1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCISelLowering.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCCCState.h"
18 #include "PPCCallingConv.h"
19 #include "PPCFrameLowering.h"
20 #include "PPCInstrInfo.h"
21 #include "PPCMachineFunctionInfo.h"
22 #include "PPCPerfectShuffle.h"
23 #include "PPCRegisterInfo.h"
24 #include "PPCSubtarget.h"
25 #include "PPCTargetMachine.h"
26 #include "llvm/ADT/APFloat.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/None.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/ADT/StringSwitch.h"
38 #include "llvm/CodeGen/CallingConvLower.h"
39 #include "llvm/CodeGen/ISDOpcodes.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineLoopInfo.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/ValueTypes.h"
57 #include "llvm/IR/CallSite.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/Module.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/MC/MCExpr.h"
74 #include "llvm/MC/MCRegisterInfo.h"
75 #include "llvm/Support/AtomicOrdering.h"
76 #include "llvm/Support/BranchProbability.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CodeGen.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/Compiler.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/Format.h"
84 #include "llvm/Support/KnownBits.h"
85 #include "llvm/Support/MachineValueType.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Target/TargetMachine.h"
89 #include "llvm/Target/TargetOptions.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstdint>
93 #include <iterator>
94 #include <list>
95 #include <utility>
96 #include <vector>
97 
98 using namespace llvm;
99 
100 #define DEBUG_TYPE "ppc-lowering"
101 
102 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
103 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
104 
105 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
106 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
107 
108 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
109 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
110 
111 static cl::opt<bool> DisableSCO("disable-ppc-sco",
112 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
113 
114 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
115 cl::desc("enable quad precision float support on ppc"), cl::Hidden);
116 
117 STATISTIC(NumTailCalls, "Number of tail calls");
118 STATISTIC(NumSiblingCalls, "Number of sibling calls");
119 
120 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
121 
122 // FIXME: Remove this once the bug has been fixed!
123 extern cl::opt<bool> ANDIGlueBug;
124 
125 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
126                                      const PPCSubtarget &STI)
127     : TargetLowering(TM), Subtarget(STI) {
128   // Use _setjmp/_longjmp instead of setjmp/longjmp.
129   setUseUnderscoreSetJmp(true);
130   setUseUnderscoreLongJmp(true);
131 
132   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
133   // arguments are at least 4/8 bytes aligned.
134   bool isPPC64 = Subtarget.isPPC64();
135   setMinStackArgumentAlignment(isPPC64 ? 8:4);
136 
137   // Set up the register classes.
138   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
139   if (!useSoftFloat()) {
140     addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
141     addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
142   }
143 
144   // Match BITREVERSE to customized fast code sequence in the td file.
145   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
146   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
147 
148   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
149   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
150 
151   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
152   for (MVT VT : MVT::integer_valuetypes()) {
153     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
154     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
155   }
156 
157   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
158 
159   // PowerPC has pre-inc load and store's.
160   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
161   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
162   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
163   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
164   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
165   setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
166   setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
167   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
168   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
169   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
170   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
171   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
172   setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
173   setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
174 
175   if (Subtarget.useCRBits()) {
176     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
177 
178     if (isPPC64 || Subtarget.hasFPCVT()) {
179       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
180       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
181                          isPPC64 ? MVT::i64 : MVT::i32);
182       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
183       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
184                         isPPC64 ? MVT::i64 : MVT::i32);
185     } else {
186       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
187       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
188     }
189 
190     // PowerPC does not support direct load/store of condition registers.
191     setOperationAction(ISD::LOAD, MVT::i1, Custom);
192     setOperationAction(ISD::STORE, MVT::i1, Custom);
193 
194     // FIXME: Remove this once the ANDI glue bug is fixed:
195     if (ANDIGlueBug)
196       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
197 
198     for (MVT VT : MVT::integer_valuetypes()) {
199       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
200       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
201       setTruncStoreAction(VT, MVT::i1, Expand);
202     }
203 
204     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
205   }
206 
207   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
208   // PPC (the libcall is not available).
209   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
210   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
211 
212   // We do not currently implement these libm ops for PowerPC.
213   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
214   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
215   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
216   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
217   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
218   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
219 
220   // PowerPC has no SREM/UREM instructions unless we are on P9
221   // On P9 we may use a hardware instruction to compute the remainder.
222   // The instructions are not legalized directly because in the cases where the
223   // result of both the remainder and the division is required it is more
224   // efficient to compute the remainder from the result of the division rather
225   // than use the remainder instruction.
226   if (Subtarget.isISA3_0()) {
227     setOperationAction(ISD::SREM, MVT::i32, Custom);
228     setOperationAction(ISD::UREM, MVT::i32, Custom);
229     setOperationAction(ISD::SREM, MVT::i64, Custom);
230     setOperationAction(ISD::UREM, MVT::i64, Custom);
231   } else {
232     setOperationAction(ISD::SREM, MVT::i32, Expand);
233     setOperationAction(ISD::UREM, MVT::i32, Expand);
234     setOperationAction(ISD::SREM, MVT::i64, Expand);
235     setOperationAction(ISD::UREM, MVT::i64, Expand);
236   }
237 
238   if (Subtarget.hasP9Vector()) {
239     setOperationAction(ISD::ABS, MVT::v4i32, Legal);
240     setOperationAction(ISD::ABS, MVT::v8i16, Legal);
241     setOperationAction(ISD::ABS, MVT::v16i8, Legal);
242   }
243 
244   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
245   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
246   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
247   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
248   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
249   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
250   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
251   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
252   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
253 
254   // We don't support sin/cos/sqrt/fmod/pow
255   setOperationAction(ISD::FSIN , MVT::f64, Expand);
256   setOperationAction(ISD::FCOS , MVT::f64, Expand);
257   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
258   setOperationAction(ISD::FREM , MVT::f64, Expand);
259   setOperationAction(ISD::FPOW , MVT::f64, Expand);
260   setOperationAction(ISD::FMA  , MVT::f64, Legal);
261   setOperationAction(ISD::FSIN , MVT::f32, Expand);
262   setOperationAction(ISD::FCOS , MVT::f32, Expand);
263   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
264   setOperationAction(ISD::FREM , MVT::f32, Expand);
265   setOperationAction(ISD::FPOW , MVT::f32, Expand);
266   setOperationAction(ISD::FMA  , MVT::f32, Legal);
267 
268   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
269 
270   // If we're enabling GP optimizations, use hardware square root
271   if (!Subtarget.hasFSQRT() &&
272       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
273         Subtarget.hasFRE()))
274     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
275 
276   if (!Subtarget.hasFSQRT() &&
277       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
278         Subtarget.hasFRES()))
279     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
280 
281   if (Subtarget.hasFCPSGN()) {
282     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
283     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
284   } else {
285     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
286     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
287   }
288 
289   if (Subtarget.hasFPRND()) {
290     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
291     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
292     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
293     setOperationAction(ISD::FROUND, MVT::f64, Legal);
294 
295     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
296     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
297     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
298     setOperationAction(ISD::FROUND, MVT::f32, Legal);
299   }
300 
301   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
302   // to speed up scalar BSWAP64.
303   // CTPOP or CTTZ were introduced in P8/P9 respectivelly
304   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
305   if (Subtarget.isISA3_0()) {
306     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
307     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
308     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
309   } else {
310     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
311     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
312     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
313   }
314 
315   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
316     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
317     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
318   } else {
319     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
320     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
321   }
322 
323   // PowerPC does not have ROTR
324   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
325   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
326 
327   if (!Subtarget.useCRBits()) {
328     // PowerPC does not have Select
329     setOperationAction(ISD::SELECT, MVT::i32, Expand);
330     setOperationAction(ISD::SELECT, MVT::i64, Expand);
331     setOperationAction(ISD::SELECT, MVT::f32, Expand);
332     setOperationAction(ISD::SELECT, MVT::f64, Expand);
333   }
334 
335   // PowerPC wants to turn select_cc of FP into fsel when possible.
336   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
337   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
338 
339   // PowerPC wants to optimize integer setcc a bit
340   if (!Subtarget.useCRBits())
341     setOperationAction(ISD::SETCC, MVT::i32, Custom);
342 
343   // PowerPC does not have BRCOND which requires SetCC
344   if (!Subtarget.useCRBits())
345     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
346 
347   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
348 
349   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
350   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
351 
352   // PowerPC does not have [U|S]INT_TO_FP
353   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
354   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
355 
356   if (Subtarget.hasDirectMove() && isPPC64) {
357     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
358     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
359     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
360     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
361   } else {
362     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
363     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
364     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
365     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
366   }
367 
368   // We cannot sextinreg(i1).  Expand to shifts.
369   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
370 
371   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
372   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
373   // support continuation, user-level threading, and etc.. As a result, no
374   // other SjLj exception interfaces are implemented and please don't build
375   // your own exception handling based on them.
376   // LLVM/Clang supports zero-cost DWARF exception handling.
377   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
378   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
379 
380   // We want to legalize GlobalAddress and ConstantPool nodes into the
381   // appropriate instructions to materialize the address.
382   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
383   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
384   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
385   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
386   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
387   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
388   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
389   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
390   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
391   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
392 
393   // TRAP is legal.
394   setOperationAction(ISD::TRAP, MVT::Other, Legal);
395 
396   // TRAMPOLINE is custom lowered.
397   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
398   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
399 
400   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
401   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
402 
403   if (Subtarget.isSVR4ABI()) {
404     if (isPPC64) {
405       // VAARG always uses double-word chunks, so promote anything smaller.
406       setOperationAction(ISD::VAARG, MVT::i1, Promote);
407       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
408       setOperationAction(ISD::VAARG, MVT::i8, Promote);
409       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
410       setOperationAction(ISD::VAARG, MVT::i16, Promote);
411       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
412       setOperationAction(ISD::VAARG, MVT::i32, Promote);
413       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
414       setOperationAction(ISD::VAARG, MVT::Other, Expand);
415     } else {
416       // VAARG is custom lowered with the 32-bit SVR4 ABI.
417       setOperationAction(ISD::VAARG, MVT::Other, Custom);
418       setOperationAction(ISD::VAARG, MVT::i64, Custom);
419     }
420   } else
421     setOperationAction(ISD::VAARG, MVT::Other, Expand);
422 
423   if (Subtarget.isSVR4ABI() && !isPPC64)
424     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
425     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
426   else
427     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
428 
429   // Use the default implementation.
430   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
431   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
432   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
433   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
434   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
435   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
436   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
437   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
438   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
439 
440   // We want to custom lower some of our intrinsics.
441   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
442 
443   // To handle counter-based loop conditions.
444   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
445 
446   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
447   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
448   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
449   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
450 
451   // Comparisons that require checking two conditions.
452   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
453   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
454   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
455   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
456   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
457   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
458   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
459   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
460   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
461   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
462   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
463   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
464 
465   if (Subtarget.has64BitSupport()) {
466     // They also have instructions for converting between i64 and fp.
467     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
468     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
469     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
470     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
471     // This is just the low 32 bits of a (signed) fp->i64 conversion.
472     // We cannot do this with Promote because i64 is not a legal type.
473     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
474 
475     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
476       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
477   } else {
478     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
479     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
480   }
481 
482   // With the instructions enabled under FPCVT, we can do everything.
483   if (Subtarget.hasFPCVT()) {
484     if (Subtarget.has64BitSupport()) {
485       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
486       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
487       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
488       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
489     }
490 
491     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
492     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
493     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
494     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
495   }
496 
497   if (Subtarget.use64BitRegs()) {
498     // 64-bit PowerPC implementations can support i64 types directly
499     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
500     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
501     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
502     // 64-bit PowerPC wants to expand i128 shifts itself.
503     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
504     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
505     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
506   } else {
507     // 32-bit PowerPC wants to expand i64 shifts itself.
508     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
509     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
510     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
511   }
512 
513   if (Subtarget.hasAltivec()) {
514     // First set operation action for all vector types to expand. Then we
515     // will selectively turn on ones that can be effectively codegen'd.
516     for (MVT VT : MVT::vector_valuetypes()) {
517       // add/sub are legal for all supported vector VT's.
518       setOperationAction(ISD::ADD, VT, Legal);
519       setOperationAction(ISD::SUB, VT, Legal);
520 
521       // Vector instructions introduced in P8
522       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
523         setOperationAction(ISD::CTPOP, VT, Legal);
524         setOperationAction(ISD::CTLZ, VT, Legal);
525       }
526       else {
527         setOperationAction(ISD::CTPOP, VT, Expand);
528         setOperationAction(ISD::CTLZ, VT, Expand);
529       }
530 
531       // Vector instructions introduced in P9
532       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
533         setOperationAction(ISD::CTTZ, VT, Legal);
534       else
535         setOperationAction(ISD::CTTZ, VT, Expand);
536 
537       // We promote all shuffles to v16i8.
538       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
539       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
540 
541       // We promote all non-typed operations to v4i32.
542       setOperationAction(ISD::AND   , VT, Promote);
543       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
544       setOperationAction(ISD::OR    , VT, Promote);
545       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
546       setOperationAction(ISD::XOR   , VT, Promote);
547       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
548       setOperationAction(ISD::LOAD  , VT, Promote);
549       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
550       setOperationAction(ISD::SELECT, VT, Promote);
551       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
552       setOperationAction(ISD::SELECT_CC, VT, Promote);
553       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
554       setOperationAction(ISD::STORE, VT, Promote);
555       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
556 
557       // No other operations are legal.
558       setOperationAction(ISD::MUL , VT, Expand);
559       setOperationAction(ISD::SDIV, VT, Expand);
560       setOperationAction(ISD::SREM, VT, Expand);
561       setOperationAction(ISD::UDIV, VT, Expand);
562       setOperationAction(ISD::UREM, VT, Expand);
563       setOperationAction(ISD::FDIV, VT, Expand);
564       setOperationAction(ISD::FREM, VT, Expand);
565       setOperationAction(ISD::FNEG, VT, Expand);
566       setOperationAction(ISD::FSQRT, VT, Expand);
567       setOperationAction(ISD::FLOG, VT, Expand);
568       setOperationAction(ISD::FLOG10, VT, Expand);
569       setOperationAction(ISD::FLOG2, VT, Expand);
570       setOperationAction(ISD::FEXP, VT, Expand);
571       setOperationAction(ISD::FEXP2, VT, Expand);
572       setOperationAction(ISD::FSIN, VT, Expand);
573       setOperationAction(ISD::FCOS, VT, Expand);
574       setOperationAction(ISD::FABS, VT, Expand);
575       setOperationAction(ISD::FFLOOR, VT, Expand);
576       setOperationAction(ISD::FCEIL,  VT, Expand);
577       setOperationAction(ISD::FTRUNC, VT, Expand);
578       setOperationAction(ISD::FRINT,  VT, Expand);
579       setOperationAction(ISD::FNEARBYINT, VT, Expand);
580       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
581       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
582       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
583       setOperationAction(ISD::MULHU, VT, Expand);
584       setOperationAction(ISD::MULHS, VT, Expand);
585       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
586       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
587       setOperationAction(ISD::UDIVREM, VT, Expand);
588       setOperationAction(ISD::SDIVREM, VT, Expand);
589       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
590       setOperationAction(ISD::FPOW, VT, Expand);
591       setOperationAction(ISD::BSWAP, VT, Expand);
592       setOperationAction(ISD::VSELECT, VT, Expand);
593       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
594       setOperationAction(ISD::ROTL, VT, Expand);
595       setOperationAction(ISD::ROTR, VT, Expand);
596 
597       for (MVT InnerVT : MVT::vector_valuetypes()) {
598         setTruncStoreAction(VT, InnerVT, Expand);
599         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
600         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
601         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
602       }
603     }
604 
605     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
606     // with merges, splats, etc.
607     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
608 
609     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
610     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
611     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
612     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
613     setOperationAction(ISD::SELECT, MVT::v4i32,
614                        Subtarget.useCRBits() ? Legal : Expand);
615     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
616     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
617     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
618     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
619     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
620     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
621     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
622     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
623     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
624 
625     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
626     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
627     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
628     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
629 
630     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
631     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
632 
633     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
634       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
635       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
636     }
637 
638     if (Subtarget.hasP8Altivec())
639       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
640     else
641       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
642 
643     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
644     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
645 
646     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
647     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
648 
649     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
650     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
651     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
652     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
653 
654     // Altivec does not contain unordered floating-point compare instructions
655     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
656     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
657     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
658     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
659 
660     if (Subtarget.hasVSX()) {
661       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
662       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
663       if (Subtarget.hasP8Vector()) {
664         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
665         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
666       }
667       if (Subtarget.hasDirectMove() && isPPC64) {
668         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
669         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
670         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
671         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
672         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
673         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
674         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
675         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
676       }
677       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
678 
679       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
680       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
681       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
682       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
683       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
684 
685       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
686 
687       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
688       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
689 
690       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
691       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
692 
693       setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
694       setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
695       setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
696       setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
697       setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
698 
699       // Share the Altivec comparison restrictions.
700       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
701       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
702       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
703       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
704 
705       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
706       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
707 
708       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
709 
710       if (Subtarget.hasP8Vector())
711         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
712 
713       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
714 
715       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
716       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
717       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
718 
719       if (Subtarget.hasP8Altivec()) {
720         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
721         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
722         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
723 
724         // 128 bit shifts can be accomplished via 3 instructions for SHL and
725         // SRL, but not for SRA because of the instructions available:
726         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
727         // doing
728         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
729         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
730         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
731 
732         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
733       }
734       else {
735         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
736         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
737         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
738 
739         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
740 
741         // VSX v2i64 only supports non-arithmetic operations.
742         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
743         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
744       }
745 
746       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
747       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
748       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
749       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
750 
751       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
752 
753       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
754       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
755       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
756       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
757 
758       // Vector operation legalization checks the result type of
759       // SIGN_EXTEND_INREG, overall legalization checks the inner type.
760       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
761       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
762       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
763       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
764 
765       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
766       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
767       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
768       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
769 
770       if (Subtarget.hasDirectMove())
771         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
772       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
773 
774       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
775     }
776 
777     if (Subtarget.hasP8Altivec()) {
778       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
779       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
780     }
781 
782     if (Subtarget.hasP9Vector()) {
783       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
784       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
785 
786       // 128 bit shifts can be accomplished via 3 instructions for SHL and
787       // SRL, but not for SRA because of the instructions available:
788       // VS{RL} and VS{RL}O.
789       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
790       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
791       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
792 
793       if (EnableQuadPrecision) {
794         addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
795         setOperationAction(ISD::FADD, MVT::f128, Legal);
796         setOperationAction(ISD::FSUB, MVT::f128, Legal);
797         setOperationAction(ISD::FDIV, MVT::f128, Legal);
798         setOperationAction(ISD::FMUL, MVT::f128, Legal);
799         setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
800         setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
801         setOperationAction(ISD::FMA, MVT::f128, Legal);
802       }
803 
804     }
805 
806     if (Subtarget.hasP9Altivec()) {
807       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
808       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
809     }
810   }
811 
812   if (Subtarget.hasQPX()) {
813     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
814     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
815     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
816     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
817 
818     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
819     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
820 
821     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
822     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
823 
824     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
825     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
826 
827     if (!Subtarget.useCRBits())
828       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
829     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
830 
831     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
832     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
833     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
834     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
835     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
836     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
837     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
838 
839     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
840     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
841 
842     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
843     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
844     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
845 
846     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
847     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
848     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
849     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
850     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
851     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
852     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
853     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
854     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
855     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
856 
857     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
858     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
859 
860     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
861     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
862 
863     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
864 
865     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
866     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
867     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
868     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
869 
870     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
871     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
872 
873     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
874     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
875 
876     if (!Subtarget.useCRBits())
877       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
878     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
879 
880     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
881     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
882     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
883     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
884     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
885     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
886     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
887 
888     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
889     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
890 
891     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
892     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
893     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
894     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
895     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
896     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
897     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
898     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
899     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
900     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
901 
902     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
903     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
904 
905     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
906     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
907 
908     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
909 
910     setOperationAction(ISD::AND , MVT::v4i1, Legal);
911     setOperationAction(ISD::OR , MVT::v4i1, Legal);
912     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
913 
914     if (!Subtarget.useCRBits())
915       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
916     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
917 
918     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
919     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
920 
921     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
922     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
923     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
924     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
925     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
926     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
927     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
928 
929     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
930     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
931 
932     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
933 
934     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
935     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
936     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
937     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
938 
939     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
940     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
941     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
942     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
943 
944     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
945     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
946 
947     // These need to set FE_INEXACT, and so cannot be vectorized here.
948     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
949     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
950 
951     if (TM.Options.UnsafeFPMath) {
952       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
953       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
954 
955       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
956       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
957     } else {
958       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
959       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
960 
961       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
962       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
963     }
964   }
965 
966   if (Subtarget.has64BitSupport())
967     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
968 
969   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
970 
971   if (!isPPC64) {
972     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
973     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
974   }
975 
976   setBooleanContents(ZeroOrOneBooleanContent);
977 
978   if (Subtarget.hasAltivec()) {
979     // Altivec instructions set fields to all zeros or all ones.
980     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
981   }
982 
983   if (!isPPC64) {
984     // These libcalls are not available in 32-bit.
985     setLibcallName(RTLIB::SHL_I128, nullptr);
986     setLibcallName(RTLIB::SRL_I128, nullptr);
987     setLibcallName(RTLIB::SRA_I128, nullptr);
988   }
989 
990   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
991 
992   // We have target-specific dag combine patterns for the following nodes:
993   setTargetDAGCombine(ISD::SHL);
994   setTargetDAGCombine(ISD::SRA);
995   setTargetDAGCombine(ISD::SRL);
996   setTargetDAGCombine(ISD::SINT_TO_FP);
997   setTargetDAGCombine(ISD::BUILD_VECTOR);
998   if (Subtarget.hasFPCVT())
999     setTargetDAGCombine(ISD::UINT_TO_FP);
1000   setTargetDAGCombine(ISD::LOAD);
1001   setTargetDAGCombine(ISD::STORE);
1002   setTargetDAGCombine(ISD::BR_CC);
1003   if (Subtarget.useCRBits())
1004     setTargetDAGCombine(ISD::BRCOND);
1005   setTargetDAGCombine(ISD::BSWAP);
1006   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1007   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1008   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1009 
1010   setTargetDAGCombine(ISD::SIGN_EXTEND);
1011   setTargetDAGCombine(ISD::ZERO_EXTEND);
1012   setTargetDAGCombine(ISD::ANY_EXTEND);
1013 
1014   if (Subtarget.useCRBits()) {
1015     setTargetDAGCombine(ISD::TRUNCATE);
1016     setTargetDAGCombine(ISD::SETCC);
1017     setTargetDAGCombine(ISD::SELECT_CC);
1018   }
1019 
1020   // Use reciprocal estimates.
1021   if (TM.Options.UnsafeFPMath) {
1022     setTargetDAGCombine(ISD::FDIV);
1023     setTargetDAGCombine(ISD::FSQRT);
1024   }
1025 
1026   // Darwin long double math library functions have $LDBL128 appended.
1027   if (Subtarget.isDarwin()) {
1028     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
1029     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
1030     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
1031     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
1032     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
1033     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
1034     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
1035     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
1036     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
1037     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
1038   }
1039 
1040   // With 32 condition bits, we don't need to sink (and duplicate) compares
1041   // aggressively in CodeGenPrep.
1042   if (Subtarget.useCRBits()) {
1043     setHasMultipleConditionRegisters();
1044     setJumpIsExpensive();
1045   }
1046 
1047   setMinFunctionAlignment(2);
1048   if (Subtarget.isDarwin())
1049     setPrefFunctionAlignment(4);
1050 
1051   switch (Subtarget.getDarwinDirective()) {
1052   default: break;
1053   case PPC::DIR_970:
1054   case PPC::DIR_A2:
1055   case PPC::DIR_E500mc:
1056   case PPC::DIR_E5500:
1057   case PPC::DIR_PWR4:
1058   case PPC::DIR_PWR5:
1059   case PPC::DIR_PWR5X:
1060   case PPC::DIR_PWR6:
1061   case PPC::DIR_PWR6X:
1062   case PPC::DIR_PWR7:
1063   case PPC::DIR_PWR8:
1064   case PPC::DIR_PWR9:
1065     setPrefFunctionAlignment(4);
1066     setPrefLoopAlignment(4);
1067     break;
1068   }
1069 
1070   if (Subtarget.enableMachineScheduler())
1071     setSchedulingPreference(Sched::Source);
1072   else
1073     setSchedulingPreference(Sched::Hybrid);
1074 
1075   computeRegisterProperties(STI.getRegisterInfo());
1076 
1077   // The Freescale cores do better with aggressive inlining of memcpy and
1078   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1079   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
1080       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
1081     MaxStoresPerMemset = 32;
1082     MaxStoresPerMemsetOptSize = 16;
1083     MaxStoresPerMemcpy = 32;
1084     MaxStoresPerMemcpyOptSize = 8;
1085     MaxStoresPerMemmove = 32;
1086     MaxStoresPerMemmoveOptSize = 8;
1087   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
1088     // The A2 also benefits from (very) aggressive inlining of memcpy and
1089     // friends. The overhead of a the function call, even when warm, can be
1090     // over one hundred cycles.
1091     MaxStoresPerMemset = 128;
1092     MaxStoresPerMemcpy = 128;
1093     MaxStoresPerMemmove = 128;
1094     MaxLoadsPerMemcmp = 128;
1095   } else {
1096     MaxLoadsPerMemcmp = 8;
1097     MaxLoadsPerMemcmpOptSize = 4;
1098   }
1099 }
1100 
1101 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1102 /// the desired ByVal argument alignment.
1103 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1104                              unsigned MaxMaxAlign) {
1105   if (MaxAlign == MaxMaxAlign)
1106     return;
1107   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1108     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
1109       MaxAlign = 32;
1110     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
1111       MaxAlign = 16;
1112   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1113     unsigned EltAlign = 0;
1114     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1115     if (EltAlign > MaxAlign)
1116       MaxAlign = EltAlign;
1117   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1118     for (auto *EltTy : STy->elements()) {
1119       unsigned EltAlign = 0;
1120       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1121       if (EltAlign > MaxAlign)
1122         MaxAlign = EltAlign;
1123       if (MaxAlign == MaxMaxAlign)
1124         break;
1125     }
1126   }
1127 }
1128 
1129 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1130 /// function arguments in the caller parameter area.
1131 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1132                                                   const DataLayout &DL) const {
1133   // Darwin passes everything on 4 byte boundary.
1134   if (Subtarget.isDarwin())
1135     return 4;
1136 
1137   // 16byte and wider vectors are passed on 16byte boundary.
1138   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1139   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1140   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1141     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1142   return Align;
1143 }
1144 
1145 bool PPCTargetLowering::useSoftFloat() const {
1146   return Subtarget.useSoftFloat();
1147 }
1148 
1149 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1150   switch ((PPCISD::NodeType)Opcode) {
1151   case PPCISD::FIRST_NUMBER:    break;
1152   case PPCISD::FSEL:            return "PPCISD::FSEL";
1153   case PPCISD::FCFID:           return "PPCISD::FCFID";
1154   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1155   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1156   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1157   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1158   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1159   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1160   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1161   case PPCISD::FRE:             return "PPCISD::FRE";
1162   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1163   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1164   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1165   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1166   case PPCISD::VPERM:           return "PPCISD::VPERM";
1167   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1168   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1169   case PPCISD::XXREVERSE:       return "PPCISD::XXREVERSE";
1170   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1171   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1172   case PPCISD::CMPB:            return "PPCISD::CMPB";
1173   case PPCISD::Hi:              return "PPCISD::Hi";
1174   case PPCISD::Lo:              return "PPCISD::Lo";
1175   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1176   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1177   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1178   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1179   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1180   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1181   case PPCISD::SRL:             return "PPCISD::SRL";
1182   case PPCISD::SRA:             return "PPCISD::SRA";
1183   case PPCISD::SHL:             return "PPCISD::SHL";
1184   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1185   case PPCISD::CALL:            return "PPCISD::CALL";
1186   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1187   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1188   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1189   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1190   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1191   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1192   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1193   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1194   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1195   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1196   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1197   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1198   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1199   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1200   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
1201   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
1202   case PPCISD::VCMP:            return "PPCISD::VCMP";
1203   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1204   case PPCISD::LBRX:            return "PPCISD::LBRX";
1205   case PPCISD::STBRX:           return "PPCISD::STBRX";
1206   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1207   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1208   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1209   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1210   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1211   case PPCISD::SExtVElems:      return "PPCISD::SExtVElems";
1212   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1213   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1214   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1215   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1216   case PPCISD::BDZ:             return "PPCISD::BDZ";
1217   case PPCISD::MFFS:            return "PPCISD::MFFS";
1218   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1219   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1220   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1221   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1222   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1223   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1224   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1225   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1226   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1227   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1228   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1229   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1230   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1231   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1232   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1233   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1234   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1235   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1236   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1237   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1238   case PPCISD::SC:              return "PPCISD::SC";
1239   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1240   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1241   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1242   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1243   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1244   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1245   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1246   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1247   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1248   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1249   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1250   }
1251   return nullptr;
1252 }
1253 
1254 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1255                                           EVT VT) const {
1256   if (!VT.isVector())
1257     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1258 
1259   if (Subtarget.hasQPX())
1260     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1261 
1262   return VT.changeVectorElementTypeToInteger();
1263 }
1264 
1265 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1266   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1267   return true;
1268 }
1269 
1270 //===----------------------------------------------------------------------===//
1271 // Node matching predicates, for use by the tblgen matching code.
1272 //===----------------------------------------------------------------------===//
1273 
1274 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1275 static bool isFloatingPointZero(SDValue Op) {
1276   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1277     return CFP->getValueAPF().isZero();
1278   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1279     // Maybe this has already been legalized into the constant pool?
1280     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1281       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1282         return CFP->getValueAPF().isZero();
1283   }
1284   return false;
1285 }
1286 
1287 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1288 /// true if Op is undef or if it matches the specified value.
1289 static bool isConstantOrUndef(int Op, int Val) {
1290   return Op < 0 || Op == Val;
1291 }
1292 
1293 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1294 /// VPKUHUM instruction.
1295 /// The ShuffleKind distinguishes between big-endian operations with
1296 /// two different inputs (0), either-endian operations with two identical
1297 /// inputs (1), and little-endian operations with two different inputs (2).
1298 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1299 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1300                                SelectionDAG &DAG) {
1301   bool IsLE = DAG.getDataLayout().isLittleEndian();
1302   if (ShuffleKind == 0) {
1303     if (IsLE)
1304       return false;
1305     for (unsigned i = 0; i != 16; ++i)
1306       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1307         return false;
1308   } else if (ShuffleKind == 2) {
1309     if (!IsLE)
1310       return false;
1311     for (unsigned i = 0; i != 16; ++i)
1312       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1313         return false;
1314   } else if (ShuffleKind == 1) {
1315     unsigned j = IsLE ? 0 : 1;
1316     for (unsigned i = 0; i != 8; ++i)
1317       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1318           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1319         return false;
1320   }
1321   return true;
1322 }
1323 
1324 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1325 /// VPKUWUM instruction.
1326 /// The ShuffleKind distinguishes between big-endian operations with
1327 /// two different inputs (0), either-endian operations with two identical
1328 /// inputs (1), and little-endian operations with two different inputs (2).
1329 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1330 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1331                                SelectionDAG &DAG) {
1332   bool IsLE = DAG.getDataLayout().isLittleEndian();
1333   if (ShuffleKind == 0) {
1334     if (IsLE)
1335       return false;
1336     for (unsigned i = 0; i != 16; i += 2)
1337       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1338           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1339         return false;
1340   } else if (ShuffleKind == 2) {
1341     if (!IsLE)
1342       return false;
1343     for (unsigned i = 0; i != 16; i += 2)
1344       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1345           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1346         return false;
1347   } else if (ShuffleKind == 1) {
1348     unsigned j = IsLE ? 0 : 2;
1349     for (unsigned i = 0; i != 8; i += 2)
1350       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1351           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1352           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1353           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1354         return false;
1355   }
1356   return true;
1357 }
1358 
1359 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1360 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1361 /// current subtarget.
1362 ///
1363 /// The ShuffleKind distinguishes between big-endian operations with
1364 /// two different inputs (0), either-endian operations with two identical
1365 /// inputs (1), and little-endian operations with two different inputs (2).
1366 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1367 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1368                                SelectionDAG &DAG) {
1369   const PPCSubtarget& Subtarget =
1370     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1371   if (!Subtarget.hasP8Vector())
1372     return false;
1373 
1374   bool IsLE = DAG.getDataLayout().isLittleEndian();
1375   if (ShuffleKind == 0) {
1376     if (IsLE)
1377       return false;
1378     for (unsigned i = 0; i != 16; i += 4)
1379       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1380           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1381           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1382           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1383         return false;
1384   } else if (ShuffleKind == 2) {
1385     if (!IsLE)
1386       return false;
1387     for (unsigned i = 0; i != 16; i += 4)
1388       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1389           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1390           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1391           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1392         return false;
1393   } else if (ShuffleKind == 1) {
1394     unsigned j = IsLE ? 0 : 4;
1395     for (unsigned i = 0; i != 8; i += 4)
1396       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1397           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1398           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1399           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1400           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1401           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1402           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1403           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1404         return false;
1405   }
1406   return true;
1407 }
1408 
1409 /// isVMerge - Common function, used to match vmrg* shuffles.
1410 ///
1411 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1412                      unsigned LHSStart, unsigned RHSStart) {
1413   if (N->getValueType(0) != MVT::v16i8)
1414     return false;
1415   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1416          "Unsupported merge size!");
1417 
1418   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1419     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1420       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1421                              LHSStart+j+i*UnitSize) ||
1422           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1423                              RHSStart+j+i*UnitSize))
1424         return false;
1425     }
1426   return true;
1427 }
1428 
1429 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1430 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1431 /// The ShuffleKind distinguishes between big-endian merges with two
1432 /// different inputs (0), either-endian merges with two identical inputs (1),
1433 /// and little-endian merges with two different inputs (2).  For the latter,
1434 /// the input operands are swapped (see PPCInstrAltivec.td).
1435 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1436                              unsigned ShuffleKind, SelectionDAG &DAG) {
1437   if (DAG.getDataLayout().isLittleEndian()) {
1438     if (ShuffleKind == 1) // unary
1439       return isVMerge(N, UnitSize, 0, 0);
1440     else if (ShuffleKind == 2) // swapped
1441       return isVMerge(N, UnitSize, 0, 16);
1442     else
1443       return false;
1444   } else {
1445     if (ShuffleKind == 1) // unary
1446       return isVMerge(N, UnitSize, 8, 8);
1447     else if (ShuffleKind == 0) // normal
1448       return isVMerge(N, UnitSize, 8, 24);
1449     else
1450       return false;
1451   }
1452 }
1453 
1454 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1455 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1456 /// The ShuffleKind distinguishes between big-endian merges with two
1457 /// different inputs (0), either-endian merges with two identical inputs (1),
1458 /// and little-endian merges with two different inputs (2).  For the latter,
1459 /// the input operands are swapped (see PPCInstrAltivec.td).
1460 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1461                              unsigned ShuffleKind, SelectionDAG &DAG) {
1462   if (DAG.getDataLayout().isLittleEndian()) {
1463     if (ShuffleKind == 1) // unary
1464       return isVMerge(N, UnitSize, 8, 8);
1465     else if (ShuffleKind == 2) // swapped
1466       return isVMerge(N, UnitSize, 8, 24);
1467     else
1468       return false;
1469   } else {
1470     if (ShuffleKind == 1) // unary
1471       return isVMerge(N, UnitSize, 0, 0);
1472     else if (ShuffleKind == 0) // normal
1473       return isVMerge(N, UnitSize, 0, 16);
1474     else
1475       return false;
1476   }
1477 }
1478 
1479 /**
1480  * Common function used to match vmrgew and vmrgow shuffles
1481  *
1482  * The indexOffset determines whether to look for even or odd words in
1483  * the shuffle mask. This is based on the of the endianness of the target
1484  * machine.
1485  *   - Little Endian:
1486  *     - Use offset of 0 to check for odd elements
1487  *     - Use offset of 4 to check for even elements
1488  *   - Big Endian:
1489  *     - Use offset of 0 to check for even elements
1490  *     - Use offset of 4 to check for odd elements
1491  * A detailed description of the vector element ordering for little endian and
1492  * big endian can be found at
1493  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1494  * Targeting your applications - what little endian and big endian IBM XL C/C++
1495  * compiler differences mean to you
1496  *
1497  * The mask to the shuffle vector instruction specifies the indices of the
1498  * elements from the two input vectors to place in the result. The elements are
1499  * numbered in array-access order, starting with the first vector. These vectors
1500  * are always of type v16i8, thus each vector will contain 16 elements of size
1501  * 8. More info on the shuffle vector can be found in the
1502  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1503  * Language Reference.
1504  *
1505  * The RHSStartValue indicates whether the same input vectors are used (unary)
1506  * or two different input vectors are used, based on the following:
1507  *   - If the instruction uses the same vector for both inputs, the range of the
1508  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1509  *     be 0.
1510  *   - If the instruction has two different vectors then the range of the
1511  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1512  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1513  *     to 31 specify elements in the second vector).
1514  *
1515  * \param[in] N The shuffle vector SD Node to analyze
1516  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1517  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1518  * vector to the shuffle_vector instruction
1519  * \return true iff this shuffle vector represents an even or odd word merge
1520  */
1521 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1522                      unsigned RHSStartValue) {
1523   if (N->getValueType(0) != MVT::v16i8)
1524     return false;
1525 
1526   for (unsigned i = 0; i < 2; ++i)
1527     for (unsigned j = 0; j < 4; ++j)
1528       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1529                              i*RHSStartValue+j+IndexOffset) ||
1530           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1531                              i*RHSStartValue+j+IndexOffset+8))
1532         return false;
1533   return true;
1534 }
1535 
1536 /**
1537  * Determine if the specified shuffle mask is suitable for the vmrgew or
1538  * vmrgow instructions.
1539  *
1540  * \param[in] N The shuffle vector SD Node to analyze
1541  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1542  * \param[in] ShuffleKind Identify the type of merge:
1543  *   - 0 = big-endian merge with two different inputs;
1544  *   - 1 = either-endian merge with two identical inputs;
1545  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1546  *     little-endian merges).
1547  * \param[in] DAG The current SelectionDAG
1548  * \return true iff this shuffle mask
1549  */
1550 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1551                               unsigned ShuffleKind, SelectionDAG &DAG) {
1552   if (DAG.getDataLayout().isLittleEndian()) {
1553     unsigned indexOffset = CheckEven ? 4 : 0;
1554     if (ShuffleKind == 1) // Unary
1555       return isVMerge(N, indexOffset, 0);
1556     else if (ShuffleKind == 2) // swapped
1557       return isVMerge(N, indexOffset, 16);
1558     else
1559       return false;
1560   }
1561   else {
1562     unsigned indexOffset = CheckEven ? 0 : 4;
1563     if (ShuffleKind == 1) // Unary
1564       return isVMerge(N, indexOffset, 0);
1565     else if (ShuffleKind == 0) // Normal
1566       return isVMerge(N, indexOffset, 16);
1567     else
1568       return false;
1569   }
1570   return false;
1571 }
1572 
1573 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1574 /// amount, otherwise return -1.
1575 /// The ShuffleKind distinguishes between big-endian operations with two
1576 /// different inputs (0), either-endian operations with two identical inputs
1577 /// (1), and little-endian operations with two different inputs (2).  For the
1578 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1579 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1580                              SelectionDAG &DAG) {
1581   if (N->getValueType(0) != MVT::v16i8)
1582     return -1;
1583 
1584   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1585 
1586   // Find the first non-undef value in the shuffle mask.
1587   unsigned i;
1588   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1589     /*search*/;
1590 
1591   if (i == 16) return -1;  // all undef.
1592 
1593   // Otherwise, check to see if the rest of the elements are consecutively
1594   // numbered from this value.
1595   unsigned ShiftAmt = SVOp->getMaskElt(i);
1596   if (ShiftAmt < i) return -1;
1597 
1598   ShiftAmt -= i;
1599   bool isLE = DAG.getDataLayout().isLittleEndian();
1600 
1601   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1602     // Check the rest of the elements to see if they are consecutive.
1603     for (++i; i != 16; ++i)
1604       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1605         return -1;
1606   } else if (ShuffleKind == 1) {
1607     // Check the rest of the elements to see if they are consecutive.
1608     for (++i; i != 16; ++i)
1609       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1610         return -1;
1611   } else
1612     return -1;
1613 
1614   if (isLE)
1615     ShiftAmt = 16 - ShiftAmt;
1616 
1617   return ShiftAmt;
1618 }
1619 
1620 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1621 /// specifies a splat of a single element that is suitable for input to
1622 /// VSPLTB/VSPLTH/VSPLTW.
1623 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1624   assert(N->getValueType(0) == MVT::v16i8 &&
1625          (EltSize == 1 || EltSize == 2 || EltSize == 4));
1626 
1627   // The consecutive indices need to specify an element, not part of two
1628   // different elements.  So abandon ship early if this isn't the case.
1629   if (N->getMaskElt(0) % EltSize != 0)
1630     return false;
1631 
1632   // This is a splat operation if each element of the permute is the same, and
1633   // if the value doesn't reference the second vector.
1634   unsigned ElementBase = N->getMaskElt(0);
1635 
1636   // FIXME: Handle UNDEF elements too!
1637   if (ElementBase >= 16)
1638     return false;
1639 
1640   // Check that the indices are consecutive, in the case of a multi-byte element
1641   // splatted with a v16i8 mask.
1642   for (unsigned i = 1; i != EltSize; ++i)
1643     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1644       return false;
1645 
1646   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1647     if (N->getMaskElt(i) < 0) continue;
1648     for (unsigned j = 0; j != EltSize; ++j)
1649       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1650         return false;
1651   }
1652   return true;
1653 }
1654 
1655 /// Check that the mask is shuffling N byte elements. Within each N byte
1656 /// element of the mask, the indices could be either in increasing or
1657 /// decreasing order as long as they are consecutive.
1658 /// \param[in] N the shuffle vector SD Node to analyze
1659 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1660 /// Word/DoubleWord/QuadWord).
1661 /// \param[in] StepLen the delta indices number among the N byte element, if
1662 /// the mask is in increasing/decreasing order then it is 1/-1.
1663 /// \return true iff the mask is shuffling N byte elements.
1664 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1665                                    int StepLen) {
1666   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1667          "Unexpected element width.");
1668   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1669 
1670   unsigned NumOfElem = 16 / Width;
1671   unsigned MaskVal[16]; //  Width is never greater than 16
1672   for (unsigned i = 0; i < NumOfElem; ++i) {
1673     MaskVal[0] = N->getMaskElt(i * Width);
1674     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1675       return false;
1676     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1677       return false;
1678     }
1679 
1680     for (unsigned int j = 1; j < Width; ++j) {
1681       MaskVal[j] = N->getMaskElt(i * Width + j);
1682       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1683         return false;
1684       }
1685     }
1686   }
1687 
1688   return true;
1689 }
1690 
1691 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1692                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1693   if (!isNByteElemShuffleMask(N, 4, 1))
1694     return false;
1695 
1696   // Now we look at mask elements 0,4,8,12
1697   unsigned M0 = N->getMaskElt(0) / 4;
1698   unsigned M1 = N->getMaskElt(4) / 4;
1699   unsigned M2 = N->getMaskElt(8) / 4;
1700   unsigned M3 = N->getMaskElt(12) / 4;
1701   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1702   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1703 
1704   // Below, let H and L be arbitrary elements of the shuffle mask
1705   // where H is in the range [4,7] and L is in the range [0,3].
1706   // H, 1, 2, 3 or L, 5, 6, 7
1707   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1708       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1709     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1710     InsertAtByte = IsLE ? 12 : 0;
1711     Swap = M0 < 4;
1712     return true;
1713   }
1714   // 0, H, 2, 3 or 4, L, 6, 7
1715   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1716       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1717     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1718     InsertAtByte = IsLE ? 8 : 4;
1719     Swap = M1 < 4;
1720     return true;
1721   }
1722   // 0, 1, H, 3 or 4, 5, L, 7
1723   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1724       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1725     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1726     InsertAtByte = IsLE ? 4 : 8;
1727     Swap = M2 < 4;
1728     return true;
1729   }
1730   // 0, 1, 2, H or 4, 5, 6, L
1731   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1732       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1733     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1734     InsertAtByte = IsLE ? 0 : 12;
1735     Swap = M3 < 4;
1736     return true;
1737   }
1738 
1739   // If both vector operands for the shuffle are the same vector, the mask will
1740   // contain only elements from the first one and the second one will be undef.
1741   if (N->getOperand(1).isUndef()) {
1742     ShiftElts = 0;
1743     Swap = true;
1744     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1745     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1746       InsertAtByte = IsLE ? 12 : 0;
1747       return true;
1748     }
1749     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1750       InsertAtByte = IsLE ? 8 : 4;
1751       return true;
1752     }
1753     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1754       InsertAtByte = IsLE ? 4 : 8;
1755       return true;
1756     }
1757     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1758       InsertAtByte = IsLE ? 0 : 12;
1759       return true;
1760     }
1761   }
1762 
1763   return false;
1764 }
1765 
1766 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1767                                bool &Swap, bool IsLE) {
1768   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1769   // Ensure each byte index of the word is consecutive.
1770   if (!isNByteElemShuffleMask(N, 4, 1))
1771     return false;
1772 
1773   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
1774   unsigned M0 = N->getMaskElt(0) / 4;
1775   unsigned M1 = N->getMaskElt(4) / 4;
1776   unsigned M2 = N->getMaskElt(8) / 4;
1777   unsigned M3 = N->getMaskElt(12) / 4;
1778 
1779   // If both vector operands for the shuffle are the same vector, the mask will
1780   // contain only elements from the first one and the second one will be undef.
1781   if (N->getOperand(1).isUndef()) {
1782     assert(M0 < 4 && "Indexing into an undef vector?");
1783     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
1784       return false;
1785 
1786     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
1787     Swap = false;
1788     return true;
1789   }
1790 
1791   // Ensure each word index of the ShuffleVector Mask is consecutive.
1792   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
1793     return false;
1794 
1795   if (IsLE) {
1796     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
1797       // Input vectors don't need to be swapped if the leading element
1798       // of the result is one of the 3 left elements of the second vector
1799       // (or if there is no shift to be done at all).
1800       Swap = false;
1801       ShiftElts = (8 - M0) % 8;
1802     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
1803       // Input vectors need to be swapped if the leading element
1804       // of the result is one of the 3 left elements of the first vector
1805       // (or if we're shifting by 4 - thereby simply swapping the vectors).
1806       Swap = true;
1807       ShiftElts = (4 - M0) % 4;
1808     }
1809 
1810     return true;
1811   } else {                                          // BE
1812     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
1813       // Input vectors don't need to be swapped if the leading element
1814       // of the result is one of the 4 elements of the first vector.
1815       Swap = false;
1816       ShiftElts = M0;
1817     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
1818       // Input vectors need to be swapped if the leading element
1819       // of the result is one of the 4 elements of the right vector.
1820       Swap = true;
1821       ShiftElts = M0 - 4;
1822     }
1823 
1824     return true;
1825   }
1826 }
1827 
1828 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
1829   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1830 
1831   if (!isNByteElemShuffleMask(N, Width, -1))
1832     return false;
1833 
1834   for (int i = 0; i < 16; i += Width)
1835     if (N->getMaskElt(i) != i + Width - 1)
1836       return false;
1837 
1838   return true;
1839 }
1840 
1841 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
1842   return isXXBRShuffleMaskHelper(N, 2);
1843 }
1844 
1845 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
1846   return isXXBRShuffleMaskHelper(N, 4);
1847 }
1848 
1849 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
1850   return isXXBRShuffleMaskHelper(N, 8);
1851 }
1852 
1853 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
1854   return isXXBRShuffleMaskHelper(N, 16);
1855 }
1856 
1857 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
1858 /// if the inputs to the instruction should be swapped and set \p DM to the
1859 /// value for the immediate.
1860 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
1861 /// AND element 0 of the result comes from the first input (LE) or second input
1862 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
1863 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
1864 /// mask.
1865 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
1866                                bool &Swap, bool IsLE) {
1867   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1868 
1869   // Ensure each byte index of the double word is consecutive.
1870   if (!isNByteElemShuffleMask(N, 8, 1))
1871     return false;
1872 
1873   unsigned M0 = N->getMaskElt(0) / 8;
1874   unsigned M1 = N->getMaskElt(8) / 8;
1875   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
1876 
1877   // If both vector operands for the shuffle are the same vector, the mask will
1878   // contain only elements from the first one and the second one will be undef.
1879   if (N->getOperand(1).isUndef()) {
1880     if ((M0 | M1) < 2) {
1881       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
1882       Swap = false;
1883       return true;
1884     } else
1885       return false;
1886   }
1887 
1888   if (IsLE) {
1889     if (M0 > 1 && M1 < 2) {
1890       Swap = false;
1891     } else if (M0 < 2 && M1 > 1) {
1892       M0 = (M0 + 2) % 4;
1893       M1 = (M1 + 2) % 4;
1894       Swap = true;
1895     } else
1896       return false;
1897 
1898     // Note: if control flow comes here that means Swap is already set above
1899     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
1900     return true;
1901   } else { // BE
1902     if (M0 < 2 && M1 > 1) {
1903       Swap = false;
1904     } else if (M0 > 1 && M1 < 2) {
1905       M0 = (M0 + 2) % 4;
1906       M1 = (M1 + 2) % 4;
1907       Swap = true;
1908     } else
1909       return false;
1910 
1911     // Note: if control flow comes here that means Swap is already set above
1912     DM = (M0 << 1) + (M1 & 1);
1913     return true;
1914   }
1915 }
1916 
1917 
1918 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
1919 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
1920 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
1921                                 SelectionDAG &DAG) {
1922   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1923   assert(isSplatShuffleMask(SVOp, EltSize));
1924   if (DAG.getDataLayout().isLittleEndian())
1925     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
1926   else
1927     return SVOp->getMaskElt(0) / EltSize;
1928 }
1929 
1930 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
1931 /// by using a vspltis[bhw] instruction of the specified element size, return
1932 /// the constant being splatted.  The ByteSize field indicates the number of
1933 /// bytes of each element [124] -> [bhw].
1934 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
1935   SDValue OpVal(nullptr, 0);
1936 
1937   // If ByteSize of the splat is bigger than the element size of the
1938   // build_vector, then we have a case where we are checking for a splat where
1939   // multiple elements of the buildvector are folded together into a single
1940   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
1941   unsigned EltSize = 16/N->getNumOperands();
1942   if (EltSize < ByteSize) {
1943     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
1944     SDValue UniquedVals[4];
1945     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
1946 
1947     // See if all of the elements in the buildvector agree across.
1948     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1949       if (N->getOperand(i).isUndef()) continue;
1950       // If the element isn't a constant, bail fully out.
1951       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
1952 
1953       if (!UniquedVals[i&(Multiple-1)].getNode())
1954         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
1955       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
1956         return SDValue();  // no match.
1957     }
1958 
1959     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
1960     // either constant or undef values that are identical for each chunk.  See
1961     // if these chunks can form into a larger vspltis*.
1962 
1963     // Check to see if all of the leading entries are either 0 or -1.  If
1964     // neither, then this won't fit into the immediate field.
1965     bool LeadingZero = true;
1966     bool LeadingOnes = true;
1967     for (unsigned i = 0; i != Multiple-1; ++i) {
1968       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
1969 
1970       LeadingZero &= isNullConstant(UniquedVals[i]);
1971       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
1972     }
1973     // Finally, check the least significant entry.
1974     if (LeadingZero) {
1975       if (!UniquedVals[Multiple-1].getNode())
1976         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
1977       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
1978       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
1979         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1980     }
1981     if (LeadingOnes) {
1982       if (!UniquedVals[Multiple-1].getNode())
1983         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
1984       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
1985       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
1986         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1987     }
1988 
1989     return SDValue();
1990   }
1991 
1992   // Check to see if this buildvec has a single non-undef value in its elements.
1993   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1994     if (N->getOperand(i).isUndef()) continue;
1995     if (!OpVal.getNode())
1996       OpVal = N->getOperand(i);
1997     else if (OpVal != N->getOperand(i))
1998       return SDValue();
1999   }
2000 
2001   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2002 
2003   unsigned ValSizeInBytes = EltSize;
2004   uint64_t Value = 0;
2005   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2006     Value = CN->getZExtValue();
2007   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2008     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2009     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2010   }
2011 
2012   // If the splat value is larger than the element value, then we can never do
2013   // this splat.  The only case that we could fit the replicated bits into our
2014   // immediate field for would be zero, and we prefer to use vxor for it.
2015   if (ValSizeInBytes < ByteSize) return SDValue();
2016 
2017   // If the element value is larger than the splat value, check if it consists
2018   // of a repeated bit pattern of size ByteSize.
2019   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2020     return SDValue();
2021 
2022   // Properly sign extend the value.
2023   int MaskVal = SignExtend32(Value, ByteSize * 8);
2024 
2025   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2026   if (MaskVal == 0) return SDValue();
2027 
2028   // Finally, if this value fits in a 5 bit sext field, return it
2029   if (SignExtend32<5>(MaskVal) == MaskVal)
2030     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2031   return SDValue();
2032 }
2033 
2034 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2035 /// amount, otherwise return -1.
2036 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2037   EVT VT = N->getValueType(0);
2038   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2039     return -1;
2040 
2041   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2042 
2043   // Find the first non-undef value in the shuffle mask.
2044   unsigned i;
2045   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2046     /*search*/;
2047 
2048   if (i == 4) return -1;  // all undef.
2049 
2050   // Otherwise, check to see if the rest of the elements are consecutively
2051   // numbered from this value.
2052   unsigned ShiftAmt = SVOp->getMaskElt(i);
2053   if (ShiftAmt < i) return -1;
2054   ShiftAmt -= i;
2055 
2056   // Check the rest of the elements to see if they are consecutive.
2057   for (++i; i != 4; ++i)
2058     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2059       return -1;
2060 
2061   return ShiftAmt;
2062 }
2063 
2064 //===----------------------------------------------------------------------===//
2065 //  Addressing Mode Selection
2066 //===----------------------------------------------------------------------===//
2067 
2068 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2069 /// or 64-bit immediate, and if the value can be accurately represented as a
2070 /// sign extension from a 16-bit value.  If so, this returns true and the
2071 /// immediate.
2072 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2073   if (!isa<ConstantSDNode>(N))
2074     return false;
2075 
2076   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2077   if (N->getValueType(0) == MVT::i32)
2078     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2079   else
2080     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2081 }
2082 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2083   return isIntS16Immediate(Op.getNode(), Imm);
2084 }
2085 
2086 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2087 /// can be represented as an indexed [r+r] operation.  Returns false if it
2088 /// can be more efficiently represented with [r+imm].
2089 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2090                                             SDValue &Index,
2091                                             SelectionDAG &DAG) const {
2092   int16_t imm = 0;
2093   if (N.getOpcode() == ISD::ADD) {
2094     if (isIntS16Immediate(N.getOperand(1), imm))
2095       return false;    // r+i
2096     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2097       return false;    // r+i
2098 
2099     Base = N.getOperand(0);
2100     Index = N.getOperand(1);
2101     return true;
2102   } else if (N.getOpcode() == ISD::OR) {
2103     if (isIntS16Immediate(N.getOperand(1), imm))
2104       return false;    // r+i can fold it if we can.
2105 
2106     // If this is an or of disjoint bitfields, we can codegen this as an add
2107     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2108     // disjoint.
2109     KnownBits LHSKnown, RHSKnown;
2110     DAG.computeKnownBits(N.getOperand(0), LHSKnown);
2111 
2112     if (LHSKnown.Zero.getBoolValue()) {
2113       DAG.computeKnownBits(N.getOperand(1), RHSKnown);
2114       // If all of the bits are known zero on the LHS or RHS, the add won't
2115       // carry.
2116       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2117         Base = N.getOperand(0);
2118         Index = N.getOperand(1);
2119         return true;
2120       }
2121     }
2122   }
2123 
2124   return false;
2125 }
2126 
2127 // If we happen to be doing an i64 load or store into a stack slot that has
2128 // less than a 4-byte alignment, then the frame-index elimination may need to
2129 // use an indexed load or store instruction (because the offset may not be a
2130 // multiple of 4). The extra register needed to hold the offset comes from the
2131 // register scavenger, and it is possible that the scavenger will need to use
2132 // an emergency spill slot. As a result, we need to make sure that a spill slot
2133 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2134 // stack slot.
2135 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2136   // FIXME: This does not handle the LWA case.
2137   if (VT != MVT::i64)
2138     return;
2139 
2140   // NOTE: We'll exclude negative FIs here, which come from argument
2141   // lowering, because there are no known test cases triggering this problem
2142   // using packed structures (or similar). We can remove this exclusion if
2143   // we find such a test case. The reason why this is so test-case driven is
2144   // because this entire 'fixup' is only to prevent crashes (from the
2145   // register scavenger) on not-really-valid inputs. For example, if we have:
2146   //   %a = alloca i1
2147   //   %b = bitcast i1* %a to i64*
2148   //   store i64* a, i64 b
2149   // then the store should really be marked as 'align 1', but is not. If it
2150   // were marked as 'align 1' then the indexed form would have been
2151   // instruction-selected initially, and the problem this 'fixup' is preventing
2152   // won't happen regardless.
2153   if (FrameIdx < 0)
2154     return;
2155 
2156   MachineFunction &MF = DAG.getMachineFunction();
2157   MachineFrameInfo &MFI = MF.getFrameInfo();
2158 
2159   unsigned Align = MFI.getObjectAlignment(FrameIdx);
2160   if (Align >= 4)
2161     return;
2162 
2163   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2164   FuncInfo->setHasNonRISpills();
2165 }
2166 
2167 /// Returns true if the address N can be represented by a base register plus
2168 /// a signed 16-bit displacement [r+imm], and if it is not better
2169 /// represented as reg+reg.  If \p Alignment is non-zero, only accept
2170 /// displacements that are multiples of that value.
2171 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2172                                             SDValue &Base,
2173                                             SelectionDAG &DAG,
2174                                             unsigned Alignment) const {
2175   // FIXME dl should come from parent load or store, not from address
2176   SDLoc dl(N);
2177   // If this can be more profitably realized as r+r, fail.
2178   if (SelectAddressRegReg(N, Disp, Base, DAG))
2179     return false;
2180 
2181   if (N.getOpcode() == ISD::ADD) {
2182     int16_t imm = 0;
2183     if (isIntS16Immediate(N.getOperand(1), imm) &&
2184         (!Alignment || (imm % Alignment) == 0)) {
2185       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2186       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2187         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2188         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2189       } else {
2190         Base = N.getOperand(0);
2191       }
2192       return true; // [r+i]
2193     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2194       // Match LOAD (ADD (X, Lo(G))).
2195       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2196              && "Cannot handle constant offsets yet!");
2197       Disp = N.getOperand(1).getOperand(0);  // The global address.
2198       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2199              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2200              Disp.getOpcode() == ISD::TargetConstantPool ||
2201              Disp.getOpcode() == ISD::TargetJumpTable);
2202       Base = N.getOperand(0);
2203       return true;  // [&g+r]
2204     }
2205   } else if (N.getOpcode() == ISD::OR) {
2206     int16_t imm = 0;
2207     if (isIntS16Immediate(N.getOperand(1), imm) &&
2208         (!Alignment || (imm % Alignment) == 0)) {
2209       // If this is an or of disjoint bitfields, we can codegen this as an add
2210       // (for better address arithmetic) if the LHS and RHS of the OR are
2211       // provably disjoint.
2212       KnownBits LHSKnown;
2213       DAG.computeKnownBits(N.getOperand(0), LHSKnown);
2214 
2215       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2216         // If all of the bits are known zero on the LHS or RHS, the add won't
2217         // carry.
2218         if (FrameIndexSDNode *FI =
2219               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2220           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2221           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2222         } else {
2223           Base = N.getOperand(0);
2224         }
2225         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2226         return true;
2227       }
2228     }
2229   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2230     // Loading from a constant address.
2231 
2232     // If this address fits entirely in a 16-bit sext immediate field, codegen
2233     // this as "d, 0"
2234     int16_t Imm;
2235     if (isIntS16Immediate(CN, Imm) && (!Alignment || (Imm % Alignment) == 0)) {
2236       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2237       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2238                              CN->getValueType(0));
2239       return true;
2240     }
2241 
2242     // Handle 32-bit sext immediates with LIS + addr mode.
2243     if ((CN->getValueType(0) == MVT::i32 ||
2244          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2245         (!Alignment || (CN->getZExtValue() % Alignment) == 0)) {
2246       int Addr = (int)CN->getZExtValue();
2247 
2248       // Otherwise, break this down into an LIS + disp.
2249       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2250 
2251       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2252                                    MVT::i32);
2253       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2254       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2255       return true;
2256     }
2257   }
2258 
2259   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2260   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2261     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2262     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2263   } else
2264     Base = N;
2265   return true;      // [r+0]
2266 }
2267 
2268 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2269 /// represented as an indexed [r+r] operation.
2270 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2271                                                 SDValue &Index,
2272                                                 SelectionDAG &DAG) const {
2273   // Check to see if we can easily represent this as an [r+r] address.  This
2274   // will fail if it thinks that the address is more profitably represented as
2275   // reg+imm, e.g. where imm = 0.
2276   if (SelectAddressRegReg(N, Base, Index, DAG))
2277     return true;
2278 
2279   // If the address is the result of an add, we will utilize the fact that the
2280   // address calculation includes an implicit add.  However, we can reduce
2281   // register pressure if we do not materialize a constant just for use as the
2282   // index register.  We only get rid of the add if it is not an add of a
2283   // value and a 16-bit signed constant and both have a single use.
2284   int16_t imm = 0;
2285   if (N.getOpcode() == ISD::ADD &&
2286       (!isIntS16Immediate(N.getOperand(1), imm) ||
2287        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2288     Base = N.getOperand(0);
2289     Index = N.getOperand(1);
2290     return true;
2291   }
2292 
2293   // Otherwise, do it the hard way, using R0 as the base register.
2294   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2295                          N.getValueType());
2296   Index = N;
2297   return true;
2298 }
2299 
2300 /// getPreIndexedAddressParts - returns true by value, base pointer and
2301 /// offset pointer and addressing mode by reference if the node's address
2302 /// can be legally represented as pre-indexed load / store address.
2303 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2304                                                   SDValue &Offset,
2305                                                   ISD::MemIndexedMode &AM,
2306                                                   SelectionDAG &DAG) const {
2307   if (DisablePPCPreinc) return false;
2308 
2309   bool isLoad = true;
2310   SDValue Ptr;
2311   EVT VT;
2312   unsigned Alignment;
2313   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2314     Ptr = LD->getBasePtr();
2315     VT = LD->getMemoryVT();
2316     Alignment = LD->getAlignment();
2317   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2318     Ptr = ST->getBasePtr();
2319     VT  = ST->getMemoryVT();
2320     Alignment = ST->getAlignment();
2321     isLoad = false;
2322   } else
2323     return false;
2324 
2325   // PowerPC doesn't have preinc load/store instructions for vectors (except
2326   // for QPX, which does have preinc r+r forms).
2327   if (VT.isVector()) {
2328     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2329       return false;
2330     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2331       AM = ISD::PRE_INC;
2332       return true;
2333     }
2334   }
2335 
2336   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2337     // Common code will reject creating a pre-inc form if the base pointer
2338     // is a frame index, or if N is a store and the base pointer is either
2339     // the same as or a predecessor of the value being stored.  Check for
2340     // those situations here, and try with swapped Base/Offset instead.
2341     bool Swap = false;
2342 
2343     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2344       Swap = true;
2345     else if (!isLoad) {
2346       SDValue Val = cast<StoreSDNode>(N)->getValue();
2347       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2348         Swap = true;
2349     }
2350 
2351     if (Swap)
2352       std::swap(Base, Offset);
2353 
2354     AM = ISD::PRE_INC;
2355     return true;
2356   }
2357 
2358   // LDU/STU can only handle immediates that are a multiple of 4.
2359   if (VT != MVT::i64) {
2360     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2361       return false;
2362   } else {
2363     // LDU/STU need an address with at least 4-byte alignment.
2364     if (Alignment < 4)
2365       return false;
2366 
2367     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2368       return false;
2369   }
2370 
2371   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2372     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2373     // sext i32 to i64 when addr mode is r+i.
2374     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2375         LD->getExtensionType() == ISD::SEXTLOAD &&
2376         isa<ConstantSDNode>(Offset))
2377       return false;
2378   }
2379 
2380   AM = ISD::PRE_INC;
2381   return true;
2382 }
2383 
2384 //===----------------------------------------------------------------------===//
2385 //  LowerOperation implementation
2386 //===----------------------------------------------------------------------===//
2387 
2388 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2389 /// and LoOpFlags to the target MO flags.
2390 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2391                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2392                                const GlobalValue *GV = nullptr) {
2393   HiOpFlags = PPCII::MO_HA;
2394   LoOpFlags = PPCII::MO_LO;
2395 
2396   // Don't use the pic base if not in PIC relocation model.
2397   if (IsPIC) {
2398     HiOpFlags |= PPCII::MO_PIC_FLAG;
2399     LoOpFlags |= PPCII::MO_PIC_FLAG;
2400   }
2401 
2402   // If this is a reference to a global value that requires a non-lazy-ptr, make
2403   // sure that instruction lowering adds it.
2404   if (GV && Subtarget.hasLazyResolverStub(GV)) {
2405     HiOpFlags |= PPCII::MO_NLP_FLAG;
2406     LoOpFlags |= PPCII::MO_NLP_FLAG;
2407 
2408     if (GV->hasHiddenVisibility()) {
2409       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2410       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2411     }
2412   }
2413 }
2414 
2415 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2416                              SelectionDAG &DAG) {
2417   SDLoc DL(HiPart);
2418   EVT PtrVT = HiPart.getValueType();
2419   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2420 
2421   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2422   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2423 
2424   // With PIC, the first instruction is actually "GR+hi(&G)".
2425   if (isPIC)
2426     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2427                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2428 
2429   // Generate non-pic code that has direct accesses to the constant pool.
2430   // The address of the global is just (hi(&g)+lo(&g)).
2431   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2432 }
2433 
2434 static void setUsesTOCBasePtr(MachineFunction &MF) {
2435   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2436   FuncInfo->setUsesTOCBasePtr();
2437 }
2438 
2439 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2440   setUsesTOCBasePtr(DAG.getMachineFunction());
2441 }
2442 
2443 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit,
2444                            SDValue GA) {
2445   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2446   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
2447                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2448 
2449   SDValue Ops[] = { GA, Reg };
2450   return DAG.getMemIntrinsicNode(
2451       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2452       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
2453       MachineMemOperand::MOLoad);
2454 }
2455 
2456 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2457                                              SelectionDAG &DAG) const {
2458   EVT PtrVT = Op.getValueType();
2459   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2460   const Constant *C = CP->getConstVal();
2461 
2462   // 64-bit SVR4 ABI code is always position-independent.
2463   // The actual address of the GlobalValue is stored in the TOC.
2464   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2465     setUsesTOCBasePtr(DAG);
2466     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2467     return getTOCEntry(DAG, SDLoc(CP), true, GA);
2468   }
2469 
2470   unsigned MOHiFlag, MOLoFlag;
2471   bool IsPIC = isPositionIndependent();
2472   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2473 
2474   if (IsPIC && Subtarget.isSVR4ABI()) {
2475     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2476                                            PPCII::MO_PIC_FLAG);
2477     return getTOCEntry(DAG, SDLoc(CP), false, GA);
2478   }
2479 
2480   SDValue CPIHi =
2481     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2482   SDValue CPILo =
2483     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2484   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2485 }
2486 
2487 // For 64-bit PowerPC, prefer the more compact relative encodings.
2488 // This trades 32 bits per jump table entry for one or two instructions
2489 // on the jump site.
2490 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2491   if (isJumpTableRelative())
2492     return MachineJumpTableInfo::EK_LabelDifference32;
2493 
2494   return TargetLowering::getJumpTableEncoding();
2495 }
2496 
2497 bool PPCTargetLowering::isJumpTableRelative() const {
2498   if (Subtarget.isPPC64())
2499     return true;
2500   return TargetLowering::isJumpTableRelative();
2501 }
2502 
2503 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2504                                                     SelectionDAG &DAG) const {
2505   if (!Subtarget.isPPC64())
2506     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2507 
2508   switch (getTargetMachine().getCodeModel()) {
2509   case CodeModel::Small:
2510   case CodeModel::Medium:
2511     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2512   default:
2513     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2514                        getPointerTy(DAG.getDataLayout()));
2515   }
2516 }
2517 
2518 const MCExpr *
2519 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2520                                                 unsigned JTI,
2521                                                 MCContext &Ctx) const {
2522   if (!Subtarget.isPPC64())
2523     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2524 
2525   switch (getTargetMachine().getCodeModel()) {
2526   case CodeModel::Small:
2527   case CodeModel::Medium:
2528     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2529   default:
2530     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2531   }
2532 }
2533 
2534 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2535   EVT PtrVT = Op.getValueType();
2536   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2537 
2538   // 64-bit SVR4 ABI code is always position-independent.
2539   // The actual address of the GlobalValue is stored in the TOC.
2540   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2541     setUsesTOCBasePtr(DAG);
2542     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2543     return getTOCEntry(DAG, SDLoc(JT), true, GA);
2544   }
2545 
2546   unsigned MOHiFlag, MOLoFlag;
2547   bool IsPIC = isPositionIndependent();
2548   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2549 
2550   if (IsPIC && Subtarget.isSVR4ABI()) {
2551     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2552                                         PPCII::MO_PIC_FLAG);
2553     return getTOCEntry(DAG, SDLoc(GA), false, GA);
2554   }
2555 
2556   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2557   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2558   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2559 }
2560 
2561 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2562                                              SelectionDAG &DAG) const {
2563   EVT PtrVT = Op.getValueType();
2564   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2565   const BlockAddress *BA = BASDN->getBlockAddress();
2566 
2567   // 64-bit SVR4 ABI code is always position-independent.
2568   // The actual BlockAddress is stored in the TOC.
2569   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2570     setUsesTOCBasePtr(DAG);
2571     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2572     return getTOCEntry(DAG, SDLoc(BASDN), true, GA);
2573   }
2574 
2575   unsigned MOHiFlag, MOLoFlag;
2576   bool IsPIC = isPositionIndependent();
2577   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2578   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2579   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2580   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2581 }
2582 
2583 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2584                                               SelectionDAG &DAG) const {
2585   // FIXME: TLS addresses currently use medium model code sequences,
2586   // which is the most useful form.  Eventually support for small and
2587   // large models could be added if users need it, at the cost of
2588   // additional complexity.
2589   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2590   if (DAG.getTarget().useEmulatedTLS())
2591     return LowerToTLSEmulatedModel(GA, DAG);
2592 
2593   SDLoc dl(GA);
2594   const GlobalValue *GV = GA->getGlobal();
2595   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2596   bool is64bit = Subtarget.isPPC64();
2597   const Module *M = DAG.getMachineFunction().getFunction().getParent();
2598   PICLevel::Level picLevel = M->getPICLevel();
2599 
2600   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
2601 
2602   if (Model == TLSModel::LocalExec) {
2603     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2604                                                PPCII::MO_TPREL_HA);
2605     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2606                                                PPCII::MO_TPREL_LO);
2607     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2608                              : DAG.getRegister(PPC::R2, MVT::i32);
2609 
2610     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2611     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2612   }
2613 
2614   if (Model == TLSModel::InitialExec) {
2615     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2616     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2617                                                 PPCII::MO_TLS);
2618     SDValue GOTPtr;
2619     if (is64bit) {
2620       setUsesTOCBasePtr(DAG);
2621       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2622       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2623                            PtrVT, GOTReg, TGA);
2624     } else
2625       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2626     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2627                                    PtrVT, TGA, GOTPtr);
2628     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2629   }
2630 
2631   if (Model == TLSModel::GeneralDynamic) {
2632     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2633     SDValue GOTPtr;
2634     if (is64bit) {
2635       setUsesTOCBasePtr(DAG);
2636       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2637       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2638                                    GOTReg, TGA);
2639     } else {
2640       if (picLevel == PICLevel::SmallPIC)
2641         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2642       else
2643         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2644     }
2645     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2646                        GOTPtr, TGA, TGA);
2647   }
2648 
2649   if (Model == TLSModel::LocalDynamic) {
2650     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2651     SDValue GOTPtr;
2652     if (is64bit) {
2653       setUsesTOCBasePtr(DAG);
2654       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2655       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2656                            GOTReg, TGA);
2657     } else {
2658       if (picLevel == PICLevel::SmallPIC)
2659         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2660       else
2661         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2662     }
2663     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2664                                   PtrVT, GOTPtr, TGA, TGA);
2665     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2666                                       PtrVT, TLSAddr, TGA);
2667     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2668   }
2669 
2670   llvm_unreachable("Unknown TLS model!");
2671 }
2672 
2673 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2674                                               SelectionDAG &DAG) const {
2675   EVT PtrVT = Op.getValueType();
2676   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2677   SDLoc DL(GSDN);
2678   const GlobalValue *GV = GSDN->getGlobal();
2679 
2680   // 64-bit SVR4 ABI code is always position-independent.
2681   // The actual address of the GlobalValue is stored in the TOC.
2682   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2683     setUsesTOCBasePtr(DAG);
2684     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2685     return getTOCEntry(DAG, DL, true, GA);
2686   }
2687 
2688   unsigned MOHiFlag, MOLoFlag;
2689   bool IsPIC = isPositionIndependent();
2690   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2691 
2692   if (IsPIC && Subtarget.isSVR4ABI()) {
2693     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2694                                             GSDN->getOffset(),
2695                                             PPCII::MO_PIC_FLAG);
2696     return getTOCEntry(DAG, DL, false, GA);
2697   }
2698 
2699   SDValue GAHi =
2700     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2701   SDValue GALo =
2702     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2703 
2704   SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
2705 
2706   // If the global reference is actually to a non-lazy-pointer, we have to do an
2707   // extra load to get the address of the global.
2708   if (MOHiFlag & PPCII::MO_NLP_FLAG)
2709     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2710   return Ptr;
2711 }
2712 
2713 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2714   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2715   SDLoc dl(Op);
2716 
2717   if (Op.getValueType() == MVT::v2i64) {
2718     // When the operands themselves are v2i64 values, we need to do something
2719     // special because VSX has no underlying comparison operations for these.
2720     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2721       // Equality can be handled by casting to the legal type for Altivec
2722       // comparisons, everything else needs to be expanded.
2723       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2724         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2725                  DAG.getSetCC(dl, MVT::v4i32,
2726                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2727                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2728                    CC));
2729       }
2730 
2731       return SDValue();
2732     }
2733 
2734     // We handle most of these in the usual way.
2735     return Op;
2736   }
2737 
2738   // If we're comparing for equality to zero, expose the fact that this is
2739   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
2740   // fold the new nodes.
2741   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
2742     return V;
2743 
2744   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2745     // Leave comparisons against 0 and -1 alone for now, since they're usually
2746     // optimized.  FIXME: revisit this when we can custom lower all setcc
2747     // optimizations.
2748     if (C->isAllOnesValue() || C->isNullValue())
2749       return SDValue();
2750   }
2751 
2752   // If we have an integer seteq/setne, turn it into a compare against zero
2753   // by xor'ing the rhs with the lhs, which is faster than setting a
2754   // condition register, reading it back out, and masking the correct bit.  The
2755   // normal approach here uses sub to do this instead of xor.  Using xor exposes
2756   // the result to other bit-twiddling opportunities.
2757   EVT LHSVT = Op.getOperand(0).getValueType();
2758   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2759     EVT VT = Op.getValueType();
2760     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2761                                 Op.getOperand(1));
2762     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
2763   }
2764   return SDValue();
2765 }
2766 
2767 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2768   SDNode *Node = Op.getNode();
2769   EVT VT = Node->getValueType(0);
2770   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2771   SDValue InChain = Node->getOperand(0);
2772   SDValue VAListPtr = Node->getOperand(1);
2773   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2774   SDLoc dl(Node);
2775 
2776   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
2777 
2778   // gpr_index
2779   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2780                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
2781   InChain = GprIndex.getValue(1);
2782 
2783   if (VT == MVT::i64) {
2784     // Check if GprIndex is even
2785     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
2786                                  DAG.getConstant(1, dl, MVT::i32));
2787     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
2788                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
2789     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
2790                                           DAG.getConstant(1, dl, MVT::i32));
2791     // Align GprIndex to be even if it isn't
2792     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
2793                            GprIndex);
2794   }
2795 
2796   // fpr index is 1 byte after gpr
2797   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2798                                DAG.getConstant(1, dl, MVT::i32));
2799 
2800   // fpr
2801   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2802                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
2803   InChain = FprIndex.getValue(1);
2804 
2805   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2806                                        DAG.getConstant(8, dl, MVT::i32));
2807 
2808   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2809                                         DAG.getConstant(4, dl, MVT::i32));
2810 
2811   // areas
2812   SDValue OverflowArea =
2813       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
2814   InChain = OverflowArea.getValue(1);
2815 
2816   SDValue RegSaveArea =
2817       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
2818   InChain = RegSaveArea.getValue(1);
2819 
2820   // select overflow_area if index > 8
2821   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
2822                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
2823 
2824   // adjustment constant gpr_index * 4/8
2825   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
2826                                     VT.isInteger() ? GprIndex : FprIndex,
2827                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
2828                                                     MVT::i32));
2829 
2830   // OurReg = RegSaveArea + RegConstant
2831   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
2832                                RegConstant);
2833 
2834   // Floating types are 32 bytes into RegSaveArea
2835   if (VT.isFloatingPoint())
2836     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
2837                          DAG.getConstant(32, dl, MVT::i32));
2838 
2839   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
2840   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2841                                    VT.isInteger() ? GprIndex : FprIndex,
2842                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
2843                                                    MVT::i32));
2844 
2845   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
2846                               VT.isInteger() ? VAListPtr : FprPtr,
2847                               MachinePointerInfo(SV), MVT::i8);
2848 
2849   // determine if we should load from reg_save_area or overflow_area
2850   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
2851 
2852   // increase overflow_area by 4/8 if gpr/fpr > 8
2853   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
2854                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
2855                                           dl, MVT::i32));
2856 
2857   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
2858                              OverflowAreaPlusN);
2859 
2860   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
2861                               MachinePointerInfo(), MVT::i32);
2862 
2863   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
2864 }
2865 
2866 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
2867   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
2868 
2869   // We have to copy the entire va_list struct:
2870   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
2871   return DAG.getMemcpy(Op.getOperand(0), Op,
2872                        Op.getOperand(1), Op.getOperand(2),
2873                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
2874                        false, MachinePointerInfo(), MachinePointerInfo());
2875 }
2876 
2877 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
2878                                                   SelectionDAG &DAG) const {
2879   return Op.getOperand(0);
2880 }
2881 
2882 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
2883                                                 SelectionDAG &DAG) const {
2884   SDValue Chain = Op.getOperand(0);
2885   SDValue Trmp = Op.getOperand(1); // trampoline
2886   SDValue FPtr = Op.getOperand(2); // nested function
2887   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
2888   SDLoc dl(Op);
2889 
2890   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2891   bool isPPC64 = (PtrVT == MVT::i64);
2892   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
2893 
2894   TargetLowering::ArgListTy Args;
2895   TargetLowering::ArgListEntry Entry;
2896 
2897   Entry.Ty = IntPtrTy;
2898   Entry.Node = Trmp; Args.push_back(Entry);
2899 
2900   // TrampSize == (isPPC64 ? 48 : 40);
2901   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
2902                                isPPC64 ? MVT::i64 : MVT::i32);
2903   Args.push_back(Entry);
2904 
2905   Entry.Node = FPtr; Args.push_back(Entry);
2906   Entry.Node = Nest; Args.push_back(Entry);
2907 
2908   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
2909   TargetLowering::CallLoweringInfo CLI(DAG);
2910   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
2911       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
2912       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
2913 
2914   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2915   return CallResult.second;
2916 }
2917 
2918 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2919   MachineFunction &MF = DAG.getMachineFunction();
2920   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2921   EVT PtrVT = getPointerTy(MF.getDataLayout());
2922 
2923   SDLoc dl(Op);
2924 
2925   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
2926     // vastart just stores the address of the VarArgsFrameIndex slot into the
2927     // memory location argument.
2928     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2929     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2930     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2931                         MachinePointerInfo(SV));
2932   }
2933 
2934   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
2935   // We suppose the given va_list is already allocated.
2936   //
2937   // typedef struct {
2938   //  char gpr;     /* index into the array of 8 GPRs
2939   //                 * stored in the register save area
2940   //                 * gpr=0 corresponds to r3,
2941   //                 * gpr=1 to r4, etc.
2942   //                 */
2943   //  char fpr;     /* index into the array of 8 FPRs
2944   //                 * stored in the register save area
2945   //                 * fpr=0 corresponds to f1,
2946   //                 * fpr=1 to f2, etc.
2947   //                 */
2948   //  char *overflow_arg_area;
2949   //                /* location on stack that holds
2950   //                 * the next overflow argument
2951   //                 */
2952   //  char *reg_save_area;
2953   //               /* where r3:r10 and f1:f8 (if saved)
2954   //                * are stored
2955   //                */
2956   // } va_list[1];
2957 
2958   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
2959   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
2960   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
2961                                             PtrVT);
2962   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2963                                  PtrVT);
2964 
2965   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
2966   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
2967 
2968   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
2969   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
2970 
2971   uint64_t FPROffset = 1;
2972   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
2973 
2974   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2975 
2976   // Store first byte : number of int regs
2977   SDValue firstStore =
2978       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
2979                         MachinePointerInfo(SV), MVT::i8);
2980   uint64_t nextOffset = FPROffset;
2981   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
2982                                   ConstFPROffset);
2983 
2984   // Store second byte : number of float regs
2985   SDValue secondStore =
2986       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
2987                         MachinePointerInfo(SV, nextOffset), MVT::i8);
2988   nextOffset += StackOffset;
2989   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
2990 
2991   // Store second word : arguments given on stack
2992   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
2993                                     MachinePointerInfo(SV, nextOffset));
2994   nextOffset += FrameOffset;
2995   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
2996 
2997   // Store third word : arguments given in registers
2998   return DAG.getStore(thirdStore, dl, FR, nextPtr,
2999                       MachinePointerInfo(SV, nextOffset));
3000 }
3001 
3002 #include "PPCGenCallingConv.inc"
3003 
3004 // Function whose sole purpose is to kill compiler warnings
3005 // stemming from unused functions included from PPCGenCallingConv.inc.
3006 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
3007   return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
3008 }
3009 
3010 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
3011                                       CCValAssign::LocInfo &LocInfo,
3012                                       ISD::ArgFlagsTy &ArgFlags,
3013                                       CCState &State) {
3014   return true;
3015 }
3016 
3017 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
3018                                              MVT &LocVT,
3019                                              CCValAssign::LocInfo &LocInfo,
3020                                              ISD::ArgFlagsTy &ArgFlags,
3021                                              CCState &State) {
3022   static const MCPhysReg ArgRegs[] = {
3023     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3024     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3025   };
3026   const unsigned NumArgRegs = array_lengthof(ArgRegs);
3027 
3028   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
3029 
3030   // Skip one register if the first unallocated register has an even register
3031   // number and there are still argument registers available which have not been
3032   // allocated yet. RegNum is actually an index into ArgRegs, which means we
3033   // need to skip a register if RegNum is odd.
3034   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
3035     State.AllocateReg(ArgRegs[RegNum]);
3036   }
3037 
3038   // Always return false here, as this function only makes sure that the first
3039   // unallocated register has an odd register number and does not actually
3040   // allocate a register for the current argument.
3041   return false;
3042 }
3043 
3044 bool
3045 llvm::CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT,
3046                                                   MVT &LocVT,
3047                                                   CCValAssign::LocInfo &LocInfo,
3048                                                   ISD::ArgFlagsTy &ArgFlags,
3049                                                   CCState &State) {
3050   static const MCPhysReg ArgRegs[] = {
3051     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3052     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3053   };
3054   const unsigned NumArgRegs = array_lengthof(ArgRegs);
3055 
3056   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
3057   int RegsLeft = NumArgRegs - RegNum;
3058 
3059   // Skip if there is not enough registers left for long double type (4 gpr regs
3060   // in soft float mode) and put long double argument on the stack.
3061   if (RegNum != NumArgRegs && RegsLeft < 4) {
3062     for (int i = 0; i < RegsLeft; i++) {
3063       State.AllocateReg(ArgRegs[RegNum + i]);
3064     }
3065   }
3066 
3067   return false;
3068 }
3069 
3070 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
3071                                                MVT &LocVT,
3072                                                CCValAssign::LocInfo &LocInfo,
3073                                                ISD::ArgFlagsTy &ArgFlags,
3074                                                CCState &State) {
3075   static const MCPhysReg ArgRegs[] = {
3076     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3077     PPC::F8
3078   };
3079 
3080   const unsigned NumArgRegs = array_lengthof(ArgRegs);
3081 
3082   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
3083 
3084   // If there is only one Floating-point register left we need to put both f64
3085   // values of a split ppc_fp128 value on the stack.
3086   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
3087     State.AllocateReg(ArgRegs[RegNum]);
3088   }
3089 
3090   // Always return false here, as this function only makes sure that the two f64
3091   // values a ppc_fp128 value is split into are both passed in registers or both
3092   // passed on the stack and does not actually allocate a register for the
3093   // current argument.
3094   return false;
3095 }
3096 
3097 /// FPR - The set of FP registers that should be allocated for arguments,
3098 /// on Darwin.
3099 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3100                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3101                                 PPC::F11, PPC::F12, PPC::F13};
3102 
3103 /// QFPR - The set of QPX registers that should be allocated for arguments.
3104 static const MCPhysReg QFPR[] = {
3105     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3106     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3107 
3108 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3109 /// the stack.
3110 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3111                                        unsigned PtrByteSize) {
3112   unsigned ArgSize = ArgVT.getStoreSize();
3113   if (Flags.isByVal())
3114     ArgSize = Flags.getByValSize();
3115 
3116   // Round up to multiples of the pointer size, except for array members,
3117   // which are always packed.
3118   if (!Flags.isInConsecutiveRegs())
3119     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3120 
3121   return ArgSize;
3122 }
3123 
3124 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3125 /// on the stack.
3126 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3127                                             ISD::ArgFlagsTy Flags,
3128                                             unsigned PtrByteSize) {
3129   unsigned Align = PtrByteSize;
3130 
3131   // Altivec parameters are padded to a 16 byte boundary.
3132   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3133       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3134       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3135       ArgVT == MVT::v1i128)
3136     Align = 16;
3137   // QPX vector types stored in double-precision are padded to a 32 byte
3138   // boundary.
3139   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3140     Align = 32;
3141 
3142   // ByVal parameters are aligned as requested.
3143   if (Flags.isByVal()) {
3144     unsigned BVAlign = Flags.getByValAlign();
3145     if (BVAlign > PtrByteSize) {
3146       if (BVAlign % PtrByteSize != 0)
3147           llvm_unreachable(
3148             "ByVal alignment is not a multiple of the pointer size");
3149 
3150       Align = BVAlign;
3151     }
3152   }
3153 
3154   // Array members are always packed to their original alignment.
3155   if (Flags.isInConsecutiveRegs()) {
3156     // If the array member was split into multiple registers, the first
3157     // needs to be aligned to the size of the full type.  (Except for
3158     // ppcf128, which is only aligned as its f64 components.)
3159     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3160       Align = OrigVT.getStoreSize();
3161     else
3162       Align = ArgVT.getStoreSize();
3163   }
3164 
3165   return Align;
3166 }
3167 
3168 /// CalculateStackSlotUsed - Return whether this argument will use its
3169 /// stack slot (instead of being passed in registers).  ArgOffset,
3170 /// AvailableFPRs, and AvailableVRs must hold the current argument
3171 /// position, and will be updated to account for this argument.
3172 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3173                                    ISD::ArgFlagsTy Flags,
3174                                    unsigned PtrByteSize,
3175                                    unsigned LinkageSize,
3176                                    unsigned ParamAreaSize,
3177                                    unsigned &ArgOffset,
3178                                    unsigned &AvailableFPRs,
3179                                    unsigned &AvailableVRs, bool HasQPX) {
3180   bool UseMemory = false;
3181 
3182   // Respect alignment of argument on the stack.
3183   unsigned Align =
3184     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3185   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3186   // If there's no space left in the argument save area, we must
3187   // use memory (this check also catches zero-sized arguments).
3188   if (ArgOffset >= LinkageSize + ParamAreaSize)
3189     UseMemory = true;
3190 
3191   // Allocate argument on the stack.
3192   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3193   if (Flags.isInConsecutiveRegsLast())
3194     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3195   // If we overran the argument save area, we must use memory
3196   // (this check catches arguments passed partially in memory)
3197   if (ArgOffset > LinkageSize + ParamAreaSize)
3198     UseMemory = true;
3199 
3200   // However, if the argument is actually passed in an FPR or a VR,
3201   // we don't use memory after all.
3202   if (!Flags.isByVal()) {
3203     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3204         // QPX registers overlap with the scalar FP registers.
3205         (HasQPX && (ArgVT == MVT::v4f32 ||
3206                     ArgVT == MVT::v4f64 ||
3207                     ArgVT == MVT::v4i1)))
3208       if (AvailableFPRs > 0) {
3209         --AvailableFPRs;
3210         return false;
3211       }
3212     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3213         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3214         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3215         ArgVT == MVT::v1i128)
3216       if (AvailableVRs > 0) {
3217         --AvailableVRs;
3218         return false;
3219       }
3220   }
3221 
3222   return UseMemory;
3223 }
3224 
3225 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3226 /// ensure minimum alignment required for target.
3227 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3228                                      unsigned NumBytes) {
3229   unsigned TargetAlign = Lowering->getStackAlignment();
3230   unsigned AlignMask = TargetAlign - 1;
3231   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
3232   return NumBytes;
3233 }
3234 
3235 SDValue PPCTargetLowering::LowerFormalArguments(
3236     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3237     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3238     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3239   if (Subtarget.isSVR4ABI()) {
3240     if (Subtarget.isPPC64())
3241       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
3242                                          dl, DAG, InVals);
3243     else
3244       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
3245                                          dl, DAG, InVals);
3246   } else {
3247     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
3248                                        dl, DAG, InVals);
3249   }
3250 }
3251 
3252 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3253     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3254     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3255     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3256 
3257   // 32-bit SVR4 ABI Stack Frame Layout:
3258   //              +-----------------------------------+
3259   //        +-->  |            Back chain             |
3260   //        |     +-----------------------------------+
3261   //        |     | Floating-point register save area |
3262   //        |     +-----------------------------------+
3263   //        |     |    General register save area     |
3264   //        |     +-----------------------------------+
3265   //        |     |          CR save word             |
3266   //        |     +-----------------------------------+
3267   //        |     |         VRSAVE save word          |
3268   //        |     +-----------------------------------+
3269   //        |     |         Alignment padding         |
3270   //        |     +-----------------------------------+
3271   //        |     |     Vector register save area     |
3272   //        |     +-----------------------------------+
3273   //        |     |       Local variable space        |
3274   //        |     +-----------------------------------+
3275   //        |     |        Parameter list area        |
3276   //        |     +-----------------------------------+
3277   //        |     |           LR save word            |
3278   //        |     +-----------------------------------+
3279   // SP-->  +---  |            Back chain             |
3280   //              +-----------------------------------+
3281   //
3282   // Specifications:
3283   //   System V Application Binary Interface PowerPC Processor Supplement
3284   //   AltiVec Technology Programming Interface Manual
3285 
3286   MachineFunction &MF = DAG.getMachineFunction();
3287   MachineFrameInfo &MFI = MF.getFrameInfo();
3288   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3289 
3290   EVT PtrVT = getPointerTy(MF.getDataLayout());
3291   // Potential tail calls could cause overwriting of argument stack slots.
3292   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3293                        (CallConv == CallingConv::Fast));
3294   unsigned PtrByteSize = 4;
3295 
3296   // Assign locations to all of the incoming arguments.
3297   SmallVector<CCValAssign, 16> ArgLocs;
3298   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3299                  *DAG.getContext());
3300 
3301   // Reserve space for the linkage area on the stack.
3302   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3303   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3304   if (useSoftFloat())
3305     CCInfo.PreAnalyzeFormalArguments(Ins);
3306 
3307   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3308   CCInfo.clearWasPPCF128();
3309 
3310   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3311     CCValAssign &VA = ArgLocs[i];
3312 
3313     // Arguments stored in registers.
3314     if (VA.isRegLoc()) {
3315       const TargetRegisterClass *RC;
3316       EVT ValVT = VA.getValVT();
3317 
3318       switch (ValVT.getSimpleVT().SimpleTy) {
3319         default:
3320           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3321         case MVT::i1:
3322         case MVT::i32:
3323           RC = &PPC::GPRCRegClass;
3324           break;
3325         case MVT::f32:
3326           if (Subtarget.hasP8Vector())
3327             RC = &PPC::VSSRCRegClass;
3328           else
3329             RC = &PPC::F4RCRegClass;
3330           break;
3331         case MVT::f64:
3332           if (Subtarget.hasVSX())
3333             RC = &PPC::VSFRCRegClass;
3334           else
3335             RC = &PPC::F8RCRegClass;
3336           break;
3337         case MVT::v16i8:
3338         case MVT::v8i16:
3339         case MVT::v4i32:
3340           RC = &PPC::VRRCRegClass;
3341           break;
3342         case MVT::v4f32:
3343           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3344           break;
3345         case MVT::v2f64:
3346         case MVT::v2i64:
3347           RC = &PPC::VRRCRegClass;
3348           break;
3349         case MVT::v4f64:
3350           RC = &PPC::QFRCRegClass;
3351           break;
3352         case MVT::v4i1:
3353           RC = &PPC::QBRCRegClass;
3354           break;
3355       }
3356 
3357       // Transform the arguments stored in physical registers into virtual ones.
3358       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3359       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3360                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
3361 
3362       if (ValVT == MVT::i1)
3363         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3364 
3365       InVals.push_back(ArgValue);
3366     } else {
3367       // Argument stored in memory.
3368       assert(VA.isMemLoc());
3369 
3370       unsigned ArgSize = VA.getLocVT().getStoreSize();
3371       int FI = MFI.CreateFixedObject(ArgSize, VA.getLocMemOffset(),
3372                                      isImmutable);
3373 
3374       // Create load nodes to retrieve arguments from the stack.
3375       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3376       InVals.push_back(
3377           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3378     }
3379   }
3380 
3381   // Assign locations to all of the incoming aggregate by value arguments.
3382   // Aggregates passed by value are stored in the local variable space of the
3383   // caller's stack frame, right above the parameter list area.
3384   SmallVector<CCValAssign, 16> ByValArgLocs;
3385   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3386                       ByValArgLocs, *DAG.getContext());
3387 
3388   // Reserve stack space for the allocations in CCInfo.
3389   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3390 
3391   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3392 
3393   // Area that is at least reserved in the caller of this function.
3394   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3395   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3396 
3397   // Set the size that is at least reserved in caller of this function.  Tail
3398   // call optimized function's reserved stack space needs to be aligned so that
3399   // taking the difference between two stack areas will result in an aligned
3400   // stack.
3401   MinReservedArea =
3402       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3403   FuncInfo->setMinReservedArea(MinReservedArea);
3404 
3405   SmallVector<SDValue, 8> MemOps;
3406 
3407   // If the function takes variable number of arguments, make a frame index for
3408   // the start of the first vararg value... for expansion of llvm.va_start.
3409   if (isVarArg) {
3410     static const MCPhysReg GPArgRegs[] = {
3411       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3412       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3413     };
3414     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3415 
3416     static const MCPhysReg FPArgRegs[] = {
3417       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3418       PPC::F8
3419     };
3420     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3421 
3422     if (useSoftFloat())
3423        NumFPArgRegs = 0;
3424 
3425     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3426     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3427 
3428     // Make room for NumGPArgRegs and NumFPArgRegs.
3429     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3430                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3431 
3432     FuncInfo->setVarArgsStackOffset(
3433       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3434                             CCInfo.getNextStackOffset(), true));
3435 
3436     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3437     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3438 
3439     // The fixed integer arguments of a variadic function are stored to the
3440     // VarArgsFrameIndex on the stack so that they may be loaded by
3441     // dereferencing the result of va_next.
3442     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3443       // Get an existing live-in vreg, or add a new one.
3444       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3445       if (!VReg)
3446         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3447 
3448       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3449       SDValue Store =
3450           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3451       MemOps.push_back(Store);
3452       // Increment the address by four for the next argument to store
3453       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3454       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3455     }
3456 
3457     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3458     // is set.
3459     // The double arguments are stored to the VarArgsFrameIndex
3460     // on the stack.
3461     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3462       // Get an existing live-in vreg, or add a new one.
3463       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3464       if (!VReg)
3465         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3466 
3467       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3468       SDValue Store =
3469           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3470       MemOps.push_back(Store);
3471       // Increment the address by eight for the next argument to store
3472       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3473                                          PtrVT);
3474       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3475     }
3476   }
3477 
3478   if (!MemOps.empty())
3479     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3480 
3481   return Chain;
3482 }
3483 
3484 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3485 // value to MVT::i64 and then truncate to the correct register size.
3486 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3487                                              EVT ObjectVT, SelectionDAG &DAG,
3488                                              SDValue ArgVal,
3489                                              const SDLoc &dl) const {
3490   if (Flags.isSExt())
3491     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3492                          DAG.getValueType(ObjectVT));
3493   else if (Flags.isZExt())
3494     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3495                          DAG.getValueType(ObjectVT));
3496 
3497   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3498 }
3499 
3500 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3501     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3502     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3503     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3504   // TODO: add description of PPC stack frame format, or at least some docs.
3505   //
3506   bool isELFv2ABI = Subtarget.isELFv2ABI();
3507   bool isLittleEndian = Subtarget.isLittleEndian();
3508   MachineFunction &MF = DAG.getMachineFunction();
3509   MachineFrameInfo &MFI = MF.getFrameInfo();
3510   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3511 
3512   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3513          "fastcc not supported on varargs functions");
3514 
3515   EVT PtrVT = getPointerTy(MF.getDataLayout());
3516   // Potential tail calls could cause overwriting of argument stack slots.
3517   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3518                        (CallConv == CallingConv::Fast));
3519   unsigned PtrByteSize = 8;
3520   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3521 
3522   static const MCPhysReg GPR[] = {
3523     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3524     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3525   };
3526   static const MCPhysReg VR[] = {
3527     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3528     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3529   };
3530 
3531   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3532   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3533   const unsigned Num_VR_Regs  = array_lengthof(VR);
3534   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3535 
3536   // Do a first pass over the arguments to determine whether the ABI
3537   // guarantees that our caller has allocated the parameter save area
3538   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3539   // in the ELFv2 ABI, it is true if this is a vararg function or if
3540   // any parameter is located in a stack slot.
3541 
3542   bool HasParameterArea = !isELFv2ABI || isVarArg;
3543   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3544   unsigned NumBytes = LinkageSize;
3545   unsigned AvailableFPRs = Num_FPR_Regs;
3546   unsigned AvailableVRs = Num_VR_Regs;
3547   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3548     if (Ins[i].Flags.isNest())
3549       continue;
3550 
3551     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3552                                PtrByteSize, LinkageSize, ParamAreaSize,
3553                                NumBytes, AvailableFPRs, AvailableVRs,
3554                                Subtarget.hasQPX()))
3555       HasParameterArea = true;
3556   }
3557 
3558   // Add DAG nodes to load the arguments or copy them out of registers.  On
3559   // entry to a function on PPC, the arguments start after the linkage area,
3560   // although the first ones are often in registers.
3561 
3562   unsigned ArgOffset = LinkageSize;
3563   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3564   unsigned &QFPR_idx = FPR_idx;
3565   SmallVector<SDValue, 8> MemOps;
3566   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3567   unsigned CurArgIdx = 0;
3568   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3569     SDValue ArgVal;
3570     bool needsLoad = false;
3571     EVT ObjectVT = Ins[ArgNo].VT;
3572     EVT OrigVT = Ins[ArgNo].ArgVT;
3573     unsigned ObjSize = ObjectVT.getStoreSize();
3574     unsigned ArgSize = ObjSize;
3575     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3576     if (Ins[ArgNo].isOrigArg()) {
3577       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3578       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3579     }
3580     // We re-align the argument offset for each argument, except when using the
3581     // fast calling convention, when we need to make sure we do that only when
3582     // we'll actually use a stack slot.
3583     unsigned CurArgOffset, Align;
3584     auto ComputeArgOffset = [&]() {
3585       /* Respect alignment of argument on the stack.  */
3586       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3587       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3588       CurArgOffset = ArgOffset;
3589     };
3590 
3591     if (CallConv != CallingConv::Fast) {
3592       ComputeArgOffset();
3593 
3594       /* Compute GPR index associated with argument offset.  */
3595       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3596       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3597     }
3598 
3599     // FIXME the codegen can be much improved in some cases.
3600     // We do not have to keep everything in memory.
3601     if (Flags.isByVal()) {
3602       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3603 
3604       if (CallConv == CallingConv::Fast)
3605         ComputeArgOffset();
3606 
3607       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3608       ObjSize = Flags.getByValSize();
3609       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3610       // Empty aggregate parameters do not take up registers.  Examples:
3611       //   struct { } a;
3612       //   union  { } b;
3613       //   int c[0];
3614       // etc.  However, we have to provide a place-holder in InVals, so
3615       // pretend we have an 8-byte item at the current address for that
3616       // purpose.
3617       if (!ObjSize) {
3618         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3619         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3620         InVals.push_back(FIN);
3621         continue;
3622       }
3623 
3624       // Create a stack object covering all stack doublewords occupied
3625       // by the argument.  If the argument is (fully or partially) on
3626       // the stack, or if the argument is fully in registers but the
3627       // caller has allocated the parameter save anyway, we can refer
3628       // directly to the caller's stack frame.  Otherwise, create a
3629       // local copy in our own frame.
3630       int FI;
3631       if (HasParameterArea ||
3632           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3633         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3634       else
3635         FI = MFI.CreateStackObject(ArgSize, Align, false);
3636       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3637 
3638       // Handle aggregates smaller than 8 bytes.
3639       if (ObjSize < PtrByteSize) {
3640         // The value of the object is its address, which differs from the
3641         // address of the enclosing doubleword on big-endian systems.
3642         SDValue Arg = FIN;
3643         if (!isLittleEndian) {
3644           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3645           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3646         }
3647         InVals.push_back(Arg);
3648 
3649         if (GPR_idx != Num_GPR_Regs) {
3650           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3651           FuncInfo->addLiveInAttr(VReg, Flags);
3652           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3653           SDValue Store;
3654 
3655           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3656             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3657                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3658             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3659                                       MachinePointerInfo(&*FuncArg), ObjType);
3660           } else {
3661             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3662             // store the whole register as-is to the parameter save area
3663             // slot.
3664             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3665                                  MachinePointerInfo(&*FuncArg));
3666           }
3667 
3668           MemOps.push_back(Store);
3669         }
3670         // Whether we copied from a register or not, advance the offset
3671         // into the parameter save area by a full doubleword.
3672         ArgOffset += PtrByteSize;
3673         continue;
3674       }
3675 
3676       // The value of the object is its address, which is the address of
3677       // its first stack doubleword.
3678       InVals.push_back(FIN);
3679 
3680       // Store whatever pieces of the object are in registers to memory.
3681       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3682         if (GPR_idx == Num_GPR_Regs)
3683           break;
3684 
3685         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3686         FuncInfo->addLiveInAttr(VReg, Flags);
3687         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3688         SDValue Addr = FIN;
3689         if (j) {
3690           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3691           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3692         }
3693         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3694                                      MachinePointerInfo(&*FuncArg, j));
3695         MemOps.push_back(Store);
3696         ++GPR_idx;
3697       }
3698       ArgOffset += ArgSize;
3699       continue;
3700     }
3701 
3702     switch (ObjectVT.getSimpleVT().SimpleTy) {
3703     default: llvm_unreachable("Unhandled argument type!");
3704     case MVT::i1:
3705     case MVT::i32:
3706     case MVT::i64:
3707       if (Flags.isNest()) {
3708         // The 'nest' parameter, if any, is passed in R11.
3709         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3710         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3711 
3712         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3713           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3714 
3715         break;
3716       }
3717 
3718       // These can be scalar arguments or elements of an integer array type
3719       // passed directly.  Clang may use those instead of "byval" aggregate
3720       // types to avoid forcing arguments to memory unnecessarily.
3721       if (GPR_idx != Num_GPR_Regs) {
3722         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3723         FuncInfo->addLiveInAttr(VReg, Flags);
3724         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3725 
3726         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3727           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3728           // value to MVT::i64 and then truncate to the correct register size.
3729           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3730       } else {
3731         if (CallConv == CallingConv::Fast)
3732           ComputeArgOffset();
3733 
3734         needsLoad = true;
3735         ArgSize = PtrByteSize;
3736       }
3737       if (CallConv != CallingConv::Fast || needsLoad)
3738         ArgOffset += 8;
3739       break;
3740 
3741     case MVT::f32:
3742     case MVT::f64:
3743       // These can be scalar arguments or elements of a float array type
3744       // passed directly.  The latter are used to implement ELFv2 homogenous
3745       // float aggregates.
3746       if (FPR_idx != Num_FPR_Regs) {
3747         unsigned VReg;
3748 
3749         if (ObjectVT == MVT::f32)
3750           VReg = MF.addLiveIn(FPR[FPR_idx],
3751                               Subtarget.hasP8Vector()
3752                                   ? &PPC::VSSRCRegClass
3753                                   : &PPC::F4RCRegClass);
3754         else
3755           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3756                                                 ? &PPC::VSFRCRegClass
3757                                                 : &PPC::F8RCRegClass);
3758 
3759         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3760         ++FPR_idx;
3761       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3762         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3763         // once we support fp <-> gpr moves.
3764 
3765         // This can only ever happen in the presence of f32 array types,
3766         // since otherwise we never run out of FPRs before running out
3767         // of GPRs.
3768         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3769         FuncInfo->addLiveInAttr(VReg, Flags);
3770         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3771 
3772         if (ObjectVT == MVT::f32) {
3773           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3774             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3775                                  DAG.getConstant(32, dl, MVT::i32));
3776           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3777         }
3778 
3779         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3780       } else {
3781         if (CallConv == CallingConv::Fast)
3782           ComputeArgOffset();
3783 
3784         needsLoad = true;
3785       }
3786 
3787       // When passing an array of floats, the array occupies consecutive
3788       // space in the argument area; only round up to the next doubleword
3789       // at the end of the array.  Otherwise, each float takes 8 bytes.
3790       if (CallConv != CallingConv::Fast || needsLoad) {
3791         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3792         ArgOffset += ArgSize;
3793         if (Flags.isInConsecutiveRegsLast())
3794           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3795       }
3796       break;
3797     case MVT::v4f32:
3798     case MVT::v4i32:
3799     case MVT::v8i16:
3800     case MVT::v16i8:
3801     case MVT::v2f64:
3802     case MVT::v2i64:
3803     case MVT::v1i128:
3804       if (!Subtarget.hasQPX()) {
3805         // These can be scalar arguments or elements of a vector array type
3806         // passed directly.  The latter are used to implement ELFv2 homogenous
3807         // vector aggregates.
3808         if (VR_idx != Num_VR_Regs) {
3809           unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3810           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3811           ++VR_idx;
3812         } else {
3813           if (CallConv == CallingConv::Fast)
3814             ComputeArgOffset();
3815           needsLoad = true;
3816         }
3817         if (CallConv != CallingConv::Fast || needsLoad)
3818           ArgOffset += 16;
3819         break;
3820       } // not QPX
3821 
3822       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3823              "Invalid QPX parameter type");
3824       /* fall through */
3825 
3826     case MVT::v4f64:
3827     case MVT::v4i1:
3828       // QPX vectors are treated like their scalar floating-point subregisters
3829       // (except that they're larger).
3830       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3831       if (QFPR_idx != Num_QFPR_Regs) {
3832         const TargetRegisterClass *RC;
3833         switch (ObjectVT.getSimpleVT().SimpleTy) {
3834         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
3835         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
3836         default:         RC = &PPC::QBRCRegClass; break;
3837         }
3838 
3839         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
3840         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3841         ++QFPR_idx;
3842       } else {
3843         if (CallConv == CallingConv::Fast)
3844           ComputeArgOffset();
3845         needsLoad = true;
3846       }
3847       if (CallConv != CallingConv::Fast || needsLoad)
3848         ArgOffset += Sz;
3849       break;
3850     }
3851 
3852     // We need to load the argument to a virtual register if we determined
3853     // above that we ran out of physical registers of the appropriate type.
3854     if (needsLoad) {
3855       if (ObjSize < ArgSize && !isLittleEndian)
3856         CurArgOffset += ArgSize - ObjSize;
3857       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
3858       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3859       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
3860     }
3861 
3862     InVals.push_back(ArgVal);
3863   }
3864 
3865   // Area that is at least reserved in the caller of this function.
3866   unsigned MinReservedArea;
3867   if (HasParameterArea)
3868     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
3869   else
3870     MinReservedArea = LinkageSize;
3871 
3872   // Set the size that is at least reserved in caller of this function.  Tail
3873   // call optimized functions' reserved stack space needs to be aligned so that
3874   // taking the difference between two stack areas will result in an aligned
3875   // stack.
3876   MinReservedArea =
3877       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3878   FuncInfo->setMinReservedArea(MinReservedArea);
3879 
3880   // If the function takes variable number of arguments, make a frame index for
3881   // the start of the first vararg value... for expansion of llvm.va_start.
3882   if (isVarArg) {
3883     int Depth = ArgOffset;
3884 
3885     FuncInfo->setVarArgsFrameIndex(
3886       MFI.CreateFixedObject(PtrByteSize, Depth, true));
3887     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3888 
3889     // If this function is vararg, store any remaining integer argument regs
3890     // to their spots on the stack so that they may be loaded by dereferencing
3891     // the result of va_next.
3892     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3893          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
3894       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3895       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3896       SDValue Store =
3897           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3898       MemOps.push_back(Store);
3899       // Increment the address by four for the next argument to store
3900       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
3901       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3902     }
3903   }
3904 
3905   if (!MemOps.empty())
3906     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3907 
3908   return Chain;
3909 }
3910 
3911 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
3912     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3913     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3914     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3915   // TODO: add description of PPC stack frame format, or at least some docs.
3916   //
3917   MachineFunction &MF = DAG.getMachineFunction();
3918   MachineFrameInfo &MFI = MF.getFrameInfo();
3919   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3920 
3921   EVT PtrVT = getPointerTy(MF.getDataLayout());
3922   bool isPPC64 = PtrVT == MVT::i64;
3923   // Potential tail calls could cause overwriting of argument stack slots.
3924   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3925                        (CallConv == CallingConv::Fast));
3926   unsigned PtrByteSize = isPPC64 ? 8 : 4;
3927   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3928   unsigned ArgOffset = LinkageSize;
3929   // Area that is at least reserved in caller of this function.
3930   unsigned MinReservedArea = ArgOffset;
3931 
3932   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
3933     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3934     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3935   };
3936   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
3937     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3938     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3939   };
3940   static const MCPhysReg VR[] = {
3941     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3942     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3943   };
3944 
3945   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
3946   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3947   const unsigned Num_VR_Regs  = array_lengthof( VR);
3948 
3949   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3950 
3951   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
3952 
3953   // In 32-bit non-varargs functions, the stack space for vectors is after the
3954   // stack space for non-vectors.  We do not use this space unless we have
3955   // too many vectors to fit in registers, something that only occurs in
3956   // constructed examples:), but we have to walk the arglist to figure
3957   // that out...for the pathological case, compute VecArgOffset as the
3958   // start of the vector parameter area.  Computing VecArgOffset is the
3959   // entire point of the following loop.
3960   unsigned VecArgOffset = ArgOffset;
3961   if (!isVarArg && !isPPC64) {
3962     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
3963          ++ArgNo) {
3964       EVT ObjectVT = Ins[ArgNo].VT;
3965       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3966 
3967       if (Flags.isByVal()) {
3968         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
3969         unsigned ObjSize = Flags.getByValSize();
3970         unsigned ArgSize =
3971                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3972         VecArgOffset += ArgSize;
3973         continue;
3974       }
3975 
3976       switch(ObjectVT.getSimpleVT().SimpleTy) {
3977       default: llvm_unreachable("Unhandled argument type!");
3978       case MVT::i1:
3979       case MVT::i32:
3980       case MVT::f32:
3981         VecArgOffset += 4;
3982         break;
3983       case MVT::i64:  // PPC64
3984       case MVT::f64:
3985         // FIXME: We are guaranteed to be !isPPC64 at this point.
3986         // Does MVT::i64 apply?
3987         VecArgOffset += 8;
3988         break;
3989       case MVT::v4f32:
3990       case MVT::v4i32:
3991       case MVT::v8i16:
3992       case MVT::v16i8:
3993         // Nothing to do, we're only looking at Nonvector args here.
3994         break;
3995       }
3996     }
3997   }
3998   // We've found where the vector parameter area in memory is.  Skip the
3999   // first 12 parameters; these don't use that memory.
4000   VecArgOffset = ((VecArgOffset+15)/16)*16;
4001   VecArgOffset += 12*16;
4002 
4003   // Add DAG nodes to load the arguments or copy them out of registers.  On
4004   // entry to a function on PPC, the arguments start after the linkage area,
4005   // although the first ones are often in registers.
4006 
4007   SmallVector<SDValue, 8> MemOps;
4008   unsigned nAltivecParamsAtEnd = 0;
4009   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4010   unsigned CurArgIdx = 0;
4011   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4012     SDValue ArgVal;
4013     bool needsLoad = false;
4014     EVT ObjectVT = Ins[ArgNo].VT;
4015     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4016     unsigned ArgSize = ObjSize;
4017     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4018     if (Ins[ArgNo].isOrigArg()) {
4019       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4020       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4021     }
4022     unsigned CurArgOffset = ArgOffset;
4023 
4024     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4025     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4026         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4027       if (isVarArg || isPPC64) {
4028         MinReservedArea = ((MinReservedArea+15)/16)*16;
4029         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4030                                                   Flags,
4031                                                   PtrByteSize);
4032       } else  nAltivecParamsAtEnd++;
4033     } else
4034       // Calculate min reserved area.
4035       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4036                                                 Flags,
4037                                                 PtrByteSize);
4038 
4039     // FIXME the codegen can be much improved in some cases.
4040     // We do not have to keep everything in memory.
4041     if (Flags.isByVal()) {
4042       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4043 
4044       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4045       ObjSize = Flags.getByValSize();
4046       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4047       // Objects of size 1 and 2 are right justified, everything else is
4048       // left justified.  This means the memory address is adjusted forwards.
4049       if (ObjSize==1 || ObjSize==2) {
4050         CurArgOffset = CurArgOffset + (4 - ObjSize);
4051       }
4052       // The value of the object is its address.
4053       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4054       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4055       InVals.push_back(FIN);
4056       if (ObjSize==1 || ObjSize==2) {
4057         if (GPR_idx != Num_GPR_Regs) {
4058           unsigned VReg;
4059           if (isPPC64)
4060             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4061           else
4062             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4063           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4064           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4065           SDValue Store =
4066               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4067                                 MachinePointerInfo(&*FuncArg), ObjType);
4068           MemOps.push_back(Store);
4069           ++GPR_idx;
4070         }
4071 
4072         ArgOffset += PtrByteSize;
4073 
4074         continue;
4075       }
4076       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4077         // Store whatever pieces of the object are in registers
4078         // to memory.  ArgOffset will be the address of the beginning
4079         // of the object.
4080         if (GPR_idx != Num_GPR_Regs) {
4081           unsigned VReg;
4082           if (isPPC64)
4083             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4084           else
4085             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4086           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4087           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4088           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4089           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4090                                        MachinePointerInfo(&*FuncArg, j));
4091           MemOps.push_back(Store);
4092           ++GPR_idx;
4093           ArgOffset += PtrByteSize;
4094         } else {
4095           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4096           break;
4097         }
4098       }
4099       continue;
4100     }
4101 
4102     switch (ObjectVT.getSimpleVT().SimpleTy) {
4103     default: llvm_unreachable("Unhandled argument type!");
4104     case MVT::i1:
4105     case MVT::i32:
4106       if (!isPPC64) {
4107         if (GPR_idx != Num_GPR_Regs) {
4108           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4109           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4110 
4111           if (ObjectVT == MVT::i1)
4112             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4113 
4114           ++GPR_idx;
4115         } else {
4116           needsLoad = true;
4117           ArgSize = PtrByteSize;
4118         }
4119         // All int arguments reserve stack space in the Darwin ABI.
4120         ArgOffset += PtrByteSize;
4121         break;
4122       }
4123       LLVM_FALLTHROUGH;
4124     case MVT::i64:  // PPC64
4125       if (GPR_idx != Num_GPR_Regs) {
4126         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4127         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4128 
4129         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4130           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4131           // value to MVT::i64 and then truncate to the correct register size.
4132           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4133 
4134         ++GPR_idx;
4135       } else {
4136         needsLoad = true;
4137         ArgSize = PtrByteSize;
4138       }
4139       // All int arguments reserve stack space in the Darwin ABI.
4140       ArgOffset += 8;
4141       break;
4142 
4143     case MVT::f32:
4144     case MVT::f64:
4145       // Every 4 bytes of argument space consumes one of the GPRs available for
4146       // argument passing.
4147       if (GPR_idx != Num_GPR_Regs) {
4148         ++GPR_idx;
4149         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4150           ++GPR_idx;
4151       }
4152       if (FPR_idx != Num_FPR_Regs) {
4153         unsigned VReg;
4154 
4155         if (ObjectVT == MVT::f32)
4156           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4157         else
4158           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4159 
4160         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4161         ++FPR_idx;
4162       } else {
4163         needsLoad = true;
4164       }
4165 
4166       // All FP arguments reserve stack space in the Darwin ABI.
4167       ArgOffset += isPPC64 ? 8 : ObjSize;
4168       break;
4169     case MVT::v4f32:
4170     case MVT::v4i32:
4171     case MVT::v8i16:
4172     case MVT::v16i8:
4173       // Note that vector arguments in registers don't reserve stack space,
4174       // except in varargs functions.
4175       if (VR_idx != Num_VR_Regs) {
4176         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4177         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4178         if (isVarArg) {
4179           while ((ArgOffset % 16) != 0) {
4180             ArgOffset += PtrByteSize;
4181             if (GPR_idx != Num_GPR_Regs)
4182               GPR_idx++;
4183           }
4184           ArgOffset += 16;
4185           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4186         }
4187         ++VR_idx;
4188       } else {
4189         if (!isVarArg && !isPPC64) {
4190           // Vectors go after all the nonvectors.
4191           CurArgOffset = VecArgOffset;
4192           VecArgOffset += 16;
4193         } else {
4194           // Vectors are aligned.
4195           ArgOffset = ((ArgOffset+15)/16)*16;
4196           CurArgOffset = ArgOffset;
4197           ArgOffset += 16;
4198         }
4199         needsLoad = true;
4200       }
4201       break;
4202     }
4203 
4204     // We need to load the argument to a virtual register if we determined above
4205     // that we ran out of physical registers of the appropriate type.
4206     if (needsLoad) {
4207       int FI = MFI.CreateFixedObject(ObjSize,
4208                                      CurArgOffset + (ArgSize - ObjSize),
4209                                      isImmutable);
4210       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4211       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4212     }
4213 
4214     InVals.push_back(ArgVal);
4215   }
4216 
4217   // Allow for Altivec parameters at the end, if needed.
4218   if (nAltivecParamsAtEnd) {
4219     MinReservedArea = ((MinReservedArea+15)/16)*16;
4220     MinReservedArea += 16*nAltivecParamsAtEnd;
4221   }
4222 
4223   // Area that is at least reserved in the caller of this function.
4224   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4225 
4226   // Set the size that is at least reserved in caller of this function.  Tail
4227   // call optimized functions' reserved stack space needs to be aligned so that
4228   // taking the difference between two stack areas will result in an aligned
4229   // stack.
4230   MinReservedArea =
4231       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4232   FuncInfo->setMinReservedArea(MinReservedArea);
4233 
4234   // If the function takes variable number of arguments, make a frame index for
4235   // the start of the first vararg value... for expansion of llvm.va_start.
4236   if (isVarArg) {
4237     int Depth = ArgOffset;
4238 
4239     FuncInfo->setVarArgsFrameIndex(
4240       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4241                             Depth, true));
4242     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4243 
4244     // If this function is vararg, store any remaining integer argument regs
4245     // to their spots on the stack so that they may be loaded by dereferencing
4246     // the result of va_next.
4247     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4248       unsigned VReg;
4249 
4250       if (isPPC64)
4251         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4252       else
4253         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4254 
4255       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4256       SDValue Store =
4257           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4258       MemOps.push_back(Store);
4259       // Increment the address by four for the next argument to store
4260       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4261       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4262     }
4263   }
4264 
4265   if (!MemOps.empty())
4266     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4267 
4268   return Chain;
4269 }
4270 
4271 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4272 /// adjusted to accommodate the arguments for the tailcall.
4273 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4274                                    unsigned ParamSize) {
4275 
4276   if (!isTailCall) return 0;
4277 
4278   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4279   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4280   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4281   // Remember only if the new adjustement is bigger.
4282   if (SPDiff < FI->getTailCallSPDelta())
4283     FI->setTailCallSPDelta(SPDiff);
4284 
4285   return SPDiff;
4286 }
4287 
4288 static bool isFunctionGlobalAddress(SDValue Callee);
4289 
4290 static bool
4291 callsShareTOCBase(const Function *Caller, SDValue Callee,
4292                     const TargetMachine &TM) {
4293   // If !G, Callee can be an external symbol.
4294   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4295   if (!G)
4296     return false;
4297 
4298   // The medium and large code models are expected to provide a sufficiently
4299   // large TOC to provide all data addressing needs of a module with a
4300   // single TOC. Since each module will be addressed with a single TOC then we
4301   // only need to check that caller and callee don't cross dso boundaries.
4302   if (CodeModel::Medium == TM.getCodeModel() ||
4303       CodeModel::Large == TM.getCodeModel())
4304     return TM.shouldAssumeDSOLocal(*Caller->getParent(), G->getGlobal());
4305 
4306   // Otherwise we need to ensure callee and caller are in the same section,
4307   // since the linker may allocate multiple TOCs, and we don't know which
4308   // sections will belong to the same TOC base.
4309 
4310   const GlobalValue *GV = G->getGlobal();
4311   if (!GV->isStrongDefinitionForLinker())
4312     return false;
4313 
4314   // Any explicitly-specified sections and section prefixes must also match.
4315   // Also, if we're using -ffunction-sections, then each function is always in
4316   // a different section (the same is true for COMDAT functions).
4317   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4318       GV->getSection() != Caller->getSection())
4319     return false;
4320   if (const auto *F = dyn_cast<Function>(GV)) {
4321     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4322       return false;
4323   }
4324 
4325   // If the callee might be interposed, then we can't assume the ultimate call
4326   // target will be in the same section. Even in cases where we can assume that
4327   // interposition won't happen, in any case where the linker might insert a
4328   // stub to allow for interposition, we must generate code as though
4329   // interposition might occur. To understand why this matters, consider a
4330   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4331   // in the same section, but a is in a different module (i.e. has a different
4332   // TOC base pointer). If the linker allows for interposition between b and c,
4333   // then it will generate a stub for the call edge between b and c which will
4334   // save the TOC pointer into the designated stack slot allocated by b. If we
4335   // return true here, and therefore allow a tail call between b and c, that
4336   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4337   // pointer into the stack slot allocated by a (where the a -> b stub saved
4338   // a's TOC base pointer). If we're not considering a tail call, but rather,
4339   // whether a nop is needed after the call instruction in b, because the linker
4340   // will insert a stub, it might complain about a missing nop if we omit it
4341   // (although many don't complain in this case).
4342   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4343     return false;
4344 
4345   return true;
4346 }
4347 
4348 static bool
4349 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4350                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4351   assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
4352 
4353   const unsigned PtrByteSize = 8;
4354   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4355 
4356   static const MCPhysReg GPR[] = {
4357     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4358     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4359   };
4360   static const MCPhysReg VR[] = {
4361     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4362     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4363   };
4364 
4365   const unsigned NumGPRs = array_lengthof(GPR);
4366   const unsigned NumFPRs = 13;
4367   const unsigned NumVRs = array_lengthof(VR);
4368   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4369 
4370   unsigned NumBytes = LinkageSize;
4371   unsigned AvailableFPRs = NumFPRs;
4372   unsigned AvailableVRs = NumVRs;
4373 
4374   for (const ISD::OutputArg& Param : Outs) {
4375     if (Param.Flags.isNest()) continue;
4376 
4377     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4378                                PtrByteSize, LinkageSize, ParamAreaSize,
4379                                NumBytes, AvailableFPRs, AvailableVRs,
4380                                Subtarget.hasQPX()))
4381       return true;
4382   }
4383   return false;
4384 }
4385 
4386 static bool
4387 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
4388   if (CS.arg_size() != CallerFn->arg_size())
4389     return false;
4390 
4391   ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
4392   ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
4393   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4394 
4395   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4396     const Value* CalleeArg = *CalleeArgIter;
4397     const Value* CallerArg = &(*CallerArgIter);
4398     if (CalleeArg == CallerArg)
4399       continue;
4400 
4401     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4402     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4403     //      }
4404     // 1st argument of callee is undef and has the same type as caller.
4405     if (CalleeArg->getType() == CallerArg->getType() &&
4406         isa<UndefValue>(CalleeArg))
4407       continue;
4408 
4409     return false;
4410   }
4411 
4412   return true;
4413 }
4414 
4415 // Returns true if TCO is possible between the callers and callees
4416 // calling conventions.
4417 static bool
4418 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4419                                     CallingConv::ID CalleeCC) {
4420   // Tail calls are possible with fastcc and ccc.
4421   auto isTailCallableCC  = [] (CallingConv::ID CC){
4422       return  CC == CallingConv::C || CC == CallingConv::Fast;
4423   };
4424   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4425     return false;
4426 
4427   // We can safely tail call both fastcc and ccc callees from a c calling
4428   // convention caller. If the caller is fastcc, we may have less stack space
4429   // than a non-fastcc caller with the same signature so disable tail-calls in
4430   // that case.
4431   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4432 }
4433 
4434 bool
4435 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4436                                     SDValue Callee,
4437                                     CallingConv::ID CalleeCC,
4438                                     ImmutableCallSite CS,
4439                                     bool isVarArg,
4440                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4441                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4442                                     SelectionDAG& DAG) const {
4443   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4444 
4445   if (DisableSCO && !TailCallOpt) return false;
4446 
4447   // Variadic argument functions are not supported.
4448   if (isVarArg) return false;
4449 
4450   auto &Caller = DAG.getMachineFunction().getFunction();
4451   // Check that the calling conventions are compatible for tco.
4452   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4453     return false;
4454 
4455   // Caller contains any byval parameter is not supported.
4456   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4457     return false;
4458 
4459   // Callee contains any byval parameter is not supported, too.
4460   // Note: This is a quick work around, because in some cases, e.g.
4461   // caller's stack size > callee's stack size, we are still able to apply
4462   // sibling call optimization. For example, gcc is able to do SCO for caller1
4463   // in the following example, but not for caller2.
4464   //   struct test {
4465   //     long int a;
4466   //     char ary[56];
4467   //   } gTest;
4468   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4469   //     b->a = v.a;
4470   //     return 0;
4471   //   }
4472   //   void caller1(struct test a, struct test c, struct test *b) {
4473   //     callee(gTest, b); }
4474   //   void caller2(struct test *b) { callee(gTest, b); }
4475   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4476     return false;
4477 
4478   // If callee and caller use different calling conventions, we cannot pass
4479   // parameters on stack since offsets for the parameter area may be different.
4480   if (Caller.getCallingConv() != CalleeCC &&
4481       needStackSlotPassParameters(Subtarget, Outs))
4482     return false;
4483 
4484   // No TCO/SCO on indirect call because Caller have to restore its TOC
4485   if (!isFunctionGlobalAddress(Callee) &&
4486       !isa<ExternalSymbolSDNode>(Callee))
4487     return false;
4488 
4489   // If the caller and callee potentially have different TOC bases then we
4490   // cannot tail call since we need to restore the TOC pointer after the call.
4491   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4492   if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4493     return false;
4494 
4495   // TCO allows altering callee ABI, so we don't have to check further.
4496   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4497     return true;
4498 
4499   if (DisableSCO) return false;
4500 
4501   // If callee use the same argument list that caller is using, then we can
4502   // apply SCO on this case. If it is not, then we need to check if callee needs
4503   // stack for passing arguments.
4504   if (!hasSameArgumentList(&Caller, CS) &&
4505       needStackSlotPassParameters(Subtarget, Outs)) {
4506     return false;
4507   }
4508 
4509   return true;
4510 }
4511 
4512 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4513 /// for tail call optimization. Targets which want to do tail call
4514 /// optimization should implement this function.
4515 bool
4516 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4517                                                      CallingConv::ID CalleeCC,
4518                                                      bool isVarArg,
4519                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4520                                                      SelectionDAG& DAG) const {
4521   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4522     return false;
4523 
4524   // Variable argument functions are not supported.
4525   if (isVarArg)
4526     return false;
4527 
4528   MachineFunction &MF = DAG.getMachineFunction();
4529   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4530   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4531     // Functions containing by val parameters are not supported.
4532     for (unsigned i = 0; i != Ins.size(); i++) {
4533        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4534        if (Flags.isByVal()) return false;
4535     }
4536 
4537     // Non-PIC/GOT tail calls are supported.
4538     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4539       return true;
4540 
4541     // At the moment we can only do local tail calls (in same module, hidden
4542     // or protected) if we are generating PIC.
4543     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4544       return G->getGlobal()->hasHiddenVisibility()
4545           || G->getGlobal()->hasProtectedVisibility();
4546   }
4547 
4548   return false;
4549 }
4550 
4551 /// isCallCompatibleAddress - Return the immediate to use if the specified
4552 /// 32-bit value is representable in the immediate field of a BxA instruction.
4553 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4554   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4555   if (!C) return nullptr;
4556 
4557   int Addr = C->getZExtValue();
4558   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4559       SignExtend32<26>(Addr) != Addr)
4560     return nullptr;  // Top 6 bits have to be sext of immediate.
4561 
4562   return DAG
4563       .getConstant(
4564           (int)C->getZExtValue() >> 2, SDLoc(Op),
4565           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4566       .getNode();
4567 }
4568 
4569 namespace {
4570 
4571 struct TailCallArgumentInfo {
4572   SDValue Arg;
4573   SDValue FrameIdxOp;
4574   int FrameIdx = 0;
4575 
4576   TailCallArgumentInfo() = default;
4577 };
4578 
4579 } // end anonymous namespace
4580 
4581 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4582 static void StoreTailCallArgumentsToStackSlot(
4583     SelectionDAG &DAG, SDValue Chain,
4584     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4585     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4586   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4587     SDValue Arg = TailCallArgs[i].Arg;
4588     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4589     int FI = TailCallArgs[i].FrameIdx;
4590     // Store relative to framepointer.
4591     MemOpChains.push_back(DAG.getStore(
4592         Chain, dl, Arg, FIN,
4593         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4594   }
4595 }
4596 
4597 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4598 /// the appropriate stack slot for the tail call optimized function call.
4599 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4600                                              SDValue OldRetAddr, SDValue OldFP,
4601                                              int SPDiff, const SDLoc &dl) {
4602   if (SPDiff) {
4603     // Calculate the new stack slot for the return address.
4604     MachineFunction &MF = DAG.getMachineFunction();
4605     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4606     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4607     bool isPPC64 = Subtarget.isPPC64();
4608     int SlotSize = isPPC64 ? 8 : 4;
4609     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4610     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4611                                                          NewRetAddrLoc, true);
4612     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4613     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4614     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4615                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4616 
4617     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4618     // slot as the FP is never overwritten.
4619     if (Subtarget.isDarwinABI()) {
4620       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4621       int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
4622                                                          true);
4623       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4624       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
4625                            MachinePointerInfo::getFixedStack(
4626                                DAG.getMachineFunction(), NewFPIdx));
4627     }
4628   }
4629   return Chain;
4630 }
4631 
4632 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4633 /// the position of the argument.
4634 static void
4635 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4636                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4637                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4638   int Offset = ArgOffset + SPDiff;
4639   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4640   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4641   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4642   SDValue FIN = DAG.getFrameIndex(FI, VT);
4643   TailCallArgumentInfo Info;
4644   Info.Arg = Arg;
4645   Info.FrameIdxOp = FIN;
4646   Info.FrameIdx = FI;
4647   TailCallArguments.push_back(Info);
4648 }
4649 
4650 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4651 /// stack slot. Returns the chain as result and the loaded frame pointers in
4652 /// LROpOut/FPOpout. Used when tail calling.
4653 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4654     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4655     SDValue &FPOpOut, const SDLoc &dl) const {
4656   if (SPDiff) {
4657     // Load the LR and FP stack slot for later adjusting.
4658     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4659     LROpOut = getReturnAddrFrameIndex(DAG);
4660     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4661     Chain = SDValue(LROpOut.getNode(), 1);
4662 
4663     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4664     // slot as the FP is never overwritten.
4665     if (Subtarget.isDarwinABI()) {
4666       FPOpOut = getFramePointerFrameIndex(DAG);
4667       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
4668       Chain = SDValue(FPOpOut.getNode(), 1);
4669     }
4670   }
4671   return Chain;
4672 }
4673 
4674 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4675 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4676 /// specified by the specific parameter attribute. The copy will be passed as
4677 /// a byval function parameter.
4678 /// Sometimes what we are copying is the end of a larger object, the part that
4679 /// does not fit in registers.
4680 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4681                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4682                                          SelectionDAG &DAG, const SDLoc &dl) {
4683   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4684   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4685                        false, false, false, MachinePointerInfo(),
4686                        MachinePointerInfo());
4687 }
4688 
4689 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4690 /// tail calls.
4691 static void LowerMemOpCallTo(
4692     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4693     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4694     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4695     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4696   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4697   if (!isTailCall) {
4698     if (isVector) {
4699       SDValue StackPtr;
4700       if (isPPC64)
4701         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4702       else
4703         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4704       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4705                            DAG.getConstant(ArgOffset, dl, PtrVT));
4706     }
4707     MemOpChains.push_back(
4708         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4709     // Calculate and remember argument location.
4710   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4711                                   TailCallArguments);
4712 }
4713 
4714 static void
4715 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4716                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4717                 SDValue FPOp,
4718                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4719   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4720   // might overwrite each other in case of tail call optimization.
4721   SmallVector<SDValue, 8> MemOpChains2;
4722   // Do not flag preceding copytoreg stuff together with the following stuff.
4723   InFlag = SDValue();
4724   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4725                                     MemOpChains2, dl);
4726   if (!MemOpChains2.empty())
4727     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4728 
4729   // Store the return address to the appropriate stack slot.
4730   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4731 
4732   // Emit callseq_end just before tailcall node.
4733   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4734                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4735   InFlag = Chain.getValue(1);
4736 }
4737 
4738 // Is this global address that of a function that can be called by name? (as
4739 // opposed to something that must hold a descriptor for an indirect call).
4740 static bool isFunctionGlobalAddress(SDValue Callee) {
4741   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4742     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4743         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4744       return false;
4745 
4746     return G->getGlobal()->getValueType()->isFunctionTy();
4747   }
4748 
4749   return false;
4750 }
4751 
4752 static unsigned
4753 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
4754             SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
4755             bool isPatchPoint, bool hasNest,
4756             SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
4757             SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4758             ImmutableCallSite CS, const PPCSubtarget &Subtarget) {
4759   bool isPPC64 = Subtarget.isPPC64();
4760   bool isSVR4ABI = Subtarget.isSVR4ABI();
4761   bool isELFv2ABI = Subtarget.isELFv2ABI();
4762 
4763   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4764   NodeTys.push_back(MVT::Other);   // Returns a chain
4765   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
4766 
4767   unsigned CallOpc = PPCISD::CALL;
4768 
4769   bool needIndirectCall = true;
4770   if (!isSVR4ABI || !isPPC64)
4771     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4772       // If this is an absolute destination address, use the munged value.
4773       Callee = SDValue(Dest, 0);
4774       needIndirectCall = false;
4775     }
4776 
4777   // PC-relative references to external symbols should go through $stub, unless
4778   // we're building with the leopard linker or later, which automatically
4779   // synthesizes these stubs.
4780   const TargetMachine &TM = DAG.getTarget();
4781   const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
4782   const GlobalValue *GV = nullptr;
4783   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
4784     GV = G->getGlobal();
4785   bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
4786   bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64;
4787 
4788   if (isFunctionGlobalAddress(Callee)) {
4789     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4790     // A call to a TLS address is actually an indirect call to a
4791     // thread-specific pointer.
4792     unsigned OpFlags = 0;
4793     if (UsePlt)
4794       OpFlags = PPCII::MO_PLT;
4795 
4796     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4797     // every direct call is) turn it into a TargetGlobalAddress /
4798     // TargetExternalSymbol node so that legalize doesn't hack it.
4799     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4800                                         Callee.getValueType(), 0, OpFlags);
4801     needIndirectCall = false;
4802   }
4803 
4804   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4805     unsigned char OpFlags = 0;
4806 
4807     if (UsePlt)
4808       OpFlags = PPCII::MO_PLT;
4809 
4810     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
4811                                          OpFlags);
4812     needIndirectCall = false;
4813   }
4814 
4815   if (isPatchPoint) {
4816     // We'll form an invalid direct call when lowering a patchpoint; the full
4817     // sequence for an indirect call is complicated, and many of the
4818     // instructions introduced might have side effects (and, thus, can't be
4819     // removed later). The call itself will be removed as soon as the
4820     // argument/return lowering is complete, so the fact that it has the wrong
4821     // kind of operands should not really matter.
4822     needIndirectCall = false;
4823   }
4824 
4825   if (needIndirectCall) {
4826     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
4827     // to do the call, we can't use PPCISD::CALL.
4828     SDValue MTCTROps[] = {Chain, Callee, InFlag};
4829 
4830     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
4831       // Function pointers in the 64-bit SVR4 ABI do not point to the function
4832       // entry point, but to the function descriptor (the function entry point
4833       // address is part of the function descriptor though).
4834       // The function descriptor is a three doubleword structure with the
4835       // following fields: function entry point, TOC base address and
4836       // environment pointer.
4837       // Thus for a call through a function pointer, the following actions need
4838       // to be performed:
4839       //   1. Save the TOC of the caller in the TOC save area of its stack
4840       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
4841       //   2. Load the address of the function entry point from the function
4842       //      descriptor.
4843       //   3. Load the TOC of the callee from the function descriptor into r2.
4844       //   4. Load the environment pointer from the function descriptor into
4845       //      r11.
4846       //   5. Branch to the function entry point address.
4847       //   6. On return of the callee, the TOC of the caller needs to be
4848       //      restored (this is done in FinishCall()).
4849       //
4850       // The loads are scheduled at the beginning of the call sequence, and the
4851       // register copies are flagged together to ensure that no other
4852       // operations can be scheduled in between. E.g. without flagging the
4853       // copies together, a TOC access in the caller could be scheduled between
4854       // the assignment of the callee TOC and the branch to the callee, which
4855       // results in the TOC access going through the TOC of the callee instead
4856       // of going through the TOC of the caller, which leads to incorrect code.
4857 
4858       // Load the address of the function entry point from the function
4859       // descriptor.
4860       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
4861       if (LDChain.getValueType() == MVT::Glue)
4862         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
4863 
4864       auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
4865                           ? (MachineMemOperand::MODereferenceable |
4866                              MachineMemOperand::MOInvariant)
4867                           : MachineMemOperand::MONone;
4868 
4869       MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
4870       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
4871                                         /* Alignment = */ 8, MMOFlags);
4872 
4873       // Load environment pointer into r11.
4874       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
4875       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
4876       SDValue LoadEnvPtr =
4877           DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16),
4878                       /* Alignment = */ 8, MMOFlags);
4879 
4880       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
4881       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
4882       SDValue TOCPtr =
4883           DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8),
4884                       /* Alignment = */ 8, MMOFlags);
4885 
4886       setUsesTOCBasePtr(DAG);
4887       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
4888                                         InFlag);
4889       Chain = TOCVal.getValue(0);
4890       InFlag = TOCVal.getValue(1);
4891 
4892       // If the function call has an explicit 'nest' parameter, it takes the
4893       // place of the environment pointer.
4894       if (!hasNest) {
4895         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
4896                                           InFlag);
4897 
4898         Chain = EnvVal.getValue(0);
4899         InFlag = EnvVal.getValue(1);
4900       }
4901 
4902       MTCTROps[0] = Chain;
4903       MTCTROps[1] = LoadFuncPtr;
4904       MTCTROps[2] = InFlag;
4905     }
4906 
4907     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
4908                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
4909     InFlag = Chain.getValue(1);
4910 
4911     NodeTys.clear();
4912     NodeTys.push_back(MVT::Other);
4913     NodeTys.push_back(MVT::Glue);
4914     Ops.push_back(Chain);
4915     CallOpc = PPCISD::BCTRL;
4916     Callee.setNode(nullptr);
4917     // Add use of X11 (holding environment pointer)
4918     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
4919       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
4920     // Add CTR register as callee so a bctr can be emitted later.
4921     if (isTailCall)
4922       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
4923   }
4924 
4925   // If this is a direct call, pass the chain and the callee.
4926   if (Callee.getNode()) {
4927     Ops.push_back(Chain);
4928     Ops.push_back(Callee);
4929   }
4930   // If this is a tail call add stack pointer delta.
4931   if (isTailCall)
4932     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
4933 
4934   // Add argument registers to the end of the list so that they are known live
4935   // into the call.
4936   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
4937     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
4938                                   RegsToPass[i].second.getValueType()));
4939 
4940   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
4941   // into the call.
4942   if (isSVR4ABI && isPPC64 && !isPatchPoint) {
4943     setUsesTOCBasePtr(DAG);
4944     Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
4945   }
4946 
4947   return CallOpc;
4948 }
4949 
4950 SDValue PPCTargetLowering::LowerCallResult(
4951     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
4952     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4953     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4954   SmallVector<CCValAssign, 16> RVLocs;
4955   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4956                     *DAG.getContext());
4957 
4958   CCRetInfo.AnalyzeCallResult(
4959       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
4960                ? RetCC_PPC_Cold
4961                : RetCC_PPC);
4962 
4963   // Copy all of the result registers out of their specified physreg.
4964   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
4965     CCValAssign &VA = RVLocs[i];
4966     assert(VA.isRegLoc() && "Can only return in registers!");
4967 
4968     SDValue Val = DAG.getCopyFromReg(Chain, dl,
4969                                      VA.getLocReg(), VA.getLocVT(), InFlag);
4970     Chain = Val.getValue(1);
4971     InFlag = Val.getValue(2);
4972 
4973     switch (VA.getLocInfo()) {
4974     default: llvm_unreachable("Unknown loc info!");
4975     case CCValAssign::Full: break;
4976     case CCValAssign::AExt:
4977       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4978       break;
4979     case CCValAssign::ZExt:
4980       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
4981                         DAG.getValueType(VA.getValVT()));
4982       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4983       break;
4984     case CCValAssign::SExt:
4985       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
4986                         DAG.getValueType(VA.getValVT()));
4987       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4988       break;
4989     }
4990 
4991     InVals.push_back(Val);
4992   }
4993 
4994   return Chain;
4995 }
4996 
4997 SDValue PPCTargetLowering::FinishCall(
4998     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
4999     bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
5000     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
5001     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5002     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5003     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
5004   std::vector<EVT> NodeTys;
5005   SmallVector<SDValue, 8> Ops;
5006   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
5007                                  SPDiff, isTailCall, isPatchPoint, hasNest,
5008                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
5009 
5010   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5011   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
5012     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5013 
5014   // When performing tail call optimization the callee pops its arguments off
5015   // the stack. Account for this here so these bytes can be pushed back on in
5016   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5017   int BytesCalleePops =
5018     (CallConv == CallingConv::Fast &&
5019      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
5020 
5021   // Add a register mask operand representing the call-preserved registers.
5022   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5023   const uint32_t *Mask =
5024       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
5025   assert(Mask && "Missing call preserved mask for calling convention");
5026   Ops.push_back(DAG.getRegisterMask(Mask));
5027 
5028   if (InFlag.getNode())
5029     Ops.push_back(InFlag);
5030 
5031   // Emit tail call.
5032   if (isTailCall) {
5033     assert(((Callee.getOpcode() == ISD::Register &&
5034              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5035             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5036             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5037             isa<ConstantSDNode>(Callee)) &&
5038     "Expecting an global address, external symbol, absolute value or register");
5039 
5040     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5041     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
5042   }
5043 
5044   // Add a NOP immediately after the branch instruction when using the 64-bit
5045   // SVR4 ABI. At link time, if caller and callee are in a different module and
5046   // thus have a different TOC, the call will be replaced with a call to a stub
5047   // function which saves the current TOC, loads the TOC of the callee and
5048   // branches to the callee. The NOP will be replaced with a load instruction
5049   // which restores the TOC of the caller from the TOC save slot of the current
5050   // stack frame. If caller and callee belong to the same module (and have the
5051   // same TOC), the NOP will remain unchanged.
5052 
5053   MachineFunction &MF = DAG.getMachineFunction();
5054   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
5055       !isPatchPoint) {
5056     if (CallOpc == PPCISD::BCTRL) {
5057       // This is a call through a function pointer.
5058       // Restore the caller TOC from the save area into R2.
5059       // See PrepareCall() for more information about calls through function
5060       // pointers in the 64-bit SVR4 ABI.
5061       // We are using a target-specific load with r2 hard coded, because the
5062       // result of a target-independent load would never go directly into r2,
5063       // since r2 is a reserved register (which prevents the register allocator
5064       // from allocating it), resulting in an additional register being
5065       // allocated and an unnecessary move instruction being generated.
5066       CallOpc = PPCISD::BCTRL_LOAD_TOC;
5067 
5068       EVT PtrVT = getPointerTy(DAG.getDataLayout());
5069       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
5070       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5071       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5072       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
5073 
5074       // The address needs to go after the chain input but before the flag (or
5075       // any other variadic arguments).
5076       Ops.insert(std::next(Ops.begin()), AddTOC);
5077     } else if (CallOpc == PPCISD::CALL &&
5078       !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) {
5079       // Otherwise insert NOP for non-local calls.
5080       CallOpc = PPCISD::CALL_NOP;
5081     }
5082   }
5083 
5084   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
5085   InFlag = Chain.getValue(1);
5086 
5087   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5088                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5089                              InFlag, dl);
5090   if (!Ins.empty())
5091     InFlag = Chain.getValue(1);
5092 
5093   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
5094                          Ins, dl, DAG, InVals);
5095 }
5096 
5097 SDValue
5098 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5099                              SmallVectorImpl<SDValue> &InVals) const {
5100   SelectionDAG &DAG                     = CLI.DAG;
5101   SDLoc &dl                             = CLI.DL;
5102   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5103   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5104   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5105   SDValue Chain                         = CLI.Chain;
5106   SDValue Callee                        = CLI.Callee;
5107   bool &isTailCall                      = CLI.IsTailCall;
5108   CallingConv::ID CallConv              = CLI.CallConv;
5109   bool isVarArg                         = CLI.IsVarArg;
5110   bool isPatchPoint                     = CLI.IsPatchPoint;
5111   ImmutableCallSite CS                  = CLI.CS;
5112 
5113   if (isTailCall) {
5114     if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
5115       isTailCall = false;
5116     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5117       isTailCall =
5118         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
5119                                                  isVarArg, Outs, Ins, DAG);
5120     else
5121       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5122                                                      Ins, DAG);
5123     if (isTailCall) {
5124       ++NumTailCalls;
5125       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5126         ++NumSiblingCalls;
5127 
5128       assert(isa<GlobalAddressSDNode>(Callee) &&
5129              "Callee should be an llvm::Function object.");
5130       DEBUG(
5131         const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5132         const unsigned Width = 80 - strlen("TCO caller: ")
5133                                   - strlen(", callee linkage: 0, 0");
5134         dbgs() << "TCO caller: "
5135                << left_justify(DAG.getMachineFunction().getName(), Width)
5136                << ", callee linkage: "
5137                << GV->getVisibility() << ", " << GV->getLinkage() << "\n"
5138       );
5139     }
5140   }
5141 
5142   if (!isTailCall && CS && CS.isMustTailCall())
5143     report_fatal_error("failed to perform tail call elimination on a call "
5144                        "site marked musttail");
5145 
5146   // When long calls (i.e. indirect calls) are always used, calls are always
5147   // made via function pointer. If we have a function name, first translate it
5148   // into a pointer.
5149   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5150       !isTailCall)
5151     Callee = LowerGlobalAddress(Callee, DAG);
5152 
5153   if (Subtarget.isSVR4ABI()) {
5154     if (Subtarget.isPPC64())
5155       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
5156                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
5157                               dl, DAG, InVals, CS);
5158     else
5159       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
5160                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
5161                               dl, DAG, InVals, CS);
5162   }
5163 
5164   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
5165                           isTailCall, isPatchPoint, Outs, OutVals, Ins,
5166                           dl, DAG, InVals, CS);
5167 }
5168 
5169 SDValue PPCTargetLowering::LowerCall_32SVR4(
5170     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5171     bool isTailCall, bool isPatchPoint,
5172     const SmallVectorImpl<ISD::OutputArg> &Outs,
5173     const SmallVectorImpl<SDValue> &OutVals,
5174     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5175     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5176     ImmutableCallSite CS) const {
5177   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5178   // of the 32-bit SVR4 ABI stack frame layout.
5179 
5180   assert((CallConv == CallingConv::C ||
5181           CallConv == CallingConv::Cold ||
5182           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5183 
5184   unsigned PtrByteSize = 4;
5185 
5186   MachineFunction &MF = DAG.getMachineFunction();
5187 
5188   // Mark this function as potentially containing a function that contains a
5189   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5190   // and restoring the callers stack pointer in this functions epilog. This is
5191   // done because by tail calling the called function might overwrite the value
5192   // in this function's (MF) stack pointer stack slot 0(SP).
5193   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5194       CallConv == CallingConv::Fast)
5195     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5196 
5197   // Count how many bytes are to be pushed on the stack, including the linkage
5198   // area, parameter list area and the part of the local variable space which
5199   // contains copies of aggregates which are passed by value.
5200 
5201   // Assign locations to all of the outgoing arguments.
5202   SmallVector<CCValAssign, 16> ArgLocs;
5203   PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
5204 
5205   // Reserve space for the linkage area on the stack.
5206   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5207                        PtrByteSize);
5208   if (useSoftFloat())
5209     CCInfo.PreAnalyzeCallOperands(Outs);
5210 
5211   if (isVarArg) {
5212     // Handle fixed and variable vector arguments differently.
5213     // Fixed vector arguments go into registers as long as registers are
5214     // available. Variable vector arguments always go into memory.
5215     unsigned NumArgs = Outs.size();
5216 
5217     for (unsigned i = 0; i != NumArgs; ++i) {
5218       MVT ArgVT = Outs[i].VT;
5219       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5220       bool Result;
5221 
5222       if (Outs[i].IsFixed) {
5223         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5224                                CCInfo);
5225       } else {
5226         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5227                                       ArgFlags, CCInfo);
5228       }
5229 
5230       if (Result) {
5231 #ifndef NDEBUG
5232         errs() << "Call operand #" << i << " has unhandled type "
5233              << EVT(ArgVT).getEVTString() << "\n";
5234 #endif
5235         llvm_unreachable(nullptr);
5236       }
5237     }
5238   } else {
5239     // All arguments are treated the same.
5240     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5241   }
5242   CCInfo.clearWasPPCF128();
5243 
5244   // Assign locations to all of the outgoing aggregate by value arguments.
5245   SmallVector<CCValAssign, 16> ByValArgLocs;
5246   CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
5247 
5248   // Reserve stack space for the allocations in CCInfo.
5249   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
5250 
5251   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5252 
5253   // Size of the linkage area, parameter list area and the part of the local
5254   // space variable where copies of aggregates which are passed by value are
5255   // stored.
5256   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5257 
5258   // Calculate by how many bytes the stack has to be adjusted in case of tail
5259   // call optimization.
5260   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5261 
5262   // Adjust the stack pointer for the new arguments...
5263   // These operations are automatically eliminated by the prolog/epilog pass
5264   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5265   SDValue CallSeqStart = Chain;
5266 
5267   // Load the return address and frame pointer so it can be moved somewhere else
5268   // later.
5269   SDValue LROp, FPOp;
5270   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5271 
5272   // Set up a copy of the stack pointer for use loading and storing any
5273   // arguments that may not fit in the registers available for argument
5274   // passing.
5275   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5276 
5277   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5278   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5279   SmallVector<SDValue, 8> MemOpChains;
5280 
5281   bool seenFloatArg = false;
5282   // Walk the register/memloc assignments, inserting copies/loads.
5283   for (unsigned i = 0, j = 0, e = ArgLocs.size();
5284        i != e;
5285        ++i) {
5286     CCValAssign &VA = ArgLocs[i];
5287     SDValue Arg = OutVals[i];
5288     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5289 
5290     if (Flags.isByVal()) {
5291       // Argument is an aggregate which is passed by value, thus we need to
5292       // create a copy of it in the local variable space of the current stack
5293       // frame (which is the stack frame of the caller) and pass the address of
5294       // this copy to the callee.
5295       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5296       CCValAssign &ByValVA = ByValArgLocs[j++];
5297       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5298 
5299       // Memory reserved in the local variable space of the callers stack frame.
5300       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5301 
5302       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5303       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5304                            StackPtr, PtrOff);
5305 
5306       // Create a copy of the argument in the local area of the current
5307       // stack frame.
5308       SDValue MemcpyCall =
5309         CreateCopyOfByValArgument(Arg, PtrOff,
5310                                   CallSeqStart.getNode()->getOperand(0),
5311                                   Flags, DAG, dl);
5312 
5313       // This must go outside the CALLSEQ_START..END.
5314       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5315                                                      SDLoc(MemcpyCall));
5316       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5317                              NewCallSeqStart.getNode());
5318       Chain = CallSeqStart = NewCallSeqStart;
5319 
5320       // Pass the address of the aggregate copy on the stack either in a
5321       // physical register or in the parameter list area of the current stack
5322       // frame to the callee.
5323       Arg = PtrOff;
5324     }
5325 
5326     if (VA.isRegLoc()) {
5327       if (Arg.getValueType() == MVT::i1)
5328         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
5329 
5330       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5331       // Put argument in a physical register.
5332       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5333     } else {
5334       // Put argument in the parameter list area of the current stack frame.
5335       assert(VA.isMemLoc());
5336       unsigned LocMemOffset = VA.getLocMemOffset();
5337 
5338       if (!isTailCall) {
5339         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5340         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5341                              StackPtr, PtrOff);
5342 
5343         MemOpChains.push_back(
5344             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5345       } else {
5346         // Calculate and remember argument location.
5347         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5348                                  TailCallArguments);
5349       }
5350     }
5351   }
5352 
5353   if (!MemOpChains.empty())
5354     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5355 
5356   // Build a sequence of copy-to-reg nodes chained together with token chain
5357   // and flag operands which copy the outgoing args into the appropriate regs.
5358   SDValue InFlag;
5359   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5360     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5361                              RegsToPass[i].second, InFlag);
5362     InFlag = Chain.getValue(1);
5363   }
5364 
5365   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5366   // registers.
5367   if (isVarArg) {
5368     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5369     SDValue Ops[] = { Chain, InFlag };
5370 
5371     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5372                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5373 
5374     InFlag = Chain.getValue(1);
5375   }
5376 
5377   if (isTailCall)
5378     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5379                     TailCallArguments);
5380 
5381   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5382                     /* unused except on PPC64 ELFv1 */ false, DAG,
5383                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5384                     NumBytes, Ins, InVals, CS);
5385 }
5386 
5387 // Copy an argument into memory, being careful to do this outside the
5388 // call sequence for the call to which the argument belongs.
5389 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5390     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5391     SelectionDAG &DAG, const SDLoc &dl) const {
5392   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5393                         CallSeqStart.getNode()->getOperand(0),
5394                         Flags, DAG, dl);
5395   // The MEMCPY must go outside the CALLSEQ_START..END.
5396   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5397   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5398                                                  SDLoc(MemcpyCall));
5399   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5400                          NewCallSeqStart.getNode());
5401   return NewCallSeqStart;
5402 }
5403 
5404 SDValue PPCTargetLowering::LowerCall_64SVR4(
5405     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5406     bool isTailCall, bool isPatchPoint,
5407     const SmallVectorImpl<ISD::OutputArg> &Outs,
5408     const SmallVectorImpl<SDValue> &OutVals,
5409     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5410     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5411     ImmutableCallSite CS) const {
5412   bool isELFv2ABI = Subtarget.isELFv2ABI();
5413   bool isLittleEndian = Subtarget.isLittleEndian();
5414   unsigned NumOps = Outs.size();
5415   bool hasNest = false;
5416   bool IsSibCall = false;
5417 
5418   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5419   unsigned PtrByteSize = 8;
5420 
5421   MachineFunction &MF = DAG.getMachineFunction();
5422 
5423   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5424     IsSibCall = true;
5425 
5426   // Mark this function as potentially containing a function that contains a
5427   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5428   // and restoring the callers stack pointer in this functions epilog. This is
5429   // done because by tail calling the called function might overwrite the value
5430   // in this function's (MF) stack pointer stack slot 0(SP).
5431   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5432       CallConv == CallingConv::Fast)
5433     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5434 
5435   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5436          "fastcc not supported on varargs functions");
5437 
5438   // Count how many bytes are to be pushed on the stack, including the linkage
5439   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5440   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5441   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5442   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5443   unsigned NumBytes = LinkageSize;
5444   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5445   unsigned &QFPR_idx = FPR_idx;
5446 
5447   static const MCPhysReg GPR[] = {
5448     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5449     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5450   };
5451   static const MCPhysReg VR[] = {
5452     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5453     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5454   };
5455 
5456   const unsigned NumGPRs = array_lengthof(GPR);
5457   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5458   const unsigned NumVRs  = array_lengthof(VR);
5459   const unsigned NumQFPRs = NumFPRs;
5460 
5461   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5462   // can be passed to the callee in registers.
5463   // For the fast calling convention, there is another check below.
5464   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5465   bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
5466   if (!HasParameterArea) {
5467     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5468     unsigned AvailableFPRs = NumFPRs;
5469     unsigned AvailableVRs = NumVRs;
5470     unsigned NumBytesTmp = NumBytes;
5471     for (unsigned i = 0; i != NumOps; ++i) {
5472       if (Outs[i].Flags.isNest()) continue;
5473       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5474                                 PtrByteSize, LinkageSize, ParamAreaSize,
5475                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
5476                                 Subtarget.hasQPX()))
5477         HasParameterArea = true;
5478     }
5479   }
5480 
5481   // When using the fast calling convention, we don't provide backing for
5482   // arguments that will be in registers.
5483   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5484 
5485   // Avoid allocating parameter area for fastcc functions if all the arguments
5486   // can be passed in the registers.
5487   if (CallConv == CallingConv::Fast)
5488     HasParameterArea = false;
5489 
5490   // Add up all the space actually used.
5491   for (unsigned i = 0; i != NumOps; ++i) {
5492     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5493     EVT ArgVT = Outs[i].VT;
5494     EVT OrigVT = Outs[i].ArgVT;
5495 
5496     if (Flags.isNest())
5497       continue;
5498 
5499     if (CallConv == CallingConv::Fast) {
5500       if (Flags.isByVal()) {
5501         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5502         if (NumGPRsUsed > NumGPRs)
5503           HasParameterArea = true;
5504       } else {
5505         switch (ArgVT.getSimpleVT().SimpleTy) {
5506         default: llvm_unreachable("Unexpected ValueType for argument!");
5507         case MVT::i1:
5508         case MVT::i32:
5509         case MVT::i64:
5510           if (++NumGPRsUsed <= NumGPRs)
5511             continue;
5512           break;
5513         case MVT::v4i32:
5514         case MVT::v8i16:
5515         case MVT::v16i8:
5516         case MVT::v2f64:
5517         case MVT::v2i64:
5518         case MVT::v1i128:
5519           if (++NumVRsUsed <= NumVRs)
5520             continue;
5521           break;
5522         case MVT::v4f32:
5523           // When using QPX, this is handled like a FP register, otherwise, it
5524           // is an Altivec register.
5525           if (Subtarget.hasQPX()) {
5526             if (++NumFPRsUsed <= NumFPRs)
5527               continue;
5528           } else {
5529             if (++NumVRsUsed <= NumVRs)
5530               continue;
5531           }
5532           break;
5533         case MVT::f32:
5534         case MVT::f64:
5535         case MVT::v4f64: // QPX
5536         case MVT::v4i1:  // QPX
5537           if (++NumFPRsUsed <= NumFPRs)
5538             continue;
5539           break;
5540         }
5541         HasParameterArea = true;
5542       }
5543     }
5544 
5545     /* Respect alignment of argument on the stack.  */
5546     unsigned Align =
5547       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5548     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5549 
5550     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5551     if (Flags.isInConsecutiveRegsLast())
5552       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5553   }
5554 
5555   unsigned NumBytesActuallyUsed = NumBytes;
5556 
5557   // In the old ELFv1 ABI,
5558   // the prolog code of the callee may store up to 8 GPR argument registers to
5559   // the stack, allowing va_start to index over them in memory if its varargs.
5560   // Because we cannot tell if this is needed on the caller side, we have to
5561   // conservatively assume that it is needed.  As such, make sure we have at
5562   // least enough stack space for the caller to store the 8 GPRs.
5563   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5564   // really requires memory operands, e.g. a vararg function.
5565   if (HasParameterArea)
5566     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5567   else
5568     NumBytes = LinkageSize;
5569 
5570   // Tail call needs the stack to be aligned.
5571   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5572       CallConv == CallingConv::Fast)
5573     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5574 
5575   int SPDiff = 0;
5576 
5577   // Calculate by how many bytes the stack has to be adjusted in case of tail
5578   // call optimization.
5579   if (!IsSibCall)
5580     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5581 
5582   // To protect arguments on the stack from being clobbered in a tail call,
5583   // force all the loads to happen before doing any other lowering.
5584   if (isTailCall)
5585     Chain = DAG.getStackArgumentTokenFactor(Chain);
5586 
5587   // Adjust the stack pointer for the new arguments...
5588   // These operations are automatically eliminated by the prolog/epilog pass
5589   if (!IsSibCall)
5590     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5591   SDValue CallSeqStart = Chain;
5592 
5593   // Load the return address and frame pointer so it can be move somewhere else
5594   // later.
5595   SDValue LROp, FPOp;
5596   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5597 
5598   // Set up a copy of the stack pointer for use loading and storing any
5599   // arguments that may not fit in the registers available for argument
5600   // passing.
5601   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5602 
5603   // Figure out which arguments are going to go in registers, and which in
5604   // memory.  Also, if this is a vararg function, floating point operations
5605   // must be stored to our stack, and loaded into integer regs as well, if
5606   // any integer regs are available for argument passing.
5607   unsigned ArgOffset = LinkageSize;
5608 
5609   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5610   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5611 
5612   SmallVector<SDValue, 8> MemOpChains;
5613   for (unsigned i = 0; i != NumOps; ++i) {
5614     SDValue Arg = OutVals[i];
5615     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5616     EVT ArgVT = Outs[i].VT;
5617     EVT OrigVT = Outs[i].ArgVT;
5618 
5619     // PtrOff will be used to store the current argument to the stack if a
5620     // register cannot be found for it.
5621     SDValue PtrOff;
5622 
5623     // We re-align the argument offset for each argument, except when using the
5624     // fast calling convention, when we need to make sure we do that only when
5625     // we'll actually use a stack slot.
5626     auto ComputePtrOff = [&]() {
5627       /* Respect alignment of argument on the stack.  */
5628       unsigned Align =
5629         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5630       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
5631 
5632       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5633 
5634       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5635     };
5636 
5637     if (CallConv != CallingConv::Fast) {
5638       ComputePtrOff();
5639 
5640       /* Compute GPR index associated with argument offset.  */
5641       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5642       GPR_idx = std::min(GPR_idx, NumGPRs);
5643     }
5644 
5645     // Promote integers to 64-bit values.
5646     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5647       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5648       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5649       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5650     }
5651 
5652     // FIXME memcpy is used way more than necessary.  Correctness first.
5653     // Note: "by value" is code for passing a structure by value, not
5654     // basic types.
5655     if (Flags.isByVal()) {
5656       // Note: Size includes alignment padding, so
5657       //   struct x { short a; char b; }
5658       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
5659       // These are the proper values we need for right-justifying the
5660       // aggregate in a parameter register.
5661       unsigned Size = Flags.getByValSize();
5662 
5663       // An empty aggregate parameter takes up no storage and no
5664       // registers.
5665       if (Size == 0)
5666         continue;
5667 
5668       if (CallConv == CallingConv::Fast)
5669         ComputePtrOff();
5670 
5671       // All aggregates smaller than 8 bytes must be passed right-justified.
5672       if (Size==1 || Size==2 || Size==4) {
5673         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
5674         if (GPR_idx != NumGPRs) {
5675           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5676                                         MachinePointerInfo(), VT);
5677           MemOpChains.push_back(Load.getValue(1));
5678           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5679 
5680           ArgOffset += PtrByteSize;
5681           continue;
5682         }
5683       }
5684 
5685       if (GPR_idx == NumGPRs && Size < 8) {
5686         SDValue AddPtr = PtrOff;
5687         if (!isLittleEndian) {
5688           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5689                                           PtrOff.getValueType());
5690           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5691         }
5692         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5693                                                           CallSeqStart,
5694                                                           Flags, DAG, dl);
5695         ArgOffset += PtrByteSize;
5696         continue;
5697       }
5698       // Copy entire object into memory.  There are cases where gcc-generated
5699       // code assumes it is there, even if it could be put entirely into
5700       // registers.  (This is not what the doc says.)
5701 
5702       // FIXME: The above statement is likely due to a misunderstanding of the
5703       // documents.  All arguments must be copied into the parameter area BY
5704       // THE CALLEE in the event that the callee takes the address of any
5705       // formal argument.  That has not yet been implemented.  However, it is
5706       // reasonable to use the stack area as a staging area for the register
5707       // load.
5708 
5709       // Skip this for small aggregates, as we will use the same slot for a
5710       // right-justified copy, below.
5711       if (Size >= 8)
5712         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5713                                                           CallSeqStart,
5714                                                           Flags, DAG, dl);
5715 
5716       // When a register is available, pass a small aggregate right-justified.
5717       if (Size < 8 && GPR_idx != NumGPRs) {
5718         // The easiest way to get this right-justified in a register
5719         // is to copy the structure into the rightmost portion of a
5720         // local variable slot, then load the whole slot into the
5721         // register.
5722         // FIXME: The memcpy seems to produce pretty awful code for
5723         // small aggregates, particularly for packed ones.
5724         // FIXME: It would be preferable to use the slot in the
5725         // parameter save area instead of a new local variable.
5726         SDValue AddPtr = PtrOff;
5727         if (!isLittleEndian) {
5728           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5729           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5730         }
5731         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5732                                                           CallSeqStart,
5733                                                           Flags, DAG, dl);
5734 
5735         // Load the slot into the register.
5736         SDValue Load =
5737             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
5738         MemOpChains.push_back(Load.getValue(1));
5739         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5740 
5741         // Done with this argument.
5742         ArgOffset += PtrByteSize;
5743         continue;
5744       }
5745 
5746       // For aggregates larger than PtrByteSize, copy the pieces of the
5747       // object that fit into registers from the parameter save area.
5748       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5749         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5750         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5751         if (GPR_idx != NumGPRs) {
5752           SDValue Load =
5753               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
5754           MemOpChains.push_back(Load.getValue(1));
5755           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5756           ArgOffset += PtrByteSize;
5757         } else {
5758           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5759           break;
5760         }
5761       }
5762       continue;
5763     }
5764 
5765     switch (Arg.getSimpleValueType().SimpleTy) {
5766     default: llvm_unreachable("Unexpected ValueType for argument!");
5767     case MVT::i1:
5768     case MVT::i32:
5769     case MVT::i64:
5770       if (Flags.isNest()) {
5771         // The 'nest' parameter, if any, is passed in R11.
5772         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
5773         hasNest = true;
5774         break;
5775       }
5776 
5777       // These can be scalar arguments or elements of an integer array type
5778       // passed directly.  Clang may use those instead of "byval" aggregate
5779       // types to avoid forcing arguments to memory unnecessarily.
5780       if (GPR_idx != NumGPRs) {
5781         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5782       } else {
5783         if (CallConv == CallingConv::Fast)
5784           ComputePtrOff();
5785 
5786         assert(HasParameterArea &&
5787                "Parameter area must exist to pass an argument in memory.");
5788         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5789                          true, isTailCall, false, MemOpChains,
5790                          TailCallArguments, dl);
5791         if (CallConv == CallingConv::Fast)
5792           ArgOffset += PtrByteSize;
5793       }
5794       if (CallConv != CallingConv::Fast)
5795         ArgOffset += PtrByteSize;
5796       break;
5797     case MVT::f32:
5798     case MVT::f64: {
5799       // These can be scalar arguments or elements of a float array type
5800       // passed directly.  The latter are used to implement ELFv2 homogenous
5801       // float aggregates.
5802 
5803       // Named arguments go into FPRs first, and once they overflow, the
5804       // remaining arguments go into GPRs and then the parameter save area.
5805       // Unnamed arguments for vararg functions always go to GPRs and
5806       // then the parameter save area.  For now, put all arguments to vararg
5807       // routines always in both locations (FPR *and* GPR or stack slot).
5808       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
5809       bool NeededLoad = false;
5810 
5811       // First load the argument into the next available FPR.
5812       if (FPR_idx != NumFPRs)
5813         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5814 
5815       // Next, load the argument into GPR or stack slot if needed.
5816       if (!NeedGPROrStack)
5817         ;
5818       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
5819         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
5820         // once we support fp <-> gpr moves.
5821 
5822         // In the non-vararg case, this can only ever happen in the
5823         // presence of f32 array types, since otherwise we never run
5824         // out of FPRs before running out of GPRs.
5825         SDValue ArgVal;
5826 
5827         // Double values are always passed in a single GPR.
5828         if (Arg.getValueType() != MVT::f32) {
5829           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
5830 
5831         // Non-array float values are extended and passed in a GPR.
5832         } else if (!Flags.isInConsecutiveRegs()) {
5833           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5834           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5835 
5836         // If we have an array of floats, we collect every odd element
5837         // together with its predecessor into one GPR.
5838         } else if (ArgOffset % PtrByteSize != 0) {
5839           SDValue Lo, Hi;
5840           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
5841           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5842           if (!isLittleEndian)
5843             std::swap(Lo, Hi);
5844           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5845 
5846         // The final element, if even, goes into the first half of a GPR.
5847         } else if (Flags.isInConsecutiveRegsLast()) {
5848           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5849           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5850           if (!isLittleEndian)
5851             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
5852                                  DAG.getConstant(32, dl, MVT::i32));
5853 
5854         // Non-final even elements are skipped; they will be handled
5855         // together the with subsequent argument on the next go-around.
5856         } else
5857           ArgVal = SDValue();
5858 
5859         if (ArgVal.getNode())
5860           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
5861       } else {
5862         if (CallConv == CallingConv::Fast)
5863           ComputePtrOff();
5864 
5865         // Single-precision floating-point values are mapped to the
5866         // second (rightmost) word of the stack doubleword.
5867         if (Arg.getValueType() == MVT::f32 &&
5868             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
5869           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5870           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5871         }
5872 
5873         assert(HasParameterArea &&
5874                "Parameter area must exist to pass an argument in memory.");
5875         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5876                          true, isTailCall, false, MemOpChains,
5877                          TailCallArguments, dl);
5878 
5879         NeededLoad = true;
5880       }
5881       // When passing an array of floats, the array occupies consecutive
5882       // space in the argument area; only round up to the next doubleword
5883       // at the end of the array.  Otherwise, each float takes 8 bytes.
5884       if (CallConv != CallingConv::Fast || NeededLoad) {
5885         ArgOffset += (Arg.getValueType() == MVT::f32 &&
5886                       Flags.isInConsecutiveRegs()) ? 4 : 8;
5887         if (Flags.isInConsecutiveRegsLast())
5888           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5889       }
5890       break;
5891     }
5892     case MVT::v4f32:
5893     case MVT::v4i32:
5894     case MVT::v8i16:
5895     case MVT::v16i8:
5896     case MVT::v2f64:
5897     case MVT::v2i64:
5898     case MVT::v1i128:
5899       if (!Subtarget.hasQPX()) {
5900       // These can be scalar arguments or elements of a vector array type
5901       // passed directly.  The latter are used to implement ELFv2 homogenous
5902       // vector aggregates.
5903 
5904       // For a varargs call, named arguments go into VRs or on the stack as
5905       // usual; unnamed arguments always go to the stack or the corresponding
5906       // GPRs when within range.  For now, we always put the value in both
5907       // locations (or even all three).
5908       if (isVarArg) {
5909         assert(HasParameterArea &&
5910                "Parameter area must exist if we have a varargs call.");
5911         // We could elide this store in the case where the object fits
5912         // entirely in R registers.  Maybe later.
5913         SDValue Store =
5914             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
5915         MemOpChains.push_back(Store);
5916         if (VR_idx != NumVRs) {
5917           SDValue Load =
5918               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
5919           MemOpChains.push_back(Load.getValue(1));
5920           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
5921         }
5922         ArgOffset += 16;
5923         for (unsigned i=0; i<16; i+=PtrByteSize) {
5924           if (GPR_idx == NumGPRs)
5925             break;
5926           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5927                                    DAG.getConstant(i, dl, PtrVT));
5928           SDValue Load =
5929               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
5930           MemOpChains.push_back(Load.getValue(1));
5931           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5932         }
5933         break;
5934       }
5935 
5936       // Non-varargs Altivec params go into VRs or on the stack.
5937       if (VR_idx != NumVRs) {
5938         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
5939       } else {
5940         if (CallConv == CallingConv::Fast)
5941           ComputePtrOff();
5942 
5943         assert(HasParameterArea &&
5944                "Parameter area must exist to pass an argument in memory.");
5945         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5946                          true, isTailCall, true, MemOpChains,
5947                          TailCallArguments, dl);
5948         if (CallConv == CallingConv::Fast)
5949           ArgOffset += 16;
5950       }
5951 
5952       if (CallConv != CallingConv::Fast)
5953         ArgOffset += 16;
5954       break;
5955       } // not QPX
5956 
5957       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
5958              "Invalid QPX parameter type");
5959 
5960       /* fall through */
5961     case MVT::v4f64:
5962     case MVT::v4i1: {
5963       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
5964       if (isVarArg) {
5965         assert(HasParameterArea &&
5966                "Parameter area must exist if we have a varargs call.");
5967         // We could elide this store in the case where the object fits
5968         // entirely in R registers.  Maybe later.
5969         SDValue Store =
5970             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
5971         MemOpChains.push_back(Store);
5972         if (QFPR_idx != NumQFPRs) {
5973           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
5974                                      PtrOff, MachinePointerInfo());
5975           MemOpChains.push_back(Load.getValue(1));
5976           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
5977         }
5978         ArgOffset += (IsF32 ? 16 : 32);
5979         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
5980           if (GPR_idx == NumGPRs)
5981             break;
5982           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5983                                    DAG.getConstant(i, dl, PtrVT));
5984           SDValue Load =
5985               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
5986           MemOpChains.push_back(Load.getValue(1));
5987           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5988         }
5989         break;
5990       }
5991 
5992       // Non-varargs QPX params go into registers or on the stack.
5993       if (QFPR_idx != NumQFPRs) {
5994         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
5995       } else {
5996         if (CallConv == CallingConv::Fast)
5997           ComputePtrOff();
5998 
5999         assert(HasParameterArea &&
6000                "Parameter area must exist to pass an argument in memory.");
6001         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6002                          true, isTailCall, true, MemOpChains,
6003                          TailCallArguments, dl);
6004         if (CallConv == CallingConv::Fast)
6005           ArgOffset += (IsF32 ? 16 : 32);
6006       }
6007 
6008       if (CallConv != CallingConv::Fast)
6009         ArgOffset += (IsF32 ? 16 : 32);
6010       break;
6011       }
6012     }
6013   }
6014 
6015   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6016          "mismatch in size of parameter area");
6017   (void)NumBytesActuallyUsed;
6018 
6019   if (!MemOpChains.empty())
6020     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6021 
6022   // Check if this is an indirect call (MTCTR/BCTRL).
6023   // See PrepareCall() for more information about calls through function
6024   // pointers in the 64-bit SVR4 ABI.
6025   if (!isTailCall && !isPatchPoint &&
6026       !isFunctionGlobalAddress(Callee) &&
6027       !isa<ExternalSymbolSDNode>(Callee)) {
6028     // Load r2 into a virtual register and store it to the TOC save area.
6029     setUsesTOCBasePtr(DAG);
6030     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6031     // TOC save area offset.
6032     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6033     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6034     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6035     Chain = DAG.getStore(
6036         Val.getValue(1), dl, Val, AddPtr,
6037         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
6038     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6039     // This does not mean the MTCTR instruction must use R12; it's easier
6040     // to model this as an extra parameter, so do that.
6041     if (isELFv2ABI && !isPatchPoint)
6042       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6043   }
6044 
6045   // Build a sequence of copy-to-reg nodes chained together with token chain
6046   // and flag operands which copy the outgoing args into the appropriate regs.
6047   SDValue InFlag;
6048   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6049     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6050                              RegsToPass[i].second, InFlag);
6051     InFlag = Chain.getValue(1);
6052   }
6053 
6054   if (isTailCall && !IsSibCall)
6055     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6056                     TailCallArguments);
6057 
6058   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
6059                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
6060                     SPDiff, NumBytes, Ins, InVals, CS);
6061 }
6062 
6063 SDValue PPCTargetLowering::LowerCall_Darwin(
6064     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
6065     bool isTailCall, bool isPatchPoint,
6066     const SmallVectorImpl<ISD::OutputArg> &Outs,
6067     const SmallVectorImpl<SDValue> &OutVals,
6068     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6069     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6070     ImmutableCallSite CS) const {
6071   unsigned NumOps = Outs.size();
6072 
6073   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6074   bool isPPC64 = PtrVT == MVT::i64;
6075   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6076 
6077   MachineFunction &MF = DAG.getMachineFunction();
6078 
6079   // Mark this function as potentially containing a function that contains a
6080   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6081   // and restoring the callers stack pointer in this functions epilog. This is
6082   // done because by tail calling the called function might overwrite the value
6083   // in this function's (MF) stack pointer stack slot 0(SP).
6084   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6085       CallConv == CallingConv::Fast)
6086     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6087 
6088   // Count how many bytes are to be pushed on the stack, including the linkage
6089   // area, and parameter passing area.  We start with 24/48 bytes, which is
6090   // prereserved space for [SP][CR][LR][3 x unused].
6091   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6092   unsigned NumBytes = LinkageSize;
6093 
6094   // Add up all the space actually used.
6095   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6096   // they all go in registers, but we must reserve stack space for them for
6097   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6098   // assigned stack space in order, with padding so Altivec parameters are
6099   // 16-byte aligned.
6100   unsigned nAltivecParamsAtEnd = 0;
6101   for (unsigned i = 0; i != NumOps; ++i) {
6102     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6103     EVT ArgVT = Outs[i].VT;
6104     // Varargs Altivec parameters are padded to a 16 byte boundary.
6105     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6106         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6107         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6108       if (!isVarArg && !isPPC64) {
6109         // Non-varargs Altivec parameters go after all the non-Altivec
6110         // parameters; handle those later so we know how much padding we need.
6111         nAltivecParamsAtEnd++;
6112         continue;
6113       }
6114       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6115       NumBytes = ((NumBytes+15)/16)*16;
6116     }
6117     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6118   }
6119 
6120   // Allow for Altivec parameters at the end, if needed.
6121   if (nAltivecParamsAtEnd) {
6122     NumBytes = ((NumBytes+15)/16)*16;
6123     NumBytes += 16*nAltivecParamsAtEnd;
6124   }
6125 
6126   // The prolog code of the callee may store up to 8 GPR argument registers to
6127   // the stack, allowing va_start to index over them in memory if its varargs.
6128   // Because we cannot tell if this is needed on the caller side, we have to
6129   // conservatively assume that it is needed.  As such, make sure we have at
6130   // least enough stack space for the caller to store the 8 GPRs.
6131   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6132 
6133   // Tail call needs the stack to be aligned.
6134   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6135       CallConv == CallingConv::Fast)
6136     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6137 
6138   // Calculate by how many bytes the stack has to be adjusted in case of tail
6139   // call optimization.
6140   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
6141 
6142   // To protect arguments on the stack from being clobbered in a tail call,
6143   // force all the loads to happen before doing any other lowering.
6144   if (isTailCall)
6145     Chain = DAG.getStackArgumentTokenFactor(Chain);
6146 
6147   // Adjust the stack pointer for the new arguments...
6148   // These operations are automatically eliminated by the prolog/epilog pass
6149   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6150   SDValue CallSeqStart = Chain;
6151 
6152   // Load the return address and frame pointer so it can be move somewhere else
6153   // later.
6154   SDValue LROp, FPOp;
6155   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6156 
6157   // Set up a copy of the stack pointer for use loading and storing any
6158   // arguments that may not fit in the registers available for argument
6159   // passing.
6160   SDValue StackPtr;
6161   if (isPPC64)
6162     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6163   else
6164     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6165 
6166   // Figure out which arguments are going to go in registers, and which in
6167   // memory.  Also, if this is a vararg function, floating point operations
6168   // must be stored to our stack, and loaded into integer regs as well, if
6169   // any integer regs are available for argument passing.
6170   unsigned ArgOffset = LinkageSize;
6171   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6172 
6173   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6174     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6175     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6176   };
6177   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6178     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6179     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6180   };
6181   static const MCPhysReg VR[] = {
6182     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6183     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6184   };
6185   const unsigned NumGPRs = array_lengthof(GPR_32);
6186   const unsigned NumFPRs = 13;
6187   const unsigned NumVRs  = array_lengthof(VR);
6188 
6189   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6190 
6191   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6192   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6193 
6194   SmallVector<SDValue, 8> MemOpChains;
6195   for (unsigned i = 0; i != NumOps; ++i) {
6196     SDValue Arg = OutVals[i];
6197     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6198 
6199     // PtrOff will be used to store the current argument to the stack if a
6200     // register cannot be found for it.
6201     SDValue PtrOff;
6202 
6203     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6204 
6205     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6206 
6207     // On PPC64, promote integers to 64-bit values.
6208     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6209       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6210       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6211       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6212     }
6213 
6214     // FIXME memcpy is used way more than necessary.  Correctness first.
6215     // Note: "by value" is code for passing a structure by value, not
6216     // basic types.
6217     if (Flags.isByVal()) {
6218       unsigned Size = Flags.getByValSize();
6219       // Very small objects are passed right-justified.  Everything else is
6220       // passed left-justified.
6221       if (Size==1 || Size==2) {
6222         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6223         if (GPR_idx != NumGPRs) {
6224           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6225                                         MachinePointerInfo(), VT);
6226           MemOpChains.push_back(Load.getValue(1));
6227           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6228 
6229           ArgOffset += PtrByteSize;
6230         } else {
6231           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6232                                           PtrOff.getValueType());
6233           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6234           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6235                                                             CallSeqStart,
6236                                                             Flags, DAG, dl);
6237           ArgOffset += PtrByteSize;
6238         }
6239         continue;
6240       }
6241       // Copy entire object into memory.  There are cases where gcc-generated
6242       // code assumes it is there, even if it could be put entirely into
6243       // registers.  (This is not what the doc says.)
6244       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6245                                                         CallSeqStart,
6246                                                         Flags, DAG, dl);
6247 
6248       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6249       // copy the pieces of the object that fit into registers from the
6250       // parameter save area.
6251       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6252         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6253         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6254         if (GPR_idx != NumGPRs) {
6255           SDValue Load =
6256               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6257           MemOpChains.push_back(Load.getValue(1));
6258           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6259           ArgOffset += PtrByteSize;
6260         } else {
6261           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6262           break;
6263         }
6264       }
6265       continue;
6266     }
6267 
6268     switch (Arg.getSimpleValueType().SimpleTy) {
6269     default: llvm_unreachable("Unexpected ValueType for argument!");
6270     case MVT::i1:
6271     case MVT::i32:
6272     case MVT::i64:
6273       if (GPR_idx != NumGPRs) {
6274         if (Arg.getValueType() == MVT::i1)
6275           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6276 
6277         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6278       } else {
6279         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6280                          isPPC64, isTailCall, false, MemOpChains,
6281                          TailCallArguments, dl);
6282       }
6283       ArgOffset += PtrByteSize;
6284       break;
6285     case MVT::f32:
6286     case MVT::f64:
6287       if (FPR_idx != NumFPRs) {
6288         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6289 
6290         if (isVarArg) {
6291           SDValue Store =
6292               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6293           MemOpChains.push_back(Store);
6294 
6295           // Float varargs are always shadowed in available integer registers
6296           if (GPR_idx != NumGPRs) {
6297             SDValue Load =
6298                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6299             MemOpChains.push_back(Load.getValue(1));
6300             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6301           }
6302           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6303             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6304             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6305             SDValue Load =
6306                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6307             MemOpChains.push_back(Load.getValue(1));
6308             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6309           }
6310         } else {
6311           // If we have any FPRs remaining, we may also have GPRs remaining.
6312           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6313           // GPRs.
6314           if (GPR_idx != NumGPRs)
6315             ++GPR_idx;
6316           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6317               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6318             ++GPR_idx;
6319         }
6320       } else
6321         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6322                          isPPC64, isTailCall, false, MemOpChains,
6323                          TailCallArguments, dl);
6324       if (isPPC64)
6325         ArgOffset += 8;
6326       else
6327         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6328       break;
6329     case MVT::v4f32:
6330     case MVT::v4i32:
6331     case MVT::v8i16:
6332     case MVT::v16i8:
6333       if (isVarArg) {
6334         // These go aligned on the stack, or in the corresponding R registers
6335         // when within range.  The Darwin PPC ABI doc claims they also go in
6336         // V registers; in fact gcc does this only for arguments that are
6337         // prototyped, not for those that match the ...  We do it for all
6338         // arguments, seems to work.
6339         while (ArgOffset % 16 !=0) {
6340           ArgOffset += PtrByteSize;
6341           if (GPR_idx != NumGPRs)
6342             GPR_idx++;
6343         }
6344         // We could elide this store in the case where the object fits
6345         // entirely in R registers.  Maybe later.
6346         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6347                              DAG.getConstant(ArgOffset, dl, PtrVT));
6348         SDValue Store =
6349             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6350         MemOpChains.push_back(Store);
6351         if (VR_idx != NumVRs) {
6352           SDValue Load =
6353               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6354           MemOpChains.push_back(Load.getValue(1));
6355           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6356         }
6357         ArgOffset += 16;
6358         for (unsigned i=0; i<16; i+=PtrByteSize) {
6359           if (GPR_idx == NumGPRs)
6360             break;
6361           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6362                                    DAG.getConstant(i, dl, PtrVT));
6363           SDValue Load =
6364               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6365           MemOpChains.push_back(Load.getValue(1));
6366           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6367         }
6368         break;
6369       }
6370 
6371       // Non-varargs Altivec params generally go in registers, but have
6372       // stack space allocated at the end.
6373       if (VR_idx != NumVRs) {
6374         // Doesn't have GPR space allocated.
6375         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6376       } else if (nAltivecParamsAtEnd==0) {
6377         // We are emitting Altivec params in order.
6378         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6379                          isPPC64, isTailCall, true, MemOpChains,
6380                          TailCallArguments, dl);
6381         ArgOffset += 16;
6382       }
6383       break;
6384     }
6385   }
6386   // If all Altivec parameters fit in registers, as they usually do,
6387   // they get stack space following the non-Altivec parameters.  We
6388   // don't track this here because nobody below needs it.
6389   // If there are more Altivec parameters than fit in registers emit
6390   // the stores here.
6391   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
6392     unsigned j = 0;
6393     // Offset is aligned; skip 1st 12 params which go in V registers.
6394     ArgOffset = ((ArgOffset+15)/16)*16;
6395     ArgOffset += 12*16;
6396     for (unsigned i = 0; i != NumOps; ++i) {
6397       SDValue Arg = OutVals[i];
6398       EVT ArgType = Outs[i].VT;
6399       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6400           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6401         if (++j > NumVRs) {
6402           SDValue PtrOff;
6403           // We are emitting Altivec params in order.
6404           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6405                            isPPC64, isTailCall, true, MemOpChains,
6406                            TailCallArguments, dl);
6407           ArgOffset += 16;
6408         }
6409       }
6410     }
6411   }
6412 
6413   if (!MemOpChains.empty())
6414     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6415 
6416   // On Darwin, R12 must contain the address of an indirect callee.  This does
6417   // not mean the MTCTR instruction must use R12; it's easier to model this as
6418   // an extra parameter, so do that.
6419   if (!isTailCall &&
6420       !isFunctionGlobalAddress(Callee) &&
6421       !isa<ExternalSymbolSDNode>(Callee) &&
6422       !isBLACompatibleAddress(Callee, DAG))
6423     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6424                                                    PPC::R12), Callee));
6425 
6426   // Build a sequence of copy-to-reg nodes chained together with token chain
6427   // and flag operands which copy the outgoing args into the appropriate regs.
6428   SDValue InFlag;
6429   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6430     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6431                              RegsToPass[i].second, InFlag);
6432     InFlag = Chain.getValue(1);
6433   }
6434 
6435   if (isTailCall)
6436     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6437                     TailCallArguments);
6438 
6439   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6440                     /* unused except on PPC64 ELFv1 */ false, DAG,
6441                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6442                     NumBytes, Ins, InVals, CS);
6443 }
6444 
6445 bool
6446 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
6447                                   MachineFunction &MF, bool isVarArg,
6448                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
6449                                   LLVMContext &Context) const {
6450   SmallVector<CCValAssign, 16> RVLocs;
6451   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
6452   return CCInfo.CheckReturn(
6453       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6454                 ? RetCC_PPC_Cold
6455                 : RetCC_PPC);
6456 }
6457 
6458 SDValue
6459 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
6460                                bool isVarArg,
6461                                const SmallVectorImpl<ISD::OutputArg> &Outs,
6462                                const SmallVectorImpl<SDValue> &OutVals,
6463                                const SDLoc &dl, SelectionDAG &DAG) const {
6464   SmallVector<CCValAssign, 16> RVLocs;
6465   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
6466                  *DAG.getContext());
6467   CCInfo.AnalyzeReturn(Outs,
6468                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6469                            ? RetCC_PPC_Cold
6470                            : RetCC_PPC);
6471 
6472   SDValue Flag;
6473   SmallVector<SDValue, 4> RetOps(1, Chain);
6474 
6475   // Copy the result values into the output registers.
6476   for (unsigned i = 0; i != RVLocs.size(); ++i) {
6477     CCValAssign &VA = RVLocs[i];
6478     assert(VA.isRegLoc() && "Can only return in registers!");
6479 
6480     SDValue Arg = OutVals[i];
6481 
6482     switch (VA.getLocInfo()) {
6483     default: llvm_unreachable("Unknown loc info!");
6484     case CCValAssign::Full: break;
6485     case CCValAssign::AExt:
6486       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
6487       break;
6488     case CCValAssign::ZExt:
6489       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
6490       break;
6491     case CCValAssign::SExt:
6492       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
6493       break;
6494     }
6495 
6496     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
6497     Flag = Chain.getValue(1);
6498     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6499   }
6500 
6501   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
6502   const MCPhysReg *I =
6503     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
6504   if (I) {
6505     for (; *I; ++I) {
6506 
6507       if (PPC::G8RCRegClass.contains(*I))
6508         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
6509       else if (PPC::F8RCRegClass.contains(*I))
6510         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
6511       else if (PPC::CRRCRegClass.contains(*I))
6512         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
6513       else if (PPC::VRRCRegClass.contains(*I))
6514         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
6515       else
6516         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
6517     }
6518   }
6519 
6520   RetOps[0] = Chain;  // Update chain.
6521 
6522   // Add the flag if we have it.
6523   if (Flag.getNode())
6524     RetOps.push_back(Flag);
6525 
6526   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
6527 }
6528 
6529 SDValue
6530 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
6531                                                 SelectionDAG &DAG) const {
6532   SDLoc dl(Op);
6533 
6534   // Get the correct type for integers.
6535   EVT IntVT = Op.getValueType();
6536 
6537   // Get the inputs.
6538   SDValue Chain = Op.getOperand(0);
6539   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6540   // Build a DYNAREAOFFSET node.
6541   SDValue Ops[2] = {Chain, FPSIdx};
6542   SDVTList VTs = DAG.getVTList(IntVT);
6543   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
6544 }
6545 
6546 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
6547                                              SelectionDAG &DAG) const {
6548   // When we pop the dynamic allocation we need to restore the SP link.
6549   SDLoc dl(Op);
6550 
6551   // Get the correct type for pointers.
6552   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6553 
6554   // Construct the stack pointer operand.
6555   bool isPPC64 = Subtarget.isPPC64();
6556   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
6557   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
6558 
6559   // Get the operands for the STACKRESTORE.
6560   SDValue Chain = Op.getOperand(0);
6561   SDValue SaveSP = Op.getOperand(1);
6562 
6563   // Load the old link SP.
6564   SDValue LoadLinkSP =
6565       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
6566 
6567   // Restore the stack pointer.
6568   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
6569 
6570   // Store the old link SP.
6571   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
6572 }
6573 
6574 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
6575   MachineFunction &MF = DAG.getMachineFunction();
6576   bool isPPC64 = Subtarget.isPPC64();
6577   EVT PtrVT = getPointerTy(MF.getDataLayout());
6578 
6579   // Get current frame pointer save index.  The users of this index will be
6580   // primarily DYNALLOC instructions.
6581   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6582   int RASI = FI->getReturnAddrSaveIndex();
6583 
6584   // If the frame pointer save index hasn't been defined yet.
6585   if (!RASI) {
6586     // Find out what the fix offset of the frame pointer save area.
6587     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
6588     // Allocate the frame index for frame pointer save area.
6589     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
6590     // Save the result.
6591     FI->setReturnAddrSaveIndex(RASI);
6592   }
6593   return DAG.getFrameIndex(RASI, PtrVT);
6594 }
6595 
6596 SDValue
6597 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
6598   MachineFunction &MF = DAG.getMachineFunction();
6599   bool isPPC64 = Subtarget.isPPC64();
6600   EVT PtrVT = getPointerTy(MF.getDataLayout());
6601 
6602   // Get current frame pointer save index.  The users of this index will be
6603   // primarily DYNALLOC instructions.
6604   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6605   int FPSI = FI->getFramePointerSaveIndex();
6606 
6607   // If the frame pointer save index hasn't been defined yet.
6608   if (!FPSI) {
6609     // Find out what the fix offset of the frame pointer save area.
6610     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
6611     // Allocate the frame index for frame pointer save area.
6612     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
6613     // Save the result.
6614     FI->setFramePointerSaveIndex(FPSI);
6615   }
6616   return DAG.getFrameIndex(FPSI, PtrVT);
6617 }
6618 
6619 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6620                                                    SelectionDAG &DAG) const {
6621   // Get the inputs.
6622   SDValue Chain = Op.getOperand(0);
6623   SDValue Size  = Op.getOperand(1);
6624   SDLoc dl(Op);
6625 
6626   // Get the correct type for pointers.
6627   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6628   // Negate the size.
6629   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
6630                                 DAG.getConstant(0, dl, PtrVT), Size);
6631   // Construct a node for the frame pointer save index.
6632   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6633   // Build a DYNALLOC node.
6634   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
6635   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
6636   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
6637 }
6638 
6639 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
6640                                                      SelectionDAG &DAG) const {
6641   MachineFunction &MF = DAG.getMachineFunction();
6642 
6643   bool isPPC64 = Subtarget.isPPC64();
6644   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6645 
6646   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
6647   return DAG.getFrameIndex(FI, PtrVT);
6648 }
6649 
6650 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
6651                                                SelectionDAG &DAG) const {
6652   SDLoc DL(Op);
6653   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
6654                      DAG.getVTList(MVT::i32, MVT::Other),
6655                      Op.getOperand(0), Op.getOperand(1));
6656 }
6657 
6658 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
6659                                                 SelectionDAG &DAG) const {
6660   SDLoc DL(Op);
6661   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
6662                      Op.getOperand(0), Op.getOperand(1));
6663 }
6664 
6665 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
6666   if (Op.getValueType().isVector())
6667     return LowerVectorLoad(Op, DAG);
6668 
6669   assert(Op.getValueType() == MVT::i1 &&
6670          "Custom lowering only for i1 loads");
6671 
6672   // First, load 8 bits into 32 bits, then truncate to 1 bit.
6673 
6674   SDLoc dl(Op);
6675   LoadSDNode *LD = cast<LoadSDNode>(Op);
6676 
6677   SDValue Chain = LD->getChain();
6678   SDValue BasePtr = LD->getBasePtr();
6679   MachineMemOperand *MMO = LD->getMemOperand();
6680 
6681   SDValue NewLD =
6682       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
6683                      BasePtr, MVT::i8, MMO);
6684   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
6685 
6686   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
6687   return DAG.getMergeValues(Ops, dl);
6688 }
6689 
6690 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
6691   if (Op.getOperand(1).getValueType().isVector())
6692     return LowerVectorStore(Op, DAG);
6693 
6694   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
6695          "Custom lowering only for i1 stores");
6696 
6697   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
6698 
6699   SDLoc dl(Op);
6700   StoreSDNode *ST = cast<StoreSDNode>(Op);
6701 
6702   SDValue Chain = ST->getChain();
6703   SDValue BasePtr = ST->getBasePtr();
6704   SDValue Value = ST->getValue();
6705   MachineMemOperand *MMO = ST->getMemOperand();
6706 
6707   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
6708                       Value);
6709   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
6710 }
6711 
6712 // FIXME: Remove this once the ANDI glue bug is fixed:
6713 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
6714   assert(Op.getValueType() == MVT::i1 &&
6715          "Custom lowering only for i1 results");
6716 
6717   SDLoc DL(Op);
6718   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
6719                      Op.getOperand(0));
6720 }
6721 
6722 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
6723 /// possible.
6724 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
6725   // Not FP? Not a fsel.
6726   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
6727       !Op.getOperand(2).getValueType().isFloatingPoint())
6728     return Op;
6729 
6730   // We might be able to do better than this under some circumstances, but in
6731   // general, fsel-based lowering of select is a finite-math-only optimization.
6732   // For more information, see section F.3 of the 2.06 ISA specification.
6733   if (!DAG.getTarget().Options.NoInfsFPMath ||
6734       !DAG.getTarget().Options.NoNaNsFPMath)
6735     return Op;
6736   // TODO: Propagate flags from the select rather than global settings.
6737   SDNodeFlags Flags;
6738   Flags.setNoInfs(true);
6739   Flags.setNoNaNs(true);
6740 
6741   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
6742 
6743   EVT ResVT = Op.getValueType();
6744   EVT CmpVT = Op.getOperand(0).getValueType();
6745   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6746   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
6747   SDLoc dl(Op);
6748 
6749   // If the RHS of the comparison is a 0.0, we don't need to do the
6750   // subtraction at all.
6751   SDValue Sel1;
6752   if (isFloatingPointZero(RHS))
6753     switch (CC) {
6754     default: break;       // SETUO etc aren't handled by fsel.
6755     case ISD::SETNE:
6756       std::swap(TV, FV);
6757       LLVM_FALLTHROUGH;
6758     case ISD::SETEQ:
6759       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6760         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6761       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6762       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6763         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6764       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6765                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
6766     case ISD::SETULT:
6767     case ISD::SETLT:
6768       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6769       LLVM_FALLTHROUGH;
6770     case ISD::SETOGE:
6771     case ISD::SETGE:
6772       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6773         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6774       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6775     case ISD::SETUGT:
6776     case ISD::SETGT:
6777       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6778       LLVM_FALLTHROUGH;
6779     case ISD::SETOLE:
6780     case ISD::SETLE:
6781       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6782         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6783       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6784                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
6785     }
6786 
6787   SDValue Cmp;
6788   switch (CC) {
6789   default: break;       // SETUO etc aren't handled by fsel.
6790   case ISD::SETNE:
6791     std::swap(TV, FV);
6792     LLVM_FALLTHROUGH;
6793   case ISD::SETEQ:
6794     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6795     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6796       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6797     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6798     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6799       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6800     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6801                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
6802   case ISD::SETULT:
6803   case ISD::SETLT:
6804     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6805     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6806       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6807     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6808   case ISD::SETOGE:
6809   case ISD::SETGE:
6810     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6811     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6812       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6813     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6814   case ISD::SETUGT:
6815   case ISD::SETGT:
6816     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6817     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6818       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6819     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6820   case ISD::SETOLE:
6821   case ISD::SETLE:
6822     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6823     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6824       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6825     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6826   }
6827   return Op;
6828 }
6829 
6830 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
6831                                                SelectionDAG &DAG,
6832                                                const SDLoc &dl) const {
6833   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6834   SDValue Src = Op.getOperand(0);
6835   if (Src.getValueType() == MVT::f32)
6836     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6837 
6838   SDValue Tmp;
6839   switch (Op.getSimpleValueType().SimpleTy) {
6840   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6841   case MVT::i32:
6842     Tmp = DAG.getNode(
6843         Op.getOpcode() == ISD::FP_TO_SINT
6844             ? PPCISD::FCTIWZ
6845             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6846         dl, MVT::f64, Src);
6847     break;
6848   case MVT::i64:
6849     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6850            "i64 FP_TO_UINT is supported only with FPCVT");
6851     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6852                                                         PPCISD::FCTIDUZ,
6853                       dl, MVT::f64, Src);
6854     break;
6855   }
6856 
6857   // Convert the FP value to an int value through memory.
6858   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
6859     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
6860   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
6861   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
6862   MachinePointerInfo MPI =
6863       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
6864 
6865   // Emit a store to the stack slot.
6866   SDValue Chain;
6867   if (i32Stack) {
6868     MachineFunction &MF = DAG.getMachineFunction();
6869     MachineMemOperand *MMO =
6870       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
6871     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
6872     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
6873               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
6874   } else
6875     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
6876 
6877   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
6878   // add in a bias on big endian.
6879   if (Op.getValueType() == MVT::i32 && !i32Stack) {
6880     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
6881                         DAG.getConstant(4, dl, FIPtr.getValueType()));
6882     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
6883   }
6884 
6885   RLI.Chain = Chain;
6886   RLI.Ptr = FIPtr;
6887   RLI.MPI = MPI;
6888 }
6889 
6890 /// Custom lowers floating point to integer conversions to use
6891 /// the direct move instructions available in ISA 2.07 to avoid the
6892 /// need for load/store combinations.
6893 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
6894                                                     SelectionDAG &DAG,
6895                                                     const SDLoc &dl) const {
6896   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6897   SDValue Src = Op.getOperand(0);
6898 
6899   if (Src.getValueType() == MVT::f32)
6900     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6901 
6902   SDValue Tmp;
6903   switch (Op.getSimpleValueType().SimpleTy) {
6904   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6905   case MVT::i32:
6906     Tmp = DAG.getNode(
6907         Op.getOpcode() == ISD::FP_TO_SINT
6908             ? PPCISD::FCTIWZ
6909             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6910         dl, MVT::f64, Src);
6911     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
6912     break;
6913   case MVT::i64:
6914     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6915            "i64 FP_TO_UINT is supported only with FPCVT");
6916     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6917                                                         PPCISD::FCTIDUZ,
6918                       dl, MVT::f64, Src);
6919     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
6920     break;
6921   }
6922   return Tmp;
6923 }
6924 
6925 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
6926                                           const SDLoc &dl) const {
6927   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
6928   // PPC (the libcall is not available).
6929   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
6930     if (Op.getValueType() == MVT::i32) {
6931       if (Op.getOpcode() == ISD::FP_TO_SINT) {
6932         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
6933                                  MVT::f64, Op.getOperand(0),
6934                                  DAG.getIntPtrConstant(0, dl));
6935         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
6936                                  MVT::f64, Op.getOperand(0),
6937                                  DAG.getIntPtrConstant(1, dl));
6938 
6939         // Add the two halves of the long double in round-to-zero mode.
6940         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
6941 
6942         // Now use a smaller FP_TO_SINT.
6943         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
6944       }
6945       if (Op.getOpcode() == ISD::FP_TO_UINT) {
6946         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
6947         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
6948         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
6949         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
6950         // FIXME: generated code sucks.
6951         // TODO: Are there fast-math-flags to propagate to this FSUB?
6952         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
6953                                    Op.getOperand(0), Tmp);
6954         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
6955         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
6956                            DAG.getConstant(0x80000000, dl, MVT::i32));
6957         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
6958                                     Op.getOperand(0));
6959         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
6960                                ISD::SETGE);
6961       }
6962     }
6963 
6964     return SDValue();
6965   }
6966 
6967   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
6968     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
6969 
6970   ReuseLoadInfo RLI;
6971   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6972 
6973   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
6974                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
6975 }
6976 
6977 // We're trying to insert a regular store, S, and then a load, L. If the
6978 // incoming value, O, is a load, we might just be able to have our load use the
6979 // address used by O. However, we don't know if anything else will store to
6980 // that address before we can load from it. To prevent this situation, we need
6981 // to insert our load, L, into the chain as a peer of O. To do this, we give L
6982 // the same chain operand as O, we create a token factor from the chain results
6983 // of O and L, and we replace all uses of O's chain result with that token
6984 // factor (see spliceIntoChain below for this last part).
6985 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
6986                                             ReuseLoadInfo &RLI,
6987                                             SelectionDAG &DAG,
6988                                             ISD::LoadExtType ET) const {
6989   SDLoc dl(Op);
6990   if (ET == ISD::NON_EXTLOAD &&
6991       (Op.getOpcode() == ISD::FP_TO_UINT ||
6992        Op.getOpcode() == ISD::FP_TO_SINT) &&
6993       isOperationLegalOrCustom(Op.getOpcode(),
6994                                Op.getOperand(0).getValueType())) {
6995 
6996     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6997     return true;
6998   }
6999 
7000   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
7001   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
7002       LD->isNonTemporal())
7003     return false;
7004   if (LD->getMemoryVT() != MemVT)
7005     return false;
7006 
7007   RLI.Ptr = LD->getBasePtr();
7008   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
7009     assert(LD->getAddressingMode() == ISD::PRE_INC &&
7010            "Non-pre-inc AM on PPC?");
7011     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
7012                           LD->getOffset());
7013   }
7014 
7015   RLI.Chain = LD->getChain();
7016   RLI.MPI = LD->getPointerInfo();
7017   RLI.IsDereferenceable = LD->isDereferenceable();
7018   RLI.IsInvariant = LD->isInvariant();
7019   RLI.Alignment = LD->getAlignment();
7020   RLI.AAInfo = LD->getAAInfo();
7021   RLI.Ranges = LD->getRanges();
7022 
7023   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
7024   return true;
7025 }
7026 
7027 // Given the head of the old chain, ResChain, insert a token factor containing
7028 // it and NewResChain, and make users of ResChain now be users of that token
7029 // factor.
7030 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
7031 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
7032                                         SDValue NewResChain,
7033                                         SelectionDAG &DAG) const {
7034   if (!ResChain)
7035     return;
7036 
7037   SDLoc dl(NewResChain);
7038 
7039   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7040                            NewResChain, DAG.getUNDEF(MVT::Other));
7041   assert(TF.getNode() != NewResChain.getNode() &&
7042          "A new TF really is required here");
7043 
7044   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
7045   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
7046 }
7047 
7048 /// Analyze profitability of direct move
7049 /// prefer float load to int load plus direct move
7050 /// when there is no integer use of int load
7051 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
7052   SDNode *Origin = Op.getOperand(0).getNode();
7053   if (Origin->getOpcode() != ISD::LOAD)
7054     return true;
7055 
7056   // If there is no LXSIBZX/LXSIHZX, like Power8,
7057   // prefer direct move if the memory size is 1 or 2 bytes.
7058   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
7059   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
7060     return true;
7061 
7062   for (SDNode::use_iterator UI = Origin->use_begin(),
7063                             UE = Origin->use_end();
7064        UI != UE; ++UI) {
7065 
7066     // Only look at the users of the loaded value.
7067     if (UI.getUse().get().getResNo() != 0)
7068       continue;
7069 
7070     if (UI->getOpcode() != ISD::SINT_TO_FP &&
7071         UI->getOpcode() != ISD::UINT_TO_FP)
7072       return true;
7073   }
7074 
7075   return false;
7076 }
7077 
7078 /// Custom lowers integer to floating point conversions to use
7079 /// the direct move instructions available in ISA 2.07 to avoid the
7080 /// need for load/store combinations.
7081 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
7082                                                     SelectionDAG &DAG,
7083                                                     const SDLoc &dl) const {
7084   assert((Op.getValueType() == MVT::f32 ||
7085           Op.getValueType() == MVT::f64) &&
7086          "Invalid floating point type as target of conversion");
7087   assert(Subtarget.hasFPCVT() &&
7088          "Int to FP conversions with direct moves require FPCVT");
7089   SDValue FP;
7090   SDValue Src = Op.getOperand(0);
7091   bool SinglePrec = Op.getValueType() == MVT::f32;
7092   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
7093   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
7094   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
7095                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
7096 
7097   if (WordInt) {
7098     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
7099                      dl, MVT::f64, Src);
7100     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7101   }
7102   else {
7103     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
7104     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7105   }
7106 
7107   return FP;
7108 }
7109 
7110 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
7111                                           SelectionDAG &DAG) const {
7112   SDLoc dl(Op);
7113 
7114   // Conversions to f128 are legal.
7115   if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
7116     return Op;
7117 
7118   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
7119     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
7120       return SDValue();
7121 
7122     SDValue Value = Op.getOperand(0);
7123     // The values are now known to be -1 (false) or 1 (true). To convert this
7124     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7125     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7126     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7127 
7128     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
7129 
7130     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7131 
7132     if (Op.getValueType() != MVT::v4f64)
7133       Value = DAG.getNode(ISD::FP_ROUND, dl,
7134                           Op.getValueType(), Value,
7135                           DAG.getIntPtrConstant(1, dl));
7136     return Value;
7137   }
7138 
7139   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
7140   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
7141     return SDValue();
7142 
7143   if (Op.getOperand(0).getValueType() == MVT::i1)
7144     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
7145                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
7146                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
7147 
7148   // If we have direct moves, we can do all the conversion, skip the store/load
7149   // however, without FPCVT we can't do most conversions.
7150   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
7151       Subtarget.isPPC64() && Subtarget.hasFPCVT())
7152     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
7153 
7154   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
7155          "UINT_TO_FP is supported only with FPCVT");
7156 
7157   // If we have FCFIDS, then use it when converting to single-precision.
7158   // Otherwise, convert to double-precision and then round.
7159   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7160                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
7161                                                             : PPCISD::FCFIDS)
7162                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
7163                                                             : PPCISD::FCFID);
7164   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7165                   ? MVT::f32
7166                   : MVT::f64;
7167 
7168   if (Op.getOperand(0).getValueType() == MVT::i64) {
7169     SDValue SINT = Op.getOperand(0);
7170     // When converting to single-precision, we actually need to convert
7171     // to double-precision first and then round to single-precision.
7172     // To avoid double-rounding effects during that operation, we have
7173     // to prepare the input operand.  Bits that might be truncated when
7174     // converting to double-precision are replaced by a bit that won't
7175     // be lost at this stage, but is below the single-precision rounding
7176     // position.
7177     //
7178     // However, if -enable-unsafe-fp-math is in effect, accept double
7179     // rounding to avoid the extra overhead.
7180     if (Op.getValueType() == MVT::f32 &&
7181         !Subtarget.hasFPCVT() &&
7182         !DAG.getTarget().Options.UnsafeFPMath) {
7183 
7184       // Twiddle input to make sure the low 11 bits are zero.  (If this
7185       // is the case, we are guaranteed the value will fit into the 53 bit
7186       // mantissa of an IEEE double-precision value without rounding.)
7187       // If any of those low 11 bits were not zero originally, make sure
7188       // bit 12 (value 2048) is set instead, so that the final rounding
7189       // to single-precision gets the correct result.
7190       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7191                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
7192       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
7193                           Round, DAG.getConstant(2047, dl, MVT::i64));
7194       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
7195       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7196                           Round, DAG.getConstant(-2048, dl, MVT::i64));
7197 
7198       // However, we cannot use that value unconditionally: if the magnitude
7199       // of the input value is small, the bit-twiddling we did above might
7200       // end up visibly changing the output.  Fortunately, in that case, we
7201       // don't need to twiddle bits since the original input will convert
7202       // exactly to double-precision floating-point already.  Therefore,
7203       // construct a conditional to use the original value if the top 11
7204       // bits are all sign-bit copies, and use the rounded value computed
7205       // above otherwise.
7206       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
7207                                  SINT, DAG.getConstant(53, dl, MVT::i32));
7208       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
7209                          Cond, DAG.getConstant(1, dl, MVT::i64));
7210       Cond = DAG.getSetCC(dl, MVT::i32,
7211                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
7212 
7213       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
7214     }
7215 
7216     ReuseLoadInfo RLI;
7217     SDValue Bits;
7218 
7219     MachineFunction &MF = DAG.getMachineFunction();
7220     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
7221       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7222                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7223       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7224     } else if (Subtarget.hasLFIWAX() &&
7225                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
7226       MachineMemOperand *MMO =
7227         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7228                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7229       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7230       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
7231                                      DAG.getVTList(MVT::f64, MVT::Other),
7232                                      Ops, MVT::i32, MMO);
7233       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7234     } else if (Subtarget.hasFPCVT() &&
7235                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
7236       MachineMemOperand *MMO =
7237         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7238                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7239       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7240       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
7241                                      DAG.getVTList(MVT::f64, MVT::Other),
7242                                      Ops, MVT::i32, MMO);
7243       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7244     } else if (((Subtarget.hasLFIWAX() &&
7245                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
7246                 (Subtarget.hasFPCVT() &&
7247                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
7248                SINT.getOperand(0).getValueType() == MVT::i32) {
7249       MachineFrameInfo &MFI = MF.getFrameInfo();
7250       EVT PtrVT = getPointerTy(DAG.getDataLayout());
7251 
7252       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7253       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7254 
7255       SDValue Store =
7256           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
7257                        MachinePointerInfo::getFixedStack(
7258                            DAG.getMachineFunction(), FrameIdx));
7259 
7260       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7261              "Expected an i32 store");
7262 
7263       RLI.Ptr = FIdx;
7264       RLI.Chain = Store;
7265       RLI.MPI =
7266           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7267       RLI.Alignment = 4;
7268 
7269       MachineMemOperand *MMO =
7270         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7271                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7272       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7273       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
7274                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
7275                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
7276                                      Ops, MVT::i32, MMO);
7277     } else
7278       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
7279 
7280     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
7281 
7282     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7283       FP = DAG.getNode(ISD::FP_ROUND, dl,
7284                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
7285     return FP;
7286   }
7287 
7288   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
7289          "Unhandled INT_TO_FP type in custom expander!");
7290   // Since we only generate this in 64-bit mode, we can take advantage of
7291   // 64-bit registers.  In particular, sign extend the input value into the
7292   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
7293   // then lfd it and fcfid it.
7294   MachineFunction &MF = DAG.getMachineFunction();
7295   MachineFrameInfo &MFI = MF.getFrameInfo();
7296   EVT PtrVT = getPointerTy(MF.getDataLayout());
7297 
7298   SDValue Ld;
7299   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
7300     ReuseLoadInfo RLI;
7301     bool ReusingLoad;
7302     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
7303                                             DAG))) {
7304       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7305       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7306 
7307       SDValue Store =
7308           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
7309                        MachinePointerInfo::getFixedStack(
7310                            DAG.getMachineFunction(), FrameIdx));
7311 
7312       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7313              "Expected an i32 store");
7314 
7315       RLI.Ptr = FIdx;
7316       RLI.Chain = Store;
7317       RLI.MPI =
7318           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7319       RLI.Alignment = 4;
7320     }
7321 
7322     MachineMemOperand *MMO =
7323       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7324                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7325     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7326     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
7327                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
7328                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
7329                                  Ops, MVT::i32, MMO);
7330     if (ReusingLoad)
7331       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
7332   } else {
7333     assert(Subtarget.isPPC64() &&
7334            "i32->FP without LFIWAX supported only on PPC64");
7335 
7336     int FrameIdx = MFI.CreateStackObject(8, 8, false);
7337     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7338 
7339     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
7340                                 Op.getOperand(0));
7341 
7342     // STD the extended value into the stack slot.
7343     SDValue Store = DAG.getStore(
7344         DAG.getEntryNode(), dl, Ext64, FIdx,
7345         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7346 
7347     // Load the value as a double.
7348     Ld = DAG.getLoad(
7349         MVT::f64, dl, Store, FIdx,
7350         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7351   }
7352 
7353   // FCFID it and return it.
7354   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
7355   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7356     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
7357                      DAG.getIntPtrConstant(0, dl));
7358   return FP;
7359 }
7360 
7361 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7362                                             SelectionDAG &DAG) const {
7363   SDLoc dl(Op);
7364   /*
7365    The rounding mode is in bits 30:31 of FPSR, and has the following
7366    settings:
7367      00 Round to nearest
7368      01 Round to 0
7369      10 Round to +inf
7370      11 Round to -inf
7371 
7372   FLT_ROUNDS, on the other hand, expects the following:
7373     -1 Undefined
7374      0 Round to 0
7375      1 Round to nearest
7376      2 Round to +inf
7377      3 Round to -inf
7378 
7379   To perform the conversion, we do:
7380     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
7381   */
7382 
7383   MachineFunction &MF = DAG.getMachineFunction();
7384   EVT VT = Op.getValueType();
7385   EVT PtrVT = getPointerTy(MF.getDataLayout());
7386 
7387   // Save FP Control Word to register
7388   EVT NodeTys[] = {
7389     MVT::f64,    // return register
7390     MVT::Glue    // unused in this context
7391   };
7392   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
7393 
7394   // Save FP register to stack slot
7395   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
7396   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
7397   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
7398                                MachinePointerInfo());
7399 
7400   // Load FP Control Word from low 32 bits of stack slot.
7401   SDValue Four = DAG.getConstant(4, dl, PtrVT);
7402   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
7403   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
7404 
7405   // Transform as necessary
7406   SDValue CWD1 =
7407     DAG.getNode(ISD::AND, dl, MVT::i32,
7408                 CWD, DAG.getConstant(3, dl, MVT::i32));
7409   SDValue CWD2 =
7410     DAG.getNode(ISD::SRL, dl, MVT::i32,
7411                 DAG.getNode(ISD::AND, dl, MVT::i32,
7412                             DAG.getNode(ISD::XOR, dl, MVT::i32,
7413                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
7414                             DAG.getConstant(3, dl, MVT::i32)),
7415                 DAG.getConstant(1, dl, MVT::i32));
7416 
7417   SDValue RetVal =
7418     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
7419 
7420   return DAG.getNode((VT.getSizeInBits() < 16 ?
7421                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7422 }
7423 
7424 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7425   EVT VT = Op.getValueType();
7426   unsigned BitWidth = VT.getSizeInBits();
7427   SDLoc dl(Op);
7428   assert(Op.getNumOperands() == 3 &&
7429          VT == Op.getOperand(1).getValueType() &&
7430          "Unexpected SHL!");
7431 
7432   // Expand into a bunch of logical ops.  Note that these ops
7433   // depend on the PPC behavior for oversized shift amounts.
7434   SDValue Lo = Op.getOperand(0);
7435   SDValue Hi = Op.getOperand(1);
7436   SDValue Amt = Op.getOperand(2);
7437   EVT AmtVT = Amt.getValueType();
7438 
7439   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7440                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7441   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
7442   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
7443   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
7444   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7445                              DAG.getConstant(-BitWidth, dl, AmtVT));
7446   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
7447   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7448   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
7449   SDValue OutOps[] = { OutLo, OutHi };
7450   return DAG.getMergeValues(OutOps, dl);
7451 }
7452 
7453 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7454   EVT VT = Op.getValueType();
7455   SDLoc dl(Op);
7456   unsigned BitWidth = VT.getSizeInBits();
7457   assert(Op.getNumOperands() == 3 &&
7458          VT == Op.getOperand(1).getValueType() &&
7459          "Unexpected SRL!");
7460 
7461   // Expand into a bunch of logical ops.  Note that these ops
7462   // depend on the PPC behavior for oversized shift amounts.
7463   SDValue Lo = Op.getOperand(0);
7464   SDValue Hi = Op.getOperand(1);
7465   SDValue Amt = Op.getOperand(2);
7466   EVT AmtVT = Amt.getValueType();
7467 
7468   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7469                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7470   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7471   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7472   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7473   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7474                              DAG.getConstant(-BitWidth, dl, AmtVT));
7475   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
7476   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7477   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
7478   SDValue OutOps[] = { OutLo, OutHi };
7479   return DAG.getMergeValues(OutOps, dl);
7480 }
7481 
7482 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
7483   SDLoc dl(Op);
7484   EVT VT = Op.getValueType();
7485   unsigned BitWidth = VT.getSizeInBits();
7486   assert(Op.getNumOperands() == 3 &&
7487          VT == Op.getOperand(1).getValueType() &&
7488          "Unexpected SRA!");
7489 
7490   // Expand into a bunch of logical ops, followed by a select_cc.
7491   SDValue Lo = Op.getOperand(0);
7492   SDValue Hi = Op.getOperand(1);
7493   SDValue Amt = Op.getOperand(2);
7494   EVT AmtVT = Amt.getValueType();
7495 
7496   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7497                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7498   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7499   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7500   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7501   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7502                              DAG.getConstant(-BitWidth, dl, AmtVT));
7503   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
7504   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
7505   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
7506                                   Tmp4, Tmp6, ISD::SETLE);
7507   SDValue OutOps[] = { OutLo, OutHi };
7508   return DAG.getMergeValues(OutOps, dl);
7509 }
7510 
7511 //===----------------------------------------------------------------------===//
7512 // Vector related lowering.
7513 //
7514 
7515 /// BuildSplatI - Build a canonical splati of Val with an element size of
7516 /// SplatSize.  Cast the result to VT.
7517 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
7518                            SelectionDAG &DAG, const SDLoc &dl) {
7519   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
7520 
7521   static const MVT VTys[] = { // canonical VT to use for each size.
7522     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
7523   };
7524 
7525   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
7526 
7527   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
7528   if (Val == -1)
7529     SplatSize = 1;
7530 
7531   EVT CanonicalVT = VTys[SplatSize-1];
7532 
7533   // Build a canonical splat for this value.
7534   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
7535 }
7536 
7537 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
7538 /// specified intrinsic ID.
7539 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
7540                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
7541   if (DestVT == MVT::Other) DestVT = Op.getValueType();
7542   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7543                      DAG.getConstant(IID, dl, MVT::i32), Op);
7544 }
7545 
7546 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
7547 /// specified intrinsic ID.
7548 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
7549                                 SelectionDAG &DAG, const SDLoc &dl,
7550                                 EVT DestVT = MVT::Other) {
7551   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
7552   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7553                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
7554 }
7555 
7556 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
7557 /// specified intrinsic ID.
7558 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
7559                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
7560                                 EVT DestVT = MVT::Other) {
7561   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
7562   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7563                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
7564 }
7565 
7566 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
7567 /// amount.  The result has the specified value type.
7568 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
7569                            SelectionDAG &DAG, const SDLoc &dl) {
7570   // Force LHS/RHS to be the right type.
7571   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
7572   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
7573 
7574   int Ops[16];
7575   for (unsigned i = 0; i != 16; ++i)
7576     Ops[i] = i + Amt;
7577   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
7578   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7579 }
7580 
7581 /// Do we have an efficient pattern in a .td file for this node?
7582 ///
7583 /// \param V - pointer to the BuildVectorSDNode being matched
7584 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
7585 ///
7586 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
7587 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
7588 /// the opposite is true (expansion is beneficial) are:
7589 /// - The node builds a vector out of integers that are not 32 or 64-bits
7590 /// - The node builds a vector out of constants
7591 /// - The node is a "load-and-splat"
7592 /// In all other cases, we will choose to keep the BUILD_VECTOR.
7593 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
7594                                             bool HasDirectMove,
7595                                             bool HasP8Vector) {
7596   EVT VecVT = V->getValueType(0);
7597   bool RightType = VecVT == MVT::v2f64 ||
7598     (HasP8Vector && VecVT == MVT::v4f32) ||
7599     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
7600   if (!RightType)
7601     return false;
7602 
7603   bool IsSplat = true;
7604   bool IsLoad = false;
7605   SDValue Op0 = V->getOperand(0);
7606 
7607   // This function is called in a block that confirms the node is not a constant
7608   // splat. So a constant BUILD_VECTOR here means the vector is built out of
7609   // different constants.
7610   if (V->isConstant())
7611     return false;
7612   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
7613     if (V->getOperand(i).isUndef())
7614       return false;
7615     // We want to expand nodes that represent load-and-splat even if the
7616     // loaded value is a floating point truncation or conversion to int.
7617     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
7618         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
7619          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7620         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
7621          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7622         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
7623          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
7624       IsLoad = true;
7625     // If the operands are different or the input is not a load and has more
7626     // uses than just this BV node, then it isn't a splat.
7627     if (V->getOperand(i) != Op0 ||
7628         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
7629       IsSplat = false;
7630   }
7631   return !(IsSplat && IsLoad);
7632 }
7633 
7634 // If this is a case we can't handle, return null and let the default
7635 // expansion code take care of it.  If we CAN select this case, and if it
7636 // selects to a single instruction, return Op.  Otherwise, if we can codegen
7637 // this case more efficiently than a constant pool load, lower it to the
7638 // sequence of ops that should be used.
7639 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
7640                                              SelectionDAG &DAG) const {
7641   SDLoc dl(Op);
7642   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7643   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
7644 
7645   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
7646     // We first build an i32 vector, load it into a QPX register,
7647     // then convert it to a floating-point vector and compare it
7648     // to a zero vector to get the boolean result.
7649     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7650     int FrameIdx = MFI.CreateStackObject(16, 16, false);
7651     MachinePointerInfo PtrInfo =
7652         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7653     EVT PtrVT = getPointerTy(DAG.getDataLayout());
7654     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7655 
7656     assert(BVN->getNumOperands() == 4 &&
7657       "BUILD_VECTOR for v4i1 does not have 4 operands");
7658 
7659     bool IsConst = true;
7660     for (unsigned i = 0; i < 4; ++i) {
7661       if (BVN->getOperand(i).isUndef()) continue;
7662       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
7663         IsConst = false;
7664         break;
7665       }
7666     }
7667 
7668     if (IsConst) {
7669       Constant *One =
7670         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
7671       Constant *NegOne =
7672         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
7673 
7674       Constant *CV[4];
7675       for (unsigned i = 0; i < 4; ++i) {
7676         if (BVN->getOperand(i).isUndef())
7677           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
7678         else if (isNullConstant(BVN->getOperand(i)))
7679           CV[i] = NegOne;
7680         else
7681           CV[i] = One;
7682       }
7683 
7684       Constant *CP = ConstantVector::get(CV);
7685       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
7686                                           16 /* alignment */);
7687 
7688       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
7689       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
7690       return DAG.getMemIntrinsicNode(
7691           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
7692           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
7693     }
7694 
7695     SmallVector<SDValue, 4> Stores;
7696     for (unsigned i = 0; i < 4; ++i) {
7697       if (BVN->getOperand(i).isUndef()) continue;
7698 
7699       unsigned Offset = 4*i;
7700       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7701       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7702 
7703       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
7704       if (StoreSize > 4) {
7705         Stores.push_back(
7706             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
7707                               PtrInfo.getWithOffset(Offset), MVT::i32));
7708       } else {
7709         SDValue StoreValue = BVN->getOperand(i);
7710         if (StoreSize < 4)
7711           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
7712 
7713         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
7714                                       PtrInfo.getWithOffset(Offset)));
7715       }
7716     }
7717 
7718     SDValue StoreChain;
7719     if (!Stores.empty())
7720       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7721     else
7722       StoreChain = DAG.getEntryNode();
7723 
7724     // Now load from v4i32 into the QPX register; this will extend it to
7725     // v4i64 but not yet convert it to a floating point. Nevertheless, this
7726     // is typed as v4f64 because the QPX register integer states are not
7727     // explicitly represented.
7728 
7729     SDValue Ops[] = {StoreChain,
7730                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
7731                      FIdx};
7732     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
7733 
7734     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
7735       dl, VTs, Ops, MVT::v4i32, PtrInfo);
7736     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7737       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
7738       LoadedVect);
7739 
7740     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
7741 
7742     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
7743   }
7744 
7745   // All other QPX vectors are handled by generic code.
7746   if (Subtarget.hasQPX())
7747     return SDValue();
7748 
7749   // Check if this is a splat of a constant value.
7750   APInt APSplatBits, APSplatUndef;
7751   unsigned SplatBitSize;
7752   bool HasAnyUndefs;
7753   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
7754                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
7755       SplatBitSize > 32) {
7756     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
7757     // lowered to VSX instructions under certain conditions.
7758     // Without VSX, there is no pattern more efficient than expanding the node.
7759     if (Subtarget.hasVSX() &&
7760         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
7761                                         Subtarget.hasP8Vector()))
7762       return Op;
7763     return SDValue();
7764   }
7765 
7766   unsigned SplatBits = APSplatBits.getZExtValue();
7767   unsigned SplatUndef = APSplatUndef.getZExtValue();
7768   unsigned SplatSize = SplatBitSize / 8;
7769 
7770   // First, handle single instruction cases.
7771 
7772   // All zeros?
7773   if (SplatBits == 0) {
7774     // Canonicalize all zero vectors to be v4i32.
7775     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
7776       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
7777       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
7778     }
7779     return Op;
7780   }
7781 
7782   // We have XXSPLTIB for constant splats one byte wide
7783   if (Subtarget.hasP9Vector() && SplatSize == 1) {
7784     // This is a splat of 1-byte elements with some elements potentially undef.
7785     // Rather than trying to match undef in the SDAG patterns, ensure that all
7786     // elements are the same constant.
7787     if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) {
7788       SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits,
7789                                                        dl, MVT::i32));
7790       SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops);
7791       if (Op.getValueType() != MVT::v16i8)
7792         return DAG.getBitcast(Op.getValueType(), NewBV);
7793       return NewBV;
7794     }
7795 
7796     // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll
7797     // detect that constant splats like v8i16: 0xABAB are really just splats
7798     // of a 1-byte constant. In this case, we need to convert the node to a
7799     // splat of v16i8 and a bitcast.
7800     if (Op.getValueType() != MVT::v16i8)
7801       return DAG.getBitcast(Op.getValueType(),
7802                             DAG.getConstant(SplatBits, dl, MVT::v16i8));
7803 
7804     return Op;
7805   }
7806 
7807   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
7808   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
7809                     (32-SplatBitSize));
7810   if (SextVal >= -16 && SextVal <= 15)
7811     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
7812 
7813   // Two instruction sequences.
7814 
7815   // If this value is in the range [-32,30] and is even, use:
7816   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
7817   // If this value is in the range [17,31] and is odd, use:
7818   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
7819   // If this value is in the range [-31,-17] and is odd, use:
7820   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
7821   // Note the last two are three-instruction sequences.
7822   if (SextVal >= -32 && SextVal <= 31) {
7823     // To avoid having these optimizations undone by constant folding,
7824     // we convert to a pseudo that will be expanded later into one of
7825     // the above forms.
7826     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
7827     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
7828               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
7829     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
7830     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
7831     if (VT == Op.getValueType())
7832       return RetVal;
7833     else
7834       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
7835   }
7836 
7837   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
7838   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
7839   // for fneg/fabs.
7840   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
7841     // Make -1 and vspltisw -1:
7842     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
7843 
7844     // Make the VSLW intrinsic, computing 0x8000_0000.
7845     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
7846                                    OnesV, DAG, dl);
7847 
7848     // xor by OnesV to invert it.
7849     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
7850     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7851   }
7852 
7853   // Check to see if this is a wide variety of vsplti*, binop self cases.
7854   static const signed char SplatCsts[] = {
7855     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
7856     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
7857   };
7858 
7859   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
7860     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
7861     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
7862     int i = SplatCsts[idx];
7863 
7864     // Figure out what shift amount will be used by altivec if shifted by i in
7865     // this splat size.
7866     unsigned TypeShiftAmt = i & (SplatBitSize-1);
7867 
7868     // vsplti + shl self.
7869     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
7870       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7871       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7872         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
7873         Intrinsic::ppc_altivec_vslw
7874       };
7875       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7876       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7877     }
7878 
7879     // vsplti + srl self.
7880     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7881       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7882       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7883         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
7884         Intrinsic::ppc_altivec_vsrw
7885       };
7886       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7887       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7888     }
7889 
7890     // vsplti + sra self.
7891     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7892       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7893       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7894         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
7895         Intrinsic::ppc_altivec_vsraw
7896       };
7897       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7898       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7899     }
7900 
7901     // vsplti + rol self.
7902     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
7903                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
7904       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7905       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7906         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
7907         Intrinsic::ppc_altivec_vrlw
7908       };
7909       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7910       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7911     }
7912 
7913     // t = vsplti c, result = vsldoi t, t, 1
7914     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
7915       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7916       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
7917       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7918     }
7919     // t = vsplti c, result = vsldoi t, t, 2
7920     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
7921       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7922       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
7923       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7924     }
7925     // t = vsplti c, result = vsldoi t, t, 3
7926     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
7927       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7928       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
7929       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7930     }
7931   }
7932 
7933   return SDValue();
7934 }
7935 
7936 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7937 /// the specified operations to build the shuffle.
7938 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
7939                                       SDValue RHS, SelectionDAG &DAG,
7940                                       const SDLoc &dl) {
7941   unsigned OpNum = (PFEntry >> 26) & 0x0F;
7942   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
7943   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
7944 
7945   enum {
7946     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7947     OP_VMRGHW,
7948     OP_VMRGLW,
7949     OP_VSPLTISW0,
7950     OP_VSPLTISW1,
7951     OP_VSPLTISW2,
7952     OP_VSPLTISW3,
7953     OP_VSLDOI4,
7954     OP_VSLDOI8,
7955     OP_VSLDOI12
7956   };
7957 
7958   if (OpNum == OP_COPY) {
7959     if (LHSID == (1*9+2)*9+3) return LHS;
7960     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7961     return RHS;
7962   }
7963 
7964   SDValue OpLHS, OpRHS;
7965   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
7966   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
7967 
7968   int ShufIdxs[16];
7969   switch (OpNum) {
7970   default: llvm_unreachable("Unknown i32 permute!");
7971   case OP_VMRGHW:
7972     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
7973     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
7974     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
7975     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
7976     break;
7977   case OP_VMRGLW:
7978     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
7979     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
7980     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
7981     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
7982     break;
7983   case OP_VSPLTISW0:
7984     for (unsigned i = 0; i != 16; ++i)
7985       ShufIdxs[i] = (i&3)+0;
7986     break;
7987   case OP_VSPLTISW1:
7988     for (unsigned i = 0; i != 16; ++i)
7989       ShufIdxs[i] = (i&3)+4;
7990     break;
7991   case OP_VSPLTISW2:
7992     for (unsigned i = 0; i != 16; ++i)
7993       ShufIdxs[i] = (i&3)+8;
7994     break;
7995   case OP_VSPLTISW3:
7996     for (unsigned i = 0; i != 16; ++i)
7997       ShufIdxs[i] = (i&3)+12;
7998     break;
7999   case OP_VSLDOI4:
8000     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
8001   case OP_VSLDOI8:
8002     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
8003   case OP_VSLDOI12:
8004     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
8005   }
8006   EVT VT = OpLHS.getValueType();
8007   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
8008   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
8009   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
8010   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8011 }
8012 
8013 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
8014 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
8015 /// SDValue.
8016 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
8017                                            SelectionDAG &DAG) const {
8018   const unsigned BytesInVector = 16;
8019   bool IsLE = Subtarget.isLittleEndian();
8020   SDLoc dl(N);
8021   SDValue V1 = N->getOperand(0);
8022   SDValue V2 = N->getOperand(1);
8023   unsigned ShiftElts = 0, InsertAtByte = 0;
8024   bool Swap = false;
8025 
8026   // Shifts required to get the byte we want at element 7.
8027   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
8028                                    0, 15, 14, 13, 12, 11, 10, 9};
8029   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
8030                                 1, 2,  3,  4,  5,  6,  7,  8};
8031 
8032   ArrayRef<int> Mask = N->getMask();
8033   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
8034 
8035   // For each mask element, find out if we're just inserting something
8036   // from V2 into V1 or vice versa.
8037   // Possible permutations inserting an element from V2 into V1:
8038   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8039   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8040   //   ...
8041   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
8042   // Inserting from V1 into V2 will be similar, except mask range will be
8043   // [16,31].
8044 
8045   bool FoundCandidate = false;
8046   // If both vector operands for the shuffle are the same vector, the mask
8047   // will contain only elements from the first one and the second one will be
8048   // undef.
8049   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
8050   // Go through the mask of half-words to find an element that's being moved
8051   // from one vector to the other.
8052   for (unsigned i = 0; i < BytesInVector; ++i) {
8053     unsigned CurrentElement = Mask[i];
8054     // If 2nd operand is undefined, we should only look for element 7 in the
8055     // Mask.
8056     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
8057       continue;
8058 
8059     bool OtherElementsInOrder = true;
8060     // Examine the other elements in the Mask to see if they're in original
8061     // order.
8062     for (unsigned j = 0; j < BytesInVector; ++j) {
8063       if (j == i)
8064         continue;
8065       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
8066       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
8067       // in which we always assume we're always picking from the 1st operand.
8068       int MaskOffset =
8069           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
8070       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
8071         OtherElementsInOrder = false;
8072         break;
8073       }
8074     }
8075     // If other elements are in original order, we record the number of shifts
8076     // we need to get the element we want into element 7. Also record which byte
8077     // in the vector we should insert into.
8078     if (OtherElementsInOrder) {
8079       // If 2nd operand is undefined, we assume no shifts and no swapping.
8080       if (V2.isUndef()) {
8081         ShiftElts = 0;
8082         Swap = false;
8083       } else {
8084         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
8085         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
8086                          : BigEndianShifts[CurrentElement & 0xF];
8087         Swap = CurrentElement < BytesInVector;
8088       }
8089       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
8090       FoundCandidate = true;
8091       break;
8092     }
8093   }
8094 
8095   if (!FoundCandidate)
8096     return SDValue();
8097 
8098   // Candidate found, construct the proper SDAG sequence with VINSERTB,
8099   // optionally with VECSHL if shift is required.
8100   if (Swap)
8101     std::swap(V1, V2);
8102   if (V2.isUndef())
8103     V2 = V1;
8104   if (ShiftElts) {
8105     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8106                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8107     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
8108                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
8109   }
8110   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
8111                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
8112 }
8113 
8114 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
8115 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
8116 /// SDValue.
8117 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
8118                                            SelectionDAG &DAG) const {
8119   const unsigned NumHalfWords = 8;
8120   const unsigned BytesInVector = NumHalfWords * 2;
8121   // Check that the shuffle is on half-words.
8122   if (!isNByteElemShuffleMask(N, 2, 1))
8123     return SDValue();
8124 
8125   bool IsLE = Subtarget.isLittleEndian();
8126   SDLoc dl(N);
8127   SDValue V1 = N->getOperand(0);
8128   SDValue V2 = N->getOperand(1);
8129   unsigned ShiftElts = 0, InsertAtByte = 0;
8130   bool Swap = false;
8131 
8132   // Shifts required to get the half-word we want at element 3.
8133   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
8134   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
8135 
8136   uint32_t Mask = 0;
8137   uint32_t OriginalOrderLow = 0x1234567;
8138   uint32_t OriginalOrderHigh = 0x89ABCDEF;
8139   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
8140   // 32-bit space, only need 4-bit nibbles per element.
8141   for (unsigned i = 0; i < NumHalfWords; ++i) {
8142     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8143     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
8144   }
8145 
8146   // For each mask element, find out if we're just inserting something
8147   // from V2 into V1 or vice versa.  Possible permutations inserting an element
8148   // from V2 into V1:
8149   //   X, 1, 2, 3, 4, 5, 6, 7
8150   //   0, X, 2, 3, 4, 5, 6, 7
8151   //   0, 1, X, 3, 4, 5, 6, 7
8152   //   0, 1, 2, X, 4, 5, 6, 7
8153   //   0, 1, 2, 3, X, 5, 6, 7
8154   //   0, 1, 2, 3, 4, X, 6, 7
8155   //   0, 1, 2, 3, 4, 5, X, 7
8156   //   0, 1, 2, 3, 4, 5, 6, X
8157   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
8158 
8159   bool FoundCandidate = false;
8160   // Go through the mask of half-words to find an element that's being moved
8161   // from one vector to the other.
8162   for (unsigned i = 0; i < NumHalfWords; ++i) {
8163     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8164     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
8165     uint32_t MaskOtherElts = ~(0xF << MaskShift);
8166     uint32_t TargetOrder = 0x0;
8167 
8168     // If both vector operands for the shuffle are the same vector, the mask
8169     // will contain only elements from the first one and the second one will be
8170     // undef.
8171     if (V2.isUndef()) {
8172       ShiftElts = 0;
8173       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
8174       TargetOrder = OriginalOrderLow;
8175       Swap = false;
8176       // Skip if not the correct element or mask of other elements don't equal
8177       // to our expected order.
8178       if (MaskOneElt == VINSERTHSrcElem &&
8179           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8180         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8181         FoundCandidate = true;
8182         break;
8183       }
8184     } else { // If both operands are defined.
8185       // Target order is [8,15] if the current mask is between [0,7].
8186       TargetOrder =
8187           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
8188       // Skip if mask of other elements don't equal our expected order.
8189       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8190         // We only need the last 3 bits for the number of shifts.
8191         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
8192                          : BigEndianShifts[MaskOneElt & 0x7];
8193         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8194         Swap = MaskOneElt < NumHalfWords;
8195         FoundCandidate = true;
8196         break;
8197       }
8198     }
8199   }
8200 
8201   if (!FoundCandidate)
8202     return SDValue();
8203 
8204   // Candidate found, construct the proper SDAG sequence with VINSERTH,
8205   // optionally with VECSHL if shift is required.
8206   if (Swap)
8207     std::swap(V1, V2);
8208   if (V2.isUndef())
8209     V2 = V1;
8210   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8211   if (ShiftElts) {
8212     // Double ShiftElts because we're left shifting on v16i8 type.
8213     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8214                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
8215     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
8216     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8217                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8218     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8219   }
8220   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
8221   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8222                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
8223   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8224 }
8225 
8226 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
8227 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
8228 /// return the code it can be lowered into.  Worst case, it can always be
8229 /// lowered into a vperm.
8230 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
8231                                                SelectionDAG &DAG) const {
8232   SDLoc dl(Op);
8233   SDValue V1 = Op.getOperand(0);
8234   SDValue V2 = Op.getOperand(1);
8235   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8236   EVT VT = Op.getValueType();
8237   bool isLittleEndian = Subtarget.isLittleEndian();
8238 
8239   unsigned ShiftElts, InsertAtByte;
8240   bool Swap = false;
8241   if (Subtarget.hasP9Vector() &&
8242       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
8243                            isLittleEndian)) {
8244     if (Swap)
8245       std::swap(V1, V2);
8246     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8247     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
8248     if (ShiftElts) {
8249       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
8250                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
8251       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
8252                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
8253       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8254     }
8255     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
8256                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8257     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8258   }
8259 
8260   if (Subtarget.hasP9Altivec()) {
8261     SDValue NewISDNode;
8262     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
8263       return NewISDNode;
8264 
8265     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
8266       return NewISDNode;
8267   }
8268 
8269   if (Subtarget.hasVSX() &&
8270       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8271     if (Swap)
8272       std::swap(V1, V2);
8273     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8274     SDValue Conv2 =
8275         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
8276 
8277     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
8278                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8279     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
8280   }
8281 
8282   if (Subtarget.hasVSX() &&
8283     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8284     if (Swap)
8285       std::swap(V1, V2);
8286     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8287     SDValue Conv2 =
8288         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
8289 
8290     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
8291                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8292     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
8293   }
8294 
8295   if (Subtarget.hasP9Vector()) {
8296      if (PPC::isXXBRHShuffleMask(SVOp)) {
8297       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8298       SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv);
8299       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
8300     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
8301       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8302       SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv);
8303       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
8304     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
8305       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8306       SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv);
8307       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
8308     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
8309       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
8310       SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv);
8311       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
8312     }
8313   }
8314 
8315   if (Subtarget.hasVSX()) {
8316     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
8317       int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG);
8318 
8319       // If the source for the shuffle is a scalar_to_vector that came from a
8320       // 32-bit load, it will have used LXVWSX so we don't need to splat again.
8321       if (Subtarget.hasP9Vector() &&
8322           ((isLittleEndian && SplatIdx == 3) ||
8323            (!isLittleEndian && SplatIdx == 0))) {
8324         SDValue Src = V1.getOperand(0);
8325         if (Src.getOpcode() == ISD::SCALAR_TO_VECTOR &&
8326             Src.getOperand(0).getOpcode() == ISD::LOAD &&
8327             Src.getOperand(0).hasOneUse())
8328           return V1;
8329       }
8330       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8331       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
8332                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
8333       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
8334     }
8335 
8336     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
8337     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
8338       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
8339       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
8340       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
8341     }
8342   }
8343 
8344   if (Subtarget.hasQPX()) {
8345     if (VT.getVectorNumElements() != 4)
8346       return SDValue();
8347 
8348     if (V2.isUndef()) V2 = V1;
8349 
8350     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
8351     if (AlignIdx != -1) {
8352       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
8353                          DAG.getConstant(AlignIdx, dl, MVT::i32));
8354     } else if (SVOp->isSplat()) {
8355       int SplatIdx = SVOp->getSplatIndex();
8356       if (SplatIdx >= 4) {
8357         std::swap(V1, V2);
8358         SplatIdx -= 4;
8359       }
8360 
8361       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
8362                          DAG.getConstant(SplatIdx, dl, MVT::i32));
8363     }
8364 
8365     // Lower this into a qvgpci/qvfperm pair.
8366 
8367     // Compute the qvgpci literal
8368     unsigned idx = 0;
8369     for (unsigned i = 0; i < 4; ++i) {
8370       int m = SVOp->getMaskElt(i);
8371       unsigned mm = m >= 0 ? (unsigned) m : i;
8372       idx |= mm << (3-i)*3;
8373     }
8374 
8375     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
8376                              DAG.getConstant(idx, dl, MVT::i32));
8377     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
8378   }
8379 
8380   // Cases that are handled by instructions that take permute immediates
8381   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
8382   // selected by the instruction selector.
8383   if (V2.isUndef()) {
8384     if (PPC::isSplatShuffleMask(SVOp, 1) ||
8385         PPC::isSplatShuffleMask(SVOp, 2) ||
8386         PPC::isSplatShuffleMask(SVOp, 4) ||
8387         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
8388         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
8389         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
8390         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
8391         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
8392         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
8393         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
8394         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
8395         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
8396         (Subtarget.hasP8Altivec() && (
8397          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
8398          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
8399          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
8400       return Op;
8401     }
8402   }
8403 
8404   // Altivec has a variety of "shuffle immediates" that take two vector inputs
8405   // and produce a fixed permutation.  If any of these match, do not lower to
8406   // VPERM.
8407   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
8408   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8409       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8410       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
8411       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8412       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8413       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8414       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8415       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8416       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8417       (Subtarget.hasP8Altivec() && (
8418        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8419        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
8420        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
8421     return Op;
8422 
8423   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
8424   // perfect shuffle table to emit an optimal matching sequence.
8425   ArrayRef<int> PermMask = SVOp->getMask();
8426 
8427   unsigned PFIndexes[4];
8428   bool isFourElementShuffle = true;
8429   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
8430     unsigned EltNo = 8;   // Start out undef.
8431     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
8432       if (PermMask[i*4+j] < 0)
8433         continue;   // Undef, ignore it.
8434 
8435       unsigned ByteSource = PermMask[i*4+j];
8436       if ((ByteSource & 3) != j) {
8437         isFourElementShuffle = false;
8438         break;
8439       }
8440 
8441       if (EltNo == 8) {
8442         EltNo = ByteSource/4;
8443       } else if (EltNo != ByteSource/4) {
8444         isFourElementShuffle = false;
8445         break;
8446       }
8447     }
8448     PFIndexes[i] = EltNo;
8449   }
8450 
8451   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
8452   // perfect shuffle vector to determine if it is cost effective to do this as
8453   // discrete instructions, or whether we should use a vperm.
8454   // For now, we skip this for little endian until such time as we have a
8455   // little-endian perfect shuffle table.
8456   if (isFourElementShuffle && !isLittleEndian) {
8457     // Compute the index in the perfect shuffle table.
8458     unsigned PFTableIndex =
8459       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8460 
8461     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8462     unsigned Cost  = (PFEntry >> 30);
8463 
8464     // Determining when to avoid vperm is tricky.  Many things affect the cost
8465     // of vperm, particularly how many times the perm mask needs to be computed.
8466     // For example, if the perm mask can be hoisted out of a loop or is already
8467     // used (perhaps because there are multiple permutes with the same shuffle
8468     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
8469     // the loop requires an extra register.
8470     //
8471     // As a compromise, we only emit discrete instructions if the shuffle can be
8472     // generated in 3 or fewer operations.  When we have loop information
8473     // available, if this block is within a loop, we should avoid using vperm
8474     // for 3-operation perms and use a constant pool load instead.
8475     if (Cost < 3)
8476       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8477   }
8478 
8479   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
8480   // vector that will get spilled to the constant pool.
8481   if (V2.isUndef()) V2 = V1;
8482 
8483   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
8484   // that it is in input element units, not in bytes.  Convert now.
8485 
8486   // For little endian, the order of the input vectors is reversed, and
8487   // the permutation mask is complemented with respect to 31.  This is
8488   // necessary to produce proper semantics with the big-endian-biased vperm
8489   // instruction.
8490   EVT EltVT = V1.getValueType().getVectorElementType();
8491   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
8492 
8493   SmallVector<SDValue, 16> ResultMask;
8494   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
8495     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
8496 
8497     for (unsigned j = 0; j != BytesPerElement; ++j)
8498       if (isLittleEndian)
8499         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
8500                                              dl, MVT::i32));
8501       else
8502         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
8503                                              MVT::i32));
8504   }
8505 
8506   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
8507   if (isLittleEndian)
8508     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8509                        V2, V1, VPermMask);
8510   else
8511     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8512                        V1, V2, VPermMask);
8513 }
8514 
8515 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
8516 /// vector comparison.  If it is, return true and fill in Opc/isDot with
8517 /// information about the intrinsic.
8518 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
8519                                  bool &isDot, const PPCSubtarget &Subtarget) {
8520   unsigned IntrinsicID =
8521       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
8522   CompareOpc = -1;
8523   isDot = false;
8524   switch (IntrinsicID) {
8525   default:
8526     return false;
8527   // Comparison predicates.
8528   case Intrinsic::ppc_altivec_vcmpbfp_p:
8529     CompareOpc = 966;
8530     isDot = true;
8531     break;
8532   case Intrinsic::ppc_altivec_vcmpeqfp_p:
8533     CompareOpc = 198;
8534     isDot = true;
8535     break;
8536   case Intrinsic::ppc_altivec_vcmpequb_p:
8537     CompareOpc = 6;
8538     isDot = true;
8539     break;
8540   case Intrinsic::ppc_altivec_vcmpequh_p:
8541     CompareOpc = 70;
8542     isDot = true;
8543     break;
8544   case Intrinsic::ppc_altivec_vcmpequw_p:
8545     CompareOpc = 134;
8546     isDot = true;
8547     break;
8548   case Intrinsic::ppc_altivec_vcmpequd_p:
8549     if (Subtarget.hasP8Altivec()) {
8550       CompareOpc = 199;
8551       isDot = true;
8552     } else
8553       return false;
8554     break;
8555   case Intrinsic::ppc_altivec_vcmpneb_p:
8556   case Intrinsic::ppc_altivec_vcmpneh_p:
8557   case Intrinsic::ppc_altivec_vcmpnew_p:
8558   case Intrinsic::ppc_altivec_vcmpnezb_p:
8559   case Intrinsic::ppc_altivec_vcmpnezh_p:
8560   case Intrinsic::ppc_altivec_vcmpnezw_p:
8561     if (Subtarget.hasP9Altivec()) {
8562       switch (IntrinsicID) {
8563       default:
8564         llvm_unreachable("Unknown comparison intrinsic.");
8565       case Intrinsic::ppc_altivec_vcmpneb_p:
8566         CompareOpc = 7;
8567         break;
8568       case Intrinsic::ppc_altivec_vcmpneh_p:
8569         CompareOpc = 71;
8570         break;
8571       case Intrinsic::ppc_altivec_vcmpnew_p:
8572         CompareOpc = 135;
8573         break;
8574       case Intrinsic::ppc_altivec_vcmpnezb_p:
8575         CompareOpc = 263;
8576         break;
8577       case Intrinsic::ppc_altivec_vcmpnezh_p:
8578         CompareOpc = 327;
8579         break;
8580       case Intrinsic::ppc_altivec_vcmpnezw_p:
8581         CompareOpc = 391;
8582         break;
8583       }
8584       isDot = true;
8585     } else
8586       return false;
8587     break;
8588   case Intrinsic::ppc_altivec_vcmpgefp_p:
8589     CompareOpc = 454;
8590     isDot = true;
8591     break;
8592   case Intrinsic::ppc_altivec_vcmpgtfp_p:
8593     CompareOpc = 710;
8594     isDot = true;
8595     break;
8596   case Intrinsic::ppc_altivec_vcmpgtsb_p:
8597     CompareOpc = 774;
8598     isDot = true;
8599     break;
8600   case Intrinsic::ppc_altivec_vcmpgtsh_p:
8601     CompareOpc = 838;
8602     isDot = true;
8603     break;
8604   case Intrinsic::ppc_altivec_vcmpgtsw_p:
8605     CompareOpc = 902;
8606     isDot = true;
8607     break;
8608   case Intrinsic::ppc_altivec_vcmpgtsd_p:
8609     if (Subtarget.hasP8Altivec()) {
8610       CompareOpc = 967;
8611       isDot = true;
8612     } else
8613       return false;
8614     break;
8615   case Intrinsic::ppc_altivec_vcmpgtub_p:
8616     CompareOpc = 518;
8617     isDot = true;
8618     break;
8619   case Intrinsic::ppc_altivec_vcmpgtuh_p:
8620     CompareOpc = 582;
8621     isDot = true;
8622     break;
8623   case Intrinsic::ppc_altivec_vcmpgtuw_p:
8624     CompareOpc = 646;
8625     isDot = true;
8626     break;
8627   case Intrinsic::ppc_altivec_vcmpgtud_p:
8628     if (Subtarget.hasP8Altivec()) {
8629       CompareOpc = 711;
8630       isDot = true;
8631     } else
8632       return false;
8633     break;
8634 
8635   // VSX predicate comparisons use the same infrastructure
8636   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8637   case Intrinsic::ppc_vsx_xvcmpgedp_p:
8638   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8639   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8640   case Intrinsic::ppc_vsx_xvcmpgesp_p:
8641   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8642     if (Subtarget.hasVSX()) {
8643       switch (IntrinsicID) {
8644       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8645         CompareOpc = 99;
8646         break;
8647       case Intrinsic::ppc_vsx_xvcmpgedp_p:
8648         CompareOpc = 115;
8649         break;
8650       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8651         CompareOpc = 107;
8652         break;
8653       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8654         CompareOpc = 67;
8655         break;
8656       case Intrinsic::ppc_vsx_xvcmpgesp_p:
8657         CompareOpc = 83;
8658         break;
8659       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8660         CompareOpc = 75;
8661         break;
8662       }
8663       isDot = true;
8664     } else
8665       return false;
8666     break;
8667 
8668   // Normal Comparisons.
8669   case Intrinsic::ppc_altivec_vcmpbfp:
8670     CompareOpc = 966;
8671     break;
8672   case Intrinsic::ppc_altivec_vcmpeqfp:
8673     CompareOpc = 198;
8674     break;
8675   case Intrinsic::ppc_altivec_vcmpequb:
8676     CompareOpc = 6;
8677     break;
8678   case Intrinsic::ppc_altivec_vcmpequh:
8679     CompareOpc = 70;
8680     break;
8681   case Intrinsic::ppc_altivec_vcmpequw:
8682     CompareOpc = 134;
8683     break;
8684   case Intrinsic::ppc_altivec_vcmpequd:
8685     if (Subtarget.hasP8Altivec())
8686       CompareOpc = 199;
8687     else
8688       return false;
8689     break;
8690   case Intrinsic::ppc_altivec_vcmpneb:
8691   case Intrinsic::ppc_altivec_vcmpneh:
8692   case Intrinsic::ppc_altivec_vcmpnew:
8693   case Intrinsic::ppc_altivec_vcmpnezb:
8694   case Intrinsic::ppc_altivec_vcmpnezh:
8695   case Intrinsic::ppc_altivec_vcmpnezw:
8696     if (Subtarget.hasP9Altivec())
8697       switch (IntrinsicID) {
8698       default:
8699         llvm_unreachable("Unknown comparison intrinsic.");
8700       case Intrinsic::ppc_altivec_vcmpneb:
8701         CompareOpc = 7;
8702         break;
8703       case Intrinsic::ppc_altivec_vcmpneh:
8704         CompareOpc = 71;
8705         break;
8706       case Intrinsic::ppc_altivec_vcmpnew:
8707         CompareOpc = 135;
8708         break;
8709       case Intrinsic::ppc_altivec_vcmpnezb:
8710         CompareOpc = 263;
8711         break;
8712       case Intrinsic::ppc_altivec_vcmpnezh:
8713         CompareOpc = 327;
8714         break;
8715       case Intrinsic::ppc_altivec_vcmpnezw:
8716         CompareOpc = 391;
8717         break;
8718       }
8719     else
8720       return false;
8721     break;
8722   case Intrinsic::ppc_altivec_vcmpgefp:
8723     CompareOpc = 454;
8724     break;
8725   case Intrinsic::ppc_altivec_vcmpgtfp:
8726     CompareOpc = 710;
8727     break;
8728   case Intrinsic::ppc_altivec_vcmpgtsb:
8729     CompareOpc = 774;
8730     break;
8731   case Intrinsic::ppc_altivec_vcmpgtsh:
8732     CompareOpc = 838;
8733     break;
8734   case Intrinsic::ppc_altivec_vcmpgtsw:
8735     CompareOpc = 902;
8736     break;
8737   case Intrinsic::ppc_altivec_vcmpgtsd:
8738     if (Subtarget.hasP8Altivec())
8739       CompareOpc = 967;
8740     else
8741       return false;
8742     break;
8743   case Intrinsic::ppc_altivec_vcmpgtub:
8744     CompareOpc = 518;
8745     break;
8746   case Intrinsic::ppc_altivec_vcmpgtuh:
8747     CompareOpc = 582;
8748     break;
8749   case Intrinsic::ppc_altivec_vcmpgtuw:
8750     CompareOpc = 646;
8751     break;
8752   case Intrinsic::ppc_altivec_vcmpgtud:
8753     if (Subtarget.hasP8Altivec())
8754       CompareOpc = 711;
8755     else
8756       return false;
8757     break;
8758   }
8759   return true;
8760 }
8761 
8762 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
8763 /// lower, do it, otherwise return null.
8764 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
8765                                                    SelectionDAG &DAG) const {
8766   unsigned IntrinsicID =
8767     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8768 
8769   SDLoc dl(Op);
8770 
8771   if (IntrinsicID == Intrinsic::thread_pointer) {
8772     // Reads the thread pointer register, used for __builtin_thread_pointer.
8773     if (Subtarget.isPPC64())
8774       return DAG.getRegister(PPC::X13, MVT::i64);
8775     return DAG.getRegister(PPC::R2, MVT::i32);
8776   }
8777 
8778   // We are looking for absolute values here.
8779   // The idea is to try to fit one of two patterns:
8780   //  max (a, (0-a))  OR  max ((0-a), a)
8781   if (Subtarget.hasP9Vector() &&
8782       (IntrinsicID == Intrinsic::ppc_altivec_vmaxsw ||
8783        IntrinsicID == Intrinsic::ppc_altivec_vmaxsh ||
8784        IntrinsicID == Intrinsic::ppc_altivec_vmaxsb)) {
8785     SDValue V1 = Op.getOperand(1);
8786     SDValue V2 = Op.getOperand(2);
8787     if (V1.getSimpleValueType() == V2.getSimpleValueType() &&
8788         (V1.getSimpleValueType() == MVT::v4i32 ||
8789          V1.getSimpleValueType() == MVT::v8i16 ||
8790          V1.getSimpleValueType() == MVT::v16i8)) {
8791       if ( V1.getOpcode() == ISD::SUB &&
8792            ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
8793            V1.getOperand(1) == V2 ) {
8794         // Generate the abs instruction with the operands
8795         return DAG.getNode(ISD::ABS, dl, V2.getValueType(),V2);
8796       }
8797 
8798       if ( V2.getOpcode() == ISD::SUB &&
8799            ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
8800            V2.getOperand(1) == V1 ) {
8801         // Generate the abs instruction with the operands
8802         return DAG.getNode(ISD::ABS, dl, V1.getValueType(),V1);
8803       }
8804     }
8805   }
8806 
8807   // If this is a lowered altivec predicate compare, CompareOpc is set to the
8808   // opcode number of the comparison.
8809   int CompareOpc;
8810   bool isDot;
8811   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
8812     return SDValue();    // Don't custom lower most intrinsics.
8813 
8814   // If this is a non-dot comparison, make the VCMP node and we are done.
8815   if (!isDot) {
8816     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
8817                               Op.getOperand(1), Op.getOperand(2),
8818                               DAG.getConstant(CompareOpc, dl, MVT::i32));
8819     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
8820   }
8821 
8822   // Create the PPCISD altivec 'dot' comparison node.
8823   SDValue Ops[] = {
8824     Op.getOperand(2),  // LHS
8825     Op.getOperand(3),  // RHS
8826     DAG.getConstant(CompareOpc, dl, MVT::i32)
8827   };
8828   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
8829   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
8830 
8831   // Now that we have the comparison, emit a copy from the CR to a GPR.
8832   // This is flagged to the above dot comparison.
8833   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
8834                                 DAG.getRegister(PPC::CR6, MVT::i32),
8835                                 CompNode.getValue(1));
8836 
8837   // Unpack the result based on how the target uses it.
8838   unsigned BitNo;   // Bit # of CR6.
8839   bool InvertBit;   // Invert result?
8840   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
8841   default:  // Can't happen, don't crash on invalid number though.
8842   case 0:   // Return the value of the EQ bit of CR6.
8843     BitNo = 0; InvertBit = false;
8844     break;
8845   case 1:   // Return the inverted value of the EQ bit of CR6.
8846     BitNo = 0; InvertBit = true;
8847     break;
8848   case 2:   // Return the value of the LT bit of CR6.
8849     BitNo = 2; InvertBit = false;
8850     break;
8851   case 3:   // Return the inverted value of the LT bit of CR6.
8852     BitNo = 2; InvertBit = true;
8853     break;
8854   }
8855 
8856   // Shift the bit into the low position.
8857   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
8858                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
8859   // Isolate the bit.
8860   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
8861                       DAG.getConstant(1, dl, MVT::i32));
8862 
8863   // If we are supposed to, toggle the bit.
8864   if (InvertBit)
8865     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
8866                         DAG.getConstant(1, dl, MVT::i32));
8867   return Flags;
8868 }
8869 
8870 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
8871                                                SelectionDAG &DAG) const {
8872   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
8873   // the beginning of the argument list.
8874   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
8875   SDLoc DL(Op);
8876   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
8877   case Intrinsic::ppc_cfence: {
8878     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
8879     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
8880     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
8881                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
8882                                                   Op.getOperand(ArgStart + 1)),
8883                                       Op.getOperand(0)),
8884                    0);
8885   }
8886   default:
8887     break;
8888   }
8889   return SDValue();
8890 }
8891 
8892 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
8893   // Check for a DIV with the same operands as this REM.
8894   for (auto UI : Op.getOperand(1)->uses()) {
8895     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
8896         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
8897       if (UI->getOperand(0) == Op.getOperand(0) &&
8898           UI->getOperand(1) == Op.getOperand(1))
8899         return SDValue();
8900   }
8901   return Op;
8902 }
8903 
8904 // Lower scalar BSWAP64 to xxbrd.
8905 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
8906   SDLoc dl(Op);
8907   // MTVSRDD
8908   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
8909                    Op.getOperand(0));
8910   // XXBRD
8911   Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op);
8912   // MFVSRD
8913   int VectorIndex = 0;
8914   if (Subtarget.isLittleEndian())
8915     VectorIndex = 1;
8916   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
8917                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
8918   return Op;
8919 }
8920 
8921 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
8922 // compared to a value that is atomically loaded (atomic loads zero-extend).
8923 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
8924                                                 SelectionDAG &DAG) const {
8925   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
8926          "Expecting an atomic compare-and-swap here.");
8927   SDLoc dl(Op);
8928   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
8929   EVT MemVT = AtomicNode->getMemoryVT();
8930   if (MemVT.getSizeInBits() >= 32)
8931     return Op;
8932 
8933   SDValue CmpOp = Op.getOperand(2);
8934   // If this is already correctly zero-extended, leave it alone.
8935   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
8936   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
8937     return Op;
8938 
8939   // Clear the high bits of the compare operand.
8940   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
8941   SDValue NewCmpOp =
8942     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
8943                 DAG.getConstant(MaskVal, dl, MVT::i32));
8944 
8945   // Replace the existing compare operand with the properly zero-extended one.
8946   SmallVector<SDValue, 4> Ops;
8947   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
8948     Ops.push_back(AtomicNode->getOperand(i));
8949   Ops[2] = NewCmpOp;
8950   MachineMemOperand *MMO = AtomicNode->getMemOperand();
8951   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
8952   auto NodeTy =
8953     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
8954   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
8955 }
8956 
8957 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
8958                                                   SelectionDAG &DAG) const {
8959   SDLoc dl(Op);
8960   // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
8961   // instructions), but for smaller types, we need to first extend up to v2i32
8962   // before doing going farther.
8963   if (Op.getValueType() == MVT::v2i64) {
8964     EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
8965     if (ExtVT != MVT::v2i32) {
8966       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
8967       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
8968                        DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
8969                                         ExtVT.getVectorElementType(), 4)));
8970       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
8971       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
8972                        DAG.getValueType(MVT::v2i32));
8973     }
8974 
8975     return Op;
8976   }
8977 
8978   return SDValue();
8979 }
8980 
8981 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
8982                                                  SelectionDAG &DAG) const {
8983   SDLoc dl(Op);
8984   // Create a stack slot that is 16-byte aligned.
8985   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8986   int FrameIdx = MFI.CreateStackObject(16, 16, false);
8987   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8988   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8989 
8990   // Store the input value into Value#0 of the stack slot.
8991   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
8992                                MachinePointerInfo());
8993   // Load it out.
8994   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
8995 }
8996 
8997 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
8998                                                   SelectionDAG &DAG) const {
8999   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
9000          "Should only be called for ISD::INSERT_VECTOR_ELT");
9001 
9002   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
9003   // We have legal lowering for constant indices but not for variable ones.
9004   if (!C)
9005     return SDValue();
9006 
9007   EVT VT = Op.getValueType();
9008   SDLoc dl(Op);
9009   SDValue V1 = Op.getOperand(0);
9010   SDValue V2 = Op.getOperand(1);
9011   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
9012   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
9013     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
9014     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
9015     unsigned InsertAtElement = C->getZExtValue();
9016     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
9017     if (Subtarget.isLittleEndian()) {
9018       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
9019     }
9020     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
9021                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9022   }
9023   return Op;
9024 }
9025 
9026 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
9027                                                    SelectionDAG &DAG) const {
9028   SDLoc dl(Op);
9029   SDNode *N = Op.getNode();
9030 
9031   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
9032          "Unknown extract_vector_elt type");
9033 
9034   SDValue Value = N->getOperand(0);
9035 
9036   // The first part of this is like the store lowering except that we don't
9037   // need to track the chain.
9038 
9039   // The values are now known to be -1 (false) or 1 (true). To convert this
9040   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9041   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9042   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9043 
9044   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9045   // understand how to form the extending load.
9046   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9047 
9048   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9049 
9050   // Now convert to an integer and store.
9051   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9052     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9053     Value);
9054 
9055   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9056   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9057   MachinePointerInfo PtrInfo =
9058       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9059   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9060   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9061 
9062   SDValue StoreChain = DAG.getEntryNode();
9063   SDValue Ops[] = {StoreChain,
9064                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9065                    Value, FIdx};
9066   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9067 
9068   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9069     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9070 
9071   // Extract the value requested.
9072   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9073   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9074   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9075 
9076   SDValue IntVal =
9077       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
9078 
9079   if (!Subtarget.useCRBits())
9080     return IntVal;
9081 
9082   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
9083 }
9084 
9085 /// Lowering for QPX v4i1 loads
9086 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
9087                                            SelectionDAG &DAG) const {
9088   SDLoc dl(Op);
9089   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
9090   SDValue LoadChain = LN->getChain();
9091   SDValue BasePtr = LN->getBasePtr();
9092 
9093   if (Op.getValueType() == MVT::v4f64 ||
9094       Op.getValueType() == MVT::v4f32) {
9095     EVT MemVT = LN->getMemoryVT();
9096     unsigned Alignment = LN->getAlignment();
9097 
9098     // If this load is properly aligned, then it is legal.
9099     if (Alignment >= MemVT.getStoreSize())
9100       return Op;
9101 
9102     EVT ScalarVT = Op.getValueType().getScalarType(),
9103         ScalarMemVT = MemVT.getScalarType();
9104     unsigned Stride = ScalarMemVT.getStoreSize();
9105 
9106     SDValue Vals[4], LoadChains[4];
9107     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9108       SDValue Load;
9109       if (ScalarVT != ScalarMemVT)
9110         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
9111                               BasePtr,
9112                               LN->getPointerInfo().getWithOffset(Idx * Stride),
9113                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9114                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
9115       else
9116         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
9117                            LN->getPointerInfo().getWithOffset(Idx * Stride),
9118                            MinAlign(Alignment, Idx * Stride),
9119                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
9120 
9121       if (Idx == 0 && LN->isIndexed()) {
9122         assert(LN->getAddressingMode() == ISD::PRE_INC &&
9123                "Unknown addressing mode on vector load");
9124         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
9125                                   LN->getAddressingMode());
9126       }
9127 
9128       Vals[Idx] = Load;
9129       LoadChains[Idx] = Load.getValue(1);
9130 
9131       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9132                             DAG.getConstant(Stride, dl,
9133                                             BasePtr.getValueType()));
9134     }
9135 
9136     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9137     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
9138 
9139     if (LN->isIndexed()) {
9140       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
9141       return DAG.getMergeValues(RetOps, dl);
9142     }
9143 
9144     SDValue RetOps[] = { Value, TF };
9145     return DAG.getMergeValues(RetOps, dl);
9146   }
9147 
9148   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
9149   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
9150 
9151   // To lower v4i1 from a byte array, we load the byte elements of the
9152   // vector and then reuse the BUILD_VECTOR logic.
9153 
9154   SDValue VectElmts[4], VectElmtChains[4];
9155   for (unsigned i = 0; i < 4; ++i) {
9156     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9157     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9158 
9159     VectElmts[i] = DAG.getExtLoad(
9160         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
9161         LN->getPointerInfo().getWithOffset(i), MVT::i8,
9162         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
9163     VectElmtChains[i] = VectElmts[i].getValue(1);
9164   }
9165 
9166   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
9167   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
9168 
9169   SDValue RVals[] = { Value, LoadChain };
9170   return DAG.getMergeValues(RVals, dl);
9171 }
9172 
9173 /// Lowering for QPX v4i1 stores
9174 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
9175                                             SelectionDAG &DAG) const {
9176   SDLoc dl(Op);
9177   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
9178   SDValue StoreChain = SN->getChain();
9179   SDValue BasePtr = SN->getBasePtr();
9180   SDValue Value = SN->getValue();
9181 
9182   if (Value.getValueType() == MVT::v4f64 ||
9183       Value.getValueType() == MVT::v4f32) {
9184     EVT MemVT = SN->getMemoryVT();
9185     unsigned Alignment = SN->getAlignment();
9186 
9187     // If this store is properly aligned, then it is legal.
9188     if (Alignment >= MemVT.getStoreSize())
9189       return Op;
9190 
9191     EVT ScalarVT = Value.getValueType().getScalarType(),
9192         ScalarMemVT = MemVT.getScalarType();
9193     unsigned Stride = ScalarMemVT.getStoreSize();
9194 
9195     SDValue Stores[4];
9196     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9197       SDValue Ex = DAG.getNode(
9198           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
9199           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
9200       SDValue Store;
9201       if (ScalarVT != ScalarMemVT)
9202         Store =
9203             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
9204                               SN->getPointerInfo().getWithOffset(Idx * Stride),
9205                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9206                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
9207       else
9208         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
9209                              SN->getPointerInfo().getWithOffset(Idx * Stride),
9210                              MinAlign(Alignment, Idx * Stride),
9211                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
9212 
9213       if (Idx == 0 && SN->isIndexed()) {
9214         assert(SN->getAddressingMode() == ISD::PRE_INC &&
9215                "Unknown addressing mode on vector store");
9216         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
9217                                     SN->getAddressingMode());
9218       }
9219 
9220       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9221                             DAG.getConstant(Stride, dl,
9222                                             BasePtr.getValueType()));
9223       Stores[Idx] = Store;
9224     }
9225 
9226     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9227 
9228     if (SN->isIndexed()) {
9229       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
9230       return DAG.getMergeValues(RetOps, dl);
9231     }
9232 
9233     return TF;
9234   }
9235 
9236   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
9237   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
9238 
9239   // The values are now known to be -1 (false) or 1 (true). To convert this
9240   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9241   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9242   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9243 
9244   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9245   // understand how to form the extending load.
9246   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9247 
9248   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9249 
9250   // Now convert to an integer and store.
9251   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9252     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9253     Value);
9254 
9255   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9256   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9257   MachinePointerInfo PtrInfo =
9258       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9259   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9260   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9261 
9262   SDValue Ops[] = {StoreChain,
9263                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9264                    Value, FIdx};
9265   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9266 
9267   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9268     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9269 
9270   // Move data into the byte array.
9271   SDValue Loads[4], LoadChains[4];
9272   for (unsigned i = 0; i < 4; ++i) {
9273     unsigned Offset = 4*i;
9274     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9275     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9276 
9277     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
9278                            PtrInfo.getWithOffset(Offset));
9279     LoadChains[i] = Loads[i].getValue(1);
9280   }
9281 
9282   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9283 
9284   SDValue Stores[4];
9285   for (unsigned i = 0; i < 4; ++i) {
9286     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9287     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9288 
9289     Stores[i] = DAG.getTruncStore(
9290         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
9291         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
9292         SN->getAAInfo());
9293   }
9294 
9295   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9296 
9297   return StoreChain;
9298 }
9299 
9300 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9301   SDLoc dl(Op);
9302   if (Op.getValueType() == MVT::v4i32) {
9303     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9304 
9305     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
9306     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
9307 
9308     SDValue RHSSwap =   // = vrlw RHS, 16
9309       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
9310 
9311     // Shrinkify inputs to v8i16.
9312     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
9313     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
9314     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
9315 
9316     // Low parts multiplied together, generating 32-bit results (we ignore the
9317     // top parts).
9318     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
9319                                         LHS, RHS, DAG, dl, MVT::v4i32);
9320 
9321     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
9322                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
9323     // Shift the high parts up 16 bits.
9324     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
9325                               Neg16, DAG, dl);
9326     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
9327   } else if (Op.getValueType() == MVT::v8i16) {
9328     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9329 
9330     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
9331 
9332     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
9333                             LHS, RHS, Zero, DAG, dl);
9334   } else if (Op.getValueType() == MVT::v16i8) {
9335     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9336     bool isLittleEndian = Subtarget.isLittleEndian();
9337 
9338     // Multiply the even 8-bit parts, producing 16-bit sums.
9339     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
9340                                            LHS, RHS, DAG, dl, MVT::v8i16);
9341     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
9342 
9343     // Multiply the odd 8-bit parts, producing 16-bit sums.
9344     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
9345                                           LHS, RHS, DAG, dl, MVT::v8i16);
9346     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
9347 
9348     // Merge the results together.  Because vmuleub and vmuloub are
9349     // instructions with a big-endian bias, we must reverse the
9350     // element numbering and reverse the meaning of "odd" and "even"
9351     // when generating little endian code.
9352     int Ops[16];
9353     for (unsigned i = 0; i != 8; ++i) {
9354       if (isLittleEndian) {
9355         Ops[i*2  ] = 2*i;
9356         Ops[i*2+1] = 2*i+16;
9357       } else {
9358         Ops[i*2  ] = 2*i+1;
9359         Ops[i*2+1] = 2*i+1+16;
9360       }
9361     }
9362     if (isLittleEndian)
9363       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
9364     else
9365       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
9366   } else {
9367     llvm_unreachable("Unknown mul to lower!");
9368   }
9369 }
9370 
9371 /// LowerOperation - Provide custom lowering hooks for some operations.
9372 ///
9373 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9374   switch (Op.getOpcode()) {
9375   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
9376   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9377   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9378   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9379   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9380   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9381   case ISD::SETCC:              return LowerSETCC(Op, DAG);
9382   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
9383   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
9384 
9385   // Variable argument lowering.
9386   case ISD::VASTART:            return LowerVASTART(Op, DAG);
9387   case ISD::VAARG:              return LowerVAARG(Op, DAG);
9388   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
9389 
9390   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
9391   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
9392   case ISD::GET_DYNAMIC_AREA_OFFSET:
9393     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
9394 
9395   // Exception handling lowering.
9396   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
9397   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
9398   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
9399 
9400   case ISD::LOAD:               return LowerLOAD(Op, DAG);
9401   case ISD::STORE:              return LowerSTORE(Op, DAG);
9402   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
9403   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
9404   case ISD::FP_TO_UINT:
9405   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
9406   case ISD::UINT_TO_FP:
9407   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
9408   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9409 
9410   // Lower 64-bit shifts.
9411   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
9412   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
9413   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
9414 
9415   // Vector-related lowering.
9416   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9417   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9418   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9419   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9420   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op, DAG);
9421   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9422   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9423   case ISD::MUL:                return LowerMUL(Op, DAG);
9424 
9425   // For counter-based loop handling.
9426   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
9427 
9428   // Frame & Return address.
9429   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9430   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9431 
9432   case ISD::INTRINSIC_VOID:
9433     return LowerINTRINSIC_VOID(Op, DAG);
9434   case ISD::SREM:
9435   case ISD::UREM:
9436     return LowerREM(Op, DAG);
9437   case ISD::BSWAP:
9438     return LowerBSWAP(Op, DAG);
9439   case ISD::ATOMIC_CMP_SWAP:
9440     return LowerATOMIC_CMP_SWAP(Op, DAG);
9441   }
9442 }
9443 
9444 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
9445                                            SmallVectorImpl<SDValue>&Results,
9446                                            SelectionDAG &DAG) const {
9447   SDLoc dl(N);
9448   switch (N->getOpcode()) {
9449   default:
9450     llvm_unreachable("Do not know how to custom type legalize this operation!");
9451   case ISD::READCYCLECOUNTER: {
9452     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9453     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
9454 
9455     Results.push_back(RTB);
9456     Results.push_back(RTB.getValue(1));
9457     Results.push_back(RTB.getValue(2));
9458     break;
9459   }
9460   case ISD::INTRINSIC_W_CHAIN: {
9461     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
9462         Intrinsic::ppc_is_decremented_ctr_nonzero)
9463       break;
9464 
9465     assert(N->getValueType(0) == MVT::i1 &&
9466            "Unexpected result type for CTR decrement intrinsic");
9467     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
9468                                  N->getValueType(0));
9469     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
9470     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
9471                                  N->getOperand(1));
9472 
9473     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
9474     Results.push_back(NewInt.getValue(1));
9475     break;
9476   }
9477   case ISD::VAARG: {
9478     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
9479       return;
9480 
9481     EVT VT = N->getValueType(0);
9482 
9483     if (VT == MVT::i64) {
9484       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
9485 
9486       Results.push_back(NewNode);
9487       Results.push_back(NewNode.getValue(1));
9488     }
9489     return;
9490   }
9491   case ISD::FP_TO_SINT:
9492   case ISD::FP_TO_UINT:
9493     // LowerFP_TO_INT() can only handle f32 and f64.
9494     if (N->getOperand(0).getValueType() == MVT::ppcf128)
9495       return;
9496     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
9497     return;
9498   }
9499 }
9500 
9501 //===----------------------------------------------------------------------===//
9502 //  Other Lowering Code
9503 //===----------------------------------------------------------------------===//
9504 
9505 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
9506   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
9507   Function *Func = Intrinsic::getDeclaration(M, Id);
9508   return Builder.CreateCall(Func, {});
9509 }
9510 
9511 // The mappings for emitLeading/TrailingFence is taken from
9512 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
9513 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
9514                                                  Instruction *Inst,
9515                                                  AtomicOrdering Ord) const {
9516   if (Ord == AtomicOrdering::SequentiallyConsistent)
9517     return callIntrinsic(Builder, Intrinsic::ppc_sync);
9518   if (isReleaseOrStronger(Ord))
9519     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9520   return nullptr;
9521 }
9522 
9523 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
9524                                                   Instruction *Inst,
9525                                                   AtomicOrdering Ord) const {
9526   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
9527     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
9528     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
9529     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
9530     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
9531       return Builder.CreateCall(
9532           Intrinsic::getDeclaration(
9533               Builder.GetInsertBlock()->getParent()->getParent(),
9534               Intrinsic::ppc_cfence, {Inst->getType()}),
9535           {Inst});
9536     // FIXME: Can use isync for rmw operation.
9537     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9538   }
9539   return nullptr;
9540 }
9541 
9542 MachineBasicBlock *
9543 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
9544                                     unsigned AtomicSize,
9545                                     unsigned BinOpcode,
9546                                     unsigned CmpOpcode,
9547                                     unsigned CmpPred) const {
9548   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9549   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9550 
9551   auto LoadMnemonic = PPC::LDARX;
9552   auto StoreMnemonic = PPC::STDCX;
9553   switch (AtomicSize) {
9554   default:
9555     llvm_unreachable("Unexpected size of atomic entity");
9556   case 1:
9557     LoadMnemonic = PPC::LBARX;
9558     StoreMnemonic = PPC::STBCX;
9559     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9560     break;
9561   case 2:
9562     LoadMnemonic = PPC::LHARX;
9563     StoreMnemonic = PPC::STHCX;
9564     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9565     break;
9566   case 4:
9567     LoadMnemonic = PPC::LWARX;
9568     StoreMnemonic = PPC::STWCX;
9569     break;
9570   case 8:
9571     LoadMnemonic = PPC::LDARX;
9572     StoreMnemonic = PPC::STDCX;
9573     break;
9574   }
9575 
9576   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9577   MachineFunction *F = BB->getParent();
9578   MachineFunction::iterator It = ++BB->getIterator();
9579 
9580   unsigned dest = MI.getOperand(0).getReg();
9581   unsigned ptrA = MI.getOperand(1).getReg();
9582   unsigned ptrB = MI.getOperand(2).getReg();
9583   unsigned incr = MI.getOperand(3).getReg();
9584   DebugLoc dl = MI.getDebugLoc();
9585 
9586   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9587   MachineBasicBlock *loop2MBB =
9588     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9589   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9590   F->insert(It, loopMBB);
9591   if (CmpOpcode)
9592     F->insert(It, loop2MBB);
9593   F->insert(It, exitMBB);
9594   exitMBB->splice(exitMBB->begin(), BB,
9595                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9596   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9597 
9598   MachineRegisterInfo &RegInfo = F->getRegInfo();
9599   unsigned TmpReg = (!BinOpcode) ? incr :
9600     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
9601                                            : &PPC::GPRCRegClass);
9602 
9603   //  thisMBB:
9604   //   ...
9605   //   fallthrough --> loopMBB
9606   BB->addSuccessor(loopMBB);
9607 
9608   //  loopMBB:
9609   //   l[wd]arx dest, ptr
9610   //   add r0, dest, incr
9611   //   st[wd]cx. r0, ptr
9612   //   bne- loopMBB
9613   //   fallthrough --> exitMBB
9614 
9615   // For max/min...
9616   //  loopMBB:
9617   //   l[wd]arx dest, ptr
9618   //   cmpl?[wd] incr, dest
9619   //   bgt exitMBB
9620   //  loop2MBB:
9621   //   st[wd]cx. dest, ptr
9622   //   bne- loopMBB
9623   //   fallthrough --> exitMBB
9624 
9625   BB = loopMBB;
9626   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
9627     .addReg(ptrA).addReg(ptrB);
9628   if (BinOpcode)
9629     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
9630   if (CmpOpcode) {
9631     // Signed comparisons of byte or halfword values must be sign-extended.
9632     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
9633       unsigned ExtReg =  RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
9634       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
9635               ExtReg).addReg(dest);
9636       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9637         .addReg(incr).addReg(ExtReg);
9638     } else
9639       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9640         .addReg(incr).addReg(dest);
9641 
9642     BuildMI(BB, dl, TII->get(PPC::BCC))
9643       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
9644     BB->addSuccessor(loop2MBB);
9645     BB->addSuccessor(exitMBB);
9646     BB = loop2MBB;
9647   }
9648   BuildMI(BB, dl, TII->get(StoreMnemonic))
9649     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
9650   BuildMI(BB, dl, TII->get(PPC::BCC))
9651     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
9652   BB->addSuccessor(loopMBB);
9653   BB->addSuccessor(exitMBB);
9654 
9655   //  exitMBB:
9656   //   ...
9657   BB = exitMBB;
9658   return BB;
9659 }
9660 
9661 MachineBasicBlock *
9662 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr &MI,
9663                                             MachineBasicBlock *BB,
9664                                             bool is8bit, // operation
9665                                             unsigned BinOpcode,
9666                                             unsigned CmpOpcode,
9667                                             unsigned CmpPred) const {
9668   // If we support part-word atomic mnemonics, just use them
9669   if (Subtarget.hasPartwordAtomics())
9670     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode,
9671                             CmpOpcode, CmpPred);
9672 
9673   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9674   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9675   // In 64 bit mode we have to use 64 bits for addresses, even though the
9676   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
9677   // registers without caring whether they're 32 or 64, but here we're
9678   // doing actual arithmetic on the addresses.
9679   bool is64bit = Subtarget.isPPC64();
9680   bool isLittleEndian = Subtarget.isLittleEndian();
9681   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
9682 
9683   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9684   MachineFunction *F = BB->getParent();
9685   MachineFunction::iterator It = ++BB->getIterator();
9686 
9687   unsigned dest = MI.getOperand(0).getReg();
9688   unsigned ptrA = MI.getOperand(1).getReg();
9689   unsigned ptrB = MI.getOperand(2).getReg();
9690   unsigned incr = MI.getOperand(3).getReg();
9691   DebugLoc dl = MI.getDebugLoc();
9692 
9693   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9694   MachineBasicBlock *loop2MBB =
9695     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9696   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9697   F->insert(It, loopMBB);
9698   if (CmpOpcode)
9699     F->insert(It, loop2MBB);
9700   F->insert(It, exitMBB);
9701   exitMBB->splice(exitMBB->begin(), BB,
9702                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9703   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9704 
9705   MachineRegisterInfo &RegInfo = F->getRegInfo();
9706   const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
9707                                           : &PPC::GPRCRegClass;
9708   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
9709   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
9710   unsigned ShiftReg =
9711     isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC);
9712   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
9713   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
9714   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
9715   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
9716   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
9717   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
9718   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
9719   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
9720   unsigned Ptr1Reg;
9721   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
9722 
9723   //  thisMBB:
9724   //   ...
9725   //   fallthrough --> loopMBB
9726   BB->addSuccessor(loopMBB);
9727 
9728   // The 4-byte load must be aligned, while a char or short may be
9729   // anywhere in the word.  Hence all this nasty bookkeeping code.
9730   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
9731   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
9732   //   xori shift, shift1, 24 [16]
9733   //   rlwinm ptr, ptr1, 0, 0, 29
9734   //   slw incr2, incr, shift
9735   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
9736   //   slw mask, mask2, shift
9737   //  loopMBB:
9738   //   lwarx tmpDest, ptr
9739   //   add tmp, tmpDest, incr2
9740   //   andc tmp2, tmpDest, mask
9741   //   and tmp3, tmp, mask
9742   //   or tmp4, tmp3, tmp2
9743   //   stwcx. tmp4, ptr
9744   //   bne- loopMBB
9745   //   fallthrough --> exitMBB
9746   //   srw dest, tmpDest, shift
9747   if (ptrA != ZeroReg) {
9748     Ptr1Reg = RegInfo.createVirtualRegister(RC);
9749     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
9750       .addReg(ptrA).addReg(ptrB);
9751   } else {
9752     Ptr1Reg = ptrB;
9753   }
9754   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
9755       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
9756   if (!isLittleEndian)
9757     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
9758         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
9759   if (is64bit)
9760     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
9761       .addReg(Ptr1Reg).addImm(0).addImm(61);
9762   else
9763     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
9764       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
9765   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
9766       .addReg(incr).addReg(ShiftReg);
9767   if (is8bit)
9768     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
9769   else {
9770     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
9771     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
9772   }
9773   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
9774       .addReg(Mask2Reg).addReg(ShiftReg);
9775 
9776   BB = loopMBB;
9777   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
9778     .addReg(ZeroReg).addReg(PtrReg);
9779   if (BinOpcode)
9780     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
9781       .addReg(Incr2Reg).addReg(TmpDestReg);
9782   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
9783     .addReg(TmpDestReg).addReg(MaskReg);
9784   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
9785     .addReg(TmpReg).addReg(MaskReg);
9786   if (CmpOpcode) {
9787     // For unsigned comparisons, we can directly compare the shifted values.
9788     // For signed comparisons we shift and sign extend.
9789     unsigned SReg = RegInfo.createVirtualRegister(RC);
9790     BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), SReg)
9791       .addReg(TmpDestReg).addReg(MaskReg);
9792     unsigned ValueReg = SReg;
9793     unsigned CmpReg = Incr2Reg;
9794     if (CmpOpcode == PPC::CMPW) {
9795       ValueReg = RegInfo.createVirtualRegister(RC);
9796       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
9797         .addReg(SReg).addReg(ShiftReg);
9798       unsigned ValueSReg = RegInfo.createVirtualRegister(RC);
9799       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
9800         .addReg(ValueReg);
9801       ValueReg = ValueSReg;
9802       CmpReg = incr;
9803     }
9804     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9805       .addReg(CmpReg).addReg(ValueReg);
9806     BuildMI(BB, dl, TII->get(PPC::BCC))
9807       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
9808     BB->addSuccessor(loop2MBB);
9809     BB->addSuccessor(exitMBB);
9810     BB = loop2MBB;
9811   }
9812   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
9813     .addReg(Tmp3Reg).addReg(Tmp2Reg);
9814   BuildMI(BB, dl, TII->get(PPC::STWCX))
9815     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
9816   BuildMI(BB, dl, TII->get(PPC::BCC))
9817     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
9818   BB->addSuccessor(loopMBB);
9819   BB->addSuccessor(exitMBB);
9820 
9821   //  exitMBB:
9822   //   ...
9823   BB = exitMBB;
9824   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
9825     .addReg(ShiftReg);
9826   return BB;
9827 }
9828 
9829 llvm::MachineBasicBlock *
9830 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
9831                                     MachineBasicBlock *MBB) const {
9832   DebugLoc DL = MI.getDebugLoc();
9833   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9834   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
9835 
9836   MachineFunction *MF = MBB->getParent();
9837   MachineRegisterInfo &MRI = MF->getRegInfo();
9838 
9839   const BasicBlock *BB = MBB->getBasicBlock();
9840   MachineFunction::iterator I = ++MBB->getIterator();
9841 
9842   // Memory Reference
9843   MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
9844   MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
9845 
9846   unsigned DstReg = MI.getOperand(0).getReg();
9847   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
9848   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
9849   unsigned mainDstReg = MRI.createVirtualRegister(RC);
9850   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
9851 
9852   MVT PVT = getPointerTy(MF->getDataLayout());
9853   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
9854          "Invalid Pointer Size!");
9855   // For v = setjmp(buf), we generate
9856   //
9857   // thisMBB:
9858   //  SjLjSetup mainMBB
9859   //  bl mainMBB
9860   //  v_restore = 1
9861   //  b sinkMBB
9862   //
9863   // mainMBB:
9864   //  buf[LabelOffset] = LR
9865   //  v_main = 0
9866   //
9867   // sinkMBB:
9868   //  v = phi(main, restore)
9869   //
9870 
9871   MachineBasicBlock *thisMBB = MBB;
9872   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
9873   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
9874   MF->insert(I, mainMBB);
9875   MF->insert(I, sinkMBB);
9876 
9877   MachineInstrBuilder MIB;
9878 
9879   // Transfer the remainder of BB and its successor edges to sinkMBB.
9880   sinkMBB->splice(sinkMBB->begin(), MBB,
9881                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
9882   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
9883 
9884   // Note that the structure of the jmp_buf used here is not compatible
9885   // with that used by libc, and is not designed to be. Specifically, it
9886   // stores only those 'reserved' registers that LLVM does not otherwise
9887   // understand how to spill. Also, by convention, by the time this
9888   // intrinsic is called, Clang has already stored the frame address in the
9889   // first slot of the buffer and stack address in the third. Following the
9890   // X86 target code, we'll store the jump address in the second slot. We also
9891   // need to save the TOC pointer (R2) to handle jumps between shared
9892   // libraries, and that will be stored in the fourth slot. The thread
9893   // identifier (R13) is not affected.
9894 
9895   // thisMBB:
9896   const int64_t LabelOffset = 1 * PVT.getStoreSize();
9897   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
9898   const int64_t BPOffset    = 4 * PVT.getStoreSize();
9899 
9900   // Prepare IP either in reg.
9901   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
9902   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
9903   unsigned BufReg = MI.getOperand(1).getReg();
9904 
9905   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
9906     setUsesTOCBasePtr(*MBB->getParent());
9907     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
9908             .addReg(PPC::X2)
9909             .addImm(TOCOffset)
9910             .addReg(BufReg);
9911     MIB.setMemRefs(MMOBegin, MMOEnd);
9912   }
9913 
9914   // Naked functions never have a base pointer, and so we use r1. For all
9915   // other functions, this decision must be delayed until during PEI.
9916   unsigned BaseReg;
9917   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
9918     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
9919   else
9920     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
9921 
9922   MIB = BuildMI(*thisMBB, MI, DL,
9923                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
9924             .addReg(BaseReg)
9925             .addImm(BPOffset)
9926             .addReg(BufReg);
9927   MIB.setMemRefs(MMOBegin, MMOEnd);
9928 
9929   // Setup
9930   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
9931   MIB.addRegMask(TRI->getNoPreservedMask());
9932 
9933   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
9934 
9935   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
9936           .addMBB(mainMBB);
9937   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
9938 
9939   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
9940   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
9941 
9942   // mainMBB:
9943   //  mainDstReg = 0
9944   MIB =
9945       BuildMI(mainMBB, DL,
9946               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
9947 
9948   // Store IP
9949   if (Subtarget.isPPC64()) {
9950     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
9951             .addReg(LabelReg)
9952             .addImm(LabelOffset)
9953             .addReg(BufReg);
9954   } else {
9955     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
9956             .addReg(LabelReg)
9957             .addImm(LabelOffset)
9958             .addReg(BufReg);
9959   }
9960 
9961   MIB.setMemRefs(MMOBegin, MMOEnd);
9962 
9963   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
9964   mainMBB->addSuccessor(sinkMBB);
9965 
9966   // sinkMBB:
9967   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
9968           TII->get(PPC::PHI), DstReg)
9969     .addReg(mainDstReg).addMBB(mainMBB)
9970     .addReg(restoreDstReg).addMBB(thisMBB);
9971 
9972   MI.eraseFromParent();
9973   return sinkMBB;
9974 }
9975 
9976 MachineBasicBlock *
9977 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
9978                                      MachineBasicBlock *MBB) const {
9979   DebugLoc DL = MI.getDebugLoc();
9980   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9981 
9982   MachineFunction *MF = MBB->getParent();
9983   MachineRegisterInfo &MRI = MF->getRegInfo();
9984 
9985   // Memory Reference
9986   MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
9987   MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
9988 
9989   MVT PVT = getPointerTy(MF->getDataLayout());
9990   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
9991          "Invalid Pointer Size!");
9992 
9993   const TargetRegisterClass *RC =
9994     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
9995   unsigned Tmp = MRI.createVirtualRegister(RC);
9996   // Since FP is only updated here but NOT referenced, it's treated as GPR.
9997   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
9998   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
9999   unsigned BP =
10000       (PVT == MVT::i64)
10001           ? PPC::X30
10002           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
10003                                                               : PPC::R30);
10004 
10005   MachineInstrBuilder MIB;
10006 
10007   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10008   const int64_t SPOffset    = 2 * PVT.getStoreSize();
10009   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10010   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10011 
10012   unsigned BufReg = MI.getOperand(0).getReg();
10013 
10014   // Reload FP (the jumped-to function may not have had a
10015   // frame pointer, and if so, then its r31 will be restored
10016   // as necessary).
10017   if (PVT == MVT::i64) {
10018     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
10019             .addImm(0)
10020             .addReg(BufReg);
10021   } else {
10022     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
10023             .addImm(0)
10024             .addReg(BufReg);
10025   }
10026   MIB.setMemRefs(MMOBegin, MMOEnd);
10027 
10028   // Reload IP
10029   if (PVT == MVT::i64) {
10030     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
10031             .addImm(LabelOffset)
10032             .addReg(BufReg);
10033   } else {
10034     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
10035             .addImm(LabelOffset)
10036             .addReg(BufReg);
10037   }
10038   MIB.setMemRefs(MMOBegin, MMOEnd);
10039 
10040   // Reload SP
10041   if (PVT == MVT::i64) {
10042     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
10043             .addImm(SPOffset)
10044             .addReg(BufReg);
10045   } else {
10046     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
10047             .addImm(SPOffset)
10048             .addReg(BufReg);
10049   }
10050   MIB.setMemRefs(MMOBegin, MMOEnd);
10051 
10052   // Reload BP
10053   if (PVT == MVT::i64) {
10054     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
10055             .addImm(BPOffset)
10056             .addReg(BufReg);
10057   } else {
10058     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
10059             .addImm(BPOffset)
10060             .addReg(BufReg);
10061   }
10062   MIB.setMemRefs(MMOBegin, MMOEnd);
10063 
10064   // Reload TOC
10065   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
10066     setUsesTOCBasePtr(*MBB->getParent());
10067     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
10068             .addImm(TOCOffset)
10069             .addReg(BufReg);
10070 
10071     MIB.setMemRefs(MMOBegin, MMOEnd);
10072   }
10073 
10074   // Jump
10075   BuildMI(*MBB, MI, DL,
10076           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
10077   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
10078 
10079   MI.eraseFromParent();
10080   return MBB;
10081 }
10082 
10083 MachineBasicBlock *
10084 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
10085                                                MachineBasicBlock *BB) const {
10086   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
10087       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10088     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
10089         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10090       // Call lowering should have added an r2 operand to indicate a dependence
10091       // on the TOC base pointer value. It can't however, because there is no
10092       // way to mark the dependence as implicit there, and so the stackmap code
10093       // will confuse it with a regular operand. Instead, add the dependence
10094       // here.
10095       setUsesTOCBasePtr(*BB->getParent());
10096       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
10097     }
10098 
10099     return emitPatchPoint(MI, BB);
10100   }
10101 
10102   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
10103       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
10104     return emitEHSjLjSetJmp(MI, BB);
10105   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
10106              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
10107     return emitEHSjLjLongJmp(MI, BB);
10108   }
10109 
10110   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10111 
10112   // To "insert" these instructions we actually have to insert their
10113   // control-flow patterns.
10114   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10115   MachineFunction::iterator It = ++BB->getIterator();
10116 
10117   MachineFunction *F = BB->getParent();
10118 
10119   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10120        MI.getOpcode() == PPC::SELECT_CC_I8 ||
10121        MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8) {
10122     SmallVector<MachineOperand, 2> Cond;
10123     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10124         MI.getOpcode() == PPC::SELECT_CC_I8)
10125       Cond.push_back(MI.getOperand(4));
10126     else
10127       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
10128     Cond.push_back(MI.getOperand(1));
10129 
10130     DebugLoc dl = MI.getDebugLoc();
10131     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
10132                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
10133   } else if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10134              MI.getOpcode() == PPC::SELECT_CC_I8 ||
10135              MI.getOpcode() == PPC::SELECT_CC_F4 ||
10136              MI.getOpcode() == PPC::SELECT_CC_F8 ||
10137              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
10138              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
10139              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
10140              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
10141              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
10142              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
10143              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
10144              MI.getOpcode() == PPC::SELECT_I4 ||
10145              MI.getOpcode() == PPC::SELECT_I8 ||
10146              MI.getOpcode() == PPC::SELECT_F4 ||
10147              MI.getOpcode() == PPC::SELECT_F8 ||
10148              MI.getOpcode() == PPC::SELECT_QFRC ||
10149              MI.getOpcode() == PPC::SELECT_QSRC ||
10150              MI.getOpcode() == PPC::SELECT_QBRC ||
10151              MI.getOpcode() == PPC::SELECT_VRRC ||
10152              MI.getOpcode() == PPC::SELECT_VSFRC ||
10153              MI.getOpcode() == PPC::SELECT_VSSRC ||
10154              MI.getOpcode() == PPC::SELECT_VSRC) {
10155     // The incoming instruction knows the destination vreg to set, the
10156     // condition code register to branch on, the true/false values to
10157     // select between, and a branch opcode to use.
10158 
10159     //  thisMBB:
10160     //  ...
10161     //   TrueVal = ...
10162     //   cmpTY ccX, r1, r2
10163     //   bCC copy1MBB
10164     //   fallthrough --> copy0MBB
10165     MachineBasicBlock *thisMBB = BB;
10166     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10167     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10168     DebugLoc dl = MI.getDebugLoc();
10169     F->insert(It, copy0MBB);
10170     F->insert(It, sinkMBB);
10171 
10172     // Transfer the remainder of BB and its successor edges to sinkMBB.
10173     sinkMBB->splice(sinkMBB->begin(), BB,
10174                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10175     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10176 
10177     // Next, add the true and fallthrough blocks as its successors.
10178     BB->addSuccessor(copy0MBB);
10179     BB->addSuccessor(sinkMBB);
10180 
10181     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
10182         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
10183         MI.getOpcode() == PPC::SELECT_QFRC ||
10184         MI.getOpcode() == PPC::SELECT_QSRC ||
10185         MI.getOpcode() == PPC::SELECT_QBRC ||
10186         MI.getOpcode() == PPC::SELECT_VRRC ||
10187         MI.getOpcode() == PPC::SELECT_VSFRC ||
10188         MI.getOpcode() == PPC::SELECT_VSSRC ||
10189         MI.getOpcode() == PPC::SELECT_VSRC) {
10190       BuildMI(BB, dl, TII->get(PPC::BC))
10191           .addReg(MI.getOperand(1).getReg())
10192           .addMBB(sinkMBB);
10193     } else {
10194       unsigned SelectPred = MI.getOperand(4).getImm();
10195       BuildMI(BB, dl, TII->get(PPC::BCC))
10196           .addImm(SelectPred)
10197           .addReg(MI.getOperand(1).getReg())
10198           .addMBB(sinkMBB);
10199     }
10200 
10201     //  copy0MBB:
10202     //   %FalseValue = ...
10203     //   # fallthrough to sinkMBB
10204     BB = copy0MBB;
10205 
10206     // Update machine-CFG edges
10207     BB->addSuccessor(sinkMBB);
10208 
10209     //  sinkMBB:
10210     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10211     //  ...
10212     BB = sinkMBB;
10213     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
10214         .addReg(MI.getOperand(3).getReg())
10215         .addMBB(copy0MBB)
10216         .addReg(MI.getOperand(2).getReg())
10217         .addMBB(thisMBB);
10218   } else if (MI.getOpcode() == PPC::ReadTB) {
10219     // To read the 64-bit time-base register on a 32-bit target, we read the
10220     // two halves. Should the counter have wrapped while it was being read, we
10221     // need to try again.
10222     // ...
10223     // readLoop:
10224     // mfspr Rx,TBU # load from TBU
10225     // mfspr Ry,TB  # load from TB
10226     // mfspr Rz,TBU # load from TBU
10227     // cmpw crX,Rx,Rz # check if 'old'='new'
10228     // bne readLoop   # branch if they're not equal
10229     // ...
10230 
10231     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
10232     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10233     DebugLoc dl = MI.getDebugLoc();
10234     F->insert(It, readMBB);
10235     F->insert(It, sinkMBB);
10236 
10237     // Transfer the remainder of BB and its successor edges to sinkMBB.
10238     sinkMBB->splice(sinkMBB->begin(), BB,
10239                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10240     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10241 
10242     BB->addSuccessor(readMBB);
10243     BB = readMBB;
10244 
10245     MachineRegisterInfo &RegInfo = F->getRegInfo();
10246     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10247     unsigned LoReg = MI.getOperand(0).getReg();
10248     unsigned HiReg = MI.getOperand(1).getReg();
10249 
10250     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
10251     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
10252     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
10253 
10254     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10255 
10256     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
10257       .addReg(HiReg).addReg(ReadAgainReg);
10258     BuildMI(BB, dl, TII->get(PPC::BCC))
10259       .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
10260 
10261     BB->addSuccessor(readMBB);
10262     BB->addSuccessor(sinkMBB);
10263   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
10264     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
10265   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
10266     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
10267   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
10268     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
10269   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
10270     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
10271 
10272   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
10273     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
10274   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
10275     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
10276   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
10277     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
10278   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
10279     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
10280 
10281   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
10282     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
10283   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
10284     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
10285   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
10286     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
10287   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
10288     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
10289 
10290   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
10291     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
10292   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
10293     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
10294   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
10295     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
10296   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
10297     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
10298 
10299   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
10300     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
10301   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
10302     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
10303   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
10304     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
10305   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
10306     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
10307 
10308   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
10309     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
10310   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
10311     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
10312   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
10313     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
10314   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
10315     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
10316 
10317   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
10318     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
10319   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
10320     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
10321   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
10322     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
10323   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
10324     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
10325 
10326   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
10327     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
10328   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
10329     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
10330   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
10331     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
10332   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
10333     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
10334 
10335   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
10336     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
10337   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
10338     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
10339   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
10340     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
10341   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
10342     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
10343 
10344   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
10345     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
10346   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
10347     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
10348   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
10349     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
10350   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
10351     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
10352 
10353   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
10354     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
10355   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
10356     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
10357   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
10358     BB = EmitAtomicBinary(MI, BB, 4, 0);
10359   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
10360     BB = EmitAtomicBinary(MI, BB, 8, 0);
10361   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
10362            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
10363            (Subtarget.hasPartwordAtomics() &&
10364             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
10365            (Subtarget.hasPartwordAtomics() &&
10366             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
10367     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
10368 
10369     auto LoadMnemonic = PPC::LDARX;
10370     auto StoreMnemonic = PPC::STDCX;
10371     switch (MI.getOpcode()) {
10372     default:
10373       llvm_unreachable("Compare and swap of unknown size");
10374     case PPC::ATOMIC_CMP_SWAP_I8:
10375       LoadMnemonic = PPC::LBARX;
10376       StoreMnemonic = PPC::STBCX;
10377       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10378       break;
10379     case PPC::ATOMIC_CMP_SWAP_I16:
10380       LoadMnemonic = PPC::LHARX;
10381       StoreMnemonic = PPC::STHCX;
10382       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10383       break;
10384     case PPC::ATOMIC_CMP_SWAP_I32:
10385       LoadMnemonic = PPC::LWARX;
10386       StoreMnemonic = PPC::STWCX;
10387       break;
10388     case PPC::ATOMIC_CMP_SWAP_I64:
10389       LoadMnemonic = PPC::LDARX;
10390       StoreMnemonic = PPC::STDCX;
10391       break;
10392     }
10393     unsigned dest = MI.getOperand(0).getReg();
10394     unsigned ptrA = MI.getOperand(1).getReg();
10395     unsigned ptrB = MI.getOperand(2).getReg();
10396     unsigned oldval = MI.getOperand(3).getReg();
10397     unsigned newval = MI.getOperand(4).getReg();
10398     DebugLoc dl = MI.getDebugLoc();
10399 
10400     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10401     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10402     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10403     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10404     F->insert(It, loop1MBB);
10405     F->insert(It, loop2MBB);
10406     F->insert(It, midMBB);
10407     F->insert(It, exitMBB);
10408     exitMBB->splice(exitMBB->begin(), BB,
10409                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10410     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10411 
10412     //  thisMBB:
10413     //   ...
10414     //   fallthrough --> loopMBB
10415     BB->addSuccessor(loop1MBB);
10416 
10417     // loop1MBB:
10418     //   l[bhwd]arx dest, ptr
10419     //   cmp[wd] dest, oldval
10420     //   bne- midMBB
10421     // loop2MBB:
10422     //   st[bhwd]cx. newval, ptr
10423     //   bne- loopMBB
10424     //   b exitBB
10425     // midMBB:
10426     //   st[bhwd]cx. dest, ptr
10427     // exitBB:
10428     BB = loop1MBB;
10429     BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10430       .addReg(ptrA).addReg(ptrB);
10431     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
10432       .addReg(oldval).addReg(dest);
10433     BuildMI(BB, dl, TII->get(PPC::BCC))
10434       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
10435     BB->addSuccessor(loop2MBB);
10436     BB->addSuccessor(midMBB);
10437 
10438     BB = loop2MBB;
10439     BuildMI(BB, dl, TII->get(StoreMnemonic))
10440       .addReg(newval).addReg(ptrA).addReg(ptrB);
10441     BuildMI(BB, dl, TII->get(PPC::BCC))
10442       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
10443     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10444     BB->addSuccessor(loop1MBB);
10445     BB->addSuccessor(exitMBB);
10446 
10447     BB = midMBB;
10448     BuildMI(BB, dl, TII->get(StoreMnemonic))
10449       .addReg(dest).addReg(ptrA).addReg(ptrB);
10450     BB->addSuccessor(exitMBB);
10451 
10452     //  exitMBB:
10453     //   ...
10454     BB = exitMBB;
10455   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
10456              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
10457     // We must use 64-bit registers for addresses when targeting 64-bit,
10458     // since we're actually doing arithmetic on them.  Other registers
10459     // can be 32-bit.
10460     bool is64bit = Subtarget.isPPC64();
10461     bool isLittleEndian = Subtarget.isLittleEndian();
10462     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
10463 
10464     unsigned dest = MI.getOperand(0).getReg();
10465     unsigned ptrA = MI.getOperand(1).getReg();
10466     unsigned ptrB = MI.getOperand(2).getReg();
10467     unsigned oldval = MI.getOperand(3).getReg();
10468     unsigned newval = MI.getOperand(4).getReg();
10469     DebugLoc dl = MI.getDebugLoc();
10470 
10471     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10472     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10473     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10474     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10475     F->insert(It, loop1MBB);
10476     F->insert(It, loop2MBB);
10477     F->insert(It, midMBB);
10478     F->insert(It, exitMBB);
10479     exitMBB->splice(exitMBB->begin(), BB,
10480                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10481     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10482 
10483     MachineRegisterInfo &RegInfo = F->getRegInfo();
10484     const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
10485                                             : &PPC::GPRCRegClass;
10486     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
10487     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
10488     unsigned ShiftReg =
10489       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC);
10490     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
10491     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
10492     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
10493     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
10494     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
10495     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
10496     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
10497     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
10498     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
10499     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
10500     unsigned Ptr1Reg;
10501     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
10502     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10503     //  thisMBB:
10504     //   ...
10505     //   fallthrough --> loopMBB
10506     BB->addSuccessor(loop1MBB);
10507 
10508     // The 4-byte load must be aligned, while a char or short may be
10509     // anywhere in the word.  Hence all this nasty bookkeeping code.
10510     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10511     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10512     //   xori shift, shift1, 24 [16]
10513     //   rlwinm ptr, ptr1, 0, 0, 29
10514     //   slw newval2, newval, shift
10515     //   slw oldval2, oldval,shift
10516     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10517     //   slw mask, mask2, shift
10518     //   and newval3, newval2, mask
10519     //   and oldval3, oldval2, mask
10520     // loop1MBB:
10521     //   lwarx tmpDest, ptr
10522     //   and tmp, tmpDest, mask
10523     //   cmpw tmp, oldval3
10524     //   bne- midMBB
10525     // loop2MBB:
10526     //   andc tmp2, tmpDest, mask
10527     //   or tmp4, tmp2, newval3
10528     //   stwcx. tmp4, ptr
10529     //   bne- loop1MBB
10530     //   b exitBB
10531     // midMBB:
10532     //   stwcx. tmpDest, ptr
10533     // exitBB:
10534     //   srw dest, tmpDest, shift
10535     if (ptrA != ZeroReg) {
10536       Ptr1Reg = RegInfo.createVirtualRegister(RC);
10537       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10538         .addReg(ptrA).addReg(ptrB);
10539     } else {
10540       Ptr1Reg = ptrB;
10541     }
10542     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
10543         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
10544     if (!isLittleEndian)
10545       BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
10546           .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
10547     if (is64bit)
10548       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10549         .addReg(Ptr1Reg).addImm(0).addImm(61);
10550     else
10551       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10552         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
10553     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
10554         .addReg(newval).addReg(ShiftReg);
10555     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
10556         .addReg(oldval).addReg(ShiftReg);
10557     if (is8bit)
10558       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10559     else {
10560       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10561       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10562         .addReg(Mask3Reg).addImm(65535);
10563     }
10564     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10565         .addReg(Mask2Reg).addReg(ShiftReg);
10566     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
10567         .addReg(NewVal2Reg).addReg(MaskReg);
10568     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
10569         .addReg(OldVal2Reg).addReg(MaskReg);
10570 
10571     BB = loop1MBB;
10572     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10573         .addReg(ZeroReg).addReg(PtrReg);
10574     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
10575         .addReg(TmpDestReg).addReg(MaskReg);
10576     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
10577         .addReg(TmpReg).addReg(OldVal3Reg);
10578     BuildMI(BB, dl, TII->get(PPC::BCC))
10579         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
10580     BB->addSuccessor(loop2MBB);
10581     BB->addSuccessor(midMBB);
10582 
10583     BB = loop2MBB;
10584     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
10585         .addReg(TmpDestReg).addReg(MaskReg);
10586     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
10587         .addReg(Tmp2Reg).addReg(NewVal3Reg);
10588     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
10589         .addReg(ZeroReg).addReg(PtrReg);
10590     BuildMI(BB, dl, TII->get(PPC::BCC))
10591       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
10592     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10593     BB->addSuccessor(loop1MBB);
10594     BB->addSuccessor(exitMBB);
10595 
10596     BB = midMBB;
10597     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
10598       .addReg(ZeroReg).addReg(PtrReg);
10599     BB->addSuccessor(exitMBB);
10600 
10601     //  exitMBB:
10602     //   ...
10603     BB = exitMBB;
10604     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
10605       .addReg(ShiftReg);
10606   } else if (MI.getOpcode() == PPC::FADDrtz) {
10607     // This pseudo performs an FADD with rounding mode temporarily forced
10608     // to round-to-zero.  We emit this via custom inserter since the FPSCR
10609     // is not modeled at the SelectionDAG level.
10610     unsigned Dest = MI.getOperand(0).getReg();
10611     unsigned Src1 = MI.getOperand(1).getReg();
10612     unsigned Src2 = MI.getOperand(2).getReg();
10613     DebugLoc dl = MI.getDebugLoc();
10614 
10615     MachineRegisterInfo &RegInfo = F->getRegInfo();
10616     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
10617 
10618     // Save FPSCR value.
10619     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
10620 
10621     // Set rounding mode to round-to-zero.
10622     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
10623     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
10624 
10625     // Perform addition.
10626     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
10627 
10628     // Restore FPSCR value.
10629     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
10630   } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10631              MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
10632              MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10633              MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
10634     unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10635                        MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
10636                           ? PPC::ANDIo8
10637                           : PPC::ANDIo;
10638     bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10639                  MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
10640 
10641     MachineRegisterInfo &RegInfo = F->getRegInfo();
10642     unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
10643                                                   &PPC::GPRCRegClass :
10644                                                   &PPC::G8RCRegClass);
10645 
10646     DebugLoc dl = MI.getDebugLoc();
10647     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
10648         .addReg(MI.getOperand(1).getReg())
10649         .addImm(1);
10650     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
10651             MI.getOperand(0).getReg())
10652         .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
10653   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
10654     DebugLoc Dl = MI.getDebugLoc();
10655     MachineRegisterInfo &RegInfo = F->getRegInfo();
10656     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10657     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
10658     return BB;
10659   } else {
10660     llvm_unreachable("Unexpected instr type to insert");
10661   }
10662 
10663   MI.eraseFromParent(); // The pseudo instruction is gone now.
10664   return BB;
10665 }
10666 
10667 //===----------------------------------------------------------------------===//
10668 // Target Optimization Hooks
10669 //===----------------------------------------------------------------------===//
10670 
10671 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
10672   // For the estimates, convergence is quadratic, so we essentially double the
10673   // number of digits correct after every iteration. For both FRE and FRSQRTE,
10674   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
10675   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
10676   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
10677   if (VT.getScalarType() == MVT::f64)
10678     RefinementSteps++;
10679   return RefinementSteps;
10680 }
10681 
10682 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
10683                                            int Enabled, int &RefinementSteps,
10684                                            bool &UseOneConstNR,
10685                                            bool Reciprocal) const {
10686   EVT VT = Operand.getValueType();
10687   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
10688       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
10689       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
10690       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
10691       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
10692       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
10693     if (RefinementSteps == ReciprocalEstimate::Unspecified)
10694       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
10695 
10696     UseOneConstNR = true;
10697     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
10698   }
10699   return SDValue();
10700 }
10701 
10702 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
10703                                             int Enabled,
10704                                             int &RefinementSteps) const {
10705   EVT VT = Operand.getValueType();
10706   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
10707       (VT == MVT::f64 && Subtarget.hasFRE()) ||
10708       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
10709       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
10710       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
10711       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
10712     if (RefinementSteps == ReciprocalEstimate::Unspecified)
10713       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
10714     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
10715   }
10716   return SDValue();
10717 }
10718 
10719 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
10720   // Note: This functionality is used only when unsafe-fp-math is enabled, and
10721   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
10722   // enabled for division), this functionality is redundant with the default
10723   // combiner logic (once the division -> reciprocal/multiply transformation
10724   // has taken place). As a result, this matters more for older cores than for
10725   // newer ones.
10726 
10727   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
10728   // reciprocal if there are two or more FDIVs (for embedded cores with only
10729   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
10730   switch (Subtarget.getDarwinDirective()) {
10731   default:
10732     return 3;
10733   case PPC::DIR_440:
10734   case PPC::DIR_A2:
10735   case PPC::DIR_E500mc:
10736   case PPC::DIR_E5500:
10737     return 2;
10738   }
10739 }
10740 
10741 // isConsecutiveLSLoc needs to work even if all adds have not yet been
10742 // collapsed, and so we need to look through chains of them.
10743 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
10744                                      int64_t& Offset, SelectionDAG &DAG) {
10745   if (DAG.isBaseWithConstantOffset(Loc)) {
10746     Base = Loc.getOperand(0);
10747     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
10748 
10749     // The base might itself be a base plus an offset, and if so, accumulate
10750     // that as well.
10751     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
10752   }
10753 }
10754 
10755 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
10756                             unsigned Bytes, int Dist,
10757                             SelectionDAG &DAG) {
10758   if (VT.getSizeInBits() / 8 != Bytes)
10759     return false;
10760 
10761   SDValue BaseLoc = Base->getBasePtr();
10762   if (Loc.getOpcode() == ISD::FrameIndex) {
10763     if (BaseLoc.getOpcode() != ISD::FrameIndex)
10764       return false;
10765     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10766     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
10767     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
10768     int FS  = MFI.getObjectSize(FI);
10769     int BFS = MFI.getObjectSize(BFI);
10770     if (FS != BFS || FS != (int)Bytes) return false;
10771     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
10772   }
10773 
10774   SDValue Base1 = Loc, Base2 = BaseLoc;
10775   int64_t Offset1 = 0, Offset2 = 0;
10776   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
10777   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
10778   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
10779     return true;
10780 
10781   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10782   const GlobalValue *GV1 = nullptr;
10783   const GlobalValue *GV2 = nullptr;
10784   Offset1 = 0;
10785   Offset2 = 0;
10786   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
10787   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
10788   if (isGA1 && isGA2 && GV1 == GV2)
10789     return Offset1 == (Offset2 + Dist*Bytes);
10790   return false;
10791 }
10792 
10793 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
10794 // not enforce equality of the chain operands.
10795 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
10796                             unsigned Bytes, int Dist,
10797                             SelectionDAG &DAG) {
10798   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
10799     EVT VT = LS->getMemoryVT();
10800     SDValue Loc = LS->getBasePtr();
10801     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
10802   }
10803 
10804   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
10805     EVT VT;
10806     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10807     default: return false;
10808     case Intrinsic::ppc_qpx_qvlfd:
10809     case Intrinsic::ppc_qpx_qvlfda:
10810       VT = MVT::v4f64;
10811       break;
10812     case Intrinsic::ppc_qpx_qvlfs:
10813     case Intrinsic::ppc_qpx_qvlfsa:
10814       VT = MVT::v4f32;
10815       break;
10816     case Intrinsic::ppc_qpx_qvlfcd:
10817     case Intrinsic::ppc_qpx_qvlfcda:
10818       VT = MVT::v2f64;
10819       break;
10820     case Intrinsic::ppc_qpx_qvlfcs:
10821     case Intrinsic::ppc_qpx_qvlfcsa:
10822       VT = MVT::v2f32;
10823       break;
10824     case Intrinsic::ppc_qpx_qvlfiwa:
10825     case Intrinsic::ppc_qpx_qvlfiwz:
10826     case Intrinsic::ppc_altivec_lvx:
10827     case Intrinsic::ppc_altivec_lvxl:
10828     case Intrinsic::ppc_vsx_lxvw4x:
10829     case Intrinsic::ppc_vsx_lxvw4x_be:
10830       VT = MVT::v4i32;
10831       break;
10832     case Intrinsic::ppc_vsx_lxvd2x:
10833     case Intrinsic::ppc_vsx_lxvd2x_be:
10834       VT = MVT::v2f64;
10835       break;
10836     case Intrinsic::ppc_altivec_lvebx:
10837       VT = MVT::i8;
10838       break;
10839     case Intrinsic::ppc_altivec_lvehx:
10840       VT = MVT::i16;
10841       break;
10842     case Intrinsic::ppc_altivec_lvewx:
10843       VT = MVT::i32;
10844       break;
10845     }
10846 
10847     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
10848   }
10849 
10850   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
10851     EVT VT;
10852     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10853     default: return false;
10854     case Intrinsic::ppc_qpx_qvstfd:
10855     case Intrinsic::ppc_qpx_qvstfda:
10856       VT = MVT::v4f64;
10857       break;
10858     case Intrinsic::ppc_qpx_qvstfs:
10859     case Intrinsic::ppc_qpx_qvstfsa:
10860       VT = MVT::v4f32;
10861       break;
10862     case Intrinsic::ppc_qpx_qvstfcd:
10863     case Intrinsic::ppc_qpx_qvstfcda:
10864       VT = MVT::v2f64;
10865       break;
10866     case Intrinsic::ppc_qpx_qvstfcs:
10867     case Intrinsic::ppc_qpx_qvstfcsa:
10868       VT = MVT::v2f32;
10869       break;
10870     case Intrinsic::ppc_qpx_qvstfiw:
10871     case Intrinsic::ppc_qpx_qvstfiwa:
10872     case Intrinsic::ppc_altivec_stvx:
10873     case Intrinsic::ppc_altivec_stvxl:
10874     case Intrinsic::ppc_vsx_stxvw4x:
10875       VT = MVT::v4i32;
10876       break;
10877     case Intrinsic::ppc_vsx_stxvd2x:
10878       VT = MVT::v2f64;
10879       break;
10880     case Intrinsic::ppc_vsx_stxvw4x_be:
10881       VT = MVT::v4i32;
10882       break;
10883     case Intrinsic::ppc_vsx_stxvd2x_be:
10884       VT = MVT::v2f64;
10885       break;
10886     case Intrinsic::ppc_altivec_stvebx:
10887       VT = MVT::i8;
10888       break;
10889     case Intrinsic::ppc_altivec_stvehx:
10890       VT = MVT::i16;
10891       break;
10892     case Intrinsic::ppc_altivec_stvewx:
10893       VT = MVT::i32;
10894       break;
10895     }
10896 
10897     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
10898   }
10899 
10900   return false;
10901 }
10902 
10903 // Return true is there is a nearyby consecutive load to the one provided
10904 // (regardless of alignment). We search up and down the chain, looking though
10905 // token factors and other loads (but nothing else). As a result, a true result
10906 // indicates that it is safe to create a new consecutive load adjacent to the
10907 // load provided.
10908 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
10909   SDValue Chain = LD->getChain();
10910   EVT VT = LD->getMemoryVT();
10911 
10912   SmallSet<SDNode *, 16> LoadRoots;
10913   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
10914   SmallSet<SDNode *, 16> Visited;
10915 
10916   // First, search up the chain, branching to follow all token-factor operands.
10917   // If we find a consecutive load, then we're done, otherwise, record all
10918   // nodes just above the top-level loads and token factors.
10919   while (!Queue.empty()) {
10920     SDNode *ChainNext = Queue.pop_back_val();
10921     if (!Visited.insert(ChainNext).second)
10922       continue;
10923 
10924     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
10925       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
10926         return true;
10927 
10928       if (!Visited.count(ChainLD->getChain().getNode()))
10929         Queue.push_back(ChainLD->getChain().getNode());
10930     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
10931       for (const SDUse &O : ChainNext->ops())
10932         if (!Visited.count(O.getNode()))
10933           Queue.push_back(O.getNode());
10934     } else
10935       LoadRoots.insert(ChainNext);
10936   }
10937 
10938   // Second, search down the chain, starting from the top-level nodes recorded
10939   // in the first phase. These top-level nodes are the nodes just above all
10940   // loads and token factors. Starting with their uses, recursively look though
10941   // all loads (just the chain uses) and token factors to find a consecutive
10942   // load.
10943   Visited.clear();
10944   Queue.clear();
10945 
10946   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
10947        IE = LoadRoots.end(); I != IE; ++I) {
10948     Queue.push_back(*I);
10949 
10950     while (!Queue.empty()) {
10951       SDNode *LoadRoot = Queue.pop_back_val();
10952       if (!Visited.insert(LoadRoot).second)
10953         continue;
10954 
10955       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
10956         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
10957           return true;
10958 
10959       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
10960            UE = LoadRoot->use_end(); UI != UE; ++UI)
10961         if (((isa<MemSDNode>(*UI) &&
10962             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
10963             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
10964           Queue.push_back(*UI);
10965     }
10966   }
10967 
10968   return false;
10969 }
10970 
10971 /// This function is called when we have proved that a SETCC node can be replaced
10972 /// by subtraction (and other supporting instructions) so that the result of
10973 /// comparison is kept in a GPR instead of CR. This function is purely for
10974 /// codegen purposes and has some flags to guide the codegen process.
10975 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
10976                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
10977   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
10978 
10979   // Zero extend the operands to the largest legal integer. Originally, they
10980   // must be of a strictly smaller size.
10981   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
10982                          DAG.getConstant(Size, DL, MVT::i32));
10983   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
10984                          DAG.getConstant(Size, DL, MVT::i32));
10985 
10986   // Swap if needed. Depends on the condition code.
10987   if (Swap)
10988     std::swap(Op0, Op1);
10989 
10990   // Subtract extended integers.
10991   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
10992 
10993   // Move the sign bit to the least significant position and zero out the rest.
10994   // Now the least significant bit carries the result of original comparison.
10995   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
10996                              DAG.getConstant(Size - 1, DL, MVT::i32));
10997   auto Final = Shifted;
10998 
10999   // Complement the result if needed. Based on the condition code.
11000   if (Complement)
11001     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
11002                         DAG.getConstant(1, DL, MVT::i64));
11003 
11004   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
11005 }
11006 
11007 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
11008                                                   DAGCombinerInfo &DCI) const {
11009   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
11010 
11011   SelectionDAG &DAG = DCI.DAG;
11012   SDLoc DL(N);
11013 
11014   // Size of integers being compared has a critical role in the following
11015   // analysis, so we prefer to do this when all types are legal.
11016   if (!DCI.isAfterLegalizeDAG())
11017     return SDValue();
11018 
11019   // If all users of SETCC extend its value to a legal integer type
11020   // then we replace SETCC with a subtraction
11021   for (SDNode::use_iterator UI = N->use_begin(),
11022        UE = N->use_end(); UI != UE; ++UI) {
11023     if (UI->getOpcode() != ISD::ZERO_EXTEND)
11024       return SDValue();
11025   }
11026 
11027   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
11028   auto OpSize = N->getOperand(0).getValueSizeInBits();
11029 
11030   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
11031 
11032   if (OpSize < Size) {
11033     switch (CC) {
11034     default: break;
11035     case ISD::SETULT:
11036       return generateEquivalentSub(N, Size, false, false, DL, DAG);
11037     case ISD::SETULE:
11038       return generateEquivalentSub(N, Size, true, true, DL, DAG);
11039     case ISD::SETUGT:
11040       return generateEquivalentSub(N, Size, false, true, DL, DAG);
11041     case ISD::SETUGE:
11042       return generateEquivalentSub(N, Size, true, false, DL, DAG);
11043     }
11044   }
11045 
11046   return SDValue();
11047 }
11048 
11049 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
11050                                                   DAGCombinerInfo &DCI) const {
11051   SelectionDAG &DAG = DCI.DAG;
11052   SDLoc dl(N);
11053 
11054   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
11055   // If we're tracking CR bits, we need to be careful that we don't have:
11056   //   trunc(binary-ops(zext(x), zext(y)))
11057   // or
11058   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
11059   // such that we're unnecessarily moving things into GPRs when it would be
11060   // better to keep them in CR bits.
11061 
11062   // Note that trunc here can be an actual i1 trunc, or can be the effective
11063   // truncation that comes from a setcc or select_cc.
11064   if (N->getOpcode() == ISD::TRUNCATE &&
11065       N->getValueType(0) != MVT::i1)
11066     return SDValue();
11067 
11068   if (N->getOperand(0).getValueType() != MVT::i32 &&
11069       N->getOperand(0).getValueType() != MVT::i64)
11070     return SDValue();
11071 
11072   if (N->getOpcode() == ISD::SETCC ||
11073       N->getOpcode() == ISD::SELECT_CC) {
11074     // If we're looking at a comparison, then we need to make sure that the
11075     // high bits (all except for the first) don't matter the result.
11076     ISD::CondCode CC =
11077       cast<CondCodeSDNode>(N->getOperand(
11078         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
11079     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
11080 
11081     if (ISD::isSignedIntSetCC(CC)) {
11082       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
11083           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
11084         return SDValue();
11085     } else if (ISD::isUnsignedIntSetCC(CC)) {
11086       if (!DAG.MaskedValueIsZero(N->getOperand(0),
11087                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
11088           !DAG.MaskedValueIsZero(N->getOperand(1),
11089                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
11090         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
11091                                              : SDValue());
11092     } else {
11093       // This is neither a signed nor an unsigned comparison, just make sure
11094       // that the high bits are equal.
11095       KnownBits Op1Known, Op2Known;
11096       DAG.computeKnownBits(N->getOperand(0), Op1Known);
11097       DAG.computeKnownBits(N->getOperand(1), Op2Known);
11098 
11099       // We don't really care about what is known about the first bit (if
11100       // anything), so clear it in all masks prior to comparing them.
11101       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
11102       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
11103 
11104       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
11105         return SDValue();
11106     }
11107   }
11108 
11109   // We now know that the higher-order bits are irrelevant, we just need to
11110   // make sure that all of the intermediate operations are bit operations, and
11111   // all inputs are extensions.
11112   if (N->getOperand(0).getOpcode() != ISD::AND &&
11113       N->getOperand(0).getOpcode() != ISD::OR  &&
11114       N->getOperand(0).getOpcode() != ISD::XOR &&
11115       N->getOperand(0).getOpcode() != ISD::SELECT &&
11116       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
11117       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
11118       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
11119       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
11120       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
11121     return SDValue();
11122 
11123   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
11124       N->getOperand(1).getOpcode() != ISD::AND &&
11125       N->getOperand(1).getOpcode() != ISD::OR  &&
11126       N->getOperand(1).getOpcode() != ISD::XOR &&
11127       N->getOperand(1).getOpcode() != ISD::SELECT &&
11128       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
11129       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
11130       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
11131       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
11132       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
11133     return SDValue();
11134 
11135   SmallVector<SDValue, 4> Inputs;
11136   SmallVector<SDValue, 8> BinOps, PromOps;
11137   SmallPtrSet<SDNode *, 16> Visited;
11138 
11139   for (unsigned i = 0; i < 2; ++i) {
11140     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11141           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11142           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11143           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11144         isa<ConstantSDNode>(N->getOperand(i)))
11145       Inputs.push_back(N->getOperand(i));
11146     else
11147       BinOps.push_back(N->getOperand(i));
11148 
11149     if (N->getOpcode() == ISD::TRUNCATE)
11150       break;
11151   }
11152 
11153   // Visit all inputs, collect all binary operations (and, or, xor and
11154   // select) that are all fed by extensions.
11155   while (!BinOps.empty()) {
11156     SDValue BinOp = BinOps.back();
11157     BinOps.pop_back();
11158 
11159     if (!Visited.insert(BinOp.getNode()).second)
11160       continue;
11161 
11162     PromOps.push_back(BinOp);
11163 
11164     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11165       // The condition of the select is not promoted.
11166       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11167         continue;
11168       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11169         continue;
11170 
11171       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11172             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11173             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11174            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11175           isa<ConstantSDNode>(BinOp.getOperand(i))) {
11176         Inputs.push_back(BinOp.getOperand(i));
11177       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11178                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
11179                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11180                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11181                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
11182                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11183                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11184                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11185                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
11186         BinOps.push_back(BinOp.getOperand(i));
11187       } else {
11188         // We have an input that is not an extension or another binary
11189         // operation; we'll abort this transformation.
11190         return SDValue();
11191       }
11192     }
11193   }
11194 
11195   // Make sure that this is a self-contained cluster of operations (which
11196   // is not quite the same thing as saying that everything has only one
11197   // use).
11198   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11199     if (isa<ConstantSDNode>(Inputs[i]))
11200       continue;
11201 
11202     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11203                               UE = Inputs[i].getNode()->use_end();
11204          UI != UE; ++UI) {
11205       SDNode *User = *UI;
11206       if (User != N && !Visited.count(User))
11207         return SDValue();
11208 
11209       // Make sure that we're not going to promote the non-output-value
11210       // operand(s) or SELECT or SELECT_CC.
11211       // FIXME: Although we could sometimes handle this, and it does occur in
11212       // practice that one of the condition inputs to the select is also one of
11213       // the outputs, we currently can't deal with this.
11214       if (User->getOpcode() == ISD::SELECT) {
11215         if (User->getOperand(0) == Inputs[i])
11216           return SDValue();
11217       } else if (User->getOpcode() == ISD::SELECT_CC) {
11218         if (User->getOperand(0) == Inputs[i] ||
11219             User->getOperand(1) == Inputs[i])
11220           return SDValue();
11221       }
11222     }
11223   }
11224 
11225   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11226     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11227                               UE = PromOps[i].getNode()->use_end();
11228          UI != UE; ++UI) {
11229       SDNode *User = *UI;
11230       if (User != N && !Visited.count(User))
11231         return SDValue();
11232 
11233       // Make sure that we're not going to promote the non-output-value
11234       // operand(s) or SELECT or SELECT_CC.
11235       // FIXME: Although we could sometimes handle this, and it does occur in
11236       // practice that one of the condition inputs to the select is also one of
11237       // the outputs, we currently can't deal with this.
11238       if (User->getOpcode() == ISD::SELECT) {
11239         if (User->getOperand(0) == PromOps[i])
11240           return SDValue();
11241       } else if (User->getOpcode() == ISD::SELECT_CC) {
11242         if (User->getOperand(0) == PromOps[i] ||
11243             User->getOperand(1) == PromOps[i])
11244           return SDValue();
11245       }
11246     }
11247   }
11248 
11249   // Replace all inputs with the extension operand.
11250   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11251     // Constants may have users outside the cluster of to-be-promoted nodes,
11252     // and so we need to replace those as we do the promotions.
11253     if (isa<ConstantSDNode>(Inputs[i]))
11254       continue;
11255     else
11256       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
11257   }
11258 
11259   std::list<HandleSDNode> PromOpHandles;
11260   for (auto &PromOp : PromOps)
11261     PromOpHandles.emplace_back(PromOp);
11262 
11263   // Replace all operations (these are all the same, but have a different
11264   // (i1) return type). DAG.getNode will validate that the types of
11265   // a binary operator match, so go through the list in reverse so that
11266   // we've likely promoted both operands first. Any intermediate truncations or
11267   // extensions disappear.
11268   while (!PromOpHandles.empty()) {
11269     SDValue PromOp = PromOpHandles.back().getValue();
11270     PromOpHandles.pop_back();
11271 
11272     if (PromOp.getOpcode() == ISD::TRUNCATE ||
11273         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
11274         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
11275         PromOp.getOpcode() == ISD::ANY_EXTEND) {
11276       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
11277           PromOp.getOperand(0).getValueType() != MVT::i1) {
11278         // The operand is not yet ready (see comment below).
11279         PromOpHandles.emplace_front(PromOp);
11280         continue;
11281       }
11282 
11283       SDValue RepValue = PromOp.getOperand(0);
11284       if (isa<ConstantSDNode>(RepValue))
11285         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
11286 
11287       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
11288       continue;
11289     }
11290 
11291     unsigned C;
11292     switch (PromOp.getOpcode()) {
11293     default:             C = 0; break;
11294     case ISD::SELECT:    C = 1; break;
11295     case ISD::SELECT_CC: C = 2; break;
11296     }
11297 
11298     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11299          PromOp.getOperand(C).getValueType() != MVT::i1) ||
11300         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11301          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
11302       // The to-be-promoted operands of this node have not yet been
11303       // promoted (this should be rare because we're going through the
11304       // list backward, but if one of the operands has several users in
11305       // this cluster of to-be-promoted nodes, it is possible).
11306       PromOpHandles.emplace_front(PromOp);
11307       continue;
11308     }
11309 
11310     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
11311                                 PromOp.getNode()->op_end());
11312 
11313     // If there are any constant inputs, make sure they're replaced now.
11314     for (unsigned i = 0; i < 2; ++i)
11315       if (isa<ConstantSDNode>(Ops[C+i]))
11316         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
11317 
11318     DAG.ReplaceAllUsesOfValueWith(PromOp,
11319       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
11320   }
11321 
11322   // Now we're left with the initial truncation itself.
11323   if (N->getOpcode() == ISD::TRUNCATE)
11324     return N->getOperand(0);
11325 
11326   // Otherwise, this is a comparison. The operands to be compared have just
11327   // changed type (to i1), but everything else is the same.
11328   return SDValue(N, 0);
11329 }
11330 
11331 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
11332                                                   DAGCombinerInfo &DCI) const {
11333   SelectionDAG &DAG = DCI.DAG;
11334   SDLoc dl(N);
11335 
11336   // If we're tracking CR bits, we need to be careful that we don't have:
11337   //   zext(binary-ops(trunc(x), trunc(y)))
11338   // or
11339   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
11340   // such that we're unnecessarily moving things into CR bits that can more
11341   // efficiently stay in GPRs. Note that if we're not certain that the high
11342   // bits are set as required by the final extension, we still may need to do
11343   // some masking to get the proper behavior.
11344 
11345   // This same functionality is important on PPC64 when dealing with
11346   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
11347   // the return values of functions. Because it is so similar, it is handled
11348   // here as well.
11349 
11350   if (N->getValueType(0) != MVT::i32 &&
11351       N->getValueType(0) != MVT::i64)
11352     return SDValue();
11353 
11354   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
11355         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
11356     return SDValue();
11357 
11358   if (N->getOperand(0).getOpcode() != ISD::AND &&
11359       N->getOperand(0).getOpcode() != ISD::OR  &&
11360       N->getOperand(0).getOpcode() != ISD::XOR &&
11361       N->getOperand(0).getOpcode() != ISD::SELECT &&
11362       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
11363     return SDValue();
11364 
11365   SmallVector<SDValue, 4> Inputs;
11366   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
11367   SmallPtrSet<SDNode *, 16> Visited;
11368 
11369   // Visit all inputs, collect all binary operations (and, or, xor and
11370   // select) that are all fed by truncations.
11371   while (!BinOps.empty()) {
11372     SDValue BinOp = BinOps.back();
11373     BinOps.pop_back();
11374 
11375     if (!Visited.insert(BinOp.getNode()).second)
11376       continue;
11377 
11378     PromOps.push_back(BinOp);
11379 
11380     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11381       // The condition of the select is not promoted.
11382       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11383         continue;
11384       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11385         continue;
11386 
11387       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11388           isa<ConstantSDNode>(BinOp.getOperand(i))) {
11389         Inputs.push_back(BinOp.getOperand(i));
11390       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11391                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
11392                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11393                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11394                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
11395         BinOps.push_back(BinOp.getOperand(i));
11396       } else {
11397         // We have an input that is not a truncation or another binary
11398         // operation; we'll abort this transformation.
11399         return SDValue();
11400       }
11401     }
11402   }
11403 
11404   // The operands of a select that must be truncated when the select is
11405   // promoted because the operand is actually part of the to-be-promoted set.
11406   DenseMap<SDNode *, EVT> SelectTruncOp[2];
11407 
11408   // Make sure that this is a self-contained cluster of operations (which
11409   // is not quite the same thing as saying that everything has only one
11410   // use).
11411   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11412     if (isa<ConstantSDNode>(Inputs[i]))
11413       continue;
11414 
11415     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11416                               UE = Inputs[i].getNode()->use_end();
11417          UI != UE; ++UI) {
11418       SDNode *User = *UI;
11419       if (User != N && !Visited.count(User))
11420         return SDValue();
11421 
11422       // If we're going to promote the non-output-value operand(s) or SELECT or
11423       // SELECT_CC, record them for truncation.
11424       if (User->getOpcode() == ISD::SELECT) {
11425         if (User->getOperand(0) == Inputs[i])
11426           SelectTruncOp[0].insert(std::make_pair(User,
11427                                     User->getOperand(0).getValueType()));
11428       } else if (User->getOpcode() == ISD::SELECT_CC) {
11429         if (User->getOperand(0) == Inputs[i])
11430           SelectTruncOp[0].insert(std::make_pair(User,
11431                                     User->getOperand(0).getValueType()));
11432         if (User->getOperand(1) == Inputs[i])
11433           SelectTruncOp[1].insert(std::make_pair(User,
11434                                     User->getOperand(1).getValueType()));
11435       }
11436     }
11437   }
11438 
11439   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11440     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11441                               UE = PromOps[i].getNode()->use_end();
11442          UI != UE; ++UI) {
11443       SDNode *User = *UI;
11444       if (User != N && !Visited.count(User))
11445         return SDValue();
11446 
11447       // If we're going to promote the non-output-value operand(s) or SELECT or
11448       // SELECT_CC, record them for truncation.
11449       if (User->getOpcode() == ISD::SELECT) {
11450         if (User->getOperand(0) == PromOps[i])
11451           SelectTruncOp[0].insert(std::make_pair(User,
11452                                     User->getOperand(0).getValueType()));
11453       } else if (User->getOpcode() == ISD::SELECT_CC) {
11454         if (User->getOperand(0) == PromOps[i])
11455           SelectTruncOp[0].insert(std::make_pair(User,
11456                                     User->getOperand(0).getValueType()));
11457         if (User->getOperand(1) == PromOps[i])
11458           SelectTruncOp[1].insert(std::make_pair(User,
11459                                     User->getOperand(1).getValueType()));
11460       }
11461     }
11462   }
11463 
11464   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
11465   bool ReallyNeedsExt = false;
11466   if (N->getOpcode() != ISD::ANY_EXTEND) {
11467     // If all of the inputs are not already sign/zero extended, then
11468     // we'll still need to do that at the end.
11469     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11470       if (isa<ConstantSDNode>(Inputs[i]))
11471         continue;
11472 
11473       unsigned OpBits =
11474         Inputs[i].getOperand(0).getValueSizeInBits();
11475       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
11476 
11477       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
11478            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
11479                                   APInt::getHighBitsSet(OpBits,
11480                                                         OpBits-PromBits))) ||
11481           (N->getOpcode() == ISD::SIGN_EXTEND &&
11482            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
11483              (OpBits-(PromBits-1)))) {
11484         ReallyNeedsExt = true;
11485         break;
11486       }
11487     }
11488   }
11489 
11490   // Replace all inputs, either with the truncation operand, or a
11491   // truncation or extension to the final output type.
11492   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11493     // Constant inputs need to be replaced with the to-be-promoted nodes that
11494     // use them because they might have users outside of the cluster of
11495     // promoted nodes.
11496     if (isa<ConstantSDNode>(Inputs[i]))
11497       continue;
11498 
11499     SDValue InSrc = Inputs[i].getOperand(0);
11500     if (Inputs[i].getValueType() == N->getValueType(0))
11501       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
11502     else if (N->getOpcode() == ISD::SIGN_EXTEND)
11503       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11504         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
11505     else if (N->getOpcode() == ISD::ZERO_EXTEND)
11506       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11507         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
11508     else
11509       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11510         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
11511   }
11512 
11513   std::list<HandleSDNode> PromOpHandles;
11514   for (auto &PromOp : PromOps)
11515     PromOpHandles.emplace_back(PromOp);
11516 
11517   // Replace all operations (these are all the same, but have a different
11518   // (promoted) return type). DAG.getNode will validate that the types of
11519   // a binary operator match, so go through the list in reverse so that
11520   // we've likely promoted both operands first.
11521   while (!PromOpHandles.empty()) {
11522     SDValue PromOp = PromOpHandles.back().getValue();
11523     PromOpHandles.pop_back();
11524 
11525     unsigned C;
11526     switch (PromOp.getOpcode()) {
11527     default:             C = 0; break;
11528     case ISD::SELECT:    C = 1; break;
11529     case ISD::SELECT_CC: C = 2; break;
11530     }
11531 
11532     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11533          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
11534         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11535          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
11536       // The to-be-promoted operands of this node have not yet been
11537       // promoted (this should be rare because we're going through the
11538       // list backward, but if one of the operands has several users in
11539       // this cluster of to-be-promoted nodes, it is possible).
11540       PromOpHandles.emplace_front(PromOp);
11541       continue;
11542     }
11543 
11544     // For SELECT and SELECT_CC nodes, we do a similar check for any
11545     // to-be-promoted comparison inputs.
11546     if (PromOp.getOpcode() == ISD::SELECT ||
11547         PromOp.getOpcode() == ISD::SELECT_CC) {
11548       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
11549            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
11550           (SelectTruncOp[1].count(PromOp.getNode()) &&
11551            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
11552         PromOpHandles.emplace_front(PromOp);
11553         continue;
11554       }
11555     }
11556 
11557     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
11558                                 PromOp.getNode()->op_end());
11559 
11560     // If this node has constant inputs, then they'll need to be promoted here.
11561     for (unsigned i = 0; i < 2; ++i) {
11562       if (!isa<ConstantSDNode>(Ops[C+i]))
11563         continue;
11564       if (Ops[C+i].getValueType() == N->getValueType(0))
11565         continue;
11566 
11567       if (N->getOpcode() == ISD::SIGN_EXTEND)
11568         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11569       else if (N->getOpcode() == ISD::ZERO_EXTEND)
11570         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11571       else
11572         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11573     }
11574 
11575     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
11576     // truncate them again to the original value type.
11577     if (PromOp.getOpcode() == ISD::SELECT ||
11578         PromOp.getOpcode() == ISD::SELECT_CC) {
11579       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
11580       if (SI0 != SelectTruncOp[0].end())
11581         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
11582       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
11583       if (SI1 != SelectTruncOp[1].end())
11584         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
11585     }
11586 
11587     DAG.ReplaceAllUsesOfValueWith(PromOp,
11588       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
11589   }
11590 
11591   // Now we're left with the initial extension itself.
11592   if (!ReallyNeedsExt)
11593     return N->getOperand(0);
11594 
11595   // To zero extend, just mask off everything except for the first bit (in the
11596   // i1 case).
11597   if (N->getOpcode() == ISD::ZERO_EXTEND)
11598     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
11599                        DAG.getConstant(APInt::getLowBitsSet(
11600                                          N->getValueSizeInBits(0), PromBits),
11601                                        dl, N->getValueType(0)));
11602 
11603   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
11604          "Invalid extension type");
11605   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
11606   SDValue ShiftCst =
11607       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
11608   return DAG.getNode(
11609       ISD::SRA, dl, N->getValueType(0),
11610       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
11611       ShiftCst);
11612 }
11613 
11614 /// Reduces the number of fp-to-int conversion when building a vector.
11615 ///
11616 /// If this vector is built out of floating to integer conversions,
11617 /// transform it to a vector built out of floating point values followed by a
11618 /// single floating to integer conversion of the vector.
11619 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
11620 /// becomes (fptosi (build_vector ($A, $B, ...)))
11621 SDValue PPCTargetLowering::
11622 combineElementTruncationToVectorTruncation(SDNode *N,
11623                                            DAGCombinerInfo &DCI) const {
11624   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
11625          "Should be called with a BUILD_VECTOR node");
11626 
11627   SelectionDAG &DAG = DCI.DAG;
11628   SDLoc dl(N);
11629 
11630   SDValue FirstInput = N->getOperand(0);
11631   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
11632          "The input operand must be an fp-to-int conversion.");
11633 
11634   // This combine happens after legalization so the fp_to_[su]i nodes are
11635   // already converted to PPCSISD nodes.
11636   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
11637   if (FirstConversion == PPCISD::FCTIDZ ||
11638       FirstConversion == PPCISD::FCTIDUZ ||
11639       FirstConversion == PPCISD::FCTIWZ ||
11640       FirstConversion == PPCISD::FCTIWUZ) {
11641     bool IsSplat = true;
11642     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
11643       FirstConversion == PPCISD::FCTIWUZ;
11644     EVT SrcVT = FirstInput.getOperand(0).getValueType();
11645     SmallVector<SDValue, 4> Ops;
11646     EVT TargetVT = N->getValueType(0);
11647     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
11648       if (N->getOperand(i).getOpcode() != PPCISD::MFVSR)
11649         return SDValue();
11650       unsigned NextConversion = N->getOperand(i).getOperand(0).getOpcode();
11651       if (NextConversion != FirstConversion)
11652         return SDValue();
11653       if (N->getOperand(i) != FirstInput)
11654         IsSplat = false;
11655     }
11656 
11657     // If this is a splat, we leave it as-is since there will be only a single
11658     // fp-to-int conversion followed by a splat of the integer. This is better
11659     // for 32-bit and smaller ints and neutral for 64-bit ints.
11660     if (IsSplat)
11661       return SDValue();
11662 
11663     // Now that we know we have the right type of node, get its operands
11664     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
11665       SDValue In = N->getOperand(i).getOperand(0);
11666       // For 32-bit values, we need to add an FP_ROUND node.
11667       if (Is32Bit) {
11668         if (In.isUndef())
11669           Ops.push_back(DAG.getUNDEF(SrcVT));
11670         else {
11671           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
11672                                       MVT::f32, In.getOperand(0),
11673                                       DAG.getIntPtrConstant(1, dl));
11674           Ops.push_back(Trunc);
11675         }
11676       } else
11677         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
11678     }
11679 
11680     unsigned Opcode;
11681     if (FirstConversion == PPCISD::FCTIDZ ||
11682         FirstConversion == PPCISD::FCTIWZ)
11683       Opcode = ISD::FP_TO_SINT;
11684     else
11685       Opcode = ISD::FP_TO_UINT;
11686 
11687     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
11688     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
11689     return DAG.getNode(Opcode, dl, TargetVT, BV);
11690   }
11691   return SDValue();
11692 }
11693 
11694 /// Reduce the number of loads when building a vector.
11695 ///
11696 /// Building a vector out of multiple loads can be converted to a load
11697 /// of the vector type if the loads are consecutive. If the loads are
11698 /// consecutive but in descending order, a shuffle is added at the end
11699 /// to reorder the vector.
11700 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
11701   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
11702          "Should be called with a BUILD_VECTOR node");
11703 
11704   SDLoc dl(N);
11705   bool InputsAreConsecutiveLoads = true;
11706   bool InputsAreReverseConsecutive = true;
11707   unsigned ElemSize = N->getValueType(0).getScalarSizeInBits() / 8;
11708   SDValue FirstInput = N->getOperand(0);
11709   bool IsRoundOfExtLoad = false;
11710 
11711   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
11712       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
11713     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
11714     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
11715   }
11716   // Not a build vector of (possibly fp_rounded) loads.
11717   if (!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD)
11718     return SDValue();
11719 
11720   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
11721     // If any inputs are fp_round(extload), they all must be.
11722     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
11723       return SDValue();
11724 
11725     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
11726       N->getOperand(i);
11727     if (NextInput.getOpcode() != ISD::LOAD)
11728       return SDValue();
11729 
11730     SDValue PreviousInput =
11731       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
11732     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
11733     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
11734 
11735     // If any inputs are fp_round(extload), they all must be.
11736     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
11737       return SDValue();
11738 
11739     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
11740       InputsAreConsecutiveLoads = false;
11741     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
11742       InputsAreReverseConsecutive = false;
11743 
11744     // Exit early if the loads are neither consecutive nor reverse consecutive.
11745     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
11746       return SDValue();
11747   }
11748 
11749   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
11750          "The loads cannot be both consecutive and reverse consecutive.");
11751 
11752   SDValue FirstLoadOp =
11753     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
11754   SDValue LastLoadOp =
11755     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
11756                        N->getOperand(N->getNumOperands()-1);
11757 
11758   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
11759   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
11760   if (InputsAreConsecutiveLoads) {
11761     assert(LD1 && "Input needs to be a LoadSDNode.");
11762     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
11763                        LD1->getBasePtr(), LD1->getPointerInfo(),
11764                        LD1->getAlignment());
11765   }
11766   if (InputsAreReverseConsecutive) {
11767     assert(LDL && "Input needs to be a LoadSDNode.");
11768     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
11769                                LDL->getBasePtr(), LDL->getPointerInfo(),
11770                                LDL->getAlignment());
11771     SmallVector<int, 16> Ops;
11772     for (int i = N->getNumOperands() - 1; i >= 0; i--)
11773       Ops.push_back(i);
11774 
11775     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
11776                                 DAG.getUNDEF(N->getValueType(0)), Ops);
11777   }
11778   return SDValue();
11779 }
11780 
11781 // This function adds the required vector_shuffle needed to get
11782 // the elements of the vector extract in the correct position
11783 // as specified by the CorrectElems encoding.
11784 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
11785                                       SDValue Input, uint64_t Elems,
11786                                       uint64_t CorrectElems) {
11787   SDLoc dl(N);
11788 
11789   unsigned NumElems = Input.getValueType().getVectorNumElements();
11790   SmallVector<int, 16> ShuffleMask(NumElems, -1);
11791 
11792   // Knowing the element indices being extracted from the original
11793   // vector and the order in which they're being inserted, just put
11794   // them at element indices required for the instruction.
11795   for (unsigned i = 0; i < N->getNumOperands(); i++) {
11796     if (DAG.getDataLayout().isLittleEndian())
11797       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
11798     else
11799       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
11800     CorrectElems = CorrectElems >> 8;
11801     Elems = Elems >> 8;
11802   }
11803 
11804   SDValue Shuffle =
11805       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
11806                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
11807 
11808   EVT Ty = N->getValueType(0);
11809   SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
11810   return BV;
11811 }
11812 
11813 // Look for build vector patterns where input operands come from sign
11814 // extended vector_extract elements of specific indices. If the correct indices
11815 // aren't used, add a vector shuffle to fix up the indices and create a new
11816 // PPCISD:SExtVElems node which selects the vector sign extend instructions
11817 // during instruction selection.
11818 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
11819   // This array encodes the indices that the vector sign extend instructions
11820   // extract from when extending from one type to another for both BE and LE.
11821   // The right nibble of each byte corresponds to the LE incides.
11822   // and the left nibble of each byte corresponds to the BE incides.
11823   // For example: 0x3074B8FC  byte->word
11824   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
11825   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
11826   // For example: 0x000070F8  byte->double word
11827   // For LE: the allowed indices are: 0x0,0x8
11828   // For BE: the allowed indices are: 0x7,0xF
11829   uint64_t TargetElems[] = {
11830       0x3074B8FC, // b->w
11831       0x000070F8, // b->d
11832       0x10325476, // h->w
11833       0x00003074, // h->d
11834       0x00001032, // w->d
11835   };
11836 
11837   uint64_t Elems = 0;
11838   int Index;
11839   SDValue Input;
11840 
11841   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
11842     if (!Op)
11843       return false;
11844     if (Op.getOpcode() != ISD::SIGN_EXTEND)
11845       return false;
11846 
11847     SDValue Extract = Op.getOperand(0);
11848     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11849       return false;
11850 
11851     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
11852     if (!ExtOp)
11853       return false;
11854 
11855     Index = ExtOp->getZExtValue();
11856     if (Input && Input != Extract.getOperand(0))
11857       return false;
11858 
11859     if (!Input)
11860       Input = Extract.getOperand(0);
11861 
11862     Elems = Elems << 8;
11863     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
11864     Elems |= Index;
11865 
11866     return true;
11867   };
11868 
11869   // If the build vector operands aren't sign extended vector extracts,
11870   // of the same input vector, then return.
11871   for (unsigned i = 0; i < N->getNumOperands(); i++) {
11872     if (!isSExtOfVecExtract(N->getOperand(i))) {
11873       return SDValue();
11874     }
11875   }
11876 
11877   // If the vector extract indicies are not correct, add the appropriate
11878   // vector_shuffle.
11879   int TgtElemArrayIdx;
11880   int InputSize = Input.getValueType().getScalarSizeInBits();
11881   int OutputSize = N->getValueType(0).getScalarSizeInBits();
11882   if (InputSize + OutputSize == 40)
11883     TgtElemArrayIdx = 0;
11884   else if (InputSize + OutputSize == 72)
11885     TgtElemArrayIdx = 1;
11886   else if (InputSize + OutputSize == 48)
11887     TgtElemArrayIdx = 2;
11888   else if (InputSize + OutputSize == 80)
11889     TgtElemArrayIdx = 3;
11890   else if (InputSize + OutputSize == 96)
11891     TgtElemArrayIdx = 4;
11892   else
11893     return SDValue();
11894 
11895   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
11896   CorrectElems = DAG.getDataLayout().isLittleEndian()
11897                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
11898                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
11899   if (Elems != CorrectElems) {
11900     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
11901   }
11902 
11903   // Regular lowering will catch cases where a shuffle is not needed.
11904   return SDValue();
11905 }
11906 
11907 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
11908                                                  DAGCombinerInfo &DCI) const {
11909   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
11910          "Should be called with a BUILD_VECTOR node");
11911 
11912   SelectionDAG &DAG = DCI.DAG;
11913   SDLoc dl(N);
11914 
11915   if (!Subtarget.hasVSX())
11916     return SDValue();
11917 
11918   // The target independent DAG combiner will leave a build_vector of
11919   // float-to-int conversions intact. We can generate MUCH better code for
11920   // a float-to-int conversion of a vector of floats.
11921   SDValue FirstInput = N->getOperand(0);
11922   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
11923     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
11924     if (Reduced)
11925       return Reduced;
11926   }
11927 
11928   // If we're building a vector out of consecutive loads, just load that
11929   // vector type.
11930   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
11931   if (Reduced)
11932     return Reduced;
11933 
11934   // If we're building a vector out of extended elements from another vector
11935   // we have P9 vector integer extend instructions.
11936   if (Subtarget.hasP9Altivec()) {
11937     Reduced = combineBVOfVecSExt(N, DAG);
11938     if (Reduced)
11939       return Reduced;
11940   }
11941 
11942 
11943   if (N->getValueType(0) != MVT::v2f64)
11944     return SDValue();
11945 
11946   // Looking for:
11947   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
11948   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
11949       FirstInput.getOpcode() != ISD::UINT_TO_FP)
11950     return SDValue();
11951   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
11952       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
11953     return SDValue();
11954   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
11955     return SDValue();
11956 
11957   SDValue Ext1 = FirstInput.getOperand(0);
11958   SDValue Ext2 = N->getOperand(1).getOperand(0);
11959   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
11960      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11961     return SDValue();
11962 
11963   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
11964   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
11965   if (!Ext1Op || !Ext2Op)
11966     return SDValue();
11967   if (Ext1.getValueType() != MVT::i32 ||
11968       Ext2.getValueType() != MVT::i32)
11969   if (Ext1.getOperand(0) != Ext2.getOperand(0))
11970     return SDValue();
11971 
11972   int FirstElem = Ext1Op->getZExtValue();
11973   int SecondElem = Ext2Op->getZExtValue();
11974   int SubvecIdx;
11975   if (FirstElem == 0 && SecondElem == 1)
11976     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
11977   else if (FirstElem == 2 && SecondElem == 3)
11978     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
11979   else
11980     return SDValue();
11981 
11982   SDValue SrcVec = Ext1.getOperand(0);
11983   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
11984     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
11985   return DAG.getNode(NodeType, dl, MVT::v2f64,
11986                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
11987 }
11988 
11989 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
11990                                               DAGCombinerInfo &DCI) const {
11991   assert((N->getOpcode() == ISD::SINT_TO_FP ||
11992           N->getOpcode() == ISD::UINT_TO_FP) &&
11993          "Need an int -> FP conversion node here");
11994 
11995   if (useSoftFloat() || !Subtarget.has64BitSupport())
11996     return SDValue();
11997 
11998   SelectionDAG &DAG = DCI.DAG;
11999   SDLoc dl(N);
12000   SDValue Op(N, 0);
12001 
12002   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
12003   // from the hardware.
12004   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
12005     return SDValue();
12006   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
12007       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
12008     return SDValue();
12009 
12010   SDValue FirstOperand(Op.getOperand(0));
12011   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
12012     (FirstOperand.getValueType() == MVT::i8 ||
12013      FirstOperand.getValueType() == MVT::i16);
12014   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
12015     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
12016     bool DstDouble = Op.getValueType() == MVT::f64;
12017     unsigned ConvOp = Signed ?
12018       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
12019       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
12020     SDValue WidthConst =
12021       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
12022                             dl, false);
12023     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
12024     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
12025     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
12026                                          DAG.getVTList(MVT::f64, MVT::Other),
12027                                          Ops, MVT::i8, LDN->getMemOperand());
12028 
12029     // For signed conversion, we need to sign-extend the value in the VSR
12030     if (Signed) {
12031       SDValue ExtOps[] = { Ld, WidthConst };
12032       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
12033       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
12034     } else
12035       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
12036   }
12037 
12038 
12039   // For i32 intermediate values, unfortunately, the conversion functions
12040   // leave the upper 32 bits of the value are undefined. Within the set of
12041   // scalar instructions, we have no method for zero- or sign-extending the
12042   // value. Thus, we cannot handle i32 intermediate values here.
12043   if (Op.getOperand(0).getValueType() == MVT::i32)
12044     return SDValue();
12045 
12046   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
12047          "UINT_TO_FP is supported only with FPCVT");
12048 
12049   // If we have FCFIDS, then use it when converting to single-precision.
12050   // Otherwise, convert to double-precision and then round.
12051   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12052                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
12053                                                             : PPCISD::FCFIDS)
12054                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
12055                                                             : PPCISD::FCFID);
12056   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12057                   ? MVT::f32
12058                   : MVT::f64;
12059 
12060   // If we're converting from a float, to an int, and back to a float again,
12061   // then we don't need the store/load pair at all.
12062   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
12063        Subtarget.hasFPCVT()) ||
12064       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
12065     SDValue Src = Op.getOperand(0).getOperand(0);
12066     if (Src.getValueType() == MVT::f32) {
12067       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
12068       DCI.AddToWorklist(Src.getNode());
12069     } else if (Src.getValueType() != MVT::f64) {
12070       // Make sure that we don't pick up a ppc_fp128 source value.
12071       return SDValue();
12072     }
12073 
12074     unsigned FCTOp =
12075       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
12076                                                         PPCISD::FCTIDUZ;
12077 
12078     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
12079     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
12080 
12081     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
12082       FP = DAG.getNode(ISD::FP_ROUND, dl,
12083                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
12084       DCI.AddToWorklist(FP.getNode());
12085     }
12086 
12087     return FP;
12088   }
12089 
12090   return SDValue();
12091 }
12092 
12093 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
12094 // builtins) into loads with swaps.
12095 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
12096                                               DAGCombinerInfo &DCI) const {
12097   SelectionDAG &DAG = DCI.DAG;
12098   SDLoc dl(N);
12099   SDValue Chain;
12100   SDValue Base;
12101   MachineMemOperand *MMO;
12102 
12103   switch (N->getOpcode()) {
12104   default:
12105     llvm_unreachable("Unexpected opcode for little endian VSX load");
12106   case ISD::LOAD: {
12107     LoadSDNode *LD = cast<LoadSDNode>(N);
12108     Chain = LD->getChain();
12109     Base = LD->getBasePtr();
12110     MMO = LD->getMemOperand();
12111     // If the MMO suggests this isn't a load of a full vector, leave
12112     // things alone.  For a built-in, we have to make the change for
12113     // correctness, so if there is a size problem that will be a bug.
12114     if (MMO->getSize() < 16)
12115       return SDValue();
12116     break;
12117   }
12118   case ISD::INTRINSIC_W_CHAIN: {
12119     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12120     Chain = Intrin->getChain();
12121     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
12122     // us what we want. Get operand 2 instead.
12123     Base = Intrin->getOperand(2);
12124     MMO = Intrin->getMemOperand();
12125     break;
12126   }
12127   }
12128 
12129   MVT VecTy = N->getValueType(0).getSimpleVT();
12130 
12131   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
12132   // aligned and the type is a vector with elements up to 4 bytes
12133   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12134       && VecTy.getScalarSizeInBits() <= 32 ) {
12135     return SDValue();
12136   }
12137 
12138   SDValue LoadOps[] = { Chain, Base };
12139   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
12140                                          DAG.getVTList(MVT::v2f64, MVT::Other),
12141                                          LoadOps, MVT::v2f64, MMO);
12142 
12143   DCI.AddToWorklist(Load.getNode());
12144   Chain = Load.getValue(1);
12145   SDValue Swap = DAG.getNode(
12146       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
12147   DCI.AddToWorklist(Swap.getNode());
12148 
12149   // Add a bitcast if the resulting load type doesn't match v2f64.
12150   if (VecTy != MVT::v2f64) {
12151     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
12152     DCI.AddToWorklist(N.getNode());
12153     // Package {bitcast value, swap's chain} to match Load's shape.
12154     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
12155                        N, Swap.getValue(1));
12156   }
12157 
12158   return Swap;
12159 }
12160 
12161 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
12162 // builtins) into stores with swaps.
12163 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
12164                                                DAGCombinerInfo &DCI) const {
12165   SelectionDAG &DAG = DCI.DAG;
12166   SDLoc dl(N);
12167   SDValue Chain;
12168   SDValue Base;
12169   unsigned SrcOpnd;
12170   MachineMemOperand *MMO;
12171 
12172   switch (N->getOpcode()) {
12173   default:
12174     llvm_unreachable("Unexpected opcode for little endian VSX store");
12175   case ISD::STORE: {
12176     StoreSDNode *ST = cast<StoreSDNode>(N);
12177     Chain = ST->getChain();
12178     Base = ST->getBasePtr();
12179     MMO = ST->getMemOperand();
12180     SrcOpnd = 1;
12181     // If the MMO suggests this isn't a store of a full vector, leave
12182     // things alone.  For a built-in, we have to make the change for
12183     // correctness, so if there is a size problem that will be a bug.
12184     if (MMO->getSize() < 16)
12185       return SDValue();
12186     break;
12187   }
12188   case ISD::INTRINSIC_VOID: {
12189     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12190     Chain = Intrin->getChain();
12191     // Intrin->getBasePtr() oddly does not get what we want.
12192     Base = Intrin->getOperand(3);
12193     MMO = Intrin->getMemOperand();
12194     SrcOpnd = 2;
12195     break;
12196   }
12197   }
12198 
12199   SDValue Src = N->getOperand(SrcOpnd);
12200   MVT VecTy = Src.getValueType().getSimpleVT();
12201 
12202   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
12203   // aligned and the type is a vector with elements up to 4 bytes
12204   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12205       && VecTy.getScalarSizeInBits() <= 32 ) {
12206     return SDValue();
12207   }
12208 
12209   // All stores are done as v2f64 and possible bit cast.
12210   if (VecTy != MVT::v2f64) {
12211     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
12212     DCI.AddToWorklist(Src.getNode());
12213   }
12214 
12215   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
12216                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
12217   DCI.AddToWorklist(Swap.getNode());
12218   Chain = Swap.getValue(1);
12219   SDValue StoreOps[] = { Chain, Swap, Base };
12220   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
12221                                           DAG.getVTList(MVT::Other),
12222                                           StoreOps, VecTy, MMO);
12223   DCI.AddToWorklist(Store.getNode());
12224   return Store;
12225 }
12226 
12227 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
12228                                              DAGCombinerInfo &DCI) const {
12229   SelectionDAG &DAG = DCI.DAG;
12230   SDLoc dl(N);
12231   switch (N->getOpcode()) {
12232   default: break;
12233   case ISD::SHL:
12234     return combineSHL(N, DCI);
12235   case ISD::SRA:
12236     return combineSRA(N, DCI);
12237   case ISD::SRL:
12238     return combineSRL(N, DCI);
12239   case PPCISD::SHL:
12240     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
12241         return N->getOperand(0);
12242     break;
12243   case PPCISD::SRL:
12244     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
12245         return N->getOperand(0);
12246     break;
12247   case PPCISD::SRA:
12248     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
12249       if (C->isNullValue() ||   //  0 >>s V -> 0.
12250           C->isAllOnesValue())    // -1 >>s V -> -1.
12251         return N->getOperand(0);
12252     }
12253     break;
12254   case ISD::SIGN_EXTEND:
12255   case ISD::ZERO_EXTEND:
12256   case ISD::ANY_EXTEND:
12257     return DAGCombineExtBoolTrunc(N, DCI);
12258   case ISD::TRUNCATE:
12259   case ISD::SETCC:
12260   case ISD::SELECT_CC:
12261     return DAGCombineTruncBoolExt(N, DCI);
12262   case ISD::SINT_TO_FP:
12263   case ISD::UINT_TO_FP:
12264     return combineFPToIntToFP(N, DCI);
12265   case ISD::STORE: {
12266     EVT Op1VT = N->getOperand(1).getValueType();
12267     bool ValidTypeForStoreFltAsInt = (Op1VT == MVT::i32) ||
12268       (Subtarget.hasP9Vector() && (Op1VT == MVT::i8 || Op1VT == MVT::i16));
12269 
12270     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
12271     if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() &&
12272         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
12273         ValidTypeForStoreFltAsInt &&
12274         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
12275       SDValue Val = N->getOperand(1).getOperand(0);
12276       if (Val.getValueType() == MVT::f32) {
12277         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
12278         DCI.AddToWorklist(Val.getNode());
12279       }
12280       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
12281       DCI.AddToWorklist(Val.getNode());
12282 
12283       if (Op1VT == MVT::i32) {
12284         SDValue Ops[] = {
12285           N->getOperand(0), Val, N->getOperand(2),
12286           DAG.getValueType(N->getOperand(1).getValueType())
12287         };
12288 
12289         Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
12290                 DAG.getVTList(MVT::Other), Ops,
12291                 cast<StoreSDNode>(N)->getMemoryVT(),
12292                 cast<StoreSDNode>(N)->getMemOperand());
12293       } else {
12294         unsigned WidthInBytes =
12295           N->getOperand(1).getValueType() == MVT::i8 ? 1 : 2;
12296         SDValue WidthConst = DAG.getIntPtrConstant(WidthInBytes, dl, false);
12297 
12298         SDValue Ops[] = {
12299           N->getOperand(0), Val, N->getOperand(2), WidthConst,
12300           DAG.getValueType(N->getOperand(1).getValueType())
12301         };
12302         Val = DAG.getMemIntrinsicNode(PPCISD::STXSIX, dl,
12303                                       DAG.getVTList(MVT::Other), Ops,
12304                                       cast<StoreSDNode>(N)->getMemoryVT(),
12305                                       cast<StoreSDNode>(N)->getMemOperand());
12306       }
12307 
12308       DCI.AddToWorklist(Val.getNode());
12309       return Val;
12310     }
12311 
12312     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
12313     if (cast<StoreSDNode>(N)->isUnindexed() &&
12314         N->getOperand(1).getOpcode() == ISD::BSWAP &&
12315         N->getOperand(1).getNode()->hasOneUse() &&
12316         (N->getOperand(1).getValueType() == MVT::i32 ||
12317          N->getOperand(1).getValueType() == MVT::i16 ||
12318          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
12319           N->getOperand(1).getValueType() == MVT::i64))) {
12320       // STBRX can only handle simple types.
12321       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
12322       if (mVT.isExtended())
12323         break;
12324 
12325       SDValue BSwapOp = N->getOperand(1).getOperand(0);
12326       // Do an any-extend to 32-bits if this is a half-word input.
12327       if (BSwapOp.getValueType() == MVT::i16)
12328         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
12329 
12330       // If the type of BSWAP operand is wider than stored memory width
12331       // it need to be shifted to the right side before STBRX.
12332       if (Op1VT.bitsGT(mVT)) {
12333         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
12334         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
12335                               DAG.getConstant(Shift, dl, MVT::i32));
12336         // Need to truncate if this is a bswap of i64 stored as i32/i16.
12337         if (Op1VT == MVT::i64)
12338           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
12339       }
12340 
12341       SDValue Ops[] = {
12342         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
12343       };
12344       return
12345         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
12346                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
12347                                 cast<StoreSDNode>(N)->getMemOperand());
12348     }
12349 
12350     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
12351     // So it can increase the chance of CSE constant construction.
12352     EVT VT = N->getOperand(1).getValueType();
12353     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
12354         isa<ConstantSDNode>(N->getOperand(1)) && VT == MVT::i32) {
12355       // Need to sign-extended to 64-bits to handle negative values.
12356       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
12357       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
12358                                     MemVT.getSizeInBits());
12359       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
12360 
12361       // DAG.getTruncStore() can't be used here because it doesn't accept
12362       // the general (base + offset) addressing mode.
12363       // So we use UpdateNodeOperands and setTruncatingStore instead.
12364       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
12365                              N->getOperand(3));
12366       cast<StoreSDNode>(N)->setTruncatingStore(true);
12367       return SDValue(N, 0);
12368     }
12369 
12370     // For little endian, VSX stores require generating xxswapd/lxvd2x.
12371     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
12372     if (VT.isSimple()) {
12373       MVT StoreVT = VT.getSimpleVT();
12374       if (Subtarget.needsSwapsForVSXMemOps() &&
12375           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
12376            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
12377         return expandVSXStoreForLE(N, DCI);
12378     }
12379     break;
12380   }
12381   case ISD::LOAD: {
12382     LoadSDNode *LD = cast<LoadSDNode>(N);
12383     EVT VT = LD->getValueType(0);
12384 
12385     // For little endian, VSX loads require generating lxvd2x/xxswapd.
12386     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
12387     if (VT.isSimple()) {
12388       MVT LoadVT = VT.getSimpleVT();
12389       if (Subtarget.needsSwapsForVSXMemOps() &&
12390           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
12391            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
12392         return expandVSXLoadForLE(N, DCI);
12393     }
12394 
12395     // We sometimes end up with a 64-bit integer load, from which we extract
12396     // two single-precision floating-point numbers. This happens with
12397     // std::complex<float>, and other similar structures, because of the way we
12398     // canonicalize structure copies. However, if we lack direct moves,
12399     // then the final bitcasts from the extracted integer values to the
12400     // floating-point numbers turn into store/load pairs. Even with direct moves,
12401     // just loading the two floating-point numbers is likely better.
12402     auto ReplaceTwoFloatLoad = [&]() {
12403       if (VT != MVT::i64)
12404         return false;
12405 
12406       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
12407           LD->isVolatile())
12408         return false;
12409 
12410       //  We're looking for a sequence like this:
12411       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
12412       //      t16: i64 = srl t13, Constant:i32<32>
12413       //    t17: i32 = truncate t16
12414       //  t18: f32 = bitcast t17
12415       //    t19: i32 = truncate t13
12416       //  t20: f32 = bitcast t19
12417 
12418       if (!LD->hasNUsesOfValue(2, 0))
12419         return false;
12420 
12421       auto UI = LD->use_begin();
12422       while (UI.getUse().getResNo() != 0) ++UI;
12423       SDNode *Trunc = *UI++;
12424       while (UI.getUse().getResNo() != 0) ++UI;
12425       SDNode *RightShift = *UI;
12426       if (Trunc->getOpcode() != ISD::TRUNCATE)
12427         std::swap(Trunc, RightShift);
12428 
12429       if (Trunc->getOpcode() != ISD::TRUNCATE ||
12430           Trunc->getValueType(0) != MVT::i32 ||
12431           !Trunc->hasOneUse())
12432         return false;
12433       if (RightShift->getOpcode() != ISD::SRL ||
12434           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
12435           RightShift->getConstantOperandVal(1) != 32 ||
12436           !RightShift->hasOneUse())
12437         return false;
12438 
12439       SDNode *Trunc2 = *RightShift->use_begin();
12440       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
12441           Trunc2->getValueType(0) != MVT::i32 ||
12442           !Trunc2->hasOneUse())
12443         return false;
12444 
12445       SDNode *Bitcast = *Trunc->use_begin();
12446       SDNode *Bitcast2 = *Trunc2->use_begin();
12447 
12448       if (Bitcast->getOpcode() != ISD::BITCAST ||
12449           Bitcast->getValueType(0) != MVT::f32)
12450         return false;
12451       if (Bitcast2->getOpcode() != ISD::BITCAST ||
12452           Bitcast2->getValueType(0) != MVT::f32)
12453         return false;
12454 
12455       if (Subtarget.isLittleEndian())
12456         std::swap(Bitcast, Bitcast2);
12457 
12458       // Bitcast has the second float (in memory-layout order) and Bitcast2
12459       // has the first one.
12460 
12461       SDValue BasePtr = LD->getBasePtr();
12462       if (LD->isIndexed()) {
12463         assert(LD->getAddressingMode() == ISD::PRE_INC &&
12464                "Non-pre-inc AM on PPC?");
12465         BasePtr =
12466           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
12467                       LD->getOffset());
12468       }
12469 
12470       auto MMOFlags =
12471           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
12472       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
12473                                       LD->getPointerInfo(), LD->getAlignment(),
12474                                       MMOFlags, LD->getAAInfo());
12475       SDValue AddPtr =
12476         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
12477                     BasePtr, DAG.getIntPtrConstant(4, dl));
12478       SDValue FloatLoad2 = DAG.getLoad(
12479           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
12480           LD->getPointerInfo().getWithOffset(4),
12481           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
12482 
12483       if (LD->isIndexed()) {
12484         // Note that DAGCombine should re-form any pre-increment load(s) from
12485         // what is produced here if that makes sense.
12486         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
12487       }
12488 
12489       DCI.CombineTo(Bitcast2, FloatLoad);
12490       DCI.CombineTo(Bitcast, FloatLoad2);
12491 
12492       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
12493                                     SDValue(FloatLoad2.getNode(), 1));
12494       return true;
12495     };
12496 
12497     if (ReplaceTwoFloatLoad())
12498       return SDValue(N, 0);
12499 
12500     EVT MemVT = LD->getMemoryVT();
12501     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
12502     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
12503     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
12504     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
12505     if (LD->isUnindexed() && VT.isVector() &&
12506         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
12507           // P8 and later hardware should just use LOAD.
12508           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
12509                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
12510          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
12511           LD->getAlignment() >= ScalarABIAlignment)) &&
12512         LD->getAlignment() < ABIAlignment) {
12513       // This is a type-legal unaligned Altivec or QPX load.
12514       SDValue Chain = LD->getChain();
12515       SDValue Ptr = LD->getBasePtr();
12516       bool isLittleEndian = Subtarget.isLittleEndian();
12517 
12518       // This implements the loading of unaligned vectors as described in
12519       // the venerable Apple Velocity Engine overview. Specifically:
12520       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
12521       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
12522       //
12523       // The general idea is to expand a sequence of one or more unaligned
12524       // loads into an alignment-based permutation-control instruction (lvsl
12525       // or lvsr), a series of regular vector loads (which always truncate
12526       // their input address to an aligned address), and a series of
12527       // permutations.  The results of these permutations are the requested
12528       // loaded values.  The trick is that the last "extra" load is not taken
12529       // from the address you might suspect (sizeof(vector) bytes after the
12530       // last requested load), but rather sizeof(vector) - 1 bytes after the
12531       // last requested vector. The point of this is to avoid a page fault if
12532       // the base address happened to be aligned. This works because if the
12533       // base address is aligned, then adding less than a full vector length
12534       // will cause the last vector in the sequence to be (re)loaded.
12535       // Otherwise, the next vector will be fetched as you might suspect was
12536       // necessary.
12537 
12538       // We might be able to reuse the permutation generation from
12539       // a different base address offset from this one by an aligned amount.
12540       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
12541       // optimization later.
12542       Intrinsic::ID Intr, IntrLD, IntrPerm;
12543       MVT PermCntlTy, PermTy, LDTy;
12544       if (Subtarget.hasAltivec()) {
12545         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
12546                                  Intrinsic::ppc_altivec_lvsl;
12547         IntrLD = Intrinsic::ppc_altivec_lvx;
12548         IntrPerm = Intrinsic::ppc_altivec_vperm;
12549         PermCntlTy = MVT::v16i8;
12550         PermTy = MVT::v4i32;
12551         LDTy = MVT::v4i32;
12552       } else {
12553         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
12554                                        Intrinsic::ppc_qpx_qvlpcls;
12555         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
12556                                        Intrinsic::ppc_qpx_qvlfs;
12557         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
12558         PermCntlTy = MVT::v4f64;
12559         PermTy = MVT::v4f64;
12560         LDTy = MemVT.getSimpleVT();
12561       }
12562 
12563       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
12564 
12565       // Create the new MMO for the new base load. It is like the original MMO,
12566       // but represents an area in memory almost twice the vector size centered
12567       // on the original address. If the address is unaligned, we might start
12568       // reading up to (sizeof(vector)-1) bytes below the address of the
12569       // original unaligned load.
12570       MachineFunction &MF = DAG.getMachineFunction();
12571       MachineMemOperand *BaseMMO =
12572         MF.getMachineMemOperand(LD->getMemOperand(),
12573                                 -(long)MemVT.getStoreSize()+1,
12574                                 2*MemVT.getStoreSize()-1);
12575 
12576       // Create the new base load.
12577       SDValue LDXIntID =
12578           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
12579       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
12580       SDValue BaseLoad =
12581         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
12582                                 DAG.getVTList(PermTy, MVT::Other),
12583                                 BaseLoadOps, LDTy, BaseMMO);
12584 
12585       // Note that the value of IncOffset (which is provided to the next
12586       // load's pointer info offset value, and thus used to calculate the
12587       // alignment), and the value of IncValue (which is actually used to
12588       // increment the pointer value) are different! This is because we
12589       // require the next load to appear to be aligned, even though it
12590       // is actually offset from the base pointer by a lesser amount.
12591       int IncOffset = VT.getSizeInBits() / 8;
12592       int IncValue = IncOffset;
12593 
12594       // Walk (both up and down) the chain looking for another load at the real
12595       // (aligned) offset (the alignment of the other load does not matter in
12596       // this case). If found, then do not use the offset reduction trick, as
12597       // that will prevent the loads from being later combined (as they would
12598       // otherwise be duplicates).
12599       if (!findConsecutiveLoad(LD, DAG))
12600         --IncValue;
12601 
12602       SDValue Increment =
12603           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
12604       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
12605 
12606       MachineMemOperand *ExtraMMO =
12607         MF.getMachineMemOperand(LD->getMemOperand(),
12608                                 1, 2*MemVT.getStoreSize()-1);
12609       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
12610       SDValue ExtraLoad =
12611         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
12612                                 DAG.getVTList(PermTy, MVT::Other),
12613                                 ExtraLoadOps, LDTy, ExtraMMO);
12614 
12615       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
12616         BaseLoad.getValue(1), ExtraLoad.getValue(1));
12617 
12618       // Because vperm has a big-endian bias, we must reverse the order
12619       // of the input vectors and complement the permute control vector
12620       // when generating little endian code.  We have already handled the
12621       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
12622       // and ExtraLoad here.
12623       SDValue Perm;
12624       if (isLittleEndian)
12625         Perm = BuildIntrinsicOp(IntrPerm,
12626                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
12627       else
12628         Perm = BuildIntrinsicOp(IntrPerm,
12629                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
12630 
12631       if (VT != PermTy)
12632         Perm = Subtarget.hasAltivec() ?
12633                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
12634                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
12635                                DAG.getTargetConstant(1, dl, MVT::i64));
12636                                // second argument is 1 because this rounding
12637                                // is always exact.
12638 
12639       // The output of the permutation is our loaded result, the TokenFactor is
12640       // our new chain.
12641       DCI.CombineTo(N, Perm, TF);
12642       return SDValue(N, 0);
12643     }
12644     }
12645     break;
12646     case ISD::INTRINSIC_WO_CHAIN: {
12647       bool isLittleEndian = Subtarget.isLittleEndian();
12648       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
12649       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
12650                                            : Intrinsic::ppc_altivec_lvsl);
12651       if ((IID == Intr ||
12652            IID == Intrinsic::ppc_qpx_qvlpcld  ||
12653            IID == Intrinsic::ppc_qpx_qvlpcls) &&
12654         N->getOperand(1)->getOpcode() == ISD::ADD) {
12655         SDValue Add = N->getOperand(1);
12656 
12657         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
12658                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
12659 
12660         if (DAG.MaskedValueIsZero(Add->getOperand(1),
12661                                   APInt::getAllOnesValue(Bits /* alignment */)
12662                                       .zext(Add.getScalarValueSizeInBits()))) {
12663           SDNode *BasePtr = Add->getOperand(0).getNode();
12664           for (SDNode::use_iterator UI = BasePtr->use_begin(),
12665                                     UE = BasePtr->use_end();
12666                UI != UE; ++UI) {
12667             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
12668                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
12669               // We've found another LVSL/LVSR, and this address is an aligned
12670               // multiple of that one. The results will be the same, so use the
12671               // one we've just found instead.
12672 
12673               return SDValue(*UI, 0);
12674             }
12675           }
12676         }
12677 
12678         if (isa<ConstantSDNode>(Add->getOperand(1))) {
12679           SDNode *BasePtr = Add->getOperand(0).getNode();
12680           for (SDNode::use_iterator UI = BasePtr->use_begin(),
12681                UE = BasePtr->use_end(); UI != UE; ++UI) {
12682             if (UI->getOpcode() == ISD::ADD &&
12683                 isa<ConstantSDNode>(UI->getOperand(1)) &&
12684                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
12685                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
12686                 (1ULL << Bits) == 0) {
12687               SDNode *OtherAdd = *UI;
12688               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
12689                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
12690                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
12691                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
12692                   return SDValue(*VI, 0);
12693                 }
12694               }
12695             }
12696           }
12697         }
12698       }
12699     }
12700 
12701     break;
12702   case ISD::INTRINSIC_W_CHAIN:
12703     // For little endian, VSX loads require generating lxvd2x/xxswapd.
12704     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
12705     if (Subtarget.needsSwapsForVSXMemOps()) {
12706       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12707       default:
12708         break;
12709       case Intrinsic::ppc_vsx_lxvw4x:
12710       case Intrinsic::ppc_vsx_lxvd2x:
12711         return expandVSXLoadForLE(N, DCI);
12712       }
12713     }
12714     break;
12715   case ISD::INTRINSIC_VOID:
12716     // For little endian, VSX stores require generating xxswapd/stxvd2x.
12717     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
12718     if (Subtarget.needsSwapsForVSXMemOps()) {
12719       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12720       default:
12721         break;
12722       case Intrinsic::ppc_vsx_stxvw4x:
12723       case Intrinsic::ppc_vsx_stxvd2x:
12724         return expandVSXStoreForLE(N, DCI);
12725       }
12726     }
12727     break;
12728   case ISD::BSWAP:
12729     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
12730     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
12731         N->getOperand(0).hasOneUse() &&
12732         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
12733          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
12734           N->getValueType(0) == MVT::i64))) {
12735       SDValue Load = N->getOperand(0);
12736       LoadSDNode *LD = cast<LoadSDNode>(Load);
12737       // Create the byte-swapping load.
12738       SDValue Ops[] = {
12739         LD->getChain(),    // Chain
12740         LD->getBasePtr(),  // Ptr
12741         DAG.getValueType(N->getValueType(0)) // VT
12742       };
12743       SDValue BSLoad =
12744         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
12745                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
12746                                               MVT::i64 : MVT::i32, MVT::Other),
12747                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
12748 
12749       // If this is an i16 load, insert the truncate.
12750       SDValue ResVal = BSLoad;
12751       if (N->getValueType(0) == MVT::i16)
12752         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
12753 
12754       // First, combine the bswap away.  This makes the value produced by the
12755       // load dead.
12756       DCI.CombineTo(N, ResVal);
12757 
12758       // Next, combine the load away, we give it a bogus result value but a real
12759       // chain result.  The result value is dead because the bswap is dead.
12760       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
12761 
12762       // Return N so it doesn't get rechecked!
12763       return SDValue(N, 0);
12764     }
12765     break;
12766   case PPCISD::VCMP:
12767     // If a VCMPo node already exists with exactly the same operands as this
12768     // node, use its result instead of this node (VCMPo computes both a CR6 and
12769     // a normal output).
12770     //
12771     if (!N->getOperand(0).hasOneUse() &&
12772         !N->getOperand(1).hasOneUse() &&
12773         !N->getOperand(2).hasOneUse()) {
12774 
12775       // Scan all of the users of the LHS, looking for VCMPo's that match.
12776       SDNode *VCMPoNode = nullptr;
12777 
12778       SDNode *LHSN = N->getOperand(0).getNode();
12779       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
12780            UI != E; ++UI)
12781         if (UI->getOpcode() == PPCISD::VCMPo &&
12782             UI->getOperand(1) == N->getOperand(1) &&
12783             UI->getOperand(2) == N->getOperand(2) &&
12784             UI->getOperand(0) == N->getOperand(0)) {
12785           VCMPoNode = *UI;
12786           break;
12787         }
12788 
12789       // If there is no VCMPo node, or if the flag value has a single use, don't
12790       // transform this.
12791       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
12792         break;
12793 
12794       // Look at the (necessarily single) use of the flag value.  If it has a
12795       // chain, this transformation is more complex.  Note that multiple things
12796       // could use the value result, which we should ignore.
12797       SDNode *FlagUser = nullptr;
12798       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
12799            FlagUser == nullptr; ++UI) {
12800         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
12801         SDNode *User = *UI;
12802         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
12803           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
12804             FlagUser = User;
12805             break;
12806           }
12807         }
12808       }
12809 
12810       // If the user is a MFOCRF instruction, we know this is safe.
12811       // Otherwise we give up for right now.
12812       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
12813         return SDValue(VCMPoNode, 0);
12814     }
12815     break;
12816   case ISD::BRCOND: {
12817     SDValue Cond = N->getOperand(1);
12818     SDValue Target = N->getOperand(2);
12819 
12820     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
12821         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
12822           Intrinsic::ppc_is_decremented_ctr_nonzero) {
12823 
12824       // We now need to make the intrinsic dead (it cannot be instruction
12825       // selected).
12826       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
12827       assert(Cond.getNode()->hasOneUse() &&
12828              "Counter decrement has more than one use");
12829 
12830       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
12831                          N->getOperand(0), Target);
12832     }
12833   }
12834   break;
12835   case ISD::BR_CC: {
12836     // If this is a branch on an altivec predicate comparison, lower this so
12837     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
12838     // lowering is done pre-legalize, because the legalizer lowers the predicate
12839     // compare down to code that is difficult to reassemble.
12840     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
12841     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
12842 
12843     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
12844     // value. If so, pass-through the AND to get to the intrinsic.
12845     if (LHS.getOpcode() == ISD::AND &&
12846         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
12847         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
12848           Intrinsic::ppc_is_decremented_ctr_nonzero &&
12849         isa<ConstantSDNode>(LHS.getOperand(1)) &&
12850         !isNullConstant(LHS.getOperand(1)))
12851       LHS = LHS.getOperand(0);
12852 
12853     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
12854         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
12855           Intrinsic::ppc_is_decremented_ctr_nonzero &&
12856         isa<ConstantSDNode>(RHS)) {
12857       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
12858              "Counter decrement comparison is not EQ or NE");
12859 
12860       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
12861       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
12862                     (CC == ISD::SETNE && !Val);
12863 
12864       // We now need to make the intrinsic dead (it cannot be instruction
12865       // selected).
12866       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
12867       assert(LHS.getNode()->hasOneUse() &&
12868              "Counter decrement has more than one use");
12869 
12870       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
12871                          N->getOperand(0), N->getOperand(4));
12872     }
12873 
12874     int CompareOpc;
12875     bool isDot;
12876 
12877     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
12878         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
12879         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
12880       assert(isDot && "Can't compare against a vector result!");
12881 
12882       // If this is a comparison against something other than 0/1, then we know
12883       // that the condition is never/always true.
12884       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
12885       if (Val != 0 && Val != 1) {
12886         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
12887           return N->getOperand(0);
12888         // Always !=, turn it into an unconditional branch.
12889         return DAG.getNode(ISD::BR, dl, MVT::Other,
12890                            N->getOperand(0), N->getOperand(4));
12891       }
12892 
12893       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
12894 
12895       // Create the PPCISD altivec 'dot' comparison node.
12896       SDValue Ops[] = {
12897         LHS.getOperand(2),  // LHS of compare
12898         LHS.getOperand(3),  // RHS of compare
12899         DAG.getConstant(CompareOpc, dl, MVT::i32)
12900       };
12901       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
12902       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
12903 
12904       // Unpack the result based on how the target uses it.
12905       PPC::Predicate CompOpc;
12906       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
12907       default:  // Can't happen, don't crash on invalid number though.
12908       case 0:   // Branch on the value of the EQ bit of CR6.
12909         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
12910         break;
12911       case 1:   // Branch on the inverted value of the EQ bit of CR6.
12912         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
12913         break;
12914       case 2:   // Branch on the value of the LT bit of CR6.
12915         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
12916         break;
12917       case 3:   // Branch on the inverted value of the LT bit of CR6.
12918         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
12919         break;
12920       }
12921 
12922       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
12923                          DAG.getConstant(CompOpc, dl, MVT::i32),
12924                          DAG.getRegister(PPC::CR6, MVT::i32),
12925                          N->getOperand(4), CompNode.getValue(1));
12926     }
12927     break;
12928   }
12929   case ISD::BUILD_VECTOR:
12930     return DAGCombineBuildVector(N, DCI);
12931   }
12932 
12933   return SDValue();
12934 }
12935 
12936 SDValue
12937 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
12938                                   SelectionDAG &DAG,
12939                                   std::vector<SDNode *> *Created) const {
12940   // fold (sdiv X, pow2)
12941   EVT VT = N->getValueType(0);
12942   if (VT == MVT::i64 && !Subtarget.isPPC64())
12943     return SDValue();
12944   if ((VT != MVT::i32 && VT != MVT::i64) ||
12945       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
12946     return SDValue();
12947 
12948   SDLoc DL(N);
12949   SDValue N0 = N->getOperand(0);
12950 
12951   bool IsNegPow2 = (-Divisor).isPowerOf2();
12952   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
12953   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
12954 
12955   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
12956   if (Created)
12957     Created->push_back(Op.getNode());
12958 
12959   if (IsNegPow2) {
12960     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
12961     if (Created)
12962       Created->push_back(Op.getNode());
12963   }
12964 
12965   return Op;
12966 }
12967 
12968 //===----------------------------------------------------------------------===//
12969 // Inline Assembly Support
12970 //===----------------------------------------------------------------------===//
12971 
12972 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
12973                                                       KnownBits &Known,
12974                                                       const APInt &DemandedElts,
12975                                                       const SelectionDAG &DAG,
12976                                                       unsigned Depth) const {
12977   Known.resetAll();
12978   switch (Op.getOpcode()) {
12979   default: break;
12980   case PPCISD::LBRX: {
12981     // lhbrx is known to have the top bits cleared out.
12982     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
12983       Known.Zero = 0xFFFF0000;
12984     break;
12985   }
12986   case ISD::INTRINSIC_WO_CHAIN: {
12987     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
12988     default: break;
12989     case Intrinsic::ppc_altivec_vcmpbfp_p:
12990     case Intrinsic::ppc_altivec_vcmpeqfp_p:
12991     case Intrinsic::ppc_altivec_vcmpequb_p:
12992     case Intrinsic::ppc_altivec_vcmpequh_p:
12993     case Intrinsic::ppc_altivec_vcmpequw_p:
12994     case Intrinsic::ppc_altivec_vcmpequd_p:
12995     case Intrinsic::ppc_altivec_vcmpgefp_p:
12996     case Intrinsic::ppc_altivec_vcmpgtfp_p:
12997     case Intrinsic::ppc_altivec_vcmpgtsb_p:
12998     case Intrinsic::ppc_altivec_vcmpgtsh_p:
12999     case Intrinsic::ppc_altivec_vcmpgtsw_p:
13000     case Intrinsic::ppc_altivec_vcmpgtsd_p:
13001     case Intrinsic::ppc_altivec_vcmpgtub_p:
13002     case Intrinsic::ppc_altivec_vcmpgtuh_p:
13003     case Intrinsic::ppc_altivec_vcmpgtuw_p:
13004     case Intrinsic::ppc_altivec_vcmpgtud_p:
13005       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
13006       break;
13007     }
13008   }
13009   }
13010 }
13011 
13012 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
13013   switch (Subtarget.getDarwinDirective()) {
13014   default: break;
13015   case PPC::DIR_970:
13016   case PPC::DIR_PWR4:
13017   case PPC::DIR_PWR5:
13018   case PPC::DIR_PWR5X:
13019   case PPC::DIR_PWR6:
13020   case PPC::DIR_PWR6X:
13021   case PPC::DIR_PWR7:
13022   case PPC::DIR_PWR8:
13023   case PPC::DIR_PWR9: {
13024     if (!ML)
13025       break;
13026 
13027     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
13028 
13029     // For small loops (between 5 and 8 instructions), align to a 32-byte
13030     // boundary so that the entire loop fits in one instruction-cache line.
13031     uint64_t LoopSize = 0;
13032     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
13033       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
13034         LoopSize += TII->getInstSizeInBytes(*J);
13035         if (LoopSize > 32)
13036           break;
13037       }
13038 
13039     if (LoopSize > 16 && LoopSize <= 32)
13040       return 5;
13041 
13042     break;
13043   }
13044   }
13045 
13046   return TargetLowering::getPrefLoopAlignment(ML);
13047 }
13048 
13049 /// getConstraintType - Given a constraint, return the type of
13050 /// constraint it is for this target.
13051 PPCTargetLowering::ConstraintType
13052 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
13053   if (Constraint.size() == 1) {
13054     switch (Constraint[0]) {
13055     default: break;
13056     case 'b':
13057     case 'r':
13058     case 'f':
13059     case 'd':
13060     case 'v':
13061     case 'y':
13062       return C_RegisterClass;
13063     case 'Z':
13064       // FIXME: While Z does indicate a memory constraint, it specifically
13065       // indicates an r+r address (used in conjunction with the 'y' modifier
13066       // in the replacement string). Currently, we're forcing the base
13067       // register to be r0 in the asm printer (which is interpreted as zero)
13068       // and forming the complete address in the second register. This is
13069       // suboptimal.
13070       return C_Memory;
13071     }
13072   } else if (Constraint == "wc") { // individual CR bits.
13073     return C_RegisterClass;
13074   } else if (Constraint == "wa" || Constraint == "wd" ||
13075              Constraint == "wf" || Constraint == "ws") {
13076     return C_RegisterClass; // VSX registers.
13077   }
13078   return TargetLowering::getConstraintType(Constraint);
13079 }
13080 
13081 /// Examine constraint type and operand type and determine a weight value.
13082 /// This object must already have been set up with the operand type
13083 /// and the current alternative constraint selected.
13084 TargetLowering::ConstraintWeight
13085 PPCTargetLowering::getSingleConstraintMatchWeight(
13086     AsmOperandInfo &info, const char *constraint) const {
13087   ConstraintWeight weight = CW_Invalid;
13088   Value *CallOperandVal = info.CallOperandVal;
13089     // If we don't have a value, we can't do a match,
13090     // but allow it at the lowest weight.
13091   if (!CallOperandVal)
13092     return CW_Default;
13093   Type *type = CallOperandVal->getType();
13094 
13095   // Look at the constraint type.
13096   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
13097     return CW_Register; // an individual CR bit.
13098   else if ((StringRef(constraint) == "wa" ||
13099             StringRef(constraint) == "wd" ||
13100             StringRef(constraint) == "wf") &&
13101            type->isVectorTy())
13102     return CW_Register;
13103   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
13104     return CW_Register;
13105 
13106   switch (*constraint) {
13107   default:
13108     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
13109     break;
13110   case 'b':
13111     if (type->isIntegerTy())
13112       weight = CW_Register;
13113     break;
13114   case 'f':
13115     if (type->isFloatTy())
13116       weight = CW_Register;
13117     break;
13118   case 'd':
13119     if (type->isDoubleTy())
13120       weight = CW_Register;
13121     break;
13122   case 'v':
13123     if (type->isVectorTy())
13124       weight = CW_Register;
13125     break;
13126   case 'y':
13127     weight = CW_Register;
13128     break;
13129   case 'Z':
13130     weight = CW_Memory;
13131     break;
13132   }
13133   return weight;
13134 }
13135 
13136 std::pair<unsigned, const TargetRegisterClass *>
13137 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
13138                                                 StringRef Constraint,
13139                                                 MVT VT) const {
13140   if (Constraint.size() == 1) {
13141     // GCC RS6000 Constraint Letters
13142     switch (Constraint[0]) {
13143     case 'b':   // R1-R31
13144       if (VT == MVT::i64 && Subtarget.isPPC64())
13145         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
13146       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
13147     case 'r':   // R0-R31
13148       if (VT == MVT::i64 && Subtarget.isPPC64())
13149         return std::make_pair(0U, &PPC::G8RCRegClass);
13150       return std::make_pair(0U, &PPC::GPRCRegClass);
13151     // 'd' and 'f' constraints are both defined to be "the floating point
13152     // registers", where one is for 32-bit and the other for 64-bit. We don't
13153     // really care overly much here so just give them all the same reg classes.
13154     case 'd':
13155     case 'f':
13156       if (VT == MVT::f32 || VT == MVT::i32)
13157         return std::make_pair(0U, &PPC::F4RCRegClass);
13158       if (VT == MVT::f64 || VT == MVT::i64)
13159         return std::make_pair(0U, &PPC::F8RCRegClass);
13160       if (VT == MVT::v4f64 && Subtarget.hasQPX())
13161         return std::make_pair(0U, &PPC::QFRCRegClass);
13162       if (VT == MVT::v4f32 && Subtarget.hasQPX())
13163         return std::make_pair(0U, &PPC::QSRCRegClass);
13164       break;
13165     case 'v':
13166       if (VT == MVT::v4f64 && Subtarget.hasQPX())
13167         return std::make_pair(0U, &PPC::QFRCRegClass);
13168       if (VT == MVT::v4f32 && Subtarget.hasQPX())
13169         return std::make_pair(0U, &PPC::QSRCRegClass);
13170       if (Subtarget.hasAltivec())
13171         return std::make_pair(0U, &PPC::VRRCRegClass);
13172       break;
13173     case 'y':   // crrc
13174       return std::make_pair(0U, &PPC::CRRCRegClass);
13175     }
13176   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
13177     // An individual CR bit.
13178     return std::make_pair(0U, &PPC::CRBITRCRegClass);
13179   } else if ((Constraint == "wa" || Constraint == "wd" ||
13180              Constraint == "wf") && Subtarget.hasVSX()) {
13181     return std::make_pair(0U, &PPC::VSRCRegClass);
13182   } else if (Constraint == "ws" && Subtarget.hasVSX()) {
13183     if (VT == MVT::f32 && Subtarget.hasP8Vector())
13184       return std::make_pair(0U, &PPC::VSSRCRegClass);
13185     else
13186       return std::make_pair(0U, &PPC::VSFRCRegClass);
13187   }
13188 
13189   std::pair<unsigned, const TargetRegisterClass *> R =
13190       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
13191 
13192   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
13193   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
13194   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
13195   // register.
13196   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
13197   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
13198   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
13199       PPC::GPRCRegClass.contains(R.first))
13200     return std::make_pair(TRI->getMatchingSuperReg(R.first,
13201                             PPC::sub_32, &PPC::G8RCRegClass),
13202                           &PPC::G8RCRegClass);
13203 
13204   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
13205   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
13206     R.first = PPC::CR0;
13207     R.second = &PPC::CRRCRegClass;
13208   }
13209 
13210   return R;
13211 }
13212 
13213 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
13214 /// vector.  If it is invalid, don't add anything to Ops.
13215 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
13216                                                      std::string &Constraint,
13217                                                      std::vector<SDValue>&Ops,
13218                                                      SelectionDAG &DAG) const {
13219   SDValue Result;
13220 
13221   // Only support length 1 constraints.
13222   if (Constraint.length() > 1) return;
13223 
13224   char Letter = Constraint[0];
13225   switch (Letter) {
13226   default: break;
13227   case 'I':
13228   case 'J':
13229   case 'K':
13230   case 'L':
13231   case 'M':
13232   case 'N':
13233   case 'O':
13234   case 'P': {
13235     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
13236     if (!CST) return; // Must be an immediate to match.
13237     SDLoc dl(Op);
13238     int64_t Value = CST->getSExtValue();
13239     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
13240                          // numbers are printed as such.
13241     switch (Letter) {
13242     default: llvm_unreachable("Unknown constraint letter!");
13243     case 'I':  // "I" is a signed 16-bit constant.
13244       if (isInt<16>(Value))
13245         Result = DAG.getTargetConstant(Value, dl, TCVT);
13246       break;
13247     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
13248       if (isShiftedUInt<16, 16>(Value))
13249         Result = DAG.getTargetConstant(Value, dl, TCVT);
13250       break;
13251     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
13252       if (isShiftedInt<16, 16>(Value))
13253         Result = DAG.getTargetConstant(Value, dl, TCVT);
13254       break;
13255     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
13256       if (isUInt<16>(Value))
13257         Result = DAG.getTargetConstant(Value, dl, TCVT);
13258       break;
13259     case 'M':  // "M" is a constant that is greater than 31.
13260       if (Value > 31)
13261         Result = DAG.getTargetConstant(Value, dl, TCVT);
13262       break;
13263     case 'N':  // "N" is a positive constant that is an exact power of two.
13264       if (Value > 0 && isPowerOf2_64(Value))
13265         Result = DAG.getTargetConstant(Value, dl, TCVT);
13266       break;
13267     case 'O':  // "O" is the constant zero.
13268       if (Value == 0)
13269         Result = DAG.getTargetConstant(Value, dl, TCVT);
13270       break;
13271     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
13272       if (isInt<16>(-Value))
13273         Result = DAG.getTargetConstant(Value, dl, TCVT);
13274       break;
13275     }
13276     break;
13277   }
13278   }
13279 
13280   if (Result.getNode()) {
13281     Ops.push_back(Result);
13282     return;
13283   }
13284 
13285   // Handle standard constraint letters.
13286   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
13287 }
13288 
13289 // isLegalAddressingMode - Return true if the addressing mode represented
13290 // by AM is legal for this target, for a load/store of the specified type.
13291 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
13292                                               const AddrMode &AM, Type *Ty,
13293                                               unsigned AS, Instruction *I) const {
13294   // PPC does not allow r+i addressing modes for vectors!
13295   if (Ty->isVectorTy() && AM.BaseOffs != 0)
13296     return false;
13297 
13298   // PPC allows a sign-extended 16-bit immediate field.
13299   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
13300     return false;
13301 
13302   // No global is ever allowed as a base.
13303   if (AM.BaseGV)
13304     return false;
13305 
13306   // PPC only support r+r,
13307   switch (AM.Scale) {
13308   case 0:  // "r+i" or just "i", depending on HasBaseReg.
13309     break;
13310   case 1:
13311     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
13312       return false;
13313     // Otherwise we have r+r or r+i.
13314     break;
13315   case 2:
13316     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
13317       return false;
13318     // Allow 2*r as r+r.
13319     break;
13320   default:
13321     // No other scales are supported.
13322     return false;
13323   }
13324 
13325   return true;
13326 }
13327 
13328 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
13329                                            SelectionDAG &DAG) const {
13330   MachineFunction &MF = DAG.getMachineFunction();
13331   MachineFrameInfo &MFI = MF.getFrameInfo();
13332   MFI.setReturnAddressIsTaken(true);
13333 
13334   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
13335     return SDValue();
13336 
13337   SDLoc dl(Op);
13338   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13339 
13340   // Make sure the function does not optimize away the store of the RA to
13341   // the stack.
13342   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
13343   FuncInfo->setLRStoreRequired();
13344   bool isPPC64 = Subtarget.isPPC64();
13345   auto PtrVT = getPointerTy(MF.getDataLayout());
13346 
13347   if (Depth > 0) {
13348     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
13349     SDValue Offset =
13350         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
13351                         isPPC64 ? MVT::i64 : MVT::i32);
13352     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
13353                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
13354                        MachinePointerInfo());
13355   }
13356 
13357   // Just load the return address off the stack.
13358   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
13359   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
13360                      MachinePointerInfo());
13361 }
13362 
13363 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
13364                                           SelectionDAG &DAG) const {
13365   SDLoc dl(Op);
13366   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13367 
13368   MachineFunction &MF = DAG.getMachineFunction();
13369   MachineFrameInfo &MFI = MF.getFrameInfo();
13370   MFI.setFrameAddressIsTaken(true);
13371 
13372   EVT PtrVT = getPointerTy(MF.getDataLayout());
13373   bool isPPC64 = PtrVT == MVT::i64;
13374 
13375   // Naked functions never have a frame pointer, and so we use r1. For all
13376   // other functions, this decision must be delayed until during PEI.
13377   unsigned FrameReg;
13378   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
13379     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
13380   else
13381     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
13382 
13383   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
13384                                          PtrVT);
13385   while (Depth--)
13386     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
13387                             FrameAddr, MachinePointerInfo());
13388   return FrameAddr;
13389 }
13390 
13391 // FIXME? Maybe this could be a TableGen attribute on some registers and
13392 // this table could be generated automatically from RegInfo.
13393 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
13394                                               SelectionDAG &DAG) const {
13395   bool isPPC64 = Subtarget.isPPC64();
13396   bool isDarwinABI = Subtarget.isDarwinABI();
13397 
13398   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
13399       (!isPPC64 && VT != MVT::i32))
13400     report_fatal_error("Invalid register global variable type");
13401 
13402   bool is64Bit = isPPC64 && VT == MVT::i64;
13403   unsigned Reg = StringSwitch<unsigned>(RegName)
13404                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
13405                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
13406                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
13407                                   (is64Bit ? PPC::X13 : PPC::R13))
13408                    .Default(0);
13409 
13410   if (Reg)
13411     return Reg;
13412   report_fatal_error("Invalid register name global variable");
13413 }
13414 
13415 bool
13416 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
13417   // The PowerPC target isn't yet aware of offsets.
13418   return false;
13419 }
13420 
13421 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
13422                                            const CallInst &I,
13423                                            MachineFunction &MF,
13424                                            unsigned Intrinsic) const {
13425   switch (Intrinsic) {
13426   case Intrinsic::ppc_qpx_qvlfd:
13427   case Intrinsic::ppc_qpx_qvlfs:
13428   case Intrinsic::ppc_qpx_qvlfcd:
13429   case Intrinsic::ppc_qpx_qvlfcs:
13430   case Intrinsic::ppc_qpx_qvlfiwa:
13431   case Intrinsic::ppc_qpx_qvlfiwz:
13432   case Intrinsic::ppc_altivec_lvx:
13433   case Intrinsic::ppc_altivec_lvxl:
13434   case Intrinsic::ppc_altivec_lvebx:
13435   case Intrinsic::ppc_altivec_lvehx:
13436   case Intrinsic::ppc_altivec_lvewx:
13437   case Intrinsic::ppc_vsx_lxvd2x:
13438   case Intrinsic::ppc_vsx_lxvw4x: {
13439     EVT VT;
13440     switch (Intrinsic) {
13441     case Intrinsic::ppc_altivec_lvebx:
13442       VT = MVT::i8;
13443       break;
13444     case Intrinsic::ppc_altivec_lvehx:
13445       VT = MVT::i16;
13446       break;
13447     case Intrinsic::ppc_altivec_lvewx:
13448       VT = MVT::i32;
13449       break;
13450     case Intrinsic::ppc_vsx_lxvd2x:
13451       VT = MVT::v2f64;
13452       break;
13453     case Intrinsic::ppc_qpx_qvlfd:
13454       VT = MVT::v4f64;
13455       break;
13456     case Intrinsic::ppc_qpx_qvlfs:
13457       VT = MVT::v4f32;
13458       break;
13459     case Intrinsic::ppc_qpx_qvlfcd:
13460       VT = MVT::v2f64;
13461       break;
13462     case Intrinsic::ppc_qpx_qvlfcs:
13463       VT = MVT::v2f32;
13464       break;
13465     default:
13466       VT = MVT::v4i32;
13467       break;
13468     }
13469 
13470     Info.opc = ISD::INTRINSIC_W_CHAIN;
13471     Info.memVT = VT;
13472     Info.ptrVal = I.getArgOperand(0);
13473     Info.offset = -VT.getStoreSize()+1;
13474     Info.size = 2*VT.getStoreSize()-1;
13475     Info.align = 1;
13476     Info.flags = MachineMemOperand::MOLoad;
13477     return true;
13478   }
13479   case Intrinsic::ppc_qpx_qvlfda:
13480   case Intrinsic::ppc_qpx_qvlfsa:
13481   case Intrinsic::ppc_qpx_qvlfcda:
13482   case Intrinsic::ppc_qpx_qvlfcsa:
13483   case Intrinsic::ppc_qpx_qvlfiwaa:
13484   case Intrinsic::ppc_qpx_qvlfiwza: {
13485     EVT VT;
13486     switch (Intrinsic) {
13487     case Intrinsic::ppc_qpx_qvlfda:
13488       VT = MVT::v4f64;
13489       break;
13490     case Intrinsic::ppc_qpx_qvlfsa:
13491       VT = MVT::v4f32;
13492       break;
13493     case Intrinsic::ppc_qpx_qvlfcda:
13494       VT = MVT::v2f64;
13495       break;
13496     case Intrinsic::ppc_qpx_qvlfcsa:
13497       VT = MVT::v2f32;
13498       break;
13499     default:
13500       VT = MVT::v4i32;
13501       break;
13502     }
13503 
13504     Info.opc = ISD::INTRINSIC_W_CHAIN;
13505     Info.memVT = VT;
13506     Info.ptrVal = I.getArgOperand(0);
13507     Info.offset = 0;
13508     Info.size = VT.getStoreSize();
13509     Info.align = 1;
13510     Info.flags = MachineMemOperand::MOLoad;
13511     return true;
13512   }
13513   case Intrinsic::ppc_qpx_qvstfd:
13514   case Intrinsic::ppc_qpx_qvstfs:
13515   case Intrinsic::ppc_qpx_qvstfcd:
13516   case Intrinsic::ppc_qpx_qvstfcs:
13517   case Intrinsic::ppc_qpx_qvstfiw:
13518   case Intrinsic::ppc_altivec_stvx:
13519   case Intrinsic::ppc_altivec_stvxl:
13520   case Intrinsic::ppc_altivec_stvebx:
13521   case Intrinsic::ppc_altivec_stvehx:
13522   case Intrinsic::ppc_altivec_stvewx:
13523   case Intrinsic::ppc_vsx_stxvd2x:
13524   case Intrinsic::ppc_vsx_stxvw4x: {
13525     EVT VT;
13526     switch (Intrinsic) {
13527     case Intrinsic::ppc_altivec_stvebx:
13528       VT = MVT::i8;
13529       break;
13530     case Intrinsic::ppc_altivec_stvehx:
13531       VT = MVT::i16;
13532       break;
13533     case Intrinsic::ppc_altivec_stvewx:
13534       VT = MVT::i32;
13535       break;
13536     case Intrinsic::ppc_vsx_stxvd2x:
13537       VT = MVT::v2f64;
13538       break;
13539     case Intrinsic::ppc_qpx_qvstfd:
13540       VT = MVT::v4f64;
13541       break;
13542     case Intrinsic::ppc_qpx_qvstfs:
13543       VT = MVT::v4f32;
13544       break;
13545     case Intrinsic::ppc_qpx_qvstfcd:
13546       VT = MVT::v2f64;
13547       break;
13548     case Intrinsic::ppc_qpx_qvstfcs:
13549       VT = MVT::v2f32;
13550       break;
13551     default:
13552       VT = MVT::v4i32;
13553       break;
13554     }
13555 
13556     Info.opc = ISD::INTRINSIC_VOID;
13557     Info.memVT = VT;
13558     Info.ptrVal = I.getArgOperand(1);
13559     Info.offset = -VT.getStoreSize()+1;
13560     Info.size = 2*VT.getStoreSize()-1;
13561     Info.align = 1;
13562     Info.flags = MachineMemOperand::MOStore;
13563     return true;
13564   }
13565   case Intrinsic::ppc_qpx_qvstfda:
13566   case Intrinsic::ppc_qpx_qvstfsa:
13567   case Intrinsic::ppc_qpx_qvstfcda:
13568   case Intrinsic::ppc_qpx_qvstfcsa:
13569   case Intrinsic::ppc_qpx_qvstfiwa: {
13570     EVT VT;
13571     switch (Intrinsic) {
13572     case Intrinsic::ppc_qpx_qvstfda:
13573       VT = MVT::v4f64;
13574       break;
13575     case Intrinsic::ppc_qpx_qvstfsa:
13576       VT = MVT::v4f32;
13577       break;
13578     case Intrinsic::ppc_qpx_qvstfcda:
13579       VT = MVT::v2f64;
13580       break;
13581     case Intrinsic::ppc_qpx_qvstfcsa:
13582       VT = MVT::v2f32;
13583       break;
13584     default:
13585       VT = MVT::v4i32;
13586       break;
13587     }
13588 
13589     Info.opc = ISD::INTRINSIC_VOID;
13590     Info.memVT = VT;
13591     Info.ptrVal = I.getArgOperand(1);
13592     Info.offset = 0;
13593     Info.size = VT.getStoreSize();
13594     Info.align = 1;
13595     Info.flags = MachineMemOperand::MOStore;
13596     return true;
13597   }
13598   default:
13599     break;
13600   }
13601 
13602   return false;
13603 }
13604 
13605 /// getOptimalMemOpType - Returns the target specific optimal type for load
13606 /// and store operations as a result of memset, memcpy, and memmove
13607 /// lowering. If DstAlign is zero that means it's safe to destination
13608 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
13609 /// means there isn't a need to check it against alignment requirement,
13610 /// probably because the source does not need to be loaded. If 'IsMemset' is
13611 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
13612 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
13613 /// source is constant so it does not need to be loaded.
13614 /// It returns EVT::Other if the type should be determined using generic
13615 /// target-independent logic.
13616 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
13617                                            unsigned DstAlign, unsigned SrcAlign,
13618                                            bool IsMemset, bool ZeroMemset,
13619                                            bool MemcpyStrSrc,
13620                                            MachineFunction &MF) const {
13621   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
13622     const Function &F = MF.getFunction();
13623     // When expanding a memset, require at least two QPX instructions to cover
13624     // the cost of loading the value to be stored from the constant pool.
13625     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
13626        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
13627         !F.hasFnAttribute(Attribute::NoImplicitFloat)) {
13628       return MVT::v4f64;
13629     }
13630 
13631     // We should use Altivec/VSX loads and stores when available. For unaligned
13632     // addresses, unaligned VSX loads are only fast starting with the P8.
13633     if (Subtarget.hasAltivec() && Size >= 16 &&
13634         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
13635          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
13636       return MVT::v4i32;
13637   }
13638 
13639   if (Subtarget.isPPC64()) {
13640     return MVT::i64;
13641   }
13642 
13643   return MVT::i32;
13644 }
13645 
13646 /// Returns true if it is beneficial to convert a load of a constant
13647 /// to just the constant itself.
13648 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
13649                                                           Type *Ty) const {
13650   assert(Ty->isIntegerTy());
13651 
13652   unsigned BitSize = Ty->getPrimitiveSizeInBits();
13653   return !(BitSize == 0 || BitSize > 64);
13654 }
13655 
13656 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
13657   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
13658     return false;
13659   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
13660   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
13661   return NumBits1 == 64 && NumBits2 == 32;
13662 }
13663 
13664 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
13665   if (!VT1.isInteger() || !VT2.isInteger())
13666     return false;
13667   unsigned NumBits1 = VT1.getSizeInBits();
13668   unsigned NumBits2 = VT2.getSizeInBits();
13669   return NumBits1 == 64 && NumBits2 == 32;
13670 }
13671 
13672 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
13673   // Generally speaking, zexts are not free, but they are free when they can be
13674   // folded with other operations.
13675   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
13676     EVT MemVT = LD->getMemoryVT();
13677     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
13678          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
13679         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
13680          LD->getExtensionType() == ISD::ZEXTLOAD))
13681       return true;
13682   }
13683 
13684   // FIXME: Add other cases...
13685   //  - 32-bit shifts with a zext to i64
13686   //  - zext after ctlz, bswap, etc.
13687   //  - zext after and by a constant mask
13688 
13689   return TargetLowering::isZExtFree(Val, VT2);
13690 }
13691 
13692 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
13693   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
13694          "invalid fpext types");
13695   return true;
13696 }
13697 
13698 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
13699   return isInt<16>(Imm) || isUInt<16>(Imm);
13700 }
13701 
13702 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
13703   return isInt<16>(Imm) || isUInt<16>(Imm);
13704 }
13705 
13706 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
13707                                                        unsigned,
13708                                                        unsigned,
13709                                                        bool *Fast) const {
13710   if (DisablePPCUnaligned)
13711     return false;
13712 
13713   // PowerPC supports unaligned memory access for simple non-vector types.
13714   // Although accessing unaligned addresses is not as efficient as accessing
13715   // aligned addresses, it is generally more efficient than manual expansion,
13716   // and generally only traps for software emulation when crossing page
13717   // boundaries.
13718 
13719   if (!VT.isSimple())
13720     return false;
13721 
13722   if (VT.getSimpleVT().isVector()) {
13723     if (Subtarget.hasVSX()) {
13724       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
13725           VT != MVT::v4f32 && VT != MVT::v4i32)
13726         return false;
13727     } else {
13728       return false;
13729     }
13730   }
13731 
13732   if (VT == MVT::ppcf128)
13733     return false;
13734 
13735   if (Fast)
13736     *Fast = true;
13737 
13738   return true;
13739 }
13740 
13741 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
13742   VT = VT.getScalarType();
13743 
13744   if (!VT.isSimple())
13745     return false;
13746 
13747   switch (VT.getSimpleVT().SimpleTy) {
13748   case MVT::f32:
13749   case MVT::f64:
13750     return true;
13751   case MVT::f128:
13752     return (EnableQuadPrecision && Subtarget.hasP9Vector());
13753   default:
13754     break;
13755   }
13756 
13757   return false;
13758 }
13759 
13760 const MCPhysReg *
13761 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
13762   // LR is a callee-save register, but we must treat it as clobbered by any call
13763   // site. Hence we include LR in the scratch registers, which are in turn added
13764   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
13765   // to CTR, which is used by any indirect call.
13766   static const MCPhysReg ScratchRegs[] = {
13767     PPC::X12, PPC::LR8, PPC::CTR8, 0
13768   };
13769 
13770   return ScratchRegs;
13771 }
13772 
13773 unsigned PPCTargetLowering::getExceptionPointerRegister(
13774     const Constant *PersonalityFn) const {
13775   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
13776 }
13777 
13778 unsigned PPCTargetLowering::getExceptionSelectorRegister(
13779     const Constant *PersonalityFn) const {
13780   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
13781 }
13782 
13783 bool
13784 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
13785                      EVT VT , unsigned DefinedValues) const {
13786   if (VT == MVT::v2i64)
13787     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
13788 
13789   if (Subtarget.hasVSX() || Subtarget.hasQPX())
13790     return true;
13791 
13792   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
13793 }
13794 
13795 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
13796   if (DisableILPPref || Subtarget.enableMachineScheduler())
13797     return TargetLowering::getSchedulingPreference(N);
13798 
13799   return Sched::ILP;
13800 }
13801 
13802 // Create a fast isel object.
13803 FastISel *
13804 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
13805                                   const TargetLibraryInfo *LibInfo) const {
13806   return PPC::createFastISel(FuncInfo, LibInfo);
13807 }
13808 
13809 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
13810   if (Subtarget.isDarwinABI()) return;
13811   if (!Subtarget.isPPC64()) return;
13812 
13813   // Update IsSplitCSR in PPCFunctionInfo
13814   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
13815   PFI->setIsSplitCSR(true);
13816 }
13817 
13818 void PPCTargetLowering::insertCopiesSplitCSR(
13819   MachineBasicBlock *Entry,
13820   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
13821   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
13822   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
13823   if (!IStart)
13824     return;
13825 
13826   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
13827   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
13828   MachineBasicBlock::iterator MBBI = Entry->begin();
13829   for (const MCPhysReg *I = IStart; *I; ++I) {
13830     const TargetRegisterClass *RC = nullptr;
13831     if (PPC::G8RCRegClass.contains(*I))
13832       RC = &PPC::G8RCRegClass;
13833     else if (PPC::F8RCRegClass.contains(*I))
13834       RC = &PPC::F8RCRegClass;
13835     else if (PPC::CRRCRegClass.contains(*I))
13836       RC = &PPC::CRRCRegClass;
13837     else if (PPC::VRRCRegClass.contains(*I))
13838       RC = &PPC::VRRCRegClass;
13839     else
13840       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
13841 
13842     unsigned NewVR = MRI->createVirtualRegister(RC);
13843     // Create copy from CSR to a virtual register.
13844     // FIXME: this currently does not emit CFI pseudo-instructions, it works
13845     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
13846     // nounwind. If we want to generalize this later, we may need to emit
13847     // CFI pseudo-instructions.
13848     assert(Entry->getParent()->getFunction().hasFnAttribute(
13849              Attribute::NoUnwind) &&
13850            "Function should be nounwind in insertCopiesSplitCSR!");
13851     Entry->addLiveIn(*I);
13852     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
13853       .addReg(*I);
13854 
13855     // Insert the copy-back instructions right before the terminator
13856     for (auto *Exit : Exits)
13857       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
13858               TII->get(TargetOpcode::COPY), *I)
13859         .addReg(NewVR);
13860   }
13861 }
13862 
13863 // Override to enable LOAD_STACK_GUARD lowering on Linux.
13864 bool PPCTargetLowering::useLoadStackGuardNode() const {
13865   if (!Subtarget.isTargetLinux())
13866     return TargetLowering::useLoadStackGuardNode();
13867   return true;
13868 }
13869 
13870 // Override to disable global variable loading on Linux.
13871 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
13872   if (!Subtarget.isTargetLinux())
13873     return TargetLowering::insertSSPDeclarations(M);
13874 }
13875 
13876 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
13877   if (!VT.isSimple() || !Subtarget.hasVSX())
13878     return false;
13879 
13880   switch(VT.getSimpleVT().SimpleTy) {
13881   default:
13882     // For FP types that are currently not supported by PPC backend, return
13883     // false. Examples: f16, f80.
13884     return false;
13885   case MVT::f32:
13886   case MVT::f64:
13887   case MVT::ppcf128:
13888     return Imm.isPosZero();
13889   }
13890 }
13891 
13892 // For vector shift operation op, fold
13893 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
13894 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
13895                                   SelectionDAG &DAG) {
13896   SDValue N0 = N->getOperand(0);
13897   SDValue N1 = N->getOperand(1);
13898   EVT VT = N0.getValueType();
13899   unsigned OpSizeInBits = VT.getScalarSizeInBits();
13900   unsigned Opcode = N->getOpcode();
13901   unsigned TargetOpcode;
13902 
13903   switch (Opcode) {
13904   default:
13905     llvm_unreachable("Unexpected shift operation");
13906   case ISD::SHL:
13907     TargetOpcode = PPCISD::SHL;
13908     break;
13909   case ISD::SRL:
13910     TargetOpcode = PPCISD::SRL;
13911     break;
13912   case ISD::SRA:
13913     TargetOpcode = PPCISD::SRA;
13914     break;
13915   }
13916 
13917   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
13918       N1->getOpcode() == ISD::AND)
13919     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
13920       if (Mask->getZExtValue() == OpSizeInBits - 1)
13921         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
13922 
13923   return SDValue();
13924 }
13925 
13926 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
13927   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
13928     return Value;
13929 
13930   return SDValue();
13931 }
13932 
13933 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
13934   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
13935     return Value;
13936 
13937   return SDValue();
13938 }
13939 
13940 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
13941   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
13942     return Value;
13943 
13944   return SDValue();
13945 }
13946 
13947 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
13948   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
13949   if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64())
13950     return false;
13951 
13952   // If not a tail call then no need to proceed.
13953   if (!CI->isTailCall())
13954     return false;
13955 
13956   // If tail calls are disabled for the caller then we are done.
13957   const Function *Caller = CI->getParent()->getParent();
13958   auto Attr = Caller->getFnAttribute("disable-tail-calls");
13959   if (Attr.getValueAsString() == "true")
13960     return false;
13961 
13962   // If sibling calls have been disabled and tail-calls aren't guaranteed
13963   // there is no reason to duplicate.
13964   auto &TM = getTargetMachine();
13965   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
13966     return false;
13967 
13968   // Can't tail call a function called indirectly, or if it has variadic args.
13969   const Function *Callee = CI->getCalledFunction();
13970   if (!Callee || Callee->isVarArg())
13971     return false;
13972 
13973   // Make sure the callee and caller calling conventions are eligible for tco.
13974   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
13975                                            CI->getCallingConv()))
13976       return false;
13977 
13978   // If the function is local then we have a good chance at tail-calling it
13979   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
13980 }
13981 
13982 bool PPCTargetLowering::
13983 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
13984   const Value *Mask = AndI.getOperand(1);
13985   // If the mask is suitable for andi. or andis. we should sink the and.
13986   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
13987     // Can't handle constants wider than 64-bits.
13988     if (CI->getBitWidth() > 64)
13989       return false;
13990     int64_t ConstVal = CI->getZExtValue();
13991     return isUInt<16>(ConstVal) ||
13992       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
13993   }
13994 
13995   // For non-constant masks, we can always use the record-form and.
13996   return true;
13997 }
13998