1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCISelLowering.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCCCState.h"
18 #include "PPCCallingConv.h"
19 #include "PPCFrameLowering.h"
20 #include "PPCInstrInfo.h"
21 #include "PPCMachineFunctionInfo.h"
22 #include "PPCPerfectShuffle.h"
23 #include "PPCRegisterInfo.h"
24 #include "PPCSubtarget.h"
25 #include "PPCTargetMachine.h"
26 #include "llvm/ADT/APFloat.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/None.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/ADT/StringSwitch.h"
38 #include "llvm/CodeGen/CallingConvLower.h"
39 #include "llvm/CodeGen/ISDOpcodes.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineLoopInfo.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/MachineValueType.h"
51 #include "llvm/CodeGen/RuntimeLibcalls.h"
52 #include "llvm/CodeGen/SelectionDAG.h"
53 #include "llvm/CodeGen/SelectionDAGNodes.h"
54 #include "llvm/CodeGen/TargetInstrInfo.h"
55 #include "llvm/CodeGen/TargetLowering.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallSite.h"
59 #include "llvm/IR/CallingConv.h"
60 #include "llvm/IR/Constant.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/DataLayout.h"
63 #include "llvm/IR/DebugLoc.h"
64 #include "llvm/IR/DerivedTypes.h"
65 #include "llvm/IR/Function.h"
66 #include "llvm/IR/GlobalValue.h"
67 #include "llvm/IR/IRBuilder.h"
68 #include "llvm/IR/Instructions.h"
69 #include "llvm/IR/Intrinsics.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCExpr.h"
75 #include "llvm/MC/MCRegisterInfo.h"
76 #include "llvm/Support/AtomicOrdering.h"
77 #include "llvm/Support/BranchProbability.h"
78 #include "llvm/Support/Casting.h"
79 #include "llvm/Support/CodeGen.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/Compiler.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/Format.h"
85 #include "llvm/Support/KnownBits.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Target/TargetMachine.h"
89 #include "llvm/Target/TargetOptions.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstdint>
93 #include <iterator>
94 #include <list>
95 #include <utility>
96 #include <vector>
97 
98 using namespace llvm;
99 
100 #define DEBUG_TYPE "ppc-lowering"
101 
102 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
103 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
104 
105 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
106 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
107 
108 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
109 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
110 
111 static cl::opt<bool> DisableSCO("disable-ppc-sco",
112 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
113 
114 STATISTIC(NumTailCalls, "Number of tail calls");
115 STATISTIC(NumSiblingCalls, "Number of sibling calls");
116 
117 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
118 
119 // FIXME: Remove this once the bug has been fixed!
120 extern cl::opt<bool> ANDIGlueBug;
121 
122 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
123                                      const PPCSubtarget &STI)
124     : TargetLowering(TM), Subtarget(STI) {
125   // Use _setjmp/_longjmp instead of setjmp/longjmp.
126   setUseUnderscoreSetJmp(true);
127   setUseUnderscoreLongJmp(true);
128 
129   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
130   // arguments are at least 4/8 bytes aligned.
131   bool isPPC64 = Subtarget.isPPC64();
132   setMinStackArgumentAlignment(isPPC64 ? 8:4);
133 
134   // Set up the register classes.
135   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
136   if (!useSoftFloat()) {
137     addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
138     addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
139   }
140 
141   // Match BITREVERSE to customized fast code sequence in the td file.
142   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
143   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
144 
145   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
146   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
147 
148   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
149   for (MVT VT : MVT::integer_valuetypes()) {
150     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
151     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
152   }
153 
154   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
155 
156   // PowerPC has pre-inc load and store's.
157   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
158   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
159   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
160   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
161   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
162   setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
163   setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
164   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
165   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
166   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
167   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
168   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
169   setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
170   setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
171 
172   if (Subtarget.useCRBits()) {
173     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
174 
175     if (isPPC64 || Subtarget.hasFPCVT()) {
176       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
177       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
178                          isPPC64 ? MVT::i64 : MVT::i32);
179       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
180       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
181                         isPPC64 ? MVT::i64 : MVT::i32);
182     } else {
183       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
184       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
185     }
186 
187     // PowerPC does not support direct load/store of condition registers.
188     setOperationAction(ISD::LOAD, MVT::i1, Custom);
189     setOperationAction(ISD::STORE, MVT::i1, Custom);
190 
191     // FIXME: Remove this once the ANDI glue bug is fixed:
192     if (ANDIGlueBug)
193       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
194 
195     for (MVT VT : MVT::integer_valuetypes()) {
196       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
197       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
198       setTruncStoreAction(VT, MVT::i1, Expand);
199     }
200 
201     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
202   }
203 
204   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
205   // PPC (the libcall is not available).
206   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
207   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
208 
209   // We do not currently implement these libm ops for PowerPC.
210   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
211   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
212   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
213   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
214   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
215   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
216 
217   // PowerPC has no SREM/UREM instructions unless we are on P9
218   // On P9 we may use a hardware instruction to compute the remainder.
219   // The instructions are not legalized directly because in the cases where the
220   // result of both the remainder and the division is required it is more
221   // efficient to compute the remainder from the result of the division rather
222   // than use the remainder instruction.
223   if (Subtarget.isISA3_0()) {
224     setOperationAction(ISD::SREM, MVT::i32, Custom);
225     setOperationAction(ISD::UREM, MVT::i32, Custom);
226     setOperationAction(ISD::SREM, MVT::i64, Custom);
227     setOperationAction(ISD::UREM, MVT::i64, Custom);
228   } else {
229     setOperationAction(ISD::SREM, MVT::i32, Expand);
230     setOperationAction(ISD::UREM, MVT::i32, Expand);
231     setOperationAction(ISD::SREM, MVT::i64, Expand);
232     setOperationAction(ISD::UREM, MVT::i64, Expand);
233   }
234 
235   if (Subtarget.hasP9Vector()) {
236     setOperationAction(ISD::ABS, MVT::v4i32, Legal);
237     setOperationAction(ISD::ABS, MVT::v8i16, Legal);
238     setOperationAction(ISD::ABS, MVT::v16i8, Legal);
239   }
240 
241   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
242   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
243   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
244   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
245   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
246   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
247   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
248   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
249   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
250 
251   // We don't support sin/cos/sqrt/fmod/pow
252   setOperationAction(ISD::FSIN , MVT::f64, Expand);
253   setOperationAction(ISD::FCOS , MVT::f64, Expand);
254   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
255   setOperationAction(ISD::FREM , MVT::f64, Expand);
256   setOperationAction(ISD::FPOW , MVT::f64, Expand);
257   setOperationAction(ISD::FMA  , MVT::f64, Legal);
258   setOperationAction(ISD::FSIN , MVT::f32, Expand);
259   setOperationAction(ISD::FCOS , MVT::f32, Expand);
260   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
261   setOperationAction(ISD::FREM , MVT::f32, Expand);
262   setOperationAction(ISD::FPOW , MVT::f32, Expand);
263   setOperationAction(ISD::FMA  , MVT::f32, Legal);
264 
265   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
266 
267   // If we're enabling GP optimizations, use hardware square root
268   if (!Subtarget.hasFSQRT() &&
269       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
270         Subtarget.hasFRE()))
271     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
272 
273   if (!Subtarget.hasFSQRT() &&
274       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
275         Subtarget.hasFRES()))
276     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
277 
278   if (Subtarget.hasFCPSGN()) {
279     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
280     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
281   } else {
282     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
283     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
284   }
285 
286   if (Subtarget.hasFPRND()) {
287     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
288     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
289     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
290     setOperationAction(ISD::FROUND, MVT::f64, Legal);
291 
292     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
293     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
294     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
295     setOperationAction(ISD::FROUND, MVT::f32, Legal);
296   }
297 
298   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
299   // to speed up scalar BSWAP64.
300   // CTPOP or CTTZ were introduced in P8/P9 respectivelly
301   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
302   if (Subtarget.isISA3_0()) {
303     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
304     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
305     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
306   } else {
307     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
308     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
309     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
310   }
311 
312   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
313     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
314     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
315   } else {
316     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
317     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
318   }
319 
320   // PowerPC does not have ROTR
321   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
322   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
323 
324   if (!Subtarget.useCRBits()) {
325     // PowerPC does not have Select
326     setOperationAction(ISD::SELECT, MVT::i32, Expand);
327     setOperationAction(ISD::SELECT, MVT::i64, Expand);
328     setOperationAction(ISD::SELECT, MVT::f32, Expand);
329     setOperationAction(ISD::SELECT, MVT::f64, Expand);
330   }
331 
332   // PowerPC wants to turn select_cc of FP into fsel when possible.
333   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
334   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
335 
336   // PowerPC wants to optimize integer setcc a bit
337   if (!Subtarget.useCRBits())
338     setOperationAction(ISD::SETCC, MVT::i32, Custom);
339 
340   // PowerPC does not have BRCOND which requires SetCC
341   if (!Subtarget.useCRBits())
342     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
343 
344   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
345 
346   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
347   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
348 
349   // PowerPC does not have [U|S]INT_TO_FP
350   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
351   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
352 
353   if (Subtarget.hasDirectMove() && isPPC64) {
354     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
355     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
356     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
357     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
358   } else {
359     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
360     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
361     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
362     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
363   }
364 
365   // We cannot sextinreg(i1).  Expand to shifts.
366   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
367 
368   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
369   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
370   // support continuation, user-level threading, and etc.. As a result, no
371   // other SjLj exception interfaces are implemented and please don't build
372   // your own exception handling based on them.
373   // LLVM/Clang supports zero-cost DWARF exception handling.
374   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
375   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
376 
377   // We want to legalize GlobalAddress and ConstantPool nodes into the
378   // appropriate instructions to materialize the address.
379   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
380   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
381   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
382   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
383   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
384   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
385   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
386   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
387   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
388   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
389 
390   // TRAP is legal.
391   setOperationAction(ISD::TRAP, MVT::Other, Legal);
392 
393   // TRAMPOLINE is custom lowered.
394   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
395   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
396 
397   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
398   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
399 
400   if (Subtarget.isSVR4ABI()) {
401     if (isPPC64) {
402       // VAARG always uses double-word chunks, so promote anything smaller.
403       setOperationAction(ISD::VAARG, MVT::i1, Promote);
404       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
405       setOperationAction(ISD::VAARG, MVT::i8, Promote);
406       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
407       setOperationAction(ISD::VAARG, MVT::i16, Promote);
408       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
409       setOperationAction(ISD::VAARG, MVT::i32, Promote);
410       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
411       setOperationAction(ISD::VAARG, MVT::Other, Expand);
412     } else {
413       // VAARG is custom lowered with the 32-bit SVR4 ABI.
414       setOperationAction(ISD::VAARG, MVT::Other, Custom);
415       setOperationAction(ISD::VAARG, MVT::i64, Custom);
416     }
417   } else
418     setOperationAction(ISD::VAARG, MVT::Other, Expand);
419 
420   if (Subtarget.isSVR4ABI() && !isPPC64)
421     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
422     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
423   else
424     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
425 
426   // Use the default implementation.
427   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
428   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
429   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
430   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
431   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
432   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
433   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
434   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
435   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
436 
437   // We want to custom lower some of our intrinsics.
438   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
439 
440   // To handle counter-based loop conditions.
441   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
442 
443   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
444   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
445   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
446   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
447 
448   // Comparisons that require checking two conditions.
449   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
450   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
451   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
452   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
453   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
454   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
455   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
456   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
457   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
458   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
459   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
460   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
461 
462   if (Subtarget.has64BitSupport()) {
463     // They also have instructions for converting between i64 and fp.
464     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
465     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
466     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
467     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
468     // This is just the low 32 bits of a (signed) fp->i64 conversion.
469     // We cannot do this with Promote because i64 is not a legal type.
470     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
471 
472     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
473       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
474   } else {
475     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
476     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
477   }
478 
479   // With the instructions enabled under FPCVT, we can do everything.
480   if (Subtarget.hasFPCVT()) {
481     if (Subtarget.has64BitSupport()) {
482       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
483       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
484       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
485       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
486     }
487 
488     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
489     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
490     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
491     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
492   }
493 
494   if (Subtarget.use64BitRegs()) {
495     // 64-bit PowerPC implementations can support i64 types directly
496     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
497     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
498     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
499     // 64-bit PowerPC wants to expand i128 shifts itself.
500     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
501     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
502     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
503   } else {
504     // 32-bit PowerPC wants to expand i64 shifts itself.
505     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
506     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
507     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
508   }
509 
510   if (Subtarget.hasAltivec()) {
511     // First set operation action for all vector types to expand. Then we
512     // will selectively turn on ones that can be effectively codegen'd.
513     for (MVT VT : MVT::vector_valuetypes()) {
514       // add/sub are legal for all supported vector VT's.
515       setOperationAction(ISD::ADD, VT, Legal);
516       setOperationAction(ISD::SUB, VT, Legal);
517 
518       // Vector instructions introduced in P8
519       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
520         setOperationAction(ISD::CTPOP, VT, Legal);
521         setOperationAction(ISD::CTLZ, VT, Legal);
522       }
523       else {
524         setOperationAction(ISD::CTPOP, VT, Expand);
525         setOperationAction(ISD::CTLZ, VT, Expand);
526       }
527 
528       // Vector instructions introduced in P9
529       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
530         setOperationAction(ISD::CTTZ, VT, Legal);
531       else
532         setOperationAction(ISD::CTTZ, VT, Expand);
533 
534       // We promote all shuffles to v16i8.
535       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
536       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
537 
538       // We promote all non-typed operations to v4i32.
539       setOperationAction(ISD::AND   , VT, Promote);
540       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
541       setOperationAction(ISD::OR    , VT, Promote);
542       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
543       setOperationAction(ISD::XOR   , VT, Promote);
544       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
545       setOperationAction(ISD::LOAD  , VT, Promote);
546       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
547       setOperationAction(ISD::SELECT, VT, Promote);
548       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
549       setOperationAction(ISD::SELECT_CC, VT, Promote);
550       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
551       setOperationAction(ISD::STORE, VT, Promote);
552       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
553 
554       // No other operations are legal.
555       setOperationAction(ISD::MUL , VT, Expand);
556       setOperationAction(ISD::SDIV, VT, Expand);
557       setOperationAction(ISD::SREM, VT, Expand);
558       setOperationAction(ISD::UDIV, VT, Expand);
559       setOperationAction(ISD::UREM, VT, Expand);
560       setOperationAction(ISD::FDIV, VT, Expand);
561       setOperationAction(ISD::FREM, VT, Expand);
562       setOperationAction(ISD::FNEG, VT, Expand);
563       setOperationAction(ISD::FSQRT, VT, Expand);
564       setOperationAction(ISD::FLOG, VT, Expand);
565       setOperationAction(ISD::FLOG10, VT, Expand);
566       setOperationAction(ISD::FLOG2, VT, Expand);
567       setOperationAction(ISD::FEXP, VT, Expand);
568       setOperationAction(ISD::FEXP2, VT, Expand);
569       setOperationAction(ISD::FSIN, VT, Expand);
570       setOperationAction(ISD::FCOS, VT, Expand);
571       setOperationAction(ISD::FABS, VT, Expand);
572       setOperationAction(ISD::FFLOOR, VT, Expand);
573       setOperationAction(ISD::FCEIL,  VT, Expand);
574       setOperationAction(ISD::FTRUNC, VT, Expand);
575       setOperationAction(ISD::FRINT,  VT, Expand);
576       setOperationAction(ISD::FNEARBYINT, VT, Expand);
577       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
578       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
579       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
580       setOperationAction(ISD::MULHU, VT, Expand);
581       setOperationAction(ISD::MULHS, VT, Expand);
582       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
583       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
584       setOperationAction(ISD::UDIVREM, VT, Expand);
585       setOperationAction(ISD::SDIVREM, VT, Expand);
586       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
587       setOperationAction(ISD::FPOW, VT, Expand);
588       setOperationAction(ISD::BSWAP, VT, Expand);
589       setOperationAction(ISD::VSELECT, VT, Expand);
590       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
591       setOperationAction(ISD::ROTL, VT, Expand);
592       setOperationAction(ISD::ROTR, VT, Expand);
593 
594       for (MVT InnerVT : MVT::vector_valuetypes()) {
595         setTruncStoreAction(VT, InnerVT, Expand);
596         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
597         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
598         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
599       }
600     }
601 
602     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
603     // with merges, splats, etc.
604     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
605 
606     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
607     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
608     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
609     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
610     setOperationAction(ISD::SELECT, MVT::v4i32,
611                        Subtarget.useCRBits() ? Legal : Expand);
612     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
613     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
614     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
615     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
616     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
617     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
618     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
619     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
620     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
621 
622     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
623     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
624     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
625     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
626 
627     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
628     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
629 
630     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
631       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
632       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
633     }
634 
635     if (Subtarget.hasP8Altivec())
636       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
637     else
638       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
639 
640     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
641     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
642 
643     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
644     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
645 
646     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
647     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
648     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
649     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
650 
651     // Altivec does not contain unordered floating-point compare instructions
652     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
653     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
654     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
655     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
656 
657     if (Subtarget.hasVSX()) {
658       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
659       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
660       if (Subtarget.hasP8Vector()) {
661         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
662         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
663       }
664       if (Subtarget.hasDirectMove() && isPPC64) {
665         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
666         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
667         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
668         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
669         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
670         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
671         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
672         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
673       }
674       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
675 
676       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
677       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
678       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
679       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
680       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
681 
682       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
683 
684       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
685       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
686 
687       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
688       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
689 
690       setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
691       setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
692       setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
693       setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
694       setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
695 
696       // Share the Altivec comparison restrictions.
697       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
698       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
699       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
700       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
701 
702       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
703       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
704 
705       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
706 
707       if (Subtarget.hasP8Vector())
708         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
709 
710       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
711 
712       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
713       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
714       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
715 
716       if (Subtarget.hasP8Altivec()) {
717         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
718         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
719         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
720 
721         // 128 bit shifts can be accomplished via 3 instructions for SHL and
722         // SRL, but not for SRA because of the instructions available:
723         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
724         // doing
725         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
726         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
727         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
728 
729         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
730       }
731       else {
732         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
733         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
734         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
735 
736         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
737 
738         // VSX v2i64 only supports non-arithmetic operations.
739         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
740         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
741       }
742 
743       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
744       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
745       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
746       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
747 
748       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
749 
750       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
751       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
752       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
753       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
754 
755       // Vector operation legalization checks the result type of
756       // SIGN_EXTEND_INREG, overall legalization checks the inner type.
757       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
758       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
759       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
760       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
761 
762       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
763       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
764       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
765       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
766 
767       if (Subtarget.hasDirectMove())
768         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
769       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
770 
771       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
772     }
773 
774     if (Subtarget.hasP8Altivec()) {
775       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
776       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
777     }
778 
779     if (Subtarget.hasP9Vector()) {
780       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
781       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
782 
783       // 128 bit shifts can be accomplished via 3 instructions for SHL and
784       // SRL, but not for SRA because of the instructions available:
785       // VS{RL} and VS{RL}O.
786       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
787       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
788       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
789 
790       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
791       setOperationAction(ISD::FADD, MVT::f128, Legal);
792       setOperationAction(ISD::FSUB, MVT::f128, Legal);
793       setOperationAction(ISD::FDIV, MVT::f128, Legal);
794       setOperationAction(ISD::FMUL, MVT::f128, Legal);
795 
796     }
797 
798     if (Subtarget.hasP9Altivec()) {
799       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
800       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
801     }
802   }
803 
804   if (Subtarget.hasQPX()) {
805     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
806     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
807     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
808     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
809 
810     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
811     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
812 
813     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
814     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
815 
816     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
817     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
818 
819     if (!Subtarget.useCRBits())
820       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
821     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
822 
823     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
824     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
825     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
826     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
827     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
828     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
829     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
830 
831     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
832     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
833 
834     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
835     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
836     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
837 
838     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
839     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
840     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
841     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
842     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
843     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
844     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
845     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
846     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
847     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
848 
849     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
850     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
851 
852     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
853     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
854 
855     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
856 
857     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
858     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
859     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
860     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
861 
862     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
863     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
864 
865     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
866     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
867 
868     if (!Subtarget.useCRBits())
869       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
870     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
871 
872     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
873     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
874     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
875     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
876     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
877     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
878     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
879 
880     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
881     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
882 
883     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
884     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
885     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
886     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
887     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
888     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
889     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
890     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
891     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
892     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
893 
894     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
895     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
896 
897     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
898     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
899 
900     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
901 
902     setOperationAction(ISD::AND , MVT::v4i1, Legal);
903     setOperationAction(ISD::OR , MVT::v4i1, Legal);
904     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
905 
906     if (!Subtarget.useCRBits())
907       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
908     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
909 
910     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
911     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
912 
913     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
914     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
915     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
916     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
917     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
918     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
919     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
920 
921     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
922     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
923 
924     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
925 
926     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
927     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
928     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
929     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
930 
931     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
932     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
933     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
934     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
935 
936     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
937     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
938 
939     // These need to set FE_INEXACT, and so cannot be vectorized here.
940     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
941     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
942 
943     if (TM.Options.UnsafeFPMath) {
944       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
945       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
946 
947       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
948       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
949     } else {
950       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
951       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
952 
953       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
954       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
955     }
956   }
957 
958   if (Subtarget.has64BitSupport())
959     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
960 
961   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
962 
963   if (!isPPC64) {
964     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
965     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
966   }
967 
968   setBooleanContents(ZeroOrOneBooleanContent);
969 
970   if (Subtarget.hasAltivec()) {
971     // Altivec instructions set fields to all zeros or all ones.
972     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
973   }
974 
975   if (!isPPC64) {
976     // These libcalls are not available in 32-bit.
977     setLibcallName(RTLIB::SHL_I128, nullptr);
978     setLibcallName(RTLIB::SRL_I128, nullptr);
979     setLibcallName(RTLIB::SRA_I128, nullptr);
980   }
981 
982   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
983 
984   // We have target-specific dag combine patterns for the following nodes:
985   setTargetDAGCombine(ISD::SHL);
986   setTargetDAGCombine(ISD::SRA);
987   setTargetDAGCombine(ISD::SRL);
988   setTargetDAGCombine(ISD::SINT_TO_FP);
989   setTargetDAGCombine(ISD::BUILD_VECTOR);
990   if (Subtarget.hasFPCVT())
991     setTargetDAGCombine(ISD::UINT_TO_FP);
992   setTargetDAGCombine(ISD::LOAD);
993   setTargetDAGCombine(ISD::STORE);
994   setTargetDAGCombine(ISD::BR_CC);
995   if (Subtarget.useCRBits())
996     setTargetDAGCombine(ISD::BRCOND);
997   setTargetDAGCombine(ISD::BSWAP);
998   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
999   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1000   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1001 
1002   setTargetDAGCombine(ISD::SIGN_EXTEND);
1003   setTargetDAGCombine(ISD::ZERO_EXTEND);
1004   setTargetDAGCombine(ISD::ANY_EXTEND);
1005 
1006   if (Subtarget.useCRBits()) {
1007     setTargetDAGCombine(ISD::TRUNCATE);
1008     setTargetDAGCombine(ISD::SETCC);
1009     setTargetDAGCombine(ISD::SELECT_CC);
1010   }
1011 
1012   // Use reciprocal estimates.
1013   if (TM.Options.UnsafeFPMath) {
1014     setTargetDAGCombine(ISD::FDIV);
1015     setTargetDAGCombine(ISD::FSQRT);
1016   }
1017 
1018   // Darwin long double math library functions have $LDBL128 appended.
1019   if (Subtarget.isDarwin()) {
1020     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
1021     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
1022     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
1023     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
1024     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
1025     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
1026     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
1027     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
1028     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
1029     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
1030   }
1031 
1032   // With 32 condition bits, we don't need to sink (and duplicate) compares
1033   // aggressively in CodeGenPrep.
1034   if (Subtarget.useCRBits()) {
1035     setHasMultipleConditionRegisters();
1036     setJumpIsExpensive();
1037   }
1038 
1039   setMinFunctionAlignment(2);
1040   if (Subtarget.isDarwin())
1041     setPrefFunctionAlignment(4);
1042 
1043   switch (Subtarget.getDarwinDirective()) {
1044   default: break;
1045   case PPC::DIR_970:
1046   case PPC::DIR_A2:
1047   case PPC::DIR_E500mc:
1048   case PPC::DIR_E5500:
1049   case PPC::DIR_PWR4:
1050   case PPC::DIR_PWR5:
1051   case PPC::DIR_PWR5X:
1052   case PPC::DIR_PWR6:
1053   case PPC::DIR_PWR6X:
1054   case PPC::DIR_PWR7:
1055   case PPC::DIR_PWR8:
1056   case PPC::DIR_PWR9:
1057     setPrefFunctionAlignment(4);
1058     setPrefLoopAlignment(4);
1059     break;
1060   }
1061 
1062   if (Subtarget.enableMachineScheduler())
1063     setSchedulingPreference(Sched::Source);
1064   else
1065     setSchedulingPreference(Sched::Hybrid);
1066 
1067   computeRegisterProperties(STI.getRegisterInfo());
1068 
1069   // The Freescale cores do better with aggressive inlining of memcpy and
1070   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1071   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
1072       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
1073     MaxStoresPerMemset = 32;
1074     MaxStoresPerMemsetOptSize = 16;
1075     MaxStoresPerMemcpy = 32;
1076     MaxStoresPerMemcpyOptSize = 8;
1077     MaxStoresPerMemmove = 32;
1078     MaxStoresPerMemmoveOptSize = 8;
1079   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
1080     // The A2 also benefits from (very) aggressive inlining of memcpy and
1081     // friends. The overhead of a the function call, even when warm, can be
1082     // over one hundred cycles.
1083     MaxStoresPerMemset = 128;
1084     MaxStoresPerMemcpy = 128;
1085     MaxStoresPerMemmove = 128;
1086     MaxLoadsPerMemcmp = 128;
1087   } else {
1088     MaxLoadsPerMemcmp = 8;
1089     MaxLoadsPerMemcmpOptSize = 4;
1090   }
1091 }
1092 
1093 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1094 /// the desired ByVal argument alignment.
1095 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1096                              unsigned MaxMaxAlign) {
1097   if (MaxAlign == MaxMaxAlign)
1098     return;
1099   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1100     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
1101       MaxAlign = 32;
1102     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
1103       MaxAlign = 16;
1104   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1105     unsigned EltAlign = 0;
1106     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1107     if (EltAlign > MaxAlign)
1108       MaxAlign = EltAlign;
1109   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1110     for (auto *EltTy : STy->elements()) {
1111       unsigned EltAlign = 0;
1112       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1113       if (EltAlign > MaxAlign)
1114         MaxAlign = EltAlign;
1115       if (MaxAlign == MaxMaxAlign)
1116         break;
1117     }
1118   }
1119 }
1120 
1121 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1122 /// function arguments in the caller parameter area.
1123 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1124                                                   const DataLayout &DL) const {
1125   // Darwin passes everything on 4 byte boundary.
1126   if (Subtarget.isDarwin())
1127     return 4;
1128 
1129   // 16byte and wider vectors are passed on 16byte boundary.
1130   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1131   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1132   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1133     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1134   return Align;
1135 }
1136 
1137 bool PPCTargetLowering::useSoftFloat() const {
1138   return Subtarget.useSoftFloat();
1139 }
1140 
1141 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1142   switch ((PPCISD::NodeType)Opcode) {
1143   case PPCISD::FIRST_NUMBER:    break;
1144   case PPCISD::FSEL:            return "PPCISD::FSEL";
1145   case PPCISD::FCFID:           return "PPCISD::FCFID";
1146   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1147   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1148   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1149   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1150   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1151   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1152   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1153   case PPCISD::FRE:             return "PPCISD::FRE";
1154   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1155   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1156   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1157   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1158   case PPCISD::VPERM:           return "PPCISD::VPERM";
1159   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1160   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1161   case PPCISD::XXREVERSE:       return "PPCISD::XXREVERSE";
1162   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1163   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1164   case PPCISD::CMPB:            return "PPCISD::CMPB";
1165   case PPCISD::Hi:              return "PPCISD::Hi";
1166   case PPCISD::Lo:              return "PPCISD::Lo";
1167   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1168   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1169   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1170   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1171   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1172   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1173   case PPCISD::SRL:             return "PPCISD::SRL";
1174   case PPCISD::SRA:             return "PPCISD::SRA";
1175   case PPCISD::SHL:             return "PPCISD::SHL";
1176   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1177   case PPCISD::CALL:            return "PPCISD::CALL";
1178   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1179   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1180   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1181   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1182   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1183   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1184   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1185   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1186   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1187   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1188   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1189   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1190   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1191   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1192   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
1193   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
1194   case PPCISD::VCMP:            return "PPCISD::VCMP";
1195   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1196   case PPCISD::LBRX:            return "PPCISD::LBRX";
1197   case PPCISD::STBRX:           return "PPCISD::STBRX";
1198   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1199   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1200   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1201   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1202   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1203   case PPCISD::SExtVElems:      return "PPCISD::SExtVElems";
1204   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1205   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1206   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1207   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1208   case PPCISD::BDZ:             return "PPCISD::BDZ";
1209   case PPCISD::MFFS:            return "PPCISD::MFFS";
1210   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1211   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1212   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1213   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1214   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1215   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1216   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1217   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1218   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1219   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1220   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1221   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1222   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1223   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1224   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1225   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1226   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1227   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1228   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1229   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1230   case PPCISD::SC:              return "PPCISD::SC";
1231   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1232   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1233   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1234   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1235   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1236   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1237   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1238   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1239   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1240   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1241   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1242   }
1243   return nullptr;
1244 }
1245 
1246 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1247                                           EVT VT) const {
1248   if (!VT.isVector())
1249     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1250 
1251   if (Subtarget.hasQPX())
1252     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1253 
1254   return VT.changeVectorElementTypeToInteger();
1255 }
1256 
1257 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1258   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1259   return true;
1260 }
1261 
1262 //===----------------------------------------------------------------------===//
1263 // Node matching predicates, for use by the tblgen matching code.
1264 //===----------------------------------------------------------------------===//
1265 
1266 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1267 static bool isFloatingPointZero(SDValue Op) {
1268   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1269     return CFP->getValueAPF().isZero();
1270   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1271     // Maybe this has already been legalized into the constant pool?
1272     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1273       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1274         return CFP->getValueAPF().isZero();
1275   }
1276   return false;
1277 }
1278 
1279 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1280 /// true if Op is undef or if it matches the specified value.
1281 static bool isConstantOrUndef(int Op, int Val) {
1282   return Op < 0 || Op == Val;
1283 }
1284 
1285 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1286 /// VPKUHUM instruction.
1287 /// The ShuffleKind distinguishes between big-endian operations with
1288 /// two different inputs (0), either-endian operations with two identical
1289 /// inputs (1), and little-endian operations with two different inputs (2).
1290 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1291 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1292                                SelectionDAG &DAG) {
1293   bool IsLE = DAG.getDataLayout().isLittleEndian();
1294   if (ShuffleKind == 0) {
1295     if (IsLE)
1296       return false;
1297     for (unsigned i = 0; i != 16; ++i)
1298       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1299         return false;
1300   } else if (ShuffleKind == 2) {
1301     if (!IsLE)
1302       return false;
1303     for (unsigned i = 0; i != 16; ++i)
1304       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1305         return false;
1306   } else if (ShuffleKind == 1) {
1307     unsigned j = IsLE ? 0 : 1;
1308     for (unsigned i = 0; i != 8; ++i)
1309       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1310           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1311         return false;
1312   }
1313   return true;
1314 }
1315 
1316 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1317 /// VPKUWUM instruction.
1318 /// The ShuffleKind distinguishes between big-endian operations with
1319 /// two different inputs (0), either-endian operations with two identical
1320 /// inputs (1), and little-endian operations with two different inputs (2).
1321 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1322 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1323                                SelectionDAG &DAG) {
1324   bool IsLE = DAG.getDataLayout().isLittleEndian();
1325   if (ShuffleKind == 0) {
1326     if (IsLE)
1327       return false;
1328     for (unsigned i = 0; i != 16; i += 2)
1329       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1330           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1331         return false;
1332   } else if (ShuffleKind == 2) {
1333     if (!IsLE)
1334       return false;
1335     for (unsigned i = 0; i != 16; i += 2)
1336       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1337           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1338         return false;
1339   } else if (ShuffleKind == 1) {
1340     unsigned j = IsLE ? 0 : 2;
1341     for (unsigned i = 0; i != 8; i += 2)
1342       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1343           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1344           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1345           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1346         return false;
1347   }
1348   return true;
1349 }
1350 
1351 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1352 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1353 /// current subtarget.
1354 ///
1355 /// The ShuffleKind distinguishes between big-endian operations with
1356 /// two different inputs (0), either-endian operations with two identical
1357 /// inputs (1), and little-endian operations with two different inputs (2).
1358 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1359 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1360                                SelectionDAG &DAG) {
1361   const PPCSubtarget& Subtarget =
1362     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1363   if (!Subtarget.hasP8Vector())
1364     return false;
1365 
1366   bool IsLE = DAG.getDataLayout().isLittleEndian();
1367   if (ShuffleKind == 0) {
1368     if (IsLE)
1369       return false;
1370     for (unsigned i = 0; i != 16; i += 4)
1371       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1372           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1373           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1374           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1375         return false;
1376   } else if (ShuffleKind == 2) {
1377     if (!IsLE)
1378       return false;
1379     for (unsigned i = 0; i != 16; i += 4)
1380       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1381           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1382           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1383           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1384         return false;
1385   } else if (ShuffleKind == 1) {
1386     unsigned j = IsLE ? 0 : 4;
1387     for (unsigned i = 0; i != 8; i += 4)
1388       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1389           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1390           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1391           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1392           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1393           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1394           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1395           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1396         return false;
1397   }
1398   return true;
1399 }
1400 
1401 /// isVMerge - Common function, used to match vmrg* shuffles.
1402 ///
1403 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1404                      unsigned LHSStart, unsigned RHSStart) {
1405   if (N->getValueType(0) != MVT::v16i8)
1406     return false;
1407   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1408          "Unsupported merge size!");
1409 
1410   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1411     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1412       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1413                              LHSStart+j+i*UnitSize) ||
1414           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1415                              RHSStart+j+i*UnitSize))
1416         return false;
1417     }
1418   return true;
1419 }
1420 
1421 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1422 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1423 /// The ShuffleKind distinguishes between big-endian merges with two
1424 /// different inputs (0), either-endian merges with two identical inputs (1),
1425 /// and little-endian merges with two different inputs (2).  For the latter,
1426 /// the input operands are swapped (see PPCInstrAltivec.td).
1427 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1428                              unsigned ShuffleKind, SelectionDAG &DAG) {
1429   if (DAG.getDataLayout().isLittleEndian()) {
1430     if (ShuffleKind == 1) // unary
1431       return isVMerge(N, UnitSize, 0, 0);
1432     else if (ShuffleKind == 2) // swapped
1433       return isVMerge(N, UnitSize, 0, 16);
1434     else
1435       return false;
1436   } else {
1437     if (ShuffleKind == 1) // unary
1438       return isVMerge(N, UnitSize, 8, 8);
1439     else if (ShuffleKind == 0) // normal
1440       return isVMerge(N, UnitSize, 8, 24);
1441     else
1442       return false;
1443   }
1444 }
1445 
1446 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1447 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1448 /// The ShuffleKind distinguishes between big-endian merges with two
1449 /// different inputs (0), either-endian merges with two identical inputs (1),
1450 /// and little-endian merges with two different inputs (2).  For the latter,
1451 /// the input operands are swapped (see PPCInstrAltivec.td).
1452 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1453                              unsigned ShuffleKind, SelectionDAG &DAG) {
1454   if (DAG.getDataLayout().isLittleEndian()) {
1455     if (ShuffleKind == 1) // unary
1456       return isVMerge(N, UnitSize, 8, 8);
1457     else if (ShuffleKind == 2) // swapped
1458       return isVMerge(N, UnitSize, 8, 24);
1459     else
1460       return false;
1461   } else {
1462     if (ShuffleKind == 1) // unary
1463       return isVMerge(N, UnitSize, 0, 0);
1464     else if (ShuffleKind == 0) // normal
1465       return isVMerge(N, UnitSize, 0, 16);
1466     else
1467       return false;
1468   }
1469 }
1470 
1471 /**
1472  * \brief Common function used to match vmrgew and vmrgow shuffles
1473  *
1474  * The indexOffset determines whether to look for even or odd words in
1475  * the shuffle mask. This is based on the of the endianness of the target
1476  * machine.
1477  *   - Little Endian:
1478  *     - Use offset of 0 to check for odd elements
1479  *     - Use offset of 4 to check for even elements
1480  *   - Big Endian:
1481  *     - Use offset of 0 to check for even elements
1482  *     - Use offset of 4 to check for odd elements
1483  * A detailed description of the vector element ordering for little endian and
1484  * big endian can be found at
1485  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1486  * Targeting your applications - what little endian and big endian IBM XL C/C++
1487  * compiler differences mean to you
1488  *
1489  * The mask to the shuffle vector instruction specifies the indices of the
1490  * elements from the two input vectors to place in the result. The elements are
1491  * numbered in array-access order, starting with the first vector. These vectors
1492  * are always of type v16i8, thus each vector will contain 16 elements of size
1493  * 8. More info on the shuffle vector can be found in the
1494  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1495  * Language Reference.
1496  *
1497  * The RHSStartValue indicates whether the same input vectors are used (unary)
1498  * or two different input vectors are used, based on the following:
1499  *   - If the instruction uses the same vector for both inputs, the range of the
1500  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1501  *     be 0.
1502  *   - If the instruction has two different vectors then the range of the
1503  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1504  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1505  *     to 31 specify elements in the second vector).
1506  *
1507  * \param[in] N The shuffle vector SD Node to analyze
1508  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1509  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1510  * vector to the shuffle_vector instruction
1511  * \return true iff this shuffle vector represents an even or odd word merge
1512  */
1513 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1514                      unsigned RHSStartValue) {
1515   if (N->getValueType(0) != MVT::v16i8)
1516     return false;
1517 
1518   for (unsigned i = 0; i < 2; ++i)
1519     for (unsigned j = 0; j < 4; ++j)
1520       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1521                              i*RHSStartValue+j+IndexOffset) ||
1522           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1523                              i*RHSStartValue+j+IndexOffset+8))
1524         return false;
1525   return true;
1526 }
1527 
1528 /**
1529  * \brief Determine if the specified shuffle mask is suitable for the vmrgew or
1530  * vmrgow instructions.
1531  *
1532  * \param[in] N The shuffle vector SD Node to analyze
1533  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1534  * \param[in] ShuffleKind Identify the type of merge:
1535  *   - 0 = big-endian merge with two different inputs;
1536  *   - 1 = either-endian merge with two identical inputs;
1537  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1538  *     little-endian merges).
1539  * \param[in] DAG The current SelectionDAG
1540  * \return true iff this shuffle mask
1541  */
1542 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1543                               unsigned ShuffleKind, SelectionDAG &DAG) {
1544   if (DAG.getDataLayout().isLittleEndian()) {
1545     unsigned indexOffset = CheckEven ? 4 : 0;
1546     if (ShuffleKind == 1) // Unary
1547       return isVMerge(N, indexOffset, 0);
1548     else if (ShuffleKind == 2) // swapped
1549       return isVMerge(N, indexOffset, 16);
1550     else
1551       return false;
1552   }
1553   else {
1554     unsigned indexOffset = CheckEven ? 0 : 4;
1555     if (ShuffleKind == 1) // Unary
1556       return isVMerge(N, indexOffset, 0);
1557     else if (ShuffleKind == 0) // Normal
1558       return isVMerge(N, indexOffset, 16);
1559     else
1560       return false;
1561   }
1562   return false;
1563 }
1564 
1565 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1566 /// amount, otherwise return -1.
1567 /// The ShuffleKind distinguishes between big-endian operations with two
1568 /// different inputs (0), either-endian operations with two identical inputs
1569 /// (1), and little-endian operations with two different inputs (2).  For the
1570 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1571 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1572                              SelectionDAG &DAG) {
1573   if (N->getValueType(0) != MVT::v16i8)
1574     return -1;
1575 
1576   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1577 
1578   // Find the first non-undef value in the shuffle mask.
1579   unsigned i;
1580   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1581     /*search*/;
1582 
1583   if (i == 16) return -1;  // all undef.
1584 
1585   // Otherwise, check to see if the rest of the elements are consecutively
1586   // numbered from this value.
1587   unsigned ShiftAmt = SVOp->getMaskElt(i);
1588   if (ShiftAmt < i) return -1;
1589 
1590   ShiftAmt -= i;
1591   bool isLE = DAG.getDataLayout().isLittleEndian();
1592 
1593   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1594     // Check the rest of the elements to see if they are consecutive.
1595     for (++i; i != 16; ++i)
1596       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1597         return -1;
1598   } else if (ShuffleKind == 1) {
1599     // Check the rest of the elements to see if they are consecutive.
1600     for (++i; i != 16; ++i)
1601       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1602         return -1;
1603   } else
1604     return -1;
1605 
1606   if (isLE)
1607     ShiftAmt = 16 - ShiftAmt;
1608 
1609   return ShiftAmt;
1610 }
1611 
1612 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1613 /// specifies a splat of a single element that is suitable for input to
1614 /// VSPLTB/VSPLTH/VSPLTW.
1615 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1616   assert(N->getValueType(0) == MVT::v16i8 &&
1617          (EltSize == 1 || EltSize == 2 || EltSize == 4));
1618 
1619   // The consecutive indices need to specify an element, not part of two
1620   // different elements.  So abandon ship early if this isn't the case.
1621   if (N->getMaskElt(0) % EltSize != 0)
1622     return false;
1623 
1624   // This is a splat operation if each element of the permute is the same, and
1625   // if the value doesn't reference the second vector.
1626   unsigned ElementBase = N->getMaskElt(0);
1627 
1628   // FIXME: Handle UNDEF elements too!
1629   if (ElementBase >= 16)
1630     return false;
1631 
1632   // Check that the indices are consecutive, in the case of a multi-byte element
1633   // splatted with a v16i8 mask.
1634   for (unsigned i = 1; i != EltSize; ++i)
1635     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1636       return false;
1637 
1638   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1639     if (N->getMaskElt(i) < 0) continue;
1640     for (unsigned j = 0; j != EltSize; ++j)
1641       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1642         return false;
1643   }
1644   return true;
1645 }
1646 
1647 /// Check that the mask is shuffling N byte elements. Within each N byte
1648 /// element of the mask, the indices could be either in increasing or
1649 /// decreasing order as long as they are consecutive.
1650 /// \param[in] N the shuffle vector SD Node to analyze
1651 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1652 /// Word/DoubleWord/QuadWord).
1653 /// \param[in] StepLen the delta indices number among the N byte element, if
1654 /// the mask is in increasing/decreasing order then it is 1/-1.
1655 /// \return true iff the mask is shuffling N byte elements.
1656 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1657                                    int StepLen) {
1658   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1659          "Unexpected element width.");
1660   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1661 
1662   unsigned NumOfElem = 16 / Width;
1663   unsigned MaskVal[16]; //  Width is never greater than 16
1664   for (unsigned i = 0; i < NumOfElem; ++i) {
1665     MaskVal[0] = N->getMaskElt(i * Width);
1666     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1667       return false;
1668     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1669       return false;
1670     }
1671 
1672     for (unsigned int j = 1; j < Width; ++j) {
1673       MaskVal[j] = N->getMaskElt(i * Width + j);
1674       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1675         return false;
1676       }
1677     }
1678   }
1679 
1680   return true;
1681 }
1682 
1683 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1684                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1685   if (!isNByteElemShuffleMask(N, 4, 1))
1686     return false;
1687 
1688   // Now we look at mask elements 0,4,8,12
1689   unsigned M0 = N->getMaskElt(0) / 4;
1690   unsigned M1 = N->getMaskElt(4) / 4;
1691   unsigned M2 = N->getMaskElt(8) / 4;
1692   unsigned M3 = N->getMaskElt(12) / 4;
1693   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1694   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1695 
1696   // Below, let H and L be arbitrary elements of the shuffle mask
1697   // where H is in the range [4,7] and L is in the range [0,3].
1698   // H, 1, 2, 3 or L, 5, 6, 7
1699   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1700       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1701     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1702     InsertAtByte = IsLE ? 12 : 0;
1703     Swap = M0 < 4;
1704     return true;
1705   }
1706   // 0, H, 2, 3 or 4, L, 6, 7
1707   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1708       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1709     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1710     InsertAtByte = IsLE ? 8 : 4;
1711     Swap = M1 < 4;
1712     return true;
1713   }
1714   // 0, 1, H, 3 or 4, 5, L, 7
1715   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1716       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1717     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1718     InsertAtByte = IsLE ? 4 : 8;
1719     Swap = M2 < 4;
1720     return true;
1721   }
1722   // 0, 1, 2, H or 4, 5, 6, L
1723   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1724       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1725     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1726     InsertAtByte = IsLE ? 0 : 12;
1727     Swap = M3 < 4;
1728     return true;
1729   }
1730 
1731   // If both vector operands for the shuffle are the same vector, the mask will
1732   // contain only elements from the first one and the second one will be undef.
1733   if (N->getOperand(1).isUndef()) {
1734     ShiftElts = 0;
1735     Swap = true;
1736     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1737     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1738       InsertAtByte = IsLE ? 12 : 0;
1739       return true;
1740     }
1741     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1742       InsertAtByte = IsLE ? 8 : 4;
1743       return true;
1744     }
1745     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1746       InsertAtByte = IsLE ? 4 : 8;
1747       return true;
1748     }
1749     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1750       InsertAtByte = IsLE ? 0 : 12;
1751       return true;
1752     }
1753   }
1754 
1755   return false;
1756 }
1757 
1758 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1759                                bool &Swap, bool IsLE) {
1760   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1761   // Ensure each byte index of the word is consecutive.
1762   if (!isNByteElemShuffleMask(N, 4, 1))
1763     return false;
1764 
1765   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
1766   unsigned M0 = N->getMaskElt(0) / 4;
1767   unsigned M1 = N->getMaskElt(4) / 4;
1768   unsigned M2 = N->getMaskElt(8) / 4;
1769   unsigned M3 = N->getMaskElt(12) / 4;
1770 
1771   // If both vector operands for the shuffle are the same vector, the mask will
1772   // contain only elements from the first one and the second one will be undef.
1773   if (N->getOperand(1).isUndef()) {
1774     assert(M0 < 4 && "Indexing into an undef vector?");
1775     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
1776       return false;
1777 
1778     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
1779     Swap = false;
1780     return true;
1781   }
1782 
1783   // Ensure each word index of the ShuffleVector Mask is consecutive.
1784   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
1785     return false;
1786 
1787   if (IsLE) {
1788     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
1789       // Input vectors don't need to be swapped if the leading element
1790       // of the result is one of the 3 left elements of the second vector
1791       // (or if there is no shift to be done at all).
1792       Swap = false;
1793       ShiftElts = (8 - M0) % 8;
1794     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
1795       // Input vectors need to be swapped if the leading element
1796       // of the result is one of the 3 left elements of the first vector
1797       // (or if we're shifting by 4 - thereby simply swapping the vectors).
1798       Swap = true;
1799       ShiftElts = (4 - M0) % 4;
1800     }
1801 
1802     return true;
1803   } else {                                          // BE
1804     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
1805       // Input vectors don't need to be swapped if the leading element
1806       // of the result is one of the 4 elements of the first vector.
1807       Swap = false;
1808       ShiftElts = M0;
1809     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
1810       // Input vectors need to be swapped if the leading element
1811       // of the result is one of the 4 elements of the right vector.
1812       Swap = true;
1813       ShiftElts = M0 - 4;
1814     }
1815 
1816     return true;
1817   }
1818 }
1819 
1820 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
1821   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1822 
1823   if (!isNByteElemShuffleMask(N, Width, -1))
1824     return false;
1825 
1826   for (int i = 0; i < 16; i += Width)
1827     if (N->getMaskElt(i) != i + Width - 1)
1828       return false;
1829 
1830   return true;
1831 }
1832 
1833 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
1834   return isXXBRShuffleMaskHelper(N, 2);
1835 }
1836 
1837 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
1838   return isXXBRShuffleMaskHelper(N, 4);
1839 }
1840 
1841 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
1842   return isXXBRShuffleMaskHelper(N, 8);
1843 }
1844 
1845 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
1846   return isXXBRShuffleMaskHelper(N, 16);
1847 }
1848 
1849 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
1850 /// if the inputs to the instruction should be swapped and set \p DM to the
1851 /// value for the immediate.
1852 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
1853 /// AND element 0 of the result comes from the first input (LE) or second input
1854 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
1855 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
1856 /// mask.
1857 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
1858                                bool &Swap, bool IsLE) {
1859   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1860 
1861   // Ensure each byte index of the double word is consecutive.
1862   if (!isNByteElemShuffleMask(N, 8, 1))
1863     return false;
1864 
1865   unsigned M0 = N->getMaskElt(0) / 8;
1866   unsigned M1 = N->getMaskElt(8) / 8;
1867   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
1868 
1869   // If both vector operands for the shuffle are the same vector, the mask will
1870   // contain only elements from the first one and the second one will be undef.
1871   if (N->getOperand(1).isUndef()) {
1872     if ((M0 | M1) < 2) {
1873       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
1874       Swap = false;
1875       return true;
1876     } else
1877       return false;
1878   }
1879 
1880   if (IsLE) {
1881     if (M0 > 1 && M1 < 2) {
1882       Swap = false;
1883     } else if (M0 < 2 && M1 > 1) {
1884       M0 = (M0 + 2) % 4;
1885       M1 = (M1 + 2) % 4;
1886       Swap = true;
1887     } else
1888       return false;
1889 
1890     // Note: if control flow comes here that means Swap is already set above
1891     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
1892     return true;
1893   } else { // BE
1894     if (M0 < 2 && M1 > 1) {
1895       Swap = false;
1896     } else if (M0 > 1 && M1 < 2) {
1897       M0 = (M0 + 2) % 4;
1898       M1 = (M1 + 2) % 4;
1899       Swap = true;
1900     } else
1901       return false;
1902 
1903     // Note: if control flow comes here that means Swap is already set above
1904     DM = (M0 << 1) + (M1 & 1);
1905     return true;
1906   }
1907 }
1908 
1909 
1910 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
1911 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
1912 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
1913                                 SelectionDAG &DAG) {
1914   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1915   assert(isSplatShuffleMask(SVOp, EltSize));
1916   if (DAG.getDataLayout().isLittleEndian())
1917     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
1918   else
1919     return SVOp->getMaskElt(0) / EltSize;
1920 }
1921 
1922 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
1923 /// by using a vspltis[bhw] instruction of the specified element size, return
1924 /// the constant being splatted.  The ByteSize field indicates the number of
1925 /// bytes of each element [124] -> [bhw].
1926 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
1927   SDValue OpVal(nullptr, 0);
1928 
1929   // If ByteSize of the splat is bigger than the element size of the
1930   // build_vector, then we have a case where we are checking for a splat where
1931   // multiple elements of the buildvector are folded together into a single
1932   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
1933   unsigned EltSize = 16/N->getNumOperands();
1934   if (EltSize < ByteSize) {
1935     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
1936     SDValue UniquedVals[4];
1937     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
1938 
1939     // See if all of the elements in the buildvector agree across.
1940     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1941       if (N->getOperand(i).isUndef()) continue;
1942       // If the element isn't a constant, bail fully out.
1943       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
1944 
1945       if (!UniquedVals[i&(Multiple-1)].getNode())
1946         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
1947       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
1948         return SDValue();  // no match.
1949     }
1950 
1951     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
1952     // either constant or undef values that are identical for each chunk.  See
1953     // if these chunks can form into a larger vspltis*.
1954 
1955     // Check to see if all of the leading entries are either 0 or -1.  If
1956     // neither, then this won't fit into the immediate field.
1957     bool LeadingZero = true;
1958     bool LeadingOnes = true;
1959     for (unsigned i = 0; i != Multiple-1; ++i) {
1960       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
1961 
1962       LeadingZero &= isNullConstant(UniquedVals[i]);
1963       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
1964     }
1965     // Finally, check the least significant entry.
1966     if (LeadingZero) {
1967       if (!UniquedVals[Multiple-1].getNode())
1968         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
1969       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
1970       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
1971         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1972     }
1973     if (LeadingOnes) {
1974       if (!UniquedVals[Multiple-1].getNode())
1975         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
1976       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
1977       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
1978         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1979     }
1980 
1981     return SDValue();
1982   }
1983 
1984   // Check to see if this buildvec has a single non-undef value in its elements.
1985   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1986     if (N->getOperand(i).isUndef()) continue;
1987     if (!OpVal.getNode())
1988       OpVal = N->getOperand(i);
1989     else if (OpVal != N->getOperand(i))
1990       return SDValue();
1991   }
1992 
1993   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
1994 
1995   unsigned ValSizeInBytes = EltSize;
1996   uint64_t Value = 0;
1997   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1998     Value = CN->getZExtValue();
1999   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2000     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2001     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2002   }
2003 
2004   // If the splat value is larger than the element value, then we can never do
2005   // this splat.  The only case that we could fit the replicated bits into our
2006   // immediate field for would be zero, and we prefer to use vxor for it.
2007   if (ValSizeInBytes < ByteSize) return SDValue();
2008 
2009   // If the element value is larger than the splat value, check if it consists
2010   // of a repeated bit pattern of size ByteSize.
2011   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2012     return SDValue();
2013 
2014   // Properly sign extend the value.
2015   int MaskVal = SignExtend32(Value, ByteSize * 8);
2016 
2017   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2018   if (MaskVal == 0) return SDValue();
2019 
2020   // Finally, if this value fits in a 5 bit sext field, return it
2021   if (SignExtend32<5>(MaskVal) == MaskVal)
2022     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2023   return SDValue();
2024 }
2025 
2026 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2027 /// amount, otherwise return -1.
2028 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2029   EVT VT = N->getValueType(0);
2030   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2031     return -1;
2032 
2033   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2034 
2035   // Find the first non-undef value in the shuffle mask.
2036   unsigned i;
2037   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2038     /*search*/;
2039 
2040   if (i == 4) return -1;  // all undef.
2041 
2042   // Otherwise, check to see if the rest of the elements are consecutively
2043   // numbered from this value.
2044   unsigned ShiftAmt = SVOp->getMaskElt(i);
2045   if (ShiftAmt < i) return -1;
2046   ShiftAmt -= i;
2047 
2048   // Check the rest of the elements to see if they are consecutive.
2049   for (++i; i != 4; ++i)
2050     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2051       return -1;
2052 
2053   return ShiftAmt;
2054 }
2055 
2056 //===----------------------------------------------------------------------===//
2057 //  Addressing Mode Selection
2058 //===----------------------------------------------------------------------===//
2059 
2060 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2061 /// or 64-bit immediate, and if the value can be accurately represented as a
2062 /// sign extension from a 16-bit value.  If so, this returns true and the
2063 /// immediate.
2064 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2065   if (!isa<ConstantSDNode>(N))
2066     return false;
2067 
2068   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2069   if (N->getValueType(0) == MVT::i32)
2070     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2071   else
2072     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2073 }
2074 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2075   return isIntS16Immediate(Op.getNode(), Imm);
2076 }
2077 
2078 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2079 /// can be represented as an indexed [r+r] operation.  Returns false if it
2080 /// can be more efficiently represented with [r+imm].
2081 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2082                                             SDValue &Index,
2083                                             SelectionDAG &DAG) const {
2084   int16_t imm = 0;
2085   if (N.getOpcode() == ISD::ADD) {
2086     if (isIntS16Immediate(N.getOperand(1), imm))
2087       return false;    // r+i
2088     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2089       return false;    // r+i
2090 
2091     Base = N.getOperand(0);
2092     Index = N.getOperand(1);
2093     return true;
2094   } else if (N.getOpcode() == ISD::OR) {
2095     if (isIntS16Immediate(N.getOperand(1), imm))
2096       return false;    // r+i can fold it if we can.
2097 
2098     // If this is an or of disjoint bitfields, we can codegen this as an add
2099     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2100     // disjoint.
2101     KnownBits LHSKnown, RHSKnown;
2102     DAG.computeKnownBits(N.getOperand(0), LHSKnown);
2103 
2104     if (LHSKnown.Zero.getBoolValue()) {
2105       DAG.computeKnownBits(N.getOperand(1), RHSKnown);
2106       // If all of the bits are known zero on the LHS or RHS, the add won't
2107       // carry.
2108       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2109         Base = N.getOperand(0);
2110         Index = N.getOperand(1);
2111         return true;
2112       }
2113     }
2114   }
2115 
2116   return false;
2117 }
2118 
2119 // If we happen to be doing an i64 load or store into a stack slot that has
2120 // less than a 4-byte alignment, then the frame-index elimination may need to
2121 // use an indexed load or store instruction (because the offset may not be a
2122 // multiple of 4). The extra register needed to hold the offset comes from the
2123 // register scavenger, and it is possible that the scavenger will need to use
2124 // an emergency spill slot. As a result, we need to make sure that a spill slot
2125 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2126 // stack slot.
2127 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2128   // FIXME: This does not handle the LWA case.
2129   if (VT != MVT::i64)
2130     return;
2131 
2132   // NOTE: We'll exclude negative FIs here, which come from argument
2133   // lowering, because there are no known test cases triggering this problem
2134   // using packed structures (or similar). We can remove this exclusion if
2135   // we find such a test case. The reason why this is so test-case driven is
2136   // because this entire 'fixup' is only to prevent crashes (from the
2137   // register scavenger) on not-really-valid inputs. For example, if we have:
2138   //   %a = alloca i1
2139   //   %b = bitcast i1* %a to i64*
2140   //   store i64* a, i64 b
2141   // then the store should really be marked as 'align 1', but is not. If it
2142   // were marked as 'align 1' then the indexed form would have been
2143   // instruction-selected initially, and the problem this 'fixup' is preventing
2144   // won't happen regardless.
2145   if (FrameIdx < 0)
2146     return;
2147 
2148   MachineFunction &MF = DAG.getMachineFunction();
2149   MachineFrameInfo &MFI = MF.getFrameInfo();
2150 
2151   unsigned Align = MFI.getObjectAlignment(FrameIdx);
2152   if (Align >= 4)
2153     return;
2154 
2155   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2156   FuncInfo->setHasNonRISpills();
2157 }
2158 
2159 /// Returns true if the address N can be represented by a base register plus
2160 /// a signed 16-bit displacement [r+imm], and if it is not better
2161 /// represented as reg+reg.  If \p Alignment is non-zero, only accept
2162 /// displacements that are multiples of that value.
2163 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2164                                             SDValue &Base,
2165                                             SelectionDAG &DAG,
2166                                             unsigned Alignment) const {
2167   // FIXME dl should come from parent load or store, not from address
2168   SDLoc dl(N);
2169   // If this can be more profitably realized as r+r, fail.
2170   if (SelectAddressRegReg(N, Disp, Base, DAG))
2171     return false;
2172 
2173   if (N.getOpcode() == ISD::ADD) {
2174     int16_t imm = 0;
2175     if (isIntS16Immediate(N.getOperand(1), imm) &&
2176         (!Alignment || (imm % Alignment) == 0)) {
2177       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2178       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2179         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2180         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2181       } else {
2182         Base = N.getOperand(0);
2183       }
2184       return true; // [r+i]
2185     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2186       // Match LOAD (ADD (X, Lo(G))).
2187       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2188              && "Cannot handle constant offsets yet!");
2189       Disp = N.getOperand(1).getOperand(0);  // The global address.
2190       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2191              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2192              Disp.getOpcode() == ISD::TargetConstantPool ||
2193              Disp.getOpcode() == ISD::TargetJumpTable);
2194       Base = N.getOperand(0);
2195       return true;  // [&g+r]
2196     }
2197   } else if (N.getOpcode() == ISD::OR) {
2198     int16_t imm = 0;
2199     if (isIntS16Immediate(N.getOperand(1), imm) &&
2200         (!Alignment || (imm % Alignment) == 0)) {
2201       // If this is an or of disjoint bitfields, we can codegen this as an add
2202       // (for better address arithmetic) if the LHS and RHS of the OR are
2203       // provably disjoint.
2204       KnownBits LHSKnown;
2205       DAG.computeKnownBits(N.getOperand(0), LHSKnown);
2206 
2207       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2208         // If all of the bits are known zero on the LHS or RHS, the add won't
2209         // carry.
2210         if (FrameIndexSDNode *FI =
2211               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2212           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2213           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2214         } else {
2215           Base = N.getOperand(0);
2216         }
2217         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2218         return true;
2219       }
2220     }
2221   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2222     // Loading from a constant address.
2223 
2224     // If this address fits entirely in a 16-bit sext immediate field, codegen
2225     // this as "d, 0"
2226     int16_t Imm;
2227     if (isIntS16Immediate(CN, Imm) && (!Alignment || (Imm % Alignment) == 0)) {
2228       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2229       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2230                              CN->getValueType(0));
2231       return true;
2232     }
2233 
2234     // Handle 32-bit sext immediates with LIS + addr mode.
2235     if ((CN->getValueType(0) == MVT::i32 ||
2236          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2237         (!Alignment || (CN->getZExtValue() % Alignment) == 0)) {
2238       int Addr = (int)CN->getZExtValue();
2239 
2240       // Otherwise, break this down into an LIS + disp.
2241       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2242 
2243       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2244                                    MVT::i32);
2245       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2246       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2247       return true;
2248     }
2249   }
2250 
2251   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2252   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2253     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2254     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2255   } else
2256     Base = N;
2257   return true;      // [r+0]
2258 }
2259 
2260 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2261 /// represented as an indexed [r+r] operation.
2262 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2263                                                 SDValue &Index,
2264                                                 SelectionDAG &DAG) const {
2265   // Check to see if we can easily represent this as an [r+r] address.  This
2266   // will fail if it thinks that the address is more profitably represented as
2267   // reg+imm, e.g. where imm = 0.
2268   if (SelectAddressRegReg(N, Base, Index, DAG))
2269     return true;
2270 
2271   // If the address is the result of an add, we will utilize the fact that the
2272   // address calculation includes an implicit add.  However, we can reduce
2273   // register pressure if we do not materialize a constant just for use as the
2274   // index register.  We only get rid of the add if it is not an add of a
2275   // value and a 16-bit signed constant and both have a single use.
2276   int16_t imm = 0;
2277   if (N.getOpcode() == ISD::ADD &&
2278       (!isIntS16Immediate(N.getOperand(1), imm) ||
2279        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2280     Base = N.getOperand(0);
2281     Index = N.getOperand(1);
2282     return true;
2283   }
2284 
2285   // Otherwise, do it the hard way, using R0 as the base register.
2286   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2287                          N.getValueType());
2288   Index = N;
2289   return true;
2290 }
2291 
2292 /// getPreIndexedAddressParts - returns true by value, base pointer and
2293 /// offset pointer and addressing mode by reference if the node's address
2294 /// can be legally represented as pre-indexed load / store address.
2295 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2296                                                   SDValue &Offset,
2297                                                   ISD::MemIndexedMode &AM,
2298                                                   SelectionDAG &DAG) const {
2299   if (DisablePPCPreinc) return false;
2300 
2301   bool isLoad = true;
2302   SDValue Ptr;
2303   EVT VT;
2304   unsigned Alignment;
2305   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2306     Ptr = LD->getBasePtr();
2307     VT = LD->getMemoryVT();
2308     Alignment = LD->getAlignment();
2309   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2310     Ptr = ST->getBasePtr();
2311     VT  = ST->getMemoryVT();
2312     Alignment = ST->getAlignment();
2313     isLoad = false;
2314   } else
2315     return false;
2316 
2317   // PowerPC doesn't have preinc load/store instructions for vectors (except
2318   // for QPX, which does have preinc r+r forms).
2319   if (VT.isVector()) {
2320     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2321       return false;
2322     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2323       AM = ISD::PRE_INC;
2324       return true;
2325     }
2326   }
2327 
2328   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2329     // Common code will reject creating a pre-inc form if the base pointer
2330     // is a frame index, or if N is a store and the base pointer is either
2331     // the same as or a predecessor of the value being stored.  Check for
2332     // those situations here, and try with swapped Base/Offset instead.
2333     bool Swap = false;
2334 
2335     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2336       Swap = true;
2337     else if (!isLoad) {
2338       SDValue Val = cast<StoreSDNode>(N)->getValue();
2339       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2340         Swap = true;
2341     }
2342 
2343     if (Swap)
2344       std::swap(Base, Offset);
2345 
2346     AM = ISD::PRE_INC;
2347     return true;
2348   }
2349 
2350   // LDU/STU can only handle immediates that are a multiple of 4.
2351   if (VT != MVT::i64) {
2352     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2353       return false;
2354   } else {
2355     // LDU/STU need an address with at least 4-byte alignment.
2356     if (Alignment < 4)
2357       return false;
2358 
2359     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2360       return false;
2361   }
2362 
2363   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2364     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2365     // sext i32 to i64 when addr mode is r+i.
2366     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2367         LD->getExtensionType() == ISD::SEXTLOAD &&
2368         isa<ConstantSDNode>(Offset))
2369       return false;
2370   }
2371 
2372   AM = ISD::PRE_INC;
2373   return true;
2374 }
2375 
2376 //===----------------------------------------------------------------------===//
2377 //  LowerOperation implementation
2378 //===----------------------------------------------------------------------===//
2379 
2380 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2381 /// and LoOpFlags to the target MO flags.
2382 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2383                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2384                                const GlobalValue *GV = nullptr) {
2385   HiOpFlags = PPCII::MO_HA;
2386   LoOpFlags = PPCII::MO_LO;
2387 
2388   // Don't use the pic base if not in PIC relocation model.
2389   if (IsPIC) {
2390     HiOpFlags |= PPCII::MO_PIC_FLAG;
2391     LoOpFlags |= PPCII::MO_PIC_FLAG;
2392   }
2393 
2394   // If this is a reference to a global value that requires a non-lazy-ptr, make
2395   // sure that instruction lowering adds it.
2396   if (GV && Subtarget.hasLazyResolverStub(GV)) {
2397     HiOpFlags |= PPCII::MO_NLP_FLAG;
2398     LoOpFlags |= PPCII::MO_NLP_FLAG;
2399 
2400     if (GV->hasHiddenVisibility()) {
2401       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2402       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2403     }
2404   }
2405 }
2406 
2407 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2408                              SelectionDAG &DAG) {
2409   SDLoc DL(HiPart);
2410   EVT PtrVT = HiPart.getValueType();
2411   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2412 
2413   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2414   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2415 
2416   // With PIC, the first instruction is actually "GR+hi(&G)".
2417   if (isPIC)
2418     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2419                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2420 
2421   // Generate non-pic code that has direct accesses to the constant pool.
2422   // The address of the global is just (hi(&g)+lo(&g)).
2423   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2424 }
2425 
2426 static void setUsesTOCBasePtr(MachineFunction &MF) {
2427   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2428   FuncInfo->setUsesTOCBasePtr();
2429 }
2430 
2431 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2432   setUsesTOCBasePtr(DAG.getMachineFunction());
2433 }
2434 
2435 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit,
2436                            SDValue GA) {
2437   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2438   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
2439                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2440 
2441   SDValue Ops[] = { GA, Reg };
2442   return DAG.getMemIntrinsicNode(
2443       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2444       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
2445       MachineMemOperand::MOLoad);
2446 }
2447 
2448 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2449                                              SelectionDAG &DAG) const {
2450   EVT PtrVT = Op.getValueType();
2451   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2452   const Constant *C = CP->getConstVal();
2453 
2454   // 64-bit SVR4 ABI code is always position-independent.
2455   // The actual address of the GlobalValue is stored in the TOC.
2456   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2457     setUsesTOCBasePtr(DAG);
2458     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2459     return getTOCEntry(DAG, SDLoc(CP), true, GA);
2460   }
2461 
2462   unsigned MOHiFlag, MOLoFlag;
2463   bool IsPIC = isPositionIndependent();
2464   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2465 
2466   if (IsPIC && Subtarget.isSVR4ABI()) {
2467     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2468                                            PPCII::MO_PIC_FLAG);
2469     return getTOCEntry(DAG, SDLoc(CP), false, GA);
2470   }
2471 
2472   SDValue CPIHi =
2473     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2474   SDValue CPILo =
2475     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2476   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2477 }
2478 
2479 // For 64-bit PowerPC, prefer the more compact relative encodings.
2480 // This trades 32 bits per jump table entry for one or two instructions
2481 // on the jump site.
2482 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2483   if (isJumpTableRelative())
2484     return MachineJumpTableInfo::EK_LabelDifference32;
2485 
2486   return TargetLowering::getJumpTableEncoding();
2487 }
2488 
2489 bool PPCTargetLowering::isJumpTableRelative() const {
2490   if (Subtarget.isPPC64())
2491     return true;
2492   return TargetLowering::isJumpTableRelative();
2493 }
2494 
2495 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2496                                                     SelectionDAG &DAG) const {
2497   if (!Subtarget.isPPC64())
2498     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2499 
2500   switch (getTargetMachine().getCodeModel()) {
2501   case CodeModel::Small:
2502   case CodeModel::Medium:
2503     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2504   default:
2505     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2506                        getPointerTy(DAG.getDataLayout()));
2507   }
2508 }
2509 
2510 const MCExpr *
2511 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2512                                                 unsigned JTI,
2513                                                 MCContext &Ctx) const {
2514   if (!Subtarget.isPPC64())
2515     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2516 
2517   switch (getTargetMachine().getCodeModel()) {
2518   case CodeModel::Small:
2519   case CodeModel::Medium:
2520     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2521   default:
2522     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2523   }
2524 }
2525 
2526 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2527   EVT PtrVT = Op.getValueType();
2528   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2529 
2530   // 64-bit SVR4 ABI code is always position-independent.
2531   // The actual address of the GlobalValue is stored in the TOC.
2532   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2533     setUsesTOCBasePtr(DAG);
2534     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2535     return getTOCEntry(DAG, SDLoc(JT), true, GA);
2536   }
2537 
2538   unsigned MOHiFlag, MOLoFlag;
2539   bool IsPIC = isPositionIndependent();
2540   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2541 
2542   if (IsPIC && Subtarget.isSVR4ABI()) {
2543     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2544                                         PPCII::MO_PIC_FLAG);
2545     return getTOCEntry(DAG, SDLoc(GA), false, GA);
2546   }
2547 
2548   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2549   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2550   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2551 }
2552 
2553 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2554                                              SelectionDAG &DAG) const {
2555   EVT PtrVT = Op.getValueType();
2556   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2557   const BlockAddress *BA = BASDN->getBlockAddress();
2558 
2559   // 64-bit SVR4 ABI code is always position-independent.
2560   // The actual BlockAddress is stored in the TOC.
2561   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2562     setUsesTOCBasePtr(DAG);
2563     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2564     return getTOCEntry(DAG, SDLoc(BASDN), true, GA);
2565   }
2566 
2567   unsigned MOHiFlag, MOLoFlag;
2568   bool IsPIC = isPositionIndependent();
2569   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2570   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2571   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2572   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2573 }
2574 
2575 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2576                                               SelectionDAG &DAG) const {
2577   // FIXME: TLS addresses currently use medium model code sequences,
2578   // which is the most useful form.  Eventually support for small and
2579   // large models could be added if users need it, at the cost of
2580   // additional complexity.
2581   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2582   if (DAG.getTarget().useEmulatedTLS())
2583     return LowerToTLSEmulatedModel(GA, DAG);
2584 
2585   SDLoc dl(GA);
2586   const GlobalValue *GV = GA->getGlobal();
2587   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2588   bool is64bit = Subtarget.isPPC64();
2589   const Module *M = DAG.getMachineFunction().getFunction().getParent();
2590   PICLevel::Level picLevel = M->getPICLevel();
2591 
2592   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
2593 
2594   if (Model == TLSModel::LocalExec) {
2595     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2596                                                PPCII::MO_TPREL_HA);
2597     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2598                                                PPCII::MO_TPREL_LO);
2599     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2600                              : DAG.getRegister(PPC::R2, MVT::i32);
2601 
2602     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2603     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2604   }
2605 
2606   if (Model == TLSModel::InitialExec) {
2607     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2608     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2609                                                 PPCII::MO_TLS);
2610     SDValue GOTPtr;
2611     if (is64bit) {
2612       setUsesTOCBasePtr(DAG);
2613       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2614       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2615                            PtrVT, GOTReg, TGA);
2616     } else
2617       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2618     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2619                                    PtrVT, TGA, GOTPtr);
2620     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2621   }
2622 
2623   if (Model == TLSModel::GeneralDynamic) {
2624     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2625     SDValue GOTPtr;
2626     if (is64bit) {
2627       setUsesTOCBasePtr(DAG);
2628       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2629       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2630                                    GOTReg, TGA);
2631     } else {
2632       if (picLevel == PICLevel::SmallPIC)
2633         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2634       else
2635         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2636     }
2637     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2638                        GOTPtr, TGA, TGA);
2639   }
2640 
2641   if (Model == TLSModel::LocalDynamic) {
2642     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2643     SDValue GOTPtr;
2644     if (is64bit) {
2645       setUsesTOCBasePtr(DAG);
2646       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2647       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2648                            GOTReg, TGA);
2649     } else {
2650       if (picLevel == PICLevel::SmallPIC)
2651         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2652       else
2653         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2654     }
2655     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2656                                   PtrVT, GOTPtr, TGA, TGA);
2657     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2658                                       PtrVT, TLSAddr, TGA);
2659     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2660   }
2661 
2662   llvm_unreachable("Unknown TLS model!");
2663 }
2664 
2665 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2666                                               SelectionDAG &DAG) const {
2667   EVT PtrVT = Op.getValueType();
2668   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2669   SDLoc DL(GSDN);
2670   const GlobalValue *GV = GSDN->getGlobal();
2671 
2672   // 64-bit SVR4 ABI code is always position-independent.
2673   // The actual address of the GlobalValue is stored in the TOC.
2674   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2675     setUsesTOCBasePtr(DAG);
2676     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2677     return getTOCEntry(DAG, DL, true, GA);
2678   }
2679 
2680   unsigned MOHiFlag, MOLoFlag;
2681   bool IsPIC = isPositionIndependent();
2682   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2683 
2684   if (IsPIC && Subtarget.isSVR4ABI()) {
2685     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2686                                             GSDN->getOffset(),
2687                                             PPCII::MO_PIC_FLAG);
2688     return getTOCEntry(DAG, DL, false, GA);
2689   }
2690 
2691   SDValue GAHi =
2692     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2693   SDValue GALo =
2694     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2695 
2696   SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
2697 
2698   // If the global reference is actually to a non-lazy-pointer, we have to do an
2699   // extra load to get the address of the global.
2700   if (MOHiFlag & PPCII::MO_NLP_FLAG)
2701     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2702   return Ptr;
2703 }
2704 
2705 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2706   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2707   SDLoc dl(Op);
2708 
2709   if (Op.getValueType() == MVT::v2i64) {
2710     // When the operands themselves are v2i64 values, we need to do something
2711     // special because VSX has no underlying comparison operations for these.
2712     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2713       // Equality can be handled by casting to the legal type for Altivec
2714       // comparisons, everything else needs to be expanded.
2715       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2716         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2717                  DAG.getSetCC(dl, MVT::v4i32,
2718                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2719                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2720                    CC));
2721       }
2722 
2723       return SDValue();
2724     }
2725 
2726     // We handle most of these in the usual way.
2727     return Op;
2728   }
2729 
2730   // If we're comparing for equality to zero, expose the fact that this is
2731   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
2732   // fold the new nodes.
2733   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
2734     return V;
2735 
2736   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2737     // Leave comparisons against 0 and -1 alone for now, since they're usually
2738     // optimized.  FIXME: revisit this when we can custom lower all setcc
2739     // optimizations.
2740     if (C->isAllOnesValue() || C->isNullValue())
2741       return SDValue();
2742   }
2743 
2744   // If we have an integer seteq/setne, turn it into a compare against zero
2745   // by xor'ing the rhs with the lhs, which is faster than setting a
2746   // condition register, reading it back out, and masking the correct bit.  The
2747   // normal approach here uses sub to do this instead of xor.  Using xor exposes
2748   // the result to other bit-twiddling opportunities.
2749   EVT LHSVT = Op.getOperand(0).getValueType();
2750   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2751     EVT VT = Op.getValueType();
2752     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2753                                 Op.getOperand(1));
2754     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
2755   }
2756   return SDValue();
2757 }
2758 
2759 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2760   SDNode *Node = Op.getNode();
2761   EVT VT = Node->getValueType(0);
2762   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2763   SDValue InChain = Node->getOperand(0);
2764   SDValue VAListPtr = Node->getOperand(1);
2765   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2766   SDLoc dl(Node);
2767 
2768   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
2769 
2770   // gpr_index
2771   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2772                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
2773   InChain = GprIndex.getValue(1);
2774 
2775   if (VT == MVT::i64) {
2776     // Check if GprIndex is even
2777     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
2778                                  DAG.getConstant(1, dl, MVT::i32));
2779     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
2780                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
2781     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
2782                                           DAG.getConstant(1, dl, MVT::i32));
2783     // Align GprIndex to be even if it isn't
2784     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
2785                            GprIndex);
2786   }
2787 
2788   // fpr index is 1 byte after gpr
2789   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2790                                DAG.getConstant(1, dl, MVT::i32));
2791 
2792   // fpr
2793   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2794                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
2795   InChain = FprIndex.getValue(1);
2796 
2797   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2798                                        DAG.getConstant(8, dl, MVT::i32));
2799 
2800   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2801                                         DAG.getConstant(4, dl, MVT::i32));
2802 
2803   // areas
2804   SDValue OverflowArea =
2805       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
2806   InChain = OverflowArea.getValue(1);
2807 
2808   SDValue RegSaveArea =
2809       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
2810   InChain = RegSaveArea.getValue(1);
2811 
2812   // select overflow_area if index > 8
2813   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
2814                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
2815 
2816   // adjustment constant gpr_index * 4/8
2817   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
2818                                     VT.isInteger() ? GprIndex : FprIndex,
2819                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
2820                                                     MVT::i32));
2821 
2822   // OurReg = RegSaveArea + RegConstant
2823   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
2824                                RegConstant);
2825 
2826   // Floating types are 32 bytes into RegSaveArea
2827   if (VT.isFloatingPoint())
2828     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
2829                          DAG.getConstant(32, dl, MVT::i32));
2830 
2831   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
2832   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2833                                    VT.isInteger() ? GprIndex : FprIndex,
2834                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
2835                                                    MVT::i32));
2836 
2837   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
2838                               VT.isInteger() ? VAListPtr : FprPtr,
2839                               MachinePointerInfo(SV), MVT::i8);
2840 
2841   // determine if we should load from reg_save_area or overflow_area
2842   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
2843 
2844   // increase overflow_area by 4/8 if gpr/fpr > 8
2845   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
2846                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
2847                                           dl, MVT::i32));
2848 
2849   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
2850                              OverflowAreaPlusN);
2851 
2852   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
2853                               MachinePointerInfo(), MVT::i32);
2854 
2855   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
2856 }
2857 
2858 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
2859   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
2860 
2861   // We have to copy the entire va_list struct:
2862   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
2863   return DAG.getMemcpy(Op.getOperand(0), Op,
2864                        Op.getOperand(1), Op.getOperand(2),
2865                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
2866                        false, MachinePointerInfo(), MachinePointerInfo());
2867 }
2868 
2869 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
2870                                                   SelectionDAG &DAG) const {
2871   return Op.getOperand(0);
2872 }
2873 
2874 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
2875                                                 SelectionDAG &DAG) const {
2876   SDValue Chain = Op.getOperand(0);
2877   SDValue Trmp = Op.getOperand(1); // trampoline
2878   SDValue FPtr = Op.getOperand(2); // nested function
2879   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
2880   SDLoc dl(Op);
2881 
2882   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2883   bool isPPC64 = (PtrVT == MVT::i64);
2884   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
2885 
2886   TargetLowering::ArgListTy Args;
2887   TargetLowering::ArgListEntry Entry;
2888 
2889   Entry.Ty = IntPtrTy;
2890   Entry.Node = Trmp; Args.push_back(Entry);
2891 
2892   // TrampSize == (isPPC64 ? 48 : 40);
2893   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
2894                                isPPC64 ? MVT::i64 : MVT::i32);
2895   Args.push_back(Entry);
2896 
2897   Entry.Node = FPtr; Args.push_back(Entry);
2898   Entry.Node = Nest; Args.push_back(Entry);
2899 
2900   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
2901   TargetLowering::CallLoweringInfo CLI(DAG);
2902   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
2903       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
2904       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
2905 
2906   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2907   return CallResult.second;
2908 }
2909 
2910 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2911   MachineFunction &MF = DAG.getMachineFunction();
2912   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2913   EVT PtrVT = getPointerTy(MF.getDataLayout());
2914 
2915   SDLoc dl(Op);
2916 
2917   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
2918     // vastart just stores the address of the VarArgsFrameIndex slot into the
2919     // memory location argument.
2920     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2921     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2922     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2923                         MachinePointerInfo(SV));
2924   }
2925 
2926   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
2927   // We suppose the given va_list is already allocated.
2928   //
2929   // typedef struct {
2930   //  char gpr;     /* index into the array of 8 GPRs
2931   //                 * stored in the register save area
2932   //                 * gpr=0 corresponds to r3,
2933   //                 * gpr=1 to r4, etc.
2934   //                 */
2935   //  char fpr;     /* index into the array of 8 FPRs
2936   //                 * stored in the register save area
2937   //                 * fpr=0 corresponds to f1,
2938   //                 * fpr=1 to f2, etc.
2939   //                 */
2940   //  char *overflow_arg_area;
2941   //                /* location on stack that holds
2942   //                 * the next overflow argument
2943   //                 */
2944   //  char *reg_save_area;
2945   //               /* where r3:r10 and f1:f8 (if saved)
2946   //                * are stored
2947   //                */
2948   // } va_list[1];
2949 
2950   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
2951   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
2952   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
2953                                             PtrVT);
2954   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2955                                  PtrVT);
2956 
2957   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
2958   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
2959 
2960   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
2961   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
2962 
2963   uint64_t FPROffset = 1;
2964   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
2965 
2966   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2967 
2968   // Store first byte : number of int regs
2969   SDValue firstStore =
2970       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
2971                         MachinePointerInfo(SV), MVT::i8);
2972   uint64_t nextOffset = FPROffset;
2973   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
2974                                   ConstFPROffset);
2975 
2976   // Store second byte : number of float regs
2977   SDValue secondStore =
2978       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
2979                         MachinePointerInfo(SV, nextOffset), MVT::i8);
2980   nextOffset += StackOffset;
2981   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
2982 
2983   // Store second word : arguments given on stack
2984   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
2985                                     MachinePointerInfo(SV, nextOffset));
2986   nextOffset += FrameOffset;
2987   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
2988 
2989   // Store third word : arguments given in registers
2990   return DAG.getStore(thirdStore, dl, FR, nextPtr,
2991                       MachinePointerInfo(SV, nextOffset));
2992 }
2993 
2994 #include "PPCGenCallingConv.inc"
2995 
2996 // Function whose sole purpose is to kill compiler warnings
2997 // stemming from unused functions included from PPCGenCallingConv.inc.
2998 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
2999   return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
3000 }
3001 
3002 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
3003                                       CCValAssign::LocInfo &LocInfo,
3004                                       ISD::ArgFlagsTy &ArgFlags,
3005                                       CCState &State) {
3006   return true;
3007 }
3008 
3009 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
3010                                              MVT &LocVT,
3011                                              CCValAssign::LocInfo &LocInfo,
3012                                              ISD::ArgFlagsTy &ArgFlags,
3013                                              CCState &State) {
3014   static const MCPhysReg ArgRegs[] = {
3015     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3016     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3017   };
3018   const unsigned NumArgRegs = array_lengthof(ArgRegs);
3019 
3020   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
3021 
3022   // Skip one register if the first unallocated register has an even register
3023   // number and there are still argument registers available which have not been
3024   // allocated yet. RegNum is actually an index into ArgRegs, which means we
3025   // need to skip a register if RegNum is odd.
3026   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
3027     State.AllocateReg(ArgRegs[RegNum]);
3028   }
3029 
3030   // Always return false here, as this function only makes sure that the first
3031   // unallocated register has an odd register number and does not actually
3032   // allocate a register for the current argument.
3033   return false;
3034 }
3035 
3036 bool
3037 llvm::CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT,
3038                                                   MVT &LocVT,
3039                                                   CCValAssign::LocInfo &LocInfo,
3040                                                   ISD::ArgFlagsTy &ArgFlags,
3041                                                   CCState &State) {
3042   static const MCPhysReg ArgRegs[] = {
3043     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3044     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3045   };
3046   const unsigned NumArgRegs = array_lengthof(ArgRegs);
3047 
3048   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
3049   int RegsLeft = NumArgRegs - RegNum;
3050 
3051   // Skip if there is not enough registers left for long double type (4 gpr regs
3052   // in soft float mode) and put long double argument on the stack.
3053   if (RegNum != NumArgRegs && RegsLeft < 4) {
3054     for (int i = 0; i < RegsLeft; i++) {
3055       State.AllocateReg(ArgRegs[RegNum + i]);
3056     }
3057   }
3058 
3059   return false;
3060 }
3061 
3062 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
3063                                                MVT &LocVT,
3064                                                CCValAssign::LocInfo &LocInfo,
3065                                                ISD::ArgFlagsTy &ArgFlags,
3066                                                CCState &State) {
3067   static const MCPhysReg ArgRegs[] = {
3068     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3069     PPC::F8
3070   };
3071 
3072   const unsigned NumArgRegs = array_lengthof(ArgRegs);
3073 
3074   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
3075 
3076   // If there is only one Floating-point register left we need to put both f64
3077   // values of a split ppc_fp128 value on the stack.
3078   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
3079     State.AllocateReg(ArgRegs[RegNum]);
3080   }
3081 
3082   // Always return false here, as this function only makes sure that the two f64
3083   // values a ppc_fp128 value is split into are both passed in registers or both
3084   // passed on the stack and does not actually allocate a register for the
3085   // current argument.
3086   return false;
3087 }
3088 
3089 /// FPR - The set of FP registers that should be allocated for arguments,
3090 /// on Darwin.
3091 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3092                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3093                                 PPC::F11, PPC::F12, PPC::F13};
3094 
3095 /// QFPR - The set of QPX registers that should be allocated for arguments.
3096 static const MCPhysReg QFPR[] = {
3097     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3098     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3099 
3100 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3101 /// the stack.
3102 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3103                                        unsigned PtrByteSize) {
3104   unsigned ArgSize = ArgVT.getStoreSize();
3105   if (Flags.isByVal())
3106     ArgSize = Flags.getByValSize();
3107 
3108   // Round up to multiples of the pointer size, except for array members,
3109   // which are always packed.
3110   if (!Flags.isInConsecutiveRegs())
3111     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3112 
3113   return ArgSize;
3114 }
3115 
3116 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3117 /// on the stack.
3118 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3119                                             ISD::ArgFlagsTy Flags,
3120                                             unsigned PtrByteSize) {
3121   unsigned Align = PtrByteSize;
3122 
3123   // Altivec parameters are padded to a 16 byte boundary.
3124   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3125       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3126       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3127       ArgVT == MVT::v1i128)
3128     Align = 16;
3129   // QPX vector types stored in double-precision are padded to a 32 byte
3130   // boundary.
3131   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3132     Align = 32;
3133 
3134   // ByVal parameters are aligned as requested.
3135   if (Flags.isByVal()) {
3136     unsigned BVAlign = Flags.getByValAlign();
3137     if (BVAlign > PtrByteSize) {
3138       if (BVAlign % PtrByteSize != 0)
3139           llvm_unreachable(
3140             "ByVal alignment is not a multiple of the pointer size");
3141 
3142       Align = BVAlign;
3143     }
3144   }
3145 
3146   // Array members are always packed to their original alignment.
3147   if (Flags.isInConsecutiveRegs()) {
3148     // If the array member was split into multiple registers, the first
3149     // needs to be aligned to the size of the full type.  (Except for
3150     // ppcf128, which is only aligned as its f64 components.)
3151     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3152       Align = OrigVT.getStoreSize();
3153     else
3154       Align = ArgVT.getStoreSize();
3155   }
3156 
3157   return Align;
3158 }
3159 
3160 /// CalculateStackSlotUsed - Return whether this argument will use its
3161 /// stack slot (instead of being passed in registers).  ArgOffset,
3162 /// AvailableFPRs, and AvailableVRs must hold the current argument
3163 /// position, and will be updated to account for this argument.
3164 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3165                                    ISD::ArgFlagsTy Flags,
3166                                    unsigned PtrByteSize,
3167                                    unsigned LinkageSize,
3168                                    unsigned ParamAreaSize,
3169                                    unsigned &ArgOffset,
3170                                    unsigned &AvailableFPRs,
3171                                    unsigned &AvailableVRs, bool HasQPX) {
3172   bool UseMemory = false;
3173 
3174   // Respect alignment of argument on the stack.
3175   unsigned Align =
3176     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3177   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3178   // If there's no space left in the argument save area, we must
3179   // use memory (this check also catches zero-sized arguments).
3180   if (ArgOffset >= LinkageSize + ParamAreaSize)
3181     UseMemory = true;
3182 
3183   // Allocate argument on the stack.
3184   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3185   if (Flags.isInConsecutiveRegsLast())
3186     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3187   // If we overran the argument save area, we must use memory
3188   // (this check catches arguments passed partially in memory)
3189   if (ArgOffset > LinkageSize + ParamAreaSize)
3190     UseMemory = true;
3191 
3192   // However, if the argument is actually passed in an FPR or a VR,
3193   // we don't use memory after all.
3194   if (!Flags.isByVal()) {
3195     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3196         // QPX registers overlap with the scalar FP registers.
3197         (HasQPX && (ArgVT == MVT::v4f32 ||
3198                     ArgVT == MVT::v4f64 ||
3199                     ArgVT == MVT::v4i1)))
3200       if (AvailableFPRs > 0) {
3201         --AvailableFPRs;
3202         return false;
3203       }
3204     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3205         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3206         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3207         ArgVT == MVT::v1i128)
3208       if (AvailableVRs > 0) {
3209         --AvailableVRs;
3210         return false;
3211       }
3212   }
3213 
3214   return UseMemory;
3215 }
3216 
3217 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3218 /// ensure minimum alignment required for target.
3219 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3220                                      unsigned NumBytes) {
3221   unsigned TargetAlign = Lowering->getStackAlignment();
3222   unsigned AlignMask = TargetAlign - 1;
3223   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
3224   return NumBytes;
3225 }
3226 
3227 SDValue PPCTargetLowering::LowerFormalArguments(
3228     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3229     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3230     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3231   if (Subtarget.isSVR4ABI()) {
3232     if (Subtarget.isPPC64())
3233       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
3234                                          dl, DAG, InVals);
3235     else
3236       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
3237                                          dl, DAG, InVals);
3238   } else {
3239     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
3240                                        dl, DAG, InVals);
3241   }
3242 }
3243 
3244 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3245     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3246     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3247     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3248 
3249   // 32-bit SVR4 ABI Stack Frame Layout:
3250   //              +-----------------------------------+
3251   //        +-->  |            Back chain             |
3252   //        |     +-----------------------------------+
3253   //        |     | Floating-point register save area |
3254   //        |     +-----------------------------------+
3255   //        |     |    General register save area     |
3256   //        |     +-----------------------------------+
3257   //        |     |          CR save word             |
3258   //        |     +-----------------------------------+
3259   //        |     |         VRSAVE save word          |
3260   //        |     +-----------------------------------+
3261   //        |     |         Alignment padding         |
3262   //        |     +-----------------------------------+
3263   //        |     |     Vector register save area     |
3264   //        |     +-----------------------------------+
3265   //        |     |       Local variable space        |
3266   //        |     +-----------------------------------+
3267   //        |     |        Parameter list area        |
3268   //        |     +-----------------------------------+
3269   //        |     |           LR save word            |
3270   //        |     +-----------------------------------+
3271   // SP-->  +---  |            Back chain             |
3272   //              +-----------------------------------+
3273   //
3274   // Specifications:
3275   //   System V Application Binary Interface PowerPC Processor Supplement
3276   //   AltiVec Technology Programming Interface Manual
3277 
3278   MachineFunction &MF = DAG.getMachineFunction();
3279   MachineFrameInfo &MFI = MF.getFrameInfo();
3280   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3281 
3282   EVT PtrVT = getPointerTy(MF.getDataLayout());
3283   // Potential tail calls could cause overwriting of argument stack slots.
3284   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3285                        (CallConv == CallingConv::Fast));
3286   unsigned PtrByteSize = 4;
3287 
3288   // Assign locations to all of the incoming arguments.
3289   SmallVector<CCValAssign, 16> ArgLocs;
3290   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3291                  *DAG.getContext());
3292 
3293   // Reserve space for the linkage area on the stack.
3294   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3295   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3296   if (useSoftFloat())
3297     CCInfo.PreAnalyzeFormalArguments(Ins);
3298 
3299   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3300   CCInfo.clearWasPPCF128();
3301 
3302   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3303     CCValAssign &VA = ArgLocs[i];
3304 
3305     // Arguments stored in registers.
3306     if (VA.isRegLoc()) {
3307       const TargetRegisterClass *RC;
3308       EVT ValVT = VA.getValVT();
3309 
3310       switch (ValVT.getSimpleVT().SimpleTy) {
3311         default:
3312           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3313         case MVT::i1:
3314         case MVT::i32:
3315           RC = &PPC::GPRCRegClass;
3316           break;
3317         case MVT::f32:
3318           if (Subtarget.hasP8Vector())
3319             RC = &PPC::VSSRCRegClass;
3320           else
3321             RC = &PPC::F4RCRegClass;
3322           break;
3323         case MVT::f64:
3324           if (Subtarget.hasVSX())
3325             RC = &PPC::VSFRCRegClass;
3326           else
3327             RC = &PPC::F8RCRegClass;
3328           break;
3329         case MVT::v16i8:
3330         case MVT::v8i16:
3331         case MVT::v4i32:
3332           RC = &PPC::VRRCRegClass;
3333           break;
3334         case MVT::v4f32:
3335           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3336           break;
3337         case MVT::v2f64:
3338         case MVT::v2i64:
3339           RC = &PPC::VRRCRegClass;
3340           break;
3341         case MVT::v4f64:
3342           RC = &PPC::QFRCRegClass;
3343           break;
3344         case MVT::v4i1:
3345           RC = &PPC::QBRCRegClass;
3346           break;
3347       }
3348 
3349       // Transform the arguments stored in physical registers into virtual ones.
3350       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3351       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3352                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
3353 
3354       if (ValVT == MVT::i1)
3355         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3356 
3357       InVals.push_back(ArgValue);
3358     } else {
3359       // Argument stored in memory.
3360       assert(VA.isMemLoc());
3361 
3362       unsigned ArgSize = VA.getLocVT().getStoreSize();
3363       int FI = MFI.CreateFixedObject(ArgSize, VA.getLocMemOffset(),
3364                                      isImmutable);
3365 
3366       // Create load nodes to retrieve arguments from the stack.
3367       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3368       InVals.push_back(
3369           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3370     }
3371   }
3372 
3373   // Assign locations to all of the incoming aggregate by value arguments.
3374   // Aggregates passed by value are stored in the local variable space of the
3375   // caller's stack frame, right above the parameter list area.
3376   SmallVector<CCValAssign, 16> ByValArgLocs;
3377   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3378                       ByValArgLocs, *DAG.getContext());
3379 
3380   // Reserve stack space for the allocations in CCInfo.
3381   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3382 
3383   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3384 
3385   // Area that is at least reserved in the caller of this function.
3386   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3387   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3388 
3389   // Set the size that is at least reserved in caller of this function.  Tail
3390   // call optimized function's reserved stack space needs to be aligned so that
3391   // taking the difference between two stack areas will result in an aligned
3392   // stack.
3393   MinReservedArea =
3394       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3395   FuncInfo->setMinReservedArea(MinReservedArea);
3396 
3397   SmallVector<SDValue, 8> MemOps;
3398 
3399   // If the function takes variable number of arguments, make a frame index for
3400   // the start of the first vararg value... for expansion of llvm.va_start.
3401   if (isVarArg) {
3402     static const MCPhysReg GPArgRegs[] = {
3403       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3404       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3405     };
3406     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3407 
3408     static const MCPhysReg FPArgRegs[] = {
3409       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3410       PPC::F8
3411     };
3412     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3413 
3414     if (useSoftFloat())
3415        NumFPArgRegs = 0;
3416 
3417     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3418     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3419 
3420     // Make room for NumGPArgRegs and NumFPArgRegs.
3421     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3422                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3423 
3424     FuncInfo->setVarArgsStackOffset(
3425       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3426                             CCInfo.getNextStackOffset(), true));
3427 
3428     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3429     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3430 
3431     // The fixed integer arguments of a variadic function are stored to the
3432     // VarArgsFrameIndex on the stack so that they may be loaded by
3433     // dereferencing the result of va_next.
3434     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3435       // Get an existing live-in vreg, or add a new one.
3436       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3437       if (!VReg)
3438         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3439 
3440       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3441       SDValue Store =
3442           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3443       MemOps.push_back(Store);
3444       // Increment the address by four for the next argument to store
3445       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3446       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3447     }
3448 
3449     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3450     // is set.
3451     // The double arguments are stored to the VarArgsFrameIndex
3452     // on the stack.
3453     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3454       // Get an existing live-in vreg, or add a new one.
3455       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3456       if (!VReg)
3457         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3458 
3459       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3460       SDValue Store =
3461           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3462       MemOps.push_back(Store);
3463       // Increment the address by eight for the next argument to store
3464       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3465                                          PtrVT);
3466       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3467     }
3468   }
3469 
3470   if (!MemOps.empty())
3471     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3472 
3473   return Chain;
3474 }
3475 
3476 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3477 // value to MVT::i64 and then truncate to the correct register size.
3478 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3479                                              EVT ObjectVT, SelectionDAG &DAG,
3480                                              SDValue ArgVal,
3481                                              const SDLoc &dl) const {
3482   if (Flags.isSExt())
3483     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3484                          DAG.getValueType(ObjectVT));
3485   else if (Flags.isZExt())
3486     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3487                          DAG.getValueType(ObjectVT));
3488 
3489   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3490 }
3491 
3492 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3493     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3494     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3495     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3496   // TODO: add description of PPC stack frame format, or at least some docs.
3497   //
3498   bool isELFv2ABI = Subtarget.isELFv2ABI();
3499   bool isLittleEndian = Subtarget.isLittleEndian();
3500   MachineFunction &MF = DAG.getMachineFunction();
3501   MachineFrameInfo &MFI = MF.getFrameInfo();
3502   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3503 
3504   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3505          "fastcc not supported on varargs functions");
3506 
3507   EVT PtrVT = getPointerTy(MF.getDataLayout());
3508   // Potential tail calls could cause overwriting of argument stack slots.
3509   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3510                        (CallConv == CallingConv::Fast));
3511   unsigned PtrByteSize = 8;
3512   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3513 
3514   static const MCPhysReg GPR[] = {
3515     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3516     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3517   };
3518   static const MCPhysReg VR[] = {
3519     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3520     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3521   };
3522 
3523   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3524   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3525   const unsigned Num_VR_Regs  = array_lengthof(VR);
3526   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3527 
3528   // Do a first pass over the arguments to determine whether the ABI
3529   // guarantees that our caller has allocated the parameter save area
3530   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3531   // in the ELFv2 ABI, it is true if this is a vararg function or if
3532   // any parameter is located in a stack slot.
3533 
3534   bool HasParameterArea = !isELFv2ABI || isVarArg;
3535   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3536   unsigned NumBytes = LinkageSize;
3537   unsigned AvailableFPRs = Num_FPR_Regs;
3538   unsigned AvailableVRs = Num_VR_Regs;
3539   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3540     if (Ins[i].Flags.isNest())
3541       continue;
3542 
3543     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3544                                PtrByteSize, LinkageSize, ParamAreaSize,
3545                                NumBytes, AvailableFPRs, AvailableVRs,
3546                                Subtarget.hasQPX()))
3547       HasParameterArea = true;
3548   }
3549 
3550   // Add DAG nodes to load the arguments or copy them out of registers.  On
3551   // entry to a function on PPC, the arguments start after the linkage area,
3552   // although the first ones are often in registers.
3553 
3554   unsigned ArgOffset = LinkageSize;
3555   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3556   unsigned &QFPR_idx = FPR_idx;
3557   SmallVector<SDValue, 8> MemOps;
3558   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3559   unsigned CurArgIdx = 0;
3560   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3561     SDValue ArgVal;
3562     bool needsLoad = false;
3563     EVT ObjectVT = Ins[ArgNo].VT;
3564     EVT OrigVT = Ins[ArgNo].ArgVT;
3565     unsigned ObjSize = ObjectVT.getStoreSize();
3566     unsigned ArgSize = ObjSize;
3567     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3568     if (Ins[ArgNo].isOrigArg()) {
3569       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3570       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3571     }
3572     // We re-align the argument offset for each argument, except when using the
3573     // fast calling convention, when we need to make sure we do that only when
3574     // we'll actually use a stack slot.
3575     unsigned CurArgOffset, Align;
3576     auto ComputeArgOffset = [&]() {
3577       /* Respect alignment of argument on the stack.  */
3578       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3579       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3580       CurArgOffset = ArgOffset;
3581     };
3582 
3583     if (CallConv != CallingConv::Fast) {
3584       ComputeArgOffset();
3585 
3586       /* Compute GPR index associated with argument offset.  */
3587       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3588       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3589     }
3590 
3591     // FIXME the codegen can be much improved in some cases.
3592     // We do not have to keep everything in memory.
3593     if (Flags.isByVal()) {
3594       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3595 
3596       if (CallConv == CallingConv::Fast)
3597         ComputeArgOffset();
3598 
3599       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3600       ObjSize = Flags.getByValSize();
3601       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3602       // Empty aggregate parameters do not take up registers.  Examples:
3603       //   struct { } a;
3604       //   union  { } b;
3605       //   int c[0];
3606       // etc.  However, we have to provide a place-holder in InVals, so
3607       // pretend we have an 8-byte item at the current address for that
3608       // purpose.
3609       if (!ObjSize) {
3610         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3611         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3612         InVals.push_back(FIN);
3613         continue;
3614       }
3615 
3616       // Create a stack object covering all stack doublewords occupied
3617       // by the argument.  If the argument is (fully or partially) on
3618       // the stack, or if the argument is fully in registers but the
3619       // caller has allocated the parameter save anyway, we can refer
3620       // directly to the caller's stack frame.  Otherwise, create a
3621       // local copy in our own frame.
3622       int FI;
3623       if (HasParameterArea ||
3624           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3625         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3626       else
3627         FI = MFI.CreateStackObject(ArgSize, Align, false);
3628       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3629 
3630       // Handle aggregates smaller than 8 bytes.
3631       if (ObjSize < PtrByteSize) {
3632         // The value of the object is its address, which differs from the
3633         // address of the enclosing doubleword on big-endian systems.
3634         SDValue Arg = FIN;
3635         if (!isLittleEndian) {
3636           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3637           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3638         }
3639         InVals.push_back(Arg);
3640 
3641         if (GPR_idx != Num_GPR_Regs) {
3642           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3643           FuncInfo->addLiveInAttr(VReg, Flags);
3644           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3645           SDValue Store;
3646 
3647           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3648             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3649                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3650             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3651                                       MachinePointerInfo(&*FuncArg), ObjType);
3652           } else {
3653             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3654             // store the whole register as-is to the parameter save area
3655             // slot.
3656             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3657                                  MachinePointerInfo(&*FuncArg));
3658           }
3659 
3660           MemOps.push_back(Store);
3661         }
3662         // Whether we copied from a register or not, advance the offset
3663         // into the parameter save area by a full doubleword.
3664         ArgOffset += PtrByteSize;
3665         continue;
3666       }
3667 
3668       // The value of the object is its address, which is the address of
3669       // its first stack doubleword.
3670       InVals.push_back(FIN);
3671 
3672       // Store whatever pieces of the object are in registers to memory.
3673       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3674         if (GPR_idx == Num_GPR_Regs)
3675           break;
3676 
3677         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3678         FuncInfo->addLiveInAttr(VReg, Flags);
3679         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3680         SDValue Addr = FIN;
3681         if (j) {
3682           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3683           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3684         }
3685         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3686                                      MachinePointerInfo(&*FuncArg, j));
3687         MemOps.push_back(Store);
3688         ++GPR_idx;
3689       }
3690       ArgOffset += ArgSize;
3691       continue;
3692     }
3693 
3694     switch (ObjectVT.getSimpleVT().SimpleTy) {
3695     default: llvm_unreachable("Unhandled argument type!");
3696     case MVT::i1:
3697     case MVT::i32:
3698     case MVT::i64:
3699       if (Flags.isNest()) {
3700         // The 'nest' parameter, if any, is passed in R11.
3701         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3702         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3703 
3704         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3705           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3706 
3707         break;
3708       }
3709 
3710       // These can be scalar arguments or elements of an integer array type
3711       // passed directly.  Clang may use those instead of "byval" aggregate
3712       // types to avoid forcing arguments to memory unnecessarily.
3713       if (GPR_idx != Num_GPR_Regs) {
3714         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3715         FuncInfo->addLiveInAttr(VReg, Flags);
3716         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3717 
3718         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3719           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3720           // value to MVT::i64 and then truncate to the correct register size.
3721           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3722       } else {
3723         if (CallConv == CallingConv::Fast)
3724           ComputeArgOffset();
3725 
3726         needsLoad = true;
3727         ArgSize = PtrByteSize;
3728       }
3729       if (CallConv != CallingConv::Fast || needsLoad)
3730         ArgOffset += 8;
3731       break;
3732 
3733     case MVT::f32:
3734     case MVT::f64:
3735       // These can be scalar arguments or elements of a float array type
3736       // passed directly.  The latter are used to implement ELFv2 homogenous
3737       // float aggregates.
3738       if (FPR_idx != Num_FPR_Regs) {
3739         unsigned VReg;
3740 
3741         if (ObjectVT == MVT::f32)
3742           VReg = MF.addLiveIn(FPR[FPR_idx],
3743                               Subtarget.hasP8Vector()
3744                                   ? &PPC::VSSRCRegClass
3745                                   : &PPC::F4RCRegClass);
3746         else
3747           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3748                                                 ? &PPC::VSFRCRegClass
3749                                                 : &PPC::F8RCRegClass);
3750 
3751         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3752         ++FPR_idx;
3753       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3754         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3755         // once we support fp <-> gpr moves.
3756 
3757         // This can only ever happen in the presence of f32 array types,
3758         // since otherwise we never run out of FPRs before running out
3759         // of GPRs.
3760         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3761         FuncInfo->addLiveInAttr(VReg, Flags);
3762         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3763 
3764         if (ObjectVT == MVT::f32) {
3765           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3766             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3767                                  DAG.getConstant(32, dl, MVT::i32));
3768           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3769         }
3770 
3771         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3772       } else {
3773         if (CallConv == CallingConv::Fast)
3774           ComputeArgOffset();
3775 
3776         needsLoad = true;
3777       }
3778 
3779       // When passing an array of floats, the array occupies consecutive
3780       // space in the argument area; only round up to the next doubleword
3781       // at the end of the array.  Otherwise, each float takes 8 bytes.
3782       if (CallConv != CallingConv::Fast || needsLoad) {
3783         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3784         ArgOffset += ArgSize;
3785         if (Flags.isInConsecutiveRegsLast())
3786           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3787       }
3788       break;
3789     case MVT::v4f32:
3790     case MVT::v4i32:
3791     case MVT::v8i16:
3792     case MVT::v16i8:
3793     case MVT::v2f64:
3794     case MVT::v2i64:
3795     case MVT::v1i128:
3796       if (!Subtarget.hasQPX()) {
3797         // These can be scalar arguments or elements of a vector array type
3798         // passed directly.  The latter are used to implement ELFv2 homogenous
3799         // vector aggregates.
3800         if (VR_idx != Num_VR_Regs) {
3801           unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3802           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3803           ++VR_idx;
3804         } else {
3805           if (CallConv == CallingConv::Fast)
3806             ComputeArgOffset();
3807           needsLoad = true;
3808         }
3809         if (CallConv != CallingConv::Fast || needsLoad)
3810           ArgOffset += 16;
3811         break;
3812       } // not QPX
3813 
3814       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3815              "Invalid QPX parameter type");
3816       /* fall through */
3817 
3818     case MVT::v4f64:
3819     case MVT::v4i1:
3820       // QPX vectors are treated like their scalar floating-point subregisters
3821       // (except that they're larger).
3822       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3823       if (QFPR_idx != Num_QFPR_Regs) {
3824         const TargetRegisterClass *RC;
3825         switch (ObjectVT.getSimpleVT().SimpleTy) {
3826         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
3827         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
3828         default:         RC = &PPC::QBRCRegClass; break;
3829         }
3830 
3831         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
3832         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3833         ++QFPR_idx;
3834       } else {
3835         if (CallConv == CallingConv::Fast)
3836           ComputeArgOffset();
3837         needsLoad = true;
3838       }
3839       if (CallConv != CallingConv::Fast || needsLoad)
3840         ArgOffset += Sz;
3841       break;
3842     }
3843 
3844     // We need to load the argument to a virtual register if we determined
3845     // above that we ran out of physical registers of the appropriate type.
3846     if (needsLoad) {
3847       if (ObjSize < ArgSize && !isLittleEndian)
3848         CurArgOffset += ArgSize - ObjSize;
3849       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
3850       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3851       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
3852     }
3853 
3854     InVals.push_back(ArgVal);
3855   }
3856 
3857   // Area that is at least reserved in the caller of this function.
3858   unsigned MinReservedArea;
3859   if (HasParameterArea)
3860     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
3861   else
3862     MinReservedArea = LinkageSize;
3863 
3864   // Set the size that is at least reserved in caller of this function.  Tail
3865   // call optimized functions' reserved stack space needs to be aligned so that
3866   // taking the difference between two stack areas will result in an aligned
3867   // stack.
3868   MinReservedArea =
3869       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3870   FuncInfo->setMinReservedArea(MinReservedArea);
3871 
3872   // If the function takes variable number of arguments, make a frame index for
3873   // the start of the first vararg value... for expansion of llvm.va_start.
3874   if (isVarArg) {
3875     int Depth = ArgOffset;
3876 
3877     FuncInfo->setVarArgsFrameIndex(
3878       MFI.CreateFixedObject(PtrByteSize, Depth, true));
3879     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3880 
3881     // If this function is vararg, store any remaining integer argument regs
3882     // to their spots on the stack so that they may be loaded by dereferencing
3883     // the result of va_next.
3884     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3885          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
3886       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3887       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3888       SDValue Store =
3889           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3890       MemOps.push_back(Store);
3891       // Increment the address by four for the next argument to store
3892       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
3893       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3894     }
3895   }
3896 
3897   if (!MemOps.empty())
3898     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3899 
3900   return Chain;
3901 }
3902 
3903 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
3904     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3905     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3906     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3907   // TODO: add description of PPC stack frame format, or at least some docs.
3908   //
3909   MachineFunction &MF = DAG.getMachineFunction();
3910   MachineFrameInfo &MFI = MF.getFrameInfo();
3911   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3912 
3913   EVT PtrVT = getPointerTy(MF.getDataLayout());
3914   bool isPPC64 = PtrVT == MVT::i64;
3915   // Potential tail calls could cause overwriting of argument stack slots.
3916   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3917                        (CallConv == CallingConv::Fast));
3918   unsigned PtrByteSize = isPPC64 ? 8 : 4;
3919   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3920   unsigned ArgOffset = LinkageSize;
3921   // Area that is at least reserved in caller of this function.
3922   unsigned MinReservedArea = ArgOffset;
3923 
3924   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
3925     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3926     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3927   };
3928   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
3929     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3930     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3931   };
3932   static const MCPhysReg VR[] = {
3933     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3934     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3935   };
3936 
3937   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
3938   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3939   const unsigned Num_VR_Regs  = array_lengthof( VR);
3940 
3941   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3942 
3943   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
3944 
3945   // In 32-bit non-varargs functions, the stack space for vectors is after the
3946   // stack space for non-vectors.  We do not use this space unless we have
3947   // too many vectors to fit in registers, something that only occurs in
3948   // constructed examples:), but we have to walk the arglist to figure
3949   // that out...for the pathological case, compute VecArgOffset as the
3950   // start of the vector parameter area.  Computing VecArgOffset is the
3951   // entire point of the following loop.
3952   unsigned VecArgOffset = ArgOffset;
3953   if (!isVarArg && !isPPC64) {
3954     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
3955          ++ArgNo) {
3956       EVT ObjectVT = Ins[ArgNo].VT;
3957       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3958 
3959       if (Flags.isByVal()) {
3960         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
3961         unsigned ObjSize = Flags.getByValSize();
3962         unsigned ArgSize =
3963                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3964         VecArgOffset += ArgSize;
3965         continue;
3966       }
3967 
3968       switch(ObjectVT.getSimpleVT().SimpleTy) {
3969       default: llvm_unreachable("Unhandled argument type!");
3970       case MVT::i1:
3971       case MVT::i32:
3972       case MVT::f32:
3973         VecArgOffset += 4;
3974         break;
3975       case MVT::i64:  // PPC64
3976       case MVT::f64:
3977         // FIXME: We are guaranteed to be !isPPC64 at this point.
3978         // Does MVT::i64 apply?
3979         VecArgOffset += 8;
3980         break;
3981       case MVT::v4f32:
3982       case MVT::v4i32:
3983       case MVT::v8i16:
3984       case MVT::v16i8:
3985         // Nothing to do, we're only looking at Nonvector args here.
3986         break;
3987       }
3988     }
3989   }
3990   // We've found where the vector parameter area in memory is.  Skip the
3991   // first 12 parameters; these don't use that memory.
3992   VecArgOffset = ((VecArgOffset+15)/16)*16;
3993   VecArgOffset += 12*16;
3994 
3995   // Add DAG nodes to load the arguments or copy them out of registers.  On
3996   // entry to a function on PPC, the arguments start after the linkage area,
3997   // although the first ones are often in registers.
3998 
3999   SmallVector<SDValue, 8> MemOps;
4000   unsigned nAltivecParamsAtEnd = 0;
4001   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4002   unsigned CurArgIdx = 0;
4003   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4004     SDValue ArgVal;
4005     bool needsLoad = false;
4006     EVT ObjectVT = Ins[ArgNo].VT;
4007     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4008     unsigned ArgSize = ObjSize;
4009     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4010     if (Ins[ArgNo].isOrigArg()) {
4011       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4012       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4013     }
4014     unsigned CurArgOffset = ArgOffset;
4015 
4016     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4017     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4018         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4019       if (isVarArg || isPPC64) {
4020         MinReservedArea = ((MinReservedArea+15)/16)*16;
4021         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4022                                                   Flags,
4023                                                   PtrByteSize);
4024       } else  nAltivecParamsAtEnd++;
4025     } else
4026       // Calculate min reserved area.
4027       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4028                                                 Flags,
4029                                                 PtrByteSize);
4030 
4031     // FIXME the codegen can be much improved in some cases.
4032     // We do not have to keep everything in memory.
4033     if (Flags.isByVal()) {
4034       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4035 
4036       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4037       ObjSize = Flags.getByValSize();
4038       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4039       // Objects of size 1 and 2 are right justified, everything else is
4040       // left justified.  This means the memory address is adjusted forwards.
4041       if (ObjSize==1 || ObjSize==2) {
4042         CurArgOffset = CurArgOffset + (4 - ObjSize);
4043       }
4044       // The value of the object is its address.
4045       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4046       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4047       InVals.push_back(FIN);
4048       if (ObjSize==1 || ObjSize==2) {
4049         if (GPR_idx != Num_GPR_Regs) {
4050           unsigned VReg;
4051           if (isPPC64)
4052             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4053           else
4054             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4055           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4056           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4057           SDValue Store =
4058               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4059                                 MachinePointerInfo(&*FuncArg), ObjType);
4060           MemOps.push_back(Store);
4061           ++GPR_idx;
4062         }
4063 
4064         ArgOffset += PtrByteSize;
4065 
4066         continue;
4067       }
4068       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4069         // Store whatever pieces of the object are in registers
4070         // to memory.  ArgOffset will be the address of the beginning
4071         // of the object.
4072         if (GPR_idx != Num_GPR_Regs) {
4073           unsigned VReg;
4074           if (isPPC64)
4075             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4076           else
4077             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4078           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4079           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4080           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4081           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4082                                        MachinePointerInfo(&*FuncArg, j));
4083           MemOps.push_back(Store);
4084           ++GPR_idx;
4085           ArgOffset += PtrByteSize;
4086         } else {
4087           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4088           break;
4089         }
4090       }
4091       continue;
4092     }
4093 
4094     switch (ObjectVT.getSimpleVT().SimpleTy) {
4095     default: llvm_unreachable("Unhandled argument type!");
4096     case MVT::i1:
4097     case MVT::i32:
4098       if (!isPPC64) {
4099         if (GPR_idx != Num_GPR_Regs) {
4100           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4101           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4102 
4103           if (ObjectVT == MVT::i1)
4104             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4105 
4106           ++GPR_idx;
4107         } else {
4108           needsLoad = true;
4109           ArgSize = PtrByteSize;
4110         }
4111         // All int arguments reserve stack space in the Darwin ABI.
4112         ArgOffset += PtrByteSize;
4113         break;
4114       }
4115       LLVM_FALLTHROUGH;
4116     case MVT::i64:  // PPC64
4117       if (GPR_idx != Num_GPR_Regs) {
4118         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4119         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4120 
4121         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4122           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4123           // value to MVT::i64 and then truncate to the correct register size.
4124           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4125 
4126         ++GPR_idx;
4127       } else {
4128         needsLoad = true;
4129         ArgSize = PtrByteSize;
4130       }
4131       // All int arguments reserve stack space in the Darwin ABI.
4132       ArgOffset += 8;
4133       break;
4134 
4135     case MVT::f32:
4136     case MVT::f64:
4137       // Every 4 bytes of argument space consumes one of the GPRs available for
4138       // argument passing.
4139       if (GPR_idx != Num_GPR_Regs) {
4140         ++GPR_idx;
4141         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4142           ++GPR_idx;
4143       }
4144       if (FPR_idx != Num_FPR_Regs) {
4145         unsigned VReg;
4146 
4147         if (ObjectVT == MVT::f32)
4148           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4149         else
4150           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4151 
4152         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4153         ++FPR_idx;
4154       } else {
4155         needsLoad = true;
4156       }
4157 
4158       // All FP arguments reserve stack space in the Darwin ABI.
4159       ArgOffset += isPPC64 ? 8 : ObjSize;
4160       break;
4161     case MVT::v4f32:
4162     case MVT::v4i32:
4163     case MVT::v8i16:
4164     case MVT::v16i8:
4165       // Note that vector arguments in registers don't reserve stack space,
4166       // except in varargs functions.
4167       if (VR_idx != Num_VR_Regs) {
4168         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4169         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4170         if (isVarArg) {
4171           while ((ArgOffset % 16) != 0) {
4172             ArgOffset += PtrByteSize;
4173             if (GPR_idx != Num_GPR_Regs)
4174               GPR_idx++;
4175           }
4176           ArgOffset += 16;
4177           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4178         }
4179         ++VR_idx;
4180       } else {
4181         if (!isVarArg && !isPPC64) {
4182           // Vectors go after all the nonvectors.
4183           CurArgOffset = VecArgOffset;
4184           VecArgOffset += 16;
4185         } else {
4186           // Vectors are aligned.
4187           ArgOffset = ((ArgOffset+15)/16)*16;
4188           CurArgOffset = ArgOffset;
4189           ArgOffset += 16;
4190         }
4191         needsLoad = true;
4192       }
4193       break;
4194     }
4195 
4196     // We need to load the argument to a virtual register if we determined above
4197     // that we ran out of physical registers of the appropriate type.
4198     if (needsLoad) {
4199       int FI = MFI.CreateFixedObject(ObjSize,
4200                                      CurArgOffset + (ArgSize - ObjSize),
4201                                      isImmutable);
4202       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4203       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4204     }
4205 
4206     InVals.push_back(ArgVal);
4207   }
4208 
4209   // Allow for Altivec parameters at the end, if needed.
4210   if (nAltivecParamsAtEnd) {
4211     MinReservedArea = ((MinReservedArea+15)/16)*16;
4212     MinReservedArea += 16*nAltivecParamsAtEnd;
4213   }
4214 
4215   // Area that is at least reserved in the caller of this function.
4216   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4217 
4218   // Set the size that is at least reserved in caller of this function.  Tail
4219   // call optimized functions' reserved stack space needs to be aligned so that
4220   // taking the difference between two stack areas will result in an aligned
4221   // stack.
4222   MinReservedArea =
4223       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4224   FuncInfo->setMinReservedArea(MinReservedArea);
4225 
4226   // If the function takes variable number of arguments, make a frame index for
4227   // the start of the first vararg value... for expansion of llvm.va_start.
4228   if (isVarArg) {
4229     int Depth = ArgOffset;
4230 
4231     FuncInfo->setVarArgsFrameIndex(
4232       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4233                             Depth, true));
4234     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4235 
4236     // If this function is vararg, store any remaining integer argument regs
4237     // to their spots on the stack so that they may be loaded by dereferencing
4238     // the result of va_next.
4239     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4240       unsigned VReg;
4241 
4242       if (isPPC64)
4243         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4244       else
4245         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4246 
4247       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4248       SDValue Store =
4249           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4250       MemOps.push_back(Store);
4251       // Increment the address by four for the next argument to store
4252       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4253       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4254     }
4255   }
4256 
4257   if (!MemOps.empty())
4258     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4259 
4260   return Chain;
4261 }
4262 
4263 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4264 /// adjusted to accommodate the arguments for the tailcall.
4265 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4266                                    unsigned ParamSize) {
4267 
4268   if (!isTailCall) return 0;
4269 
4270   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4271   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4272   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4273   // Remember only if the new adjustement is bigger.
4274   if (SPDiff < FI->getTailCallSPDelta())
4275     FI->setTailCallSPDelta(SPDiff);
4276 
4277   return SPDiff;
4278 }
4279 
4280 static bool isFunctionGlobalAddress(SDValue Callee);
4281 
4282 static bool
4283 callsShareTOCBase(const Function *Caller, SDValue Callee,
4284                     const TargetMachine &TM) {
4285   // If !G, Callee can be an external symbol.
4286   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4287   if (!G)
4288     return false;
4289 
4290   // The medium and large code models are expected to provide a sufficiently
4291   // large TOC to provide all data addressing needs of a module with a
4292   // single TOC. Since each module will be addressed with a single TOC then we
4293   // only need to check that caller and callee don't cross dso boundaries.
4294   if (CodeModel::Medium == TM.getCodeModel() ||
4295       CodeModel::Large == TM.getCodeModel())
4296     return TM.shouldAssumeDSOLocal(*Caller->getParent(), G->getGlobal());
4297 
4298   // Otherwise we need to ensure callee and caller are in the same section,
4299   // since the linker may allocate multiple TOCs, and we don't know which
4300   // sections will belong to the same TOC base.
4301 
4302   const GlobalValue *GV = G->getGlobal();
4303   if (!GV->isStrongDefinitionForLinker())
4304     return false;
4305 
4306   // Any explicitly-specified sections and section prefixes must also match.
4307   // Also, if we're using -ffunction-sections, then each function is always in
4308   // a different section (the same is true for COMDAT functions).
4309   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4310       GV->getSection() != Caller->getSection())
4311     return false;
4312   if (const auto *F = dyn_cast<Function>(GV)) {
4313     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4314       return false;
4315   }
4316 
4317   // If the callee might be interposed, then we can't assume the ultimate call
4318   // target will be in the same section. Even in cases where we can assume that
4319   // interposition won't happen, in any case where the linker might insert a
4320   // stub to allow for interposition, we must generate code as though
4321   // interposition might occur. To understand why this matters, consider a
4322   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4323   // in the same section, but a is in a different module (i.e. has a different
4324   // TOC base pointer). If the linker allows for interposition between b and c,
4325   // then it will generate a stub for the call edge between b and c which will
4326   // save the TOC pointer into the designated stack slot allocated by b. If we
4327   // return true here, and therefore allow a tail call between b and c, that
4328   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4329   // pointer into the stack slot allocated by a (where the a -> b stub saved
4330   // a's TOC base pointer). If we're not considering a tail call, but rather,
4331   // whether a nop is needed after the call instruction in b, because the linker
4332   // will insert a stub, it might complain about a missing nop if we omit it
4333   // (although many don't complain in this case).
4334   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4335     return false;
4336 
4337   return true;
4338 }
4339 
4340 static bool
4341 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4342                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4343   assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
4344 
4345   const unsigned PtrByteSize = 8;
4346   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4347 
4348   static const MCPhysReg GPR[] = {
4349     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4350     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4351   };
4352   static const MCPhysReg VR[] = {
4353     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4354     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4355   };
4356 
4357   const unsigned NumGPRs = array_lengthof(GPR);
4358   const unsigned NumFPRs = 13;
4359   const unsigned NumVRs = array_lengthof(VR);
4360   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4361 
4362   unsigned NumBytes = LinkageSize;
4363   unsigned AvailableFPRs = NumFPRs;
4364   unsigned AvailableVRs = NumVRs;
4365 
4366   for (const ISD::OutputArg& Param : Outs) {
4367     if (Param.Flags.isNest()) continue;
4368 
4369     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4370                                PtrByteSize, LinkageSize, ParamAreaSize,
4371                                NumBytes, AvailableFPRs, AvailableVRs,
4372                                Subtarget.hasQPX()))
4373       return true;
4374   }
4375   return false;
4376 }
4377 
4378 static bool
4379 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
4380   if (CS.arg_size() != CallerFn->arg_size())
4381     return false;
4382 
4383   ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
4384   ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
4385   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4386 
4387   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4388     const Value* CalleeArg = *CalleeArgIter;
4389     const Value* CallerArg = &(*CallerArgIter);
4390     if (CalleeArg == CallerArg)
4391       continue;
4392 
4393     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4394     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4395     //      }
4396     // 1st argument of callee is undef and has the same type as caller.
4397     if (CalleeArg->getType() == CallerArg->getType() &&
4398         isa<UndefValue>(CalleeArg))
4399       continue;
4400 
4401     return false;
4402   }
4403 
4404   return true;
4405 }
4406 
4407 // Returns true if TCO is possible between the callers and callees
4408 // calling conventions.
4409 static bool
4410 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4411                                     CallingConv::ID CalleeCC) {
4412   // Tail calls are possible with fastcc and ccc.
4413   auto isTailCallableCC  = [] (CallingConv::ID CC){
4414       return  CC == CallingConv::C || CC == CallingConv::Fast;
4415   };
4416   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4417     return false;
4418 
4419   // We can safely tail call both fastcc and ccc callees from a c calling
4420   // convention caller. If the caller is fastcc, we may have less stack space
4421   // than a non-fastcc caller with the same signature so disable tail-calls in
4422   // that case.
4423   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4424 }
4425 
4426 bool
4427 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4428                                     SDValue Callee,
4429                                     CallingConv::ID CalleeCC,
4430                                     ImmutableCallSite CS,
4431                                     bool isVarArg,
4432                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4433                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4434                                     SelectionDAG& DAG) const {
4435   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4436 
4437   if (DisableSCO && !TailCallOpt) return false;
4438 
4439   // Variadic argument functions are not supported.
4440   if (isVarArg) return false;
4441 
4442   auto &Caller = DAG.getMachineFunction().getFunction();
4443   // Check that the calling conventions are compatible for tco.
4444   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4445     return false;
4446 
4447   // Caller contains any byval parameter is not supported.
4448   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4449     return false;
4450 
4451   // Callee contains any byval parameter is not supported, too.
4452   // Note: This is a quick work around, because in some cases, e.g.
4453   // caller's stack size > callee's stack size, we are still able to apply
4454   // sibling call optimization. For example, gcc is able to do SCO for caller1
4455   // in the following example, but not for caller2.
4456   //   struct test {
4457   //     long int a;
4458   //     char ary[56];
4459   //   } gTest;
4460   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4461   //     b->a = v.a;
4462   //     return 0;
4463   //   }
4464   //   void caller1(struct test a, struct test c, struct test *b) {
4465   //     callee(gTest, b); }
4466   //   void caller2(struct test *b) { callee(gTest, b); }
4467   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4468     return false;
4469 
4470   // If callee and caller use different calling conventions, we cannot pass
4471   // parameters on stack since offsets for the parameter area may be different.
4472   if (Caller.getCallingConv() != CalleeCC &&
4473       needStackSlotPassParameters(Subtarget, Outs))
4474     return false;
4475 
4476   // No TCO/SCO on indirect call because Caller have to restore its TOC
4477   if (!isFunctionGlobalAddress(Callee) &&
4478       !isa<ExternalSymbolSDNode>(Callee))
4479     return false;
4480 
4481   // If the caller and callee potentially have different TOC bases then we
4482   // cannot tail call since we need to restore the TOC pointer after the call.
4483   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4484   if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4485     return false;
4486 
4487   // TCO allows altering callee ABI, so we don't have to check further.
4488   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4489     return true;
4490 
4491   if (DisableSCO) return false;
4492 
4493   // If callee use the same argument list that caller is using, then we can
4494   // apply SCO on this case. If it is not, then we need to check if callee needs
4495   // stack for passing arguments.
4496   if (!hasSameArgumentList(&Caller, CS) &&
4497       needStackSlotPassParameters(Subtarget, Outs)) {
4498     return false;
4499   }
4500 
4501   return true;
4502 }
4503 
4504 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4505 /// for tail call optimization. Targets which want to do tail call
4506 /// optimization should implement this function.
4507 bool
4508 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4509                                                      CallingConv::ID CalleeCC,
4510                                                      bool isVarArg,
4511                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4512                                                      SelectionDAG& DAG) const {
4513   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4514     return false;
4515 
4516   // Variable argument functions are not supported.
4517   if (isVarArg)
4518     return false;
4519 
4520   MachineFunction &MF = DAG.getMachineFunction();
4521   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4522   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4523     // Functions containing by val parameters are not supported.
4524     for (unsigned i = 0; i != Ins.size(); i++) {
4525        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4526        if (Flags.isByVal()) return false;
4527     }
4528 
4529     // Non-PIC/GOT tail calls are supported.
4530     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4531       return true;
4532 
4533     // At the moment we can only do local tail calls (in same module, hidden
4534     // or protected) if we are generating PIC.
4535     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4536       return G->getGlobal()->hasHiddenVisibility()
4537           || G->getGlobal()->hasProtectedVisibility();
4538   }
4539 
4540   return false;
4541 }
4542 
4543 /// isCallCompatibleAddress - Return the immediate to use if the specified
4544 /// 32-bit value is representable in the immediate field of a BxA instruction.
4545 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4546   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4547   if (!C) return nullptr;
4548 
4549   int Addr = C->getZExtValue();
4550   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4551       SignExtend32<26>(Addr) != Addr)
4552     return nullptr;  // Top 6 bits have to be sext of immediate.
4553 
4554   return DAG
4555       .getConstant(
4556           (int)C->getZExtValue() >> 2, SDLoc(Op),
4557           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4558       .getNode();
4559 }
4560 
4561 namespace {
4562 
4563 struct TailCallArgumentInfo {
4564   SDValue Arg;
4565   SDValue FrameIdxOp;
4566   int FrameIdx = 0;
4567 
4568   TailCallArgumentInfo() = default;
4569 };
4570 
4571 } // end anonymous namespace
4572 
4573 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4574 static void StoreTailCallArgumentsToStackSlot(
4575     SelectionDAG &DAG, SDValue Chain,
4576     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4577     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4578   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4579     SDValue Arg = TailCallArgs[i].Arg;
4580     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4581     int FI = TailCallArgs[i].FrameIdx;
4582     // Store relative to framepointer.
4583     MemOpChains.push_back(DAG.getStore(
4584         Chain, dl, Arg, FIN,
4585         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4586   }
4587 }
4588 
4589 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4590 /// the appropriate stack slot for the tail call optimized function call.
4591 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4592                                              SDValue OldRetAddr, SDValue OldFP,
4593                                              int SPDiff, const SDLoc &dl) {
4594   if (SPDiff) {
4595     // Calculate the new stack slot for the return address.
4596     MachineFunction &MF = DAG.getMachineFunction();
4597     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4598     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4599     bool isPPC64 = Subtarget.isPPC64();
4600     int SlotSize = isPPC64 ? 8 : 4;
4601     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4602     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4603                                                          NewRetAddrLoc, true);
4604     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4605     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4606     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4607                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4608 
4609     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4610     // slot as the FP is never overwritten.
4611     if (Subtarget.isDarwinABI()) {
4612       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4613       int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
4614                                                          true);
4615       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4616       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
4617                            MachinePointerInfo::getFixedStack(
4618                                DAG.getMachineFunction(), NewFPIdx));
4619     }
4620   }
4621   return Chain;
4622 }
4623 
4624 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4625 /// the position of the argument.
4626 static void
4627 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4628                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4629                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4630   int Offset = ArgOffset + SPDiff;
4631   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4632   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4633   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4634   SDValue FIN = DAG.getFrameIndex(FI, VT);
4635   TailCallArgumentInfo Info;
4636   Info.Arg = Arg;
4637   Info.FrameIdxOp = FIN;
4638   Info.FrameIdx = FI;
4639   TailCallArguments.push_back(Info);
4640 }
4641 
4642 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4643 /// stack slot. Returns the chain as result and the loaded frame pointers in
4644 /// LROpOut/FPOpout. Used when tail calling.
4645 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4646     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4647     SDValue &FPOpOut, const SDLoc &dl) const {
4648   if (SPDiff) {
4649     // Load the LR and FP stack slot for later adjusting.
4650     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4651     LROpOut = getReturnAddrFrameIndex(DAG);
4652     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4653     Chain = SDValue(LROpOut.getNode(), 1);
4654 
4655     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4656     // slot as the FP is never overwritten.
4657     if (Subtarget.isDarwinABI()) {
4658       FPOpOut = getFramePointerFrameIndex(DAG);
4659       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
4660       Chain = SDValue(FPOpOut.getNode(), 1);
4661     }
4662   }
4663   return Chain;
4664 }
4665 
4666 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4667 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4668 /// specified by the specific parameter attribute. The copy will be passed as
4669 /// a byval function parameter.
4670 /// Sometimes what we are copying is the end of a larger object, the part that
4671 /// does not fit in registers.
4672 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4673                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4674                                          SelectionDAG &DAG, const SDLoc &dl) {
4675   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4676   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4677                        false, false, false, MachinePointerInfo(),
4678                        MachinePointerInfo());
4679 }
4680 
4681 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4682 /// tail calls.
4683 static void LowerMemOpCallTo(
4684     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4685     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4686     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4687     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4688   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4689   if (!isTailCall) {
4690     if (isVector) {
4691       SDValue StackPtr;
4692       if (isPPC64)
4693         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4694       else
4695         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4696       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4697                            DAG.getConstant(ArgOffset, dl, PtrVT));
4698     }
4699     MemOpChains.push_back(
4700         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4701     // Calculate and remember argument location.
4702   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4703                                   TailCallArguments);
4704 }
4705 
4706 static void
4707 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4708                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4709                 SDValue FPOp,
4710                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4711   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4712   // might overwrite each other in case of tail call optimization.
4713   SmallVector<SDValue, 8> MemOpChains2;
4714   // Do not flag preceding copytoreg stuff together with the following stuff.
4715   InFlag = SDValue();
4716   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4717                                     MemOpChains2, dl);
4718   if (!MemOpChains2.empty())
4719     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4720 
4721   // Store the return address to the appropriate stack slot.
4722   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4723 
4724   // Emit callseq_end just before tailcall node.
4725   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4726                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4727   InFlag = Chain.getValue(1);
4728 }
4729 
4730 // Is this global address that of a function that can be called by name? (as
4731 // opposed to something that must hold a descriptor for an indirect call).
4732 static bool isFunctionGlobalAddress(SDValue Callee) {
4733   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4734     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4735         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4736       return false;
4737 
4738     return G->getGlobal()->getValueType()->isFunctionTy();
4739   }
4740 
4741   return false;
4742 }
4743 
4744 static unsigned
4745 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
4746             SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
4747             bool isPatchPoint, bool hasNest,
4748             SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
4749             SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4750             ImmutableCallSite CS, const PPCSubtarget &Subtarget) {
4751   bool isPPC64 = Subtarget.isPPC64();
4752   bool isSVR4ABI = Subtarget.isSVR4ABI();
4753   bool isELFv2ABI = Subtarget.isELFv2ABI();
4754 
4755   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4756   NodeTys.push_back(MVT::Other);   // Returns a chain
4757   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
4758 
4759   unsigned CallOpc = PPCISD::CALL;
4760 
4761   bool needIndirectCall = true;
4762   if (!isSVR4ABI || !isPPC64)
4763     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4764       // If this is an absolute destination address, use the munged value.
4765       Callee = SDValue(Dest, 0);
4766       needIndirectCall = false;
4767     }
4768 
4769   // PC-relative references to external symbols should go through $stub, unless
4770   // we're building with the leopard linker or later, which automatically
4771   // synthesizes these stubs.
4772   const TargetMachine &TM = DAG.getTarget();
4773   const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
4774   const GlobalValue *GV = nullptr;
4775   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
4776     GV = G->getGlobal();
4777   bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
4778   bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64;
4779 
4780   if (isFunctionGlobalAddress(Callee)) {
4781     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4782     // A call to a TLS address is actually an indirect call to a
4783     // thread-specific pointer.
4784     unsigned OpFlags = 0;
4785     if (UsePlt)
4786       OpFlags = PPCII::MO_PLT;
4787 
4788     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4789     // every direct call is) turn it into a TargetGlobalAddress /
4790     // TargetExternalSymbol node so that legalize doesn't hack it.
4791     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4792                                         Callee.getValueType(), 0, OpFlags);
4793     needIndirectCall = false;
4794   }
4795 
4796   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4797     unsigned char OpFlags = 0;
4798 
4799     if (UsePlt)
4800       OpFlags = PPCII::MO_PLT;
4801 
4802     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
4803                                          OpFlags);
4804     needIndirectCall = false;
4805   }
4806 
4807   if (isPatchPoint) {
4808     // We'll form an invalid direct call when lowering a patchpoint; the full
4809     // sequence for an indirect call is complicated, and many of the
4810     // instructions introduced might have side effects (and, thus, can't be
4811     // removed later). The call itself will be removed as soon as the
4812     // argument/return lowering is complete, so the fact that it has the wrong
4813     // kind of operands should not really matter.
4814     needIndirectCall = false;
4815   }
4816 
4817   if (needIndirectCall) {
4818     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
4819     // to do the call, we can't use PPCISD::CALL.
4820     SDValue MTCTROps[] = {Chain, Callee, InFlag};
4821 
4822     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
4823       // Function pointers in the 64-bit SVR4 ABI do not point to the function
4824       // entry point, but to the function descriptor (the function entry point
4825       // address is part of the function descriptor though).
4826       // The function descriptor is a three doubleword structure with the
4827       // following fields: function entry point, TOC base address and
4828       // environment pointer.
4829       // Thus for a call through a function pointer, the following actions need
4830       // to be performed:
4831       //   1. Save the TOC of the caller in the TOC save area of its stack
4832       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
4833       //   2. Load the address of the function entry point from the function
4834       //      descriptor.
4835       //   3. Load the TOC of the callee from the function descriptor into r2.
4836       //   4. Load the environment pointer from the function descriptor into
4837       //      r11.
4838       //   5. Branch to the function entry point address.
4839       //   6. On return of the callee, the TOC of the caller needs to be
4840       //      restored (this is done in FinishCall()).
4841       //
4842       // The loads are scheduled at the beginning of the call sequence, and the
4843       // register copies are flagged together to ensure that no other
4844       // operations can be scheduled in between. E.g. without flagging the
4845       // copies together, a TOC access in the caller could be scheduled between
4846       // the assignment of the callee TOC and the branch to the callee, which
4847       // results in the TOC access going through the TOC of the callee instead
4848       // of going through the TOC of the caller, which leads to incorrect code.
4849 
4850       // Load the address of the function entry point from the function
4851       // descriptor.
4852       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
4853       if (LDChain.getValueType() == MVT::Glue)
4854         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
4855 
4856       auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
4857                           ? (MachineMemOperand::MODereferenceable |
4858                              MachineMemOperand::MOInvariant)
4859                           : MachineMemOperand::MONone;
4860 
4861       MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
4862       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
4863                                         /* Alignment = */ 8, MMOFlags);
4864 
4865       // Load environment pointer into r11.
4866       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
4867       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
4868       SDValue LoadEnvPtr =
4869           DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16),
4870                       /* Alignment = */ 8, MMOFlags);
4871 
4872       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
4873       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
4874       SDValue TOCPtr =
4875           DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8),
4876                       /* Alignment = */ 8, MMOFlags);
4877 
4878       setUsesTOCBasePtr(DAG);
4879       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
4880                                         InFlag);
4881       Chain = TOCVal.getValue(0);
4882       InFlag = TOCVal.getValue(1);
4883 
4884       // If the function call has an explicit 'nest' parameter, it takes the
4885       // place of the environment pointer.
4886       if (!hasNest) {
4887         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
4888                                           InFlag);
4889 
4890         Chain = EnvVal.getValue(0);
4891         InFlag = EnvVal.getValue(1);
4892       }
4893 
4894       MTCTROps[0] = Chain;
4895       MTCTROps[1] = LoadFuncPtr;
4896       MTCTROps[2] = InFlag;
4897     }
4898 
4899     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
4900                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
4901     InFlag = Chain.getValue(1);
4902 
4903     NodeTys.clear();
4904     NodeTys.push_back(MVT::Other);
4905     NodeTys.push_back(MVT::Glue);
4906     Ops.push_back(Chain);
4907     CallOpc = PPCISD::BCTRL;
4908     Callee.setNode(nullptr);
4909     // Add use of X11 (holding environment pointer)
4910     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
4911       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
4912     // Add CTR register as callee so a bctr can be emitted later.
4913     if (isTailCall)
4914       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
4915   }
4916 
4917   // If this is a direct call, pass the chain and the callee.
4918   if (Callee.getNode()) {
4919     Ops.push_back(Chain);
4920     Ops.push_back(Callee);
4921   }
4922   // If this is a tail call add stack pointer delta.
4923   if (isTailCall)
4924     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
4925 
4926   // Add argument registers to the end of the list so that they are known live
4927   // into the call.
4928   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
4929     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
4930                                   RegsToPass[i].second.getValueType()));
4931 
4932   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
4933   // into the call.
4934   if (isSVR4ABI && isPPC64 && !isPatchPoint) {
4935     setUsesTOCBasePtr(DAG);
4936     Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
4937   }
4938 
4939   return CallOpc;
4940 }
4941 
4942 SDValue PPCTargetLowering::LowerCallResult(
4943     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
4944     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4945     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4946   SmallVector<CCValAssign, 16> RVLocs;
4947   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4948                     *DAG.getContext());
4949 
4950   CCRetInfo.AnalyzeCallResult(
4951       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
4952                ? RetCC_PPC_Cold
4953                : RetCC_PPC);
4954 
4955   // Copy all of the result registers out of their specified physreg.
4956   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
4957     CCValAssign &VA = RVLocs[i];
4958     assert(VA.isRegLoc() && "Can only return in registers!");
4959 
4960     SDValue Val = DAG.getCopyFromReg(Chain, dl,
4961                                      VA.getLocReg(), VA.getLocVT(), InFlag);
4962     Chain = Val.getValue(1);
4963     InFlag = Val.getValue(2);
4964 
4965     switch (VA.getLocInfo()) {
4966     default: llvm_unreachable("Unknown loc info!");
4967     case CCValAssign::Full: break;
4968     case CCValAssign::AExt:
4969       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4970       break;
4971     case CCValAssign::ZExt:
4972       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
4973                         DAG.getValueType(VA.getValVT()));
4974       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4975       break;
4976     case CCValAssign::SExt:
4977       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
4978                         DAG.getValueType(VA.getValVT()));
4979       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4980       break;
4981     }
4982 
4983     InVals.push_back(Val);
4984   }
4985 
4986   return Chain;
4987 }
4988 
4989 SDValue PPCTargetLowering::FinishCall(
4990     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
4991     bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
4992     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
4993     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
4994     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
4995     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
4996   std::vector<EVT> NodeTys;
4997   SmallVector<SDValue, 8> Ops;
4998   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
4999                                  SPDiff, isTailCall, isPatchPoint, hasNest,
5000                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
5001 
5002   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5003   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
5004     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5005 
5006   // When performing tail call optimization the callee pops its arguments off
5007   // the stack. Account for this here so these bytes can be pushed back on in
5008   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5009   int BytesCalleePops =
5010     (CallConv == CallingConv::Fast &&
5011      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
5012 
5013   // Add a register mask operand representing the call-preserved registers.
5014   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5015   const uint32_t *Mask =
5016       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
5017   assert(Mask && "Missing call preserved mask for calling convention");
5018   Ops.push_back(DAG.getRegisterMask(Mask));
5019 
5020   if (InFlag.getNode())
5021     Ops.push_back(InFlag);
5022 
5023   // Emit tail call.
5024   if (isTailCall) {
5025     assert(((Callee.getOpcode() == ISD::Register &&
5026              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5027             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5028             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5029             isa<ConstantSDNode>(Callee)) &&
5030     "Expecting an global address, external symbol, absolute value or register");
5031 
5032     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5033     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
5034   }
5035 
5036   // Add a NOP immediately after the branch instruction when using the 64-bit
5037   // SVR4 ABI. At link time, if caller and callee are in a different module and
5038   // thus have a different TOC, the call will be replaced with a call to a stub
5039   // function which saves the current TOC, loads the TOC of the callee and
5040   // branches to the callee. The NOP will be replaced with a load instruction
5041   // which restores the TOC of the caller from the TOC save slot of the current
5042   // stack frame. If caller and callee belong to the same module (and have the
5043   // same TOC), the NOP will remain unchanged.
5044 
5045   MachineFunction &MF = DAG.getMachineFunction();
5046   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
5047       !isPatchPoint) {
5048     if (CallOpc == PPCISD::BCTRL) {
5049       // This is a call through a function pointer.
5050       // Restore the caller TOC from the save area into R2.
5051       // See PrepareCall() for more information about calls through function
5052       // pointers in the 64-bit SVR4 ABI.
5053       // We are using a target-specific load with r2 hard coded, because the
5054       // result of a target-independent load would never go directly into r2,
5055       // since r2 is a reserved register (which prevents the register allocator
5056       // from allocating it), resulting in an additional register being
5057       // allocated and an unnecessary move instruction being generated.
5058       CallOpc = PPCISD::BCTRL_LOAD_TOC;
5059 
5060       EVT PtrVT = getPointerTy(DAG.getDataLayout());
5061       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
5062       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5063       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5064       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
5065 
5066       // The address needs to go after the chain input but before the flag (or
5067       // any other variadic arguments).
5068       Ops.insert(std::next(Ops.begin()), AddTOC);
5069     } else if (CallOpc == PPCISD::CALL &&
5070       !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) {
5071       // Otherwise insert NOP for non-local calls.
5072       CallOpc = PPCISD::CALL_NOP;
5073     }
5074   }
5075 
5076   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
5077   InFlag = Chain.getValue(1);
5078 
5079   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5080                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5081                              InFlag, dl);
5082   if (!Ins.empty())
5083     InFlag = Chain.getValue(1);
5084 
5085   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
5086                          Ins, dl, DAG, InVals);
5087 }
5088 
5089 SDValue
5090 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5091                              SmallVectorImpl<SDValue> &InVals) const {
5092   SelectionDAG &DAG                     = CLI.DAG;
5093   SDLoc &dl                             = CLI.DL;
5094   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5095   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5096   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5097   SDValue Chain                         = CLI.Chain;
5098   SDValue Callee                        = CLI.Callee;
5099   bool &isTailCall                      = CLI.IsTailCall;
5100   CallingConv::ID CallConv              = CLI.CallConv;
5101   bool isVarArg                         = CLI.IsVarArg;
5102   bool isPatchPoint                     = CLI.IsPatchPoint;
5103   ImmutableCallSite CS                  = CLI.CS;
5104 
5105   if (isTailCall) {
5106     if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
5107       isTailCall = false;
5108     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5109       isTailCall =
5110         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
5111                                                  isVarArg, Outs, Ins, DAG);
5112     else
5113       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5114                                                      Ins, DAG);
5115     if (isTailCall) {
5116       ++NumTailCalls;
5117       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5118         ++NumSiblingCalls;
5119 
5120       assert(isa<GlobalAddressSDNode>(Callee) &&
5121              "Callee should be an llvm::Function object.");
5122       DEBUG(
5123         const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5124         const unsigned Width = 80 - strlen("TCO caller: ")
5125                                   - strlen(", callee linkage: 0, 0");
5126         dbgs() << "TCO caller: "
5127                << left_justify(DAG.getMachineFunction().getName(), Width)
5128                << ", callee linkage: "
5129                << GV->getVisibility() << ", " << GV->getLinkage() << "\n"
5130       );
5131     }
5132   }
5133 
5134   if (!isTailCall && CS && CS.isMustTailCall())
5135     report_fatal_error("failed to perform tail call elimination on a call "
5136                        "site marked musttail");
5137 
5138   // When long calls (i.e. indirect calls) are always used, calls are always
5139   // made via function pointer. If we have a function name, first translate it
5140   // into a pointer.
5141   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5142       !isTailCall)
5143     Callee = LowerGlobalAddress(Callee, DAG);
5144 
5145   if (Subtarget.isSVR4ABI()) {
5146     if (Subtarget.isPPC64())
5147       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
5148                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
5149                               dl, DAG, InVals, CS);
5150     else
5151       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
5152                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
5153                               dl, DAG, InVals, CS);
5154   }
5155 
5156   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
5157                           isTailCall, isPatchPoint, Outs, OutVals, Ins,
5158                           dl, DAG, InVals, CS);
5159 }
5160 
5161 SDValue PPCTargetLowering::LowerCall_32SVR4(
5162     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5163     bool isTailCall, bool isPatchPoint,
5164     const SmallVectorImpl<ISD::OutputArg> &Outs,
5165     const SmallVectorImpl<SDValue> &OutVals,
5166     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5167     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5168     ImmutableCallSite CS) const {
5169   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5170   // of the 32-bit SVR4 ABI stack frame layout.
5171 
5172   assert((CallConv == CallingConv::C ||
5173           CallConv == CallingConv::Cold ||
5174           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5175 
5176   unsigned PtrByteSize = 4;
5177 
5178   MachineFunction &MF = DAG.getMachineFunction();
5179 
5180   // Mark this function as potentially containing a function that contains a
5181   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5182   // and restoring the callers stack pointer in this functions epilog. This is
5183   // done because by tail calling the called function might overwrite the value
5184   // in this function's (MF) stack pointer stack slot 0(SP).
5185   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5186       CallConv == CallingConv::Fast)
5187     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5188 
5189   // Count how many bytes are to be pushed on the stack, including the linkage
5190   // area, parameter list area and the part of the local variable space which
5191   // contains copies of aggregates which are passed by value.
5192 
5193   // Assign locations to all of the outgoing arguments.
5194   SmallVector<CCValAssign, 16> ArgLocs;
5195   PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
5196 
5197   // Reserve space for the linkage area on the stack.
5198   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5199                        PtrByteSize);
5200   if (useSoftFloat())
5201     CCInfo.PreAnalyzeCallOperands(Outs);
5202 
5203   if (isVarArg) {
5204     // Handle fixed and variable vector arguments differently.
5205     // Fixed vector arguments go into registers as long as registers are
5206     // available. Variable vector arguments always go into memory.
5207     unsigned NumArgs = Outs.size();
5208 
5209     for (unsigned i = 0; i != NumArgs; ++i) {
5210       MVT ArgVT = Outs[i].VT;
5211       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5212       bool Result;
5213 
5214       if (Outs[i].IsFixed) {
5215         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5216                                CCInfo);
5217       } else {
5218         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5219                                       ArgFlags, CCInfo);
5220       }
5221 
5222       if (Result) {
5223 #ifndef NDEBUG
5224         errs() << "Call operand #" << i << " has unhandled type "
5225              << EVT(ArgVT).getEVTString() << "\n";
5226 #endif
5227         llvm_unreachable(nullptr);
5228       }
5229     }
5230   } else {
5231     // All arguments are treated the same.
5232     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5233   }
5234   CCInfo.clearWasPPCF128();
5235 
5236   // Assign locations to all of the outgoing aggregate by value arguments.
5237   SmallVector<CCValAssign, 16> ByValArgLocs;
5238   CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
5239 
5240   // Reserve stack space for the allocations in CCInfo.
5241   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
5242 
5243   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5244 
5245   // Size of the linkage area, parameter list area and the part of the local
5246   // space variable where copies of aggregates which are passed by value are
5247   // stored.
5248   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5249 
5250   // Calculate by how many bytes the stack has to be adjusted in case of tail
5251   // call optimization.
5252   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5253 
5254   // Adjust the stack pointer for the new arguments...
5255   // These operations are automatically eliminated by the prolog/epilog pass
5256   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5257   SDValue CallSeqStart = Chain;
5258 
5259   // Load the return address and frame pointer so it can be moved somewhere else
5260   // later.
5261   SDValue LROp, FPOp;
5262   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5263 
5264   // Set up a copy of the stack pointer for use loading and storing any
5265   // arguments that may not fit in the registers available for argument
5266   // passing.
5267   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5268 
5269   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5270   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5271   SmallVector<SDValue, 8> MemOpChains;
5272 
5273   bool seenFloatArg = false;
5274   // Walk the register/memloc assignments, inserting copies/loads.
5275   for (unsigned i = 0, j = 0, e = ArgLocs.size();
5276        i != e;
5277        ++i) {
5278     CCValAssign &VA = ArgLocs[i];
5279     SDValue Arg = OutVals[i];
5280     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5281 
5282     if (Flags.isByVal()) {
5283       // Argument is an aggregate which is passed by value, thus we need to
5284       // create a copy of it in the local variable space of the current stack
5285       // frame (which is the stack frame of the caller) and pass the address of
5286       // this copy to the callee.
5287       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5288       CCValAssign &ByValVA = ByValArgLocs[j++];
5289       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5290 
5291       // Memory reserved in the local variable space of the callers stack frame.
5292       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5293 
5294       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5295       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5296                            StackPtr, PtrOff);
5297 
5298       // Create a copy of the argument in the local area of the current
5299       // stack frame.
5300       SDValue MemcpyCall =
5301         CreateCopyOfByValArgument(Arg, PtrOff,
5302                                   CallSeqStart.getNode()->getOperand(0),
5303                                   Flags, DAG, dl);
5304 
5305       // This must go outside the CALLSEQ_START..END.
5306       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5307                                                      SDLoc(MemcpyCall));
5308       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5309                              NewCallSeqStart.getNode());
5310       Chain = CallSeqStart = NewCallSeqStart;
5311 
5312       // Pass the address of the aggregate copy on the stack either in a
5313       // physical register or in the parameter list area of the current stack
5314       // frame to the callee.
5315       Arg = PtrOff;
5316     }
5317 
5318     if (VA.isRegLoc()) {
5319       if (Arg.getValueType() == MVT::i1)
5320         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
5321 
5322       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5323       // Put argument in a physical register.
5324       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5325     } else {
5326       // Put argument in the parameter list area of the current stack frame.
5327       assert(VA.isMemLoc());
5328       unsigned LocMemOffset = VA.getLocMemOffset();
5329 
5330       if (!isTailCall) {
5331         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5332         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5333                              StackPtr, PtrOff);
5334 
5335         MemOpChains.push_back(
5336             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5337       } else {
5338         // Calculate and remember argument location.
5339         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5340                                  TailCallArguments);
5341       }
5342     }
5343   }
5344 
5345   if (!MemOpChains.empty())
5346     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5347 
5348   // Build a sequence of copy-to-reg nodes chained together with token chain
5349   // and flag operands which copy the outgoing args into the appropriate regs.
5350   SDValue InFlag;
5351   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5352     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5353                              RegsToPass[i].second, InFlag);
5354     InFlag = Chain.getValue(1);
5355   }
5356 
5357   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5358   // registers.
5359   if (isVarArg) {
5360     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5361     SDValue Ops[] = { Chain, InFlag };
5362 
5363     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5364                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5365 
5366     InFlag = Chain.getValue(1);
5367   }
5368 
5369   if (isTailCall)
5370     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5371                     TailCallArguments);
5372 
5373   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5374                     /* unused except on PPC64 ELFv1 */ false, DAG,
5375                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5376                     NumBytes, Ins, InVals, CS);
5377 }
5378 
5379 // Copy an argument into memory, being careful to do this outside the
5380 // call sequence for the call to which the argument belongs.
5381 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5382     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5383     SelectionDAG &DAG, const SDLoc &dl) const {
5384   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5385                         CallSeqStart.getNode()->getOperand(0),
5386                         Flags, DAG, dl);
5387   // The MEMCPY must go outside the CALLSEQ_START..END.
5388   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5389   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5390                                                  SDLoc(MemcpyCall));
5391   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5392                          NewCallSeqStart.getNode());
5393   return NewCallSeqStart;
5394 }
5395 
5396 SDValue PPCTargetLowering::LowerCall_64SVR4(
5397     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5398     bool isTailCall, bool isPatchPoint,
5399     const SmallVectorImpl<ISD::OutputArg> &Outs,
5400     const SmallVectorImpl<SDValue> &OutVals,
5401     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5402     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5403     ImmutableCallSite CS) const {
5404   bool isELFv2ABI = Subtarget.isELFv2ABI();
5405   bool isLittleEndian = Subtarget.isLittleEndian();
5406   unsigned NumOps = Outs.size();
5407   bool hasNest = false;
5408   bool IsSibCall = false;
5409 
5410   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5411   unsigned PtrByteSize = 8;
5412 
5413   MachineFunction &MF = DAG.getMachineFunction();
5414 
5415   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5416     IsSibCall = true;
5417 
5418   // Mark this function as potentially containing a function that contains a
5419   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5420   // and restoring the callers stack pointer in this functions epilog. This is
5421   // done because by tail calling the called function might overwrite the value
5422   // in this function's (MF) stack pointer stack slot 0(SP).
5423   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5424       CallConv == CallingConv::Fast)
5425     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5426 
5427   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5428          "fastcc not supported on varargs functions");
5429 
5430   // Count how many bytes are to be pushed on the stack, including the linkage
5431   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5432   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5433   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5434   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5435   unsigned NumBytes = LinkageSize;
5436   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5437   unsigned &QFPR_idx = FPR_idx;
5438 
5439   static const MCPhysReg GPR[] = {
5440     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5441     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5442   };
5443   static const MCPhysReg VR[] = {
5444     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5445     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5446   };
5447 
5448   const unsigned NumGPRs = array_lengthof(GPR);
5449   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5450   const unsigned NumVRs  = array_lengthof(VR);
5451   const unsigned NumQFPRs = NumFPRs;
5452 
5453   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5454   // can be passed to the callee in registers.
5455   // For the fast calling convention, there is another check below.
5456   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5457   bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
5458   if (!HasParameterArea) {
5459     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5460     unsigned AvailableFPRs = NumFPRs;
5461     unsigned AvailableVRs = NumVRs;
5462     unsigned NumBytesTmp = NumBytes;
5463     for (unsigned i = 0; i != NumOps; ++i) {
5464       if (Outs[i].Flags.isNest()) continue;
5465       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5466                                 PtrByteSize, LinkageSize, ParamAreaSize,
5467                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
5468                                 Subtarget.hasQPX()))
5469         HasParameterArea = true;
5470     }
5471   }
5472 
5473   // When using the fast calling convention, we don't provide backing for
5474   // arguments that will be in registers.
5475   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5476 
5477   // Avoid allocating parameter area for fastcc functions if all the arguments
5478   // can be passed in the registers.
5479   if (CallConv == CallingConv::Fast)
5480     HasParameterArea = false;
5481 
5482   // Add up all the space actually used.
5483   for (unsigned i = 0; i != NumOps; ++i) {
5484     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5485     EVT ArgVT = Outs[i].VT;
5486     EVT OrigVT = Outs[i].ArgVT;
5487 
5488     if (Flags.isNest())
5489       continue;
5490 
5491     if (CallConv == CallingConv::Fast) {
5492       if (Flags.isByVal()) {
5493         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5494         if (NumGPRsUsed > NumGPRs)
5495           HasParameterArea = true;
5496       } else {
5497         switch (ArgVT.getSimpleVT().SimpleTy) {
5498         default: llvm_unreachable("Unexpected ValueType for argument!");
5499         case MVT::i1:
5500         case MVT::i32:
5501         case MVT::i64:
5502           if (++NumGPRsUsed <= NumGPRs)
5503             continue;
5504           break;
5505         case MVT::v4i32:
5506         case MVT::v8i16:
5507         case MVT::v16i8:
5508         case MVT::v2f64:
5509         case MVT::v2i64:
5510         case MVT::v1i128:
5511           if (++NumVRsUsed <= NumVRs)
5512             continue;
5513           break;
5514         case MVT::v4f32:
5515           // When using QPX, this is handled like a FP register, otherwise, it
5516           // is an Altivec register.
5517           if (Subtarget.hasQPX()) {
5518             if (++NumFPRsUsed <= NumFPRs)
5519               continue;
5520           } else {
5521             if (++NumVRsUsed <= NumVRs)
5522               continue;
5523           }
5524           break;
5525         case MVT::f32:
5526         case MVT::f64:
5527         case MVT::v4f64: // QPX
5528         case MVT::v4i1:  // QPX
5529           if (++NumFPRsUsed <= NumFPRs)
5530             continue;
5531           break;
5532         }
5533         HasParameterArea = true;
5534       }
5535     }
5536 
5537     /* Respect alignment of argument on the stack.  */
5538     unsigned Align =
5539       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5540     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5541 
5542     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5543     if (Flags.isInConsecutiveRegsLast())
5544       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5545   }
5546 
5547   unsigned NumBytesActuallyUsed = NumBytes;
5548 
5549   // In the old ELFv1 ABI,
5550   // the prolog code of the callee may store up to 8 GPR argument registers to
5551   // the stack, allowing va_start to index over them in memory if its varargs.
5552   // Because we cannot tell if this is needed on the caller side, we have to
5553   // conservatively assume that it is needed.  As such, make sure we have at
5554   // least enough stack space for the caller to store the 8 GPRs.
5555   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5556   // really requires memory operands, e.g. a vararg function.
5557   if (HasParameterArea)
5558     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5559   else
5560     NumBytes = LinkageSize;
5561 
5562   // Tail call needs the stack to be aligned.
5563   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5564       CallConv == CallingConv::Fast)
5565     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5566 
5567   int SPDiff = 0;
5568 
5569   // Calculate by how many bytes the stack has to be adjusted in case of tail
5570   // call optimization.
5571   if (!IsSibCall)
5572     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5573 
5574   // To protect arguments on the stack from being clobbered in a tail call,
5575   // force all the loads to happen before doing any other lowering.
5576   if (isTailCall)
5577     Chain = DAG.getStackArgumentTokenFactor(Chain);
5578 
5579   // Adjust the stack pointer for the new arguments...
5580   // These operations are automatically eliminated by the prolog/epilog pass
5581   if (!IsSibCall)
5582     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5583   SDValue CallSeqStart = Chain;
5584 
5585   // Load the return address and frame pointer so it can be move somewhere else
5586   // later.
5587   SDValue LROp, FPOp;
5588   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5589 
5590   // Set up a copy of the stack pointer for use loading and storing any
5591   // arguments that may not fit in the registers available for argument
5592   // passing.
5593   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5594 
5595   // Figure out which arguments are going to go in registers, and which in
5596   // memory.  Also, if this is a vararg function, floating point operations
5597   // must be stored to our stack, and loaded into integer regs as well, if
5598   // any integer regs are available for argument passing.
5599   unsigned ArgOffset = LinkageSize;
5600 
5601   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5602   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5603 
5604   SmallVector<SDValue, 8> MemOpChains;
5605   for (unsigned i = 0; i != NumOps; ++i) {
5606     SDValue Arg = OutVals[i];
5607     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5608     EVT ArgVT = Outs[i].VT;
5609     EVT OrigVT = Outs[i].ArgVT;
5610 
5611     // PtrOff will be used to store the current argument to the stack if a
5612     // register cannot be found for it.
5613     SDValue PtrOff;
5614 
5615     // We re-align the argument offset for each argument, except when using the
5616     // fast calling convention, when we need to make sure we do that only when
5617     // we'll actually use a stack slot.
5618     auto ComputePtrOff = [&]() {
5619       /* Respect alignment of argument on the stack.  */
5620       unsigned Align =
5621         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5622       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
5623 
5624       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5625 
5626       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5627     };
5628 
5629     if (CallConv != CallingConv::Fast) {
5630       ComputePtrOff();
5631 
5632       /* Compute GPR index associated with argument offset.  */
5633       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5634       GPR_idx = std::min(GPR_idx, NumGPRs);
5635     }
5636 
5637     // Promote integers to 64-bit values.
5638     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5639       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5640       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5641       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5642     }
5643 
5644     // FIXME memcpy is used way more than necessary.  Correctness first.
5645     // Note: "by value" is code for passing a structure by value, not
5646     // basic types.
5647     if (Flags.isByVal()) {
5648       // Note: Size includes alignment padding, so
5649       //   struct x { short a; char b; }
5650       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
5651       // These are the proper values we need for right-justifying the
5652       // aggregate in a parameter register.
5653       unsigned Size = Flags.getByValSize();
5654 
5655       // An empty aggregate parameter takes up no storage and no
5656       // registers.
5657       if (Size == 0)
5658         continue;
5659 
5660       if (CallConv == CallingConv::Fast)
5661         ComputePtrOff();
5662 
5663       // All aggregates smaller than 8 bytes must be passed right-justified.
5664       if (Size==1 || Size==2 || Size==4) {
5665         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
5666         if (GPR_idx != NumGPRs) {
5667           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5668                                         MachinePointerInfo(), VT);
5669           MemOpChains.push_back(Load.getValue(1));
5670           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5671 
5672           ArgOffset += PtrByteSize;
5673           continue;
5674         }
5675       }
5676 
5677       if (GPR_idx == NumGPRs && Size < 8) {
5678         SDValue AddPtr = PtrOff;
5679         if (!isLittleEndian) {
5680           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5681                                           PtrOff.getValueType());
5682           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5683         }
5684         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5685                                                           CallSeqStart,
5686                                                           Flags, DAG, dl);
5687         ArgOffset += PtrByteSize;
5688         continue;
5689       }
5690       // Copy entire object into memory.  There are cases where gcc-generated
5691       // code assumes it is there, even if it could be put entirely into
5692       // registers.  (This is not what the doc says.)
5693 
5694       // FIXME: The above statement is likely due to a misunderstanding of the
5695       // documents.  All arguments must be copied into the parameter area BY
5696       // THE CALLEE in the event that the callee takes the address of any
5697       // formal argument.  That has not yet been implemented.  However, it is
5698       // reasonable to use the stack area as a staging area for the register
5699       // load.
5700 
5701       // Skip this for small aggregates, as we will use the same slot for a
5702       // right-justified copy, below.
5703       if (Size >= 8)
5704         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5705                                                           CallSeqStart,
5706                                                           Flags, DAG, dl);
5707 
5708       // When a register is available, pass a small aggregate right-justified.
5709       if (Size < 8 && GPR_idx != NumGPRs) {
5710         // The easiest way to get this right-justified in a register
5711         // is to copy the structure into the rightmost portion of a
5712         // local variable slot, then load the whole slot into the
5713         // register.
5714         // FIXME: The memcpy seems to produce pretty awful code for
5715         // small aggregates, particularly for packed ones.
5716         // FIXME: It would be preferable to use the slot in the
5717         // parameter save area instead of a new local variable.
5718         SDValue AddPtr = PtrOff;
5719         if (!isLittleEndian) {
5720           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5721           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5722         }
5723         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5724                                                           CallSeqStart,
5725                                                           Flags, DAG, dl);
5726 
5727         // Load the slot into the register.
5728         SDValue Load =
5729             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
5730         MemOpChains.push_back(Load.getValue(1));
5731         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5732 
5733         // Done with this argument.
5734         ArgOffset += PtrByteSize;
5735         continue;
5736       }
5737 
5738       // For aggregates larger than PtrByteSize, copy the pieces of the
5739       // object that fit into registers from the parameter save area.
5740       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5741         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5742         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5743         if (GPR_idx != NumGPRs) {
5744           SDValue Load =
5745               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
5746           MemOpChains.push_back(Load.getValue(1));
5747           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5748           ArgOffset += PtrByteSize;
5749         } else {
5750           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5751           break;
5752         }
5753       }
5754       continue;
5755     }
5756 
5757     switch (Arg.getSimpleValueType().SimpleTy) {
5758     default: llvm_unreachable("Unexpected ValueType for argument!");
5759     case MVT::i1:
5760     case MVT::i32:
5761     case MVT::i64:
5762       if (Flags.isNest()) {
5763         // The 'nest' parameter, if any, is passed in R11.
5764         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
5765         hasNest = true;
5766         break;
5767       }
5768 
5769       // These can be scalar arguments or elements of an integer array type
5770       // passed directly.  Clang may use those instead of "byval" aggregate
5771       // types to avoid forcing arguments to memory unnecessarily.
5772       if (GPR_idx != NumGPRs) {
5773         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5774       } else {
5775         if (CallConv == CallingConv::Fast)
5776           ComputePtrOff();
5777 
5778         assert(HasParameterArea &&
5779                "Parameter area must exist to pass an argument in memory.");
5780         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5781                          true, isTailCall, false, MemOpChains,
5782                          TailCallArguments, dl);
5783         if (CallConv == CallingConv::Fast)
5784           ArgOffset += PtrByteSize;
5785       }
5786       if (CallConv != CallingConv::Fast)
5787         ArgOffset += PtrByteSize;
5788       break;
5789     case MVT::f32:
5790     case MVT::f64: {
5791       // These can be scalar arguments or elements of a float array type
5792       // passed directly.  The latter are used to implement ELFv2 homogenous
5793       // float aggregates.
5794 
5795       // Named arguments go into FPRs first, and once they overflow, the
5796       // remaining arguments go into GPRs and then the parameter save area.
5797       // Unnamed arguments for vararg functions always go to GPRs and
5798       // then the parameter save area.  For now, put all arguments to vararg
5799       // routines always in both locations (FPR *and* GPR or stack slot).
5800       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
5801       bool NeededLoad = false;
5802 
5803       // First load the argument into the next available FPR.
5804       if (FPR_idx != NumFPRs)
5805         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5806 
5807       // Next, load the argument into GPR or stack slot if needed.
5808       if (!NeedGPROrStack)
5809         ;
5810       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
5811         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
5812         // once we support fp <-> gpr moves.
5813 
5814         // In the non-vararg case, this can only ever happen in the
5815         // presence of f32 array types, since otherwise we never run
5816         // out of FPRs before running out of GPRs.
5817         SDValue ArgVal;
5818 
5819         // Double values are always passed in a single GPR.
5820         if (Arg.getValueType() != MVT::f32) {
5821           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
5822 
5823         // Non-array float values are extended and passed in a GPR.
5824         } else if (!Flags.isInConsecutiveRegs()) {
5825           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5826           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5827 
5828         // If we have an array of floats, we collect every odd element
5829         // together with its predecessor into one GPR.
5830         } else if (ArgOffset % PtrByteSize != 0) {
5831           SDValue Lo, Hi;
5832           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
5833           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5834           if (!isLittleEndian)
5835             std::swap(Lo, Hi);
5836           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5837 
5838         // The final element, if even, goes into the first half of a GPR.
5839         } else if (Flags.isInConsecutiveRegsLast()) {
5840           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5841           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5842           if (!isLittleEndian)
5843             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
5844                                  DAG.getConstant(32, dl, MVT::i32));
5845 
5846         // Non-final even elements are skipped; they will be handled
5847         // together the with subsequent argument on the next go-around.
5848         } else
5849           ArgVal = SDValue();
5850 
5851         if (ArgVal.getNode())
5852           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
5853       } else {
5854         if (CallConv == CallingConv::Fast)
5855           ComputePtrOff();
5856 
5857         // Single-precision floating-point values are mapped to the
5858         // second (rightmost) word of the stack doubleword.
5859         if (Arg.getValueType() == MVT::f32 &&
5860             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
5861           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5862           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5863         }
5864 
5865         assert(HasParameterArea &&
5866                "Parameter area must exist to pass an argument in memory.");
5867         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5868                          true, isTailCall, false, MemOpChains,
5869                          TailCallArguments, dl);
5870 
5871         NeededLoad = true;
5872       }
5873       // When passing an array of floats, the array occupies consecutive
5874       // space in the argument area; only round up to the next doubleword
5875       // at the end of the array.  Otherwise, each float takes 8 bytes.
5876       if (CallConv != CallingConv::Fast || NeededLoad) {
5877         ArgOffset += (Arg.getValueType() == MVT::f32 &&
5878                       Flags.isInConsecutiveRegs()) ? 4 : 8;
5879         if (Flags.isInConsecutiveRegsLast())
5880           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5881       }
5882       break;
5883     }
5884     case MVT::v4f32:
5885     case MVT::v4i32:
5886     case MVT::v8i16:
5887     case MVT::v16i8:
5888     case MVT::v2f64:
5889     case MVT::v2i64:
5890     case MVT::v1i128:
5891       if (!Subtarget.hasQPX()) {
5892       // These can be scalar arguments or elements of a vector array type
5893       // passed directly.  The latter are used to implement ELFv2 homogenous
5894       // vector aggregates.
5895 
5896       // For a varargs call, named arguments go into VRs or on the stack as
5897       // usual; unnamed arguments always go to the stack or the corresponding
5898       // GPRs when within range.  For now, we always put the value in both
5899       // locations (or even all three).
5900       if (isVarArg) {
5901         assert(HasParameterArea &&
5902                "Parameter area must exist if we have a varargs call.");
5903         // We could elide this store in the case where the object fits
5904         // entirely in R registers.  Maybe later.
5905         SDValue Store =
5906             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
5907         MemOpChains.push_back(Store);
5908         if (VR_idx != NumVRs) {
5909           SDValue Load =
5910               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
5911           MemOpChains.push_back(Load.getValue(1));
5912           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
5913         }
5914         ArgOffset += 16;
5915         for (unsigned i=0; i<16; i+=PtrByteSize) {
5916           if (GPR_idx == NumGPRs)
5917             break;
5918           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5919                                    DAG.getConstant(i, dl, PtrVT));
5920           SDValue Load =
5921               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
5922           MemOpChains.push_back(Load.getValue(1));
5923           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5924         }
5925         break;
5926       }
5927 
5928       // Non-varargs Altivec params go into VRs or on the stack.
5929       if (VR_idx != NumVRs) {
5930         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
5931       } else {
5932         if (CallConv == CallingConv::Fast)
5933           ComputePtrOff();
5934 
5935         assert(HasParameterArea &&
5936                "Parameter area must exist to pass an argument in memory.");
5937         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5938                          true, isTailCall, true, MemOpChains,
5939                          TailCallArguments, dl);
5940         if (CallConv == CallingConv::Fast)
5941           ArgOffset += 16;
5942       }
5943 
5944       if (CallConv != CallingConv::Fast)
5945         ArgOffset += 16;
5946       break;
5947       } // not QPX
5948 
5949       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
5950              "Invalid QPX parameter type");
5951 
5952       /* fall through */
5953     case MVT::v4f64:
5954     case MVT::v4i1: {
5955       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
5956       if (isVarArg) {
5957         assert(HasParameterArea &&
5958                "Parameter area must exist if we have a varargs call.");
5959         // We could elide this store in the case where the object fits
5960         // entirely in R registers.  Maybe later.
5961         SDValue Store =
5962             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
5963         MemOpChains.push_back(Store);
5964         if (QFPR_idx != NumQFPRs) {
5965           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
5966                                      PtrOff, MachinePointerInfo());
5967           MemOpChains.push_back(Load.getValue(1));
5968           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
5969         }
5970         ArgOffset += (IsF32 ? 16 : 32);
5971         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
5972           if (GPR_idx == NumGPRs)
5973             break;
5974           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5975                                    DAG.getConstant(i, dl, PtrVT));
5976           SDValue Load =
5977               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
5978           MemOpChains.push_back(Load.getValue(1));
5979           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5980         }
5981         break;
5982       }
5983 
5984       // Non-varargs QPX params go into registers or on the stack.
5985       if (QFPR_idx != NumQFPRs) {
5986         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
5987       } else {
5988         if (CallConv == CallingConv::Fast)
5989           ComputePtrOff();
5990 
5991         assert(HasParameterArea &&
5992                "Parameter area must exist to pass an argument in memory.");
5993         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5994                          true, isTailCall, true, MemOpChains,
5995                          TailCallArguments, dl);
5996         if (CallConv == CallingConv::Fast)
5997           ArgOffset += (IsF32 ? 16 : 32);
5998       }
5999 
6000       if (CallConv != CallingConv::Fast)
6001         ArgOffset += (IsF32 ? 16 : 32);
6002       break;
6003       }
6004     }
6005   }
6006 
6007   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6008          "mismatch in size of parameter area");
6009   (void)NumBytesActuallyUsed;
6010 
6011   if (!MemOpChains.empty())
6012     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6013 
6014   // Check if this is an indirect call (MTCTR/BCTRL).
6015   // See PrepareCall() for more information about calls through function
6016   // pointers in the 64-bit SVR4 ABI.
6017   if (!isTailCall && !isPatchPoint &&
6018       !isFunctionGlobalAddress(Callee) &&
6019       !isa<ExternalSymbolSDNode>(Callee)) {
6020     // Load r2 into a virtual register and store it to the TOC save area.
6021     setUsesTOCBasePtr(DAG);
6022     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6023     // TOC save area offset.
6024     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6025     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6026     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6027     Chain = DAG.getStore(
6028         Val.getValue(1), dl, Val, AddPtr,
6029         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
6030     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6031     // This does not mean the MTCTR instruction must use R12; it's easier
6032     // to model this as an extra parameter, so do that.
6033     if (isELFv2ABI && !isPatchPoint)
6034       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6035   }
6036 
6037   // Build a sequence of copy-to-reg nodes chained together with token chain
6038   // and flag operands which copy the outgoing args into the appropriate regs.
6039   SDValue InFlag;
6040   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6041     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6042                              RegsToPass[i].second, InFlag);
6043     InFlag = Chain.getValue(1);
6044   }
6045 
6046   if (isTailCall && !IsSibCall)
6047     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6048                     TailCallArguments);
6049 
6050   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
6051                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
6052                     SPDiff, NumBytes, Ins, InVals, CS);
6053 }
6054 
6055 SDValue PPCTargetLowering::LowerCall_Darwin(
6056     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
6057     bool isTailCall, bool isPatchPoint,
6058     const SmallVectorImpl<ISD::OutputArg> &Outs,
6059     const SmallVectorImpl<SDValue> &OutVals,
6060     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6061     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6062     ImmutableCallSite CS) const {
6063   unsigned NumOps = Outs.size();
6064 
6065   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6066   bool isPPC64 = PtrVT == MVT::i64;
6067   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6068 
6069   MachineFunction &MF = DAG.getMachineFunction();
6070 
6071   // Mark this function as potentially containing a function that contains a
6072   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6073   // and restoring the callers stack pointer in this functions epilog. This is
6074   // done because by tail calling the called function might overwrite the value
6075   // in this function's (MF) stack pointer stack slot 0(SP).
6076   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6077       CallConv == CallingConv::Fast)
6078     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6079 
6080   // Count how many bytes are to be pushed on the stack, including the linkage
6081   // area, and parameter passing area.  We start with 24/48 bytes, which is
6082   // prereserved space for [SP][CR][LR][3 x unused].
6083   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6084   unsigned NumBytes = LinkageSize;
6085 
6086   // Add up all the space actually used.
6087   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6088   // they all go in registers, but we must reserve stack space for them for
6089   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6090   // assigned stack space in order, with padding so Altivec parameters are
6091   // 16-byte aligned.
6092   unsigned nAltivecParamsAtEnd = 0;
6093   for (unsigned i = 0; i != NumOps; ++i) {
6094     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6095     EVT ArgVT = Outs[i].VT;
6096     // Varargs Altivec parameters are padded to a 16 byte boundary.
6097     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6098         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6099         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6100       if (!isVarArg && !isPPC64) {
6101         // Non-varargs Altivec parameters go after all the non-Altivec
6102         // parameters; handle those later so we know how much padding we need.
6103         nAltivecParamsAtEnd++;
6104         continue;
6105       }
6106       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6107       NumBytes = ((NumBytes+15)/16)*16;
6108     }
6109     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6110   }
6111 
6112   // Allow for Altivec parameters at the end, if needed.
6113   if (nAltivecParamsAtEnd) {
6114     NumBytes = ((NumBytes+15)/16)*16;
6115     NumBytes += 16*nAltivecParamsAtEnd;
6116   }
6117 
6118   // The prolog code of the callee may store up to 8 GPR argument registers to
6119   // the stack, allowing va_start to index over them in memory if its varargs.
6120   // Because we cannot tell if this is needed on the caller side, we have to
6121   // conservatively assume that it is needed.  As such, make sure we have at
6122   // least enough stack space for the caller to store the 8 GPRs.
6123   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6124 
6125   // Tail call needs the stack to be aligned.
6126   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6127       CallConv == CallingConv::Fast)
6128     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6129 
6130   // Calculate by how many bytes the stack has to be adjusted in case of tail
6131   // call optimization.
6132   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
6133 
6134   // To protect arguments on the stack from being clobbered in a tail call,
6135   // force all the loads to happen before doing any other lowering.
6136   if (isTailCall)
6137     Chain = DAG.getStackArgumentTokenFactor(Chain);
6138 
6139   // Adjust the stack pointer for the new arguments...
6140   // These operations are automatically eliminated by the prolog/epilog pass
6141   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6142   SDValue CallSeqStart = Chain;
6143 
6144   // Load the return address and frame pointer so it can be move somewhere else
6145   // later.
6146   SDValue LROp, FPOp;
6147   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6148 
6149   // Set up a copy of the stack pointer for use loading and storing any
6150   // arguments that may not fit in the registers available for argument
6151   // passing.
6152   SDValue StackPtr;
6153   if (isPPC64)
6154     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6155   else
6156     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6157 
6158   // Figure out which arguments are going to go in registers, and which in
6159   // memory.  Also, if this is a vararg function, floating point operations
6160   // must be stored to our stack, and loaded into integer regs as well, if
6161   // any integer regs are available for argument passing.
6162   unsigned ArgOffset = LinkageSize;
6163   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6164 
6165   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6166     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6167     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6168   };
6169   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6170     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6171     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6172   };
6173   static const MCPhysReg VR[] = {
6174     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6175     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6176   };
6177   const unsigned NumGPRs = array_lengthof(GPR_32);
6178   const unsigned NumFPRs = 13;
6179   const unsigned NumVRs  = array_lengthof(VR);
6180 
6181   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6182 
6183   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6184   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6185 
6186   SmallVector<SDValue, 8> MemOpChains;
6187   for (unsigned i = 0; i != NumOps; ++i) {
6188     SDValue Arg = OutVals[i];
6189     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6190 
6191     // PtrOff will be used to store the current argument to the stack if a
6192     // register cannot be found for it.
6193     SDValue PtrOff;
6194 
6195     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6196 
6197     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6198 
6199     // On PPC64, promote integers to 64-bit values.
6200     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6201       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6202       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6203       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6204     }
6205 
6206     // FIXME memcpy is used way more than necessary.  Correctness first.
6207     // Note: "by value" is code for passing a structure by value, not
6208     // basic types.
6209     if (Flags.isByVal()) {
6210       unsigned Size = Flags.getByValSize();
6211       // Very small objects are passed right-justified.  Everything else is
6212       // passed left-justified.
6213       if (Size==1 || Size==2) {
6214         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6215         if (GPR_idx != NumGPRs) {
6216           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6217                                         MachinePointerInfo(), VT);
6218           MemOpChains.push_back(Load.getValue(1));
6219           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6220 
6221           ArgOffset += PtrByteSize;
6222         } else {
6223           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6224                                           PtrOff.getValueType());
6225           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6226           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6227                                                             CallSeqStart,
6228                                                             Flags, DAG, dl);
6229           ArgOffset += PtrByteSize;
6230         }
6231         continue;
6232       }
6233       // Copy entire object into memory.  There are cases where gcc-generated
6234       // code assumes it is there, even if it could be put entirely into
6235       // registers.  (This is not what the doc says.)
6236       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6237                                                         CallSeqStart,
6238                                                         Flags, DAG, dl);
6239 
6240       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6241       // copy the pieces of the object that fit into registers from the
6242       // parameter save area.
6243       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6244         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6245         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6246         if (GPR_idx != NumGPRs) {
6247           SDValue Load =
6248               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6249           MemOpChains.push_back(Load.getValue(1));
6250           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6251           ArgOffset += PtrByteSize;
6252         } else {
6253           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6254           break;
6255         }
6256       }
6257       continue;
6258     }
6259 
6260     switch (Arg.getSimpleValueType().SimpleTy) {
6261     default: llvm_unreachable("Unexpected ValueType for argument!");
6262     case MVT::i1:
6263     case MVT::i32:
6264     case MVT::i64:
6265       if (GPR_idx != NumGPRs) {
6266         if (Arg.getValueType() == MVT::i1)
6267           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6268 
6269         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6270       } else {
6271         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6272                          isPPC64, isTailCall, false, MemOpChains,
6273                          TailCallArguments, dl);
6274       }
6275       ArgOffset += PtrByteSize;
6276       break;
6277     case MVT::f32:
6278     case MVT::f64:
6279       if (FPR_idx != NumFPRs) {
6280         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6281 
6282         if (isVarArg) {
6283           SDValue Store =
6284               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6285           MemOpChains.push_back(Store);
6286 
6287           // Float varargs are always shadowed in available integer registers
6288           if (GPR_idx != NumGPRs) {
6289             SDValue Load =
6290                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6291             MemOpChains.push_back(Load.getValue(1));
6292             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6293           }
6294           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6295             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6296             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6297             SDValue Load =
6298                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6299             MemOpChains.push_back(Load.getValue(1));
6300             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6301           }
6302         } else {
6303           // If we have any FPRs remaining, we may also have GPRs remaining.
6304           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6305           // GPRs.
6306           if (GPR_idx != NumGPRs)
6307             ++GPR_idx;
6308           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6309               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6310             ++GPR_idx;
6311         }
6312       } else
6313         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6314                          isPPC64, isTailCall, false, MemOpChains,
6315                          TailCallArguments, dl);
6316       if (isPPC64)
6317         ArgOffset += 8;
6318       else
6319         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6320       break;
6321     case MVT::v4f32:
6322     case MVT::v4i32:
6323     case MVT::v8i16:
6324     case MVT::v16i8:
6325       if (isVarArg) {
6326         // These go aligned on the stack, or in the corresponding R registers
6327         // when within range.  The Darwin PPC ABI doc claims they also go in
6328         // V registers; in fact gcc does this only for arguments that are
6329         // prototyped, not for those that match the ...  We do it for all
6330         // arguments, seems to work.
6331         while (ArgOffset % 16 !=0) {
6332           ArgOffset += PtrByteSize;
6333           if (GPR_idx != NumGPRs)
6334             GPR_idx++;
6335         }
6336         // We could elide this store in the case where the object fits
6337         // entirely in R registers.  Maybe later.
6338         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6339                              DAG.getConstant(ArgOffset, dl, PtrVT));
6340         SDValue Store =
6341             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6342         MemOpChains.push_back(Store);
6343         if (VR_idx != NumVRs) {
6344           SDValue Load =
6345               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6346           MemOpChains.push_back(Load.getValue(1));
6347           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6348         }
6349         ArgOffset += 16;
6350         for (unsigned i=0; i<16; i+=PtrByteSize) {
6351           if (GPR_idx == NumGPRs)
6352             break;
6353           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6354                                    DAG.getConstant(i, dl, PtrVT));
6355           SDValue Load =
6356               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6357           MemOpChains.push_back(Load.getValue(1));
6358           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6359         }
6360         break;
6361       }
6362 
6363       // Non-varargs Altivec params generally go in registers, but have
6364       // stack space allocated at the end.
6365       if (VR_idx != NumVRs) {
6366         // Doesn't have GPR space allocated.
6367         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6368       } else if (nAltivecParamsAtEnd==0) {
6369         // We are emitting Altivec params in order.
6370         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6371                          isPPC64, isTailCall, true, MemOpChains,
6372                          TailCallArguments, dl);
6373         ArgOffset += 16;
6374       }
6375       break;
6376     }
6377   }
6378   // If all Altivec parameters fit in registers, as they usually do,
6379   // they get stack space following the non-Altivec parameters.  We
6380   // don't track this here because nobody below needs it.
6381   // If there are more Altivec parameters than fit in registers emit
6382   // the stores here.
6383   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
6384     unsigned j = 0;
6385     // Offset is aligned; skip 1st 12 params which go in V registers.
6386     ArgOffset = ((ArgOffset+15)/16)*16;
6387     ArgOffset += 12*16;
6388     for (unsigned i = 0; i != NumOps; ++i) {
6389       SDValue Arg = OutVals[i];
6390       EVT ArgType = Outs[i].VT;
6391       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6392           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6393         if (++j > NumVRs) {
6394           SDValue PtrOff;
6395           // We are emitting Altivec params in order.
6396           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6397                            isPPC64, isTailCall, true, MemOpChains,
6398                            TailCallArguments, dl);
6399           ArgOffset += 16;
6400         }
6401       }
6402     }
6403   }
6404 
6405   if (!MemOpChains.empty())
6406     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6407 
6408   // On Darwin, R12 must contain the address of an indirect callee.  This does
6409   // not mean the MTCTR instruction must use R12; it's easier to model this as
6410   // an extra parameter, so do that.
6411   if (!isTailCall &&
6412       !isFunctionGlobalAddress(Callee) &&
6413       !isa<ExternalSymbolSDNode>(Callee) &&
6414       !isBLACompatibleAddress(Callee, DAG))
6415     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6416                                                    PPC::R12), Callee));
6417 
6418   // Build a sequence of copy-to-reg nodes chained together with token chain
6419   // and flag operands which copy the outgoing args into the appropriate regs.
6420   SDValue InFlag;
6421   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6422     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6423                              RegsToPass[i].second, InFlag);
6424     InFlag = Chain.getValue(1);
6425   }
6426 
6427   if (isTailCall)
6428     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6429                     TailCallArguments);
6430 
6431   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6432                     /* unused except on PPC64 ELFv1 */ false, DAG,
6433                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6434                     NumBytes, Ins, InVals, CS);
6435 }
6436 
6437 bool
6438 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
6439                                   MachineFunction &MF, bool isVarArg,
6440                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
6441                                   LLVMContext &Context) const {
6442   SmallVector<CCValAssign, 16> RVLocs;
6443   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
6444   return CCInfo.CheckReturn(
6445       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6446                 ? RetCC_PPC_Cold
6447                 : RetCC_PPC);
6448 }
6449 
6450 SDValue
6451 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
6452                                bool isVarArg,
6453                                const SmallVectorImpl<ISD::OutputArg> &Outs,
6454                                const SmallVectorImpl<SDValue> &OutVals,
6455                                const SDLoc &dl, SelectionDAG &DAG) const {
6456   SmallVector<CCValAssign, 16> RVLocs;
6457   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
6458                  *DAG.getContext());
6459   CCInfo.AnalyzeReturn(Outs,
6460                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6461                            ? RetCC_PPC_Cold
6462                            : RetCC_PPC);
6463 
6464   SDValue Flag;
6465   SmallVector<SDValue, 4> RetOps(1, Chain);
6466 
6467   // Copy the result values into the output registers.
6468   for (unsigned i = 0; i != RVLocs.size(); ++i) {
6469     CCValAssign &VA = RVLocs[i];
6470     assert(VA.isRegLoc() && "Can only return in registers!");
6471 
6472     SDValue Arg = OutVals[i];
6473 
6474     switch (VA.getLocInfo()) {
6475     default: llvm_unreachable("Unknown loc info!");
6476     case CCValAssign::Full: break;
6477     case CCValAssign::AExt:
6478       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
6479       break;
6480     case CCValAssign::ZExt:
6481       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
6482       break;
6483     case CCValAssign::SExt:
6484       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
6485       break;
6486     }
6487 
6488     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
6489     Flag = Chain.getValue(1);
6490     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6491   }
6492 
6493   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
6494   const MCPhysReg *I =
6495     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
6496   if (I) {
6497     for (; *I; ++I) {
6498 
6499       if (PPC::G8RCRegClass.contains(*I))
6500         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
6501       else if (PPC::F8RCRegClass.contains(*I))
6502         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
6503       else if (PPC::CRRCRegClass.contains(*I))
6504         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
6505       else if (PPC::VRRCRegClass.contains(*I))
6506         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
6507       else
6508         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
6509     }
6510   }
6511 
6512   RetOps[0] = Chain;  // Update chain.
6513 
6514   // Add the flag if we have it.
6515   if (Flag.getNode())
6516     RetOps.push_back(Flag);
6517 
6518   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
6519 }
6520 
6521 SDValue
6522 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
6523                                                 SelectionDAG &DAG) const {
6524   SDLoc dl(Op);
6525 
6526   // Get the correct type for integers.
6527   EVT IntVT = Op.getValueType();
6528 
6529   // Get the inputs.
6530   SDValue Chain = Op.getOperand(0);
6531   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6532   // Build a DYNAREAOFFSET node.
6533   SDValue Ops[2] = {Chain, FPSIdx};
6534   SDVTList VTs = DAG.getVTList(IntVT);
6535   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
6536 }
6537 
6538 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
6539                                              SelectionDAG &DAG) const {
6540   // When we pop the dynamic allocation we need to restore the SP link.
6541   SDLoc dl(Op);
6542 
6543   // Get the correct type for pointers.
6544   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6545 
6546   // Construct the stack pointer operand.
6547   bool isPPC64 = Subtarget.isPPC64();
6548   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
6549   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
6550 
6551   // Get the operands for the STACKRESTORE.
6552   SDValue Chain = Op.getOperand(0);
6553   SDValue SaveSP = Op.getOperand(1);
6554 
6555   // Load the old link SP.
6556   SDValue LoadLinkSP =
6557       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
6558 
6559   // Restore the stack pointer.
6560   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
6561 
6562   // Store the old link SP.
6563   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
6564 }
6565 
6566 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
6567   MachineFunction &MF = DAG.getMachineFunction();
6568   bool isPPC64 = Subtarget.isPPC64();
6569   EVT PtrVT = getPointerTy(MF.getDataLayout());
6570 
6571   // Get current frame pointer save index.  The users of this index will be
6572   // primarily DYNALLOC instructions.
6573   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6574   int RASI = FI->getReturnAddrSaveIndex();
6575 
6576   // If the frame pointer save index hasn't been defined yet.
6577   if (!RASI) {
6578     // Find out what the fix offset of the frame pointer save area.
6579     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
6580     // Allocate the frame index for frame pointer save area.
6581     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
6582     // Save the result.
6583     FI->setReturnAddrSaveIndex(RASI);
6584   }
6585   return DAG.getFrameIndex(RASI, PtrVT);
6586 }
6587 
6588 SDValue
6589 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
6590   MachineFunction &MF = DAG.getMachineFunction();
6591   bool isPPC64 = Subtarget.isPPC64();
6592   EVT PtrVT = getPointerTy(MF.getDataLayout());
6593 
6594   // Get current frame pointer save index.  The users of this index will be
6595   // primarily DYNALLOC instructions.
6596   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6597   int FPSI = FI->getFramePointerSaveIndex();
6598 
6599   // If the frame pointer save index hasn't been defined yet.
6600   if (!FPSI) {
6601     // Find out what the fix offset of the frame pointer save area.
6602     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
6603     // Allocate the frame index for frame pointer save area.
6604     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
6605     // Save the result.
6606     FI->setFramePointerSaveIndex(FPSI);
6607   }
6608   return DAG.getFrameIndex(FPSI, PtrVT);
6609 }
6610 
6611 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6612                                                    SelectionDAG &DAG) const {
6613   // Get the inputs.
6614   SDValue Chain = Op.getOperand(0);
6615   SDValue Size  = Op.getOperand(1);
6616   SDLoc dl(Op);
6617 
6618   // Get the correct type for pointers.
6619   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6620   // Negate the size.
6621   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
6622                                 DAG.getConstant(0, dl, PtrVT), Size);
6623   // Construct a node for the frame pointer save index.
6624   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6625   // Build a DYNALLOC node.
6626   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
6627   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
6628   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
6629 }
6630 
6631 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
6632                                                      SelectionDAG &DAG) const {
6633   MachineFunction &MF = DAG.getMachineFunction();
6634 
6635   bool isPPC64 = Subtarget.isPPC64();
6636   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6637 
6638   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
6639   return DAG.getFrameIndex(FI, PtrVT);
6640 }
6641 
6642 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
6643                                                SelectionDAG &DAG) const {
6644   SDLoc DL(Op);
6645   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
6646                      DAG.getVTList(MVT::i32, MVT::Other),
6647                      Op.getOperand(0), Op.getOperand(1));
6648 }
6649 
6650 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
6651                                                 SelectionDAG &DAG) const {
6652   SDLoc DL(Op);
6653   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
6654                      Op.getOperand(0), Op.getOperand(1));
6655 }
6656 
6657 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
6658   if (Op.getValueType().isVector())
6659     return LowerVectorLoad(Op, DAG);
6660 
6661   assert(Op.getValueType() == MVT::i1 &&
6662          "Custom lowering only for i1 loads");
6663 
6664   // First, load 8 bits into 32 bits, then truncate to 1 bit.
6665 
6666   SDLoc dl(Op);
6667   LoadSDNode *LD = cast<LoadSDNode>(Op);
6668 
6669   SDValue Chain = LD->getChain();
6670   SDValue BasePtr = LD->getBasePtr();
6671   MachineMemOperand *MMO = LD->getMemOperand();
6672 
6673   SDValue NewLD =
6674       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
6675                      BasePtr, MVT::i8, MMO);
6676   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
6677 
6678   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
6679   return DAG.getMergeValues(Ops, dl);
6680 }
6681 
6682 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
6683   if (Op.getOperand(1).getValueType().isVector())
6684     return LowerVectorStore(Op, DAG);
6685 
6686   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
6687          "Custom lowering only for i1 stores");
6688 
6689   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
6690 
6691   SDLoc dl(Op);
6692   StoreSDNode *ST = cast<StoreSDNode>(Op);
6693 
6694   SDValue Chain = ST->getChain();
6695   SDValue BasePtr = ST->getBasePtr();
6696   SDValue Value = ST->getValue();
6697   MachineMemOperand *MMO = ST->getMemOperand();
6698 
6699   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
6700                       Value);
6701   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
6702 }
6703 
6704 // FIXME: Remove this once the ANDI glue bug is fixed:
6705 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
6706   assert(Op.getValueType() == MVT::i1 &&
6707          "Custom lowering only for i1 results");
6708 
6709   SDLoc DL(Op);
6710   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
6711                      Op.getOperand(0));
6712 }
6713 
6714 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
6715 /// possible.
6716 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
6717   // Not FP? Not a fsel.
6718   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
6719       !Op.getOperand(2).getValueType().isFloatingPoint())
6720     return Op;
6721 
6722   // We might be able to do better than this under some circumstances, but in
6723   // general, fsel-based lowering of select is a finite-math-only optimization.
6724   // For more information, see section F.3 of the 2.06 ISA specification.
6725   if (!DAG.getTarget().Options.NoInfsFPMath ||
6726       !DAG.getTarget().Options.NoNaNsFPMath)
6727     return Op;
6728   // TODO: Propagate flags from the select rather than global settings.
6729   SDNodeFlags Flags;
6730   Flags.setNoInfs(true);
6731   Flags.setNoNaNs(true);
6732 
6733   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
6734 
6735   EVT ResVT = Op.getValueType();
6736   EVT CmpVT = Op.getOperand(0).getValueType();
6737   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6738   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
6739   SDLoc dl(Op);
6740 
6741   // If the RHS of the comparison is a 0.0, we don't need to do the
6742   // subtraction at all.
6743   SDValue Sel1;
6744   if (isFloatingPointZero(RHS))
6745     switch (CC) {
6746     default: break;       // SETUO etc aren't handled by fsel.
6747     case ISD::SETNE:
6748       std::swap(TV, FV);
6749       LLVM_FALLTHROUGH;
6750     case ISD::SETEQ:
6751       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6752         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6753       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6754       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6755         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6756       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6757                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
6758     case ISD::SETULT:
6759     case ISD::SETLT:
6760       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6761       LLVM_FALLTHROUGH;
6762     case ISD::SETOGE:
6763     case ISD::SETGE:
6764       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6765         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6766       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6767     case ISD::SETUGT:
6768     case ISD::SETGT:
6769       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6770       LLVM_FALLTHROUGH;
6771     case ISD::SETOLE:
6772     case ISD::SETLE:
6773       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6774         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6775       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6776                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
6777     }
6778 
6779   SDValue Cmp;
6780   switch (CC) {
6781   default: break;       // SETUO etc aren't handled by fsel.
6782   case ISD::SETNE:
6783     std::swap(TV, FV);
6784     LLVM_FALLTHROUGH;
6785   case ISD::SETEQ:
6786     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6787     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6788       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6789     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6790     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6791       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6792     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6793                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
6794   case ISD::SETULT:
6795   case ISD::SETLT:
6796     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6797     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6798       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6799     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6800   case ISD::SETOGE:
6801   case ISD::SETGE:
6802     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6803     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6804       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6805     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6806   case ISD::SETUGT:
6807   case ISD::SETGT:
6808     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6809     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6810       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6811     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6812   case ISD::SETOLE:
6813   case ISD::SETLE:
6814     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6815     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6816       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6817     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6818   }
6819   return Op;
6820 }
6821 
6822 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
6823                                                SelectionDAG &DAG,
6824                                                const SDLoc &dl) const {
6825   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6826   SDValue Src = Op.getOperand(0);
6827   if (Src.getValueType() == MVT::f32)
6828     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6829 
6830   SDValue Tmp;
6831   switch (Op.getSimpleValueType().SimpleTy) {
6832   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6833   case MVT::i32:
6834     Tmp = DAG.getNode(
6835         Op.getOpcode() == ISD::FP_TO_SINT
6836             ? PPCISD::FCTIWZ
6837             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6838         dl, MVT::f64, Src);
6839     break;
6840   case MVT::i64:
6841     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6842            "i64 FP_TO_UINT is supported only with FPCVT");
6843     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6844                                                         PPCISD::FCTIDUZ,
6845                       dl, MVT::f64, Src);
6846     break;
6847   }
6848 
6849   // Convert the FP value to an int value through memory.
6850   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
6851     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
6852   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
6853   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
6854   MachinePointerInfo MPI =
6855       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
6856 
6857   // Emit a store to the stack slot.
6858   SDValue Chain;
6859   if (i32Stack) {
6860     MachineFunction &MF = DAG.getMachineFunction();
6861     MachineMemOperand *MMO =
6862       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
6863     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
6864     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
6865               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
6866   } else
6867     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
6868 
6869   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
6870   // add in a bias on big endian.
6871   if (Op.getValueType() == MVT::i32 && !i32Stack) {
6872     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
6873                         DAG.getConstant(4, dl, FIPtr.getValueType()));
6874     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
6875   }
6876 
6877   RLI.Chain = Chain;
6878   RLI.Ptr = FIPtr;
6879   RLI.MPI = MPI;
6880 }
6881 
6882 /// \brief Custom lowers floating point to integer conversions to use
6883 /// the direct move instructions available in ISA 2.07 to avoid the
6884 /// need for load/store combinations.
6885 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
6886                                                     SelectionDAG &DAG,
6887                                                     const SDLoc &dl) const {
6888   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6889   SDValue Src = Op.getOperand(0);
6890 
6891   if (Src.getValueType() == MVT::f32)
6892     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6893 
6894   SDValue Tmp;
6895   switch (Op.getSimpleValueType().SimpleTy) {
6896   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6897   case MVT::i32:
6898     Tmp = DAG.getNode(
6899         Op.getOpcode() == ISD::FP_TO_SINT
6900             ? PPCISD::FCTIWZ
6901             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6902         dl, MVT::f64, Src);
6903     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
6904     break;
6905   case MVT::i64:
6906     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6907            "i64 FP_TO_UINT is supported only with FPCVT");
6908     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6909                                                         PPCISD::FCTIDUZ,
6910                       dl, MVT::f64, Src);
6911     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
6912     break;
6913   }
6914   return Tmp;
6915 }
6916 
6917 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
6918                                           const SDLoc &dl) const {
6919   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
6920   // PPC (the libcall is not available).
6921   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
6922     if (Op.getValueType() == MVT::i32) {
6923       if (Op.getOpcode() == ISD::FP_TO_SINT) {
6924         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
6925                                  MVT::f64, Op.getOperand(0),
6926                                  DAG.getIntPtrConstant(0, dl));
6927         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
6928                                  MVT::f64, Op.getOperand(0),
6929                                  DAG.getIntPtrConstant(1, dl));
6930 
6931         // Add the two halves of the long double in round-to-zero mode.
6932         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
6933 
6934         // Now use a smaller FP_TO_SINT.
6935         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
6936       }
6937       if (Op.getOpcode() == ISD::FP_TO_UINT) {
6938         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
6939         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
6940         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
6941         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
6942         // FIXME: generated code sucks.
6943         // TODO: Are there fast-math-flags to propagate to this FSUB?
6944         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
6945                                    Op.getOperand(0), Tmp);
6946         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
6947         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
6948                            DAG.getConstant(0x80000000, dl, MVT::i32));
6949         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
6950                                     Op.getOperand(0));
6951         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
6952                                ISD::SETGE);
6953       }
6954     }
6955 
6956     return SDValue();
6957   }
6958 
6959   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
6960     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
6961 
6962   ReuseLoadInfo RLI;
6963   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6964 
6965   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
6966                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
6967 }
6968 
6969 // We're trying to insert a regular store, S, and then a load, L. If the
6970 // incoming value, O, is a load, we might just be able to have our load use the
6971 // address used by O. However, we don't know if anything else will store to
6972 // that address before we can load from it. To prevent this situation, we need
6973 // to insert our load, L, into the chain as a peer of O. To do this, we give L
6974 // the same chain operand as O, we create a token factor from the chain results
6975 // of O and L, and we replace all uses of O's chain result with that token
6976 // factor (see spliceIntoChain below for this last part).
6977 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
6978                                             ReuseLoadInfo &RLI,
6979                                             SelectionDAG &DAG,
6980                                             ISD::LoadExtType ET) const {
6981   SDLoc dl(Op);
6982   if (ET == ISD::NON_EXTLOAD &&
6983       (Op.getOpcode() == ISD::FP_TO_UINT ||
6984        Op.getOpcode() == ISD::FP_TO_SINT) &&
6985       isOperationLegalOrCustom(Op.getOpcode(),
6986                                Op.getOperand(0).getValueType())) {
6987 
6988     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6989     return true;
6990   }
6991 
6992   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
6993   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
6994       LD->isNonTemporal())
6995     return false;
6996   if (LD->getMemoryVT() != MemVT)
6997     return false;
6998 
6999   RLI.Ptr = LD->getBasePtr();
7000   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
7001     assert(LD->getAddressingMode() == ISD::PRE_INC &&
7002            "Non-pre-inc AM on PPC?");
7003     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
7004                           LD->getOffset());
7005   }
7006 
7007   RLI.Chain = LD->getChain();
7008   RLI.MPI = LD->getPointerInfo();
7009   RLI.IsDereferenceable = LD->isDereferenceable();
7010   RLI.IsInvariant = LD->isInvariant();
7011   RLI.Alignment = LD->getAlignment();
7012   RLI.AAInfo = LD->getAAInfo();
7013   RLI.Ranges = LD->getRanges();
7014 
7015   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
7016   return true;
7017 }
7018 
7019 // Given the head of the old chain, ResChain, insert a token factor containing
7020 // it and NewResChain, and make users of ResChain now be users of that token
7021 // factor.
7022 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
7023 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
7024                                         SDValue NewResChain,
7025                                         SelectionDAG &DAG) const {
7026   if (!ResChain)
7027     return;
7028 
7029   SDLoc dl(NewResChain);
7030 
7031   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7032                            NewResChain, DAG.getUNDEF(MVT::Other));
7033   assert(TF.getNode() != NewResChain.getNode() &&
7034          "A new TF really is required here");
7035 
7036   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
7037   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
7038 }
7039 
7040 /// \brief Analyze profitability of direct move
7041 /// prefer float load to int load plus direct move
7042 /// when there is no integer use of int load
7043 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
7044   SDNode *Origin = Op.getOperand(0).getNode();
7045   if (Origin->getOpcode() != ISD::LOAD)
7046     return true;
7047 
7048   // If there is no LXSIBZX/LXSIHZX, like Power8,
7049   // prefer direct move if the memory size is 1 or 2 bytes.
7050   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
7051   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
7052     return true;
7053 
7054   for (SDNode::use_iterator UI = Origin->use_begin(),
7055                             UE = Origin->use_end();
7056        UI != UE; ++UI) {
7057 
7058     // Only look at the users of the loaded value.
7059     if (UI.getUse().get().getResNo() != 0)
7060       continue;
7061 
7062     if (UI->getOpcode() != ISD::SINT_TO_FP &&
7063         UI->getOpcode() != ISD::UINT_TO_FP)
7064       return true;
7065   }
7066 
7067   return false;
7068 }
7069 
7070 /// \brief Custom lowers integer to floating point conversions to use
7071 /// the direct move instructions available in ISA 2.07 to avoid the
7072 /// need for load/store combinations.
7073 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
7074                                                     SelectionDAG &DAG,
7075                                                     const SDLoc &dl) const {
7076   assert((Op.getValueType() == MVT::f32 ||
7077           Op.getValueType() == MVT::f64) &&
7078          "Invalid floating point type as target of conversion");
7079   assert(Subtarget.hasFPCVT() &&
7080          "Int to FP conversions with direct moves require FPCVT");
7081   SDValue FP;
7082   SDValue Src = Op.getOperand(0);
7083   bool SinglePrec = Op.getValueType() == MVT::f32;
7084   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
7085   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
7086   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
7087                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
7088 
7089   if (WordInt) {
7090     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
7091                      dl, MVT::f64, Src);
7092     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7093   }
7094   else {
7095     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
7096     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7097   }
7098 
7099   return FP;
7100 }
7101 
7102 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
7103                                           SelectionDAG &DAG) const {
7104   SDLoc dl(Op);
7105 
7106   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
7107     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
7108       return SDValue();
7109 
7110     SDValue Value = Op.getOperand(0);
7111     // The values are now known to be -1 (false) or 1 (true). To convert this
7112     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7113     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7114     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7115 
7116     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
7117 
7118     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7119 
7120     if (Op.getValueType() != MVT::v4f64)
7121       Value = DAG.getNode(ISD::FP_ROUND, dl,
7122                           Op.getValueType(), Value,
7123                           DAG.getIntPtrConstant(1, dl));
7124     return Value;
7125   }
7126 
7127   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
7128   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
7129     return SDValue();
7130 
7131   if (Op.getOperand(0).getValueType() == MVT::i1)
7132     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
7133                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
7134                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
7135 
7136   // If we have direct moves, we can do all the conversion, skip the store/load
7137   // however, without FPCVT we can't do most conversions.
7138   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
7139       Subtarget.isPPC64() && Subtarget.hasFPCVT())
7140     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
7141 
7142   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
7143          "UINT_TO_FP is supported only with FPCVT");
7144 
7145   // If we have FCFIDS, then use it when converting to single-precision.
7146   // Otherwise, convert to double-precision and then round.
7147   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7148                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
7149                                                             : PPCISD::FCFIDS)
7150                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
7151                                                             : PPCISD::FCFID);
7152   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7153                   ? MVT::f32
7154                   : MVT::f64;
7155 
7156   if (Op.getOperand(0).getValueType() == MVT::i64) {
7157     SDValue SINT = Op.getOperand(0);
7158     // When converting to single-precision, we actually need to convert
7159     // to double-precision first and then round to single-precision.
7160     // To avoid double-rounding effects during that operation, we have
7161     // to prepare the input operand.  Bits that might be truncated when
7162     // converting to double-precision are replaced by a bit that won't
7163     // be lost at this stage, but is below the single-precision rounding
7164     // position.
7165     //
7166     // However, if -enable-unsafe-fp-math is in effect, accept double
7167     // rounding to avoid the extra overhead.
7168     if (Op.getValueType() == MVT::f32 &&
7169         !Subtarget.hasFPCVT() &&
7170         !DAG.getTarget().Options.UnsafeFPMath) {
7171 
7172       // Twiddle input to make sure the low 11 bits are zero.  (If this
7173       // is the case, we are guaranteed the value will fit into the 53 bit
7174       // mantissa of an IEEE double-precision value without rounding.)
7175       // If any of those low 11 bits were not zero originally, make sure
7176       // bit 12 (value 2048) is set instead, so that the final rounding
7177       // to single-precision gets the correct result.
7178       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7179                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
7180       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
7181                           Round, DAG.getConstant(2047, dl, MVT::i64));
7182       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
7183       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7184                           Round, DAG.getConstant(-2048, dl, MVT::i64));
7185 
7186       // However, we cannot use that value unconditionally: if the magnitude
7187       // of the input value is small, the bit-twiddling we did above might
7188       // end up visibly changing the output.  Fortunately, in that case, we
7189       // don't need to twiddle bits since the original input will convert
7190       // exactly to double-precision floating-point already.  Therefore,
7191       // construct a conditional to use the original value if the top 11
7192       // bits are all sign-bit copies, and use the rounded value computed
7193       // above otherwise.
7194       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
7195                                  SINT, DAG.getConstant(53, dl, MVT::i32));
7196       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
7197                          Cond, DAG.getConstant(1, dl, MVT::i64));
7198       Cond = DAG.getSetCC(dl, MVT::i32,
7199                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
7200 
7201       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
7202     }
7203 
7204     ReuseLoadInfo RLI;
7205     SDValue Bits;
7206 
7207     MachineFunction &MF = DAG.getMachineFunction();
7208     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
7209       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7210                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7211       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7212     } else if (Subtarget.hasLFIWAX() &&
7213                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
7214       MachineMemOperand *MMO =
7215         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7216                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7217       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7218       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
7219                                      DAG.getVTList(MVT::f64, MVT::Other),
7220                                      Ops, MVT::i32, MMO);
7221       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7222     } else if (Subtarget.hasFPCVT() &&
7223                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
7224       MachineMemOperand *MMO =
7225         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7226                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7227       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7228       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
7229                                      DAG.getVTList(MVT::f64, MVT::Other),
7230                                      Ops, MVT::i32, MMO);
7231       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7232     } else if (((Subtarget.hasLFIWAX() &&
7233                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
7234                 (Subtarget.hasFPCVT() &&
7235                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
7236                SINT.getOperand(0).getValueType() == MVT::i32) {
7237       MachineFrameInfo &MFI = MF.getFrameInfo();
7238       EVT PtrVT = getPointerTy(DAG.getDataLayout());
7239 
7240       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7241       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7242 
7243       SDValue Store =
7244           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
7245                        MachinePointerInfo::getFixedStack(
7246                            DAG.getMachineFunction(), FrameIdx));
7247 
7248       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7249              "Expected an i32 store");
7250 
7251       RLI.Ptr = FIdx;
7252       RLI.Chain = Store;
7253       RLI.MPI =
7254           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7255       RLI.Alignment = 4;
7256 
7257       MachineMemOperand *MMO =
7258         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7259                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7260       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7261       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
7262                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
7263                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
7264                                      Ops, MVT::i32, MMO);
7265     } else
7266       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
7267 
7268     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
7269 
7270     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7271       FP = DAG.getNode(ISD::FP_ROUND, dl,
7272                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
7273     return FP;
7274   }
7275 
7276   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
7277          "Unhandled INT_TO_FP type in custom expander!");
7278   // Since we only generate this in 64-bit mode, we can take advantage of
7279   // 64-bit registers.  In particular, sign extend the input value into the
7280   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
7281   // then lfd it and fcfid it.
7282   MachineFunction &MF = DAG.getMachineFunction();
7283   MachineFrameInfo &MFI = MF.getFrameInfo();
7284   EVT PtrVT = getPointerTy(MF.getDataLayout());
7285 
7286   SDValue Ld;
7287   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
7288     ReuseLoadInfo RLI;
7289     bool ReusingLoad;
7290     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
7291                                             DAG))) {
7292       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7293       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7294 
7295       SDValue Store =
7296           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
7297                        MachinePointerInfo::getFixedStack(
7298                            DAG.getMachineFunction(), FrameIdx));
7299 
7300       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7301              "Expected an i32 store");
7302 
7303       RLI.Ptr = FIdx;
7304       RLI.Chain = Store;
7305       RLI.MPI =
7306           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7307       RLI.Alignment = 4;
7308     }
7309 
7310     MachineMemOperand *MMO =
7311       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7312                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7313     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7314     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
7315                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
7316                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
7317                                  Ops, MVT::i32, MMO);
7318     if (ReusingLoad)
7319       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
7320   } else {
7321     assert(Subtarget.isPPC64() &&
7322            "i32->FP without LFIWAX supported only on PPC64");
7323 
7324     int FrameIdx = MFI.CreateStackObject(8, 8, false);
7325     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7326 
7327     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
7328                                 Op.getOperand(0));
7329 
7330     // STD the extended value into the stack slot.
7331     SDValue Store = DAG.getStore(
7332         DAG.getEntryNode(), dl, Ext64, FIdx,
7333         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7334 
7335     // Load the value as a double.
7336     Ld = DAG.getLoad(
7337         MVT::f64, dl, Store, FIdx,
7338         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7339   }
7340 
7341   // FCFID it and return it.
7342   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
7343   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7344     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
7345                      DAG.getIntPtrConstant(0, dl));
7346   return FP;
7347 }
7348 
7349 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7350                                             SelectionDAG &DAG) const {
7351   SDLoc dl(Op);
7352   /*
7353    The rounding mode is in bits 30:31 of FPSR, and has the following
7354    settings:
7355      00 Round to nearest
7356      01 Round to 0
7357      10 Round to +inf
7358      11 Round to -inf
7359 
7360   FLT_ROUNDS, on the other hand, expects the following:
7361     -1 Undefined
7362      0 Round to 0
7363      1 Round to nearest
7364      2 Round to +inf
7365      3 Round to -inf
7366 
7367   To perform the conversion, we do:
7368     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
7369   */
7370 
7371   MachineFunction &MF = DAG.getMachineFunction();
7372   EVT VT = Op.getValueType();
7373   EVT PtrVT = getPointerTy(MF.getDataLayout());
7374 
7375   // Save FP Control Word to register
7376   EVT NodeTys[] = {
7377     MVT::f64,    // return register
7378     MVT::Glue    // unused in this context
7379   };
7380   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
7381 
7382   // Save FP register to stack slot
7383   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
7384   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
7385   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
7386                                MachinePointerInfo());
7387 
7388   // Load FP Control Word from low 32 bits of stack slot.
7389   SDValue Four = DAG.getConstant(4, dl, PtrVT);
7390   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
7391   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
7392 
7393   // Transform as necessary
7394   SDValue CWD1 =
7395     DAG.getNode(ISD::AND, dl, MVT::i32,
7396                 CWD, DAG.getConstant(3, dl, MVT::i32));
7397   SDValue CWD2 =
7398     DAG.getNode(ISD::SRL, dl, MVT::i32,
7399                 DAG.getNode(ISD::AND, dl, MVT::i32,
7400                             DAG.getNode(ISD::XOR, dl, MVT::i32,
7401                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
7402                             DAG.getConstant(3, dl, MVT::i32)),
7403                 DAG.getConstant(1, dl, MVT::i32));
7404 
7405   SDValue RetVal =
7406     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
7407 
7408   return DAG.getNode((VT.getSizeInBits() < 16 ?
7409                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7410 }
7411 
7412 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7413   EVT VT = Op.getValueType();
7414   unsigned BitWidth = VT.getSizeInBits();
7415   SDLoc dl(Op);
7416   assert(Op.getNumOperands() == 3 &&
7417          VT == Op.getOperand(1).getValueType() &&
7418          "Unexpected SHL!");
7419 
7420   // Expand into a bunch of logical ops.  Note that these ops
7421   // depend on the PPC behavior for oversized shift amounts.
7422   SDValue Lo = Op.getOperand(0);
7423   SDValue Hi = Op.getOperand(1);
7424   SDValue Amt = Op.getOperand(2);
7425   EVT AmtVT = Amt.getValueType();
7426 
7427   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7428                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7429   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
7430   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
7431   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
7432   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7433                              DAG.getConstant(-BitWidth, dl, AmtVT));
7434   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
7435   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7436   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
7437   SDValue OutOps[] = { OutLo, OutHi };
7438   return DAG.getMergeValues(OutOps, dl);
7439 }
7440 
7441 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7442   EVT VT = Op.getValueType();
7443   SDLoc dl(Op);
7444   unsigned BitWidth = VT.getSizeInBits();
7445   assert(Op.getNumOperands() == 3 &&
7446          VT == Op.getOperand(1).getValueType() &&
7447          "Unexpected SRL!");
7448 
7449   // Expand into a bunch of logical ops.  Note that these ops
7450   // depend on the PPC behavior for oversized shift amounts.
7451   SDValue Lo = Op.getOperand(0);
7452   SDValue Hi = Op.getOperand(1);
7453   SDValue Amt = Op.getOperand(2);
7454   EVT AmtVT = Amt.getValueType();
7455 
7456   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7457                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7458   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7459   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7460   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7461   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7462                              DAG.getConstant(-BitWidth, dl, AmtVT));
7463   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
7464   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7465   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
7466   SDValue OutOps[] = { OutLo, OutHi };
7467   return DAG.getMergeValues(OutOps, dl);
7468 }
7469 
7470 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
7471   SDLoc dl(Op);
7472   EVT VT = Op.getValueType();
7473   unsigned BitWidth = VT.getSizeInBits();
7474   assert(Op.getNumOperands() == 3 &&
7475          VT == Op.getOperand(1).getValueType() &&
7476          "Unexpected SRA!");
7477 
7478   // Expand into a bunch of logical ops, followed by a select_cc.
7479   SDValue Lo = Op.getOperand(0);
7480   SDValue Hi = Op.getOperand(1);
7481   SDValue Amt = Op.getOperand(2);
7482   EVT AmtVT = Amt.getValueType();
7483 
7484   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7485                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7486   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7487   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7488   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7489   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7490                              DAG.getConstant(-BitWidth, dl, AmtVT));
7491   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
7492   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
7493   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
7494                                   Tmp4, Tmp6, ISD::SETLE);
7495   SDValue OutOps[] = { OutLo, OutHi };
7496   return DAG.getMergeValues(OutOps, dl);
7497 }
7498 
7499 //===----------------------------------------------------------------------===//
7500 // Vector related lowering.
7501 //
7502 
7503 /// BuildSplatI - Build a canonical splati of Val with an element size of
7504 /// SplatSize.  Cast the result to VT.
7505 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
7506                            SelectionDAG &DAG, const SDLoc &dl) {
7507   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
7508 
7509   static const MVT VTys[] = { // canonical VT to use for each size.
7510     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
7511   };
7512 
7513   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
7514 
7515   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
7516   if (Val == -1)
7517     SplatSize = 1;
7518 
7519   EVT CanonicalVT = VTys[SplatSize-1];
7520 
7521   // Build a canonical splat for this value.
7522   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
7523 }
7524 
7525 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
7526 /// specified intrinsic ID.
7527 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
7528                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
7529   if (DestVT == MVT::Other) DestVT = Op.getValueType();
7530   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7531                      DAG.getConstant(IID, dl, MVT::i32), Op);
7532 }
7533 
7534 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
7535 /// specified intrinsic ID.
7536 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
7537                                 SelectionDAG &DAG, const SDLoc &dl,
7538                                 EVT DestVT = MVT::Other) {
7539   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
7540   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7541                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
7542 }
7543 
7544 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
7545 /// specified intrinsic ID.
7546 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
7547                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
7548                                 EVT DestVT = MVT::Other) {
7549   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
7550   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7551                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
7552 }
7553 
7554 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
7555 /// amount.  The result has the specified value type.
7556 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
7557                            SelectionDAG &DAG, const SDLoc &dl) {
7558   // Force LHS/RHS to be the right type.
7559   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
7560   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
7561 
7562   int Ops[16];
7563   for (unsigned i = 0; i != 16; ++i)
7564     Ops[i] = i + Amt;
7565   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
7566   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7567 }
7568 
7569 /// Do we have an efficient pattern in a .td file for this node?
7570 ///
7571 /// \param V - pointer to the BuildVectorSDNode being matched
7572 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
7573 ///
7574 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
7575 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
7576 /// the opposite is true (expansion is beneficial) are:
7577 /// - The node builds a vector out of integers that are not 32 or 64-bits
7578 /// - The node builds a vector out of constants
7579 /// - The node is a "load-and-splat"
7580 /// In all other cases, we will choose to keep the BUILD_VECTOR.
7581 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
7582                                             bool HasDirectMove,
7583                                             bool HasP8Vector) {
7584   EVT VecVT = V->getValueType(0);
7585   bool RightType = VecVT == MVT::v2f64 ||
7586     (HasP8Vector && VecVT == MVT::v4f32) ||
7587     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
7588   if (!RightType)
7589     return false;
7590 
7591   bool IsSplat = true;
7592   bool IsLoad = false;
7593   SDValue Op0 = V->getOperand(0);
7594 
7595   // This function is called in a block that confirms the node is not a constant
7596   // splat. So a constant BUILD_VECTOR here means the vector is built out of
7597   // different constants.
7598   if (V->isConstant())
7599     return false;
7600   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
7601     if (V->getOperand(i).isUndef())
7602       return false;
7603     // We want to expand nodes that represent load-and-splat even if the
7604     // loaded value is a floating point truncation or conversion to int.
7605     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
7606         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
7607          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7608         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
7609          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7610         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
7611          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
7612       IsLoad = true;
7613     // If the operands are different or the input is not a load and has more
7614     // uses than just this BV node, then it isn't a splat.
7615     if (V->getOperand(i) != Op0 ||
7616         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
7617       IsSplat = false;
7618   }
7619   return !(IsSplat && IsLoad);
7620 }
7621 
7622 // If this is a case we can't handle, return null and let the default
7623 // expansion code take care of it.  If we CAN select this case, and if it
7624 // selects to a single instruction, return Op.  Otherwise, if we can codegen
7625 // this case more efficiently than a constant pool load, lower it to the
7626 // sequence of ops that should be used.
7627 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
7628                                              SelectionDAG &DAG) const {
7629   SDLoc dl(Op);
7630   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7631   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
7632 
7633   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
7634     // We first build an i32 vector, load it into a QPX register,
7635     // then convert it to a floating-point vector and compare it
7636     // to a zero vector to get the boolean result.
7637     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7638     int FrameIdx = MFI.CreateStackObject(16, 16, false);
7639     MachinePointerInfo PtrInfo =
7640         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7641     EVT PtrVT = getPointerTy(DAG.getDataLayout());
7642     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7643 
7644     assert(BVN->getNumOperands() == 4 &&
7645       "BUILD_VECTOR for v4i1 does not have 4 operands");
7646 
7647     bool IsConst = true;
7648     for (unsigned i = 0; i < 4; ++i) {
7649       if (BVN->getOperand(i).isUndef()) continue;
7650       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
7651         IsConst = false;
7652         break;
7653       }
7654     }
7655 
7656     if (IsConst) {
7657       Constant *One =
7658         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
7659       Constant *NegOne =
7660         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
7661 
7662       Constant *CV[4];
7663       for (unsigned i = 0; i < 4; ++i) {
7664         if (BVN->getOperand(i).isUndef())
7665           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
7666         else if (isNullConstant(BVN->getOperand(i)))
7667           CV[i] = NegOne;
7668         else
7669           CV[i] = One;
7670       }
7671 
7672       Constant *CP = ConstantVector::get(CV);
7673       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
7674                                           16 /* alignment */);
7675 
7676       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
7677       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
7678       return DAG.getMemIntrinsicNode(
7679           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
7680           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
7681     }
7682 
7683     SmallVector<SDValue, 4> Stores;
7684     for (unsigned i = 0; i < 4; ++i) {
7685       if (BVN->getOperand(i).isUndef()) continue;
7686 
7687       unsigned Offset = 4*i;
7688       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7689       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7690 
7691       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
7692       if (StoreSize > 4) {
7693         Stores.push_back(
7694             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
7695                               PtrInfo.getWithOffset(Offset), MVT::i32));
7696       } else {
7697         SDValue StoreValue = BVN->getOperand(i);
7698         if (StoreSize < 4)
7699           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
7700 
7701         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
7702                                       PtrInfo.getWithOffset(Offset)));
7703       }
7704     }
7705 
7706     SDValue StoreChain;
7707     if (!Stores.empty())
7708       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7709     else
7710       StoreChain = DAG.getEntryNode();
7711 
7712     // Now load from v4i32 into the QPX register; this will extend it to
7713     // v4i64 but not yet convert it to a floating point. Nevertheless, this
7714     // is typed as v4f64 because the QPX register integer states are not
7715     // explicitly represented.
7716 
7717     SDValue Ops[] = {StoreChain,
7718                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
7719                      FIdx};
7720     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
7721 
7722     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
7723       dl, VTs, Ops, MVT::v4i32, PtrInfo);
7724     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7725       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
7726       LoadedVect);
7727 
7728     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
7729 
7730     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
7731   }
7732 
7733   // All other QPX vectors are handled by generic code.
7734   if (Subtarget.hasQPX())
7735     return SDValue();
7736 
7737   // Check if this is a splat of a constant value.
7738   APInt APSplatBits, APSplatUndef;
7739   unsigned SplatBitSize;
7740   bool HasAnyUndefs;
7741   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
7742                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
7743       SplatBitSize > 32) {
7744     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
7745     // lowered to VSX instructions under certain conditions.
7746     // Without VSX, there is no pattern more efficient than expanding the node.
7747     if (Subtarget.hasVSX() &&
7748         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
7749                                         Subtarget.hasP8Vector()))
7750       return Op;
7751     return SDValue();
7752   }
7753 
7754   unsigned SplatBits = APSplatBits.getZExtValue();
7755   unsigned SplatUndef = APSplatUndef.getZExtValue();
7756   unsigned SplatSize = SplatBitSize / 8;
7757 
7758   // First, handle single instruction cases.
7759 
7760   // All zeros?
7761   if (SplatBits == 0) {
7762     // Canonicalize all zero vectors to be v4i32.
7763     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
7764       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
7765       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
7766     }
7767     return Op;
7768   }
7769 
7770   // We have XXSPLTIB for constant splats one byte wide
7771   if (Subtarget.hasP9Vector() && SplatSize == 1) {
7772     // This is a splat of 1-byte elements with some elements potentially undef.
7773     // Rather than trying to match undef in the SDAG patterns, ensure that all
7774     // elements are the same constant.
7775     if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) {
7776       SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits,
7777                                                        dl, MVT::i32));
7778       SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops);
7779       if (Op.getValueType() != MVT::v16i8)
7780         return DAG.getBitcast(Op.getValueType(), NewBV);
7781       return NewBV;
7782     }
7783 
7784     // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll
7785     // detect that constant splats like v8i16: 0xABAB are really just splats
7786     // of a 1-byte constant. In this case, we need to convert the node to a
7787     // splat of v16i8 and a bitcast.
7788     if (Op.getValueType() != MVT::v16i8)
7789       return DAG.getBitcast(Op.getValueType(),
7790                             DAG.getConstant(SplatBits, dl, MVT::v16i8));
7791 
7792     return Op;
7793   }
7794 
7795   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
7796   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
7797                     (32-SplatBitSize));
7798   if (SextVal >= -16 && SextVal <= 15)
7799     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
7800 
7801   // Two instruction sequences.
7802 
7803   // If this value is in the range [-32,30] and is even, use:
7804   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
7805   // If this value is in the range [17,31] and is odd, use:
7806   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
7807   // If this value is in the range [-31,-17] and is odd, use:
7808   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
7809   // Note the last two are three-instruction sequences.
7810   if (SextVal >= -32 && SextVal <= 31) {
7811     // To avoid having these optimizations undone by constant folding,
7812     // we convert to a pseudo that will be expanded later into one of
7813     // the above forms.
7814     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
7815     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
7816               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
7817     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
7818     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
7819     if (VT == Op.getValueType())
7820       return RetVal;
7821     else
7822       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
7823   }
7824 
7825   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
7826   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
7827   // for fneg/fabs.
7828   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
7829     // Make -1 and vspltisw -1:
7830     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
7831 
7832     // Make the VSLW intrinsic, computing 0x8000_0000.
7833     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
7834                                    OnesV, DAG, dl);
7835 
7836     // xor by OnesV to invert it.
7837     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
7838     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7839   }
7840 
7841   // Check to see if this is a wide variety of vsplti*, binop self cases.
7842   static const signed char SplatCsts[] = {
7843     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
7844     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
7845   };
7846 
7847   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
7848     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
7849     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
7850     int i = SplatCsts[idx];
7851 
7852     // Figure out what shift amount will be used by altivec if shifted by i in
7853     // this splat size.
7854     unsigned TypeShiftAmt = i & (SplatBitSize-1);
7855 
7856     // vsplti + shl self.
7857     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
7858       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7859       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7860         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
7861         Intrinsic::ppc_altivec_vslw
7862       };
7863       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7864       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7865     }
7866 
7867     // vsplti + srl self.
7868     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7869       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7870       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7871         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
7872         Intrinsic::ppc_altivec_vsrw
7873       };
7874       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7875       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7876     }
7877 
7878     // vsplti + sra self.
7879     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7880       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7881       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7882         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
7883         Intrinsic::ppc_altivec_vsraw
7884       };
7885       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7886       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7887     }
7888 
7889     // vsplti + rol self.
7890     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
7891                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
7892       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7893       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7894         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
7895         Intrinsic::ppc_altivec_vrlw
7896       };
7897       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7898       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7899     }
7900 
7901     // t = vsplti c, result = vsldoi t, t, 1
7902     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
7903       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7904       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
7905       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7906     }
7907     // t = vsplti c, result = vsldoi t, t, 2
7908     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
7909       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7910       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
7911       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7912     }
7913     // t = vsplti c, result = vsldoi t, t, 3
7914     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
7915       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7916       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
7917       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7918     }
7919   }
7920 
7921   return SDValue();
7922 }
7923 
7924 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7925 /// the specified operations to build the shuffle.
7926 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
7927                                       SDValue RHS, SelectionDAG &DAG,
7928                                       const SDLoc &dl) {
7929   unsigned OpNum = (PFEntry >> 26) & 0x0F;
7930   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
7931   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
7932 
7933   enum {
7934     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7935     OP_VMRGHW,
7936     OP_VMRGLW,
7937     OP_VSPLTISW0,
7938     OP_VSPLTISW1,
7939     OP_VSPLTISW2,
7940     OP_VSPLTISW3,
7941     OP_VSLDOI4,
7942     OP_VSLDOI8,
7943     OP_VSLDOI12
7944   };
7945 
7946   if (OpNum == OP_COPY) {
7947     if (LHSID == (1*9+2)*9+3) return LHS;
7948     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7949     return RHS;
7950   }
7951 
7952   SDValue OpLHS, OpRHS;
7953   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
7954   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
7955 
7956   int ShufIdxs[16];
7957   switch (OpNum) {
7958   default: llvm_unreachable("Unknown i32 permute!");
7959   case OP_VMRGHW:
7960     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
7961     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
7962     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
7963     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
7964     break;
7965   case OP_VMRGLW:
7966     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
7967     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
7968     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
7969     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
7970     break;
7971   case OP_VSPLTISW0:
7972     for (unsigned i = 0; i != 16; ++i)
7973       ShufIdxs[i] = (i&3)+0;
7974     break;
7975   case OP_VSPLTISW1:
7976     for (unsigned i = 0; i != 16; ++i)
7977       ShufIdxs[i] = (i&3)+4;
7978     break;
7979   case OP_VSPLTISW2:
7980     for (unsigned i = 0; i != 16; ++i)
7981       ShufIdxs[i] = (i&3)+8;
7982     break;
7983   case OP_VSPLTISW3:
7984     for (unsigned i = 0; i != 16; ++i)
7985       ShufIdxs[i] = (i&3)+12;
7986     break;
7987   case OP_VSLDOI4:
7988     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
7989   case OP_VSLDOI8:
7990     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
7991   case OP_VSLDOI12:
7992     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
7993   }
7994   EVT VT = OpLHS.getValueType();
7995   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
7996   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
7997   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
7998   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7999 }
8000 
8001 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
8002 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
8003 /// SDValue.
8004 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
8005                                            SelectionDAG &DAG) const {
8006   const unsigned BytesInVector = 16;
8007   bool IsLE = Subtarget.isLittleEndian();
8008   SDLoc dl(N);
8009   SDValue V1 = N->getOperand(0);
8010   SDValue V2 = N->getOperand(1);
8011   unsigned ShiftElts = 0, InsertAtByte = 0;
8012   bool Swap = false;
8013 
8014   // Shifts required to get the byte we want at element 7.
8015   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
8016                                    0, 15, 14, 13, 12, 11, 10, 9};
8017   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
8018                                 1, 2,  3,  4,  5,  6,  7,  8};
8019 
8020   ArrayRef<int> Mask = N->getMask();
8021   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
8022 
8023   // For each mask element, find out if we're just inserting something
8024   // from V2 into V1 or vice versa.
8025   // Possible permutations inserting an element from V2 into V1:
8026   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8027   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8028   //   ...
8029   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
8030   // Inserting from V1 into V2 will be similar, except mask range will be
8031   // [16,31].
8032 
8033   bool FoundCandidate = false;
8034   // If both vector operands for the shuffle are the same vector, the mask
8035   // will contain only elements from the first one and the second one will be
8036   // undef.
8037   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
8038   // Go through the mask of half-words to find an element that's being moved
8039   // from one vector to the other.
8040   for (unsigned i = 0; i < BytesInVector; ++i) {
8041     unsigned CurrentElement = Mask[i];
8042     // If 2nd operand is undefined, we should only look for element 7 in the
8043     // Mask.
8044     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
8045       continue;
8046 
8047     bool OtherElementsInOrder = true;
8048     // Examine the other elements in the Mask to see if they're in original
8049     // order.
8050     for (unsigned j = 0; j < BytesInVector; ++j) {
8051       if (j == i)
8052         continue;
8053       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
8054       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
8055       // in which we always assume we're always picking from the 1st operand.
8056       int MaskOffset =
8057           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
8058       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
8059         OtherElementsInOrder = false;
8060         break;
8061       }
8062     }
8063     // If other elements are in original order, we record the number of shifts
8064     // we need to get the element we want into element 7. Also record which byte
8065     // in the vector we should insert into.
8066     if (OtherElementsInOrder) {
8067       // If 2nd operand is undefined, we assume no shifts and no swapping.
8068       if (V2.isUndef()) {
8069         ShiftElts = 0;
8070         Swap = false;
8071       } else {
8072         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
8073         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
8074                          : BigEndianShifts[CurrentElement & 0xF];
8075         Swap = CurrentElement < BytesInVector;
8076       }
8077       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
8078       FoundCandidate = true;
8079       break;
8080     }
8081   }
8082 
8083   if (!FoundCandidate)
8084     return SDValue();
8085 
8086   // Candidate found, construct the proper SDAG sequence with VINSERTB,
8087   // optionally with VECSHL if shift is required.
8088   if (Swap)
8089     std::swap(V1, V2);
8090   if (V2.isUndef())
8091     V2 = V1;
8092   if (ShiftElts) {
8093     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8094                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8095     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
8096                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
8097   }
8098   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
8099                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
8100 }
8101 
8102 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
8103 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
8104 /// SDValue.
8105 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
8106                                            SelectionDAG &DAG) const {
8107   const unsigned NumHalfWords = 8;
8108   const unsigned BytesInVector = NumHalfWords * 2;
8109   // Check that the shuffle is on half-words.
8110   if (!isNByteElemShuffleMask(N, 2, 1))
8111     return SDValue();
8112 
8113   bool IsLE = Subtarget.isLittleEndian();
8114   SDLoc dl(N);
8115   SDValue V1 = N->getOperand(0);
8116   SDValue V2 = N->getOperand(1);
8117   unsigned ShiftElts = 0, InsertAtByte = 0;
8118   bool Swap = false;
8119 
8120   // Shifts required to get the half-word we want at element 3.
8121   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
8122   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
8123 
8124   uint32_t Mask = 0;
8125   uint32_t OriginalOrderLow = 0x1234567;
8126   uint32_t OriginalOrderHigh = 0x89ABCDEF;
8127   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
8128   // 32-bit space, only need 4-bit nibbles per element.
8129   for (unsigned i = 0; i < NumHalfWords; ++i) {
8130     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8131     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
8132   }
8133 
8134   // For each mask element, find out if we're just inserting something
8135   // from V2 into V1 or vice versa.  Possible permutations inserting an element
8136   // from V2 into V1:
8137   //   X, 1, 2, 3, 4, 5, 6, 7
8138   //   0, X, 2, 3, 4, 5, 6, 7
8139   //   0, 1, X, 3, 4, 5, 6, 7
8140   //   0, 1, 2, X, 4, 5, 6, 7
8141   //   0, 1, 2, 3, X, 5, 6, 7
8142   //   0, 1, 2, 3, 4, X, 6, 7
8143   //   0, 1, 2, 3, 4, 5, X, 7
8144   //   0, 1, 2, 3, 4, 5, 6, X
8145   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
8146 
8147   bool FoundCandidate = false;
8148   // Go through the mask of half-words to find an element that's being moved
8149   // from one vector to the other.
8150   for (unsigned i = 0; i < NumHalfWords; ++i) {
8151     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8152     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
8153     uint32_t MaskOtherElts = ~(0xF << MaskShift);
8154     uint32_t TargetOrder = 0x0;
8155 
8156     // If both vector operands for the shuffle are the same vector, the mask
8157     // will contain only elements from the first one and the second one will be
8158     // undef.
8159     if (V2.isUndef()) {
8160       ShiftElts = 0;
8161       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
8162       TargetOrder = OriginalOrderLow;
8163       Swap = false;
8164       // Skip if not the correct element or mask of other elements don't equal
8165       // to our expected order.
8166       if (MaskOneElt == VINSERTHSrcElem &&
8167           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8168         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8169         FoundCandidate = true;
8170         break;
8171       }
8172     } else { // If both operands are defined.
8173       // Target order is [8,15] if the current mask is between [0,7].
8174       TargetOrder =
8175           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
8176       // Skip if mask of other elements don't equal our expected order.
8177       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8178         // We only need the last 3 bits for the number of shifts.
8179         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
8180                          : BigEndianShifts[MaskOneElt & 0x7];
8181         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8182         Swap = MaskOneElt < NumHalfWords;
8183         FoundCandidate = true;
8184         break;
8185       }
8186     }
8187   }
8188 
8189   if (!FoundCandidate)
8190     return SDValue();
8191 
8192   // Candidate found, construct the proper SDAG sequence with VINSERTH,
8193   // optionally with VECSHL if shift is required.
8194   if (Swap)
8195     std::swap(V1, V2);
8196   if (V2.isUndef())
8197     V2 = V1;
8198   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8199   if (ShiftElts) {
8200     // Double ShiftElts because we're left shifting on v16i8 type.
8201     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8202                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
8203     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
8204     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8205                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8206     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8207   }
8208   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
8209   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8210                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
8211   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8212 }
8213 
8214 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
8215 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
8216 /// return the code it can be lowered into.  Worst case, it can always be
8217 /// lowered into a vperm.
8218 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
8219                                                SelectionDAG &DAG) const {
8220   SDLoc dl(Op);
8221   SDValue V1 = Op.getOperand(0);
8222   SDValue V2 = Op.getOperand(1);
8223   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8224   EVT VT = Op.getValueType();
8225   bool isLittleEndian = Subtarget.isLittleEndian();
8226 
8227   unsigned ShiftElts, InsertAtByte;
8228   bool Swap = false;
8229   if (Subtarget.hasP9Vector() &&
8230       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
8231                            isLittleEndian)) {
8232     if (Swap)
8233       std::swap(V1, V2);
8234     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8235     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
8236     if (ShiftElts) {
8237       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
8238                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
8239       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
8240                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
8241       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8242     }
8243     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
8244                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8245     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8246   }
8247 
8248   if (Subtarget.hasP9Altivec()) {
8249     SDValue NewISDNode;
8250     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
8251       return NewISDNode;
8252 
8253     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
8254       return NewISDNode;
8255   }
8256 
8257   if (Subtarget.hasVSX() &&
8258       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8259     if (Swap)
8260       std::swap(V1, V2);
8261     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8262     SDValue Conv2 =
8263         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
8264 
8265     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
8266                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8267     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
8268   }
8269 
8270   if (Subtarget.hasVSX() &&
8271     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8272     if (Swap)
8273       std::swap(V1, V2);
8274     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8275     SDValue Conv2 =
8276         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
8277 
8278     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
8279                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8280     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
8281   }
8282 
8283   if (Subtarget.hasP9Vector()) {
8284      if (PPC::isXXBRHShuffleMask(SVOp)) {
8285       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8286       SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv);
8287       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
8288     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
8289       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8290       SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv);
8291       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
8292     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
8293       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8294       SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv);
8295       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
8296     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
8297       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
8298       SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv);
8299       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
8300     }
8301   }
8302 
8303   if (Subtarget.hasVSX()) {
8304     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
8305       int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG);
8306 
8307       // If the source for the shuffle is a scalar_to_vector that came from a
8308       // 32-bit load, it will have used LXVWSX so we don't need to splat again.
8309       if (Subtarget.hasP9Vector() &&
8310           ((isLittleEndian && SplatIdx == 3) ||
8311            (!isLittleEndian && SplatIdx == 0))) {
8312         SDValue Src = V1.getOperand(0);
8313         if (Src.getOpcode() == ISD::SCALAR_TO_VECTOR &&
8314             Src.getOperand(0).getOpcode() == ISD::LOAD &&
8315             Src.getOperand(0).hasOneUse())
8316           return V1;
8317       }
8318       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8319       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
8320                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
8321       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
8322     }
8323 
8324     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
8325     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
8326       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
8327       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
8328       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
8329     }
8330   }
8331 
8332   if (Subtarget.hasQPX()) {
8333     if (VT.getVectorNumElements() != 4)
8334       return SDValue();
8335 
8336     if (V2.isUndef()) V2 = V1;
8337 
8338     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
8339     if (AlignIdx != -1) {
8340       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
8341                          DAG.getConstant(AlignIdx, dl, MVT::i32));
8342     } else if (SVOp->isSplat()) {
8343       int SplatIdx = SVOp->getSplatIndex();
8344       if (SplatIdx >= 4) {
8345         std::swap(V1, V2);
8346         SplatIdx -= 4;
8347       }
8348 
8349       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
8350                          DAG.getConstant(SplatIdx, dl, MVT::i32));
8351     }
8352 
8353     // Lower this into a qvgpci/qvfperm pair.
8354 
8355     // Compute the qvgpci literal
8356     unsigned idx = 0;
8357     for (unsigned i = 0; i < 4; ++i) {
8358       int m = SVOp->getMaskElt(i);
8359       unsigned mm = m >= 0 ? (unsigned) m : i;
8360       idx |= mm << (3-i)*3;
8361     }
8362 
8363     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
8364                              DAG.getConstant(idx, dl, MVT::i32));
8365     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
8366   }
8367 
8368   // Cases that are handled by instructions that take permute immediates
8369   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
8370   // selected by the instruction selector.
8371   if (V2.isUndef()) {
8372     if (PPC::isSplatShuffleMask(SVOp, 1) ||
8373         PPC::isSplatShuffleMask(SVOp, 2) ||
8374         PPC::isSplatShuffleMask(SVOp, 4) ||
8375         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
8376         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
8377         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
8378         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
8379         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
8380         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
8381         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
8382         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
8383         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
8384         (Subtarget.hasP8Altivec() && (
8385          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
8386          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
8387          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
8388       return Op;
8389     }
8390   }
8391 
8392   // Altivec has a variety of "shuffle immediates" that take two vector inputs
8393   // and produce a fixed permutation.  If any of these match, do not lower to
8394   // VPERM.
8395   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
8396   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8397       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8398       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
8399       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8400       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8401       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8402       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8403       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8404       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8405       (Subtarget.hasP8Altivec() && (
8406        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8407        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
8408        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
8409     return Op;
8410 
8411   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
8412   // perfect shuffle table to emit an optimal matching sequence.
8413   ArrayRef<int> PermMask = SVOp->getMask();
8414 
8415   unsigned PFIndexes[4];
8416   bool isFourElementShuffle = true;
8417   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
8418     unsigned EltNo = 8;   // Start out undef.
8419     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
8420       if (PermMask[i*4+j] < 0)
8421         continue;   // Undef, ignore it.
8422 
8423       unsigned ByteSource = PermMask[i*4+j];
8424       if ((ByteSource & 3) != j) {
8425         isFourElementShuffle = false;
8426         break;
8427       }
8428 
8429       if (EltNo == 8) {
8430         EltNo = ByteSource/4;
8431       } else if (EltNo != ByteSource/4) {
8432         isFourElementShuffle = false;
8433         break;
8434       }
8435     }
8436     PFIndexes[i] = EltNo;
8437   }
8438 
8439   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
8440   // perfect shuffle vector to determine if it is cost effective to do this as
8441   // discrete instructions, or whether we should use a vperm.
8442   // For now, we skip this for little endian until such time as we have a
8443   // little-endian perfect shuffle table.
8444   if (isFourElementShuffle && !isLittleEndian) {
8445     // Compute the index in the perfect shuffle table.
8446     unsigned PFTableIndex =
8447       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8448 
8449     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8450     unsigned Cost  = (PFEntry >> 30);
8451 
8452     // Determining when to avoid vperm is tricky.  Many things affect the cost
8453     // of vperm, particularly how many times the perm mask needs to be computed.
8454     // For example, if the perm mask can be hoisted out of a loop or is already
8455     // used (perhaps because there are multiple permutes with the same shuffle
8456     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
8457     // the loop requires an extra register.
8458     //
8459     // As a compromise, we only emit discrete instructions if the shuffle can be
8460     // generated in 3 or fewer operations.  When we have loop information
8461     // available, if this block is within a loop, we should avoid using vperm
8462     // for 3-operation perms and use a constant pool load instead.
8463     if (Cost < 3)
8464       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8465   }
8466 
8467   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
8468   // vector that will get spilled to the constant pool.
8469   if (V2.isUndef()) V2 = V1;
8470 
8471   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
8472   // that it is in input element units, not in bytes.  Convert now.
8473 
8474   // For little endian, the order of the input vectors is reversed, and
8475   // the permutation mask is complemented with respect to 31.  This is
8476   // necessary to produce proper semantics with the big-endian-biased vperm
8477   // instruction.
8478   EVT EltVT = V1.getValueType().getVectorElementType();
8479   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
8480 
8481   SmallVector<SDValue, 16> ResultMask;
8482   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
8483     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
8484 
8485     for (unsigned j = 0; j != BytesPerElement; ++j)
8486       if (isLittleEndian)
8487         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
8488                                              dl, MVT::i32));
8489       else
8490         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
8491                                              MVT::i32));
8492   }
8493 
8494   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
8495   if (isLittleEndian)
8496     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8497                        V2, V1, VPermMask);
8498   else
8499     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8500                        V1, V2, VPermMask);
8501 }
8502 
8503 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
8504 /// vector comparison.  If it is, return true and fill in Opc/isDot with
8505 /// information about the intrinsic.
8506 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
8507                                  bool &isDot, const PPCSubtarget &Subtarget) {
8508   unsigned IntrinsicID =
8509       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
8510   CompareOpc = -1;
8511   isDot = false;
8512   switch (IntrinsicID) {
8513   default:
8514     return false;
8515   // Comparison predicates.
8516   case Intrinsic::ppc_altivec_vcmpbfp_p:
8517     CompareOpc = 966;
8518     isDot = true;
8519     break;
8520   case Intrinsic::ppc_altivec_vcmpeqfp_p:
8521     CompareOpc = 198;
8522     isDot = true;
8523     break;
8524   case Intrinsic::ppc_altivec_vcmpequb_p:
8525     CompareOpc = 6;
8526     isDot = true;
8527     break;
8528   case Intrinsic::ppc_altivec_vcmpequh_p:
8529     CompareOpc = 70;
8530     isDot = true;
8531     break;
8532   case Intrinsic::ppc_altivec_vcmpequw_p:
8533     CompareOpc = 134;
8534     isDot = true;
8535     break;
8536   case Intrinsic::ppc_altivec_vcmpequd_p:
8537     if (Subtarget.hasP8Altivec()) {
8538       CompareOpc = 199;
8539       isDot = true;
8540     } else
8541       return false;
8542     break;
8543   case Intrinsic::ppc_altivec_vcmpneb_p:
8544   case Intrinsic::ppc_altivec_vcmpneh_p:
8545   case Intrinsic::ppc_altivec_vcmpnew_p:
8546   case Intrinsic::ppc_altivec_vcmpnezb_p:
8547   case Intrinsic::ppc_altivec_vcmpnezh_p:
8548   case Intrinsic::ppc_altivec_vcmpnezw_p:
8549     if (Subtarget.hasP9Altivec()) {
8550       switch (IntrinsicID) {
8551       default:
8552         llvm_unreachable("Unknown comparison intrinsic.");
8553       case Intrinsic::ppc_altivec_vcmpneb_p:
8554         CompareOpc = 7;
8555         break;
8556       case Intrinsic::ppc_altivec_vcmpneh_p:
8557         CompareOpc = 71;
8558         break;
8559       case Intrinsic::ppc_altivec_vcmpnew_p:
8560         CompareOpc = 135;
8561         break;
8562       case Intrinsic::ppc_altivec_vcmpnezb_p:
8563         CompareOpc = 263;
8564         break;
8565       case Intrinsic::ppc_altivec_vcmpnezh_p:
8566         CompareOpc = 327;
8567         break;
8568       case Intrinsic::ppc_altivec_vcmpnezw_p:
8569         CompareOpc = 391;
8570         break;
8571       }
8572       isDot = true;
8573     } else
8574       return false;
8575     break;
8576   case Intrinsic::ppc_altivec_vcmpgefp_p:
8577     CompareOpc = 454;
8578     isDot = true;
8579     break;
8580   case Intrinsic::ppc_altivec_vcmpgtfp_p:
8581     CompareOpc = 710;
8582     isDot = true;
8583     break;
8584   case Intrinsic::ppc_altivec_vcmpgtsb_p:
8585     CompareOpc = 774;
8586     isDot = true;
8587     break;
8588   case Intrinsic::ppc_altivec_vcmpgtsh_p:
8589     CompareOpc = 838;
8590     isDot = true;
8591     break;
8592   case Intrinsic::ppc_altivec_vcmpgtsw_p:
8593     CompareOpc = 902;
8594     isDot = true;
8595     break;
8596   case Intrinsic::ppc_altivec_vcmpgtsd_p:
8597     if (Subtarget.hasP8Altivec()) {
8598       CompareOpc = 967;
8599       isDot = true;
8600     } else
8601       return false;
8602     break;
8603   case Intrinsic::ppc_altivec_vcmpgtub_p:
8604     CompareOpc = 518;
8605     isDot = true;
8606     break;
8607   case Intrinsic::ppc_altivec_vcmpgtuh_p:
8608     CompareOpc = 582;
8609     isDot = true;
8610     break;
8611   case Intrinsic::ppc_altivec_vcmpgtuw_p:
8612     CompareOpc = 646;
8613     isDot = true;
8614     break;
8615   case Intrinsic::ppc_altivec_vcmpgtud_p:
8616     if (Subtarget.hasP8Altivec()) {
8617       CompareOpc = 711;
8618       isDot = true;
8619     } else
8620       return false;
8621     break;
8622 
8623   // VSX predicate comparisons use the same infrastructure
8624   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8625   case Intrinsic::ppc_vsx_xvcmpgedp_p:
8626   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8627   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8628   case Intrinsic::ppc_vsx_xvcmpgesp_p:
8629   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8630     if (Subtarget.hasVSX()) {
8631       switch (IntrinsicID) {
8632       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8633         CompareOpc = 99;
8634         break;
8635       case Intrinsic::ppc_vsx_xvcmpgedp_p:
8636         CompareOpc = 115;
8637         break;
8638       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8639         CompareOpc = 107;
8640         break;
8641       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8642         CompareOpc = 67;
8643         break;
8644       case Intrinsic::ppc_vsx_xvcmpgesp_p:
8645         CompareOpc = 83;
8646         break;
8647       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8648         CompareOpc = 75;
8649         break;
8650       }
8651       isDot = true;
8652     } else
8653       return false;
8654     break;
8655 
8656   // Normal Comparisons.
8657   case Intrinsic::ppc_altivec_vcmpbfp:
8658     CompareOpc = 966;
8659     break;
8660   case Intrinsic::ppc_altivec_vcmpeqfp:
8661     CompareOpc = 198;
8662     break;
8663   case Intrinsic::ppc_altivec_vcmpequb:
8664     CompareOpc = 6;
8665     break;
8666   case Intrinsic::ppc_altivec_vcmpequh:
8667     CompareOpc = 70;
8668     break;
8669   case Intrinsic::ppc_altivec_vcmpequw:
8670     CompareOpc = 134;
8671     break;
8672   case Intrinsic::ppc_altivec_vcmpequd:
8673     if (Subtarget.hasP8Altivec())
8674       CompareOpc = 199;
8675     else
8676       return false;
8677     break;
8678   case Intrinsic::ppc_altivec_vcmpneb:
8679   case Intrinsic::ppc_altivec_vcmpneh:
8680   case Intrinsic::ppc_altivec_vcmpnew:
8681   case Intrinsic::ppc_altivec_vcmpnezb:
8682   case Intrinsic::ppc_altivec_vcmpnezh:
8683   case Intrinsic::ppc_altivec_vcmpnezw:
8684     if (Subtarget.hasP9Altivec())
8685       switch (IntrinsicID) {
8686       default:
8687         llvm_unreachable("Unknown comparison intrinsic.");
8688       case Intrinsic::ppc_altivec_vcmpneb:
8689         CompareOpc = 7;
8690         break;
8691       case Intrinsic::ppc_altivec_vcmpneh:
8692         CompareOpc = 71;
8693         break;
8694       case Intrinsic::ppc_altivec_vcmpnew:
8695         CompareOpc = 135;
8696         break;
8697       case Intrinsic::ppc_altivec_vcmpnezb:
8698         CompareOpc = 263;
8699         break;
8700       case Intrinsic::ppc_altivec_vcmpnezh:
8701         CompareOpc = 327;
8702         break;
8703       case Intrinsic::ppc_altivec_vcmpnezw:
8704         CompareOpc = 391;
8705         break;
8706       }
8707     else
8708       return false;
8709     break;
8710   case Intrinsic::ppc_altivec_vcmpgefp:
8711     CompareOpc = 454;
8712     break;
8713   case Intrinsic::ppc_altivec_vcmpgtfp:
8714     CompareOpc = 710;
8715     break;
8716   case Intrinsic::ppc_altivec_vcmpgtsb:
8717     CompareOpc = 774;
8718     break;
8719   case Intrinsic::ppc_altivec_vcmpgtsh:
8720     CompareOpc = 838;
8721     break;
8722   case Intrinsic::ppc_altivec_vcmpgtsw:
8723     CompareOpc = 902;
8724     break;
8725   case Intrinsic::ppc_altivec_vcmpgtsd:
8726     if (Subtarget.hasP8Altivec())
8727       CompareOpc = 967;
8728     else
8729       return false;
8730     break;
8731   case Intrinsic::ppc_altivec_vcmpgtub:
8732     CompareOpc = 518;
8733     break;
8734   case Intrinsic::ppc_altivec_vcmpgtuh:
8735     CompareOpc = 582;
8736     break;
8737   case Intrinsic::ppc_altivec_vcmpgtuw:
8738     CompareOpc = 646;
8739     break;
8740   case Intrinsic::ppc_altivec_vcmpgtud:
8741     if (Subtarget.hasP8Altivec())
8742       CompareOpc = 711;
8743     else
8744       return false;
8745     break;
8746   }
8747   return true;
8748 }
8749 
8750 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
8751 /// lower, do it, otherwise return null.
8752 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
8753                                                    SelectionDAG &DAG) const {
8754   unsigned IntrinsicID =
8755     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8756 
8757   SDLoc dl(Op);
8758 
8759   if (IntrinsicID == Intrinsic::thread_pointer) {
8760     // Reads the thread pointer register, used for __builtin_thread_pointer.
8761     if (Subtarget.isPPC64())
8762       return DAG.getRegister(PPC::X13, MVT::i64);
8763     return DAG.getRegister(PPC::R2, MVT::i32);
8764   }
8765 
8766   // We are looking for absolute values here.
8767   // The idea is to try to fit one of two patterns:
8768   //  max (a, (0-a))  OR  max ((0-a), a)
8769   if (Subtarget.hasP9Vector() &&
8770       (IntrinsicID == Intrinsic::ppc_altivec_vmaxsw ||
8771        IntrinsicID == Intrinsic::ppc_altivec_vmaxsh ||
8772        IntrinsicID == Intrinsic::ppc_altivec_vmaxsb)) {
8773     SDValue V1 = Op.getOperand(1);
8774     SDValue V2 = Op.getOperand(2);
8775     if (V1.getSimpleValueType() == V2.getSimpleValueType() &&
8776         (V1.getSimpleValueType() == MVT::v4i32 ||
8777          V1.getSimpleValueType() == MVT::v8i16 ||
8778          V1.getSimpleValueType() == MVT::v16i8)) {
8779       if ( V1.getOpcode() == ISD::SUB &&
8780            ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
8781            V1.getOperand(1) == V2 ) {
8782         // Generate the abs instruction with the operands
8783         return DAG.getNode(ISD::ABS, dl, V2.getValueType(),V2);
8784       }
8785 
8786       if ( V2.getOpcode() == ISD::SUB &&
8787            ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
8788            V2.getOperand(1) == V1 ) {
8789         // Generate the abs instruction with the operands
8790         return DAG.getNode(ISD::ABS, dl, V1.getValueType(),V1);
8791       }
8792     }
8793   }
8794 
8795   // If this is a lowered altivec predicate compare, CompareOpc is set to the
8796   // opcode number of the comparison.
8797   int CompareOpc;
8798   bool isDot;
8799   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
8800     return SDValue();    // Don't custom lower most intrinsics.
8801 
8802   // If this is a non-dot comparison, make the VCMP node and we are done.
8803   if (!isDot) {
8804     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
8805                               Op.getOperand(1), Op.getOperand(2),
8806                               DAG.getConstant(CompareOpc, dl, MVT::i32));
8807     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
8808   }
8809 
8810   // Create the PPCISD altivec 'dot' comparison node.
8811   SDValue Ops[] = {
8812     Op.getOperand(2),  // LHS
8813     Op.getOperand(3),  // RHS
8814     DAG.getConstant(CompareOpc, dl, MVT::i32)
8815   };
8816   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
8817   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
8818 
8819   // Now that we have the comparison, emit a copy from the CR to a GPR.
8820   // This is flagged to the above dot comparison.
8821   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
8822                                 DAG.getRegister(PPC::CR6, MVT::i32),
8823                                 CompNode.getValue(1));
8824 
8825   // Unpack the result based on how the target uses it.
8826   unsigned BitNo;   // Bit # of CR6.
8827   bool InvertBit;   // Invert result?
8828   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
8829   default:  // Can't happen, don't crash on invalid number though.
8830   case 0:   // Return the value of the EQ bit of CR6.
8831     BitNo = 0; InvertBit = false;
8832     break;
8833   case 1:   // Return the inverted value of the EQ bit of CR6.
8834     BitNo = 0; InvertBit = true;
8835     break;
8836   case 2:   // Return the value of the LT bit of CR6.
8837     BitNo = 2; InvertBit = false;
8838     break;
8839   case 3:   // Return the inverted value of the LT bit of CR6.
8840     BitNo = 2; InvertBit = true;
8841     break;
8842   }
8843 
8844   // Shift the bit into the low position.
8845   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
8846                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
8847   // Isolate the bit.
8848   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
8849                       DAG.getConstant(1, dl, MVT::i32));
8850 
8851   // If we are supposed to, toggle the bit.
8852   if (InvertBit)
8853     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
8854                         DAG.getConstant(1, dl, MVT::i32));
8855   return Flags;
8856 }
8857 
8858 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
8859                                                SelectionDAG &DAG) const {
8860   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
8861   // the beginning of the argument list.
8862   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
8863   SDLoc DL(Op);
8864   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
8865   case Intrinsic::ppc_cfence: {
8866     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
8867     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
8868     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
8869                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
8870                                                   Op.getOperand(ArgStart + 1)),
8871                                       Op.getOperand(0)),
8872                    0);
8873   }
8874   default:
8875     break;
8876   }
8877   return SDValue();
8878 }
8879 
8880 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
8881   // Check for a DIV with the same operands as this REM.
8882   for (auto UI : Op.getOperand(1)->uses()) {
8883     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
8884         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
8885       if (UI->getOperand(0) == Op.getOperand(0) &&
8886           UI->getOperand(1) == Op.getOperand(1))
8887         return SDValue();
8888   }
8889   return Op;
8890 }
8891 
8892 // Lower scalar BSWAP64 to xxbrd.
8893 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
8894   SDLoc dl(Op);
8895   // MTVSRDD
8896   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
8897                    Op.getOperand(0));
8898   // XXBRD
8899   Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op);
8900   // MFVSRD
8901   int VectorIndex = 0;
8902   if (Subtarget.isLittleEndian())
8903     VectorIndex = 1;
8904   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
8905                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
8906   return Op;
8907 }
8908 
8909 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
8910 // compared to a value that is atomically loaded (atomic loads zero-extend).
8911 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
8912                                                 SelectionDAG &DAG) const {
8913   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
8914          "Expecting an atomic compare-and-swap here.");
8915   SDLoc dl(Op);
8916   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
8917   EVT MemVT = AtomicNode->getMemoryVT();
8918   if (MemVT.getSizeInBits() >= 32)
8919     return Op;
8920 
8921   SDValue CmpOp = Op.getOperand(2);
8922   // If this is already correctly zero-extended, leave it alone.
8923   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
8924   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
8925     return Op;
8926 
8927   // Clear the high bits of the compare operand.
8928   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
8929   SDValue NewCmpOp =
8930     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
8931                 DAG.getConstant(MaskVal, dl, MVT::i32));
8932 
8933   // Replace the existing compare operand with the properly zero-extended one.
8934   SmallVector<SDValue, 4> Ops;
8935   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
8936     Ops.push_back(AtomicNode->getOperand(i));
8937   Ops[2] = NewCmpOp;
8938   MachineMemOperand *MMO = AtomicNode->getMemOperand();
8939   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
8940   auto NodeTy =
8941     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
8942   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
8943 }
8944 
8945 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
8946                                                   SelectionDAG &DAG) const {
8947   SDLoc dl(Op);
8948   // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
8949   // instructions), but for smaller types, we need to first extend up to v2i32
8950   // before doing going farther.
8951   if (Op.getValueType() == MVT::v2i64) {
8952     EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
8953     if (ExtVT != MVT::v2i32) {
8954       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
8955       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
8956                        DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
8957                                         ExtVT.getVectorElementType(), 4)));
8958       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
8959       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
8960                        DAG.getValueType(MVT::v2i32));
8961     }
8962 
8963     return Op;
8964   }
8965 
8966   return SDValue();
8967 }
8968 
8969 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
8970                                                  SelectionDAG &DAG) const {
8971   SDLoc dl(Op);
8972   // Create a stack slot that is 16-byte aligned.
8973   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8974   int FrameIdx = MFI.CreateStackObject(16, 16, false);
8975   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8976   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8977 
8978   // Store the input value into Value#0 of the stack slot.
8979   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
8980                                MachinePointerInfo());
8981   // Load it out.
8982   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
8983 }
8984 
8985 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
8986                                                   SelectionDAG &DAG) const {
8987   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
8988          "Should only be called for ISD::INSERT_VECTOR_ELT");
8989 
8990   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
8991   // We have legal lowering for constant indices but not for variable ones.
8992   if (!C)
8993     return SDValue();
8994 
8995   EVT VT = Op.getValueType();
8996   SDLoc dl(Op);
8997   SDValue V1 = Op.getOperand(0);
8998   SDValue V2 = Op.getOperand(1);
8999   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
9000   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
9001     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
9002     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
9003     unsigned InsertAtElement = C->getZExtValue();
9004     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
9005     if (Subtarget.isLittleEndian()) {
9006       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
9007     }
9008     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
9009                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9010   }
9011   return Op;
9012 }
9013 
9014 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
9015                                                    SelectionDAG &DAG) const {
9016   SDLoc dl(Op);
9017   SDNode *N = Op.getNode();
9018 
9019   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
9020          "Unknown extract_vector_elt type");
9021 
9022   SDValue Value = N->getOperand(0);
9023 
9024   // The first part of this is like the store lowering except that we don't
9025   // need to track the chain.
9026 
9027   // The values are now known to be -1 (false) or 1 (true). To convert this
9028   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9029   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9030   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9031 
9032   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9033   // understand how to form the extending load.
9034   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9035 
9036   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9037 
9038   // Now convert to an integer and store.
9039   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9040     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9041     Value);
9042 
9043   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9044   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9045   MachinePointerInfo PtrInfo =
9046       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9047   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9048   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9049 
9050   SDValue StoreChain = DAG.getEntryNode();
9051   SDValue Ops[] = {StoreChain,
9052                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9053                    Value, FIdx};
9054   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9055 
9056   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9057     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9058 
9059   // Extract the value requested.
9060   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9061   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9062   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9063 
9064   SDValue IntVal =
9065       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
9066 
9067   if (!Subtarget.useCRBits())
9068     return IntVal;
9069 
9070   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
9071 }
9072 
9073 /// Lowering for QPX v4i1 loads
9074 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
9075                                            SelectionDAG &DAG) const {
9076   SDLoc dl(Op);
9077   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
9078   SDValue LoadChain = LN->getChain();
9079   SDValue BasePtr = LN->getBasePtr();
9080 
9081   if (Op.getValueType() == MVT::v4f64 ||
9082       Op.getValueType() == MVT::v4f32) {
9083     EVT MemVT = LN->getMemoryVT();
9084     unsigned Alignment = LN->getAlignment();
9085 
9086     // If this load is properly aligned, then it is legal.
9087     if (Alignment >= MemVT.getStoreSize())
9088       return Op;
9089 
9090     EVT ScalarVT = Op.getValueType().getScalarType(),
9091         ScalarMemVT = MemVT.getScalarType();
9092     unsigned Stride = ScalarMemVT.getStoreSize();
9093 
9094     SDValue Vals[4], LoadChains[4];
9095     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9096       SDValue Load;
9097       if (ScalarVT != ScalarMemVT)
9098         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
9099                               BasePtr,
9100                               LN->getPointerInfo().getWithOffset(Idx * Stride),
9101                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9102                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
9103       else
9104         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
9105                            LN->getPointerInfo().getWithOffset(Idx * Stride),
9106                            MinAlign(Alignment, Idx * Stride),
9107                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
9108 
9109       if (Idx == 0 && LN->isIndexed()) {
9110         assert(LN->getAddressingMode() == ISD::PRE_INC &&
9111                "Unknown addressing mode on vector load");
9112         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
9113                                   LN->getAddressingMode());
9114       }
9115 
9116       Vals[Idx] = Load;
9117       LoadChains[Idx] = Load.getValue(1);
9118 
9119       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9120                             DAG.getConstant(Stride, dl,
9121                                             BasePtr.getValueType()));
9122     }
9123 
9124     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9125     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
9126 
9127     if (LN->isIndexed()) {
9128       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
9129       return DAG.getMergeValues(RetOps, dl);
9130     }
9131 
9132     SDValue RetOps[] = { Value, TF };
9133     return DAG.getMergeValues(RetOps, dl);
9134   }
9135 
9136   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
9137   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
9138 
9139   // To lower v4i1 from a byte array, we load the byte elements of the
9140   // vector and then reuse the BUILD_VECTOR logic.
9141 
9142   SDValue VectElmts[4], VectElmtChains[4];
9143   for (unsigned i = 0; i < 4; ++i) {
9144     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9145     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9146 
9147     VectElmts[i] = DAG.getExtLoad(
9148         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
9149         LN->getPointerInfo().getWithOffset(i), MVT::i8,
9150         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
9151     VectElmtChains[i] = VectElmts[i].getValue(1);
9152   }
9153 
9154   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
9155   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
9156 
9157   SDValue RVals[] = { Value, LoadChain };
9158   return DAG.getMergeValues(RVals, dl);
9159 }
9160 
9161 /// Lowering for QPX v4i1 stores
9162 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
9163                                             SelectionDAG &DAG) const {
9164   SDLoc dl(Op);
9165   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
9166   SDValue StoreChain = SN->getChain();
9167   SDValue BasePtr = SN->getBasePtr();
9168   SDValue Value = SN->getValue();
9169 
9170   if (Value.getValueType() == MVT::v4f64 ||
9171       Value.getValueType() == MVT::v4f32) {
9172     EVT MemVT = SN->getMemoryVT();
9173     unsigned Alignment = SN->getAlignment();
9174 
9175     // If this store is properly aligned, then it is legal.
9176     if (Alignment >= MemVT.getStoreSize())
9177       return Op;
9178 
9179     EVT ScalarVT = Value.getValueType().getScalarType(),
9180         ScalarMemVT = MemVT.getScalarType();
9181     unsigned Stride = ScalarMemVT.getStoreSize();
9182 
9183     SDValue Stores[4];
9184     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9185       SDValue Ex = DAG.getNode(
9186           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
9187           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
9188       SDValue Store;
9189       if (ScalarVT != ScalarMemVT)
9190         Store =
9191             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
9192                               SN->getPointerInfo().getWithOffset(Idx * Stride),
9193                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9194                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
9195       else
9196         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
9197                              SN->getPointerInfo().getWithOffset(Idx * Stride),
9198                              MinAlign(Alignment, Idx * Stride),
9199                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
9200 
9201       if (Idx == 0 && SN->isIndexed()) {
9202         assert(SN->getAddressingMode() == ISD::PRE_INC &&
9203                "Unknown addressing mode on vector store");
9204         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
9205                                     SN->getAddressingMode());
9206       }
9207 
9208       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9209                             DAG.getConstant(Stride, dl,
9210                                             BasePtr.getValueType()));
9211       Stores[Idx] = Store;
9212     }
9213 
9214     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9215 
9216     if (SN->isIndexed()) {
9217       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
9218       return DAG.getMergeValues(RetOps, dl);
9219     }
9220 
9221     return TF;
9222   }
9223 
9224   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
9225   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
9226 
9227   // The values are now known to be -1 (false) or 1 (true). To convert this
9228   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9229   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9230   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9231 
9232   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9233   // understand how to form the extending load.
9234   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9235 
9236   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9237 
9238   // Now convert to an integer and store.
9239   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9240     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9241     Value);
9242 
9243   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9244   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9245   MachinePointerInfo PtrInfo =
9246       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9247   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9248   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9249 
9250   SDValue Ops[] = {StoreChain,
9251                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9252                    Value, FIdx};
9253   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9254 
9255   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9256     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9257 
9258   // Move data into the byte array.
9259   SDValue Loads[4], LoadChains[4];
9260   for (unsigned i = 0; i < 4; ++i) {
9261     unsigned Offset = 4*i;
9262     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9263     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9264 
9265     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
9266                            PtrInfo.getWithOffset(Offset));
9267     LoadChains[i] = Loads[i].getValue(1);
9268   }
9269 
9270   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9271 
9272   SDValue Stores[4];
9273   for (unsigned i = 0; i < 4; ++i) {
9274     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9275     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9276 
9277     Stores[i] = DAG.getTruncStore(
9278         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
9279         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
9280         SN->getAAInfo());
9281   }
9282 
9283   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9284 
9285   return StoreChain;
9286 }
9287 
9288 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9289   SDLoc dl(Op);
9290   if (Op.getValueType() == MVT::v4i32) {
9291     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9292 
9293     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
9294     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
9295 
9296     SDValue RHSSwap =   // = vrlw RHS, 16
9297       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
9298 
9299     // Shrinkify inputs to v8i16.
9300     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
9301     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
9302     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
9303 
9304     // Low parts multiplied together, generating 32-bit results (we ignore the
9305     // top parts).
9306     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
9307                                         LHS, RHS, DAG, dl, MVT::v4i32);
9308 
9309     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
9310                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
9311     // Shift the high parts up 16 bits.
9312     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
9313                               Neg16, DAG, dl);
9314     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
9315   } else if (Op.getValueType() == MVT::v8i16) {
9316     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9317 
9318     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
9319 
9320     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
9321                             LHS, RHS, Zero, DAG, dl);
9322   } else if (Op.getValueType() == MVT::v16i8) {
9323     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9324     bool isLittleEndian = Subtarget.isLittleEndian();
9325 
9326     // Multiply the even 8-bit parts, producing 16-bit sums.
9327     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
9328                                            LHS, RHS, DAG, dl, MVT::v8i16);
9329     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
9330 
9331     // Multiply the odd 8-bit parts, producing 16-bit sums.
9332     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
9333                                           LHS, RHS, DAG, dl, MVT::v8i16);
9334     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
9335 
9336     // Merge the results together.  Because vmuleub and vmuloub are
9337     // instructions with a big-endian bias, we must reverse the
9338     // element numbering and reverse the meaning of "odd" and "even"
9339     // when generating little endian code.
9340     int Ops[16];
9341     for (unsigned i = 0; i != 8; ++i) {
9342       if (isLittleEndian) {
9343         Ops[i*2  ] = 2*i;
9344         Ops[i*2+1] = 2*i+16;
9345       } else {
9346         Ops[i*2  ] = 2*i+1;
9347         Ops[i*2+1] = 2*i+1+16;
9348       }
9349     }
9350     if (isLittleEndian)
9351       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
9352     else
9353       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
9354   } else {
9355     llvm_unreachable("Unknown mul to lower!");
9356   }
9357 }
9358 
9359 /// LowerOperation - Provide custom lowering hooks for some operations.
9360 ///
9361 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9362   switch (Op.getOpcode()) {
9363   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
9364   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9365   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9366   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9367   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9368   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9369   case ISD::SETCC:              return LowerSETCC(Op, DAG);
9370   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
9371   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
9372   case ISD::VASTART:
9373     return LowerVASTART(Op, DAG);
9374 
9375   case ISD::VAARG:
9376     return LowerVAARG(Op, DAG);
9377 
9378   case ISD::VACOPY:
9379     return LowerVACOPY(Op, DAG);
9380 
9381   case ISD::STACKRESTORE:
9382     return LowerSTACKRESTORE(Op, DAG);
9383 
9384   case ISD::DYNAMIC_STACKALLOC:
9385     return LowerDYNAMIC_STACKALLOC(Op, DAG);
9386 
9387   case ISD::GET_DYNAMIC_AREA_OFFSET:
9388     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
9389 
9390   case ISD::EH_DWARF_CFA:
9391     return LowerEH_DWARF_CFA(Op, DAG);
9392 
9393   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
9394   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
9395 
9396   case ISD::LOAD:               return LowerLOAD(Op, DAG);
9397   case ISD::STORE:              return LowerSTORE(Op, DAG);
9398   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
9399   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
9400   case ISD::FP_TO_UINT:
9401   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
9402                                                       SDLoc(Op));
9403   case ISD::UINT_TO_FP:
9404   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
9405   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9406 
9407   // Lower 64-bit shifts.
9408   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
9409   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
9410   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
9411 
9412   // Vector-related lowering.
9413   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9414   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9415   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9416   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9417   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op, DAG);
9418   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9419   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9420   case ISD::MUL:                return LowerMUL(Op, DAG);
9421 
9422   // For counter-based loop handling.
9423   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
9424 
9425   // Frame & Return address.
9426   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9427   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9428 
9429   case ISD::INTRINSIC_VOID:
9430     return LowerINTRINSIC_VOID(Op, DAG);
9431   case ISD::SREM:
9432   case ISD::UREM:
9433     return LowerREM(Op, DAG);
9434   case ISD::BSWAP:
9435     return LowerBSWAP(Op, DAG);
9436   case ISD::ATOMIC_CMP_SWAP:
9437     return LowerATOMIC_CMP_SWAP(Op, DAG);
9438   }
9439 }
9440 
9441 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
9442                                            SmallVectorImpl<SDValue>&Results,
9443                                            SelectionDAG &DAG) const {
9444   SDLoc dl(N);
9445   switch (N->getOpcode()) {
9446   default:
9447     llvm_unreachable("Do not know how to custom type legalize this operation!");
9448   case ISD::READCYCLECOUNTER: {
9449     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9450     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
9451 
9452     Results.push_back(RTB);
9453     Results.push_back(RTB.getValue(1));
9454     Results.push_back(RTB.getValue(2));
9455     break;
9456   }
9457   case ISD::INTRINSIC_W_CHAIN: {
9458     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
9459         Intrinsic::ppc_is_decremented_ctr_nonzero)
9460       break;
9461 
9462     assert(N->getValueType(0) == MVT::i1 &&
9463            "Unexpected result type for CTR decrement intrinsic");
9464     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
9465                                  N->getValueType(0));
9466     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
9467     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
9468                                  N->getOperand(1));
9469 
9470     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
9471     Results.push_back(NewInt.getValue(1));
9472     break;
9473   }
9474   case ISD::VAARG: {
9475     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
9476       return;
9477 
9478     EVT VT = N->getValueType(0);
9479 
9480     if (VT == MVT::i64) {
9481       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
9482 
9483       Results.push_back(NewNode);
9484       Results.push_back(NewNode.getValue(1));
9485     }
9486     return;
9487   }
9488   case ISD::FP_TO_SINT:
9489   case ISD::FP_TO_UINT:
9490     // LowerFP_TO_INT() can only handle f32 and f64.
9491     if (N->getOperand(0).getValueType() == MVT::ppcf128)
9492       return;
9493     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
9494     return;
9495   }
9496 }
9497 
9498 //===----------------------------------------------------------------------===//
9499 //  Other Lowering Code
9500 //===----------------------------------------------------------------------===//
9501 
9502 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
9503   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
9504   Function *Func = Intrinsic::getDeclaration(M, Id);
9505   return Builder.CreateCall(Func, {});
9506 }
9507 
9508 // The mappings for emitLeading/TrailingFence is taken from
9509 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
9510 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
9511                                                  Instruction *Inst,
9512                                                  AtomicOrdering Ord) const {
9513   if (Ord == AtomicOrdering::SequentiallyConsistent)
9514     return callIntrinsic(Builder, Intrinsic::ppc_sync);
9515   if (isReleaseOrStronger(Ord))
9516     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9517   return nullptr;
9518 }
9519 
9520 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
9521                                                   Instruction *Inst,
9522                                                   AtomicOrdering Ord) const {
9523   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
9524     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
9525     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
9526     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
9527     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
9528       return Builder.CreateCall(
9529           Intrinsic::getDeclaration(
9530               Builder.GetInsertBlock()->getParent()->getParent(),
9531               Intrinsic::ppc_cfence, {Inst->getType()}),
9532           {Inst});
9533     // FIXME: Can use isync for rmw operation.
9534     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9535   }
9536   return nullptr;
9537 }
9538 
9539 MachineBasicBlock *
9540 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
9541                                     unsigned AtomicSize,
9542                                     unsigned BinOpcode,
9543                                     unsigned CmpOpcode,
9544                                     unsigned CmpPred) const {
9545   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9546   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9547 
9548   auto LoadMnemonic = PPC::LDARX;
9549   auto StoreMnemonic = PPC::STDCX;
9550   switch (AtomicSize) {
9551   default:
9552     llvm_unreachable("Unexpected size of atomic entity");
9553   case 1:
9554     LoadMnemonic = PPC::LBARX;
9555     StoreMnemonic = PPC::STBCX;
9556     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9557     break;
9558   case 2:
9559     LoadMnemonic = PPC::LHARX;
9560     StoreMnemonic = PPC::STHCX;
9561     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9562     break;
9563   case 4:
9564     LoadMnemonic = PPC::LWARX;
9565     StoreMnemonic = PPC::STWCX;
9566     break;
9567   case 8:
9568     LoadMnemonic = PPC::LDARX;
9569     StoreMnemonic = PPC::STDCX;
9570     break;
9571   }
9572 
9573   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9574   MachineFunction *F = BB->getParent();
9575   MachineFunction::iterator It = ++BB->getIterator();
9576 
9577   unsigned dest = MI.getOperand(0).getReg();
9578   unsigned ptrA = MI.getOperand(1).getReg();
9579   unsigned ptrB = MI.getOperand(2).getReg();
9580   unsigned incr = MI.getOperand(3).getReg();
9581   DebugLoc dl = MI.getDebugLoc();
9582 
9583   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9584   MachineBasicBlock *loop2MBB =
9585     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9586   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9587   F->insert(It, loopMBB);
9588   if (CmpOpcode)
9589     F->insert(It, loop2MBB);
9590   F->insert(It, exitMBB);
9591   exitMBB->splice(exitMBB->begin(), BB,
9592                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9593   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9594 
9595   MachineRegisterInfo &RegInfo = F->getRegInfo();
9596   unsigned TmpReg = (!BinOpcode) ? incr :
9597     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
9598                                            : &PPC::GPRCRegClass);
9599 
9600   //  thisMBB:
9601   //   ...
9602   //   fallthrough --> loopMBB
9603   BB->addSuccessor(loopMBB);
9604 
9605   //  loopMBB:
9606   //   l[wd]arx dest, ptr
9607   //   add r0, dest, incr
9608   //   st[wd]cx. r0, ptr
9609   //   bne- loopMBB
9610   //   fallthrough --> exitMBB
9611 
9612   // For max/min...
9613   //  loopMBB:
9614   //   l[wd]arx dest, ptr
9615   //   cmpl?[wd] incr, dest
9616   //   bgt exitMBB
9617   //  loop2MBB:
9618   //   st[wd]cx. dest, ptr
9619   //   bne- loopMBB
9620   //   fallthrough --> exitMBB
9621 
9622   BB = loopMBB;
9623   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
9624     .addReg(ptrA).addReg(ptrB);
9625   if (BinOpcode)
9626     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
9627   if (CmpOpcode) {
9628     // Signed comparisons of byte or halfword values must be sign-extended.
9629     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
9630       unsigned ExtReg =  RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
9631       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
9632               ExtReg).addReg(dest);
9633       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9634         .addReg(incr).addReg(ExtReg);
9635     } else
9636       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9637         .addReg(incr).addReg(dest);
9638 
9639     BuildMI(BB, dl, TII->get(PPC::BCC))
9640       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
9641     BB->addSuccessor(loop2MBB);
9642     BB->addSuccessor(exitMBB);
9643     BB = loop2MBB;
9644   }
9645   BuildMI(BB, dl, TII->get(StoreMnemonic))
9646     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
9647   BuildMI(BB, dl, TII->get(PPC::BCC))
9648     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
9649   BB->addSuccessor(loopMBB);
9650   BB->addSuccessor(exitMBB);
9651 
9652   //  exitMBB:
9653   //   ...
9654   BB = exitMBB;
9655   return BB;
9656 }
9657 
9658 MachineBasicBlock *
9659 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr &MI,
9660                                             MachineBasicBlock *BB,
9661                                             bool is8bit, // operation
9662                                             unsigned BinOpcode,
9663                                             unsigned CmpOpcode,
9664                                             unsigned CmpPred) const {
9665   // If we support part-word atomic mnemonics, just use them
9666   if (Subtarget.hasPartwordAtomics())
9667     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode,
9668                             CmpOpcode, CmpPred);
9669 
9670   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9671   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9672   // In 64 bit mode we have to use 64 bits for addresses, even though the
9673   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
9674   // registers without caring whether they're 32 or 64, but here we're
9675   // doing actual arithmetic on the addresses.
9676   bool is64bit = Subtarget.isPPC64();
9677   bool isLittleEndian = Subtarget.isLittleEndian();
9678   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
9679 
9680   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9681   MachineFunction *F = BB->getParent();
9682   MachineFunction::iterator It = ++BB->getIterator();
9683 
9684   unsigned dest = MI.getOperand(0).getReg();
9685   unsigned ptrA = MI.getOperand(1).getReg();
9686   unsigned ptrB = MI.getOperand(2).getReg();
9687   unsigned incr = MI.getOperand(3).getReg();
9688   DebugLoc dl = MI.getDebugLoc();
9689 
9690   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9691   MachineBasicBlock *loop2MBB =
9692     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9693   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9694   F->insert(It, loopMBB);
9695   if (CmpOpcode)
9696     F->insert(It, loop2MBB);
9697   F->insert(It, exitMBB);
9698   exitMBB->splice(exitMBB->begin(), BB,
9699                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9700   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9701 
9702   MachineRegisterInfo &RegInfo = F->getRegInfo();
9703   const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
9704                                           : &PPC::GPRCRegClass;
9705   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
9706   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
9707   unsigned ShiftReg =
9708     isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC);
9709   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
9710   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
9711   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
9712   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
9713   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
9714   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
9715   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
9716   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
9717   unsigned Ptr1Reg;
9718   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
9719 
9720   //  thisMBB:
9721   //   ...
9722   //   fallthrough --> loopMBB
9723   BB->addSuccessor(loopMBB);
9724 
9725   // The 4-byte load must be aligned, while a char or short may be
9726   // anywhere in the word.  Hence all this nasty bookkeeping code.
9727   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
9728   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
9729   //   xori shift, shift1, 24 [16]
9730   //   rlwinm ptr, ptr1, 0, 0, 29
9731   //   slw incr2, incr, shift
9732   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
9733   //   slw mask, mask2, shift
9734   //  loopMBB:
9735   //   lwarx tmpDest, ptr
9736   //   add tmp, tmpDest, incr2
9737   //   andc tmp2, tmpDest, mask
9738   //   and tmp3, tmp, mask
9739   //   or tmp4, tmp3, tmp2
9740   //   stwcx. tmp4, ptr
9741   //   bne- loopMBB
9742   //   fallthrough --> exitMBB
9743   //   srw dest, tmpDest, shift
9744   if (ptrA != ZeroReg) {
9745     Ptr1Reg = RegInfo.createVirtualRegister(RC);
9746     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
9747       .addReg(ptrA).addReg(ptrB);
9748   } else {
9749     Ptr1Reg = ptrB;
9750   }
9751   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
9752       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
9753   if (!isLittleEndian)
9754     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
9755         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
9756   if (is64bit)
9757     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
9758       .addReg(Ptr1Reg).addImm(0).addImm(61);
9759   else
9760     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
9761       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
9762   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
9763       .addReg(incr).addReg(ShiftReg);
9764   if (is8bit)
9765     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
9766   else {
9767     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
9768     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
9769   }
9770   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
9771       .addReg(Mask2Reg).addReg(ShiftReg);
9772 
9773   BB = loopMBB;
9774   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
9775     .addReg(ZeroReg).addReg(PtrReg);
9776   if (BinOpcode)
9777     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
9778       .addReg(Incr2Reg).addReg(TmpDestReg);
9779   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
9780     .addReg(TmpDestReg).addReg(MaskReg);
9781   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
9782     .addReg(TmpReg).addReg(MaskReg);
9783   if (CmpOpcode) {
9784     // For unsigned comparisons, we can directly compare the shifted values.
9785     // For signed comparisons we shift and sign extend.
9786     unsigned SReg = RegInfo.createVirtualRegister(RC);
9787     BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), SReg)
9788       .addReg(TmpDestReg).addReg(MaskReg);
9789     unsigned ValueReg = SReg;
9790     unsigned CmpReg = Incr2Reg;
9791     if (CmpOpcode == PPC::CMPW) {
9792       ValueReg = RegInfo.createVirtualRegister(RC);
9793       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
9794         .addReg(SReg).addReg(ShiftReg);
9795       unsigned ValueSReg = RegInfo.createVirtualRegister(RC);
9796       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
9797         .addReg(ValueReg);
9798       ValueReg = ValueSReg;
9799       CmpReg = incr;
9800     }
9801     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9802       .addReg(CmpReg).addReg(ValueReg);
9803     BuildMI(BB, dl, TII->get(PPC::BCC))
9804       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
9805     BB->addSuccessor(loop2MBB);
9806     BB->addSuccessor(exitMBB);
9807     BB = loop2MBB;
9808   }
9809   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
9810     .addReg(Tmp3Reg).addReg(Tmp2Reg);
9811   BuildMI(BB, dl, TII->get(PPC::STWCX))
9812     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
9813   BuildMI(BB, dl, TII->get(PPC::BCC))
9814     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
9815   BB->addSuccessor(loopMBB);
9816   BB->addSuccessor(exitMBB);
9817 
9818   //  exitMBB:
9819   //   ...
9820   BB = exitMBB;
9821   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
9822     .addReg(ShiftReg);
9823   return BB;
9824 }
9825 
9826 llvm::MachineBasicBlock *
9827 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
9828                                     MachineBasicBlock *MBB) const {
9829   DebugLoc DL = MI.getDebugLoc();
9830   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9831   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
9832 
9833   MachineFunction *MF = MBB->getParent();
9834   MachineRegisterInfo &MRI = MF->getRegInfo();
9835 
9836   const BasicBlock *BB = MBB->getBasicBlock();
9837   MachineFunction::iterator I = ++MBB->getIterator();
9838 
9839   // Memory Reference
9840   MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
9841   MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
9842 
9843   unsigned DstReg = MI.getOperand(0).getReg();
9844   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
9845   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
9846   unsigned mainDstReg = MRI.createVirtualRegister(RC);
9847   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
9848 
9849   MVT PVT = getPointerTy(MF->getDataLayout());
9850   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
9851          "Invalid Pointer Size!");
9852   // For v = setjmp(buf), we generate
9853   //
9854   // thisMBB:
9855   //  SjLjSetup mainMBB
9856   //  bl mainMBB
9857   //  v_restore = 1
9858   //  b sinkMBB
9859   //
9860   // mainMBB:
9861   //  buf[LabelOffset] = LR
9862   //  v_main = 0
9863   //
9864   // sinkMBB:
9865   //  v = phi(main, restore)
9866   //
9867 
9868   MachineBasicBlock *thisMBB = MBB;
9869   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
9870   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
9871   MF->insert(I, mainMBB);
9872   MF->insert(I, sinkMBB);
9873 
9874   MachineInstrBuilder MIB;
9875 
9876   // Transfer the remainder of BB and its successor edges to sinkMBB.
9877   sinkMBB->splice(sinkMBB->begin(), MBB,
9878                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
9879   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
9880 
9881   // Note that the structure of the jmp_buf used here is not compatible
9882   // with that used by libc, and is not designed to be. Specifically, it
9883   // stores only those 'reserved' registers that LLVM does not otherwise
9884   // understand how to spill. Also, by convention, by the time this
9885   // intrinsic is called, Clang has already stored the frame address in the
9886   // first slot of the buffer and stack address in the third. Following the
9887   // X86 target code, we'll store the jump address in the second slot. We also
9888   // need to save the TOC pointer (R2) to handle jumps between shared
9889   // libraries, and that will be stored in the fourth slot. The thread
9890   // identifier (R13) is not affected.
9891 
9892   // thisMBB:
9893   const int64_t LabelOffset = 1 * PVT.getStoreSize();
9894   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
9895   const int64_t BPOffset    = 4 * PVT.getStoreSize();
9896 
9897   // Prepare IP either in reg.
9898   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
9899   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
9900   unsigned BufReg = MI.getOperand(1).getReg();
9901 
9902   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
9903     setUsesTOCBasePtr(*MBB->getParent());
9904     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
9905             .addReg(PPC::X2)
9906             .addImm(TOCOffset)
9907             .addReg(BufReg);
9908     MIB.setMemRefs(MMOBegin, MMOEnd);
9909   }
9910 
9911   // Naked functions never have a base pointer, and so we use r1. For all
9912   // other functions, this decision must be delayed until during PEI.
9913   unsigned BaseReg;
9914   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
9915     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
9916   else
9917     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
9918 
9919   MIB = BuildMI(*thisMBB, MI, DL,
9920                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
9921             .addReg(BaseReg)
9922             .addImm(BPOffset)
9923             .addReg(BufReg);
9924   MIB.setMemRefs(MMOBegin, MMOEnd);
9925 
9926   // Setup
9927   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
9928   MIB.addRegMask(TRI->getNoPreservedMask());
9929 
9930   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
9931 
9932   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
9933           .addMBB(mainMBB);
9934   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
9935 
9936   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
9937   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
9938 
9939   // mainMBB:
9940   //  mainDstReg = 0
9941   MIB =
9942       BuildMI(mainMBB, DL,
9943               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
9944 
9945   // Store IP
9946   if (Subtarget.isPPC64()) {
9947     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
9948             .addReg(LabelReg)
9949             .addImm(LabelOffset)
9950             .addReg(BufReg);
9951   } else {
9952     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
9953             .addReg(LabelReg)
9954             .addImm(LabelOffset)
9955             .addReg(BufReg);
9956   }
9957 
9958   MIB.setMemRefs(MMOBegin, MMOEnd);
9959 
9960   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
9961   mainMBB->addSuccessor(sinkMBB);
9962 
9963   // sinkMBB:
9964   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
9965           TII->get(PPC::PHI), DstReg)
9966     .addReg(mainDstReg).addMBB(mainMBB)
9967     .addReg(restoreDstReg).addMBB(thisMBB);
9968 
9969   MI.eraseFromParent();
9970   return sinkMBB;
9971 }
9972 
9973 MachineBasicBlock *
9974 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
9975                                      MachineBasicBlock *MBB) const {
9976   DebugLoc DL = MI.getDebugLoc();
9977   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9978 
9979   MachineFunction *MF = MBB->getParent();
9980   MachineRegisterInfo &MRI = MF->getRegInfo();
9981 
9982   // Memory Reference
9983   MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
9984   MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
9985 
9986   MVT PVT = getPointerTy(MF->getDataLayout());
9987   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
9988          "Invalid Pointer Size!");
9989 
9990   const TargetRegisterClass *RC =
9991     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
9992   unsigned Tmp = MRI.createVirtualRegister(RC);
9993   // Since FP is only updated here but NOT referenced, it's treated as GPR.
9994   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
9995   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
9996   unsigned BP =
9997       (PVT == MVT::i64)
9998           ? PPC::X30
9999           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
10000                                                               : PPC::R30);
10001 
10002   MachineInstrBuilder MIB;
10003 
10004   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10005   const int64_t SPOffset    = 2 * PVT.getStoreSize();
10006   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10007   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10008 
10009   unsigned BufReg = MI.getOperand(0).getReg();
10010 
10011   // Reload FP (the jumped-to function may not have had a
10012   // frame pointer, and if so, then its r31 will be restored
10013   // as necessary).
10014   if (PVT == MVT::i64) {
10015     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
10016             .addImm(0)
10017             .addReg(BufReg);
10018   } else {
10019     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
10020             .addImm(0)
10021             .addReg(BufReg);
10022   }
10023   MIB.setMemRefs(MMOBegin, MMOEnd);
10024 
10025   // Reload IP
10026   if (PVT == MVT::i64) {
10027     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
10028             .addImm(LabelOffset)
10029             .addReg(BufReg);
10030   } else {
10031     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
10032             .addImm(LabelOffset)
10033             .addReg(BufReg);
10034   }
10035   MIB.setMemRefs(MMOBegin, MMOEnd);
10036 
10037   // Reload SP
10038   if (PVT == MVT::i64) {
10039     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
10040             .addImm(SPOffset)
10041             .addReg(BufReg);
10042   } else {
10043     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
10044             .addImm(SPOffset)
10045             .addReg(BufReg);
10046   }
10047   MIB.setMemRefs(MMOBegin, MMOEnd);
10048 
10049   // Reload BP
10050   if (PVT == MVT::i64) {
10051     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
10052             .addImm(BPOffset)
10053             .addReg(BufReg);
10054   } else {
10055     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
10056             .addImm(BPOffset)
10057             .addReg(BufReg);
10058   }
10059   MIB.setMemRefs(MMOBegin, MMOEnd);
10060 
10061   // Reload TOC
10062   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
10063     setUsesTOCBasePtr(*MBB->getParent());
10064     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
10065             .addImm(TOCOffset)
10066             .addReg(BufReg);
10067 
10068     MIB.setMemRefs(MMOBegin, MMOEnd);
10069   }
10070 
10071   // Jump
10072   BuildMI(*MBB, MI, DL,
10073           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
10074   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
10075 
10076   MI.eraseFromParent();
10077   return MBB;
10078 }
10079 
10080 MachineBasicBlock *
10081 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
10082                                                MachineBasicBlock *BB) const {
10083   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
10084       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10085     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
10086         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10087       // Call lowering should have added an r2 operand to indicate a dependence
10088       // on the TOC base pointer value. It can't however, because there is no
10089       // way to mark the dependence as implicit there, and so the stackmap code
10090       // will confuse it with a regular operand. Instead, add the dependence
10091       // here.
10092       setUsesTOCBasePtr(*BB->getParent());
10093       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
10094     }
10095 
10096     return emitPatchPoint(MI, BB);
10097   }
10098 
10099   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
10100       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
10101     return emitEHSjLjSetJmp(MI, BB);
10102   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
10103              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
10104     return emitEHSjLjLongJmp(MI, BB);
10105   }
10106 
10107   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10108 
10109   // To "insert" these instructions we actually have to insert their
10110   // control-flow patterns.
10111   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10112   MachineFunction::iterator It = ++BB->getIterator();
10113 
10114   MachineFunction *F = BB->getParent();
10115 
10116   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10117        MI.getOpcode() == PPC::SELECT_CC_I8 ||
10118        MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8) {
10119     SmallVector<MachineOperand, 2> Cond;
10120     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10121         MI.getOpcode() == PPC::SELECT_CC_I8)
10122       Cond.push_back(MI.getOperand(4));
10123     else
10124       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
10125     Cond.push_back(MI.getOperand(1));
10126 
10127     DebugLoc dl = MI.getDebugLoc();
10128     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
10129                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
10130   } else if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10131              MI.getOpcode() == PPC::SELECT_CC_I8 ||
10132              MI.getOpcode() == PPC::SELECT_CC_F4 ||
10133              MI.getOpcode() == PPC::SELECT_CC_F8 ||
10134              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
10135              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
10136              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
10137              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
10138              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
10139              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
10140              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
10141              MI.getOpcode() == PPC::SELECT_I4 ||
10142              MI.getOpcode() == PPC::SELECT_I8 ||
10143              MI.getOpcode() == PPC::SELECT_F4 ||
10144              MI.getOpcode() == PPC::SELECT_F8 ||
10145              MI.getOpcode() == PPC::SELECT_QFRC ||
10146              MI.getOpcode() == PPC::SELECT_QSRC ||
10147              MI.getOpcode() == PPC::SELECT_QBRC ||
10148              MI.getOpcode() == PPC::SELECT_VRRC ||
10149              MI.getOpcode() == PPC::SELECT_VSFRC ||
10150              MI.getOpcode() == PPC::SELECT_VSSRC ||
10151              MI.getOpcode() == PPC::SELECT_VSRC) {
10152     // The incoming instruction knows the destination vreg to set, the
10153     // condition code register to branch on, the true/false values to
10154     // select between, and a branch opcode to use.
10155 
10156     //  thisMBB:
10157     //  ...
10158     //   TrueVal = ...
10159     //   cmpTY ccX, r1, r2
10160     //   bCC copy1MBB
10161     //   fallthrough --> copy0MBB
10162     MachineBasicBlock *thisMBB = BB;
10163     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10164     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10165     DebugLoc dl = MI.getDebugLoc();
10166     F->insert(It, copy0MBB);
10167     F->insert(It, sinkMBB);
10168 
10169     // Transfer the remainder of BB and its successor edges to sinkMBB.
10170     sinkMBB->splice(sinkMBB->begin(), BB,
10171                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10172     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10173 
10174     // Next, add the true and fallthrough blocks as its successors.
10175     BB->addSuccessor(copy0MBB);
10176     BB->addSuccessor(sinkMBB);
10177 
10178     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
10179         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
10180         MI.getOpcode() == PPC::SELECT_QFRC ||
10181         MI.getOpcode() == PPC::SELECT_QSRC ||
10182         MI.getOpcode() == PPC::SELECT_QBRC ||
10183         MI.getOpcode() == PPC::SELECT_VRRC ||
10184         MI.getOpcode() == PPC::SELECT_VSFRC ||
10185         MI.getOpcode() == PPC::SELECT_VSSRC ||
10186         MI.getOpcode() == PPC::SELECT_VSRC) {
10187       BuildMI(BB, dl, TII->get(PPC::BC))
10188           .addReg(MI.getOperand(1).getReg())
10189           .addMBB(sinkMBB);
10190     } else {
10191       unsigned SelectPred = MI.getOperand(4).getImm();
10192       BuildMI(BB, dl, TII->get(PPC::BCC))
10193           .addImm(SelectPred)
10194           .addReg(MI.getOperand(1).getReg())
10195           .addMBB(sinkMBB);
10196     }
10197 
10198     //  copy0MBB:
10199     //   %FalseValue = ...
10200     //   # fallthrough to sinkMBB
10201     BB = copy0MBB;
10202 
10203     // Update machine-CFG edges
10204     BB->addSuccessor(sinkMBB);
10205 
10206     //  sinkMBB:
10207     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10208     //  ...
10209     BB = sinkMBB;
10210     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
10211         .addReg(MI.getOperand(3).getReg())
10212         .addMBB(copy0MBB)
10213         .addReg(MI.getOperand(2).getReg())
10214         .addMBB(thisMBB);
10215   } else if (MI.getOpcode() == PPC::ReadTB) {
10216     // To read the 64-bit time-base register on a 32-bit target, we read the
10217     // two halves. Should the counter have wrapped while it was being read, we
10218     // need to try again.
10219     // ...
10220     // readLoop:
10221     // mfspr Rx,TBU # load from TBU
10222     // mfspr Ry,TB  # load from TB
10223     // mfspr Rz,TBU # load from TBU
10224     // cmpw crX,Rx,Rz # check if 'old'='new'
10225     // bne readLoop   # branch if they're not equal
10226     // ...
10227 
10228     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
10229     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10230     DebugLoc dl = MI.getDebugLoc();
10231     F->insert(It, readMBB);
10232     F->insert(It, sinkMBB);
10233 
10234     // Transfer the remainder of BB and its successor edges to sinkMBB.
10235     sinkMBB->splice(sinkMBB->begin(), BB,
10236                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10237     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10238 
10239     BB->addSuccessor(readMBB);
10240     BB = readMBB;
10241 
10242     MachineRegisterInfo &RegInfo = F->getRegInfo();
10243     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10244     unsigned LoReg = MI.getOperand(0).getReg();
10245     unsigned HiReg = MI.getOperand(1).getReg();
10246 
10247     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
10248     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
10249     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
10250 
10251     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10252 
10253     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
10254       .addReg(HiReg).addReg(ReadAgainReg);
10255     BuildMI(BB, dl, TII->get(PPC::BCC))
10256       .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
10257 
10258     BB->addSuccessor(readMBB);
10259     BB->addSuccessor(sinkMBB);
10260   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
10261     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
10262   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
10263     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
10264   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
10265     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
10266   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
10267     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
10268 
10269   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
10270     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
10271   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
10272     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
10273   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
10274     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
10275   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
10276     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
10277 
10278   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
10279     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
10280   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
10281     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
10282   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
10283     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
10284   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
10285     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
10286 
10287   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
10288     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
10289   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
10290     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
10291   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
10292     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
10293   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
10294     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
10295 
10296   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
10297     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
10298   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
10299     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
10300   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
10301     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
10302   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
10303     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
10304 
10305   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
10306     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
10307   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
10308     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
10309   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
10310     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
10311   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
10312     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
10313 
10314   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
10315     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
10316   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
10317     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
10318   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
10319     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
10320   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
10321     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
10322 
10323   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
10324     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
10325   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
10326     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
10327   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
10328     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
10329   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
10330     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
10331 
10332   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
10333     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
10334   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
10335     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
10336   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
10337     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
10338   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
10339     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
10340 
10341   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
10342     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
10343   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
10344     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
10345   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
10346     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
10347   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
10348     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
10349 
10350   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
10351     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
10352   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
10353     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
10354   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
10355     BB = EmitAtomicBinary(MI, BB, 4, 0);
10356   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
10357     BB = EmitAtomicBinary(MI, BB, 8, 0);
10358   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
10359            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
10360            (Subtarget.hasPartwordAtomics() &&
10361             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
10362            (Subtarget.hasPartwordAtomics() &&
10363             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
10364     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
10365 
10366     auto LoadMnemonic = PPC::LDARX;
10367     auto StoreMnemonic = PPC::STDCX;
10368     switch (MI.getOpcode()) {
10369     default:
10370       llvm_unreachable("Compare and swap of unknown size");
10371     case PPC::ATOMIC_CMP_SWAP_I8:
10372       LoadMnemonic = PPC::LBARX;
10373       StoreMnemonic = PPC::STBCX;
10374       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10375       break;
10376     case PPC::ATOMIC_CMP_SWAP_I16:
10377       LoadMnemonic = PPC::LHARX;
10378       StoreMnemonic = PPC::STHCX;
10379       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10380       break;
10381     case PPC::ATOMIC_CMP_SWAP_I32:
10382       LoadMnemonic = PPC::LWARX;
10383       StoreMnemonic = PPC::STWCX;
10384       break;
10385     case PPC::ATOMIC_CMP_SWAP_I64:
10386       LoadMnemonic = PPC::LDARX;
10387       StoreMnemonic = PPC::STDCX;
10388       break;
10389     }
10390     unsigned dest = MI.getOperand(0).getReg();
10391     unsigned ptrA = MI.getOperand(1).getReg();
10392     unsigned ptrB = MI.getOperand(2).getReg();
10393     unsigned oldval = MI.getOperand(3).getReg();
10394     unsigned newval = MI.getOperand(4).getReg();
10395     DebugLoc dl = MI.getDebugLoc();
10396 
10397     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10398     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10399     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10400     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10401     F->insert(It, loop1MBB);
10402     F->insert(It, loop2MBB);
10403     F->insert(It, midMBB);
10404     F->insert(It, exitMBB);
10405     exitMBB->splice(exitMBB->begin(), BB,
10406                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10407     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10408 
10409     //  thisMBB:
10410     //   ...
10411     //   fallthrough --> loopMBB
10412     BB->addSuccessor(loop1MBB);
10413 
10414     // loop1MBB:
10415     //   l[bhwd]arx dest, ptr
10416     //   cmp[wd] dest, oldval
10417     //   bne- midMBB
10418     // loop2MBB:
10419     //   st[bhwd]cx. newval, ptr
10420     //   bne- loopMBB
10421     //   b exitBB
10422     // midMBB:
10423     //   st[bhwd]cx. dest, ptr
10424     // exitBB:
10425     BB = loop1MBB;
10426     BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10427       .addReg(ptrA).addReg(ptrB);
10428     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
10429       .addReg(oldval).addReg(dest);
10430     BuildMI(BB, dl, TII->get(PPC::BCC))
10431       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
10432     BB->addSuccessor(loop2MBB);
10433     BB->addSuccessor(midMBB);
10434 
10435     BB = loop2MBB;
10436     BuildMI(BB, dl, TII->get(StoreMnemonic))
10437       .addReg(newval).addReg(ptrA).addReg(ptrB);
10438     BuildMI(BB, dl, TII->get(PPC::BCC))
10439       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
10440     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10441     BB->addSuccessor(loop1MBB);
10442     BB->addSuccessor(exitMBB);
10443 
10444     BB = midMBB;
10445     BuildMI(BB, dl, TII->get(StoreMnemonic))
10446       .addReg(dest).addReg(ptrA).addReg(ptrB);
10447     BB->addSuccessor(exitMBB);
10448 
10449     //  exitMBB:
10450     //   ...
10451     BB = exitMBB;
10452   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
10453              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
10454     // We must use 64-bit registers for addresses when targeting 64-bit,
10455     // since we're actually doing arithmetic on them.  Other registers
10456     // can be 32-bit.
10457     bool is64bit = Subtarget.isPPC64();
10458     bool isLittleEndian = Subtarget.isLittleEndian();
10459     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
10460 
10461     unsigned dest = MI.getOperand(0).getReg();
10462     unsigned ptrA = MI.getOperand(1).getReg();
10463     unsigned ptrB = MI.getOperand(2).getReg();
10464     unsigned oldval = MI.getOperand(3).getReg();
10465     unsigned newval = MI.getOperand(4).getReg();
10466     DebugLoc dl = MI.getDebugLoc();
10467 
10468     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10469     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10470     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10471     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10472     F->insert(It, loop1MBB);
10473     F->insert(It, loop2MBB);
10474     F->insert(It, midMBB);
10475     F->insert(It, exitMBB);
10476     exitMBB->splice(exitMBB->begin(), BB,
10477                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10478     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10479 
10480     MachineRegisterInfo &RegInfo = F->getRegInfo();
10481     const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
10482                                             : &PPC::GPRCRegClass;
10483     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
10484     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
10485     unsigned ShiftReg =
10486       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC);
10487     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
10488     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
10489     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
10490     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
10491     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
10492     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
10493     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
10494     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
10495     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
10496     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
10497     unsigned Ptr1Reg;
10498     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
10499     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10500     //  thisMBB:
10501     //   ...
10502     //   fallthrough --> loopMBB
10503     BB->addSuccessor(loop1MBB);
10504 
10505     // The 4-byte load must be aligned, while a char or short may be
10506     // anywhere in the word.  Hence all this nasty bookkeeping code.
10507     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10508     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10509     //   xori shift, shift1, 24 [16]
10510     //   rlwinm ptr, ptr1, 0, 0, 29
10511     //   slw newval2, newval, shift
10512     //   slw oldval2, oldval,shift
10513     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10514     //   slw mask, mask2, shift
10515     //   and newval3, newval2, mask
10516     //   and oldval3, oldval2, mask
10517     // loop1MBB:
10518     //   lwarx tmpDest, ptr
10519     //   and tmp, tmpDest, mask
10520     //   cmpw tmp, oldval3
10521     //   bne- midMBB
10522     // loop2MBB:
10523     //   andc tmp2, tmpDest, mask
10524     //   or tmp4, tmp2, newval3
10525     //   stwcx. tmp4, ptr
10526     //   bne- loop1MBB
10527     //   b exitBB
10528     // midMBB:
10529     //   stwcx. tmpDest, ptr
10530     // exitBB:
10531     //   srw dest, tmpDest, shift
10532     if (ptrA != ZeroReg) {
10533       Ptr1Reg = RegInfo.createVirtualRegister(RC);
10534       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10535         .addReg(ptrA).addReg(ptrB);
10536     } else {
10537       Ptr1Reg = ptrB;
10538     }
10539     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
10540         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
10541     if (!isLittleEndian)
10542       BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
10543           .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
10544     if (is64bit)
10545       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10546         .addReg(Ptr1Reg).addImm(0).addImm(61);
10547     else
10548       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10549         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
10550     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
10551         .addReg(newval).addReg(ShiftReg);
10552     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
10553         .addReg(oldval).addReg(ShiftReg);
10554     if (is8bit)
10555       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10556     else {
10557       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10558       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10559         .addReg(Mask3Reg).addImm(65535);
10560     }
10561     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10562         .addReg(Mask2Reg).addReg(ShiftReg);
10563     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
10564         .addReg(NewVal2Reg).addReg(MaskReg);
10565     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
10566         .addReg(OldVal2Reg).addReg(MaskReg);
10567 
10568     BB = loop1MBB;
10569     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10570         .addReg(ZeroReg).addReg(PtrReg);
10571     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
10572         .addReg(TmpDestReg).addReg(MaskReg);
10573     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
10574         .addReg(TmpReg).addReg(OldVal3Reg);
10575     BuildMI(BB, dl, TII->get(PPC::BCC))
10576         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
10577     BB->addSuccessor(loop2MBB);
10578     BB->addSuccessor(midMBB);
10579 
10580     BB = loop2MBB;
10581     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
10582         .addReg(TmpDestReg).addReg(MaskReg);
10583     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
10584         .addReg(Tmp2Reg).addReg(NewVal3Reg);
10585     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
10586         .addReg(ZeroReg).addReg(PtrReg);
10587     BuildMI(BB, dl, TII->get(PPC::BCC))
10588       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
10589     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10590     BB->addSuccessor(loop1MBB);
10591     BB->addSuccessor(exitMBB);
10592 
10593     BB = midMBB;
10594     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
10595       .addReg(ZeroReg).addReg(PtrReg);
10596     BB->addSuccessor(exitMBB);
10597 
10598     //  exitMBB:
10599     //   ...
10600     BB = exitMBB;
10601     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
10602       .addReg(ShiftReg);
10603   } else if (MI.getOpcode() == PPC::FADDrtz) {
10604     // This pseudo performs an FADD with rounding mode temporarily forced
10605     // to round-to-zero.  We emit this via custom inserter since the FPSCR
10606     // is not modeled at the SelectionDAG level.
10607     unsigned Dest = MI.getOperand(0).getReg();
10608     unsigned Src1 = MI.getOperand(1).getReg();
10609     unsigned Src2 = MI.getOperand(2).getReg();
10610     DebugLoc dl = MI.getDebugLoc();
10611 
10612     MachineRegisterInfo &RegInfo = F->getRegInfo();
10613     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
10614 
10615     // Save FPSCR value.
10616     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
10617 
10618     // Set rounding mode to round-to-zero.
10619     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
10620     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
10621 
10622     // Perform addition.
10623     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
10624 
10625     // Restore FPSCR value.
10626     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
10627   } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10628              MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
10629              MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10630              MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
10631     unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10632                        MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
10633                           ? PPC::ANDIo8
10634                           : PPC::ANDIo;
10635     bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10636                  MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
10637 
10638     MachineRegisterInfo &RegInfo = F->getRegInfo();
10639     unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
10640                                                   &PPC::GPRCRegClass :
10641                                                   &PPC::G8RCRegClass);
10642 
10643     DebugLoc dl = MI.getDebugLoc();
10644     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
10645         .addReg(MI.getOperand(1).getReg())
10646         .addImm(1);
10647     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
10648             MI.getOperand(0).getReg())
10649         .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
10650   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
10651     DebugLoc Dl = MI.getDebugLoc();
10652     MachineRegisterInfo &RegInfo = F->getRegInfo();
10653     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10654     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
10655     return BB;
10656   } else {
10657     llvm_unreachable("Unexpected instr type to insert");
10658   }
10659 
10660   MI.eraseFromParent(); // The pseudo instruction is gone now.
10661   return BB;
10662 }
10663 
10664 //===----------------------------------------------------------------------===//
10665 // Target Optimization Hooks
10666 //===----------------------------------------------------------------------===//
10667 
10668 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
10669   // For the estimates, convergence is quadratic, so we essentially double the
10670   // number of digits correct after every iteration. For both FRE and FRSQRTE,
10671   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
10672   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
10673   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
10674   if (VT.getScalarType() == MVT::f64)
10675     RefinementSteps++;
10676   return RefinementSteps;
10677 }
10678 
10679 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
10680                                            int Enabled, int &RefinementSteps,
10681                                            bool &UseOneConstNR,
10682                                            bool Reciprocal) const {
10683   EVT VT = Operand.getValueType();
10684   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
10685       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
10686       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
10687       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
10688       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
10689       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
10690     if (RefinementSteps == ReciprocalEstimate::Unspecified)
10691       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
10692 
10693     UseOneConstNR = true;
10694     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
10695   }
10696   return SDValue();
10697 }
10698 
10699 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
10700                                             int Enabled,
10701                                             int &RefinementSteps) const {
10702   EVT VT = Operand.getValueType();
10703   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
10704       (VT == MVT::f64 && Subtarget.hasFRE()) ||
10705       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
10706       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
10707       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
10708       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
10709     if (RefinementSteps == ReciprocalEstimate::Unspecified)
10710       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
10711     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
10712   }
10713   return SDValue();
10714 }
10715 
10716 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
10717   // Note: This functionality is used only when unsafe-fp-math is enabled, and
10718   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
10719   // enabled for division), this functionality is redundant with the default
10720   // combiner logic (once the division -> reciprocal/multiply transformation
10721   // has taken place). As a result, this matters more for older cores than for
10722   // newer ones.
10723 
10724   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
10725   // reciprocal if there are two or more FDIVs (for embedded cores with only
10726   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
10727   switch (Subtarget.getDarwinDirective()) {
10728   default:
10729     return 3;
10730   case PPC::DIR_440:
10731   case PPC::DIR_A2:
10732   case PPC::DIR_E500mc:
10733   case PPC::DIR_E5500:
10734     return 2;
10735   }
10736 }
10737 
10738 // isConsecutiveLSLoc needs to work even if all adds have not yet been
10739 // collapsed, and so we need to look through chains of them.
10740 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
10741                                      int64_t& Offset, SelectionDAG &DAG) {
10742   if (DAG.isBaseWithConstantOffset(Loc)) {
10743     Base = Loc.getOperand(0);
10744     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
10745 
10746     // The base might itself be a base plus an offset, and if so, accumulate
10747     // that as well.
10748     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
10749   }
10750 }
10751 
10752 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
10753                             unsigned Bytes, int Dist,
10754                             SelectionDAG &DAG) {
10755   if (VT.getSizeInBits() / 8 != Bytes)
10756     return false;
10757 
10758   SDValue BaseLoc = Base->getBasePtr();
10759   if (Loc.getOpcode() == ISD::FrameIndex) {
10760     if (BaseLoc.getOpcode() != ISD::FrameIndex)
10761       return false;
10762     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10763     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
10764     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
10765     int FS  = MFI.getObjectSize(FI);
10766     int BFS = MFI.getObjectSize(BFI);
10767     if (FS != BFS || FS != (int)Bytes) return false;
10768     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
10769   }
10770 
10771   SDValue Base1 = Loc, Base2 = BaseLoc;
10772   int64_t Offset1 = 0, Offset2 = 0;
10773   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
10774   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
10775   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
10776     return true;
10777 
10778   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10779   const GlobalValue *GV1 = nullptr;
10780   const GlobalValue *GV2 = nullptr;
10781   Offset1 = 0;
10782   Offset2 = 0;
10783   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
10784   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
10785   if (isGA1 && isGA2 && GV1 == GV2)
10786     return Offset1 == (Offset2 + Dist*Bytes);
10787   return false;
10788 }
10789 
10790 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
10791 // not enforce equality of the chain operands.
10792 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
10793                             unsigned Bytes, int Dist,
10794                             SelectionDAG &DAG) {
10795   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
10796     EVT VT = LS->getMemoryVT();
10797     SDValue Loc = LS->getBasePtr();
10798     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
10799   }
10800 
10801   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
10802     EVT VT;
10803     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10804     default: return false;
10805     case Intrinsic::ppc_qpx_qvlfd:
10806     case Intrinsic::ppc_qpx_qvlfda:
10807       VT = MVT::v4f64;
10808       break;
10809     case Intrinsic::ppc_qpx_qvlfs:
10810     case Intrinsic::ppc_qpx_qvlfsa:
10811       VT = MVT::v4f32;
10812       break;
10813     case Intrinsic::ppc_qpx_qvlfcd:
10814     case Intrinsic::ppc_qpx_qvlfcda:
10815       VT = MVT::v2f64;
10816       break;
10817     case Intrinsic::ppc_qpx_qvlfcs:
10818     case Intrinsic::ppc_qpx_qvlfcsa:
10819       VT = MVT::v2f32;
10820       break;
10821     case Intrinsic::ppc_qpx_qvlfiwa:
10822     case Intrinsic::ppc_qpx_qvlfiwz:
10823     case Intrinsic::ppc_altivec_lvx:
10824     case Intrinsic::ppc_altivec_lvxl:
10825     case Intrinsic::ppc_vsx_lxvw4x:
10826     case Intrinsic::ppc_vsx_lxvw4x_be:
10827       VT = MVT::v4i32;
10828       break;
10829     case Intrinsic::ppc_vsx_lxvd2x:
10830     case Intrinsic::ppc_vsx_lxvd2x_be:
10831       VT = MVT::v2f64;
10832       break;
10833     case Intrinsic::ppc_altivec_lvebx:
10834       VT = MVT::i8;
10835       break;
10836     case Intrinsic::ppc_altivec_lvehx:
10837       VT = MVT::i16;
10838       break;
10839     case Intrinsic::ppc_altivec_lvewx:
10840       VT = MVT::i32;
10841       break;
10842     }
10843 
10844     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
10845   }
10846 
10847   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
10848     EVT VT;
10849     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10850     default: return false;
10851     case Intrinsic::ppc_qpx_qvstfd:
10852     case Intrinsic::ppc_qpx_qvstfda:
10853       VT = MVT::v4f64;
10854       break;
10855     case Intrinsic::ppc_qpx_qvstfs:
10856     case Intrinsic::ppc_qpx_qvstfsa:
10857       VT = MVT::v4f32;
10858       break;
10859     case Intrinsic::ppc_qpx_qvstfcd:
10860     case Intrinsic::ppc_qpx_qvstfcda:
10861       VT = MVT::v2f64;
10862       break;
10863     case Intrinsic::ppc_qpx_qvstfcs:
10864     case Intrinsic::ppc_qpx_qvstfcsa:
10865       VT = MVT::v2f32;
10866       break;
10867     case Intrinsic::ppc_qpx_qvstfiw:
10868     case Intrinsic::ppc_qpx_qvstfiwa:
10869     case Intrinsic::ppc_altivec_stvx:
10870     case Intrinsic::ppc_altivec_stvxl:
10871     case Intrinsic::ppc_vsx_stxvw4x:
10872       VT = MVT::v4i32;
10873       break;
10874     case Intrinsic::ppc_vsx_stxvd2x:
10875       VT = MVT::v2f64;
10876       break;
10877     case Intrinsic::ppc_vsx_stxvw4x_be:
10878       VT = MVT::v4i32;
10879       break;
10880     case Intrinsic::ppc_vsx_stxvd2x_be:
10881       VT = MVT::v2f64;
10882       break;
10883     case Intrinsic::ppc_altivec_stvebx:
10884       VT = MVT::i8;
10885       break;
10886     case Intrinsic::ppc_altivec_stvehx:
10887       VT = MVT::i16;
10888       break;
10889     case Intrinsic::ppc_altivec_stvewx:
10890       VT = MVT::i32;
10891       break;
10892     }
10893 
10894     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
10895   }
10896 
10897   return false;
10898 }
10899 
10900 // Return true is there is a nearyby consecutive load to the one provided
10901 // (regardless of alignment). We search up and down the chain, looking though
10902 // token factors and other loads (but nothing else). As a result, a true result
10903 // indicates that it is safe to create a new consecutive load adjacent to the
10904 // load provided.
10905 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
10906   SDValue Chain = LD->getChain();
10907   EVT VT = LD->getMemoryVT();
10908 
10909   SmallSet<SDNode *, 16> LoadRoots;
10910   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
10911   SmallSet<SDNode *, 16> Visited;
10912 
10913   // First, search up the chain, branching to follow all token-factor operands.
10914   // If we find a consecutive load, then we're done, otherwise, record all
10915   // nodes just above the top-level loads and token factors.
10916   while (!Queue.empty()) {
10917     SDNode *ChainNext = Queue.pop_back_val();
10918     if (!Visited.insert(ChainNext).second)
10919       continue;
10920 
10921     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
10922       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
10923         return true;
10924 
10925       if (!Visited.count(ChainLD->getChain().getNode()))
10926         Queue.push_back(ChainLD->getChain().getNode());
10927     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
10928       for (const SDUse &O : ChainNext->ops())
10929         if (!Visited.count(O.getNode()))
10930           Queue.push_back(O.getNode());
10931     } else
10932       LoadRoots.insert(ChainNext);
10933   }
10934 
10935   // Second, search down the chain, starting from the top-level nodes recorded
10936   // in the first phase. These top-level nodes are the nodes just above all
10937   // loads and token factors. Starting with their uses, recursively look though
10938   // all loads (just the chain uses) and token factors to find a consecutive
10939   // load.
10940   Visited.clear();
10941   Queue.clear();
10942 
10943   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
10944        IE = LoadRoots.end(); I != IE; ++I) {
10945     Queue.push_back(*I);
10946 
10947     while (!Queue.empty()) {
10948       SDNode *LoadRoot = Queue.pop_back_val();
10949       if (!Visited.insert(LoadRoot).second)
10950         continue;
10951 
10952       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
10953         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
10954           return true;
10955 
10956       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
10957            UE = LoadRoot->use_end(); UI != UE; ++UI)
10958         if (((isa<MemSDNode>(*UI) &&
10959             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
10960             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
10961           Queue.push_back(*UI);
10962     }
10963   }
10964 
10965   return false;
10966 }
10967 
10968 /// This function is called when we have proved that a SETCC node can be replaced
10969 /// by subtraction (and other supporting instructions) so that the result of
10970 /// comparison is kept in a GPR instead of CR. This function is purely for
10971 /// codegen purposes and has some flags to guide the codegen process.
10972 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
10973                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
10974   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
10975 
10976   // Zero extend the operands to the largest legal integer. Originally, they
10977   // must be of a strictly smaller size.
10978   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
10979                          DAG.getConstant(Size, DL, MVT::i32));
10980   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
10981                          DAG.getConstant(Size, DL, MVT::i32));
10982 
10983   // Swap if needed. Depends on the condition code.
10984   if (Swap)
10985     std::swap(Op0, Op1);
10986 
10987   // Subtract extended integers.
10988   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
10989 
10990   // Move the sign bit to the least significant position and zero out the rest.
10991   // Now the least significant bit carries the result of original comparison.
10992   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
10993                              DAG.getConstant(Size - 1, DL, MVT::i32));
10994   auto Final = Shifted;
10995 
10996   // Complement the result if needed. Based on the condition code.
10997   if (Complement)
10998     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
10999                         DAG.getConstant(1, DL, MVT::i64));
11000 
11001   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
11002 }
11003 
11004 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
11005                                                   DAGCombinerInfo &DCI) const {
11006   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
11007 
11008   SelectionDAG &DAG = DCI.DAG;
11009   SDLoc DL(N);
11010 
11011   // Size of integers being compared has a critical role in the following
11012   // analysis, so we prefer to do this when all types are legal.
11013   if (!DCI.isAfterLegalizeDAG())
11014     return SDValue();
11015 
11016   // If all users of SETCC extend its value to a legal integer type
11017   // then we replace SETCC with a subtraction
11018   for (SDNode::use_iterator UI = N->use_begin(),
11019        UE = N->use_end(); UI != UE; ++UI) {
11020     if (UI->getOpcode() != ISD::ZERO_EXTEND)
11021       return SDValue();
11022   }
11023 
11024   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
11025   auto OpSize = N->getOperand(0).getValueSizeInBits();
11026 
11027   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
11028 
11029   if (OpSize < Size) {
11030     switch (CC) {
11031     default: break;
11032     case ISD::SETULT:
11033       return generateEquivalentSub(N, Size, false, false, DL, DAG);
11034     case ISD::SETULE:
11035       return generateEquivalentSub(N, Size, true, true, DL, DAG);
11036     case ISD::SETUGT:
11037       return generateEquivalentSub(N, Size, false, true, DL, DAG);
11038     case ISD::SETUGE:
11039       return generateEquivalentSub(N, Size, true, false, DL, DAG);
11040     }
11041   }
11042 
11043   return SDValue();
11044 }
11045 
11046 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
11047                                                   DAGCombinerInfo &DCI) const {
11048   SelectionDAG &DAG = DCI.DAG;
11049   SDLoc dl(N);
11050 
11051   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
11052   // If we're tracking CR bits, we need to be careful that we don't have:
11053   //   trunc(binary-ops(zext(x), zext(y)))
11054   // or
11055   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
11056   // such that we're unnecessarily moving things into GPRs when it would be
11057   // better to keep them in CR bits.
11058 
11059   // Note that trunc here can be an actual i1 trunc, or can be the effective
11060   // truncation that comes from a setcc or select_cc.
11061   if (N->getOpcode() == ISD::TRUNCATE &&
11062       N->getValueType(0) != MVT::i1)
11063     return SDValue();
11064 
11065   if (N->getOperand(0).getValueType() != MVT::i32 &&
11066       N->getOperand(0).getValueType() != MVT::i64)
11067     return SDValue();
11068 
11069   if (N->getOpcode() == ISD::SETCC ||
11070       N->getOpcode() == ISD::SELECT_CC) {
11071     // If we're looking at a comparison, then we need to make sure that the
11072     // high bits (all except for the first) don't matter the result.
11073     ISD::CondCode CC =
11074       cast<CondCodeSDNode>(N->getOperand(
11075         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
11076     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
11077 
11078     if (ISD::isSignedIntSetCC(CC)) {
11079       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
11080           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
11081         return SDValue();
11082     } else if (ISD::isUnsignedIntSetCC(CC)) {
11083       if (!DAG.MaskedValueIsZero(N->getOperand(0),
11084                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
11085           !DAG.MaskedValueIsZero(N->getOperand(1),
11086                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
11087         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
11088                                              : SDValue());
11089     } else {
11090       // This is neither a signed nor an unsigned comparison, just make sure
11091       // that the high bits are equal.
11092       KnownBits Op1Known, Op2Known;
11093       DAG.computeKnownBits(N->getOperand(0), Op1Known);
11094       DAG.computeKnownBits(N->getOperand(1), Op2Known);
11095 
11096       // We don't really care about what is known about the first bit (if
11097       // anything), so clear it in all masks prior to comparing them.
11098       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
11099       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
11100 
11101       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
11102         return SDValue();
11103     }
11104   }
11105 
11106   // We now know that the higher-order bits are irrelevant, we just need to
11107   // make sure that all of the intermediate operations are bit operations, and
11108   // all inputs are extensions.
11109   if (N->getOperand(0).getOpcode() != ISD::AND &&
11110       N->getOperand(0).getOpcode() != ISD::OR  &&
11111       N->getOperand(0).getOpcode() != ISD::XOR &&
11112       N->getOperand(0).getOpcode() != ISD::SELECT &&
11113       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
11114       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
11115       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
11116       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
11117       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
11118     return SDValue();
11119 
11120   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
11121       N->getOperand(1).getOpcode() != ISD::AND &&
11122       N->getOperand(1).getOpcode() != ISD::OR  &&
11123       N->getOperand(1).getOpcode() != ISD::XOR &&
11124       N->getOperand(1).getOpcode() != ISD::SELECT &&
11125       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
11126       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
11127       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
11128       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
11129       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
11130     return SDValue();
11131 
11132   SmallVector<SDValue, 4> Inputs;
11133   SmallVector<SDValue, 8> BinOps, PromOps;
11134   SmallPtrSet<SDNode *, 16> Visited;
11135 
11136   for (unsigned i = 0; i < 2; ++i) {
11137     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11138           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11139           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11140           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11141         isa<ConstantSDNode>(N->getOperand(i)))
11142       Inputs.push_back(N->getOperand(i));
11143     else
11144       BinOps.push_back(N->getOperand(i));
11145 
11146     if (N->getOpcode() == ISD::TRUNCATE)
11147       break;
11148   }
11149 
11150   // Visit all inputs, collect all binary operations (and, or, xor and
11151   // select) that are all fed by extensions.
11152   while (!BinOps.empty()) {
11153     SDValue BinOp = BinOps.back();
11154     BinOps.pop_back();
11155 
11156     if (!Visited.insert(BinOp.getNode()).second)
11157       continue;
11158 
11159     PromOps.push_back(BinOp);
11160 
11161     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11162       // The condition of the select is not promoted.
11163       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11164         continue;
11165       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11166         continue;
11167 
11168       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11169             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11170             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11171            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11172           isa<ConstantSDNode>(BinOp.getOperand(i))) {
11173         Inputs.push_back(BinOp.getOperand(i));
11174       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11175                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
11176                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11177                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11178                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
11179                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11180                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11181                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11182                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
11183         BinOps.push_back(BinOp.getOperand(i));
11184       } else {
11185         // We have an input that is not an extension or another binary
11186         // operation; we'll abort this transformation.
11187         return SDValue();
11188       }
11189     }
11190   }
11191 
11192   // Make sure that this is a self-contained cluster of operations (which
11193   // is not quite the same thing as saying that everything has only one
11194   // use).
11195   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11196     if (isa<ConstantSDNode>(Inputs[i]))
11197       continue;
11198 
11199     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11200                               UE = Inputs[i].getNode()->use_end();
11201          UI != UE; ++UI) {
11202       SDNode *User = *UI;
11203       if (User != N && !Visited.count(User))
11204         return SDValue();
11205 
11206       // Make sure that we're not going to promote the non-output-value
11207       // operand(s) or SELECT or SELECT_CC.
11208       // FIXME: Although we could sometimes handle this, and it does occur in
11209       // practice that one of the condition inputs to the select is also one of
11210       // the outputs, we currently can't deal with this.
11211       if (User->getOpcode() == ISD::SELECT) {
11212         if (User->getOperand(0) == Inputs[i])
11213           return SDValue();
11214       } else if (User->getOpcode() == ISD::SELECT_CC) {
11215         if (User->getOperand(0) == Inputs[i] ||
11216             User->getOperand(1) == Inputs[i])
11217           return SDValue();
11218       }
11219     }
11220   }
11221 
11222   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11223     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11224                               UE = PromOps[i].getNode()->use_end();
11225          UI != UE; ++UI) {
11226       SDNode *User = *UI;
11227       if (User != N && !Visited.count(User))
11228         return SDValue();
11229 
11230       // Make sure that we're not going to promote the non-output-value
11231       // operand(s) or SELECT or SELECT_CC.
11232       // FIXME: Although we could sometimes handle this, and it does occur in
11233       // practice that one of the condition inputs to the select is also one of
11234       // the outputs, we currently can't deal with this.
11235       if (User->getOpcode() == ISD::SELECT) {
11236         if (User->getOperand(0) == PromOps[i])
11237           return SDValue();
11238       } else if (User->getOpcode() == ISD::SELECT_CC) {
11239         if (User->getOperand(0) == PromOps[i] ||
11240             User->getOperand(1) == PromOps[i])
11241           return SDValue();
11242       }
11243     }
11244   }
11245 
11246   // Replace all inputs with the extension operand.
11247   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11248     // Constants may have users outside the cluster of to-be-promoted nodes,
11249     // and so we need to replace those as we do the promotions.
11250     if (isa<ConstantSDNode>(Inputs[i]))
11251       continue;
11252     else
11253       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
11254   }
11255 
11256   std::list<HandleSDNode> PromOpHandles;
11257   for (auto &PromOp : PromOps)
11258     PromOpHandles.emplace_back(PromOp);
11259 
11260   // Replace all operations (these are all the same, but have a different
11261   // (i1) return type). DAG.getNode will validate that the types of
11262   // a binary operator match, so go through the list in reverse so that
11263   // we've likely promoted both operands first. Any intermediate truncations or
11264   // extensions disappear.
11265   while (!PromOpHandles.empty()) {
11266     SDValue PromOp = PromOpHandles.back().getValue();
11267     PromOpHandles.pop_back();
11268 
11269     if (PromOp.getOpcode() == ISD::TRUNCATE ||
11270         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
11271         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
11272         PromOp.getOpcode() == ISD::ANY_EXTEND) {
11273       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
11274           PromOp.getOperand(0).getValueType() != MVT::i1) {
11275         // The operand is not yet ready (see comment below).
11276         PromOpHandles.emplace_front(PromOp);
11277         continue;
11278       }
11279 
11280       SDValue RepValue = PromOp.getOperand(0);
11281       if (isa<ConstantSDNode>(RepValue))
11282         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
11283 
11284       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
11285       continue;
11286     }
11287 
11288     unsigned C;
11289     switch (PromOp.getOpcode()) {
11290     default:             C = 0; break;
11291     case ISD::SELECT:    C = 1; break;
11292     case ISD::SELECT_CC: C = 2; break;
11293     }
11294 
11295     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11296          PromOp.getOperand(C).getValueType() != MVT::i1) ||
11297         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11298          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
11299       // The to-be-promoted operands of this node have not yet been
11300       // promoted (this should be rare because we're going through the
11301       // list backward, but if one of the operands has several users in
11302       // this cluster of to-be-promoted nodes, it is possible).
11303       PromOpHandles.emplace_front(PromOp);
11304       continue;
11305     }
11306 
11307     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
11308                                 PromOp.getNode()->op_end());
11309 
11310     // If there are any constant inputs, make sure they're replaced now.
11311     for (unsigned i = 0; i < 2; ++i)
11312       if (isa<ConstantSDNode>(Ops[C+i]))
11313         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
11314 
11315     DAG.ReplaceAllUsesOfValueWith(PromOp,
11316       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
11317   }
11318 
11319   // Now we're left with the initial truncation itself.
11320   if (N->getOpcode() == ISD::TRUNCATE)
11321     return N->getOperand(0);
11322 
11323   // Otherwise, this is a comparison. The operands to be compared have just
11324   // changed type (to i1), but everything else is the same.
11325   return SDValue(N, 0);
11326 }
11327 
11328 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
11329                                                   DAGCombinerInfo &DCI) const {
11330   SelectionDAG &DAG = DCI.DAG;
11331   SDLoc dl(N);
11332 
11333   // If we're tracking CR bits, we need to be careful that we don't have:
11334   //   zext(binary-ops(trunc(x), trunc(y)))
11335   // or
11336   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
11337   // such that we're unnecessarily moving things into CR bits that can more
11338   // efficiently stay in GPRs. Note that if we're not certain that the high
11339   // bits are set as required by the final extension, we still may need to do
11340   // some masking to get the proper behavior.
11341 
11342   // This same functionality is important on PPC64 when dealing with
11343   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
11344   // the return values of functions. Because it is so similar, it is handled
11345   // here as well.
11346 
11347   if (N->getValueType(0) != MVT::i32 &&
11348       N->getValueType(0) != MVT::i64)
11349     return SDValue();
11350 
11351   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
11352         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
11353     return SDValue();
11354 
11355   if (N->getOperand(0).getOpcode() != ISD::AND &&
11356       N->getOperand(0).getOpcode() != ISD::OR  &&
11357       N->getOperand(0).getOpcode() != ISD::XOR &&
11358       N->getOperand(0).getOpcode() != ISD::SELECT &&
11359       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
11360     return SDValue();
11361 
11362   SmallVector<SDValue, 4> Inputs;
11363   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
11364   SmallPtrSet<SDNode *, 16> Visited;
11365 
11366   // Visit all inputs, collect all binary operations (and, or, xor and
11367   // select) that are all fed by truncations.
11368   while (!BinOps.empty()) {
11369     SDValue BinOp = BinOps.back();
11370     BinOps.pop_back();
11371 
11372     if (!Visited.insert(BinOp.getNode()).second)
11373       continue;
11374 
11375     PromOps.push_back(BinOp);
11376 
11377     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11378       // The condition of the select is not promoted.
11379       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11380         continue;
11381       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11382         continue;
11383 
11384       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11385           isa<ConstantSDNode>(BinOp.getOperand(i))) {
11386         Inputs.push_back(BinOp.getOperand(i));
11387       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11388                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
11389                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11390                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11391                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
11392         BinOps.push_back(BinOp.getOperand(i));
11393       } else {
11394         // We have an input that is not a truncation or another binary
11395         // operation; we'll abort this transformation.
11396         return SDValue();
11397       }
11398     }
11399   }
11400 
11401   // The operands of a select that must be truncated when the select is
11402   // promoted because the operand is actually part of the to-be-promoted set.
11403   DenseMap<SDNode *, EVT> SelectTruncOp[2];
11404 
11405   // Make sure that this is a self-contained cluster of operations (which
11406   // is not quite the same thing as saying that everything has only one
11407   // use).
11408   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11409     if (isa<ConstantSDNode>(Inputs[i]))
11410       continue;
11411 
11412     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11413                               UE = Inputs[i].getNode()->use_end();
11414          UI != UE; ++UI) {
11415       SDNode *User = *UI;
11416       if (User != N && !Visited.count(User))
11417         return SDValue();
11418 
11419       // If we're going to promote the non-output-value operand(s) or SELECT or
11420       // SELECT_CC, record them for truncation.
11421       if (User->getOpcode() == ISD::SELECT) {
11422         if (User->getOperand(0) == Inputs[i])
11423           SelectTruncOp[0].insert(std::make_pair(User,
11424                                     User->getOperand(0).getValueType()));
11425       } else if (User->getOpcode() == ISD::SELECT_CC) {
11426         if (User->getOperand(0) == Inputs[i])
11427           SelectTruncOp[0].insert(std::make_pair(User,
11428                                     User->getOperand(0).getValueType()));
11429         if (User->getOperand(1) == Inputs[i])
11430           SelectTruncOp[1].insert(std::make_pair(User,
11431                                     User->getOperand(1).getValueType()));
11432       }
11433     }
11434   }
11435 
11436   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11437     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11438                               UE = PromOps[i].getNode()->use_end();
11439          UI != UE; ++UI) {
11440       SDNode *User = *UI;
11441       if (User != N && !Visited.count(User))
11442         return SDValue();
11443 
11444       // If we're going to promote the non-output-value operand(s) or SELECT or
11445       // SELECT_CC, record them for truncation.
11446       if (User->getOpcode() == ISD::SELECT) {
11447         if (User->getOperand(0) == PromOps[i])
11448           SelectTruncOp[0].insert(std::make_pair(User,
11449                                     User->getOperand(0).getValueType()));
11450       } else if (User->getOpcode() == ISD::SELECT_CC) {
11451         if (User->getOperand(0) == PromOps[i])
11452           SelectTruncOp[0].insert(std::make_pair(User,
11453                                     User->getOperand(0).getValueType()));
11454         if (User->getOperand(1) == PromOps[i])
11455           SelectTruncOp[1].insert(std::make_pair(User,
11456                                     User->getOperand(1).getValueType()));
11457       }
11458     }
11459   }
11460 
11461   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
11462   bool ReallyNeedsExt = false;
11463   if (N->getOpcode() != ISD::ANY_EXTEND) {
11464     // If all of the inputs are not already sign/zero extended, then
11465     // we'll still need to do that at the end.
11466     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11467       if (isa<ConstantSDNode>(Inputs[i]))
11468         continue;
11469 
11470       unsigned OpBits =
11471         Inputs[i].getOperand(0).getValueSizeInBits();
11472       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
11473 
11474       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
11475            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
11476                                   APInt::getHighBitsSet(OpBits,
11477                                                         OpBits-PromBits))) ||
11478           (N->getOpcode() == ISD::SIGN_EXTEND &&
11479            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
11480              (OpBits-(PromBits-1)))) {
11481         ReallyNeedsExt = true;
11482         break;
11483       }
11484     }
11485   }
11486 
11487   // Replace all inputs, either with the truncation operand, or a
11488   // truncation or extension to the final output type.
11489   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11490     // Constant inputs need to be replaced with the to-be-promoted nodes that
11491     // use them because they might have users outside of the cluster of
11492     // promoted nodes.
11493     if (isa<ConstantSDNode>(Inputs[i]))
11494       continue;
11495 
11496     SDValue InSrc = Inputs[i].getOperand(0);
11497     if (Inputs[i].getValueType() == N->getValueType(0))
11498       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
11499     else if (N->getOpcode() == ISD::SIGN_EXTEND)
11500       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11501         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
11502     else if (N->getOpcode() == ISD::ZERO_EXTEND)
11503       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11504         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
11505     else
11506       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11507         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
11508   }
11509 
11510   std::list<HandleSDNode> PromOpHandles;
11511   for (auto &PromOp : PromOps)
11512     PromOpHandles.emplace_back(PromOp);
11513 
11514   // Replace all operations (these are all the same, but have a different
11515   // (promoted) return type). DAG.getNode will validate that the types of
11516   // a binary operator match, so go through the list in reverse so that
11517   // we've likely promoted both operands first.
11518   while (!PromOpHandles.empty()) {
11519     SDValue PromOp = PromOpHandles.back().getValue();
11520     PromOpHandles.pop_back();
11521 
11522     unsigned C;
11523     switch (PromOp.getOpcode()) {
11524     default:             C = 0; break;
11525     case ISD::SELECT:    C = 1; break;
11526     case ISD::SELECT_CC: C = 2; break;
11527     }
11528 
11529     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11530          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
11531         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11532          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
11533       // The to-be-promoted operands of this node have not yet been
11534       // promoted (this should be rare because we're going through the
11535       // list backward, but if one of the operands has several users in
11536       // this cluster of to-be-promoted nodes, it is possible).
11537       PromOpHandles.emplace_front(PromOp);
11538       continue;
11539     }
11540 
11541     // For SELECT and SELECT_CC nodes, we do a similar check for any
11542     // to-be-promoted comparison inputs.
11543     if (PromOp.getOpcode() == ISD::SELECT ||
11544         PromOp.getOpcode() == ISD::SELECT_CC) {
11545       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
11546            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
11547           (SelectTruncOp[1].count(PromOp.getNode()) &&
11548            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
11549         PromOpHandles.emplace_front(PromOp);
11550         continue;
11551       }
11552     }
11553 
11554     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
11555                                 PromOp.getNode()->op_end());
11556 
11557     // If this node has constant inputs, then they'll need to be promoted here.
11558     for (unsigned i = 0; i < 2; ++i) {
11559       if (!isa<ConstantSDNode>(Ops[C+i]))
11560         continue;
11561       if (Ops[C+i].getValueType() == N->getValueType(0))
11562         continue;
11563 
11564       if (N->getOpcode() == ISD::SIGN_EXTEND)
11565         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11566       else if (N->getOpcode() == ISD::ZERO_EXTEND)
11567         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11568       else
11569         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11570     }
11571 
11572     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
11573     // truncate them again to the original value type.
11574     if (PromOp.getOpcode() == ISD::SELECT ||
11575         PromOp.getOpcode() == ISD::SELECT_CC) {
11576       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
11577       if (SI0 != SelectTruncOp[0].end())
11578         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
11579       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
11580       if (SI1 != SelectTruncOp[1].end())
11581         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
11582     }
11583 
11584     DAG.ReplaceAllUsesOfValueWith(PromOp,
11585       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
11586   }
11587 
11588   // Now we're left with the initial extension itself.
11589   if (!ReallyNeedsExt)
11590     return N->getOperand(0);
11591 
11592   // To zero extend, just mask off everything except for the first bit (in the
11593   // i1 case).
11594   if (N->getOpcode() == ISD::ZERO_EXTEND)
11595     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
11596                        DAG.getConstant(APInt::getLowBitsSet(
11597                                          N->getValueSizeInBits(0), PromBits),
11598                                        dl, N->getValueType(0)));
11599 
11600   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
11601          "Invalid extension type");
11602   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
11603   SDValue ShiftCst =
11604       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
11605   return DAG.getNode(
11606       ISD::SRA, dl, N->getValueType(0),
11607       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
11608       ShiftCst);
11609 }
11610 
11611 /// \brief Reduces the number of fp-to-int conversion when building a vector.
11612 ///
11613 /// If this vector is built out of floating to integer conversions,
11614 /// transform it to a vector built out of floating point values followed by a
11615 /// single floating to integer conversion of the vector.
11616 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
11617 /// becomes (fptosi (build_vector ($A, $B, ...)))
11618 SDValue PPCTargetLowering::
11619 combineElementTruncationToVectorTruncation(SDNode *N,
11620                                            DAGCombinerInfo &DCI) const {
11621   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
11622          "Should be called with a BUILD_VECTOR node");
11623 
11624   SelectionDAG &DAG = DCI.DAG;
11625   SDLoc dl(N);
11626 
11627   SDValue FirstInput = N->getOperand(0);
11628   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
11629          "The input operand must be an fp-to-int conversion.");
11630 
11631   // This combine happens after legalization so the fp_to_[su]i nodes are
11632   // already converted to PPCSISD nodes.
11633   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
11634   if (FirstConversion == PPCISD::FCTIDZ ||
11635       FirstConversion == PPCISD::FCTIDUZ ||
11636       FirstConversion == PPCISD::FCTIWZ ||
11637       FirstConversion == PPCISD::FCTIWUZ) {
11638     bool IsSplat = true;
11639     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
11640       FirstConversion == PPCISD::FCTIWUZ;
11641     EVT SrcVT = FirstInput.getOperand(0).getValueType();
11642     SmallVector<SDValue, 4> Ops;
11643     EVT TargetVT = N->getValueType(0);
11644     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
11645       if (N->getOperand(i).getOpcode() != PPCISD::MFVSR)
11646         return SDValue();
11647       unsigned NextConversion = N->getOperand(i).getOperand(0).getOpcode();
11648       if (NextConversion != FirstConversion)
11649         return SDValue();
11650       if (N->getOperand(i) != FirstInput)
11651         IsSplat = false;
11652     }
11653 
11654     // If this is a splat, we leave it as-is since there will be only a single
11655     // fp-to-int conversion followed by a splat of the integer. This is better
11656     // for 32-bit and smaller ints and neutral for 64-bit ints.
11657     if (IsSplat)
11658       return SDValue();
11659 
11660     // Now that we know we have the right type of node, get its operands
11661     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
11662       SDValue In = N->getOperand(i).getOperand(0);
11663       // For 32-bit values, we need to add an FP_ROUND node.
11664       if (Is32Bit) {
11665         if (In.isUndef())
11666           Ops.push_back(DAG.getUNDEF(SrcVT));
11667         else {
11668           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
11669                                       MVT::f32, In.getOperand(0),
11670                                       DAG.getIntPtrConstant(1, dl));
11671           Ops.push_back(Trunc);
11672         }
11673       } else
11674         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
11675     }
11676 
11677     unsigned Opcode;
11678     if (FirstConversion == PPCISD::FCTIDZ ||
11679         FirstConversion == PPCISD::FCTIWZ)
11680       Opcode = ISD::FP_TO_SINT;
11681     else
11682       Opcode = ISD::FP_TO_UINT;
11683 
11684     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
11685     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
11686     return DAG.getNode(Opcode, dl, TargetVT, BV);
11687   }
11688   return SDValue();
11689 }
11690 
11691 /// \brief Reduce the number of loads when building a vector.
11692 ///
11693 /// Building a vector out of multiple loads can be converted to a load
11694 /// of the vector type if the loads are consecutive. If the loads are
11695 /// consecutive but in descending order, a shuffle is added at the end
11696 /// to reorder the vector.
11697 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
11698   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
11699          "Should be called with a BUILD_VECTOR node");
11700 
11701   SDLoc dl(N);
11702   bool InputsAreConsecutiveLoads = true;
11703   bool InputsAreReverseConsecutive = true;
11704   unsigned ElemSize = N->getValueType(0).getScalarSizeInBits() / 8;
11705   SDValue FirstInput = N->getOperand(0);
11706   bool IsRoundOfExtLoad = false;
11707 
11708   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
11709       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
11710     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
11711     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
11712   }
11713   // Not a build vector of (possibly fp_rounded) loads.
11714   if (!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD)
11715     return SDValue();
11716 
11717   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
11718     // If any inputs are fp_round(extload), they all must be.
11719     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
11720       return SDValue();
11721 
11722     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
11723       N->getOperand(i);
11724     if (NextInput.getOpcode() != ISD::LOAD)
11725       return SDValue();
11726 
11727     SDValue PreviousInput =
11728       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
11729     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
11730     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
11731 
11732     // If any inputs are fp_round(extload), they all must be.
11733     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
11734       return SDValue();
11735 
11736     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
11737       InputsAreConsecutiveLoads = false;
11738     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
11739       InputsAreReverseConsecutive = false;
11740 
11741     // Exit early if the loads are neither consecutive nor reverse consecutive.
11742     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
11743       return SDValue();
11744   }
11745 
11746   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
11747          "The loads cannot be both consecutive and reverse consecutive.");
11748 
11749   SDValue FirstLoadOp =
11750     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
11751   SDValue LastLoadOp =
11752     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
11753                        N->getOperand(N->getNumOperands()-1);
11754 
11755   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
11756   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
11757   if (InputsAreConsecutiveLoads) {
11758     assert(LD1 && "Input needs to be a LoadSDNode.");
11759     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
11760                        LD1->getBasePtr(), LD1->getPointerInfo(),
11761                        LD1->getAlignment());
11762   }
11763   if (InputsAreReverseConsecutive) {
11764     assert(LDL && "Input needs to be a LoadSDNode.");
11765     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
11766                                LDL->getBasePtr(), LDL->getPointerInfo(),
11767                                LDL->getAlignment());
11768     SmallVector<int, 16> Ops;
11769     for (int i = N->getNumOperands() - 1; i >= 0; i--)
11770       Ops.push_back(i);
11771 
11772     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
11773                                 DAG.getUNDEF(N->getValueType(0)), Ops);
11774   }
11775   return SDValue();
11776 }
11777 
11778 // This function adds the required vector_shuffle needed to get
11779 // the elements of the vector extract in the correct position
11780 // as specified by the CorrectElems encoding.
11781 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
11782                                       SDValue Input, uint64_t Elems,
11783                                       uint64_t CorrectElems) {
11784   SDLoc dl(N);
11785 
11786   unsigned NumElems = Input.getValueType().getVectorNumElements();
11787   SmallVector<int, 16> ShuffleMask(NumElems, -1);
11788 
11789   // Knowing the element indices being extracted from the original
11790   // vector and the order in which they're being inserted, just put
11791   // them at element indices required for the instruction.
11792   for (unsigned i = 0; i < N->getNumOperands(); i++) {
11793     if (DAG.getDataLayout().isLittleEndian())
11794       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
11795     else
11796       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
11797     CorrectElems = CorrectElems >> 8;
11798     Elems = Elems >> 8;
11799   }
11800 
11801   SDValue Shuffle =
11802       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
11803                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
11804 
11805   EVT Ty = N->getValueType(0);
11806   SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
11807   return BV;
11808 }
11809 
11810 // Look for build vector patterns where input operands come from sign
11811 // extended vector_extract elements of specific indices. If the correct indices
11812 // aren't used, add a vector shuffle to fix up the indices and create a new
11813 // PPCISD:SExtVElems node which selects the vector sign extend instructions
11814 // during instruction selection.
11815 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
11816   // This array encodes the indices that the vector sign extend instructions
11817   // extract from when extending from one type to another for both BE and LE.
11818   // The right nibble of each byte corresponds to the LE incides.
11819   // and the left nibble of each byte corresponds to the BE incides.
11820   // For example: 0x3074B8FC  byte->word
11821   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
11822   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
11823   // For example: 0x000070F8  byte->double word
11824   // For LE: the allowed indices are: 0x0,0x8
11825   // For BE: the allowed indices are: 0x7,0xF
11826   uint64_t TargetElems[] = {
11827       0x3074B8FC, // b->w
11828       0x000070F8, // b->d
11829       0x10325476, // h->w
11830       0x00003074, // h->d
11831       0x00001032, // w->d
11832   };
11833 
11834   uint64_t Elems = 0;
11835   int Index;
11836   SDValue Input;
11837 
11838   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
11839     if (!Op)
11840       return false;
11841     if (Op.getOpcode() != ISD::SIGN_EXTEND)
11842       return false;
11843 
11844     SDValue Extract = Op.getOperand(0);
11845     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11846       return false;
11847 
11848     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
11849     if (!ExtOp)
11850       return false;
11851 
11852     Index = ExtOp->getZExtValue();
11853     if (Input && Input != Extract.getOperand(0))
11854       return false;
11855 
11856     if (!Input)
11857       Input = Extract.getOperand(0);
11858 
11859     Elems = Elems << 8;
11860     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
11861     Elems |= Index;
11862 
11863     return true;
11864   };
11865 
11866   // If the build vector operands aren't sign extended vector extracts,
11867   // of the same input vector, then return.
11868   for (unsigned i = 0; i < N->getNumOperands(); i++) {
11869     if (!isSExtOfVecExtract(N->getOperand(i))) {
11870       return SDValue();
11871     }
11872   }
11873 
11874   // If the vector extract indicies are not correct, add the appropriate
11875   // vector_shuffle.
11876   int TgtElemArrayIdx;
11877   int InputSize = Input.getValueType().getScalarSizeInBits();
11878   int OutputSize = N->getValueType(0).getScalarSizeInBits();
11879   if (InputSize + OutputSize == 40)
11880     TgtElemArrayIdx = 0;
11881   else if (InputSize + OutputSize == 72)
11882     TgtElemArrayIdx = 1;
11883   else if (InputSize + OutputSize == 48)
11884     TgtElemArrayIdx = 2;
11885   else if (InputSize + OutputSize == 80)
11886     TgtElemArrayIdx = 3;
11887   else if (InputSize + OutputSize == 96)
11888     TgtElemArrayIdx = 4;
11889   else
11890     return SDValue();
11891 
11892   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
11893   CorrectElems = DAG.getDataLayout().isLittleEndian()
11894                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
11895                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
11896   if (Elems != CorrectElems) {
11897     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
11898   }
11899 
11900   // Regular lowering will catch cases where a shuffle is not needed.
11901   return SDValue();
11902 }
11903 
11904 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
11905                                                  DAGCombinerInfo &DCI) const {
11906   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
11907          "Should be called with a BUILD_VECTOR node");
11908 
11909   SelectionDAG &DAG = DCI.DAG;
11910   SDLoc dl(N);
11911 
11912   if (!Subtarget.hasVSX())
11913     return SDValue();
11914 
11915   // The target independent DAG combiner will leave a build_vector of
11916   // float-to-int conversions intact. We can generate MUCH better code for
11917   // a float-to-int conversion of a vector of floats.
11918   SDValue FirstInput = N->getOperand(0);
11919   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
11920     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
11921     if (Reduced)
11922       return Reduced;
11923   }
11924 
11925   // If we're building a vector out of consecutive loads, just load that
11926   // vector type.
11927   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
11928   if (Reduced)
11929     return Reduced;
11930 
11931   // If we're building a vector out of extended elements from another vector
11932   // we have P9 vector integer extend instructions.
11933   if (Subtarget.hasP9Altivec()) {
11934     Reduced = combineBVOfVecSExt(N, DAG);
11935     if (Reduced)
11936       return Reduced;
11937   }
11938 
11939 
11940   if (N->getValueType(0) != MVT::v2f64)
11941     return SDValue();
11942 
11943   // Looking for:
11944   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
11945   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
11946       FirstInput.getOpcode() != ISD::UINT_TO_FP)
11947     return SDValue();
11948   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
11949       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
11950     return SDValue();
11951   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
11952     return SDValue();
11953 
11954   SDValue Ext1 = FirstInput.getOperand(0);
11955   SDValue Ext2 = N->getOperand(1).getOperand(0);
11956   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
11957      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11958     return SDValue();
11959 
11960   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
11961   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
11962   if (!Ext1Op || !Ext2Op)
11963     return SDValue();
11964   if (Ext1.getValueType() != MVT::i32 ||
11965       Ext2.getValueType() != MVT::i32)
11966   if (Ext1.getOperand(0) != Ext2.getOperand(0))
11967     return SDValue();
11968 
11969   int FirstElem = Ext1Op->getZExtValue();
11970   int SecondElem = Ext2Op->getZExtValue();
11971   int SubvecIdx;
11972   if (FirstElem == 0 && SecondElem == 1)
11973     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
11974   else if (FirstElem == 2 && SecondElem == 3)
11975     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
11976   else
11977     return SDValue();
11978 
11979   SDValue SrcVec = Ext1.getOperand(0);
11980   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
11981     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
11982   return DAG.getNode(NodeType, dl, MVT::v2f64,
11983                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
11984 }
11985 
11986 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
11987                                               DAGCombinerInfo &DCI) const {
11988   assert((N->getOpcode() == ISD::SINT_TO_FP ||
11989           N->getOpcode() == ISD::UINT_TO_FP) &&
11990          "Need an int -> FP conversion node here");
11991 
11992   if (useSoftFloat() || !Subtarget.has64BitSupport())
11993     return SDValue();
11994 
11995   SelectionDAG &DAG = DCI.DAG;
11996   SDLoc dl(N);
11997   SDValue Op(N, 0);
11998 
11999   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
12000   // from the hardware.
12001   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
12002     return SDValue();
12003   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
12004       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
12005     return SDValue();
12006 
12007   SDValue FirstOperand(Op.getOperand(0));
12008   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
12009     (FirstOperand.getValueType() == MVT::i8 ||
12010      FirstOperand.getValueType() == MVT::i16);
12011   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
12012     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
12013     bool DstDouble = Op.getValueType() == MVT::f64;
12014     unsigned ConvOp = Signed ?
12015       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
12016       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
12017     SDValue WidthConst =
12018       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
12019                             dl, false);
12020     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
12021     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
12022     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
12023                                          DAG.getVTList(MVT::f64, MVT::Other),
12024                                          Ops, MVT::i8, LDN->getMemOperand());
12025 
12026     // For signed conversion, we need to sign-extend the value in the VSR
12027     if (Signed) {
12028       SDValue ExtOps[] = { Ld, WidthConst };
12029       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
12030       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
12031     } else
12032       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
12033   }
12034 
12035 
12036   // For i32 intermediate values, unfortunately, the conversion functions
12037   // leave the upper 32 bits of the value are undefined. Within the set of
12038   // scalar instructions, we have no method for zero- or sign-extending the
12039   // value. Thus, we cannot handle i32 intermediate values here.
12040   if (Op.getOperand(0).getValueType() == MVT::i32)
12041     return SDValue();
12042 
12043   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
12044          "UINT_TO_FP is supported only with FPCVT");
12045 
12046   // If we have FCFIDS, then use it when converting to single-precision.
12047   // Otherwise, convert to double-precision and then round.
12048   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12049                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
12050                                                             : PPCISD::FCFIDS)
12051                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
12052                                                             : PPCISD::FCFID);
12053   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12054                   ? MVT::f32
12055                   : MVT::f64;
12056 
12057   // If we're converting from a float, to an int, and back to a float again,
12058   // then we don't need the store/load pair at all.
12059   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
12060        Subtarget.hasFPCVT()) ||
12061       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
12062     SDValue Src = Op.getOperand(0).getOperand(0);
12063     if (Src.getValueType() == MVT::f32) {
12064       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
12065       DCI.AddToWorklist(Src.getNode());
12066     } else if (Src.getValueType() != MVT::f64) {
12067       // Make sure that we don't pick up a ppc_fp128 source value.
12068       return SDValue();
12069     }
12070 
12071     unsigned FCTOp =
12072       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
12073                                                         PPCISD::FCTIDUZ;
12074 
12075     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
12076     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
12077 
12078     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
12079       FP = DAG.getNode(ISD::FP_ROUND, dl,
12080                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
12081       DCI.AddToWorklist(FP.getNode());
12082     }
12083 
12084     return FP;
12085   }
12086 
12087   return SDValue();
12088 }
12089 
12090 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
12091 // builtins) into loads with swaps.
12092 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
12093                                               DAGCombinerInfo &DCI) const {
12094   SelectionDAG &DAG = DCI.DAG;
12095   SDLoc dl(N);
12096   SDValue Chain;
12097   SDValue Base;
12098   MachineMemOperand *MMO;
12099 
12100   switch (N->getOpcode()) {
12101   default:
12102     llvm_unreachable("Unexpected opcode for little endian VSX load");
12103   case ISD::LOAD: {
12104     LoadSDNode *LD = cast<LoadSDNode>(N);
12105     Chain = LD->getChain();
12106     Base = LD->getBasePtr();
12107     MMO = LD->getMemOperand();
12108     // If the MMO suggests this isn't a load of a full vector, leave
12109     // things alone.  For a built-in, we have to make the change for
12110     // correctness, so if there is a size problem that will be a bug.
12111     if (MMO->getSize() < 16)
12112       return SDValue();
12113     break;
12114   }
12115   case ISD::INTRINSIC_W_CHAIN: {
12116     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12117     Chain = Intrin->getChain();
12118     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
12119     // us what we want. Get operand 2 instead.
12120     Base = Intrin->getOperand(2);
12121     MMO = Intrin->getMemOperand();
12122     break;
12123   }
12124   }
12125 
12126   MVT VecTy = N->getValueType(0).getSimpleVT();
12127 
12128   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
12129   // aligned and the type is a vector with elements up to 4 bytes
12130   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12131       && VecTy.getScalarSizeInBits() <= 32 ) {
12132     return SDValue();
12133   }
12134 
12135   SDValue LoadOps[] = { Chain, Base };
12136   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
12137                                          DAG.getVTList(MVT::v2f64, MVT::Other),
12138                                          LoadOps, MVT::v2f64, MMO);
12139 
12140   DCI.AddToWorklist(Load.getNode());
12141   Chain = Load.getValue(1);
12142   SDValue Swap = DAG.getNode(
12143       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
12144   DCI.AddToWorklist(Swap.getNode());
12145 
12146   // Add a bitcast if the resulting load type doesn't match v2f64.
12147   if (VecTy != MVT::v2f64) {
12148     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
12149     DCI.AddToWorklist(N.getNode());
12150     // Package {bitcast value, swap's chain} to match Load's shape.
12151     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
12152                        N, Swap.getValue(1));
12153   }
12154 
12155   return Swap;
12156 }
12157 
12158 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
12159 // builtins) into stores with swaps.
12160 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
12161                                                DAGCombinerInfo &DCI) const {
12162   SelectionDAG &DAG = DCI.DAG;
12163   SDLoc dl(N);
12164   SDValue Chain;
12165   SDValue Base;
12166   unsigned SrcOpnd;
12167   MachineMemOperand *MMO;
12168 
12169   switch (N->getOpcode()) {
12170   default:
12171     llvm_unreachable("Unexpected opcode for little endian VSX store");
12172   case ISD::STORE: {
12173     StoreSDNode *ST = cast<StoreSDNode>(N);
12174     Chain = ST->getChain();
12175     Base = ST->getBasePtr();
12176     MMO = ST->getMemOperand();
12177     SrcOpnd = 1;
12178     // If the MMO suggests this isn't a store of a full vector, leave
12179     // things alone.  For a built-in, we have to make the change for
12180     // correctness, so if there is a size problem that will be a bug.
12181     if (MMO->getSize() < 16)
12182       return SDValue();
12183     break;
12184   }
12185   case ISD::INTRINSIC_VOID: {
12186     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12187     Chain = Intrin->getChain();
12188     // Intrin->getBasePtr() oddly does not get what we want.
12189     Base = Intrin->getOperand(3);
12190     MMO = Intrin->getMemOperand();
12191     SrcOpnd = 2;
12192     break;
12193   }
12194   }
12195 
12196   SDValue Src = N->getOperand(SrcOpnd);
12197   MVT VecTy = Src.getValueType().getSimpleVT();
12198 
12199   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
12200   // aligned and the type is a vector with elements up to 4 bytes
12201   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12202       && VecTy.getScalarSizeInBits() <= 32 ) {
12203     return SDValue();
12204   }
12205 
12206   // All stores are done as v2f64 and possible bit cast.
12207   if (VecTy != MVT::v2f64) {
12208     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
12209     DCI.AddToWorklist(Src.getNode());
12210   }
12211 
12212   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
12213                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
12214   DCI.AddToWorklist(Swap.getNode());
12215   Chain = Swap.getValue(1);
12216   SDValue StoreOps[] = { Chain, Swap, Base };
12217   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
12218                                           DAG.getVTList(MVT::Other),
12219                                           StoreOps, VecTy, MMO);
12220   DCI.AddToWorklist(Store.getNode());
12221   return Store;
12222 }
12223 
12224 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
12225                                              DAGCombinerInfo &DCI) const {
12226   SelectionDAG &DAG = DCI.DAG;
12227   SDLoc dl(N);
12228   switch (N->getOpcode()) {
12229   default: break;
12230   case ISD::SHL:
12231     return combineSHL(N, DCI);
12232   case ISD::SRA:
12233     return combineSRA(N, DCI);
12234   case ISD::SRL:
12235     return combineSRL(N, DCI);
12236   case PPCISD::SHL:
12237     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
12238         return N->getOperand(0);
12239     break;
12240   case PPCISD::SRL:
12241     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
12242         return N->getOperand(0);
12243     break;
12244   case PPCISD::SRA:
12245     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
12246       if (C->isNullValue() ||   //  0 >>s V -> 0.
12247           C->isAllOnesValue())    // -1 >>s V -> -1.
12248         return N->getOperand(0);
12249     }
12250     break;
12251   case ISD::SIGN_EXTEND:
12252   case ISD::ZERO_EXTEND:
12253   case ISD::ANY_EXTEND:
12254     return DAGCombineExtBoolTrunc(N, DCI);
12255   case ISD::TRUNCATE:
12256   case ISD::SETCC:
12257   case ISD::SELECT_CC:
12258     return DAGCombineTruncBoolExt(N, DCI);
12259   case ISD::SINT_TO_FP:
12260   case ISD::UINT_TO_FP:
12261     return combineFPToIntToFP(N, DCI);
12262   case ISD::STORE: {
12263     EVT Op1VT = N->getOperand(1).getValueType();
12264     bool ValidTypeForStoreFltAsInt = (Op1VT == MVT::i32) ||
12265       (Subtarget.hasP9Vector() && (Op1VT == MVT::i8 || Op1VT == MVT::i16));
12266 
12267     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
12268     if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() &&
12269         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
12270         ValidTypeForStoreFltAsInt &&
12271         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
12272       SDValue Val = N->getOperand(1).getOperand(0);
12273       if (Val.getValueType() == MVT::f32) {
12274         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
12275         DCI.AddToWorklist(Val.getNode());
12276       }
12277       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
12278       DCI.AddToWorklist(Val.getNode());
12279 
12280       if (Op1VT == MVT::i32) {
12281         SDValue Ops[] = {
12282           N->getOperand(0), Val, N->getOperand(2),
12283           DAG.getValueType(N->getOperand(1).getValueType())
12284         };
12285 
12286         Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
12287                 DAG.getVTList(MVT::Other), Ops,
12288                 cast<StoreSDNode>(N)->getMemoryVT(),
12289                 cast<StoreSDNode>(N)->getMemOperand());
12290       } else {
12291         unsigned WidthInBytes =
12292           N->getOperand(1).getValueType() == MVT::i8 ? 1 : 2;
12293         SDValue WidthConst = DAG.getIntPtrConstant(WidthInBytes, dl, false);
12294 
12295         SDValue Ops[] = {
12296           N->getOperand(0), Val, N->getOperand(2), WidthConst,
12297           DAG.getValueType(N->getOperand(1).getValueType())
12298         };
12299         Val = DAG.getMemIntrinsicNode(PPCISD::STXSIX, dl,
12300                                       DAG.getVTList(MVT::Other), Ops,
12301                                       cast<StoreSDNode>(N)->getMemoryVT(),
12302                                       cast<StoreSDNode>(N)->getMemOperand());
12303       }
12304 
12305       DCI.AddToWorklist(Val.getNode());
12306       return Val;
12307     }
12308 
12309     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
12310     if (cast<StoreSDNode>(N)->isUnindexed() &&
12311         N->getOperand(1).getOpcode() == ISD::BSWAP &&
12312         N->getOperand(1).getNode()->hasOneUse() &&
12313         (N->getOperand(1).getValueType() == MVT::i32 ||
12314          N->getOperand(1).getValueType() == MVT::i16 ||
12315          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
12316           N->getOperand(1).getValueType() == MVT::i64))) {
12317       // STBRX can only handle simple types.
12318       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
12319       if (mVT.isExtended())
12320         break;
12321 
12322       SDValue BSwapOp = N->getOperand(1).getOperand(0);
12323       // Do an any-extend to 32-bits if this is a half-word input.
12324       if (BSwapOp.getValueType() == MVT::i16)
12325         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
12326 
12327       // If the type of BSWAP operand is wider than stored memory width
12328       // it need to be shifted to the right side before STBRX.
12329       if (Op1VT.bitsGT(mVT)) {
12330         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
12331         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
12332                               DAG.getConstant(Shift, dl, MVT::i32));
12333         // Need to truncate if this is a bswap of i64 stored as i32/i16.
12334         if (Op1VT == MVT::i64)
12335           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
12336       }
12337 
12338       SDValue Ops[] = {
12339         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
12340       };
12341       return
12342         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
12343                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
12344                                 cast<StoreSDNode>(N)->getMemOperand());
12345     }
12346 
12347     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
12348     // So it can increase the chance of CSE constant construction.
12349     EVT VT = N->getOperand(1).getValueType();
12350     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
12351         isa<ConstantSDNode>(N->getOperand(1)) && VT == MVT::i32) {
12352       // Need to sign-extended to 64-bits to handle negative values.
12353       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
12354       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
12355                                     MemVT.getSizeInBits());
12356       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
12357 
12358       // DAG.getTruncStore() can't be used here because it doesn't accept
12359       // the general (base + offset) addressing mode.
12360       // So we use UpdateNodeOperands and setTruncatingStore instead.
12361       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
12362                              N->getOperand(3));
12363       cast<StoreSDNode>(N)->setTruncatingStore(true);
12364       return SDValue(N, 0);
12365     }
12366 
12367     // For little endian, VSX stores require generating xxswapd/lxvd2x.
12368     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
12369     if (VT.isSimple()) {
12370       MVT StoreVT = VT.getSimpleVT();
12371       if (Subtarget.needsSwapsForVSXMemOps() &&
12372           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
12373            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
12374         return expandVSXStoreForLE(N, DCI);
12375     }
12376     break;
12377   }
12378   case ISD::LOAD: {
12379     LoadSDNode *LD = cast<LoadSDNode>(N);
12380     EVT VT = LD->getValueType(0);
12381 
12382     // For little endian, VSX loads require generating lxvd2x/xxswapd.
12383     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
12384     if (VT.isSimple()) {
12385       MVT LoadVT = VT.getSimpleVT();
12386       if (Subtarget.needsSwapsForVSXMemOps() &&
12387           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
12388            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
12389         return expandVSXLoadForLE(N, DCI);
12390     }
12391 
12392     // We sometimes end up with a 64-bit integer load, from which we extract
12393     // two single-precision floating-point numbers. This happens with
12394     // std::complex<float>, and other similar structures, because of the way we
12395     // canonicalize structure copies. However, if we lack direct moves,
12396     // then the final bitcasts from the extracted integer values to the
12397     // floating-point numbers turn into store/load pairs. Even with direct moves,
12398     // just loading the two floating-point numbers is likely better.
12399     auto ReplaceTwoFloatLoad = [&]() {
12400       if (VT != MVT::i64)
12401         return false;
12402 
12403       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
12404           LD->isVolatile())
12405         return false;
12406 
12407       //  We're looking for a sequence like this:
12408       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
12409       //      t16: i64 = srl t13, Constant:i32<32>
12410       //    t17: i32 = truncate t16
12411       //  t18: f32 = bitcast t17
12412       //    t19: i32 = truncate t13
12413       //  t20: f32 = bitcast t19
12414 
12415       if (!LD->hasNUsesOfValue(2, 0))
12416         return false;
12417 
12418       auto UI = LD->use_begin();
12419       while (UI.getUse().getResNo() != 0) ++UI;
12420       SDNode *Trunc = *UI++;
12421       while (UI.getUse().getResNo() != 0) ++UI;
12422       SDNode *RightShift = *UI;
12423       if (Trunc->getOpcode() != ISD::TRUNCATE)
12424         std::swap(Trunc, RightShift);
12425 
12426       if (Trunc->getOpcode() != ISD::TRUNCATE ||
12427           Trunc->getValueType(0) != MVT::i32 ||
12428           !Trunc->hasOneUse())
12429         return false;
12430       if (RightShift->getOpcode() != ISD::SRL ||
12431           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
12432           RightShift->getConstantOperandVal(1) != 32 ||
12433           !RightShift->hasOneUse())
12434         return false;
12435 
12436       SDNode *Trunc2 = *RightShift->use_begin();
12437       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
12438           Trunc2->getValueType(0) != MVT::i32 ||
12439           !Trunc2->hasOneUse())
12440         return false;
12441 
12442       SDNode *Bitcast = *Trunc->use_begin();
12443       SDNode *Bitcast2 = *Trunc2->use_begin();
12444 
12445       if (Bitcast->getOpcode() != ISD::BITCAST ||
12446           Bitcast->getValueType(0) != MVT::f32)
12447         return false;
12448       if (Bitcast2->getOpcode() != ISD::BITCAST ||
12449           Bitcast2->getValueType(0) != MVT::f32)
12450         return false;
12451 
12452       if (Subtarget.isLittleEndian())
12453         std::swap(Bitcast, Bitcast2);
12454 
12455       // Bitcast has the second float (in memory-layout order) and Bitcast2
12456       // has the first one.
12457 
12458       SDValue BasePtr = LD->getBasePtr();
12459       if (LD->isIndexed()) {
12460         assert(LD->getAddressingMode() == ISD::PRE_INC &&
12461                "Non-pre-inc AM on PPC?");
12462         BasePtr =
12463           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
12464                       LD->getOffset());
12465       }
12466 
12467       auto MMOFlags =
12468           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
12469       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
12470                                       LD->getPointerInfo(), LD->getAlignment(),
12471                                       MMOFlags, LD->getAAInfo());
12472       SDValue AddPtr =
12473         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
12474                     BasePtr, DAG.getIntPtrConstant(4, dl));
12475       SDValue FloatLoad2 = DAG.getLoad(
12476           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
12477           LD->getPointerInfo().getWithOffset(4),
12478           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
12479 
12480       if (LD->isIndexed()) {
12481         // Note that DAGCombine should re-form any pre-increment load(s) from
12482         // what is produced here if that makes sense.
12483         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
12484       }
12485 
12486       DCI.CombineTo(Bitcast2, FloatLoad);
12487       DCI.CombineTo(Bitcast, FloatLoad2);
12488 
12489       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
12490                                     SDValue(FloatLoad2.getNode(), 1));
12491       return true;
12492     };
12493 
12494     if (ReplaceTwoFloatLoad())
12495       return SDValue(N, 0);
12496 
12497     EVT MemVT = LD->getMemoryVT();
12498     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
12499     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
12500     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
12501     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
12502     if (LD->isUnindexed() && VT.isVector() &&
12503         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
12504           // P8 and later hardware should just use LOAD.
12505           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
12506                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
12507          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
12508           LD->getAlignment() >= ScalarABIAlignment)) &&
12509         LD->getAlignment() < ABIAlignment) {
12510       // This is a type-legal unaligned Altivec or QPX load.
12511       SDValue Chain = LD->getChain();
12512       SDValue Ptr = LD->getBasePtr();
12513       bool isLittleEndian = Subtarget.isLittleEndian();
12514 
12515       // This implements the loading of unaligned vectors as described in
12516       // the venerable Apple Velocity Engine overview. Specifically:
12517       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
12518       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
12519       //
12520       // The general idea is to expand a sequence of one or more unaligned
12521       // loads into an alignment-based permutation-control instruction (lvsl
12522       // or lvsr), a series of regular vector loads (which always truncate
12523       // their input address to an aligned address), and a series of
12524       // permutations.  The results of these permutations are the requested
12525       // loaded values.  The trick is that the last "extra" load is not taken
12526       // from the address you might suspect (sizeof(vector) bytes after the
12527       // last requested load), but rather sizeof(vector) - 1 bytes after the
12528       // last requested vector. The point of this is to avoid a page fault if
12529       // the base address happened to be aligned. This works because if the
12530       // base address is aligned, then adding less than a full vector length
12531       // will cause the last vector in the sequence to be (re)loaded.
12532       // Otherwise, the next vector will be fetched as you might suspect was
12533       // necessary.
12534 
12535       // We might be able to reuse the permutation generation from
12536       // a different base address offset from this one by an aligned amount.
12537       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
12538       // optimization later.
12539       Intrinsic::ID Intr, IntrLD, IntrPerm;
12540       MVT PermCntlTy, PermTy, LDTy;
12541       if (Subtarget.hasAltivec()) {
12542         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
12543                                  Intrinsic::ppc_altivec_lvsl;
12544         IntrLD = Intrinsic::ppc_altivec_lvx;
12545         IntrPerm = Intrinsic::ppc_altivec_vperm;
12546         PermCntlTy = MVT::v16i8;
12547         PermTy = MVT::v4i32;
12548         LDTy = MVT::v4i32;
12549       } else {
12550         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
12551                                        Intrinsic::ppc_qpx_qvlpcls;
12552         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
12553                                        Intrinsic::ppc_qpx_qvlfs;
12554         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
12555         PermCntlTy = MVT::v4f64;
12556         PermTy = MVT::v4f64;
12557         LDTy = MemVT.getSimpleVT();
12558       }
12559 
12560       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
12561 
12562       // Create the new MMO for the new base load. It is like the original MMO,
12563       // but represents an area in memory almost twice the vector size centered
12564       // on the original address. If the address is unaligned, we might start
12565       // reading up to (sizeof(vector)-1) bytes below the address of the
12566       // original unaligned load.
12567       MachineFunction &MF = DAG.getMachineFunction();
12568       MachineMemOperand *BaseMMO =
12569         MF.getMachineMemOperand(LD->getMemOperand(),
12570                                 -(long)MemVT.getStoreSize()+1,
12571                                 2*MemVT.getStoreSize()-1);
12572 
12573       // Create the new base load.
12574       SDValue LDXIntID =
12575           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
12576       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
12577       SDValue BaseLoad =
12578         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
12579                                 DAG.getVTList(PermTy, MVT::Other),
12580                                 BaseLoadOps, LDTy, BaseMMO);
12581 
12582       // Note that the value of IncOffset (which is provided to the next
12583       // load's pointer info offset value, and thus used to calculate the
12584       // alignment), and the value of IncValue (which is actually used to
12585       // increment the pointer value) are different! This is because we
12586       // require the next load to appear to be aligned, even though it
12587       // is actually offset from the base pointer by a lesser amount.
12588       int IncOffset = VT.getSizeInBits() / 8;
12589       int IncValue = IncOffset;
12590 
12591       // Walk (both up and down) the chain looking for another load at the real
12592       // (aligned) offset (the alignment of the other load does not matter in
12593       // this case). If found, then do not use the offset reduction trick, as
12594       // that will prevent the loads from being later combined (as they would
12595       // otherwise be duplicates).
12596       if (!findConsecutiveLoad(LD, DAG))
12597         --IncValue;
12598 
12599       SDValue Increment =
12600           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
12601       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
12602 
12603       MachineMemOperand *ExtraMMO =
12604         MF.getMachineMemOperand(LD->getMemOperand(),
12605                                 1, 2*MemVT.getStoreSize()-1);
12606       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
12607       SDValue ExtraLoad =
12608         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
12609                                 DAG.getVTList(PermTy, MVT::Other),
12610                                 ExtraLoadOps, LDTy, ExtraMMO);
12611 
12612       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
12613         BaseLoad.getValue(1), ExtraLoad.getValue(1));
12614 
12615       // Because vperm has a big-endian bias, we must reverse the order
12616       // of the input vectors and complement the permute control vector
12617       // when generating little endian code.  We have already handled the
12618       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
12619       // and ExtraLoad here.
12620       SDValue Perm;
12621       if (isLittleEndian)
12622         Perm = BuildIntrinsicOp(IntrPerm,
12623                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
12624       else
12625         Perm = BuildIntrinsicOp(IntrPerm,
12626                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
12627 
12628       if (VT != PermTy)
12629         Perm = Subtarget.hasAltivec() ?
12630                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
12631                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
12632                                DAG.getTargetConstant(1, dl, MVT::i64));
12633                                // second argument is 1 because this rounding
12634                                // is always exact.
12635 
12636       // The output of the permutation is our loaded result, the TokenFactor is
12637       // our new chain.
12638       DCI.CombineTo(N, Perm, TF);
12639       return SDValue(N, 0);
12640     }
12641     }
12642     break;
12643     case ISD::INTRINSIC_WO_CHAIN: {
12644       bool isLittleEndian = Subtarget.isLittleEndian();
12645       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
12646       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
12647                                            : Intrinsic::ppc_altivec_lvsl);
12648       if ((IID == Intr ||
12649            IID == Intrinsic::ppc_qpx_qvlpcld  ||
12650            IID == Intrinsic::ppc_qpx_qvlpcls) &&
12651         N->getOperand(1)->getOpcode() == ISD::ADD) {
12652         SDValue Add = N->getOperand(1);
12653 
12654         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
12655                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
12656 
12657         if (DAG.MaskedValueIsZero(Add->getOperand(1),
12658                                   APInt::getAllOnesValue(Bits /* alignment */)
12659                                       .zext(Add.getScalarValueSizeInBits()))) {
12660           SDNode *BasePtr = Add->getOperand(0).getNode();
12661           for (SDNode::use_iterator UI = BasePtr->use_begin(),
12662                                     UE = BasePtr->use_end();
12663                UI != UE; ++UI) {
12664             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
12665                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
12666               // We've found another LVSL/LVSR, and this address is an aligned
12667               // multiple of that one. The results will be the same, so use the
12668               // one we've just found instead.
12669 
12670               return SDValue(*UI, 0);
12671             }
12672           }
12673         }
12674 
12675         if (isa<ConstantSDNode>(Add->getOperand(1))) {
12676           SDNode *BasePtr = Add->getOperand(0).getNode();
12677           for (SDNode::use_iterator UI = BasePtr->use_begin(),
12678                UE = BasePtr->use_end(); UI != UE; ++UI) {
12679             if (UI->getOpcode() == ISD::ADD &&
12680                 isa<ConstantSDNode>(UI->getOperand(1)) &&
12681                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
12682                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
12683                 (1ULL << Bits) == 0) {
12684               SDNode *OtherAdd = *UI;
12685               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
12686                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
12687                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
12688                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
12689                   return SDValue(*VI, 0);
12690                 }
12691               }
12692             }
12693           }
12694         }
12695       }
12696     }
12697 
12698     break;
12699   case ISD::INTRINSIC_W_CHAIN:
12700     // For little endian, VSX loads require generating lxvd2x/xxswapd.
12701     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
12702     if (Subtarget.needsSwapsForVSXMemOps()) {
12703       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12704       default:
12705         break;
12706       case Intrinsic::ppc_vsx_lxvw4x:
12707       case Intrinsic::ppc_vsx_lxvd2x:
12708         return expandVSXLoadForLE(N, DCI);
12709       }
12710     }
12711     break;
12712   case ISD::INTRINSIC_VOID:
12713     // For little endian, VSX stores require generating xxswapd/stxvd2x.
12714     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
12715     if (Subtarget.needsSwapsForVSXMemOps()) {
12716       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12717       default:
12718         break;
12719       case Intrinsic::ppc_vsx_stxvw4x:
12720       case Intrinsic::ppc_vsx_stxvd2x:
12721         return expandVSXStoreForLE(N, DCI);
12722       }
12723     }
12724     break;
12725   case ISD::BSWAP:
12726     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
12727     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
12728         N->getOperand(0).hasOneUse() &&
12729         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
12730          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
12731           N->getValueType(0) == MVT::i64))) {
12732       SDValue Load = N->getOperand(0);
12733       LoadSDNode *LD = cast<LoadSDNode>(Load);
12734       // Create the byte-swapping load.
12735       SDValue Ops[] = {
12736         LD->getChain(),    // Chain
12737         LD->getBasePtr(),  // Ptr
12738         DAG.getValueType(N->getValueType(0)) // VT
12739       };
12740       SDValue BSLoad =
12741         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
12742                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
12743                                               MVT::i64 : MVT::i32, MVT::Other),
12744                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
12745 
12746       // If this is an i16 load, insert the truncate.
12747       SDValue ResVal = BSLoad;
12748       if (N->getValueType(0) == MVT::i16)
12749         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
12750 
12751       // First, combine the bswap away.  This makes the value produced by the
12752       // load dead.
12753       DCI.CombineTo(N, ResVal);
12754 
12755       // Next, combine the load away, we give it a bogus result value but a real
12756       // chain result.  The result value is dead because the bswap is dead.
12757       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
12758 
12759       // Return N so it doesn't get rechecked!
12760       return SDValue(N, 0);
12761     }
12762     break;
12763   case PPCISD::VCMP:
12764     // If a VCMPo node already exists with exactly the same operands as this
12765     // node, use its result instead of this node (VCMPo computes both a CR6 and
12766     // a normal output).
12767     //
12768     if (!N->getOperand(0).hasOneUse() &&
12769         !N->getOperand(1).hasOneUse() &&
12770         !N->getOperand(2).hasOneUse()) {
12771 
12772       // Scan all of the users of the LHS, looking for VCMPo's that match.
12773       SDNode *VCMPoNode = nullptr;
12774 
12775       SDNode *LHSN = N->getOperand(0).getNode();
12776       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
12777            UI != E; ++UI)
12778         if (UI->getOpcode() == PPCISD::VCMPo &&
12779             UI->getOperand(1) == N->getOperand(1) &&
12780             UI->getOperand(2) == N->getOperand(2) &&
12781             UI->getOperand(0) == N->getOperand(0)) {
12782           VCMPoNode = *UI;
12783           break;
12784         }
12785 
12786       // If there is no VCMPo node, or if the flag value has a single use, don't
12787       // transform this.
12788       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
12789         break;
12790 
12791       // Look at the (necessarily single) use of the flag value.  If it has a
12792       // chain, this transformation is more complex.  Note that multiple things
12793       // could use the value result, which we should ignore.
12794       SDNode *FlagUser = nullptr;
12795       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
12796            FlagUser == nullptr; ++UI) {
12797         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
12798         SDNode *User = *UI;
12799         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
12800           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
12801             FlagUser = User;
12802             break;
12803           }
12804         }
12805       }
12806 
12807       // If the user is a MFOCRF instruction, we know this is safe.
12808       // Otherwise we give up for right now.
12809       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
12810         return SDValue(VCMPoNode, 0);
12811     }
12812     break;
12813   case ISD::BRCOND: {
12814     SDValue Cond = N->getOperand(1);
12815     SDValue Target = N->getOperand(2);
12816 
12817     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
12818         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
12819           Intrinsic::ppc_is_decremented_ctr_nonzero) {
12820 
12821       // We now need to make the intrinsic dead (it cannot be instruction
12822       // selected).
12823       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
12824       assert(Cond.getNode()->hasOneUse() &&
12825              "Counter decrement has more than one use");
12826 
12827       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
12828                          N->getOperand(0), Target);
12829     }
12830   }
12831   break;
12832   case ISD::BR_CC: {
12833     // If this is a branch on an altivec predicate comparison, lower this so
12834     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
12835     // lowering is done pre-legalize, because the legalizer lowers the predicate
12836     // compare down to code that is difficult to reassemble.
12837     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
12838     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
12839 
12840     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
12841     // value. If so, pass-through the AND to get to the intrinsic.
12842     if (LHS.getOpcode() == ISD::AND &&
12843         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
12844         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
12845           Intrinsic::ppc_is_decremented_ctr_nonzero &&
12846         isa<ConstantSDNode>(LHS.getOperand(1)) &&
12847         !isNullConstant(LHS.getOperand(1)))
12848       LHS = LHS.getOperand(0);
12849 
12850     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
12851         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
12852           Intrinsic::ppc_is_decremented_ctr_nonzero &&
12853         isa<ConstantSDNode>(RHS)) {
12854       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
12855              "Counter decrement comparison is not EQ or NE");
12856 
12857       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
12858       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
12859                     (CC == ISD::SETNE && !Val);
12860 
12861       // We now need to make the intrinsic dead (it cannot be instruction
12862       // selected).
12863       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
12864       assert(LHS.getNode()->hasOneUse() &&
12865              "Counter decrement has more than one use");
12866 
12867       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
12868                          N->getOperand(0), N->getOperand(4));
12869     }
12870 
12871     int CompareOpc;
12872     bool isDot;
12873 
12874     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
12875         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
12876         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
12877       assert(isDot && "Can't compare against a vector result!");
12878 
12879       // If this is a comparison against something other than 0/1, then we know
12880       // that the condition is never/always true.
12881       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
12882       if (Val != 0 && Val != 1) {
12883         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
12884           return N->getOperand(0);
12885         // Always !=, turn it into an unconditional branch.
12886         return DAG.getNode(ISD::BR, dl, MVT::Other,
12887                            N->getOperand(0), N->getOperand(4));
12888       }
12889 
12890       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
12891 
12892       // Create the PPCISD altivec 'dot' comparison node.
12893       SDValue Ops[] = {
12894         LHS.getOperand(2),  // LHS of compare
12895         LHS.getOperand(3),  // RHS of compare
12896         DAG.getConstant(CompareOpc, dl, MVT::i32)
12897       };
12898       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
12899       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
12900 
12901       // Unpack the result based on how the target uses it.
12902       PPC::Predicate CompOpc;
12903       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
12904       default:  // Can't happen, don't crash on invalid number though.
12905       case 0:   // Branch on the value of the EQ bit of CR6.
12906         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
12907         break;
12908       case 1:   // Branch on the inverted value of the EQ bit of CR6.
12909         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
12910         break;
12911       case 2:   // Branch on the value of the LT bit of CR6.
12912         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
12913         break;
12914       case 3:   // Branch on the inverted value of the LT bit of CR6.
12915         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
12916         break;
12917       }
12918 
12919       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
12920                          DAG.getConstant(CompOpc, dl, MVT::i32),
12921                          DAG.getRegister(PPC::CR6, MVT::i32),
12922                          N->getOperand(4), CompNode.getValue(1));
12923     }
12924     break;
12925   }
12926   case ISD::BUILD_VECTOR:
12927     return DAGCombineBuildVector(N, DCI);
12928   }
12929 
12930   return SDValue();
12931 }
12932 
12933 SDValue
12934 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
12935                                   SelectionDAG &DAG,
12936                                   std::vector<SDNode *> *Created) const {
12937   // fold (sdiv X, pow2)
12938   EVT VT = N->getValueType(0);
12939   if (VT == MVT::i64 && !Subtarget.isPPC64())
12940     return SDValue();
12941   if ((VT != MVT::i32 && VT != MVT::i64) ||
12942       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
12943     return SDValue();
12944 
12945   SDLoc DL(N);
12946   SDValue N0 = N->getOperand(0);
12947 
12948   bool IsNegPow2 = (-Divisor).isPowerOf2();
12949   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
12950   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
12951 
12952   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
12953   if (Created)
12954     Created->push_back(Op.getNode());
12955 
12956   if (IsNegPow2) {
12957     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
12958     if (Created)
12959       Created->push_back(Op.getNode());
12960   }
12961 
12962   return Op;
12963 }
12964 
12965 //===----------------------------------------------------------------------===//
12966 // Inline Assembly Support
12967 //===----------------------------------------------------------------------===//
12968 
12969 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
12970                                                       KnownBits &Known,
12971                                                       const APInt &DemandedElts,
12972                                                       const SelectionDAG &DAG,
12973                                                       unsigned Depth) const {
12974   Known.resetAll();
12975   switch (Op.getOpcode()) {
12976   default: break;
12977   case PPCISD::LBRX: {
12978     // lhbrx is known to have the top bits cleared out.
12979     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
12980       Known.Zero = 0xFFFF0000;
12981     break;
12982   }
12983   case ISD::INTRINSIC_WO_CHAIN: {
12984     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
12985     default: break;
12986     case Intrinsic::ppc_altivec_vcmpbfp_p:
12987     case Intrinsic::ppc_altivec_vcmpeqfp_p:
12988     case Intrinsic::ppc_altivec_vcmpequb_p:
12989     case Intrinsic::ppc_altivec_vcmpequh_p:
12990     case Intrinsic::ppc_altivec_vcmpequw_p:
12991     case Intrinsic::ppc_altivec_vcmpequd_p:
12992     case Intrinsic::ppc_altivec_vcmpgefp_p:
12993     case Intrinsic::ppc_altivec_vcmpgtfp_p:
12994     case Intrinsic::ppc_altivec_vcmpgtsb_p:
12995     case Intrinsic::ppc_altivec_vcmpgtsh_p:
12996     case Intrinsic::ppc_altivec_vcmpgtsw_p:
12997     case Intrinsic::ppc_altivec_vcmpgtsd_p:
12998     case Intrinsic::ppc_altivec_vcmpgtub_p:
12999     case Intrinsic::ppc_altivec_vcmpgtuh_p:
13000     case Intrinsic::ppc_altivec_vcmpgtuw_p:
13001     case Intrinsic::ppc_altivec_vcmpgtud_p:
13002       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
13003       break;
13004     }
13005   }
13006   }
13007 }
13008 
13009 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
13010   switch (Subtarget.getDarwinDirective()) {
13011   default: break;
13012   case PPC::DIR_970:
13013   case PPC::DIR_PWR4:
13014   case PPC::DIR_PWR5:
13015   case PPC::DIR_PWR5X:
13016   case PPC::DIR_PWR6:
13017   case PPC::DIR_PWR6X:
13018   case PPC::DIR_PWR7:
13019   case PPC::DIR_PWR8:
13020   case PPC::DIR_PWR9: {
13021     if (!ML)
13022       break;
13023 
13024     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
13025 
13026     // For small loops (between 5 and 8 instructions), align to a 32-byte
13027     // boundary so that the entire loop fits in one instruction-cache line.
13028     uint64_t LoopSize = 0;
13029     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
13030       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
13031         LoopSize += TII->getInstSizeInBytes(*J);
13032         if (LoopSize > 32)
13033           break;
13034       }
13035 
13036     if (LoopSize > 16 && LoopSize <= 32)
13037       return 5;
13038 
13039     break;
13040   }
13041   }
13042 
13043   return TargetLowering::getPrefLoopAlignment(ML);
13044 }
13045 
13046 /// getConstraintType - Given a constraint, return the type of
13047 /// constraint it is for this target.
13048 PPCTargetLowering::ConstraintType
13049 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
13050   if (Constraint.size() == 1) {
13051     switch (Constraint[0]) {
13052     default: break;
13053     case 'b':
13054     case 'r':
13055     case 'f':
13056     case 'd':
13057     case 'v':
13058     case 'y':
13059       return C_RegisterClass;
13060     case 'Z':
13061       // FIXME: While Z does indicate a memory constraint, it specifically
13062       // indicates an r+r address (used in conjunction with the 'y' modifier
13063       // in the replacement string). Currently, we're forcing the base
13064       // register to be r0 in the asm printer (which is interpreted as zero)
13065       // and forming the complete address in the second register. This is
13066       // suboptimal.
13067       return C_Memory;
13068     }
13069   } else if (Constraint == "wc") { // individual CR bits.
13070     return C_RegisterClass;
13071   } else if (Constraint == "wa" || Constraint == "wd" ||
13072              Constraint == "wf" || Constraint == "ws") {
13073     return C_RegisterClass; // VSX registers.
13074   }
13075   return TargetLowering::getConstraintType(Constraint);
13076 }
13077 
13078 /// Examine constraint type and operand type and determine a weight value.
13079 /// This object must already have been set up with the operand type
13080 /// and the current alternative constraint selected.
13081 TargetLowering::ConstraintWeight
13082 PPCTargetLowering::getSingleConstraintMatchWeight(
13083     AsmOperandInfo &info, const char *constraint) const {
13084   ConstraintWeight weight = CW_Invalid;
13085   Value *CallOperandVal = info.CallOperandVal;
13086     // If we don't have a value, we can't do a match,
13087     // but allow it at the lowest weight.
13088   if (!CallOperandVal)
13089     return CW_Default;
13090   Type *type = CallOperandVal->getType();
13091 
13092   // Look at the constraint type.
13093   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
13094     return CW_Register; // an individual CR bit.
13095   else if ((StringRef(constraint) == "wa" ||
13096             StringRef(constraint) == "wd" ||
13097             StringRef(constraint) == "wf") &&
13098            type->isVectorTy())
13099     return CW_Register;
13100   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
13101     return CW_Register;
13102 
13103   switch (*constraint) {
13104   default:
13105     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
13106     break;
13107   case 'b':
13108     if (type->isIntegerTy())
13109       weight = CW_Register;
13110     break;
13111   case 'f':
13112     if (type->isFloatTy())
13113       weight = CW_Register;
13114     break;
13115   case 'd':
13116     if (type->isDoubleTy())
13117       weight = CW_Register;
13118     break;
13119   case 'v':
13120     if (type->isVectorTy())
13121       weight = CW_Register;
13122     break;
13123   case 'y':
13124     weight = CW_Register;
13125     break;
13126   case 'Z':
13127     weight = CW_Memory;
13128     break;
13129   }
13130   return weight;
13131 }
13132 
13133 std::pair<unsigned, const TargetRegisterClass *>
13134 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
13135                                                 StringRef Constraint,
13136                                                 MVT VT) const {
13137   if (Constraint.size() == 1) {
13138     // GCC RS6000 Constraint Letters
13139     switch (Constraint[0]) {
13140     case 'b':   // R1-R31
13141       if (VT == MVT::i64 && Subtarget.isPPC64())
13142         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
13143       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
13144     case 'r':   // R0-R31
13145       if (VT == MVT::i64 && Subtarget.isPPC64())
13146         return std::make_pair(0U, &PPC::G8RCRegClass);
13147       return std::make_pair(0U, &PPC::GPRCRegClass);
13148     // 'd' and 'f' constraints are both defined to be "the floating point
13149     // registers", where one is for 32-bit and the other for 64-bit. We don't
13150     // really care overly much here so just give them all the same reg classes.
13151     case 'd':
13152     case 'f':
13153       if (VT == MVT::f32 || VT == MVT::i32)
13154         return std::make_pair(0U, &PPC::F4RCRegClass);
13155       if (VT == MVT::f64 || VT == MVT::i64)
13156         return std::make_pair(0U, &PPC::F8RCRegClass);
13157       if (VT == MVT::v4f64 && Subtarget.hasQPX())
13158         return std::make_pair(0U, &PPC::QFRCRegClass);
13159       if (VT == MVT::v4f32 && Subtarget.hasQPX())
13160         return std::make_pair(0U, &PPC::QSRCRegClass);
13161       break;
13162     case 'v':
13163       if (VT == MVT::v4f64 && Subtarget.hasQPX())
13164         return std::make_pair(0U, &PPC::QFRCRegClass);
13165       if (VT == MVT::v4f32 && Subtarget.hasQPX())
13166         return std::make_pair(0U, &PPC::QSRCRegClass);
13167       if (Subtarget.hasAltivec())
13168         return std::make_pair(0U, &PPC::VRRCRegClass);
13169       break;
13170     case 'y':   // crrc
13171       return std::make_pair(0U, &PPC::CRRCRegClass);
13172     }
13173   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
13174     // An individual CR bit.
13175     return std::make_pair(0U, &PPC::CRBITRCRegClass);
13176   } else if ((Constraint == "wa" || Constraint == "wd" ||
13177              Constraint == "wf") && Subtarget.hasVSX()) {
13178     return std::make_pair(0U, &PPC::VSRCRegClass);
13179   } else if (Constraint == "ws" && Subtarget.hasVSX()) {
13180     if (VT == MVT::f32 && Subtarget.hasP8Vector())
13181       return std::make_pair(0U, &PPC::VSSRCRegClass);
13182     else
13183       return std::make_pair(0U, &PPC::VSFRCRegClass);
13184   }
13185 
13186   std::pair<unsigned, const TargetRegisterClass *> R =
13187       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
13188 
13189   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
13190   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
13191   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
13192   // register.
13193   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
13194   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
13195   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
13196       PPC::GPRCRegClass.contains(R.first))
13197     return std::make_pair(TRI->getMatchingSuperReg(R.first,
13198                             PPC::sub_32, &PPC::G8RCRegClass),
13199                           &PPC::G8RCRegClass);
13200 
13201   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
13202   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
13203     R.first = PPC::CR0;
13204     R.second = &PPC::CRRCRegClass;
13205   }
13206 
13207   return R;
13208 }
13209 
13210 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
13211 /// vector.  If it is invalid, don't add anything to Ops.
13212 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
13213                                                      std::string &Constraint,
13214                                                      std::vector<SDValue>&Ops,
13215                                                      SelectionDAG &DAG) const {
13216   SDValue Result;
13217 
13218   // Only support length 1 constraints.
13219   if (Constraint.length() > 1) return;
13220 
13221   char Letter = Constraint[0];
13222   switch (Letter) {
13223   default: break;
13224   case 'I':
13225   case 'J':
13226   case 'K':
13227   case 'L':
13228   case 'M':
13229   case 'N':
13230   case 'O':
13231   case 'P': {
13232     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
13233     if (!CST) return; // Must be an immediate to match.
13234     SDLoc dl(Op);
13235     int64_t Value = CST->getSExtValue();
13236     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
13237                          // numbers are printed as such.
13238     switch (Letter) {
13239     default: llvm_unreachable("Unknown constraint letter!");
13240     case 'I':  // "I" is a signed 16-bit constant.
13241       if (isInt<16>(Value))
13242         Result = DAG.getTargetConstant(Value, dl, TCVT);
13243       break;
13244     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
13245       if (isShiftedUInt<16, 16>(Value))
13246         Result = DAG.getTargetConstant(Value, dl, TCVT);
13247       break;
13248     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
13249       if (isShiftedInt<16, 16>(Value))
13250         Result = DAG.getTargetConstant(Value, dl, TCVT);
13251       break;
13252     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
13253       if (isUInt<16>(Value))
13254         Result = DAG.getTargetConstant(Value, dl, TCVT);
13255       break;
13256     case 'M':  // "M" is a constant that is greater than 31.
13257       if (Value > 31)
13258         Result = DAG.getTargetConstant(Value, dl, TCVT);
13259       break;
13260     case 'N':  // "N" is a positive constant that is an exact power of two.
13261       if (Value > 0 && isPowerOf2_64(Value))
13262         Result = DAG.getTargetConstant(Value, dl, TCVT);
13263       break;
13264     case 'O':  // "O" is the constant zero.
13265       if (Value == 0)
13266         Result = DAG.getTargetConstant(Value, dl, TCVT);
13267       break;
13268     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
13269       if (isInt<16>(-Value))
13270         Result = DAG.getTargetConstant(Value, dl, TCVT);
13271       break;
13272     }
13273     break;
13274   }
13275   }
13276 
13277   if (Result.getNode()) {
13278     Ops.push_back(Result);
13279     return;
13280   }
13281 
13282   // Handle standard constraint letters.
13283   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
13284 }
13285 
13286 // isLegalAddressingMode - Return true if the addressing mode represented
13287 // by AM is legal for this target, for a load/store of the specified type.
13288 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
13289                                               const AddrMode &AM, Type *Ty,
13290                                               unsigned AS, Instruction *I) const {
13291   // PPC does not allow r+i addressing modes for vectors!
13292   if (Ty->isVectorTy() && AM.BaseOffs != 0)
13293     return false;
13294 
13295   // PPC allows a sign-extended 16-bit immediate field.
13296   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
13297     return false;
13298 
13299   // No global is ever allowed as a base.
13300   if (AM.BaseGV)
13301     return false;
13302 
13303   // PPC only support r+r,
13304   switch (AM.Scale) {
13305   case 0:  // "r+i" or just "i", depending on HasBaseReg.
13306     break;
13307   case 1:
13308     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
13309       return false;
13310     // Otherwise we have r+r or r+i.
13311     break;
13312   case 2:
13313     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
13314       return false;
13315     // Allow 2*r as r+r.
13316     break;
13317   default:
13318     // No other scales are supported.
13319     return false;
13320   }
13321 
13322   return true;
13323 }
13324 
13325 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
13326                                            SelectionDAG &DAG) const {
13327   MachineFunction &MF = DAG.getMachineFunction();
13328   MachineFrameInfo &MFI = MF.getFrameInfo();
13329   MFI.setReturnAddressIsTaken(true);
13330 
13331   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
13332     return SDValue();
13333 
13334   SDLoc dl(Op);
13335   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13336 
13337   // Make sure the function does not optimize away the store of the RA to
13338   // the stack.
13339   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
13340   FuncInfo->setLRStoreRequired();
13341   bool isPPC64 = Subtarget.isPPC64();
13342   auto PtrVT = getPointerTy(MF.getDataLayout());
13343 
13344   if (Depth > 0) {
13345     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
13346     SDValue Offset =
13347         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
13348                         isPPC64 ? MVT::i64 : MVT::i32);
13349     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
13350                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
13351                        MachinePointerInfo());
13352   }
13353 
13354   // Just load the return address off the stack.
13355   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
13356   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
13357                      MachinePointerInfo());
13358 }
13359 
13360 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
13361                                           SelectionDAG &DAG) const {
13362   SDLoc dl(Op);
13363   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13364 
13365   MachineFunction &MF = DAG.getMachineFunction();
13366   MachineFrameInfo &MFI = MF.getFrameInfo();
13367   MFI.setFrameAddressIsTaken(true);
13368 
13369   EVT PtrVT = getPointerTy(MF.getDataLayout());
13370   bool isPPC64 = PtrVT == MVT::i64;
13371 
13372   // Naked functions never have a frame pointer, and so we use r1. For all
13373   // other functions, this decision must be delayed until during PEI.
13374   unsigned FrameReg;
13375   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
13376     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
13377   else
13378     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
13379 
13380   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
13381                                          PtrVT);
13382   while (Depth--)
13383     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
13384                             FrameAddr, MachinePointerInfo());
13385   return FrameAddr;
13386 }
13387 
13388 // FIXME? Maybe this could be a TableGen attribute on some registers and
13389 // this table could be generated automatically from RegInfo.
13390 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
13391                                               SelectionDAG &DAG) const {
13392   bool isPPC64 = Subtarget.isPPC64();
13393   bool isDarwinABI = Subtarget.isDarwinABI();
13394 
13395   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
13396       (!isPPC64 && VT != MVT::i32))
13397     report_fatal_error("Invalid register global variable type");
13398 
13399   bool is64Bit = isPPC64 && VT == MVT::i64;
13400   unsigned Reg = StringSwitch<unsigned>(RegName)
13401                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
13402                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
13403                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
13404                                   (is64Bit ? PPC::X13 : PPC::R13))
13405                    .Default(0);
13406 
13407   if (Reg)
13408     return Reg;
13409   report_fatal_error("Invalid register name global variable");
13410 }
13411 
13412 bool
13413 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
13414   // The PowerPC target isn't yet aware of offsets.
13415   return false;
13416 }
13417 
13418 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
13419                                            const CallInst &I,
13420                                            MachineFunction &MF,
13421                                            unsigned Intrinsic) const {
13422   switch (Intrinsic) {
13423   case Intrinsic::ppc_qpx_qvlfd:
13424   case Intrinsic::ppc_qpx_qvlfs:
13425   case Intrinsic::ppc_qpx_qvlfcd:
13426   case Intrinsic::ppc_qpx_qvlfcs:
13427   case Intrinsic::ppc_qpx_qvlfiwa:
13428   case Intrinsic::ppc_qpx_qvlfiwz:
13429   case Intrinsic::ppc_altivec_lvx:
13430   case Intrinsic::ppc_altivec_lvxl:
13431   case Intrinsic::ppc_altivec_lvebx:
13432   case Intrinsic::ppc_altivec_lvehx:
13433   case Intrinsic::ppc_altivec_lvewx:
13434   case Intrinsic::ppc_vsx_lxvd2x:
13435   case Intrinsic::ppc_vsx_lxvw4x: {
13436     EVT VT;
13437     switch (Intrinsic) {
13438     case Intrinsic::ppc_altivec_lvebx:
13439       VT = MVT::i8;
13440       break;
13441     case Intrinsic::ppc_altivec_lvehx:
13442       VT = MVT::i16;
13443       break;
13444     case Intrinsic::ppc_altivec_lvewx:
13445       VT = MVT::i32;
13446       break;
13447     case Intrinsic::ppc_vsx_lxvd2x:
13448       VT = MVT::v2f64;
13449       break;
13450     case Intrinsic::ppc_qpx_qvlfd:
13451       VT = MVT::v4f64;
13452       break;
13453     case Intrinsic::ppc_qpx_qvlfs:
13454       VT = MVT::v4f32;
13455       break;
13456     case Intrinsic::ppc_qpx_qvlfcd:
13457       VT = MVT::v2f64;
13458       break;
13459     case Intrinsic::ppc_qpx_qvlfcs:
13460       VT = MVT::v2f32;
13461       break;
13462     default:
13463       VT = MVT::v4i32;
13464       break;
13465     }
13466 
13467     Info.opc = ISD::INTRINSIC_W_CHAIN;
13468     Info.memVT = VT;
13469     Info.ptrVal = I.getArgOperand(0);
13470     Info.offset = -VT.getStoreSize()+1;
13471     Info.size = 2*VT.getStoreSize()-1;
13472     Info.align = 1;
13473     Info.flags = MachineMemOperand::MOLoad;
13474     return true;
13475   }
13476   case Intrinsic::ppc_qpx_qvlfda:
13477   case Intrinsic::ppc_qpx_qvlfsa:
13478   case Intrinsic::ppc_qpx_qvlfcda:
13479   case Intrinsic::ppc_qpx_qvlfcsa:
13480   case Intrinsic::ppc_qpx_qvlfiwaa:
13481   case Intrinsic::ppc_qpx_qvlfiwza: {
13482     EVT VT;
13483     switch (Intrinsic) {
13484     case Intrinsic::ppc_qpx_qvlfda:
13485       VT = MVT::v4f64;
13486       break;
13487     case Intrinsic::ppc_qpx_qvlfsa:
13488       VT = MVT::v4f32;
13489       break;
13490     case Intrinsic::ppc_qpx_qvlfcda:
13491       VT = MVT::v2f64;
13492       break;
13493     case Intrinsic::ppc_qpx_qvlfcsa:
13494       VT = MVT::v2f32;
13495       break;
13496     default:
13497       VT = MVT::v4i32;
13498       break;
13499     }
13500 
13501     Info.opc = ISD::INTRINSIC_W_CHAIN;
13502     Info.memVT = VT;
13503     Info.ptrVal = I.getArgOperand(0);
13504     Info.offset = 0;
13505     Info.size = VT.getStoreSize();
13506     Info.align = 1;
13507     Info.flags = MachineMemOperand::MOLoad;
13508     return true;
13509   }
13510   case Intrinsic::ppc_qpx_qvstfd:
13511   case Intrinsic::ppc_qpx_qvstfs:
13512   case Intrinsic::ppc_qpx_qvstfcd:
13513   case Intrinsic::ppc_qpx_qvstfcs:
13514   case Intrinsic::ppc_qpx_qvstfiw:
13515   case Intrinsic::ppc_altivec_stvx:
13516   case Intrinsic::ppc_altivec_stvxl:
13517   case Intrinsic::ppc_altivec_stvebx:
13518   case Intrinsic::ppc_altivec_stvehx:
13519   case Intrinsic::ppc_altivec_stvewx:
13520   case Intrinsic::ppc_vsx_stxvd2x:
13521   case Intrinsic::ppc_vsx_stxvw4x: {
13522     EVT VT;
13523     switch (Intrinsic) {
13524     case Intrinsic::ppc_altivec_stvebx:
13525       VT = MVT::i8;
13526       break;
13527     case Intrinsic::ppc_altivec_stvehx:
13528       VT = MVT::i16;
13529       break;
13530     case Intrinsic::ppc_altivec_stvewx:
13531       VT = MVT::i32;
13532       break;
13533     case Intrinsic::ppc_vsx_stxvd2x:
13534       VT = MVT::v2f64;
13535       break;
13536     case Intrinsic::ppc_qpx_qvstfd:
13537       VT = MVT::v4f64;
13538       break;
13539     case Intrinsic::ppc_qpx_qvstfs:
13540       VT = MVT::v4f32;
13541       break;
13542     case Intrinsic::ppc_qpx_qvstfcd:
13543       VT = MVT::v2f64;
13544       break;
13545     case Intrinsic::ppc_qpx_qvstfcs:
13546       VT = MVT::v2f32;
13547       break;
13548     default:
13549       VT = MVT::v4i32;
13550       break;
13551     }
13552 
13553     Info.opc = ISD::INTRINSIC_VOID;
13554     Info.memVT = VT;
13555     Info.ptrVal = I.getArgOperand(1);
13556     Info.offset = -VT.getStoreSize()+1;
13557     Info.size = 2*VT.getStoreSize()-1;
13558     Info.align = 1;
13559     Info.flags = MachineMemOperand::MOStore;
13560     return true;
13561   }
13562   case Intrinsic::ppc_qpx_qvstfda:
13563   case Intrinsic::ppc_qpx_qvstfsa:
13564   case Intrinsic::ppc_qpx_qvstfcda:
13565   case Intrinsic::ppc_qpx_qvstfcsa:
13566   case Intrinsic::ppc_qpx_qvstfiwa: {
13567     EVT VT;
13568     switch (Intrinsic) {
13569     case Intrinsic::ppc_qpx_qvstfda:
13570       VT = MVT::v4f64;
13571       break;
13572     case Intrinsic::ppc_qpx_qvstfsa:
13573       VT = MVT::v4f32;
13574       break;
13575     case Intrinsic::ppc_qpx_qvstfcda:
13576       VT = MVT::v2f64;
13577       break;
13578     case Intrinsic::ppc_qpx_qvstfcsa:
13579       VT = MVT::v2f32;
13580       break;
13581     default:
13582       VT = MVT::v4i32;
13583       break;
13584     }
13585 
13586     Info.opc = ISD::INTRINSIC_VOID;
13587     Info.memVT = VT;
13588     Info.ptrVal = I.getArgOperand(1);
13589     Info.offset = 0;
13590     Info.size = VT.getStoreSize();
13591     Info.align = 1;
13592     Info.flags = MachineMemOperand::MOStore;
13593     return true;
13594   }
13595   default:
13596     break;
13597   }
13598 
13599   return false;
13600 }
13601 
13602 /// getOptimalMemOpType - Returns the target specific optimal type for load
13603 /// and store operations as a result of memset, memcpy, and memmove
13604 /// lowering. If DstAlign is zero that means it's safe to destination
13605 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
13606 /// means there isn't a need to check it against alignment requirement,
13607 /// probably because the source does not need to be loaded. If 'IsMemset' is
13608 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
13609 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
13610 /// source is constant so it does not need to be loaded.
13611 /// It returns EVT::Other if the type should be determined using generic
13612 /// target-independent logic.
13613 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
13614                                            unsigned DstAlign, unsigned SrcAlign,
13615                                            bool IsMemset, bool ZeroMemset,
13616                                            bool MemcpyStrSrc,
13617                                            MachineFunction &MF) const {
13618   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
13619     const Function &F = MF.getFunction();
13620     // When expanding a memset, require at least two QPX instructions to cover
13621     // the cost of loading the value to be stored from the constant pool.
13622     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
13623        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
13624         !F.hasFnAttribute(Attribute::NoImplicitFloat)) {
13625       return MVT::v4f64;
13626     }
13627 
13628     // We should use Altivec/VSX loads and stores when available. For unaligned
13629     // addresses, unaligned VSX loads are only fast starting with the P8.
13630     if (Subtarget.hasAltivec() && Size >= 16 &&
13631         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
13632          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
13633       return MVT::v4i32;
13634   }
13635 
13636   if (Subtarget.isPPC64()) {
13637     return MVT::i64;
13638   }
13639 
13640   return MVT::i32;
13641 }
13642 
13643 /// \brief Returns true if it is beneficial to convert a load of a constant
13644 /// to just the constant itself.
13645 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
13646                                                           Type *Ty) const {
13647   assert(Ty->isIntegerTy());
13648 
13649   unsigned BitSize = Ty->getPrimitiveSizeInBits();
13650   return !(BitSize == 0 || BitSize > 64);
13651 }
13652 
13653 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
13654   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
13655     return false;
13656   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
13657   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
13658   return NumBits1 == 64 && NumBits2 == 32;
13659 }
13660 
13661 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
13662   if (!VT1.isInteger() || !VT2.isInteger())
13663     return false;
13664   unsigned NumBits1 = VT1.getSizeInBits();
13665   unsigned NumBits2 = VT2.getSizeInBits();
13666   return NumBits1 == 64 && NumBits2 == 32;
13667 }
13668 
13669 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
13670   // Generally speaking, zexts are not free, but they are free when they can be
13671   // folded with other operations.
13672   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
13673     EVT MemVT = LD->getMemoryVT();
13674     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
13675          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
13676         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
13677          LD->getExtensionType() == ISD::ZEXTLOAD))
13678       return true;
13679   }
13680 
13681   // FIXME: Add other cases...
13682   //  - 32-bit shifts with a zext to i64
13683   //  - zext after ctlz, bswap, etc.
13684   //  - zext after and by a constant mask
13685 
13686   return TargetLowering::isZExtFree(Val, VT2);
13687 }
13688 
13689 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
13690   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
13691          "invalid fpext types");
13692   return true;
13693 }
13694 
13695 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
13696   return isInt<16>(Imm) || isUInt<16>(Imm);
13697 }
13698 
13699 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
13700   return isInt<16>(Imm) || isUInt<16>(Imm);
13701 }
13702 
13703 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
13704                                                        unsigned,
13705                                                        unsigned,
13706                                                        bool *Fast) const {
13707   if (DisablePPCUnaligned)
13708     return false;
13709 
13710   // PowerPC supports unaligned memory access for simple non-vector types.
13711   // Although accessing unaligned addresses is not as efficient as accessing
13712   // aligned addresses, it is generally more efficient than manual expansion,
13713   // and generally only traps for software emulation when crossing page
13714   // boundaries.
13715 
13716   if (!VT.isSimple())
13717     return false;
13718 
13719   if (VT.getSimpleVT().isVector()) {
13720     if (Subtarget.hasVSX()) {
13721       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
13722           VT != MVT::v4f32 && VT != MVT::v4i32)
13723         return false;
13724     } else {
13725       return false;
13726     }
13727   }
13728 
13729   if (VT == MVT::ppcf128)
13730     return false;
13731 
13732   if (Fast)
13733     *Fast = true;
13734 
13735   return true;
13736 }
13737 
13738 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
13739   VT = VT.getScalarType();
13740 
13741   if (!VT.isSimple())
13742     return false;
13743 
13744   switch (VT.getSimpleVT().SimpleTy) {
13745   case MVT::f32:
13746   case MVT::f64:
13747     return true;
13748   default:
13749     break;
13750   }
13751 
13752   return false;
13753 }
13754 
13755 const MCPhysReg *
13756 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
13757   // LR is a callee-save register, but we must treat it as clobbered by any call
13758   // site. Hence we include LR in the scratch registers, which are in turn added
13759   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
13760   // to CTR, which is used by any indirect call.
13761   static const MCPhysReg ScratchRegs[] = {
13762     PPC::X12, PPC::LR8, PPC::CTR8, 0
13763   };
13764 
13765   return ScratchRegs;
13766 }
13767 
13768 unsigned PPCTargetLowering::getExceptionPointerRegister(
13769     const Constant *PersonalityFn) const {
13770   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
13771 }
13772 
13773 unsigned PPCTargetLowering::getExceptionSelectorRegister(
13774     const Constant *PersonalityFn) const {
13775   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
13776 }
13777 
13778 bool
13779 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
13780                      EVT VT , unsigned DefinedValues) const {
13781   if (VT == MVT::v2i64)
13782     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
13783 
13784   if (Subtarget.hasVSX() || Subtarget.hasQPX())
13785     return true;
13786 
13787   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
13788 }
13789 
13790 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
13791   if (DisableILPPref || Subtarget.enableMachineScheduler())
13792     return TargetLowering::getSchedulingPreference(N);
13793 
13794   return Sched::ILP;
13795 }
13796 
13797 // Create a fast isel object.
13798 FastISel *
13799 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
13800                                   const TargetLibraryInfo *LibInfo) const {
13801   return PPC::createFastISel(FuncInfo, LibInfo);
13802 }
13803 
13804 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
13805   if (Subtarget.isDarwinABI()) return;
13806   if (!Subtarget.isPPC64()) return;
13807 
13808   // Update IsSplitCSR in PPCFunctionInfo
13809   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
13810   PFI->setIsSplitCSR(true);
13811 }
13812 
13813 void PPCTargetLowering::insertCopiesSplitCSR(
13814   MachineBasicBlock *Entry,
13815   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
13816   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
13817   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
13818   if (!IStart)
13819     return;
13820 
13821   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
13822   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
13823   MachineBasicBlock::iterator MBBI = Entry->begin();
13824   for (const MCPhysReg *I = IStart; *I; ++I) {
13825     const TargetRegisterClass *RC = nullptr;
13826     if (PPC::G8RCRegClass.contains(*I))
13827       RC = &PPC::G8RCRegClass;
13828     else if (PPC::F8RCRegClass.contains(*I))
13829       RC = &PPC::F8RCRegClass;
13830     else if (PPC::CRRCRegClass.contains(*I))
13831       RC = &PPC::CRRCRegClass;
13832     else if (PPC::VRRCRegClass.contains(*I))
13833       RC = &PPC::VRRCRegClass;
13834     else
13835       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
13836 
13837     unsigned NewVR = MRI->createVirtualRegister(RC);
13838     // Create copy from CSR to a virtual register.
13839     // FIXME: this currently does not emit CFI pseudo-instructions, it works
13840     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
13841     // nounwind. If we want to generalize this later, we may need to emit
13842     // CFI pseudo-instructions.
13843     assert(Entry->getParent()->getFunction().hasFnAttribute(
13844              Attribute::NoUnwind) &&
13845            "Function should be nounwind in insertCopiesSplitCSR!");
13846     Entry->addLiveIn(*I);
13847     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
13848       .addReg(*I);
13849 
13850     // Insert the copy-back instructions right before the terminator
13851     for (auto *Exit : Exits)
13852       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
13853               TII->get(TargetOpcode::COPY), *I)
13854         .addReg(NewVR);
13855   }
13856 }
13857 
13858 // Override to enable LOAD_STACK_GUARD lowering on Linux.
13859 bool PPCTargetLowering::useLoadStackGuardNode() const {
13860   if (!Subtarget.isTargetLinux())
13861     return TargetLowering::useLoadStackGuardNode();
13862   return true;
13863 }
13864 
13865 // Override to disable global variable loading on Linux.
13866 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
13867   if (!Subtarget.isTargetLinux())
13868     return TargetLowering::insertSSPDeclarations(M);
13869 }
13870 
13871 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
13872   if (!VT.isSimple() || !Subtarget.hasVSX())
13873     return false;
13874 
13875   switch(VT.getSimpleVT().SimpleTy) {
13876   default:
13877     // For FP types that are currently not supported by PPC backend, return
13878     // false. Examples: f16, f80.
13879     return false;
13880   case MVT::f32:
13881   case MVT::f64:
13882   case MVT::ppcf128:
13883     return Imm.isPosZero();
13884   }
13885 }
13886 
13887 // For vector shift operation op, fold
13888 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
13889 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
13890                                   SelectionDAG &DAG) {
13891   SDValue N0 = N->getOperand(0);
13892   SDValue N1 = N->getOperand(1);
13893   EVT VT = N0.getValueType();
13894   unsigned OpSizeInBits = VT.getScalarSizeInBits();
13895   unsigned Opcode = N->getOpcode();
13896   unsigned TargetOpcode;
13897 
13898   switch (Opcode) {
13899   default:
13900     llvm_unreachable("Unexpected shift operation");
13901   case ISD::SHL:
13902     TargetOpcode = PPCISD::SHL;
13903     break;
13904   case ISD::SRL:
13905     TargetOpcode = PPCISD::SRL;
13906     break;
13907   case ISD::SRA:
13908     TargetOpcode = PPCISD::SRA;
13909     break;
13910   }
13911 
13912   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
13913       N1->getOpcode() == ISD::AND)
13914     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
13915       if (Mask->getZExtValue() == OpSizeInBits - 1)
13916         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
13917 
13918   return SDValue();
13919 }
13920 
13921 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
13922   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
13923     return Value;
13924 
13925   return SDValue();
13926 }
13927 
13928 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
13929   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
13930     return Value;
13931 
13932   return SDValue();
13933 }
13934 
13935 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
13936   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
13937     return Value;
13938 
13939   return SDValue();
13940 }
13941 
13942 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
13943   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
13944   if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64())
13945     return false;
13946 
13947   // If not a tail call then no need to proceed.
13948   if (!CI->isTailCall())
13949     return false;
13950 
13951   // If tail calls are disabled for the caller then we are done.
13952   const Function *Caller = CI->getParent()->getParent();
13953   auto Attr = Caller->getFnAttribute("disable-tail-calls");
13954   if (Attr.getValueAsString() == "true")
13955     return false;
13956 
13957   // If sibling calls have been disabled and tail-calls aren't guaranteed
13958   // there is no reason to duplicate.
13959   auto &TM = getTargetMachine();
13960   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
13961     return false;
13962 
13963   // Can't tail call a function called indirectly, or if it has variadic args.
13964   const Function *Callee = CI->getCalledFunction();
13965   if (!Callee || Callee->isVarArg())
13966     return false;
13967 
13968   // Make sure the callee and caller calling conventions are eligible for tco.
13969   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
13970                                            CI->getCallingConv()))
13971       return false;
13972 
13973   // If the function is local then we have a good chance at tail-calling it
13974   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
13975 }
13976