BuildMI(BB, dl, TII->get(PPC::STWCX))
10377       .addReg(Tmp4Reg)
10378       .addReg(ZeroReg)
10379       .addReg(PtrReg);
10380   BuildMI(BB, dl, TII->get(PPC::BCC))
10381       .addImm(PPC::PRED_NE)
10382       .addReg(PPC::CR0)
10383       .addMBB(loopMBB);
10384   BB->addSuccessor(loopMBB);
10385   BB->addSuccessor(exitMBB);
10386 
10387   //  exitMBB:
10388   //   ...
10389   BB = exitMBB;
10390   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
10391       .addReg(TmpDestReg)
10392       .addReg(ShiftReg);
10393   return BB;
10394 }
10395 
10396 llvm::MachineBasicBlock *
10397 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
10398                                     MachineBasicBlock *MBB) const {
10399   DebugLoc DL = MI.getDebugLoc();
10400   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10401   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
10402 
10403   MachineFunction *MF = MBB->getParent();
10404   MachineRegisterInfo &MRI = MF->getRegInfo();
10405 
10406   const BasicBlock *BB = MBB->getBasicBlock();
10407   MachineFunction::iterator I = ++MBB->getIterator();
10408 
10409   unsigned DstReg = MI.getOperand(0).getReg();
10410   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
10411   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
10412   unsigned mainDstReg = MRI.createVirtualRegister(RC);
10413   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
10414 
10415   MVT PVT = getPointerTy(MF->getDataLayout());
10416   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10417          "Invalid Pointer Size!");
10418   // For v = setjmp(buf), we generate
10419   //
10420   // thisMBB:
10421   //  SjLjSetup mainMBB
10422   //  bl mainMBB
10423   //  v_restore = 1
10424   //  b sinkMBB
10425   //
10426   // mainMBB:
10427   //  buf[LabelOffset] = LR
10428   //  v_main = 0
10429   //
10430   // sinkMBB:
10431   //  v = phi(main, restore)
10432   //
10433 
10434   MachineBasicBlock *thisMBB = MBB;
10435   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
10436   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
10437   MF->insert(I, mainMBB);
10438   MF->insert(I, sinkMBB);
10439 
10440   MachineInstrBuilder MIB;
10441 
10442   // Transfer the remainder of BB and its successor edges to sinkMBB.
10443   sinkMBB->splice(sinkMBB->begin(), MBB,
10444                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
10445   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
10446 
10447   // Note that the structure of the jmp_buf used here is not compatible
10448   // with that used by libc, and is not designed to be. Specifically, it
10449   // stores only those 'reserved' registers that LLVM does not otherwise
10450   // understand how to spill. Also, by convention, by the time this
10451   // intrinsic is called, Clang has already stored the frame address in the
10452   // first slot of the buffer and stack address in the third. Following the
10453   // X86 target code, we'll store the jump address in the second slot. We also
10454   // need to save the TOC pointer (R2) to handle jumps between shared
10455   // libraries, and that will be stored in the fourth slot. The thread
10456   // identifier (R13) is not affected.
10457 
10458   // thisMBB:
10459   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10460   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10461   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10462 
10463   // Prepare IP either in reg.
10464   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
10465   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
10466   unsigned BufReg = MI.getOperand(1).getReg();
10467 
10468   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
10469     setUsesTOCBasePtr(*MBB->getParent());
10470     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
10471               .addReg(PPC::X2)
10472               .addImm(TOCOffset)
10473               .addReg(BufReg)
10474               .cloneMemRefs(MI);
10475   }
10476 
10477   // Naked functions never have a base pointer, and so we use r1. For all
10478   // other functions, this decision must be delayed until during PEI.
10479   unsigned BaseReg;
10480   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
10481     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
10482   else
10483     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
10484 
10485   MIB = BuildMI(*thisMBB, MI, DL,
10486                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
10487             .addReg(BaseReg)
10488             .addImm(BPOffset)
10489             .addReg(BufReg)
10490             .cloneMemRefs(MI);
10491 
10492   // Setup
10493   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
10494   MIB.addRegMask(TRI->getNoPreservedMask());
10495 
10496   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
10497 
10498   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
10499           .addMBB(mainMBB);
10500   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
10501 
10502   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
10503   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
10504 
10505   // mainMBB:
10506   //  mainDstReg = 0
10507   MIB =
10508       BuildMI(mainMBB, DL,
10509               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
10510 
10511   // Store IP
10512   if (Subtarget.isPPC64()) {
10513     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
10514             .addReg(LabelReg)
10515             .addImm(LabelOffset)
10516             .addReg(BufReg);
10517   } else {
10518     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
10519             .addReg(LabelReg)
10520             .addImm(LabelOffset)
10521             .addReg(BufReg);
10522   }
10523   MIB.cloneMemRefs(MI);
10524 
10525   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
10526   mainMBB->addSuccessor(sinkMBB);
10527 
10528   // sinkMBB:
10529   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
10530           TII->get(PPC::PHI), DstReg)
10531     .addReg(mainDstReg).addMBB(mainMBB)
10532     .addReg(restoreDstReg).addMBB(thisMBB);
10533 
10534   MI.eraseFromParent();
10535   return sinkMBB;
10536 }
10537 
10538 MachineBasicBlock *
10539 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
10540                                      MachineBasicBlock *MBB) const {
10541   DebugLoc DL = MI.getDebugLoc();
10542   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10543 
10544   MachineFunction *MF = MBB->getParent();
10545   MachineRegisterInfo &MRI = MF->getRegInfo();
10546 
10547   MVT PVT = getPointerTy(MF->getDataLayout());
10548   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10549          "Invalid Pointer Size!");
10550 
10551   const TargetRegisterClass *RC =
10552     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10553   unsigned Tmp = MRI.createVirtualRegister(RC);
10554   // Since FP is only updated here but NOT referenced, it's treated as GPR.
10555   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
10556   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
10557   unsigned BP =
10558       (PVT == MVT::i64)
10559           ? PPC::X30
10560           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
10561                                                               : PPC::R30);
10562 
10563   MachineInstrBuilder MIB;
10564 
10565   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10566   const int64_t SPOffset    = 2 * PVT.getStoreSize();
10567   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10568   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10569 
10570   unsigned BufReg = MI.getOperand(0).getReg();
10571 
10572   // Reload FP (the jumped-to function may not have had a
10573   // frame pointer, and if so, then its r31 will be restored
10574   // as necessary).
10575   if (PVT == MVT::i64) {
10576     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
10577             .addImm(0)
10578             .addReg(BufReg);
10579   } else {
10580     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
10581             .addImm(0)
10582             .addReg(BufReg);
10583   }
10584   MIB.cloneMemRefs(MI);
10585 
10586   // Reload IP
10587   if (PVT == MVT::i64) {
10588     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
10589             .addImm(LabelOffset)
10590             .addReg(BufReg);
10591   } else {
10592     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
10593             .addImm(LabelOffset)
10594             .addReg(BufReg);
10595   }
10596   MIB.cloneMemRefs(MI);
10597 
10598   // Reload SP
10599   if (PVT == MVT::i64) {
10600     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
10601             .addImm(SPOffset)
10602             .addReg(BufReg);
10603   } else {
10604     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
10605             .addImm(SPOffset)
10606             .addReg(BufReg);
10607   }
10608   MIB.cloneMemRefs(MI);
10609 
10610   // Reload BP
10611   if (PVT == MVT::i64) {
10612     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
10613             .addImm(BPOffset)
10614             .addReg(BufReg);
10615   } else {
10616     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
10617             .addImm(BPOffset)
10618             .addReg(BufReg);
10619   }
10620   MIB.cloneMemRefs(MI);
10621 
10622   // Reload TOC
10623   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
10624     setUsesTOCBasePtr(*MBB->getParent());
10625     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
10626               .addImm(TOCOffset)
10627               .addReg(BufReg)
10628               .cloneMemRefs(MI);
10629   }
10630 
10631   // Jump
10632   BuildMI(*MBB, MI, DL,
10633           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
10634   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
10635 
10636   MI.eraseFromParent();
10637   return MBB;
10638 }
10639 
10640 MachineBasicBlock *
10641 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
10642                                                MachineBasicBlock *BB) const {
10643   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
10644       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10645     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
10646         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10647       // Call lowering should have added an r2 operand to indicate a dependence
10648       // on the TOC base pointer value. It can't however, because there is no
10649       // way to mark the dependence as implicit there, and so the stackmap code
10650       // will confuse it with a regular operand. Instead, add the dependence
10651       // here.
10652       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
10653     }
10654 
10655     return emitPatchPoint(MI, BB);
10656   }
10657 
10658   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
10659       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
10660     return emitEHSjLjSetJmp(MI, BB);
10661   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
10662              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
10663     return emitEHSjLjLongJmp(MI, BB);
10664   }
10665 
10666   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10667 
10668   // To "insert" these instructions we actually have to insert their
10669   // control-flow patterns.
10670   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10671   MachineFunction::iterator It = ++BB->getIterator();
10672 
10673   MachineFunction *F = BB->getParent();
10674 
10675   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10676       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
10677       MI.getOpcode() == PPC::SELECT_I8) {
10678     SmallVector<MachineOperand, 2> Cond;
10679     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10680         MI.getOpcode() == PPC::SELECT_CC_I8)
10681       Cond.push_back(MI.getOperand(4));
10682     else
10683       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
10684     Cond.push_back(MI.getOperand(1));
10685 
10686     DebugLoc dl = MI.getDebugLoc();
10687     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
10688                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
10689   } else if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10690              MI.getOpcode() == PPC::SELECT_CC_I8 ||
10691              MI.getOpcode() == PPC::SELECT_CC_F4 ||
10692              MI.getOpcode() == PPC::SELECT_CC_F8 ||
10693              MI.getOpcode() == PPC::SELECT_CC_F16 ||
10694              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
10695              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
10696              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
10697              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
10698              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
10699              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
10700              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
10701              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
10702              MI.getOpcode() == PPC::SELECT_CC_SPE ||
10703              MI.getOpcode() == PPC::SELECT_I4 ||
10704              MI.getOpcode() == PPC::SELECT_I8 ||
10705              MI.getOpcode() == PPC::SELECT_F4 ||
10706              MI.getOpcode() == PPC::SELECT_F8 ||
10707              MI.getOpcode() == PPC::SELECT_F16 ||
10708              MI.getOpcode() == PPC::SELECT_QFRC ||
10709              MI.getOpcode() == PPC::SELECT_QSRC ||
10710              MI.getOpcode() == PPC::SELECT_QBRC ||
10711              MI.getOpcode() == PPC::SELECT_SPE ||
10712              MI.getOpcode() == PPC::SELECT_SPE4 ||
10713              MI.getOpcode() == PPC::SELECT_VRRC ||
10714              MI.getOpcode() == PPC::SELECT_VSFRC ||
10715              MI.getOpcode() == PPC::SELECT_VSSRC ||
10716              MI.getOpcode() == PPC::SELECT_VSRC) {
10717     // The incoming instruction knows the destination vreg to set, the
10718     // condition code register to branch on, the true/false values to
10719     // select between, and a branch opcode to use.
10720 
10721     //  thisMBB:
10722     //  ...
10723     //   TrueVal = ...
10724     //   cmpTY ccX, r1, r2
10725     //   bCC copy1MBB
10726     //   fallthrough --> copy0MBB
10727     MachineBasicBlock *thisMBB = BB;
10728     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10729     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10730     DebugLoc dl = MI.getDebugLoc();
10731     F->insert(It, copy0MBB);
10732     F->insert(It, sinkMBB);
10733 
10734     // Transfer the remainder of BB and its successor edges to sinkMBB.
10735     sinkMBB->splice(sinkMBB->begin(), BB,
10736                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10737     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10738 
10739     // Next, add the true and fallthrough blocks as its successors.
10740     BB->addSuccessor(copy0MBB);
10741     BB->addSuccessor(sinkMBB);
10742 
10743     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
10744         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
10745         MI.getOpcode() == PPC::SELECT_F16 ||
10746         MI.getOpcode() == PPC::SELECT_SPE4 ||
10747         MI.getOpcode() == PPC::SELECT_SPE ||
10748         MI.getOpcode() == PPC::SELECT_QFRC ||
10749         MI.getOpcode() == PPC::SELECT_QSRC ||
10750         MI.getOpcode() == PPC::SELECT_QBRC ||
10751         MI.getOpcode() == PPC::SELECT_VRRC ||
10752         MI.getOpcode() == PPC::SELECT_VSFRC ||
10753         MI.getOpcode() == PPC::SELECT_VSSRC ||
10754         MI.getOpcode() == PPC::SELECT_VSRC) {
10755       BuildMI(BB, dl, TII->get(PPC::BC))
10756           .addReg(MI.getOperand(1).getReg())
10757           .addMBB(sinkMBB);
10758     } else {
10759       unsigned SelectPred = MI.getOperand(4).getImm();
10760       BuildMI(BB, dl, TII->get(PPC::BCC))
10761           .addImm(SelectPred)
10762           .addReg(MI.getOperand(1).getReg())
10763           .addMBB(sinkMBB);
10764     }
10765 
10766     //  copy0MBB:
10767     //   %FalseValue = ...
10768     //   # fallthrough to sinkMBB
10769     BB = copy0MBB;
10770 
10771     // Update machine-CFG edges
10772     BB->addSuccessor(sinkMBB);
10773 
10774     //  sinkMBB:
10775     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10776     //  ...
10777     BB = sinkMBB;
10778     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
10779         .addReg(MI.getOperand(3).getReg())
10780         .addMBB(copy0MBB)
10781         .addReg(MI.getOperand(2).getReg())
10782         .addMBB(thisMBB);
10783   } else if (MI.getOpcode() == PPC::ReadTB) {
10784     // To read the 64-bit time-base register on a 32-bit target, we read the
10785     // two halves. Should the counter have wrapped while it was being read, we
10786     // need to try again.
10787     // ...
10788     // readLoop:
10789     // mfspr Rx,TBU # load from TBU
10790     // mfspr Ry,TB  # load from TB
10791     // mfspr Rz,TBU # load from TBU
10792     // cmpw crX,Rx,Rz # check if 'old'='new'
10793     // bne readLoop   # branch if they're not equal
10794     // ...
10795 
10796     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
10797     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10798     DebugLoc dl = MI.getDebugLoc();
10799     F->insert(It, readMBB);
10800     F->insert(It, sinkMBB);
10801 
10802     // Transfer the remainder of BB and its successor edges to sinkMBB.
10803     sinkMBB->splice(sinkMBB->begin(), BB,
10804                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10805     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10806 
10807     BB->addSuccessor(readMBB);
10808     BB = readMBB;
10809 
10810     MachineRegisterInfo &RegInfo = F->getRegInfo();
10811     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10812     unsigned LoReg = MI.getOperand(0).getReg();
10813     unsigned HiReg = MI.getOperand(1).getReg();
10814 
10815     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
10816     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
10817     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
10818 
10819     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10820 
10821     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
10822         .addReg(HiReg)
10823         .addReg(ReadAgainReg);
10824     BuildMI(BB, dl, TII->get(PPC::BCC))
10825         .addImm(PPC::PRED_NE)
10826         .addReg(CmpReg)
10827         .addMBB(readMBB);
10828 
10829     BB->addSuccessor(readMBB);
10830     BB->addSuccessor(sinkMBB);
10831   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
10832     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
10833   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
10834     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
10835   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
10836     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
10837   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
10838     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
10839 
10840   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
10841     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
10842   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
10843     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
10844   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
10845     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
10846   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
10847     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
10848 
10849   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
10850     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
10851   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
10852     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
10853   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
10854     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
10855   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
10856     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
10857 
10858   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
10859     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
10860   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
10861     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
10862   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
10863     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
10864   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
10865     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
10866 
10867   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
10868     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
10869   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
10870     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
10871   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
10872     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
10873   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
10874     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
10875 
10876   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
10877     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
10878   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
10879     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
10880   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
10881     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
10882   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
10883     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
10884 
10885   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
10886     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
10887   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
10888     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
10889   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
10890     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
10891   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
10892     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
10893 
10894   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
10895     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
10896   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
10897     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
10898   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
10899     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
10900   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
10901     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
10902 
10903   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
10904     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
10905   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
10906     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
10907   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
10908     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
10909   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
10910     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
10911 
10912   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
10913     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
10914   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
10915     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
10916   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
10917     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
10918   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
10919     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
10920 
10921   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
10922     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
10923   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
10924     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
10925   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
10926     BB = EmitAtomicBinary(MI, BB, 4, 0);
10927   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
10928     BB = EmitAtomicBinary(MI, BB, 8, 0);
10929   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
10930            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
10931            (Subtarget.hasPartwordAtomics() &&
10932             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
10933            (Subtarget.hasPartwordAtomics() &&
10934             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
10935     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
10936 
10937     auto LoadMnemonic = PPC::LDARX;
10938     auto StoreMnemonic = PPC::STDCX;
10939     switch (MI.getOpcode()) {
10940     default:
10941       llvm_unreachable("Compare and swap of unknown size");
10942     case PPC::ATOMIC_CMP_SWAP_I8:
10943       LoadMnemonic = PPC::LBARX;
10944       StoreMnemonic = PPC::STBCX;
10945       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10946       break;
10947     case PPC::ATOMIC_CMP_SWAP_I16:
10948       LoadMnemonic = PPC::LHARX;
10949       StoreMnemonic = PPC::STHCX;
10950       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10951       break;
10952     case PPC::ATOMIC_CMP_SWAP_I32:
10953       LoadMnemonic = PPC::LWARX;
10954       StoreMnemonic = PPC::STWCX;
10955       break;
10956     case PPC::ATOMIC_CMP_SWAP_I64:
10957       LoadMnemonic = PPC::LDARX;
10958       StoreMnemonic = PPC::STDCX;
10959       break;
10960     }
10961     unsigned dest = MI.getOperand(0).getReg();
10962     unsigned ptrA = MI.getOperand(1).getReg();
10963     unsigned ptrB = MI.getOperand(2).getReg();
10964     unsigned oldval = MI.getOperand(3).getReg();
10965     unsigned newval = MI.getOperand(4).getReg();
10966     DebugLoc dl = MI.getDebugLoc();
10967 
10968     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10969     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10970     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10971     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10972     F->insert(It, loop1MBB);
10973     F->insert(It, loop2MBB);
10974     F->insert(It, midMBB);
10975     F->insert(It, exitMBB);
10976     exitMBB->splice(exitMBB->begin(), BB,
10977                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10978     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10979 
10980     //  thisMBB:
10981     //   ...
10982     //   fallthrough --> loopMBB
10983     BB->addSuccessor(loop1MBB);
10984 
10985     // loop1MBB:
10986     //   l[bhwd]arx dest, ptr
10987     //   cmp[wd] dest, oldval
10988     //   bne- midMBB
10989     // loop2MBB:
10990     //   st[bhwd]cx. newval, ptr
10991     //   bne- loopMBB
10992     //   b exitBB
10993     // midMBB:
10994     //   st[bhwd]cx. dest, ptr
10995     // exitBB:
10996     BB = loop1MBB;
10997     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
10998     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
10999         .addReg(oldval)
11000         .addReg(dest);
11001     BuildMI(BB, dl, TII->get(PPC::BCC))
11002         .addImm(PPC::PRED_NE)
11003         .addReg(PPC::CR0)
11004         .addMBB(midMBB);
11005     BB->addSuccessor(loop2MBB);
11006     BB->addSuccessor(midMBB);
11007 
11008     BB = loop2MBB;
11009     BuildMI(BB, dl, TII->get(StoreMnemonic))
11010         .addReg(newval)
11011         .addReg(ptrA)
11012         .addReg(ptrB);
11013     BuildMI(BB, dl, TII->get(PPC::BCC))
11014         .addImm(PPC::PRED_NE)
11015         .addReg(PPC::CR0)
11016         .addMBB(loop1MBB);
11017     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11018     BB->addSuccessor(loop1MBB);
11019     BB->addSuccessor(exitMBB);
11020 
11021     BB = midMBB;
11022     BuildMI(BB, dl, TII->get(StoreMnemonic))
11023         .addReg(dest)
11024         .addReg(ptrA)
11025         .addReg(ptrB);
11026     BB->addSuccessor(exitMBB);
11027 
11028     //  exitMBB:
11029     //   ...
11030     BB = exitMBB;
11031   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
11032              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
11033     // We must use 64-bit registers for addresses when targeting 64-bit,
11034     // since we're actually doing arithmetic on them.  Other registers
11035     // can be 32-bit.
11036     bool is64bit = Subtarget.isPPC64();
11037     bool isLittleEndian = Subtarget.isLittleEndian();
11038     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
11039 
11040     unsigned dest = MI.getOperand(0).getReg();
11041     unsigned ptrA = MI.getOperand(1).getReg();
11042     unsigned ptrB = MI.getOperand(2).getReg();
11043     unsigned oldval = MI.getOperand(3).getReg();
11044     unsigned newval = MI.getOperand(4).getReg();
11045     DebugLoc dl = MI.getDebugLoc();
11046 
11047     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11048     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11049     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11050     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11051     F->insert(It, loop1MBB);
11052     F->insert(It, loop2MBB);
11053     F->insert(It, midMBB);
11054     F->insert(It, exitMBB);
11055     exitMBB->splice(exitMBB->begin(), BB,
11056                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11057     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11058 
11059     MachineRegisterInfo &RegInfo = F->getRegInfo();
11060     const TargetRegisterClass *RC =
11061         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11062     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11063 
11064     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
11065     unsigned Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11066     unsigned ShiftReg =
11067         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11068     unsigned NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
11069     unsigned NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
11070     unsigned OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
11071     unsigned OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
11072     unsigned MaskReg = RegInfo.createVirtualRegister(GPRC);
11073     unsigned Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11074     unsigned Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11075     unsigned Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11076     unsigned Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11077     unsigned TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11078     unsigned Ptr1Reg;
11079     unsigned TmpReg = RegInfo.createVirtualRegister(GPRC);
11080     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11081     //  thisMBB:
11082     //   ...
11083     //   fallthrough --> loopMBB
11084     BB->addSuccessor(loop1MBB);
11085 
11086     // The 4-byte load must be aligned, while a char or short may be
11087     // anywhere in the word.  Hence all this nasty bookkeeping code.
11088     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11089     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11090     //   xori shift, shift1, 24 [16]
11091     //   rlwinm ptr, ptr1, 0, 0, 29
11092     //   slw newval2, newval, shift
11093     //   slw oldval2, oldval,shift
11094     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11095     //   slw mask, mask2, shift
11096     //   and newval3, newval2, mask
11097     //   and oldval3, oldval2, mask
11098     // loop1MBB:
11099     //   lwarx tmpDest, ptr
11100     //   and tmp, tmpDest, mask
11101     //   cmpw tmp, oldval3
11102     //   bne- midMBB
11103     // loop2MBB:
11104     //   andc tmp2, tmpDest, mask
11105     //   or tmp4, tmp2, newval3
11106     //   stwcx. tmp4, ptr
11107     //   bne- loop1MBB
11108     //   b exitBB
11109     // midMBB:
11110     //   stwcx. tmpDest, ptr
11111     // exitBB:
11112     //   srw dest, tmpDest, shift
11113     if (ptrA != ZeroReg) {
11114       Ptr1Reg = RegInfo.createVirtualRegister(RC);
11115       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11116           .addReg(ptrA)
11117           .addReg(ptrB);
11118     } else {
11119       Ptr1Reg = ptrB;
11120     }
11121 
11122     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11123     // mode.
11124     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11125         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11126         .addImm(3)
11127         .addImm(27)
11128         .addImm(is8bit ? 28 : 27);
11129     if (!isLittleEndian)
11130       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11131           .addReg(Shift1Reg)
11132           .addImm(is8bit ? 24 : 16);
11133     if (is64bit)
11134       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11135           .addReg(Ptr1Reg)
11136           .addImm(0)
11137           .addImm(61);
11138     else
11139       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11140           .addReg(Ptr1Reg)
11141           .addImm(0)
11142           .addImm(0)
11143           .addImm(29);
11144     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
11145         .addReg(newval)
11146         .addReg(ShiftReg);
11147     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
11148         .addReg(oldval)
11149         .addReg(ShiftReg);
11150     if (is8bit)
11151       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11152     else {
11153       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11154       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11155           .addReg(Mask3Reg)
11156           .addImm(65535);
11157     }
11158     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11159         .addReg(Mask2Reg)
11160         .addReg(ShiftReg);
11161     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
11162         .addReg(NewVal2Reg)
11163         .addReg(MaskReg);
11164     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
11165         .addReg(OldVal2Reg)
11166         .addReg(MaskReg);
11167 
11168     BB = loop1MBB;
11169     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11170         .addReg(ZeroReg)
11171         .addReg(PtrReg);
11172     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
11173         .addReg(TmpDestReg)
11174         .addReg(MaskReg);
11175     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
11176         .addReg(TmpReg)
11177         .addReg(OldVal3Reg);
11178     BuildMI(BB, dl, TII->get(PPC::BCC))
11179         .addImm(PPC::PRED_NE)
11180         .addReg(PPC::CR0)
11181         .addMBB(midMBB);
11182     BB->addSuccessor(loop2MBB);
11183     BB->addSuccessor(midMBB);
11184 
11185     BB = loop2MBB;
11186     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11187         .addReg(TmpDestReg)
11188         .addReg(MaskReg);
11189     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
11190         .addReg(Tmp2Reg)
11191         .addReg(NewVal3Reg);
11192     BuildMI(BB, dl, TII->get(PPC::STWCX))
11193         .addReg(Tmp4Reg)
11194         .addReg(ZeroReg)
11195         .addReg(PtrReg);
11196     BuildMI(BB, dl, TII->get(PPC::BCC))
11197         .addImm(PPC::PRED_NE)
11198         .addReg(PPC::CR0)
11199         .addMBB(loop1MBB);
11200     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11201     BB->addSuccessor(loop1MBB);
11202     BB->addSuccessor(exitMBB);
11203 
11204     BB = midMBB;
11205     BuildMI(BB, dl, TII->get(PPC::STWCX))
11206         .addReg(TmpDestReg)
11207         .addReg(ZeroReg)
11208         .addReg(PtrReg);
11209     BB->addSuccessor(exitMBB);
11210 
11211     //  exitMBB:
11212     //   ...
11213     BB = exitMBB;
11214     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11215         .addReg(TmpReg)
11216         .addReg(ShiftReg);
11217   } else if (MI.getOpcode() == PPC::FADDrtz) {
11218     // This pseudo performs an FADD with rounding mode temporarily forced
11219     // to round-to-zero.  We emit this via custom inserter since the FPSCR
11220     // is not modeled at the SelectionDAG level.
11221     unsigned Dest = MI.getOperand(0).getReg();
11222     unsigned Src1 = MI.getOperand(1).getReg();
11223     unsigned Src2 = MI.getOperand(2).getReg();
11224     DebugLoc dl = MI.getDebugLoc();
11225 
11226     MachineRegisterInfo &RegInfo = F->getRegInfo();
11227     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11228 
11229     // Save FPSCR value.
11230     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
11231 
11232     // Set rounding mode to round-to-zero.
11233     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
11234     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
11235 
11236     // Perform addition.
11237     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
11238 
11239     // Restore FPSCR value.
11240     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
11241   } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
11242              MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
11243              MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
11244              MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
11245     unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
11246                        MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
11247                           ? PPC::ANDIo8
11248                           : PPC::ANDIo;
11249     bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
11250                  MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
11251 
11252     MachineRegisterInfo &RegInfo = F->getRegInfo();
11253     unsigned Dest = RegInfo.createVirtualRegister(
11254         Opcode == PPC::ANDIo ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
11255 
11256     DebugLoc dl = MI.getDebugLoc();
11257     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
11258         .addReg(MI.getOperand(1).getReg())
11259         .addImm(1);
11260     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
11261             MI.getOperand(0).getReg())
11262         .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
11263   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
11264     DebugLoc Dl = MI.getDebugLoc();
11265     MachineRegisterInfo &RegInfo = F->getRegInfo();
11266     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11267     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
11268     return BB;
11269   } else if (MI.getOpcode() == PPC::SETRNDi) {
11270     DebugLoc dl = MI.getDebugLoc();
11271     unsigned OldFPSCRReg = MI.getOperand(0).getReg();
11272 
11273     // Save FPSCR value.
11274     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11275 
11276     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
11277     // the following settings:
11278     //   00 Round to nearest
11279     //   01 Round to 0
11280     //   10 Round to +inf
11281     //   11 Round to -inf
11282 
11283     // When the operand is immediate, using the two least significant bits of
11284     // the immediate to set the bits 62:63 of FPSCR.
11285     unsigned Mode = MI.getOperand(1).getImm();
11286     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
11287       .addImm(31);
11288 
11289     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
11290       .addImm(30);
11291   } else if (MI.getOpcode() == PPC::SETRND) {
11292     DebugLoc dl = MI.getDebugLoc();
11293 
11294     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
11295     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
11296     // If the target doesn't have DirectMove, we should use stack to do the
11297     // conversion, because the target doesn't have the instructions like mtvsrd
11298     // or mfvsrd to do this conversion directly.
11299     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
11300       if (Subtarget.hasDirectMove()) {
11301         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
11302           .addReg(SrcReg);
11303       } else {
11304         // Use stack to do the register copy.
11305         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
11306         MachineRegisterInfo &RegInfo = F->getRegInfo();
11307         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
11308         if (RC == &PPC::F8RCRegClass) {
11309           // Copy register from F8RCRegClass to G8RCRegclass.
11310           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
11311                  "Unsupported RegClass.");
11312 
11313           StoreOp = PPC::STFD;
11314           LoadOp = PPC::LD;
11315         } else {
11316           // Copy register from G8RCRegClass to F8RCRegclass.
11317           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
11318                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
11319                  "Unsupported RegClass.");
11320         }
11321 
11322         MachineFrameInfo &MFI = F->getFrameInfo();
11323         int FrameIdx = MFI.CreateStackObject(8, 8, false);
11324 
11325         MachineMemOperand *MMOStore = F->getMachineMemOperand(
11326           MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11327           MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
11328           MFI.getObjectAlignment(FrameIdx));
11329 
11330         // Store the SrcReg into the stack.
11331         BuildMI(*BB, MI, dl, TII->get(StoreOp))
11332           .addReg(SrcReg)
11333           .addImm(0)
11334           .addFrameIndex(FrameIdx)
11335           .addMemOperand(MMOStore);
11336 
11337         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
11338           MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11339           MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
11340           MFI.getObjectAlignment(FrameIdx));
11341 
11342         // Load from the stack where SrcReg is stored, and save to DestReg,
11343         // so we have done the RegClass conversion from RegClass::SrcReg to
11344         // RegClass::DestReg.
11345         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
11346           .addImm(0)
11347           .addFrameIndex(FrameIdx)
11348           .addMemOperand(MMOLoad);
11349       }
11350     };
11351 
11352     unsigned OldFPSCRReg = MI.getOperand(0).getReg();
11353 
11354     // Save FPSCR value.
11355     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11356 
11357     // When the operand is gprc register, use two least significant bits of the
11358     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
11359     //
11360     // copy OldFPSCRTmpReg, OldFPSCRReg
11361     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
11362     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
11363     // copy NewFPSCRReg, NewFPSCRTmpReg
11364     // mtfsf 255, NewFPSCRReg
11365     MachineOperand SrcOp = MI.getOperand(1);
11366     MachineRegisterInfo &RegInfo = F->getRegInfo();
11367     unsigned OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11368 
11369     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
11370 
11371     unsigned ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11372     unsigned ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11373 
11374     // The first operand of INSERT_SUBREG should be a register which has
11375     // subregisters, we only care about its RegClass, so we should use an
11376     // IMPLICIT_DEF register.
11377     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
11378     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
11379       .addReg(ImDefReg)
11380       .add(SrcOp)
11381       .addImm(1);
11382 
11383     unsigned NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11384     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
11385       .addReg(OldFPSCRTmpReg)
11386       .addReg(ExtSrcReg)
11387       .addImm(0)
11388       .addImm(62);
11389 
11390     unsigned NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11391     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
11392 
11393     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
11394     // bits of FPSCR.
11395     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
11396       .addImm(255)
11397       .addReg(NewFPSCRReg)
11398       .addImm(0)
11399       .addImm(0);
11400   } else {
11401     llvm_unreachable("Unexpected instr type to insert");
11402   }
11403 
11404   MI.eraseFromParent(); // The pseudo instruction is gone now.
11405   return BB;
11406 }
11407 
11408 //===----------------------------------------------------------------------===//
11409 // Target Optimization Hooks
11410 //===----------------------------------------------------------------------===//
11411 
11412 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
11413   // For the estimates, convergence is quadratic, so we essentially double the
11414   // number of digits correct after every iteration. For both FRE and FRSQRTE,
11415   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
11416   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
11417   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
11418   if (VT.getScalarType() == MVT::f64)
11419     RefinementSteps++;
11420   return RefinementSteps;
11421 }
11422 
11423 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
11424                                            int Enabled, int &RefinementSteps,
11425                                            bool &UseOneConstNR,
11426                                            bool Reciprocal) const {
11427   EVT VT = Operand.getValueType();
11428   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
11429       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
11430       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11431       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11432       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11433       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11434     if (RefinementSteps == ReciprocalEstimate::Unspecified)
11435       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11436 
11437     // The Newton-Raphson computation with a single constant does not provide
11438     // enough accuracy on some CPUs.
11439     UseOneConstNR = !Subtarget.needsTwoConstNR();
11440     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
11441   }
11442   return SDValue();
11443 }
11444 
11445 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
11446                                             int Enabled,
11447                                             int &RefinementSteps) const {
11448   EVT VT = Operand.getValueType();
11449   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
11450       (VT == MVT::f64 && Subtarget.hasFRE()) ||
11451       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11452       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11453       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11454       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11455     if (RefinementSteps == ReciprocalEstimate::Unspecified)
11456       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11457     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
11458   }
11459   return SDValue();
11460 }
11461 
11462 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
11463   // Note: This functionality is used only when unsafe-fp-math is enabled, and
11464   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
11465   // enabled for division), this functionality is redundant with the default
11466   // combiner logic (once the division -> reciprocal/multiply transformation
11467   // has taken place). As a result, this matters more for older cores than for
11468   // newer ones.
11469 
11470   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
11471   // reciprocal if there are two or more FDIVs (for embedded cores with only
11472   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
11473   switch (Subtarget.getDarwinDirective()) {
11474   default:
11475     return 3;
11476   case PPC::DIR_440:
11477   case PPC::DIR_A2:
11478   case PPC::DIR_E500:
11479   case PPC::DIR_E500mc:
11480   case PPC::DIR_E5500:
11481     return 2;
11482   }
11483 }
11484 
11485 // isConsecutiveLSLoc needs to work even if all adds have not yet been
11486 // collapsed, and so we need to look through chains of them.
11487 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
11488                                      int64_t& Offset, SelectionDAG &DAG) {
11489   if (DAG.isBaseWithConstantOffset(Loc)) {
11490     Base = Loc.getOperand(0);
11491     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
11492 
11493     // The base might itself be a base plus an offset, and if so, accumulate
11494     // that as well.
11495     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
11496   }
11497 }
11498 
11499 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
11500                             unsigned Bytes, int Dist,
11501                             SelectionDAG &DAG) {
11502   if (VT.getSizeInBits() / 8 != Bytes)
11503     return false;
11504 
11505   SDValue BaseLoc = Base->getBasePtr();
11506   if (Loc.getOpcode() == ISD::FrameIndex) {
11507     if (BaseLoc.getOpcode() != ISD::FrameIndex)
11508       return false;
11509     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
11510     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
11511     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
11512     int FS  = MFI.getObjectSize(FI);
11513     int BFS = MFI.getObjectSize(BFI);
11514     if (FS != BFS || FS != (int)Bytes) return false;
11515     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
11516   }
11517 
11518   SDValue Base1 = Loc, Base2 = BaseLoc;
11519   int64_t Offset1 = 0, Offset2 = 0;
11520   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
11521   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
11522   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
11523     return true;
11524 
11525   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11526   const GlobalValue *GV1 = nullptr;
11527   const GlobalValue *GV2 = nullptr;
11528   Offset1 = 0;
11529   Offset2 = 0;
11530   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
11531   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
11532   if (isGA1 && isGA2 && GV1 == GV2)
11533     return Offset1 == (Offset2 + Dist*Bytes);
11534   return false;
11535 }
11536 
11537 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
11538 // not enforce equality of the chain operands.
11539 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
11540                             unsigned Bytes, int Dist,
11541                             SelectionDAG &DAG) {
11542   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
11543     EVT VT = LS->getMemoryVT();
11544     SDValue Loc = LS->getBasePtr();
11545     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
11546   }
11547 
11548   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
11549     EVT VT;
11550     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11551     default: return false;
11552     case Intrinsic::ppc_qpx_qvlfd:
11553     case Intrinsic::ppc_qpx_qvlfda:
11554       VT = MVT::v4f64;
11555       break;
11556     case Intrinsic::ppc_qpx_qvlfs:
11557     case Intrinsic::ppc_qpx_qvlfsa:
11558       VT = MVT::v4f32;
11559       break;
11560     case Intrinsic::ppc_qpx_qvlfcd:
11561     case Intrinsic::ppc_qpx_qvlfcda:
11562       VT = MVT::v2f64;
11563       break;
11564     case Intrinsic::ppc_qpx_qvlfcs:
11565     case Intrinsic::ppc_qpx_qvlfcsa:
11566       VT = MVT::v2f32;
11567       break;
11568     case Intrinsic::ppc_qpx_qvlfiwa:
11569     case Intrinsic::ppc_qpx_qvlfiwz:
11570     case Intrinsic::ppc_altivec_lvx:
11571     case Intrinsic::ppc_altivec_lvxl:
11572     case Intrinsic::ppc_vsx_lxvw4x:
11573     case Intrinsic::ppc_vsx_lxvw4x_be:
11574       VT = MVT::v4i32;
11575       break;
11576     case Intrinsic::ppc_vsx_lxvd2x:
11577     case Intrinsic::ppc_vsx_lxvd2x_be:
11578       VT = MVT::v2f64;
11579       break;
11580     case Intrinsic::ppc_altivec_lvebx:
11581       VT = MVT::i8;
11582       break;
11583     case Intrinsic::ppc_altivec_lvehx:
11584       VT = MVT::i16;
11585       break;
11586     case Intrinsic::ppc_altivec_lvewx:
11587       VT = MVT::i32;
11588       break;
11589     }
11590 
11591     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
11592   }
11593 
11594   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
11595     EVT VT;
11596     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11597     default: return false;
11598     case Intrinsic::ppc_qpx_qvstfd:
11599     case Intrinsic::ppc_qpx_qvstfda:
11600       VT = MVT::v4f64;
11601       break;
11602     case Intrinsic::ppc_qpx_qvstfs:
11603     case Intrinsic::ppc_qpx_qvstfsa:
11604       VT = MVT::v4f32;
11605       break;
11606     case Intrinsic::ppc_qpx_qvstfcd:
11607     case Intrinsic::ppc_qpx_qvstfcda:
11608       VT = MVT::v2f64;
11609       break;
11610     case Intrinsic::ppc_qpx_qvstfcs:
11611     case Intrinsic::ppc_qpx_qvstfcsa:
11612       VT = MVT::v2f32;
11613       break;
11614     case Intrinsic::ppc_qpx_qvstfiw:
11615     case Intrinsic::ppc_qpx_qvstfiwa:
11616     case Intrinsic::ppc_altivec_stvx:
11617     case Intrinsic::ppc_altivec_stvxl:
11618     case Intrinsic::ppc_vsx_stxvw4x:
11619       VT = MVT::v4i32;
11620       break;
11621     case Intrinsic::ppc_vsx_stxvd2x:
11622       VT = MVT::v2f64;
11623       break;
11624     case Intrinsic::ppc_vsx_stxvw4x_be:
11625       VT = MVT::v4i32;
11626       break;
11627     case Intrinsic::ppc_vsx_stxvd2x_be:
11628       VT = MVT::v2f64;
11629       break;
11630     case Intrinsic::ppc_altivec_stvebx:
11631       VT = MVT::i8;
11632       break;
11633     case Intrinsic::ppc_altivec_stvehx:
11634       VT = MVT::i16;
11635       break;
11636     case Intrinsic::ppc_altivec_stvewx:
11637       VT = MVT::i32;
11638       break;
11639     }
11640 
11641     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
11642   }
11643 
11644   return false;
11645 }
11646 
11647 // Return true is there is a nearyby consecutive load to the one provided
11648 // (regardless of alignment). We search up and down the chain, looking though
11649 // token factors and other loads (but nothing else). As a result, a true result
11650 // indicates that it is safe to create a new consecutive load adjacent to the
11651 // load provided.
11652 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
11653   SDValue Chain = LD->getChain();
11654   EVT VT = LD->getMemoryVT();
11655 
11656   SmallSet<SDNode *, 16> LoadRoots;
11657   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
11658   SmallSet<SDNode *, 16> Visited;
11659 
11660   // First, search up the chain, branching to follow all token-factor operands.
11661   // If we find a consecutive load, then we're done, otherwise, record all
11662   // nodes just above the top-level loads and token factors.
11663   while (!Queue.empty()) {
11664     SDNode *ChainNext = Queue.pop_back_val();
11665     if (!Visited.insert(ChainNext).second)
11666       continue;
11667 
11668     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
11669       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
11670         return true;
11671 
11672       if (!Visited.count(ChainLD->getChain().getNode()))
11673         Queue.push_back(ChainLD->getChain().getNode());
11674     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
11675       for (const SDUse &O : ChainNext->ops())
11676         if (!Visited.count(O.getNode()))
11677           Queue.push_back(O.getNode());
11678     } else
11679       LoadRoots.insert(ChainNext);
11680   }
11681 
11682   // Second, search down the chain, starting from the top-level nodes recorded
11683   // in the first phase. These top-level nodes are the nodes just above all
11684   // loads and token factors. Starting with their uses, recursively look though
11685   // all loads (just the chain uses) and token factors to find a consecutive
11686   // load.
11687   Visited.clear();
11688   Queue.clear();
11689 
11690   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
11691        IE = LoadRoots.end(); I != IE; ++I) {
11692     Queue.push_back(*I);
11693 
11694     while (!Queue.empty()) {
11695       SDNode *LoadRoot = Queue.pop_back_val();
11696       if (!Visited.insert(LoadRoot).second)
11697         continue;
11698 
11699       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
11700         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
11701           return true;
11702 
11703       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
11704            UE = LoadRoot->use_end(); UI != UE; ++UI)
11705         if (((isa<MemSDNode>(*UI) &&
11706             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
11707             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
11708           Queue.push_back(*UI);
11709     }
11710   }
11711 
11712   return false;
11713 }
11714 
11715 /// This function is called when we have proved that a SETCC node can be replaced
11716 /// by subtraction (and other supporting instructions) so that the result of
11717 /// comparison is kept in a GPR instead of CR. This function is purely for
11718 /// codegen purposes and has some flags to guide the codegen process.
11719 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
11720                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
11721   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
11722 
11723   // Zero extend the operands to the largest legal integer. Originally, they
11724   // must be of a strictly smaller size.
11725   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
11726                          DAG.getConstant(Size, DL, MVT::i32));
11727   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
11728                          DAG.getConstant(Size, DL, MVT::i32));
11729 
11730   // Swap if needed. Depends on the condition code.
11731   if (Swap)
11732     std::swap(Op0, Op1);
11733 
11734   // Subtract extended integers.
11735   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
11736 
11737   // Move the sign bit to the least significant position and zero out the rest.
11738   // Now the least significant bit carries the result of original comparison.
11739   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
11740                              DAG.getConstant(Size - 1, DL, MVT::i32));
11741   auto Final = Shifted;
11742 
11743   // Complement the result if needed. Based on the condition code.
11744   if (Complement)
11745     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
11746                         DAG.getConstant(1, DL, MVT::i64));
11747 
11748   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
11749 }
11750 
11751 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
11752                                                   DAGCombinerInfo &DCI) const {
11753   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
11754 
11755   SelectionDAG &DAG = DCI.DAG;
11756   SDLoc DL(N);
11757 
11758   // Size of integers being compared has a critical role in the following
11759   // analysis, so we prefer to do this when all types are legal.
11760   if (!DCI.isAfterLegalizeDAG())
11761     return SDValue();
11762 
11763   // If all users of SETCC extend its value to a legal integer type
11764   // then we replace SETCC with a subtraction
11765   for (SDNode::use_iterator UI = N->use_begin(),
11766        UE = N->use_end(); UI != UE; ++UI) {
11767     if (UI->getOpcode() != ISD::ZERO_EXTEND)
11768       return SDValue();
11769   }
11770 
11771   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
11772   auto OpSize = N->getOperand(0).getValueSizeInBits();
11773 
11774   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
11775 
11776   if (OpSize < Size) {
11777     switch (CC) {
11778     default: break;
11779     case ISD::SETULT:
11780       return generateEquivalentSub(N, Size, false, false, DL, DAG);
11781     case ISD::SETULE:
11782       return generateEquivalentSub(N, Size, true, true, DL, DAG);
11783     case ISD::SETUGT:
11784       return generateEquivalentSub(N, Size, false, true, DL, DAG);
11785     case ISD::SETUGE:
11786       return generateEquivalentSub(N, Size, true, false, DL, DAG);
11787     }
11788   }
11789 
11790   return SDValue();
11791 }
11792 
11793 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
11794                                                   DAGCombinerInfo &DCI) const {
11795   SelectionDAG &DAG = DCI.DAG;
11796   SDLoc dl(N);
11797 
11798   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
11799   // If we're tracking CR bits, we need to be careful that we don't have:
11800   //   trunc(binary-ops(zext(x), zext(y)))
11801   // or
11802   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
11803   // such that we're unnecessarily moving things into GPRs when it would be
11804   // better to keep them in CR bits.
11805 
11806   // Note that trunc here can be an actual i1 trunc, or can be the effective
11807   // truncation that comes from a setcc or select_cc.
11808   if (N->getOpcode() == ISD::TRUNCATE &&
11809       N->getValueType(0) != MVT::i1)
11810     return SDValue();
11811 
11812   if (N->getOperand(0).getValueType() != MVT::i32 &&
11813       N->getOperand(0).getValueType() != MVT::i64)
11814     return SDValue();
11815 
11816   if (N->getOpcode() == ISD::SETCC ||
11817       N->getOpcode() == ISD::SELECT_CC) {
11818     // If we're looking at a comparison, then we need to make sure that the
11819     // high bits (all except for the first) don't matter the result.
11820     ISD::CondCode CC =
11821       cast<CondCodeSDNode>(N->getOperand(
11822         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
11823     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
11824 
11825     if (ISD::isSignedIntSetCC(CC)) {
11826       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
11827           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
11828         return SDValue();
11829     } else if (ISD::isUnsignedIntSetCC(CC)) {
11830       if (!DAG.MaskedValueIsZero(N->getOperand(0),
11831                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
11832           !DAG.MaskedValueIsZero(N->getOperand(1),
11833                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
11834         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
11835                                              : SDValue());
11836     } else {
11837       // This is neither a signed nor an unsigned comparison, just make sure
11838       // that the high bits are equal.
11839       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
11840       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
11841 
11842       // We don't really care about what is known about the first bit (if
11843       // anything), so clear it in all masks prior to comparing them.
11844       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
11845       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
11846 
11847       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
11848         return SDValue();
11849     }
11850   }
11851 
11852   // We now know that the higher-order bits are irrelevant, we just need to
11853   // make sure that all of the intermediate operations are bit operations, and
11854   // all inputs are extensions.
11855   if (N->getOperand(0).getOpcode() != ISD::AND &&
11856       N->getOperand(0).getOpcode() != ISD::OR  &&
11857       N->getOperand(0).getOpcode() != ISD::XOR &&
11858       N->getOperand(0).getOpcode() != ISD::SELECT &&
11859       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
11860       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
11861       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
11862       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
11863       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
11864     return SDValue();
11865 
11866   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
11867       N->getOperand(1).getOpcode() != ISD::AND &&
11868       N->getOperand(1).getOpcode() != ISD::OR  &&
11869       N->getOperand(1).getOpcode() != ISD::XOR &&
11870       N->getOperand(1).getOpcode() != ISD::SELECT &&
11871       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
11872       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
11873       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
11874       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
11875       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
11876     return SDValue();
11877 
11878   SmallVector<SDValue, 4> Inputs;
11879   SmallVector<SDValue, 8> BinOps, PromOps;
11880   SmallPtrSet<SDNode *, 16> Visited;
11881 
11882   for (unsigned i = 0; i < 2; ++i) {
11883     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11884           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11885           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11886           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11887         isa<ConstantSDNode>(N->getOperand(i)))
11888       Inputs.push_back(N->getOperand(i));
11889     else
11890       BinOps.push_back(N->getOperand(i));
11891 
11892     if (N->getOpcode() == ISD::TRUNCATE)
11893       break;
11894   }
11895 
11896   // Visit all inputs, collect all binary operations (and, or, xor and
11897   // select) that are all fed by extensions.
11898   while (!BinOps.empty()) {
11899     SDValue BinOp = BinOps.back();
11900     BinOps.pop_back();
11901 
11902     if (!Visited.insert(BinOp.getNode()).second)
11903       continue;
11904 
11905     PromOps.push_back(BinOp);
11906 
11907     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11908       // The condition of the select is not promoted.
11909       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11910         continue;
11911       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11912         continue;
11913 
11914       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11915             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11916             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11917            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11918           isa<ConstantSDNode>(BinOp.getOperand(i))) {
11919         Inputs.push_back(BinOp.getOperand(i));
11920       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11921                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
11922                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11923                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11924                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
11925                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11926                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11927                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11928                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
11929         BinOps.push_back(BinOp.getOperand(i));
11930       } else {
11931         // We have an input that is not an extension or another binary
11932         // operation; we'll abort this transformation.
11933         return SDValue();
11934       }
11935     }
11936   }
11937 
11938   // Make sure that this is a self-contained cluster of operations (which
11939   // is not quite the same thing as saying that everything has only one
11940   // use).
11941   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11942     if (isa<ConstantSDNode>(Inputs[i]))
11943       continue;
11944 
11945     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11946                               UE = Inputs[i].getNode()->use_end();
11947          UI != UE; ++UI) {
11948       SDNode *User = *UI;
11949       if (User != N && !Visited.count(User))
11950         return SDValue();
11951 
11952       // Make sure that we're not going to promote the non-output-value
11953       // operand(s) or SELECT or SELECT_CC.
11954       // FIXME: Although we could sometimes handle this, and it does occur in
11955       // practice that one of the condition inputs to the select is also one of
11956       // the outputs, we currently can't deal with this.
11957       if (User->getOpcode() == ISD::SELECT) {
11958         if (User->getOperand(0) == Inputs[i])
11959           return SDValue();
11960       } else if (User->getOpcode() == ISD::SELECT_CC) {
11961         if (User->getOperand(0) == Inputs[i] ||
11962             User->getOperand(1) == Inputs[i])
11963           return SDValue();
11964       }
11965     }
11966   }
11967 
11968   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11969     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11970                               UE = PromOps[i].getNode()->use_end();
11971          UI != UE; ++UI) {
11972       SDNode *User = *UI;
11973       if (User != N && !Visited.count(User))
11974         return SDValue();
11975 
11976       // Make sure that we're not going to promote the non-output-value
11977       // operand(s) or SELECT or SELECT_CC.
11978       // FIXME: Although we could sometimes handle this, and it does occur in
11979       // practice that one of the condition inputs to the select is also one of
11980       // the outputs, we currently can't deal with this.
11981       if (User->getOpcode() == ISD::SELECT) {
11982         if (User->getOperand(0) == PromOps[i])
11983           return SDValue();
11984       } else if (User->getOpcode() == ISD::SELECT_CC) {
11985         if (User->getOperand(0) == PromOps[i] ||
11986             User->getOperand(1) == PromOps[i])
11987           return SDValue();
11988       }
11989     }
11990   }
11991 
11992   // Replace all inputs with the extension operand.
11993   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11994     // Constants may have users outside the cluster of to-be-promoted nodes,
11995     // and so we need to replace those as we do the promotions.
11996     if (isa<ConstantSDNode>(Inputs[i]))
11997       continue;
11998     else
11999       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
12000   }
12001 
12002   std::list<HandleSDNode> PromOpHandles;
12003   for (auto &PromOp : PromOps)
12004     PromOpHandles.emplace_back(PromOp);
12005 
12006   // Replace all operations (these are all the same, but have a different
12007   // (i1) return type). DAG.getNode will validate that the types of
12008   // a binary operator match, so go through the list in reverse so that
12009   // we've likely promoted both operands first. Any intermediate truncations or
12010   // extensions disappear.
12011   while (!PromOpHandles.empty()) {
12012     SDValue PromOp = PromOpHandles.back().getValue();
12013     PromOpHandles.pop_back();
12014 
12015     if (PromOp.getOpcode() == ISD::TRUNCATE ||
12016         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
12017         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
12018         PromOp.getOpcode() == ISD::ANY_EXTEND) {
12019       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
12020           PromOp.getOperand(0).getValueType() != MVT::i1) {
12021         // The operand is not yet ready (see comment below).
12022         PromOpHandles.emplace_front(PromOp);
12023         continue;
12024       }
12025 
12026       SDValue RepValue = PromOp.getOperand(0);
12027       if (isa<ConstantSDNode>(RepValue))
12028         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
12029 
12030       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
12031       continue;
12032     }
12033 
12034     unsigned C;
12035     switch (PromOp.getOpcode()) {
12036     default:             C = 0; break;
12037     case ISD::SELECT:    C = 1; break;
12038     case ISD::SELECT_CC: C = 2; break;
12039     }
12040 
12041     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12042          PromOp.getOperand(C).getValueType() != MVT::i1) ||
12043         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12044          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
12045       // The to-be-promoted operands of this node have not yet been
12046       // promoted (this should be rare because we're going through the
12047       // list backward, but if one of the operands has several users in
12048       // this cluster of to-be-promoted nodes, it is possible).
12049       PromOpHandles.emplace_front(PromOp);
12050       continue;
12051     }
12052 
12053     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12054                                 PromOp.getNode()->op_end());
12055 
12056     // If there are any constant inputs, make sure they're replaced now.
12057     for (unsigned i = 0; i < 2; ++i)
12058       if (isa<ConstantSDNode>(Ops[C+i]))
12059         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
12060 
12061     DAG.ReplaceAllUsesOfValueWith(PromOp,
12062       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
12063   }
12064 
12065   // Now we're left with the initial truncation itself.
12066   if (N->getOpcode() == ISD::TRUNCATE)
12067     return N->getOperand(0);
12068 
12069   // Otherwise, this is a comparison. The operands to be compared have just
12070   // changed type (to i1), but everything else is the same.
12071   return SDValue(N, 0);
12072 }
12073 
12074 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
12075                                                   DAGCombinerInfo &DCI) const {
12076   SelectionDAG &DAG = DCI.DAG;
12077   SDLoc dl(N);
12078 
12079   // If we're tracking CR bits, we need to be careful that we don't have:
12080   //   zext(binary-ops(trunc(x), trunc(y)))
12081   // or
12082   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
12083   // such that we're unnecessarily moving things into CR bits that can more
12084   // efficiently stay in GPRs. Note that if we're not certain that the high
12085   // bits are set as required by the final extension, we still may need to do
12086   // some masking to get the proper behavior.
12087 
12088   // This same functionality is important on PPC64 when dealing with
12089   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
12090   // the return values of functions. Because it is so similar, it is handled
12091   // here as well.
12092 
12093   if (N->getValueType(0) != MVT::i32 &&
12094       N->getValueType(0) != MVT::i64)
12095     return SDValue();
12096 
12097   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
12098         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
12099     return SDValue();
12100 
12101   if (N->getOperand(0).getOpcode() != ISD::AND &&
12102       N->getOperand(0).getOpcode() != ISD::OR  &&
12103       N->getOperand(0).getOpcode() != ISD::XOR &&
12104       N->getOperand(0).getOpcode() != ISD::SELECT &&
12105       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
12106     return SDValue();
12107 
12108   SmallVector<SDValue, 4> Inputs;
12109   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
12110   SmallPtrSet<SDNode *, 16> Visited;
12111 
12112   // Visit all inputs, collect all binary operations (and, or, xor and
12113   // select) that are all fed by truncations.
12114   while (!BinOps.empty()) {
12115     SDValue BinOp = BinOps.back();
12116     BinOps.pop_back();
12117 
12118     if (!Visited.insert(BinOp.getNode()).second)
12119       continue;
12120 
12121     PromOps.push_back(BinOp);
12122 
12123     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12124       // The condition of the select is not promoted.
12125       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12126         continue;
12127       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12128         continue;
12129 
12130       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12131           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12132         Inputs.push_back(BinOp.getOperand(i));
12133       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12134                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12135                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12136                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12137                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
12138         BinOps.push_back(BinOp.getOperand(i));
12139       } else {
12140         // We have an input that is not a truncation or another binary
12141         // operation; we'll abort this transformation.
12142         return SDValue();
12143       }
12144     }
12145   }
12146 
12147   // The operands of a select that must be truncated when the select is
12148   // promoted because the operand is actually part of the to-be-promoted set.
12149   DenseMap<SDNode *, EVT> SelectTruncOp[2];
12150 
12151   // Make sure that this is a self-contained cluster of operations (which
12152   // is not quite the same thing as saying that everything has only one
12153   // use).
12154   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12155     if (isa<ConstantSDNode>(Inputs[i]))
12156       continue;
12157 
12158     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12159                               UE = Inputs[i].getNode()->use_end();
12160          UI != UE; ++UI) {
12161       SDNode *User = *UI;
12162       if (User != N && !Visited.count(User))
12163         return SDValue();
12164 
12165       // If we're going to promote the non-output-value operand(s) or SELECT or
12166       // SELECT_CC, record them for truncation.
12167       if (User->getOpcode() == ISD::SELECT) {
12168         if (User->getOperand(0) == Inputs[i])
12169           SelectTruncOp[0].insert(std::make_pair(User,
12170                                     User->getOperand(0).getValueType()));
12171       } else if (User->getOpcode() == ISD::SELECT_CC) {
12172         if (User->getOperand(0) == Inputs[i])
12173           SelectTruncOp[0].insert(std::make_pair(User,
12174                                     User->getOperand(0).getValueType()));
12175         if (User->getOperand(1) == Inputs[i])
12176           SelectTruncOp[1].insert(std::make_pair(User,
12177                                     User->getOperand(1).getValueType()));
12178       }
12179     }
12180   }
12181 
12182   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12183     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12184                               UE = PromOps[i].getNode()->use_end();
12185          UI != UE; ++UI) {
12186       SDNode *User = *UI;
12187       if (User != N && !Visited.count(User))
12188         return SDValue();
12189 
12190       // If we're going to promote the non-output-value operand(s) or SELECT or
12191       // SELECT_CC, record them for truncation.
12192       if (User->getOpcode() == ISD::SELECT) {
12193         if (User->getOperand(0) == PromOps[i])
12194           SelectTruncOp[0].insert(std::make_pair(User,
12195                                     User->getOperand(0).getValueType()));
12196       } else if (User->getOpcode() == ISD::SELECT_CC) {
12197         if (User->getOperand(0) == PromOps[i])
12198           SelectTruncOp[0].insert(std::make_pair(User,
12199                                     User->getOperand(0).getValueType()));
12200         if (User->getOperand(1) == PromOps[i])
12201           SelectTruncOp[1].insert(std::make_pair(User,
12202                                     User->getOperand(1).getValueType()));
12203       }
12204     }
12205   }
12206 
12207   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
12208   bool ReallyNeedsExt = false;
12209   if (N->getOpcode() != ISD::ANY_EXTEND) {
12210     // If all of the inputs are not already sign/zero extended, then
12211     // we'll still need to do that at the end.
12212     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12213       if (isa<ConstantSDNode>(Inputs[i]))
12214         continue;
12215 
12216       unsigned OpBits =
12217         Inputs[i].getOperand(0).getValueSizeInBits();
12218       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
12219 
12220       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
12221            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
12222                                   APInt::getHighBitsSet(OpBits,
12223                                                         OpBits-PromBits))) ||
12224           (N->getOpcode() == ISD::SIGN_EXTEND &&
12225            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
12226              (OpBits-(PromBits-1)))) {
12227         ReallyNeedsExt = true;
12228         break;
12229       }
12230     }
12231   }
12232 
12233   // Replace all inputs, either with the truncation operand, or a
12234   // truncation or extension to the final output type.
12235   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12236     // Constant inputs need to be replaced with the to-be-promoted nodes that
12237     // use them because they might have users outside of the cluster of
12238     // promoted nodes.
12239     if (isa<ConstantSDNode>(Inputs[i]))
12240       continue;
12241 
12242     SDValue InSrc = Inputs[i].getOperand(0);
12243     if (Inputs[i].getValueType() == N->getValueType(0))
12244       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
12245     else if (N->getOpcode() == ISD::SIGN_EXTEND)
12246       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12247         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
12248     else if (N->getOpcode() == ISD::ZERO_EXTEND)
12249       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12250         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
12251     else
12252       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12253         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
12254   }
12255 
12256   std::list<HandleSDNode> PromOpHandles;
12257   for (auto &PromOp : PromOps)
12258     PromOpHandles.emplace_back(PromOp);
12259 
12260   // Replace all operations (these are all the same, but have a different
12261   // (promoted) return type). DAG.getNode will validate that the types of
12262   // a binary operator match, so go through the list in reverse so that
12263   // we've likely promoted both operands first.
12264   while (!PromOpHandles.empty()) {
12265     SDValue PromOp = PromOpHandles.back().getValue();
12266     PromOpHandles.pop_back();
12267 
12268     unsigned C;
12269     switch (PromOp.getOpcode()) {
12270     default:             C = 0; break;
12271     case ISD::SELECT:    C = 1; break;
12272     case ISD::SELECT_CC: C = 2; break;
12273     }
12274 
12275     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12276          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
12277         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12278          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
12279       // The to-be-promoted operands of this node have not yet been
12280       // promoted (this should be rare because we're going through the
12281       // list backward, but if one of the operands has several users in
12282       // this cluster of to-be-promoted nodes, it is possible).
12283       PromOpHandles.emplace_front(PromOp);
12284       continue;
12285     }
12286 
12287     // For SELECT and SELECT_CC nodes, we do a similar check for any
12288     // to-be-promoted comparison inputs.
12289     if (PromOp.getOpcode() == ISD::SELECT ||
12290         PromOp.getOpcode() == ISD::SELECT_CC) {
12291       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
12292            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
12293           (SelectTruncOp[1].count(PromOp.getNode()) &&
12294            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
12295         PromOpHandles.emplace_front(PromOp);
12296         continue;
12297       }
12298     }
12299 
12300     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12301                                 PromOp.getNode()->op_end());
12302 
12303     // If this node has constant inputs, then they'll need to be promoted here.
12304     for (unsigned i = 0; i < 2; ++i) {
12305       if (!isa<ConstantSDNode>(Ops[C+i]))
12306         continue;
12307       if (Ops[C+i].getValueType() == N->getValueType(0))
12308         continue;
12309 
12310       if (N->getOpcode() == ISD::SIGN_EXTEND)
12311         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12312       else if (N->getOpcode() == ISD::ZERO_EXTEND)
12313         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12314       else
12315         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12316     }
12317 
12318     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
12319     // truncate them again to the original value type.
12320     if (PromOp.getOpcode() == ISD::SELECT ||
12321         PromOp.getOpcode() == ISD::SELECT_CC) {
12322       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
12323       if (SI0 != SelectTruncOp[0].end())
12324         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
12325       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
12326       if (SI1 != SelectTruncOp[1].end())
12327         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
12328     }
12329 
12330     DAG.ReplaceAllUsesOfValueWith(PromOp,
12331       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
12332   }
12333 
12334   // Now we're left with the initial extension itself.
12335   if (!ReallyNeedsExt)
12336     return N->getOperand(0);
12337 
12338   // To zero extend, just mask off everything except for the first bit (in the
12339   // i1 case).
12340   if (N->getOpcode() == ISD::ZERO_EXTEND)
12341     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
12342                        DAG.getConstant(APInt::getLowBitsSet(
12343                                          N->getValueSizeInBits(0), PromBits),
12344                                        dl, N->getValueType(0)));
12345 
12346   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
12347          "Invalid extension type");
12348   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
12349   SDValue ShiftCst =
12350       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
12351   return DAG.getNode(
12352       ISD::SRA, dl, N->getValueType(0),
12353       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
12354       ShiftCst);
12355 }
12356 
12357 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
12358                                         DAGCombinerInfo &DCI) const {
12359   assert(N->getOpcode() == ISD::SETCC &&
12360          "Should be called with a SETCC node");
12361 
12362   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12363   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
12364     SDValue LHS = N->getOperand(0);
12365     SDValue RHS = N->getOperand(1);
12366 
12367     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
12368     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
12369         LHS.hasOneUse())
12370       std::swap(LHS, RHS);
12371 
12372     // x == 0-y --> x+y == 0
12373     // x != 0-y --> x+y != 0
12374     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
12375         RHS.hasOneUse()) {
12376       SDLoc DL(N);
12377       SelectionDAG &DAG = DCI.DAG;
12378       EVT VT = N->getValueType(0);
12379       EVT OpVT = LHS.getValueType();
12380       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
12381       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
12382     }
12383   }
12384 
12385   return DAGCombineTruncBoolExt(N, DCI);
12386 }
12387 
12388 // Is this an extending load from an f32 to an f64?
12389 static bool isFPExtLoad(SDValue Op) {
12390   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
12391     return LD->getExtensionType() == ISD::EXTLOAD &&
12392       Op.getValueType() == MVT::f64;
12393   return false;
12394 }
12395 
12396 /// Reduces the number of fp-to-int conversion when building a vector.
12397 ///
12398 /// If this vector is built out of floating to integer conversions,
12399 /// transform it to a vector built out of floating point values followed by a
12400 /// single floating to integer conversion of the vector.
12401 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
12402 /// becomes (fptosi (build_vector ($A, $B, ...)))
12403 SDValue PPCTargetLowering::
12404 combineElementTruncationToVectorTruncation(SDNode *N,
12405                                            DAGCombinerInfo &DCI) const {
12406   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12407          "Should be called with a BUILD_VECTOR node");
12408 
12409   SelectionDAG &DAG = DCI.DAG;
12410   SDLoc dl(N);
12411 
12412   SDValue FirstInput = N->getOperand(0);
12413   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
12414          "The input operand must be an fp-to-int conversion.");
12415 
12416   // This combine happens after legalization so the fp_to_[su]i nodes are
12417   // already converted to PPCSISD nodes.
12418   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
12419   if (FirstConversion == PPCISD::FCTIDZ ||
12420       FirstConversion == PPCISD::FCTIDUZ ||
12421       FirstConversion == PPCISD::FCTIWZ ||
12422       FirstConversion == PPCISD::FCTIWUZ) {
12423     bool IsSplat = true;
12424     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
12425       FirstConversion == PPCISD::FCTIWUZ;
12426     EVT SrcVT = FirstInput.getOperand(0).getValueType();
12427     SmallVector<SDValue, 4> Ops;
12428     EVT TargetVT = N->getValueType(0);
12429     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12430       SDValue NextOp = N->getOperand(i);
12431       if (NextOp.getOpcode() != PPCISD::MFVSR)
12432         return SDValue();
12433       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
12434       if (NextConversion != FirstConversion)
12435         return SDValue();
12436       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
12437       // This is not valid if the input was originally double precision. It is
12438       // also not profitable to do unless this is an extending load in which
12439       // case doing this combine will allow us to combine consecutive loads.
12440       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
12441         return SDValue();
12442       if (N->getOperand(i) != FirstInput)
12443         IsSplat = false;
12444     }
12445 
12446     // If this is a splat, we leave it as-is since there will be only a single
12447     // fp-to-int conversion followed by a splat of the integer. This is better
12448     // for 32-bit and smaller ints and neutral for 64-bit ints.
12449     if (IsSplat)
12450       return SDValue();
12451 
12452     // Now that we know we have the right type of node, get its operands
12453     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12454       SDValue In = N->getOperand(i).getOperand(0);
12455       if (Is32Bit) {
12456         // For 32-bit values, we need to add an FP_ROUND node (if we made it
12457         // here, we know that all inputs are extending loads so this is safe).
12458         if (In.isUndef())
12459           Ops.push_back(DAG.getUNDEF(SrcVT));
12460         else {
12461           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
12462                                       MVT::f32, In.getOperand(0),
12463                                       DAG.getIntPtrConstant(1, dl));
12464           Ops.push_back(Trunc);
12465         }
12466       } else
12467         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
12468     }
12469 
12470     unsigned Opcode;
12471     if (FirstConversion == PPCISD::FCTIDZ ||
12472         FirstConversion == PPCISD::FCTIWZ)
12473       Opcode = ISD::FP_TO_SINT;
12474     else
12475       Opcode = ISD::FP_TO_UINT;
12476 
12477     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
12478     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
12479     return DAG.getNode(Opcode, dl, TargetVT, BV);
12480   }
12481   return SDValue();
12482 }
12483 
12484 /// Reduce the number of loads when building a vector.
12485 ///
12486 /// Building a vector out of multiple loads can be converted to a load
12487 /// of the vector type if the loads are consecutive. If the loads are
12488 /// consecutive but in descending order, a shuffle is added at the end
12489 /// to reorder the vector.
12490 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
12491   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12492          "Should be called with a BUILD_VECTOR node");
12493 
12494   SDLoc dl(N);
12495 
12496   // Return early for non byte-sized type, as they can't be consecutive.
12497   if (!N->getValueType(0).getVectorElementType().isByteSized())
12498     return SDValue();
12499 
12500   bool InputsAreConsecutiveLoads = true;
12501   bool InputsAreReverseConsecutive = true;
12502   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
12503   SDValue FirstInput = N->getOperand(0);
12504   bool IsRoundOfExtLoad = false;
12505 
12506   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
12507       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
12508     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
12509     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
12510   }
12511   // Not a build vector of (possibly fp_rounded) loads.
12512   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
12513       N->getNumOperands() == 1)
12514     return SDValue();
12515 
12516   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
12517     // If any inputs are fp_round(extload), they all must be.
12518     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
12519       return SDValue();
12520 
12521     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
12522       N->getOperand(i);
12523     if (NextInput.getOpcode() != ISD::LOAD)
12524       return SDValue();
12525 
12526     SDValue PreviousInput =
12527       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
12528     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
12529     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
12530 
12531     // If any inputs are fp_round(extload), they all must be.
12532     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
12533       return SDValue();
12534 
12535     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
12536       InputsAreConsecutiveLoads = false;
12537     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
12538       InputsAreReverseConsecutive = false;
12539 
12540     // Exit early if the loads are neither consecutive nor reverse consecutive.
12541     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
12542       return SDValue();
12543   }
12544 
12545   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
12546          "The loads cannot be both consecutive and reverse consecutive.");
12547 
12548   SDValue FirstLoadOp =
12549     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
12550   SDValue LastLoadOp =
12551     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
12552                        N->getOperand(N->getNumOperands()-1);
12553 
12554   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
12555   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
12556   if (InputsAreConsecutiveLoads) {
12557     assert(LD1 && "Input needs to be a LoadSDNode.");
12558     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
12559                        LD1->getBasePtr(), LD1->getPointerInfo(),
12560                        LD1->getAlignment());
12561   }
12562   if (InputsAreReverseConsecutive) {
12563     assert(LDL && "Input needs to be a LoadSDNode.");
12564     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
12565                                LDL->getBasePtr(), LDL->getPointerInfo(),
12566                                LDL->getAlignment());
12567     SmallVector<int, 16> Ops;
12568     for (int i = N->getNumOperands() - 1; i >= 0; i--)
12569       Ops.push_back(i);
12570 
12571     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
12572                                 DAG.getUNDEF(N->getValueType(0)), Ops);
12573   }
12574   return SDValue();
12575 }
12576 
12577 // This function adds the required vector_shuffle needed to get
12578 // the elements of the vector extract in the correct position
12579 // as specified by the CorrectElems encoding.
12580 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
12581                                       SDValue Input, uint64_t Elems,
12582                                       uint64_t CorrectElems) {
12583   SDLoc dl(N);
12584 
12585   unsigned NumElems = Input.getValueType().getVectorNumElements();
12586   SmallVector<int, 16> ShuffleMask(NumElems, -1);
12587 
12588   // Knowing the element indices being extracted from the original
12589   // vector and the order in which they're being inserted, just put
12590   // them at element indices required for the instruction.
12591   for (unsigned i = 0; i < N->getNumOperands(); i++) {
12592     if (DAG.getDataLayout().isLittleEndian())
12593       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
12594     else
12595       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
12596     CorrectElems = CorrectElems >> 8;
12597     Elems = Elems >> 8;
12598   }
12599 
12600   SDValue Shuffle =
12601       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
12602                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
12603 
12604   EVT Ty = N->getValueType(0);
12605   SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
12606   return BV;
12607 }
12608 
12609 // Look for build vector patterns where input operands come from sign
12610 // extended vector_extract elements of specific indices. If the correct indices
12611 // aren't used, add a vector shuffle to fix up the indices and create a new
12612 // PPCISD:SExtVElems node which selects the vector sign extend instructions
12613 // during instruction selection.
12614 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
12615   // This array encodes the indices that the vector sign extend instructions
12616   // extract from when extending from one type to another for both BE and LE.
12617   // The right nibble of each byte corresponds to the LE incides.
12618   // and the left nibble of each byte corresponds to the BE incides.
12619   // For example: 0x3074B8FC  byte->word
12620   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
12621   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
12622   // For example: 0x000070F8  byte->double word
12623   // For LE: the allowed indices are: 0x0,0x8
12624   // For BE: the allowed indices are: 0x7,0xF
12625   uint64_t TargetElems[] = {
12626       0x3074B8FC, // b->w
12627       0x000070F8, // b->d
12628       0x10325476, // h->w
12629       0x00003074, // h->d
12630       0x00001032, // w->d
12631   };
12632 
12633   uint64_t Elems = 0;
12634   int Index;
12635   SDValue Input;
12636 
12637   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
12638     if (!Op)
12639       return false;
12640     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
12641         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
12642       return false;
12643 
12644     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
12645     // of the right width.
12646     SDValue Extract = Op.getOperand(0);
12647     if (Extract.getOpcode() == ISD::ANY_EXTEND)
12648       Extract = Extract.getOperand(0);
12649     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12650       return false;
12651 
12652     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
12653     if (!ExtOp)
12654       return false;
12655 
12656     Index = ExtOp->getZExtValue();
12657     if (Input && Input != Extract.getOperand(0))
12658       return false;
12659 
12660     if (!Input)
12661       Input = Extract.getOperand(0);
12662 
12663     Elems = Elems << 8;
12664     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
12665     Elems |= Index;
12666 
12667     return true;
12668   };
12669 
12670   // If the build vector operands aren't sign extended vector extracts,
12671   // of the same input vector, then return.
12672   for (unsigned i = 0; i < N->getNumOperands(); i++) {
12673     if (!isSExtOfVecExtract(N->getOperand(i))) {
12674       return SDValue();
12675     }
12676   }
12677 
12678   // If the vector extract indicies are not correct, add the appropriate
12679   // vector_shuffle.
12680   int TgtElemArrayIdx;
12681   int InputSize = Input.getValueType().getScalarSizeInBits();
12682   int OutputSize = N->getValueType(0).getScalarSizeInBits();
12683   if (InputSize + OutputSize == 40)
12684     TgtElemArrayIdx = 0;
12685   else if (InputSize + OutputSize == 72)
12686     TgtElemArrayIdx = 1;
12687   else if (InputSize + OutputSize == 48)
12688     TgtElemArrayIdx = 2;
12689   else if (InputSize + OutputSize == 80)
12690     TgtElemArrayIdx = 3;
12691   else if (InputSize + OutputSize == 96)
12692     TgtElemArrayIdx = 4;
12693   else
12694     return SDValue();
12695 
12696   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
12697   CorrectElems = DAG.getDataLayout().isLittleEndian()
12698                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
12699                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
12700   if (Elems != CorrectElems) {
12701     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
12702   }
12703 
12704   // Regular lowering will catch cases where a shuffle is not needed.
12705   return SDValue();
12706 }
12707 
12708 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
12709                                                  DAGCombinerInfo &DCI) const {
12710   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12711          "Should be called with a BUILD_VECTOR node");
12712 
12713   SelectionDAG &DAG = DCI.DAG;
12714   SDLoc dl(N);
12715 
12716   if (!Subtarget.hasVSX())
12717     return SDValue();
12718 
12719   // The target independent DAG combiner will leave a build_vector of
12720   // float-to-int conversions intact. We can generate MUCH better code for
12721   // a float-to-int conversion of a vector of floats.
12722   SDValue FirstInput = N->getOperand(0);
12723   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
12724     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
12725     if (Reduced)
12726       return Reduced;
12727   }
12728 
12729   // If we're building a vector out of consecutive loads, just load that
12730   // vector type.
12731   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
12732   if (Reduced)
12733     return Reduced;
12734 
12735   // If we're building a vector out of extended elements from another vector
12736   // we have P9 vector integer extend instructions. The code assumes legal
12737   // input types (i.e. it can't handle things like v4i16) so do not run before
12738   // legalization.
12739   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
12740     Reduced = combineBVOfVecSExt(N, DAG);
12741     if (Reduced)
12742       return Reduced;
12743   }
12744 
12745 
12746   if (N->getValueType(0) != MVT::v2f64)
12747     return SDValue();
12748 
12749   // Looking for:
12750   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
12751   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
12752       FirstInput.getOpcode() != ISD::UINT_TO_FP)
12753     return SDValue();
12754   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
12755       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
12756     return SDValue();
12757   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
12758     return SDValue();
12759 
12760   SDValue Ext1 = FirstInput.getOperand(0);
12761   SDValue Ext2 = N->getOperand(1).getOperand(0);
12762   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
12763      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12764     return SDValue();
12765 
12766   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
12767   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
12768   if (!Ext1Op || !Ext2Op)
12769     return SDValue();
12770   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
12771       Ext1.getOperand(0) != Ext2.getOperand(0))
12772     return SDValue();
12773 
12774   int FirstElem = Ext1Op->getZExtValue();
12775   int SecondElem = Ext2Op->getZExtValue();
12776   int SubvecIdx;
12777   if (FirstElem == 0 && SecondElem == 1)
12778     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
12779   else if (FirstElem == 2 && SecondElem == 3)
12780     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
12781   else
12782     return SDValue();
12783 
12784   SDValue SrcVec = Ext1.getOperand(0);
12785   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
12786     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
12787   return DAG.getNode(NodeType, dl, MVT::v2f64,
12788                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
12789 }
12790 
12791 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
12792                                               DAGCombinerInfo &DCI) const {
12793   assert((N->getOpcode() == ISD::SINT_TO_FP ||
12794           N->getOpcode() == ISD::UINT_TO_FP) &&
12795          "Need an int -> FP conversion node here");
12796 
12797   if (useSoftFloat() || !Subtarget.has64BitSupport())
12798     return SDValue();
12799 
12800   SelectionDAG &DAG = DCI.DAG;
12801   SDLoc dl(N);
12802   SDValue Op(N, 0);
12803 
12804   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
12805   // from the hardware.
12806   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
12807     return SDValue();
12808   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
12809       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
12810     return SDValue();
12811 
12812   SDValue FirstOperand(Op.getOperand(0));
12813   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
12814     (FirstOperand.getValueType() == MVT::i8 ||
12815      FirstOperand.getValueType() == MVT::i16);
12816   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
12817     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
12818     bool DstDouble = Op.getValueType() == MVT::f64;
12819     unsigned ConvOp = Signed ?
12820       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
12821       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
12822     SDValue WidthConst =
12823       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
12824                             dl, false);
12825     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
12826     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
12827     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
12828                                          DAG.getVTList(MVT::f64, MVT::Other),
12829                                          Ops, MVT::i8, LDN->getMemOperand());
12830 
12831     // For signed conversion, we need to sign-extend the value in the VSR
12832     if (Signed) {
12833       SDValue ExtOps[] = { Ld, WidthConst };
12834       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
12835       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
12836     } else
12837       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
12838   }
12839 
12840 
12841   // For i32 intermediate values, unfortunately, the conversion functions
12842   // leave the upper 32 bits of the value are undefined. Within the set of
12843   // scalar instructions, we have no method for zero- or sign-extending the
12844   // value. Thus, we cannot handle i32 intermediate values here.
12845   if (Op.getOperand(0).getValueType() == MVT::i32)
12846     return SDValue();
12847 
12848   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
12849          "UINT_TO_FP is supported only with FPCVT");
12850 
12851   // If we have FCFIDS, then use it when converting to single-precision.
12852   // Otherwise, convert to double-precision and then round.
12853   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12854                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
12855                                                             : PPCISD::FCFIDS)
12856                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
12857                                                             : PPCISD::FCFID);
12858   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12859                   ? MVT::f32
12860                   : MVT::f64;
12861 
12862   // If we're converting from a float, to an int, and back to a float again,
12863   // then we don't need the store/load pair at all.
12864   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
12865        Subtarget.hasFPCVT()) ||
12866       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
12867     SDValue Src = Op.getOperand(0).getOperand(0);
12868     if (Src.getValueType() == MVT::f32) {
12869       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
12870       DCI.AddToWorklist(Src.getNode());
12871     } else if (Src.getValueType() != MVT::f64) {
12872       // Make sure that we don't pick up a ppc_fp128 source value.
12873       return SDValue();
12874     }
12875 
12876     unsigned FCTOp =
12877       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
12878                                                         PPCISD::FCTIDUZ;
12879 
12880     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
12881     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
12882 
12883     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
12884       FP = DAG.getNode(ISD::FP_ROUND, dl,
12885                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
12886       DCI.AddToWorklist(FP.getNode());
12887     }
12888 
12889     return FP;
12890   }
12891 
12892   return SDValue();
12893 }
12894 
12895 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
12896 // builtins) into loads with swaps.
12897 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
12898                                               DAGCombinerInfo &DCI) const {
12899   SelectionDAG &DAG = DCI.DAG;
12900   SDLoc dl(N);
12901   SDValue Chain;
12902   SDValue Base;
12903   MachineMemOperand *MMO;
12904 
12905   switch (N->getOpcode()) {
12906   default:
12907     llvm_unreachable("Unexpected opcode for little endian VSX load");
12908   case ISD::LOAD: {
12909     LoadSDNode *LD = cast<LoadSDNode>(N);
12910     Chain = LD->getChain();
12911     Base = LD->getBasePtr();
12912     MMO = LD->getMemOperand();
12913     // If the MMO suggests this isn't a load of a full vector, leave
12914     // things alone.  For a built-in, we have to make the change for
12915     // correctness, so if there is a size problem that will be a bug.
12916     if (MMO->getSize() < 16)
12917       return SDValue();
12918     break;
12919   }
12920   case ISD::INTRINSIC_W_CHAIN: {
12921     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12922     Chain = Intrin->getChain();
12923     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
12924     // us what we want. Get operand 2 instead.
12925     Base = Intrin->getOperand(2);
12926     MMO = Intrin->getMemOperand();
12927     break;
12928   }
12929   }
12930 
12931   MVT VecTy = N->getValueType(0).getSimpleVT();
12932 
12933   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
12934   // aligned and the type is a vector with elements up to 4 bytes
12935   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12936       && VecTy.getScalarSizeInBits() <= 32 ) {
12937     return SDValue();
12938   }
12939 
12940   SDValue LoadOps[] = { Chain, Base };
12941   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
12942                                          DAG.getVTList(MVT::v2f64, MVT::Other),
12943                                          LoadOps, MVT::v2f64, MMO);
12944 
12945   DCI.AddToWorklist(Load.getNode());
12946   Chain = Load.getValue(1);
12947   SDValue Swap = DAG.getNode(
12948       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
12949   DCI.AddToWorklist(Swap.getNode());
12950 
12951   // Add a bitcast if the resulting load type doesn't match v2f64.
12952   if (VecTy != MVT::v2f64) {
12953     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
12954     DCI.AddToWorklist(N.getNode());
12955     // Package {bitcast value, swap's chain} to match Load's shape.
12956     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
12957                        N, Swap.getValue(1));
12958   }
12959 
12960   return Swap;
12961 }
12962 
12963 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
12964 // builtins) into stores with swaps.
12965 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
12966                                                DAGCombinerInfo &DCI) const {
12967   SelectionDAG &DAG = DCI.DAG;
12968   SDLoc dl(N);
12969   SDValue Chain;
12970   SDValue Base;
12971   unsigned SrcOpnd;
12972   MachineMemOperand *MMO;
12973 
12974   switch (N->getOpcode()) {
12975   default:
12976     llvm_unreachable("Unexpected opcode for little endian VSX store");
12977   case ISD::STORE: {
12978     StoreSDNode *ST = cast<StoreSDNode>(N);
12979     Chain = ST->getChain();
12980     Base = ST->getBasePtr();
12981     MMO = ST->getMemOperand();
12982     SrcOpnd = 1;
12983     // If the MMO suggests this isn't a store of a full vector, leave
12984     // things alone.  For a built-in, we have to make the change for
12985     // correctness, so if there is a size problem that will be a bug.
12986     if (MMO->getSize() < 16)
12987       return SDValue();
12988     break;
12989   }
12990   case ISD::INTRINSIC_VOID: {
12991     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12992     Chain = Intrin->getChain();
12993     // Intrin->getBasePtr() oddly does not get what we want.
12994     Base = Intrin->getOperand(3);
12995     MMO = Intrin->getMemOperand();
12996     SrcOpnd = 2;
12997     break;
12998   }
12999   }
13000 
13001   SDValue Src = N->getOperand(SrcOpnd);
13002   MVT VecTy = Src.getValueType().getSimpleVT();
13003 
13004   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
13005   // aligned and the type is a vector with elements up to 4 bytes
13006   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
13007       && VecTy.getScalarSizeInBits() <= 32 ) {
13008     return SDValue();
13009   }
13010 
13011   // All stores are done as v2f64 and possible bit cast.
13012   if (VecTy != MVT::v2f64) {
13013     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
13014     DCI.AddToWorklist(Src.getNode());
13015   }
13016 
13017   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
13018                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
13019   DCI.AddToWorklist(Swap.getNode());
13020   Chain = Swap.getValue(1);
13021   SDValue StoreOps[] = { Chain, Swap, Base };
13022   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
13023                                           DAG.getVTList(MVT::Other),
13024                                           StoreOps, VecTy, MMO);
13025   DCI.AddToWorklist(Store.getNode());
13026   return Store;
13027 }
13028 
13029 // Handle DAG combine for STORE (FP_TO_INT F).
13030 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
13031                                                DAGCombinerInfo &DCI) const {
13032 
13033   SelectionDAG &DAG = DCI.DAG;
13034   SDLoc dl(N);
13035   unsigned Opcode = N->getOperand(1).getOpcode();
13036 
13037   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
13038          && "Not a FP_TO_INT Instruction!");
13039 
13040   SDValue Val = N->getOperand(1).getOperand(0);
13041   EVT Op1VT = N->getOperand(1).getValueType();
13042   EVT ResVT = Val.getValueType();
13043 
13044   // Floating point types smaller than 32 bits are not legal on Power.
13045   if (ResVT.getScalarSizeInBits() < 32)
13046     return SDValue();
13047 
13048   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
13049   bool ValidTypeForStoreFltAsInt =
13050         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
13051          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
13052 
13053   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() ||
13054       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
13055     return SDValue();
13056 
13057   // Extend f32 values to f64
13058   if (ResVT.getScalarSizeInBits() == 32) {
13059     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
13060     DCI.AddToWorklist(Val.getNode());
13061   }
13062 
13063   // Set signed or unsigned conversion opcode.
13064   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
13065                           PPCISD::FP_TO_SINT_IN_VSR :
13066                           PPCISD::FP_TO_UINT_IN_VSR;
13067 
13068   Val = DAG.getNode(ConvOpcode,
13069                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
13070   DCI.AddToWorklist(Val.getNode());
13071 
13072   // Set number of bytes being converted.
13073   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
13074   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
13075                     DAG.getIntPtrConstant(ByteSize, dl, false),
13076                     DAG.getValueType(Op1VT) };
13077 
13078   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
13079           DAG.getVTList(MVT::Other), Ops,
13080           cast<StoreSDNode>(N)->getMemoryVT(),
13081           cast<StoreSDNode>(N)->getMemOperand());
13082 
13083   DCI.AddToWorklist(Val.getNode());
13084   return Val;
13085 }
13086 
13087 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
13088                                              DAGCombinerInfo &DCI) const {
13089   SelectionDAG &DAG = DCI.DAG;
13090   SDLoc dl(N);
13091   switch (N->getOpcode()) {
13092   default: break;
13093   case ISD::ADD:
13094     return combineADD(N, DCI);
13095   case ISD::SHL:
13096     return combineSHL(N, DCI);
13097   case ISD::SRA:
13098     return combineSRA(N, DCI);
13099   case ISD::SRL:
13100     return combineSRL(N, DCI);
13101   case ISD::MUL:
13102     return combineMUL(N, DCI);
13103   case PPCISD::SHL:
13104     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
13105         return N->getOperand(0);
13106     break;
13107   case PPCISD::SRL:
13108     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
13109         return N->getOperand(0);
13110     break;
13111   case PPCISD::SRA:
13112     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
13113       if (C->isNullValue() ||   //  0 >>s V -> 0.
13114           C->isAllOnesValue())    // -1 >>s V -> -1.
13115         return N->getOperand(0);
13116     }
13117     break;
13118   case ISD::SIGN_EXTEND:
13119   case ISD::ZERO_EXTEND:
13120   case ISD::ANY_EXTEND:
13121     return DAGCombineExtBoolTrunc(N, DCI);
13122   case ISD::TRUNCATE:
13123     return combineTRUNCATE(N, DCI);
13124   case ISD::SETCC:
13125     if (SDValue CSCC = combineSetCC(N, DCI))
13126       return CSCC;
13127     LLVM_FALLTHROUGH;
13128   case ISD::SELECT_CC:
13129     return DAGCombineTruncBoolExt(N, DCI);
13130   case ISD::SINT_TO_FP:
13131   case ISD::UINT_TO_FP:
13132     return combineFPToIntToFP(N, DCI);
13133   case ISD::STORE: {
13134 
13135     EVT Op1VT = N->getOperand(1).getValueType();
13136     unsigned Opcode = N->getOperand(1).getOpcode();
13137 
13138     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
13139       SDValue Val= combineStoreFPToInt(N, DCI);
13140       if (Val)
13141         return Val;
13142     }
13143 
13144     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
13145     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
13146         N->getOperand(1).getNode()->hasOneUse() &&
13147         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
13148          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
13149 
13150       // STBRX can only handle simple types and it makes no sense to store less
13151       // two bytes in byte-reversed order.
13152       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
13153       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
13154         break;
13155 
13156       SDValue BSwapOp = N->getOperand(1).getOperand(0);
13157       // Do an any-extend to 32-bits if this is a half-word input.
13158       if (BSwapOp.getValueType() == MVT::i16)
13159         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
13160 
13161       // If the type of BSWAP operand is wider than stored memory width
13162       // it need to be shifted to the right side before STBRX.
13163       if (Op1VT.bitsGT(mVT)) {
13164         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
13165         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
13166                               DAG.getConstant(Shift, dl, MVT::i32));
13167         // Need to truncate if this is a bswap of i64 stored as i32/i16.
13168         if (Op1VT == MVT::i64)
13169           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
13170       }
13171 
13172       SDValue Ops[] = {
13173         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
13174       };
13175       return
13176         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
13177                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
13178                                 cast<StoreSDNode>(N)->getMemOperand());
13179     }
13180 
13181     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
13182     // So it can increase the chance of CSE constant construction.
13183     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
13184         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
13185       // Need to sign-extended to 64-bits to handle negative values.
13186       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
13187       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
13188                                     MemVT.getSizeInBits());
13189       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
13190 
13191       // DAG.getTruncStore() can't be used here because it doesn't accept
13192       // the general (base + offset) addressing mode.
13193       // So we use UpdateNodeOperands and setTruncatingStore instead.
13194       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
13195                              N->getOperand(3));
13196       cast<StoreSDNode>(N)->setTruncatingStore(true);
13197       return SDValue(N, 0);
13198     }
13199 
13200     // For little endian, VSX stores require generating xxswapd/lxvd2x.
13201     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
13202     if (Op1VT.isSimple()) {
13203       MVT StoreVT = Op1VT.getSimpleVT();
13204       if (Subtarget.needsSwapsForVSXMemOps() &&
13205           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
13206            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
13207         return expandVSXStoreForLE(N, DCI);
13208     }
13209     break;
13210   }
13211   case ISD::LOAD: {
13212     LoadSDNode *LD = cast<LoadSDNode>(N);
13213     EVT VT = LD->getValueType(0);
13214 
13215     // For little endian, VSX loads require generating lxvd2x/xxswapd.
13216     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
13217     if (VT.isSimple()) {
13218       MVT LoadVT = VT.getSimpleVT();
13219       if (Subtarget.needsSwapsForVSXMemOps() &&
13220           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
13221            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
13222         return expandVSXLoadForLE(N, DCI);
13223     }
13224 
13225     // We sometimes end up with a 64-bit integer load, from which we extract
13226     // two single-precision floating-point numbers. This happens with
13227     // std::complex<float>, and other similar structures, because of the way we
13228     // canonicalize structure copies. However, if we lack direct moves,
13229     // then the final bitcasts from the extracted integer values to the
13230     // floating-point numbers turn into store/load pairs. Even with direct moves,
13231     // just loading the two floating-point numbers is likely better.
13232     auto ReplaceTwoFloatLoad = [&]() {
13233       if (VT != MVT::i64)
13234         return false;
13235 
13236       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
13237           LD->isVolatile())
13238         return false;
13239 
13240       //  We're looking for a sequence like this:
13241       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
13242       //      t16: i64 = srl t13, Constant:i32<32>
13243       //    t17: i32 = truncate t16
13244       //  t18: f32 = bitcast t17
13245       //    t19: i32 = truncate t13
13246       //  t20: f32 = bitcast t19
13247 
13248       if (!LD->hasNUsesOfValue(2, 0))
13249         return false;
13250 
13251       auto UI = LD->use_begin();
13252       while (UI.getUse().getResNo() != 0) ++UI;
13253       SDNode *Trunc = *UI++;
13254       while (UI.getUse().getResNo() != 0) ++UI;
13255       SDNode *RightShift = *UI;
13256       if (Trunc->getOpcode() != ISD::TRUNCATE)
13257         std::swap(Trunc, RightShift);
13258 
13259       if (Trunc->getOpcode() != ISD::TRUNCATE ||
13260           Trunc->getValueType(0) != MVT::i32 ||
13261           !Trunc->hasOneUse())
13262         return false;
13263       if (RightShift->getOpcode() != ISD::SRL ||
13264           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
13265           RightShift->getConstantOperandVal(1) != 32 ||
13266           !RightShift->hasOneUse())
13267         return false;
13268 
13269       SDNode *Trunc2 = *RightShift->use_begin();
13270       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
13271           Trunc2->getValueType(0) != MVT::i32 ||
13272           !Trunc2->hasOneUse())
13273         return false;
13274 
13275       SDNode *Bitcast = *Trunc->use_begin();
13276       SDNode *Bitcast2 = *Trunc2->use_begin();
13277 
13278       if (Bitcast->getOpcode() != ISD::BITCAST ||
13279           Bitcast->getValueType(0) != MVT::f32)
13280         return false;
13281       if (Bitcast2->getOpcode() != ISD::BITCAST ||
13282           Bitcast2->getValueType(0) != MVT::f32)
13283         return false;
13284 
13285       if (Subtarget.isLittleEndian())
13286         std::swap(Bitcast, Bitcast2);
13287 
13288       // Bitcast has the second float (in memory-layout order) and Bitcast2
13289       // has the first one.
13290 
13291       SDValue BasePtr = LD->getBasePtr();
13292       if (LD->isIndexed()) {
13293         assert(LD->getAddressingMode() == ISD::PRE_INC &&
13294                "Non-pre-inc AM on PPC?");
13295         BasePtr =
13296           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
13297                       LD->getOffset());
13298       }
13299 
13300       auto MMOFlags =
13301           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
13302       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
13303                                       LD->getPointerInfo(), LD->getAlignment(),
13304                                       MMOFlags, LD->getAAInfo());
13305       SDValue AddPtr =
13306         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
13307                     BasePtr, DAG.getIntPtrConstant(4, dl));
13308       SDValue FloatLoad2 = DAG.getLoad(
13309           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
13310           LD->getPointerInfo().getWithOffset(4),
13311           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
13312 
13313       if (LD->isIndexed()) {
13314         // Note that DAGCombine should re-form any pre-increment load(s) from
13315         // what is produced here if that makes sense.
13316         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
13317       }
13318 
13319       DCI.CombineTo(Bitcast2, FloatLoad);
13320       DCI.CombineTo(Bitcast, FloatLoad2);
13321 
13322       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
13323                                     SDValue(FloatLoad2.getNode(), 1));
13324       return true;
13325     };
13326 
13327     if (ReplaceTwoFloatLoad())
13328       return SDValue(N, 0);
13329 
13330     EVT MemVT = LD->getMemoryVT();
13331     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
13332     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
13333     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
13334     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
13335     if (LD->isUnindexed() && VT.isVector() &&
13336         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
13337           // P8 and later hardware should just use LOAD.
13338           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
13339                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
13340          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
13341           LD->getAlignment() >= ScalarABIAlignment)) &&
13342         LD->getAlignment() < ABIAlignment) {
13343       // This is a type-legal unaligned Altivec or QPX load.
13344       SDValue Chain = LD->getChain();
13345       SDValue Ptr = LD->getBasePtr();
13346       bool isLittleEndian = Subtarget.isLittleEndian();
13347 
13348       // This implements the loading of unaligned vectors as described in
13349       // the venerable Apple Velocity Engine overview. Specifically:
13350       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
13351       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
13352       //
13353       // The general idea is to expand a sequence of one or more unaligned
13354       // loads into an alignment-based permutation-control instruction (lvsl
13355       // or lvsr), a series of regular vector loads (which always truncate
13356       // their input address to an aligned address), and a series of
13357       // permutations.  The results of these permutations are the requested
13358       // loaded values.  The trick is that the last "extra" load is not taken
13359       // from the address you might suspect (sizeof(vector) bytes after the
13360       // last requested load), but rather sizeof(vector) - 1 bytes after the
13361       // last requested vector. The point of this is to avoid a page fault if
13362       // the base address happened to be aligned. This works because if the
13363       // base address is aligned, then adding less than a full vector length
13364       // will cause the last vector in the sequence to be (re)loaded.
13365       // Otherwise, the next vector will be fetched as you might suspect was
13366       // necessary.
13367 
13368       // We might be able to reuse the permutation generation from
13369       // a different base address offset from this one by an aligned amount.
13370       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
13371       // optimization later.
13372       Intrinsic::ID Intr, IntrLD, IntrPerm;
13373       MVT PermCntlTy, PermTy, LDTy;
13374       if (Subtarget.hasAltivec()) {
13375         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
13376                                  Intrinsic::ppc_altivec_lvsl;
13377         IntrLD = Intrinsic::ppc_altivec_lvx;
13378         IntrPerm = Intrinsic::ppc_altivec_vperm;
13379         PermCntlTy = MVT::v16i8;
13380         PermTy = MVT::v4i32;
13381         LDTy = MVT::v4i32;
13382       } else {
13383         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
13384                                        Intrinsic::ppc_qpx_qvlpcls;
13385         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
13386                                        Intrinsic::ppc_qpx_qvlfs;
13387         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
13388         PermCntlTy = MVT::v4f64;
13389         PermTy = MVT::v4f64;
13390         LDTy = MemVT.getSimpleVT();
13391       }
13392 
13393       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
13394 
13395       // Create the new MMO for the new base load. It is like the original MMO,
13396       // but represents an area in memory almost twice the vector size centered
13397       // on the original address. If the address is unaligned, we might start
13398       // reading up to (sizeof(vector)-1) bytes below the address of the
13399       // original unaligned load.
13400       MachineFunction &MF = DAG.getMachineFunction();
13401       MachineMemOperand *BaseMMO =
13402         MF.getMachineMemOperand(LD->getMemOperand(),
13403                                 -(long)MemVT.getStoreSize()+1,
13404                                 2*MemVT.getStoreSize()-1);
13405 
13406       // Create the new base load.
13407       SDValue LDXIntID =
13408           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
13409       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
13410       SDValue BaseLoad =
13411         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
13412                                 DAG.getVTList(PermTy, MVT::Other),
13413                                 BaseLoadOps, LDTy, BaseMMO);
13414 
13415       // Note that the value of IncOffset (which is provided to the next
13416       // load's pointer info offset value, and thus used to calculate the
13417       // alignment), and the value of IncValue (which is actually used to
13418       // increment the pointer value) are different! This is because we
13419       // require the next load to appear to be aligned, even though it
13420       // is actually offset from the base pointer by a lesser amount.
13421       int IncOffset = VT.getSizeInBits() / 8;
13422       int IncValue = IncOffset;
13423 
13424       // Walk (both up and down) the chain looking for another load at the real
13425       // (aligned) offset (the alignment of the other load does not matter in
13426       // this case). If found, then do not use the offset reduction trick, as
13427       // that will prevent the loads from being later combined (as they would
13428       // otherwise be duplicates).
13429       if (!findConsecutiveLoad(LD, DAG))
13430         --IncValue;
13431 
13432       SDValue Increment =
13433           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
13434       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
13435 
13436       MachineMemOperand *ExtraMMO =
13437         MF.getMachineMemOperand(LD->getMemOperand(),
13438                                 1, 2*MemVT.getStoreSize()-1);
13439       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
13440       SDValue ExtraLoad =
13441         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
13442                                 DAG.getVTList(PermTy, MVT::Other),
13443                                 ExtraLoadOps, LDTy, ExtraMMO);
13444 
13445       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
13446         BaseLoad.getValue(1), ExtraLoad.getValue(1));
13447 
13448       // Because vperm has a big-endian bias, we must reverse the order
13449       // of the input vectors and complement the permute control vector
13450       // when generating little endian code.  We have already handled the
13451       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
13452       // and ExtraLoad here.
13453       SDValue Perm;
13454       if (isLittleEndian)
13455         Perm = BuildIntrinsicOp(IntrPerm,
13456                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
13457       else
13458         Perm = BuildIntrinsicOp(IntrPerm,
13459                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
13460 
13461       if (VT != PermTy)
13462         Perm = Subtarget.hasAltivec() ?
13463                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
13464                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
13465                                DAG.getTargetConstant(1, dl, MVT::i64));
13466                                // second argument is 1 because this rounding
13467                                // is always exact.
13468 
13469       // The output of the permutation is our loaded result, the TokenFactor is
13470       // our new chain.
13471       DCI.CombineTo(N, Perm, TF);
13472       return SDValue(N, 0);
13473     }
13474     }
13475     break;
13476     case ISD::INTRINSIC_WO_CHAIN: {
13477       bool isLittleEndian = Subtarget.isLittleEndian();
13478       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
13479       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
13480                                            : Intrinsic::ppc_altivec_lvsl);
13481       if ((IID == Intr ||
13482            IID == Intrinsic::ppc_qpx_qvlpcld  ||
13483            IID == Intrinsic::ppc_qpx_qvlpcls) &&
13484         N->getOperand(1)->getOpcode() == ISD::ADD) {
13485         SDValue Add = N->getOperand(1);
13486 
13487         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
13488                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
13489 
13490         if (DAG.MaskedValueIsZero(Add->getOperand(1),
13491                                   APInt::getAllOnesValue(Bits /* alignment */)
13492                                       .zext(Add.getScalarValueSizeInBits()))) {
13493           SDNode *BasePtr = Add->getOperand(0).getNode();
13494           for (SDNode::use_iterator UI = BasePtr->use_begin(),
13495                                     UE = BasePtr->use_end();
13496                UI != UE; ++UI) {
13497             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13498                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
13499               // We've found another LVSL/LVSR, and this address is an aligned
13500               // multiple of that one. The results will be the same, so use the
13501               // one we've just found instead.
13502 
13503               return SDValue(*UI, 0);
13504             }
13505           }
13506         }
13507 
13508         if (isa<ConstantSDNode>(Add->getOperand(1))) {
13509           SDNode *BasePtr = Add->getOperand(0).getNode();
13510           for (SDNode::use_iterator UI = BasePtr->use_begin(),
13511                UE = BasePtr->use_end(); UI != UE; ++UI) {
13512             if (UI->getOpcode() == ISD::ADD &&
13513                 isa<ConstantSDNode>(UI->getOperand(1)) &&
13514                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
13515                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
13516                 (1ULL << Bits) == 0) {
13517               SDNode *OtherAdd = *UI;
13518               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
13519                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
13520                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13521                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
13522                   return SDValue(*VI, 0);
13523                 }
13524               }
13525             }
13526           }
13527         }
13528       }
13529 
13530       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
13531       // Expose the vabsduw/h/b opportunity for down stream
13532       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
13533           (IID == Intrinsic::ppc_altivec_vmaxsw ||
13534            IID == Intrinsic::ppc_altivec_vmaxsh ||
13535            IID == Intrinsic::ppc_altivec_vmaxsb)) {
13536         SDValue V1 = N->getOperand(1);
13537         SDValue V2 = N->getOperand(2);
13538         if ((V1.getSimpleValueType() == MVT::v4i32 ||
13539              V1.getSimpleValueType() == MVT::v8i16 ||
13540              V1.getSimpleValueType() == MVT::v16i8) &&
13541             V1.getSimpleValueType() == V2.getSimpleValueType()) {
13542           // (0-a, a)
13543           if (V1.getOpcode() == ISD::SUB &&
13544               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
13545               V1.getOperand(1) == V2) {
13546             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
13547           }
13548           // (a, 0-a)
13549           if (V2.getOpcode() == ISD::SUB &&
13550               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
13551               V2.getOperand(1) == V1) {
13552             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
13553           }
13554           // (x-y, y-x)
13555           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
13556               V1.getOperand(0) == V2.getOperand(1) &&
13557               V1.getOperand(1) == V2.getOperand(0)) {
13558             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
13559           }
13560         }
13561       }
13562     }
13563 
13564     break;
13565   case ISD::INTRINSIC_W_CHAIN:
13566     // For little endian, VSX loads require generating lxvd2x/xxswapd.
13567     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
13568     if (Subtarget.needsSwapsForVSXMemOps()) {
13569       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13570       default:
13571         break;
13572       case Intrinsic::ppc_vsx_lxvw4x:
13573       case Intrinsic::ppc_vsx_lxvd2x:
13574         return expandVSXLoadForLE(N, DCI);
13575       }
13576     }
13577     break;
13578   case ISD::INTRINSIC_VOID:
13579     // For little endian, VSX stores require generating xxswapd/stxvd2x.
13580     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
13581     if (Subtarget.needsSwapsForVSXMemOps()) {
13582       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13583       default:
13584         break;
13585       case Intrinsic::ppc_vsx_stxvw4x:
13586       case Intrinsic::ppc_vsx_stxvd2x:
13587         return expandVSXStoreForLE(N, DCI);
13588       }
13589     }
13590     break;
13591   case ISD::BSWAP:
13592     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
13593     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
13594         N->getOperand(0).hasOneUse() &&
13595         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
13596          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
13597           N->getValueType(0) == MVT::i64))) {
13598       SDValue Load = N->getOperand(0);
13599       LoadSDNode *LD = cast<LoadSDNode>(Load);
13600       // Create the byte-swapping load.
13601       SDValue Ops[] = {
13602         LD->getChain(),    // Chain
13603         LD->getBasePtr(),  // Ptr
13604         DAG.getValueType(N->getValueType(0)) // VT
13605       };
13606       SDValue BSLoad =
13607         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
13608                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
13609                                               MVT::i64 : MVT::i32, MVT::Other),
13610                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
13611 
13612       // If this is an i16 load, insert the truncate.
13613       SDValue ResVal = BSLoad;
13614       if (N->getValueType(0) == MVT::i16)
13615         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
13616 
13617       // First, combine the bswap away.  This makes the value produced by the
13618       // load dead.
13619       DCI.CombineTo(N, ResVal);
13620 
13621       // Next, combine the load away, we give it a bogus result value but a real
13622       // chain result.  The result value is dead because the bswap is dead.
13623       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
13624 
13625       // Return N so it doesn't get rechecked!
13626       return SDValue(N, 0);
13627     }
13628     break;
13629   case PPCISD::VCMP:
13630     // If a VCMPo node already exists with exactly the same operands as this
13631     // node, use its result instead of this node (VCMPo computes both a CR6 and
13632     // a normal output).
13633     //
13634     if (!N->getOperand(0).hasOneUse() &&
13635         !N->getOperand(1).hasOneUse() &&
13636         !N->getOperand(2).hasOneUse()) {
13637 
13638       // Scan all of the users of the LHS, looking for VCMPo's that match.
13639       SDNode *VCMPoNode = nullptr;
13640 
13641       SDNode *LHSN = N->getOperand(0).getNode();
13642       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
13643            UI != E; ++UI)
13644         if (UI->getOpcode() == PPCISD::VCMPo &&
13645             UI->getOperand(1) == N->getOperand(1) &&
13646             UI->getOperand(2) == N->getOperand(2) &&
13647             UI->getOperand(0) == N->getOperand(0)) {
13648           VCMPoNode = *UI;
13649           break;
13650         }
13651 
13652       // If there is no VCMPo node, or if the flag value has a single use, don't
13653       // transform this.
13654       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
13655         break;
13656 
13657       // Look at the (necessarily single) use of the flag value.  If it has a
13658       // chain, this transformation is more complex.  Note that multiple things
13659       // could use the value result, which we should ignore.
13660       SDNode *FlagUser = nullptr;
13661       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
13662            FlagUser == nullptr; ++UI) {
13663         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
13664         SDNode *User = *UI;
13665         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
13666           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
13667             FlagUser = User;
13668             break;
13669           }
13670         }
13671       }
13672 
13673       // If the user is a MFOCRF instruction, we know this is safe.
13674       // Otherwise we give up for right now.
13675       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
13676         return SDValue(VCMPoNode, 0);
13677     }
13678     break;
13679   case ISD::BRCOND: {
13680     SDValue Cond = N->getOperand(1);
13681     SDValue Target = N->getOperand(2);
13682 
13683     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13684         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
13685           Intrinsic::loop_decrement) {
13686 
13687       // We now need to make the intrinsic dead (it cannot be instruction
13688       // selected).
13689       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
13690       assert(Cond.getNode()->hasOneUse() &&
13691              "Counter decrement has more than one use");
13692 
13693       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
13694                          N->getOperand(0), Target);
13695     }
13696   }
13697   break;
13698   case ISD::BR_CC: {
13699     // If this is a branch on an altivec predicate comparison, lower this so
13700     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
13701     // lowering is done pre-legalize, because the legalizer lowers the predicate
13702     // compare down to code that is difficult to reassemble.
13703     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
13704     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
13705 
13706     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
13707     // value. If so, pass-through the AND to get to the intrinsic.
13708     if (LHS.getOpcode() == ISD::AND &&
13709         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13710         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
13711           Intrinsic::loop_decrement &&
13712         isa<ConstantSDNode>(LHS.getOperand(1)) &&
13713         !isNullConstant(LHS.getOperand(1)))
13714       LHS = LHS.getOperand(0);
13715 
13716     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13717         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
13718           Intrinsic::loop_decrement &&
13719         isa<ConstantSDNode>(RHS)) {
13720       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
13721              "Counter decrement comparison is not EQ or NE");
13722 
13723       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
13724       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
13725                     (CC == ISD::SETNE && !Val);
13726 
13727       // We now need to make the intrinsic dead (it cannot be instruction
13728       // selected).
13729       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
13730       assert(LHS.getNode()->hasOneUse() &&
13731              "Counter decrement has more than one use");
13732 
13733       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
13734                          N->getOperand(0), N->getOperand(4));
13735     }
13736 
13737     int CompareOpc;
13738     bool isDot;
13739 
13740     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13741         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
13742         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
13743       assert(isDot && "Can't compare against a vector result!");
13744 
13745       // If this is a comparison against something other than 0/1, then we know
13746       // that the condition is never/always true.
13747       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
13748       if (Val != 0 && Val != 1) {
13749         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
13750           return N->getOperand(0);
13751         // Always !=, turn it into an unconditional branch.
13752         return DAG.getNode(ISD::BR, dl, MVT::Other,
13753                            N->getOperand(0), N->getOperand(4));
13754       }
13755 
13756       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
13757 
13758       // Create the PPCISD altivec 'dot' comparison node.
13759       SDValue Ops[] = {
13760         LHS.getOperand(2),  // LHS of compare
13761         LHS.getOperand(3),  // RHS of compare
13762         DAG.getConstant(CompareOpc, dl, MVT::i32)
13763       };
13764       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
13765       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
13766 
13767       // Unpack the result based on how the target uses it.
13768       PPC::Predicate CompOpc;
13769       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
13770       default:  // Can't happen, don't crash on invalid number though.
13771       case 0:   // Branch on the value of the EQ bit of CR6.
13772         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
13773         break;
13774       case 1:   // Branch on the inverted value of the EQ bit of CR6.
13775         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
13776         break;
13777       case 2:   // Branch on the value of the LT bit of CR6.
13778         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
13779         break;
13780       case 3:   // Branch on the inverted value of the LT bit of CR6.
13781         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
13782         break;
13783       }
13784 
13785       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
13786                          DAG.getConstant(CompOpc, dl, MVT::i32),
13787                          DAG.getRegister(PPC::CR6, MVT::i32),
13788                          N->getOperand(4), CompNode.getValue(1));
13789     }
13790     break;
13791   }
13792   case ISD::BUILD_VECTOR:
13793     return DAGCombineBuildVector(N, DCI);
13794   case ISD::ABS:
13795     return combineABS(N, DCI);
13796   case ISD::VSELECT:
13797     return combineVSelect(N, DCI);
13798   }
13799 
13800   return SDValue();
13801 }
13802 
13803 SDValue
13804 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
13805                                  SelectionDAG &DAG,
13806                                  SmallVectorImpl<SDNode *> &Created) const {
13807   // fold (sdiv X, pow2)
13808   EVT VT = N->getValueType(0);
13809   if (VT == MVT::i64 && !Subtarget.isPPC64())
13810     return SDValue();
13811   if ((VT != MVT::i32 && VT != MVT::i64) ||
13812       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
13813     return SDValue();
13814 
13815   SDLoc DL(N);
13816   SDValue N0 = N->getOperand(0);
13817 
13818   bool IsNegPow2 = (-Divisor).isPowerOf2();
13819   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
13820   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
13821 
13822   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
13823   Created.push_back(Op.getNode());
13824 
13825   if (IsNegPow2) {
13826     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
13827     Created.push_back(Op.getNode());
13828   }
13829 
13830   return Op;
13831 }
13832 
13833 //===----------------------------------------------------------------------===//
13834 // Inline Assembly Support
13835 //===----------------------------------------------------------------------===//
13836 
13837 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
13838                                                       KnownBits &Known,
13839                                                       const APInt &DemandedElts,
13840                                                       const SelectionDAG &DAG,
13841                                                       unsigned Depth) const {
13842   Known.resetAll();
13843   switch (Op.getOpcode()) {
13844   default: break;
13845   case PPCISD::LBRX: {
13846     // lhbrx is known to have the top bits cleared out.
13847     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
13848       Known.Zero = 0xFFFF0000;
13849     break;
13850   }
13851   case ISD::INTRINSIC_WO_CHAIN: {
13852     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
13853     default: break;
13854     case Intrinsic::ppc_altivec_vcmpbfp_p:
13855     case Intrinsic::ppc_altivec_vcmpeqfp_p:
13856     case Intrinsic::ppc_altivec_vcmpequb_p:
13857     case Intrinsic::ppc_altivec_vcmpequh_p:
13858     case Intrinsic::ppc_altivec_vcmpequw_p:
13859     case Intrinsic::ppc_altivec_vcmpequd_p:
13860     case Intrinsic::ppc_altivec_vcmpgefp_p:
13861     case Intrinsic::ppc_altivec_vcmpgtfp_p:
13862     case Intrinsic::ppc_altivec_vcmpgtsb_p:
13863     case Intrinsic::ppc_altivec_vcmpgtsh_p:
13864     case Intrinsic::ppc_altivec_vcmpgtsw_p:
13865     case Intrinsic::ppc_altivec_vcmpgtsd_p:
13866     case Intrinsic::ppc_altivec_vcmpgtub_p:
13867     case Intrinsic::ppc_altivec_vcmpgtuh_p:
13868     case Intrinsic::ppc_altivec_vcmpgtuw_p:
13869     case Intrinsic::ppc_altivec_vcmpgtud_p:
13870       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
13871       break;
13872     }
13873   }
13874   }
13875 }
13876 
13877 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
13878   switch (Subtarget.getDarwinDirective()) {
13879   default: break;
13880   case PPC::DIR_970:
13881   case PPC::DIR_PWR4:
13882   case PPC::DIR_PWR5:
13883   case PPC::DIR_PWR5X:
13884   case PPC::DIR_PWR6:
13885   case PPC::DIR_PWR6X:
13886   case PPC::DIR_PWR7:
13887   case PPC::DIR_PWR8:
13888   case PPC::DIR_PWR9: {
13889     if (!ML)
13890       break;
13891 
13892     if (!DisableInnermostLoopAlign32) {
13893       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
13894       // so that we can decrease cache misses and branch-prediction misses.
13895       // Actual alignment of the loop will depend on the hotness check and other
13896       // logic in alignBlocks.
13897       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
13898         return 5;
13899     }
13900 
13901     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
13902 
13903     // For small loops (between 5 and 8 instructions), align to a 32-byte
13904     // boundary so that the entire loop fits in one instruction-cache line.
13905     uint64_t LoopSize = 0;
13906     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
13907       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
13908         LoopSize += TII->getInstSizeInBytes(*J);
13909         if (LoopSize > 32)
13910           break;
13911       }
13912 
13913     if (LoopSize > 16 && LoopSize <= 32)
13914       return 5;
13915 
13916     break;
13917   }
13918   }
13919 
13920   return TargetLowering::getPrefLoopAlignment(ML);
13921 }
13922 
13923 /// getConstraintType - Given a constraint, return the type of
13924 /// constraint it is for this target.
13925 PPCTargetLowering::ConstraintType
13926 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
13927   if (Constraint.size() == 1) {
13928     switch (Constraint[0]) {
13929     default: break;
13930     case 'b':
13931     case 'r':
13932     case 'f':
13933     case 'd':
13934     case 'v':
13935     case 'y':
13936       return C_RegisterClass;
13937     case 'Z':
13938       // FIXME: While Z does indicate a memory constraint, it specifically
13939       // indicates an r+r address (used in conjunction with the 'y' modifier
13940       // in the replacement string). Currently, we're forcing the base
13941       // register to be r0 in the asm printer (which is interpreted as zero)
13942       // and forming the complete address in the second register. This is
13943       // suboptimal.
13944       return C_Memory;
13945     }
13946   } else if (Constraint == "wc") { // individual CR bits.
13947     return C_RegisterClass;
13948   } else if (Constraint == "wa" || Constraint == "wd" ||
13949              Constraint == "wf" || Constraint == "ws" ||
13950              Constraint == "wi") {
13951     return C_RegisterClass; // VSX registers.
13952   }
13953   return TargetLowering::getConstraintType(Constraint);
13954 }
13955 
13956 /// Examine constraint type and operand type and determine a weight value.
13957 /// This object must already have been set up with the operand type
13958 /// and the current alternative constraint selected.
13959 TargetLowering::ConstraintWeight
13960 PPCTargetLowering::getSingleConstraintMatchWeight(
13961     AsmOperandInfo &info, const char *constraint) const {
13962   ConstraintWeight weight = CW_Invalid;
13963   Value *CallOperandVal = info.CallOperandVal;
13964     // If we don't have a value, we can't do a match,
13965     // but allow it at the lowest weight.
13966   if (!CallOperandVal)
13967     return CW_Default;
13968   Type *type = CallOperandVal->getType();
13969 
13970   // Look at the constraint type.
13971   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
13972     return CW_Register; // an individual CR bit.
13973   else if ((StringRef(constraint) == "wa" ||
13974             StringRef(constraint) == "wd" ||
13975             StringRef(constraint) == "wf") &&
13976            type->isVectorTy())
13977     return CW_Register;
13978   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
13979     return CW_Register;
13980   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
13981     return CW_Register; // just hold 64-bit integers data.
13982 
13983   switch (*constraint) {
13984   default:
13985     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
13986     break;
13987   case 'b':
13988     if (type->isIntegerTy())
13989       weight = CW_Register;
13990     break;
13991   case 'f':
13992     if (type->isFloatTy())
13993       weight = CW_Register;
13994     break;
13995   case 'd':
13996     if (type->isDoubleTy())
13997       weight = CW_Register;
13998     break;
13999   case 'v':
14000     if (type->isVectorTy())
14001       weight = CW_Register;
14002     break;
14003   case 'y':
14004     weight = CW_Register;
14005     break;
14006   case 'Z':
14007     weight = CW_Memory;
14008     break;
14009   }
14010   return weight;
14011 }
14012 
14013 std::pair<unsigned, const TargetRegisterClass *>
14014 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
14015                                                 StringRef Constraint,
14016                                                 MVT VT) const {
14017   if (Constraint.size() == 1) {
14018     // GCC RS6000 Constraint Letters
14019     switch (Constraint[0]) {
14020     case 'b':   // R1-R31
14021       if (VT == MVT::i64 && Subtarget.isPPC64())
14022         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
14023       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
14024     case 'r':   // R0-R31
14025       if (VT == MVT::i64 && Subtarget.isPPC64())
14026         return std::make_pair(0U, &PPC::G8RCRegClass);
14027       return std::make_pair(0U, &PPC::GPRCRegClass);
14028     // 'd' and 'f' constraints are both defined to be "the floating point
14029     // registers", where one is for 32-bit and the other for 64-bit. We don't
14030     // really care overly much here so just give them all the same reg classes.
14031     case 'd':
14032     case 'f':
14033       if (Subtarget.hasSPE()) {
14034         if (VT == MVT::f32 || VT == MVT::i32)
14035           return std::make_pair(0U, &PPC::SPE4RCRegClass);
14036         if (VT == MVT::f64 || VT == MVT::i64)
14037           return std::make_pair(0U, &PPC::SPERCRegClass);
14038       } else {
14039         if (VT == MVT::f32 || VT == MVT::i32)
14040           return std::make_pair(0U, &PPC::F4RCRegClass);
14041         if (VT == MVT::f64 || VT == MVT::i64)
14042           return std::make_pair(0U, &PPC::F8RCRegClass);
14043         if (VT == MVT::v4f64 && Subtarget.hasQPX())
14044           return std::make_pair(0U, &PPC::QFRCRegClass);
14045         if (VT == MVT::v4f32 && Subtarget.hasQPX())
14046           return std::make_pair(0U, &PPC::QSRCRegClass);
14047       }
14048       break;
14049     case 'v':
14050       if (VT == MVT::v4f64 && Subtarget.hasQPX())
14051         return std::make_pair(0U, &PPC::QFRCRegClass);
14052       if (VT == MVT::v4f32 && Subtarget.hasQPX())
14053         return std::make_pair(0U, &PPC::QSRCRegClass);
14054       if (Subtarget.hasAltivec())
14055         return std::make_pair(0U, &PPC::VRRCRegClass);
14056       break;
14057     case 'y':   // crrc
14058       return std::make_pair(0U, &PPC::CRRCRegClass);
14059     }
14060   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
14061     // An individual CR bit.
14062     return std::make_pair(0U, &PPC::CRBITRCRegClass);
14063   } else if ((Constraint == "wa" || Constraint == "wd" ||
14064              Constraint == "wf" || Constraint == "wi") &&
14065              Subtarget.hasVSX()) {
14066     return std::make_pair(0U, &PPC::VSRCRegClass);
14067   } else if (Constraint == "ws" && Subtarget.hasVSX()) {
14068     if (VT == MVT::f32 && Subtarget.hasP8Vector())
14069       return std::make_pair(0U, &PPC::VSSRCRegClass);
14070     else
14071       return std::make_pair(0U, &PPC::VSFRCRegClass);
14072   }
14073 
14074   std::pair<unsigned, const TargetRegisterClass *> R =
14075       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
14076 
14077   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
14078   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
14079   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
14080   // register.
14081   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
14082   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
14083   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
14084       PPC::GPRCRegClass.contains(R.first))
14085     return std::make_pair(TRI->getMatchingSuperReg(R.first,
14086                             PPC::sub_32, &PPC::G8RCRegClass),
14087                           &PPC::G8RCRegClass);
14088 
14089   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
14090   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
14091     R.first = PPC::CR0;
14092     R.second = &PPC::CRRCRegClass;
14093   }
14094 
14095   return R;
14096 }
14097 
14098 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14099 /// vector.  If it is invalid, don't add anything to Ops.
14100 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
14101                                                      std::string &Constraint,
14102                                                      std::vector<SDValue>&Ops,
14103                                                      SelectionDAG &DAG) const {
14104   SDValue Result;
14105 
14106   // Only support length 1 constraints.
14107   if (Constraint.length() > 1) return;
14108 
14109   char Letter = Constraint[0];
14110   switch (Letter) {
14111   default: break;
14112   case 'I':
14113   case 'J':
14114   case 'K':
14115   case 'L':
14116   case 'M':
14117   case 'N':
14118   case 'O':
14119   case 'P': {
14120     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
14121     if (!CST) return; // Must be an immediate to match.
14122     SDLoc dl(Op);
14123     int64_t Value = CST->getSExtValue();
14124     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
14125                          // numbers are printed as such.
14126     switch (Letter) {
14127     default: llvm_unreachable("Unknown constraint letter!");
14128     case 'I':  // "I" is a signed 16-bit constant.
14129       if (isInt<16>(Value))
14130         Result = DAG.getTargetConstant(Value, dl, TCVT);
14131       break;
14132     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
14133       if (isShiftedUInt<16, 16>(Value))
14134         Result = DAG.getTargetConstant(Value, dl, TCVT);
14135       break;
14136     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
14137       if (isShiftedInt<16, 16>(Value))
14138         Result = DAG.getTargetConstant(Value, dl, TCVT);
14139       break;
14140     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
14141       if (isUInt<16>(Value))
14142         Result = DAG.getTargetConstant(Value, dl, TCVT);
14143       break;
14144     case 'M':  // "M" is a constant that is greater than 31.
14145       if (Value > 31)
14146         Result = DAG.getTargetConstant(Value, dl, TCVT);
14147       break;
14148     case 'N':  // "N" is a positive constant that is an exact power of two.
14149       if (Value > 0 && isPowerOf2_64(Value))
14150         Result = DAG.getTargetConstant(Value, dl, TCVT);
14151       break;
14152     case 'O':  // "O" is the constant zero.
14153       if (Value == 0)
14154         Result = DAG.getTargetConstant(Value, dl, TCVT);
14155       break;
14156     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
14157       if (isInt<16>(-Value))
14158         Result = DAG.getTargetConstant(Value, dl, TCVT);
14159       break;
14160     }
14161     break;
14162   }
14163   }
14164 
14165   if (Result.getNode()) {
14166     Ops.push_back(Result);
14167     return;
14168   }
14169 
14170   // Handle standard constraint letters.
14171   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
14172 }
14173 
14174 // isLegalAddressingMode - Return true if the addressing mode represented
14175 // by AM is legal for this target, for a load/store of the specified type.
14176 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
14177                                               const AddrMode &AM, Type *Ty,
14178                                               unsigned AS, Instruction *I) const {
14179   // PPC does not allow r+i addressing modes for vectors!
14180   if (Ty->isVectorTy() && AM.BaseOffs != 0)
14181     return false;
14182 
14183   // PPC allows a sign-extended 16-bit immediate field.
14184   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
14185     return false;
14186 
14187   // No global is ever allowed as a base.
14188   if (AM.BaseGV)
14189     return false;
14190 
14191   // PPC only support r+r,
14192   switch (AM.Scale) {
14193   case 0:  // "r+i" or just "i", depending on HasBaseReg.
14194     break;
14195   case 1:
14196     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
14197       return false;
14198     // Otherwise we have r+r or r+i.
14199     break;
14200   case 2:
14201     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
14202       return false;
14203     // Allow 2*r as r+r.
14204     break;
14205   default:
14206     // No other scales are supported.
14207     return false;
14208   }
14209 
14210   return true;
14211 }
14212 
14213 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
14214                                            SelectionDAG &DAG) const {
14215   MachineFunction &MF = DAG.getMachineFunction();
14216   MachineFrameInfo &MFI = MF.getFrameInfo();
14217   MFI.setReturnAddressIsTaken(true);
14218 
14219   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
14220     return SDValue();
14221 
14222   SDLoc dl(Op);
14223   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14224 
14225   // Make sure the function does not optimize away the store of the RA to
14226   // the stack.
14227   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
14228   FuncInfo->setLRStoreRequired();
14229   bool isPPC64 = Subtarget.isPPC64();
14230   auto PtrVT = getPointerTy(MF.getDataLayout());
14231 
14232   if (Depth > 0) {
14233     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
14234     SDValue Offset =
14235         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
14236                         isPPC64 ? MVT::i64 : MVT::i32);
14237     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
14238                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
14239                        MachinePointerInfo());
14240   }
14241 
14242   // Just load the return address off the stack.
14243   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
14244   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
14245                      MachinePointerInfo());
14246 }
14247 
14248 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
14249                                           SelectionDAG &DAG) const {
14250   SDLoc dl(Op);
14251   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14252 
14253   MachineFunction &MF = DAG.getMachineFunction();
14254   MachineFrameInfo &MFI = MF.getFrameInfo();
14255   MFI.setFrameAddressIsTaken(true);
14256 
14257   EVT PtrVT = getPointerTy(MF.getDataLayout());
14258   bool isPPC64 = PtrVT == MVT::i64;
14259 
14260   // Naked functions never have a frame pointer, and so we use r1. For all
14261   // other functions, this decision must be delayed until during PEI.
14262   unsigned FrameReg;
14263   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
14264     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
14265   else
14266     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
14267 
14268   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
14269                                          PtrVT);
14270   while (Depth--)
14271     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
14272                             FrameAddr, MachinePointerInfo());
14273   return FrameAddr;
14274 }
14275 
14276 // FIXME? Maybe this could be a TableGen attribute on some registers and
14277 // this table could be generated automatically from RegInfo.
14278 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
14279                                               SelectionDAG &DAG) const {
14280   bool isPPC64 = Subtarget.isPPC64();
14281   bool isDarwinABI = Subtarget.isDarwinABI();
14282 
14283   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
14284       (!isPPC64 && VT != MVT::i32))
14285     report_fatal_error("Invalid register global variable type");
14286 
14287   bool is64Bit = isPPC64 && VT == MVT::i64;
14288   unsigned Reg = StringSwitch<unsigned>(RegName)
14289                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
14290                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
14291                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
14292                                   (is64Bit ? PPC::X13 : PPC::R13))
14293                    .Default(0);
14294 
14295   if (Reg)
14296     return Reg;
14297   report_fatal_error("Invalid register name global variable");
14298 }
14299 
14300 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
14301   // 32-bit SVR4 ABI access everything as got-indirect.
14302   if (Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
14303     return true;
14304 
14305   CodeModel::Model CModel = getTargetMachine().getCodeModel();
14306   // If it is small or large code model, module locals are accessed
14307   // indirectly by loading their address from .toc/.got. The difference
14308   // is that for large code model we have ADDISTocHa + LDtocL and for
14309   // small code model we simply have LDtoc.
14310   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
14311     return true;
14312 
14313   // JumpTable and BlockAddress are accessed as got-indirect.
14314   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
14315     return true;
14316 
14317   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
14318     const GlobalValue *GV = G->getGlobal();
14319     unsigned char GVFlags = Subtarget.classifyGlobalReference(GV);
14320     // The NLP flag indicates that a global access has to use an
14321     // extra indirection.
14322     if (GVFlags & PPCII::MO_NLP_FLAG)
14323       return true;
14324   }
14325 
14326   return false;
14327 }
14328 
14329 bool
14330 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
14331   // The PowerPC target isn't yet aware of offsets.
14332   return false;
14333 }
14334 
14335 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
14336                                            const CallInst &I,
14337                                            MachineFunction &MF,
14338                                            unsigned Intrinsic) const {
14339   switch (Intrinsic) {
14340   case Intrinsic::ppc_qpx_qvlfd:
14341   case Intrinsic::ppc_qpx_qvlfs:
14342   case Intrinsic::ppc_qpx_qvlfcd:
14343   case Intrinsic::ppc_qpx_qvlfcs:
14344   case Intrinsic::ppc_qpx_qvlfiwa:
14345   case Intrinsic::ppc_qpx_qvlfiwz:
14346   case Intrinsic::ppc_altivec_lvx:
14347   case Intrinsic::ppc_altivec_lvxl:
14348   case Intrinsic::ppc_altivec_lvebx:
14349   case Intrinsic::ppc_altivec_lvehx:
14350   case Intrinsic::ppc_altivec_lvewx:
14351   case Intrinsic::ppc_vsx_lxvd2x:
14352   case Intrinsic::ppc_vsx_lxvw4x: {
14353     EVT VT;
14354     switch (Intrinsic) {
14355     case Intrinsic::ppc_altivec_lvebx:
14356       VT = MVT::i8;
14357       break;
14358     case Intrinsic::ppc_altivec_lvehx:
14359       VT = MVT::i16;
14360       break;
14361     case Intrinsic::ppc_altivec_lvewx:
14362       VT = MVT::i32;
14363       break;
14364     case Intrinsic::ppc_vsx_lxvd2x:
14365       VT = MVT::v2f64;
14366       break;
14367     case Intrinsic::ppc_qpx_qvlfd:
14368       VT = MVT::v4f64;
14369       break;
14370     case Intrinsic::ppc_qpx_qvlfs:
14371       VT = MVT::v4f32;
14372       break;
14373     case Intrinsic::ppc_qpx_qvlfcd:
14374       VT = MVT::v2f64;
14375       break;
14376     case Intrinsic::ppc_qpx_qvlfcs:
14377       VT = MVT::v2f32;
14378       break;
14379     default:
14380       VT = MVT::v4i32;
14381       break;
14382     }
14383 
14384     Info.opc = ISD::INTRINSIC_W_CHAIN;
14385     Info.memVT = VT;
14386     Info.ptrVal = I.getArgOperand(0);
14387     Info.offset = -VT.getStoreSize()+1;
14388     Info.size = 2*VT.getStoreSize()-1;
14389     Info.align = 1;
14390     Info.flags = MachineMemOperand::MOLoad;
14391     return true;
14392   }
14393   case Intrinsic::ppc_qpx_qvlfda:
14394   case Intrinsic::ppc_qpx_qvlfsa:
14395   case Intrinsic::ppc_qpx_qvlfcda:
14396   case Intrinsic::ppc_qpx_qvlfcsa:
14397   case Intrinsic::ppc_qpx_qvlfiwaa:
14398   case Intrinsic::ppc_qpx_qvlfiwza: {
14399     EVT VT;
14400     switch (Intrinsic) {
14401     case Intrinsic::ppc_qpx_qvlfda:
14402       VT = MVT::v4f64;
14403       break;
14404     case Intrinsic::ppc_qpx_qvlfsa:
14405       VT = MVT::v4f32;
14406       break;
14407     case Intrinsic::ppc_qpx_qvlfcda:
14408       VT = MVT::v2f64;
14409       break;
14410     case Intrinsic::ppc_qpx_qvlfcsa:
14411       VT = MVT::v2f32;
14412       break;
14413     default:
14414       VT = MVT::v4i32;
14415       break;
14416     }
14417 
14418     Info.opc = ISD::INTRINSIC_W_CHAIN;
14419     Info.memVT = VT;
14420     Info.ptrVal = I.getArgOperand(0);
14421     Info.offset = 0;
14422     Info.size = VT.getStoreSize();
14423     Info.align = 1;
14424     Info.flags = MachineMemOperand::MOLoad;
14425     return true;
14426   }
14427   case Intrinsic::ppc_qpx_qvstfd:
14428   case Intrinsic::ppc_qpx_qvstfs:
14429   case Intrinsic::ppc_qpx_qvstfcd:
14430   case Intrinsic::ppc_qpx_qvstfcs:
14431   case Intrinsic::ppc_qpx_qvstfiw:
14432   case Intrinsic::ppc_altivec_stvx:
14433   case Intrinsic::ppc_altivec_stvxl:
14434   case Intrinsic::ppc_altivec_stvebx:
14435   case Intrinsic::ppc_altivec_stvehx:
14436   case Intrinsic::ppc_altivec_stvewx:
14437   case Intrinsic::ppc_vsx_stxvd2x:
14438   case Intrinsic::ppc_vsx_stxvw4x: {
14439     EVT VT;
14440     switch (Intrinsic) {
14441     case Intrinsic::ppc_altivec_stvebx:
14442       VT = MVT::i8;
14443       break;
14444     case Intrinsic::ppc_altivec_stvehx:
14445       VT = MVT::i16;
14446       break;
14447     case Intrinsic::ppc_altivec_stvewx:
14448       VT = MVT::i32;
14449       break;
14450     case Intrinsic::ppc_vsx_stxvd2x:
14451       VT = MVT::v2f64;
14452       break;
14453     case Intrinsic::ppc_qpx_qvstfd:
14454       VT = MVT::v4f64;
14455       break;
14456     case Intrinsic::ppc_qpx_qvstfs:
14457       VT = MVT::v4f32;
14458       break;
14459     case Intrinsic::ppc_qpx_qvstfcd:
14460       VT = MVT::v2f64;
14461       break;
14462     case Intrinsic::ppc_qpx_qvstfcs:
14463       VT = MVT::v2f32;
14464       break;
14465     default:
14466       VT = MVT::v4i32;
14467       break;
14468     }
14469 
14470     Info.opc = ISD::INTRINSIC_VOID;
14471     Info.memVT = VT;
14472     Info.ptrVal = I.getArgOperand(1);
14473     Info.offset = -VT.getStoreSize()+1;
14474     Info.size = 2*VT.getStoreSize()-1;
14475     Info.align = 1;
14476     Info.flags = MachineMemOperand::MOStore;
14477     return true;
14478   }
14479   case Intrinsic::ppc_qpx_qvstfda:
14480   case Intrinsic::ppc_qpx_qvstfsa:
14481   case Intrinsic::ppc_qpx_qvstfcda:
14482   case Intrinsic::ppc_qpx_qvstfcsa:
14483   case Intrinsic::ppc_qpx_qvstfiwa: {
14484     EVT VT;
14485     switch (Intrinsic) {
14486     case Intrinsic::ppc_qpx_qvstfda:
14487       VT = MVT::v4f64;
14488       break;
14489     case Intrinsic::ppc_qpx_qvstfsa:
14490       VT = MVT::v4f32;
14491       break;
14492     case Intrinsic::ppc_qpx_qvstfcda:
14493       VT = MVT::v2f64;
14494       break;
14495     case Intrinsic::ppc_qpx_qvstfcsa:
14496       VT = MVT::v2f32;
14497       break;
14498     default:
14499       VT = MVT::v4i32;
14500       break;
14501     }
14502 
14503     Info.opc = ISD::INTRINSIC_VOID;
14504     Info.memVT = VT;
14505     Info.ptrVal = I.getArgOperand(1);
14506     Info.offset = 0;
14507     Info.size = VT.getStoreSize();
14508     Info.align = 1;
14509     Info.flags = MachineMemOperand::MOStore;
14510     return true;
14511   }
14512   default:
14513     break;
14514   }
14515 
14516   return false;
14517 }
14518 
14519 /// getOptimalMemOpType - Returns the target specific optimal type for load
14520 /// and store operations as a result of memset, memcpy, and memmove
14521 /// lowering. If DstAlign is zero that means it's safe to destination
14522 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
14523 /// means there isn't a need to check it against alignment requirement,
14524 /// probably because the source does not need to be loaded. If 'IsMemset' is
14525 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
14526 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
14527 /// source is constant so it does not need to be loaded.
14528 /// It returns EVT::Other if the type should be determined using generic
14529 /// target-independent logic.
14530 EVT PPCTargetLowering::getOptimalMemOpType(
14531     uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
14532     bool ZeroMemset, bool MemcpyStrSrc,
14533     const AttributeList &FuncAttributes) const {
14534   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
14535     // When expanding a memset, require at least two QPX instructions to cover
14536     // the cost of loading the value to be stored from the constant pool.
14537     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
14538        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
14539         !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
14540       return MVT::v4f64;
14541     }
14542 
14543     // We should use Altivec/VSX loads and stores when available. For unaligned
14544     // addresses, unaligned VSX loads are only fast starting with the P8.
14545     if (Subtarget.hasAltivec() && Size >= 16 &&
14546         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
14547          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
14548       return MVT::v4i32;
14549   }
14550 
14551   if (Subtarget.isPPC64()) {
14552     return MVT::i64;
14553   }
14554 
14555   return MVT::i32;
14556 }
14557 
14558 /// Returns true if it is beneficial to convert a load of a constant
14559 /// to just the constant itself.
14560 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
14561                                                           Type *Ty) const {
14562   assert(Ty->isIntegerTy());
14563 
14564   unsigned BitSize = Ty->getPrimitiveSizeInBits();
14565   return !(BitSize == 0 || BitSize > 64);
14566 }
14567 
14568 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
14569   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
14570     return false;
14571   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
14572   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
14573   return NumBits1 == 64 && NumBits2 == 32;
14574 }
14575 
14576 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
14577   if (!VT1.isInteger() || !VT2.isInteger())
14578     return false;
14579   unsigned NumBits1 = VT1.getSizeInBits();
14580   unsigned NumBits2 = VT2.getSizeInBits();
14581   return NumBits1 == 64 && NumBits2 == 32;
14582 }
14583 
14584 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
14585   // Generally speaking, zexts are not free, but they are free when they can be
14586   // folded with other operations.
14587   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
14588     EVT MemVT = LD->getMemoryVT();
14589     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
14590          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
14591         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
14592          LD->getExtensionType() == ISD::ZEXTLOAD))
14593       return true;
14594   }
14595 
14596   // FIXME: Add other cases...
14597   //  - 32-bit shifts with a zext to i64
14598   //  - zext after ctlz, bswap, etc.
14599   //  - zext after and by a constant mask
14600 
14601   return TargetLowering::isZExtFree(Val, VT2);
14602 }
14603 
14604 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
14605   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
14606          "invalid fpext types");
14607   // Extending to float128 is not free.
14608   if (DestVT == MVT::f128)
14609     return false;
14610   return true;
14611 }
14612 
14613 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
14614   return isInt<16>(Imm) || isUInt<16>(Imm);
14615 }
14616 
14617 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
14618   return isInt<16>(Imm) || isUInt<16>(Imm);
14619 }
14620 
14621 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
14622                                                        unsigned,
14623                                                        unsigned,
14624                                                        MachineMemOperand::Flags,
14625                                                        bool *Fast) const {
14626   if (DisablePPCUnaligned)
14627     return false;
14628 
14629   // PowerPC supports unaligned memory access for simple non-vector types.
14630   // Although accessing unaligned addresses is not as efficient as accessing
14631   // aligned addresses, it is generally more efficient than manual expansion,
14632   // and generally only traps for software emulation when crossing page
14633   // boundaries.
14634 
14635   if (!VT.isSimple())
14636     return false;
14637 
14638   if (VT.getSimpleVT().isVector()) {
14639     if (Subtarget.hasVSX()) {
14640       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
14641           VT != MVT::v4f32 && VT != MVT::v4i32)
14642         return false;
14643     } else {
14644       return false;
14645     }
14646   }
14647 
14648   if (VT == MVT::ppcf128)
14649     return false;
14650 
14651   if (Fast)
14652     *Fast = true;
14653 
14654   return true;
14655 }
14656 
14657 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
14658   VT = VT.getScalarType();
14659 
14660   if (!VT.isSimple())
14661     return false;
14662 
14663   switch (VT.getSimpleVT().SimpleTy) {
14664   case MVT::f32:
14665   case MVT::f64:
14666     return true;
14667   case MVT::f128:
14668     return (EnableQuadPrecision && Subtarget.hasP9Vector());
14669   default:
14670     break;
14671   }
14672 
14673   return false;
14674 }
14675 
14676 const MCPhysReg *
14677 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
14678   // LR is a callee-save register, but we must treat it as clobbered by any call
14679   // site. Hence we include LR in the scratch registers, which are in turn added
14680   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
14681   // to CTR, which is used by any indirect call.
14682   static const MCPhysReg ScratchRegs[] = {
14683     PPC::X12, PPC::LR8, PPC::CTR8, 0
14684   };
14685 
14686   return ScratchRegs;
14687 }
14688 
14689 unsigned PPCTargetLowering::getExceptionPointerRegister(
14690     const Constant *PersonalityFn) const {
14691   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
14692 }
14693 
14694 unsigned PPCTargetLowering::getExceptionSelectorRegister(
14695     const Constant *PersonalityFn) const {
14696   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
14697 }
14698 
14699 bool
14700 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
14701                      EVT VT , unsigned DefinedValues) const {
14702   if (VT == MVT::v2i64)
14703     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
14704 
14705   if (Subtarget.hasVSX() || Subtarget.hasQPX())
14706     return true;
14707 
14708   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
14709 }
14710 
14711 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
14712   if (DisableILPPref || Subtarget.enableMachineScheduler())
14713     return TargetLowering::getSchedulingPreference(N);
14714 
14715   return Sched::ILP;
14716 }
14717 
14718 // Create a fast isel object.
14719 FastISel *
14720 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
14721                                   const TargetLibraryInfo *LibInfo) const {
14722   return PPC::createFastISel(FuncInfo, LibInfo);
14723 }
14724 
14725 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
14726   if (Subtarget.isDarwinABI()) return;
14727   if (!Subtarget.isPPC64()) return;
14728 
14729   // Update IsSplitCSR in PPCFunctionInfo
14730   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
14731   PFI->setIsSplitCSR(true);
14732 }
14733 
14734 void PPCTargetLowering::insertCopiesSplitCSR(
14735   MachineBasicBlock *Entry,
14736   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
14737   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
14738   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
14739   if (!IStart)
14740     return;
14741 
14742   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
14743   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
14744   MachineBasicBlock::iterator MBBI = Entry->begin();
14745   for (const MCPhysReg *I = IStart; *I; ++I) {
14746     const TargetRegisterClass *RC = nullptr;
14747     if (PPC::G8RCRegClass.contains(*I))
14748       RC = &PPC::G8RCRegClass;
14749     else if (PPC::F8RCRegClass.contains(*I))
14750       RC = &PPC::F8RCRegClass;
14751     else if (PPC::CRRCRegClass.contains(*I))
14752       RC = &PPC::CRRCRegClass;
14753     else if (PPC::VRRCRegClass.contains(*I))
14754       RC = &PPC::VRRCRegClass;
14755     else
14756       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
14757 
14758     unsigned NewVR = MRI->createVirtualRegister(RC);
14759     // Create copy from CSR to a virtual register.
14760     // FIXME: this currently does not emit CFI pseudo-instructions, it works
14761     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
14762     // nounwind. If we want to generalize this later, we may need to emit
14763     // CFI pseudo-instructions.
14764     assert(Entry->getParent()->getFunction().hasFnAttribute(
14765              Attribute::NoUnwind) &&
14766            "Function should be nounwind in insertCopiesSplitCSR!");
14767     Entry->addLiveIn(*I);
14768     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
14769       .addReg(*I);
14770 
14771     // Insert the copy-back instructions right before the terminator.
14772     for (auto *Exit : Exits)
14773       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
14774               TII->get(TargetOpcode::COPY), *I)
14775         .addReg(NewVR);
14776   }
14777 }
14778 
14779 // Override to enable LOAD_STACK_GUARD lowering on Linux.
14780 bool PPCTargetLowering::useLoadStackGuardNode() const {
14781   if (!Subtarget.isTargetLinux())
14782     return TargetLowering::useLoadStackGuardNode();
14783   return true;
14784 }
14785 
14786 // Override to disable global variable loading on Linux.
14787 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
14788   if (!Subtarget.isTargetLinux())
14789     return TargetLowering::insertSSPDeclarations(M);
14790 }
14791 
14792 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
14793                                      bool ForCodeSize) const {
14794   if (!VT.isSimple() || !Subtarget.hasVSX())
14795     return false;
14796 
14797   switch(VT.getSimpleVT().SimpleTy) {
14798   default:
14799     // For FP types that are currently not supported by PPC backend, return
14800     // false. Examples: f16, f80.
14801     return false;
14802   case MVT::f32:
14803   case MVT::f64:
14804   case MVT::ppcf128:
14805     return Imm.isPosZero();
14806   }
14807 }
14808 
14809 // For vector shift operation op, fold
14810 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
14811 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
14812                                   SelectionDAG &DAG) {
14813   SDValue N0 = N->getOperand(0);
14814   SDValue N1 = N->getOperand(1);
14815   EVT VT = N0.getValueType();
14816   unsigned OpSizeInBits = VT.getScalarSizeInBits();
14817   unsigned Opcode = N->getOpcode();
14818   unsigned TargetOpcode;
14819 
14820   switch (Opcode) {
14821   default:
14822     llvm_unreachable("Unexpected shift operation");
14823   case ISD::SHL:
14824     TargetOpcode = PPCISD::SHL;
14825     break;
14826   case ISD::SRL:
14827     TargetOpcode = PPCISD::SRL;
14828     break;
14829   case ISD::SRA:
14830     TargetOpcode = PPCISD::SRA;
14831     break;
14832   }
14833 
14834   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
14835       N1->getOpcode() == ISD::AND)
14836     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
14837       if (Mask->getZExtValue() == OpSizeInBits - 1)
14838         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
14839 
14840   return SDValue();
14841 }
14842 
14843 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
14844   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14845     return Value;
14846 
14847   SDValue N0 = N->getOperand(0);
14848   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
14849   if (!Subtarget.isISA3_0() ||
14850       N0.getOpcode() != ISD::SIGN_EXTEND ||
14851       N0.getOperand(0).getValueType() != MVT::i32 ||
14852       CN1 == nullptr || N->getValueType(0) != MVT::i64)
14853     return SDValue();
14854 
14855   // We can't save an operation here if the value is already extended, and
14856   // the existing shift is easier to combine.
14857   SDValue ExtsSrc = N0.getOperand(0);
14858   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
14859       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
14860     return SDValue();
14861 
14862   SDLoc DL(N0);
14863   SDValue ShiftBy = SDValue(CN1, 0);
14864   // We want the shift amount to be i32 on the extswli, but the shift could
14865   // have an i64.
14866   if (ShiftBy.getValueType() == MVT::i64)
14867     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
14868 
14869   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
14870                          ShiftBy);
14871 }
14872 
14873 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
14874   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14875     return Value;
14876 
14877   return SDValue();
14878 }
14879 
14880 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
14881   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14882     return Value;
14883 
14884   return SDValue();
14885 }
14886 
14887 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
14888 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
14889 // When C is zero, the equation (addi Z, -C) can be simplified to Z
14890 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
14891 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
14892                                  const PPCSubtarget &Subtarget) {
14893   if (!Subtarget.isPPC64())
14894     return SDValue();
14895 
14896   SDValue LHS = N->getOperand(0);
14897   SDValue RHS = N->getOperand(1);
14898 
14899   auto isZextOfCompareWithConstant = [](SDValue Op) {
14900     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
14901         Op.getValueType() != MVT::i64)
14902       return false;
14903 
14904     SDValue Cmp = Op.getOperand(0);
14905     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
14906         Cmp.getOperand(0).getValueType() != MVT::i64)
14907       return false;
14908 
14909     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
14910       int64_t NegConstant = 0 - Constant->getSExtValue();
14911       // Due to the limitations of the addi instruction,
14912       // -C is required to be [-32768, 32767].
14913       return isInt<16>(NegConstant);
14914     }
14915 
14916     return false;
14917   };
14918 
14919   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
14920   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
14921 
14922   // If there is a pattern, canonicalize a zext operand to the RHS.
14923   if (LHSHasPattern && !RHSHasPattern)
14924     std::swap(LHS, RHS);
14925   else if (!LHSHasPattern && !RHSHasPattern)
14926     return SDValue();
14927 
14928   SDLoc DL(N);
14929   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
14930   SDValue Cmp = RHS.getOperand(0);
14931   SDValue Z = Cmp.getOperand(0);
14932   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
14933 
14934   assert(Constant && "Constant Should not be a null pointer.");
14935   int64_t NegConstant = 0 - Constant->getSExtValue();
14936 
14937   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
14938   default: break;
14939   case ISD::SETNE: {
14940     //                                 when C == 0
14941     //                             --> addze X, (addic Z, -1).carry
14942     //                            /
14943     // add X, (zext(setne Z, C))--
14944     //                            \    when -32768 <= -C <= 32767 && C != 0
14945     //                             --> addze X, (addic (addi Z, -C), -1).carry
14946     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
14947                               DAG.getConstant(NegConstant, DL, MVT::i64));
14948     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
14949     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
14950                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
14951     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
14952                        SDValue(Addc.getNode(), 1));
14953     }
14954   case ISD::SETEQ: {
14955     //                                 when C == 0
14956     //                             --> addze X, (subfic Z, 0).carry
14957     //                            /
14958     // add X, (zext(sete  Z, C))--
14959     //                            \    when -32768 <= -C <= 32767 && C != 0
14960     //                             --> addze X, (subfic (addi Z, -C), 0).carry
14961     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
14962                               DAG.getConstant(NegConstant, DL, MVT::i64));
14963     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
14964     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
14965                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
14966     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
14967                        SDValue(Subc.getNode(), 1));
14968     }
14969   }
14970 
14971   return SDValue();
14972 }
14973 
14974 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
14975   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
14976     return Value;
14977 
14978   return SDValue();
14979 }
14980 
14981 // Detect TRUNCATE operations on bitcasts of float128 values.
14982 // What we are looking for here is the situtation where we extract a subset
14983 // of bits from a 128 bit float.
14984 // This can be of two forms:
14985 // 1) BITCAST of f128 feeding TRUNCATE
14986 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
14987 // The reason this is required is because we do not have a legal i128 type
14988 // and so we want to prevent having to store the f128 and then reload part
14989 // of it.
14990 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
14991                                            DAGCombinerInfo &DCI) const {
14992   // If we are using CRBits then try that first.
14993   if (Subtarget.useCRBits()) {
14994     // Check if CRBits did anything and return that if it did.
14995     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
14996       return CRTruncValue;
14997   }
14998 
14999   SDLoc dl(N);
15000   SDValue Op0 = N->getOperand(0);
15001 
15002   // Looking for a truncate of i128 to i64.
15003   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
15004     return SDValue();
15005 
15006   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
15007 
15008   // SRL feeding TRUNCATE.
15009   if (Op0.getOpcode() == ISD::SRL) {
15010     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
15011     // The right shift has to be by 64 bits.
15012     if (!ConstNode || ConstNode->getZExtValue() != 64)
15013       return SDValue();
15014 
15015     // Switch the element number to extract.
15016     EltToExtract = EltToExtract ? 0 : 1;
15017     // Update Op0 past the SRL.
15018     Op0 = Op0.getOperand(0);
15019   }
15020 
15021   // BITCAST feeding a TRUNCATE possibly via SRL.
15022   if (Op0.getOpcode() == ISD::BITCAST &&
15023       Op0.getValueType() == MVT::i128 &&
15024       Op0.getOperand(0).getValueType() == MVT::f128) {
15025     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
15026     return DCI.DAG.getNode(
15027         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
15028         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
15029   }
15030   return SDValue();
15031 }
15032 
15033 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
15034   SelectionDAG &DAG = DCI.DAG;
15035 
15036   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
15037   if (!ConstOpOrElement)
15038     return SDValue();
15039 
15040   // An imul is usually smaller than the alternative sequence for legal type.
15041   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
15042       isOperationLegal(ISD::MUL, N->getValueType(0)))
15043     return SDValue();
15044 
15045   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
15046     switch (this->Subtarget.getDarwinDirective()) {
15047     default:
15048       // TODO: enhance the condition for subtarget before pwr8
15049       return false;
15050     case PPC::DIR_PWR8:
15051       //  type        mul     add    shl
15052       // scalar        4       1      1
15053       // vector        7       2      2
15054       return true;
15055     case PPC::DIR_PWR9:
15056       //  type        mul     add    shl
15057       // scalar        5       2      2
15058       // vector        7       2      2
15059 
15060       // The cycle RATIO of related operations are showed as a table above.
15061       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
15062       // scalar and vector type. For 2 instrs patterns, add/sub + shl
15063       // are 4, it is always profitable; but for 3 instrs patterns
15064       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
15065       // So we should only do it for vector type.
15066       return IsAddOne && IsNeg ? VT.isVector() : true;
15067     }
15068   };
15069 
15070   EVT VT = N->getValueType(0);
15071   SDLoc DL(N);
15072 
15073   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
15074   bool IsNeg = MulAmt.isNegative();
15075   APInt MulAmtAbs = MulAmt.abs();
15076 
15077   if ((MulAmtAbs - 1).isPowerOf2()) {
15078     // (mul x, 2^N + 1) => (add (shl x, N), x)
15079     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
15080 
15081     if (!IsProfitable(IsNeg, true, VT))
15082       return SDValue();
15083 
15084     SDValue Op0 = N->getOperand(0);
15085     SDValue Op1 =
15086         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15087                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
15088     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
15089 
15090     if (!IsNeg)
15091       return Res;
15092 
15093     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
15094   } else if ((MulAmtAbs + 1).isPowerOf2()) {
15095     // (mul x, 2^N - 1) => (sub (shl x, N), x)
15096     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
15097 
15098     if (!IsProfitable(IsNeg, false, VT))
15099       return SDValue();
15100 
15101     SDValue Op0 = N->getOperand(0);
15102     SDValue Op1 =
15103         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15104                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
15105 
15106     if (!IsNeg)
15107       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
15108     else
15109       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
15110 
15111   } else {
15112     return SDValue();
15113   }
15114 }
15115 
15116 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
15117   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
15118   if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64())
15119     return false;
15120 
15121   // If not a tail call then no need to proceed.
15122   if (!CI->isTailCall())
15123     return false;
15124 
15125   // If tail calls are disabled for the caller then we are done.
15126   const Function *Caller = CI->getParent()->getParent();
15127   auto Attr = Caller->getFnAttribute("disable-tail-calls");
15128   if (Attr.getValueAsString() == "true")
15129     return false;
15130 
15131   // If sibling calls have been disabled and tail-calls aren't guaranteed
15132   // there is no reason to duplicate.
15133   auto &TM = getTargetMachine();
15134   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
15135     return false;
15136 
15137   // Can't tail call a function called indirectly, or if it has variadic args.
15138   const Function *Callee = CI->getCalledFunction();
15139   if (!Callee || Callee->isVarArg())
15140     return false;
15141 
15142   // Make sure the callee and caller calling conventions are eligible for tco.
15143   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
15144                                            CI->getCallingConv()))
15145       return false;
15146 
15147   // If the function is local then we have a good chance at tail-calling it
15148   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
15149 }
15150 
15151 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
15152   if (!Subtarget.hasVSX())
15153     return false;
15154   if (Subtarget.hasP9Vector() && VT == MVT::f128)
15155     return true;
15156   return VT == MVT::f32 || VT == MVT::f64 ||
15157     VT == MVT::v4f32 || VT == MVT::v2f64;
15158 }
15159 
15160 bool PPCTargetLowering::
15161 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
15162   const Value *Mask = AndI.getOperand(1);
15163   // If the mask is suitable for andi. or andis. we should sink the and.
15164   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
15165     // Can't handle constants wider than 64-bits.
15166     if (CI->getBitWidth() > 64)
15167       return false;
15168     int64_t ConstVal = CI->getZExtValue();
15169     return isUInt<16>(ConstVal) ||
15170       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
15171   }
15172 
15173   // For non-constant masks, we can always use the record-form and.
15174   return true;
15175 }
15176 
15177 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
15178 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
15179 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
15180 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
15181 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
15182 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
15183   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
15184   assert(Subtarget.hasP9Altivec() &&
15185          "Only combine this when P9 altivec supported!");
15186   EVT VT = N->getValueType(0);
15187   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
15188     return SDValue();
15189 
15190   SelectionDAG &DAG = DCI.DAG;
15191   SDLoc dl(N);
15192   if (N->getOperand(0).getOpcode() == ISD::SUB) {
15193     // Even for signed integers, if it's known to be positive (as signed
15194     // integer) due to zero-extended inputs.
15195     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
15196     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
15197     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
15198          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
15199         (SubOpcd1 == ISD::ZERO_EXTEND ||
15200          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
15201       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
15202                          N->getOperand(0)->getOperand(0),
15203                          N->getOperand(0)->getOperand(1),
15204                          DAG.getTargetConstant(0, dl, MVT::i32));
15205     }
15206 
15207     // For type v4i32, it can be optimized with xvnegsp + vabsduw
15208     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
15209         N->getOperand(0).hasOneUse()) {
15210       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
15211                          N->getOperand(0)->getOperand(0),
15212                          N->getOperand(0)->getOperand(1),
15213                          DAG.getTargetConstant(1, dl, MVT::i32));
15214     }
15215   }
15216 
15217   return SDValue();
15218 }
15219 
15220 // For type v4i32/v8ii16/v16i8, transform
15221 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
15222 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
15223 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
15224 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
15225 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
15226                                           DAGCombinerInfo &DCI) const {
15227   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
15228   assert(Subtarget.hasP9Altivec() &&
15229          "Only combine this when P9 altivec supported!");
15230 
15231   SelectionDAG &DAG = DCI.DAG;
15232   SDLoc dl(N);
15233   SDValue Cond = N->getOperand(0);
15234   SDValue TrueOpnd = N->getOperand(1);
15235   SDValue FalseOpnd = N->getOperand(2);
15236   EVT VT = N->getOperand(1).getValueType();
15237 
15238   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
15239       FalseOpnd.getOpcode() != ISD::SUB)
15240     return SDValue();
15241 
15242   // ABSD only available for type v4i32/v8i16/v16i8
15243   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
15244     return SDValue();
15245 
15246   // At least to save one more dependent computation
15247   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
15248     return SDValue();
15249 
15250   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15251 
15252   // Can only handle unsigned comparison here
15253   switch (CC) {
15254   default:
15255     return SDValue();
15256   case ISD::SETUGT:
15257   case ISD::SETUGE:
15258     break;
15259   case ISD::SETULT:
15260   case ISD::SETULE:
15261     std::swap(TrueOpnd, FalseOpnd);
15262     break;
15263   }
15264 
15265   SDValue CmpOpnd1 = Cond.getOperand(0);
15266   SDValue CmpOpnd2 = Cond.getOperand(1);
15267 
15268   // SETCC CmpOpnd1 CmpOpnd2 cond
15269   // TrueOpnd = CmpOpnd1 - CmpOpnd2
15270   // FalseOpnd = CmpOpnd2 - CmpOpnd1
15271   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
15272       TrueOpnd.getOperand(1) == CmpOpnd2 &&
15273       FalseOpnd.getOperand(0) == CmpOpnd2 &&
15274       FalseOpnd.getOperand(1) == CmpOpnd1) {
15275     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
15276                        CmpOpnd1, CmpOpnd2,
15277                        DAG.getTargetConstant(0, dl, MVT::i32));
15278   }
15279 
15280   return SDValue();
15281 }
15282