1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCCCState.h" 18 #include "PPCCallingConv.h" 19 #include "PPCFrameLowering.h" 20 #include "PPCInstrInfo.h" 21 #include "PPCMachineFunctionInfo.h" 22 #include "PPCPerfectShuffle.h" 23 #include "PPCRegisterInfo.h" 24 #include "PPCSubtarget.h" 25 #include "PPCTargetMachine.h" 26 #include "llvm/ADT/APFloat.h" 27 #include "llvm/ADT/APInt.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/None.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/ADT/StringRef.h" 37 #include "llvm/ADT/StringSwitch.h" 38 #include "llvm/CodeGen/CallingConvLower.h" 39 #include "llvm/CodeGen/ISDOpcodes.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineJumpTableInfo.h" 46 #include "llvm/CodeGen/MachineLoopInfo.h" 47 #include "llvm/CodeGen/MachineMemOperand.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/ValueTypes.h" 57 #include "llvm/IR/CallSite.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/Module.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/MC/MCExpr.h" 74 #include "llvm/MC/MCRegisterInfo.h" 75 #include "llvm/Support/AtomicOrdering.h" 76 #include "llvm/Support/BranchProbability.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CodeGen.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/Format.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MachineValueType.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Target/TargetMachine.h" 89 #include "llvm/Target/TargetOptions.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <list> 95 #include <utility> 96 #include <vector> 97 98 using namespace llvm; 99 100 #define DEBUG_TYPE "ppc-lowering" 101 102 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 103 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 104 105 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 106 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 107 108 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 109 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 110 111 static cl::opt<bool> DisableSCO("disable-ppc-sco", 112 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 113 114 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision", 115 cl::desc("enable quad precision float support on ppc"), cl::Hidden); 116 117 STATISTIC(NumTailCalls, "Number of tail calls"); 118 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 119 120 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 121 122 // FIXME: Remove this once the bug has been fixed! 123 extern cl::opt<bool> ANDIGlueBug; 124 125 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 126 const PPCSubtarget &STI) 127 : TargetLowering(TM), Subtarget(STI) { 128 // Use _setjmp/_longjmp instead of setjmp/longjmp. 129 setUseUnderscoreSetJmp(true); 130 setUseUnderscoreLongJmp(true); 131 132 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 133 // arguments are at least 4/8 bytes aligned. 134 bool isPPC64 = Subtarget.isPPC64(); 135 setMinStackArgumentAlignment(isPPC64 ? 8:4); 136 137 // Set up the register classes. 138 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 139 if (!useSoftFloat()) { 140 if (hasSPE()) { 141 addRegisterClass(MVT::f32, &PPC::SPE4RCRegClass); 142 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 143 } else { 144 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 145 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 146 } 147 } 148 149 // Match BITREVERSE to customized fast code sequence in the td file. 150 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 151 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 152 153 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 154 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 155 156 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 157 for (MVT VT : MVT::integer_valuetypes()) { 158 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 159 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 160 } 161 162 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 163 164 // PowerPC has pre-inc load and store's. 165 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 166 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 167 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 168 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 169 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 170 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 171 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 172 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 173 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 174 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 175 if (!Subtarget.hasSPE()) { 176 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 177 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 178 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 179 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 180 } 181 182 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 183 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 184 for (MVT VT : ScalarIntVTs) { 185 setOperationAction(ISD::ADDC, VT, Legal); 186 setOperationAction(ISD::ADDE, VT, Legal); 187 setOperationAction(ISD::SUBC, VT, Legal); 188 setOperationAction(ISD::SUBE, VT, Legal); 189 } 190 191 if (Subtarget.useCRBits()) { 192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 193 194 if (isPPC64 || Subtarget.hasFPCVT()) { 195 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 196 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 197 isPPC64 ? MVT::i64 : MVT::i32); 198 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 199 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 200 isPPC64 ? MVT::i64 : MVT::i32); 201 } else { 202 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 203 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 204 } 205 206 // PowerPC does not support direct load/store of condition registers. 207 setOperationAction(ISD::LOAD, MVT::i1, Custom); 208 setOperationAction(ISD::STORE, MVT::i1, Custom); 209 210 // FIXME: Remove this once the ANDI glue bug is fixed: 211 if (ANDIGlueBug) 212 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 213 214 for (MVT VT : MVT::integer_valuetypes()) { 215 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 216 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 217 setTruncStoreAction(VT, MVT::i1, Expand); 218 } 219 220 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 221 } 222 223 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 224 // PPC (the libcall is not available). 225 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 226 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 227 228 // We do not currently implement these libm ops for PowerPC. 229 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 230 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 231 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 232 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 233 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 234 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 235 236 // PowerPC has no SREM/UREM instructions unless we are on P9 237 // On P9 we may use a hardware instruction to compute the remainder. 238 // The instructions are not legalized directly because in the cases where the 239 // result of both the remainder and the division is required it is more 240 // efficient to compute the remainder from the result of the division rather 241 // than use the remainder instruction. 242 if (Subtarget.isISA3_0()) { 243 setOperationAction(ISD::SREM, MVT::i32, Custom); 244 setOperationAction(ISD::UREM, MVT::i32, Custom); 245 setOperationAction(ISD::SREM, MVT::i64, Custom); 246 setOperationAction(ISD::UREM, MVT::i64, Custom); 247 } else { 248 setOperationAction(ISD::SREM, MVT::i32, Expand); 249 setOperationAction(ISD::UREM, MVT::i32, Expand); 250 setOperationAction(ISD::SREM, MVT::i64, Expand); 251 setOperationAction(ISD::UREM, MVT::i64, Expand); 252 } 253 254 if (Subtarget.hasP9Vector()) { 255 setOperationAction(ISD::ABS, MVT::v4i32, Legal); 256 setOperationAction(ISD::ABS, MVT::v8i16, Legal); 257 setOperationAction(ISD::ABS, MVT::v16i8, Legal); 258 } 259 260 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 261 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 262 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 263 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 264 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 265 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 266 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 267 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 268 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 269 270 // We don't support sin/cos/sqrt/fmod/pow 271 setOperationAction(ISD::FSIN , MVT::f64, Expand); 272 setOperationAction(ISD::FCOS , MVT::f64, Expand); 273 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 274 setOperationAction(ISD::FREM , MVT::f64, Expand); 275 setOperationAction(ISD::FPOW , MVT::f64, Expand); 276 setOperationAction(ISD::FSIN , MVT::f32, Expand); 277 setOperationAction(ISD::FCOS , MVT::f32, Expand); 278 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 279 setOperationAction(ISD::FREM , MVT::f32, Expand); 280 setOperationAction(ISD::FPOW , MVT::f32, Expand); 281 if (Subtarget.hasSPE()) { 282 setOperationAction(ISD::FMA , MVT::f64, Expand); 283 setOperationAction(ISD::FMA , MVT::f32, Expand); 284 } else { 285 setOperationAction(ISD::FMA , MVT::f64, Legal); 286 setOperationAction(ISD::FMA , MVT::f32, Legal); 287 } 288 289 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 290 291 // If we're enabling GP optimizations, use hardware square root 292 if (!Subtarget.hasFSQRT() && 293 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 294 Subtarget.hasFRE())) 295 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 296 297 if (!Subtarget.hasFSQRT() && 298 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 299 Subtarget.hasFRES())) 300 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 301 302 if (Subtarget.hasFCPSGN()) { 303 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 304 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 305 } else { 306 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 307 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 308 } 309 310 if (Subtarget.hasFPRND()) { 311 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 312 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 313 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 314 setOperationAction(ISD::FROUND, MVT::f64, Legal); 315 316 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 317 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 318 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 319 setOperationAction(ISD::FROUND, MVT::f32, Legal); 320 } 321 322 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 323 // to speed up scalar BSWAP64. 324 // CTPOP or CTTZ were introduced in P8/P9 respectively 325 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 326 if (Subtarget.isISA3_0()) { 327 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 328 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 329 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 330 } else { 331 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 332 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 333 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 334 } 335 336 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 337 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 338 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 339 } else { 340 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 341 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 342 } 343 344 // PowerPC does not have ROTR 345 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 346 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 347 348 if (!Subtarget.useCRBits()) { 349 // PowerPC does not have Select 350 setOperationAction(ISD::SELECT, MVT::i32, Expand); 351 setOperationAction(ISD::SELECT, MVT::i64, Expand); 352 setOperationAction(ISD::SELECT, MVT::f32, Expand); 353 setOperationAction(ISD::SELECT, MVT::f64, Expand); 354 } 355 356 // PowerPC wants to turn select_cc of FP into fsel when possible. 357 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 358 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 359 360 // PowerPC wants to optimize integer setcc a bit 361 if (!Subtarget.useCRBits()) 362 setOperationAction(ISD::SETCC, MVT::i32, Custom); 363 364 // PowerPC does not have BRCOND which requires SetCC 365 if (!Subtarget.useCRBits()) 366 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 367 368 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 369 370 if (Subtarget.hasSPE()) { 371 // SPE has built-in conversions 372 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 373 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 374 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 375 } else { 376 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 377 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 378 379 // PowerPC does not have [U|S]INT_TO_FP 380 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 381 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 382 } 383 384 if (Subtarget.hasDirectMove() && isPPC64) { 385 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 386 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 387 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 388 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 389 } else { 390 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 391 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 392 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 393 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 394 } 395 396 // We cannot sextinreg(i1). Expand to shifts. 397 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 398 399 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 400 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 401 // support continuation, user-level threading, and etc.. As a result, no 402 // other SjLj exception interfaces are implemented and please don't build 403 // your own exception handling based on them. 404 // LLVM/Clang supports zero-cost DWARF exception handling. 405 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 406 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 407 408 // We want to legalize GlobalAddress and ConstantPool nodes into the 409 // appropriate instructions to materialize the address. 410 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 411 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 412 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 413 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 414 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 415 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 416 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 417 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 418 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 419 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 420 421 // TRAP is legal. 422 setOperationAction(ISD::TRAP, MVT::Other, Legal); 423 424 // TRAMPOLINE is custom lowered. 425 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 426 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 427 428 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 429 setOperationAction(ISD::VASTART , MVT::Other, Custom); 430 431 if (Subtarget.isSVR4ABI()) { 432 if (isPPC64) { 433 // VAARG always uses double-word chunks, so promote anything smaller. 434 setOperationAction(ISD::VAARG, MVT::i1, Promote); 435 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 436 setOperationAction(ISD::VAARG, MVT::i8, Promote); 437 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 438 setOperationAction(ISD::VAARG, MVT::i16, Promote); 439 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 440 setOperationAction(ISD::VAARG, MVT::i32, Promote); 441 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 442 setOperationAction(ISD::VAARG, MVT::Other, Expand); 443 } else { 444 // VAARG is custom lowered with the 32-bit SVR4 ABI. 445 setOperationAction(ISD::VAARG, MVT::Other, Custom); 446 setOperationAction(ISD::VAARG, MVT::i64, Custom); 447 } 448 } else 449 setOperationAction(ISD::VAARG, MVT::Other, Expand); 450 451 if (Subtarget.isSVR4ABI() && !isPPC64) 452 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 453 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 454 else 455 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 456 457 // Use the default implementation. 458 setOperationAction(ISD::VAEND , MVT::Other, Expand); 459 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 460 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 461 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 462 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 463 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 464 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 465 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 466 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 467 468 // We want to custom lower some of our intrinsics. 469 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 470 471 // To handle counter-based loop conditions. 472 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 473 474 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 475 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 476 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 477 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 478 479 // Comparisons that require checking two conditions. 480 if (Subtarget.hasSPE()) { 481 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 482 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 483 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 484 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 485 } 486 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 487 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 488 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 489 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 490 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 491 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 492 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 493 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 494 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 495 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 496 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 497 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 498 499 if (Subtarget.has64BitSupport()) { 500 // They also have instructions for converting between i64 and fp. 501 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 502 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 503 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 504 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 505 // This is just the low 32 bits of a (signed) fp->i64 conversion. 506 // We cannot do this with Promote because i64 is not a legal type. 507 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 508 509 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 510 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 511 } else { 512 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 513 if (Subtarget.hasSPE()) 514 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 515 else 516 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 517 } 518 519 // With the instructions enabled under FPCVT, we can do everything. 520 if (Subtarget.hasFPCVT()) { 521 if (Subtarget.has64BitSupport()) { 522 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 523 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 524 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 525 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 526 } 527 528 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 529 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 530 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 531 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 532 } 533 534 if (Subtarget.use64BitRegs()) { 535 // 64-bit PowerPC implementations can support i64 types directly 536 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 537 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 538 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 539 // 64-bit PowerPC wants to expand i128 shifts itself. 540 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 541 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 542 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 543 } else { 544 // 32-bit PowerPC wants to expand i64 shifts itself. 545 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 546 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 547 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 548 } 549 550 if (Subtarget.hasAltivec()) { 551 // First set operation action for all vector types to expand. Then we 552 // will selectively turn on ones that can be effectively codegen'd. 553 for (MVT VT : MVT::vector_valuetypes()) { 554 // add/sub are legal for all supported vector VT's. 555 setOperationAction(ISD::ADD, VT, Legal); 556 setOperationAction(ISD::SUB, VT, Legal); 557 558 // Vector instructions introduced in P8 559 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 560 setOperationAction(ISD::CTPOP, VT, Legal); 561 setOperationAction(ISD::CTLZ, VT, Legal); 562 } 563 else { 564 setOperationAction(ISD::CTPOP, VT, Expand); 565 setOperationAction(ISD::CTLZ, VT, Expand); 566 } 567 568 // Vector instructions introduced in P9 569 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 570 setOperationAction(ISD::CTTZ, VT, Legal); 571 else 572 setOperationAction(ISD::CTTZ, VT, Expand); 573 574 // We promote all shuffles to v16i8. 575 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 576 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 577 578 // We promote all non-typed operations to v4i32. 579 setOperationAction(ISD::AND , VT, Promote); 580 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 581 setOperationAction(ISD::OR , VT, Promote); 582 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 583 setOperationAction(ISD::XOR , VT, Promote); 584 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 585 setOperationAction(ISD::LOAD , VT, Promote); 586 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 587 setOperationAction(ISD::SELECT, VT, Promote); 588 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 589 setOperationAction(ISD::SELECT_CC, VT, Promote); 590 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 591 setOperationAction(ISD::STORE, VT, Promote); 592 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 593 594 // No other operations are legal. 595 setOperationAction(ISD::MUL , VT, Expand); 596 setOperationAction(ISD::SDIV, VT, Expand); 597 setOperationAction(ISD::SREM, VT, Expand); 598 setOperationAction(ISD::UDIV, VT, Expand); 599 setOperationAction(ISD::UREM, VT, Expand); 600 setOperationAction(ISD::FDIV, VT, Expand); 601 setOperationAction(ISD::FREM, VT, Expand); 602 setOperationAction(ISD::FNEG, VT, Expand); 603 setOperationAction(ISD::FSQRT, VT, Expand); 604 setOperationAction(ISD::FLOG, VT, Expand); 605 setOperationAction(ISD::FLOG10, VT, Expand); 606 setOperationAction(ISD::FLOG2, VT, Expand); 607 setOperationAction(ISD::FEXP, VT, Expand); 608 setOperationAction(ISD::FEXP2, VT, Expand); 609 setOperationAction(ISD::FSIN, VT, Expand); 610 setOperationAction(ISD::FCOS, VT, Expand); 611 setOperationAction(ISD::FABS, VT, Expand); 612 setOperationAction(ISD::FFLOOR, VT, Expand); 613 setOperationAction(ISD::FCEIL, VT, Expand); 614 setOperationAction(ISD::FTRUNC, VT, Expand); 615 setOperationAction(ISD::FRINT, VT, Expand); 616 setOperationAction(ISD::FNEARBYINT, VT, Expand); 617 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 618 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 619 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 620 setOperationAction(ISD::MULHU, VT, Expand); 621 setOperationAction(ISD::MULHS, VT, Expand); 622 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 623 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 624 setOperationAction(ISD::UDIVREM, VT, Expand); 625 setOperationAction(ISD::SDIVREM, VT, Expand); 626 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 627 setOperationAction(ISD::FPOW, VT, Expand); 628 setOperationAction(ISD::BSWAP, VT, Expand); 629 setOperationAction(ISD::VSELECT, VT, Expand); 630 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 631 setOperationAction(ISD::ROTL, VT, Expand); 632 setOperationAction(ISD::ROTR, VT, Expand); 633 634 for (MVT InnerVT : MVT::vector_valuetypes()) { 635 setTruncStoreAction(VT, InnerVT, Expand); 636 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 637 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 638 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 639 } 640 } 641 642 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 643 // with merges, splats, etc. 644 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 645 646 setOperationAction(ISD::AND , MVT::v4i32, Legal); 647 setOperationAction(ISD::OR , MVT::v4i32, Legal); 648 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 649 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 650 setOperationAction(ISD::SELECT, MVT::v4i32, 651 Subtarget.useCRBits() ? Legal : Expand); 652 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 653 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 654 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 655 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 656 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 657 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 658 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 659 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 660 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 661 662 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 663 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 664 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 665 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 666 667 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 668 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 669 670 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 671 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 672 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 673 } 674 675 if (Subtarget.hasP8Altivec()) 676 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 677 else 678 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 679 680 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 681 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 682 683 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 684 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 685 686 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 687 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 688 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 689 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 690 691 // Altivec does not contain unordered floating-point compare instructions 692 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 693 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 694 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 695 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 696 697 if (Subtarget.hasVSX()) { 698 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 699 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 700 if (Subtarget.hasP8Vector()) { 701 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 702 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 703 } 704 if (Subtarget.hasDirectMove() && isPPC64) { 705 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 706 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 707 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 708 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 709 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 710 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 711 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 712 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 713 } 714 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 715 716 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 717 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 718 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 719 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 720 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 721 722 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 723 724 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 725 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 726 727 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 728 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 729 730 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); 731 setOperationAction(ISD::VSELECT, MVT::v8i16, Legal); 732 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); 733 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 734 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); 735 736 // Share the Altivec comparison restrictions. 737 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 738 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 739 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 740 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 741 742 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 743 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 744 745 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 746 747 if (Subtarget.hasP8Vector()) 748 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 749 750 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 751 752 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 753 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 754 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 755 756 if (Subtarget.hasP8Altivec()) { 757 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 758 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 759 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 760 761 // 128 bit shifts can be accomplished via 3 instructions for SHL and 762 // SRL, but not for SRA because of the instructions available: 763 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 764 // doing 765 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 766 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 767 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 768 769 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 770 } 771 else { 772 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 773 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 774 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 775 776 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 777 778 // VSX v2i64 only supports non-arithmetic operations. 779 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 780 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 781 } 782 783 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 784 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 785 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 786 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 787 788 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 789 790 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 791 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 792 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 793 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 794 795 // Vector operation legalization checks the result type of 796 // SIGN_EXTEND_INREG, overall legalization checks the inner type. 797 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 798 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 799 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 800 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 801 802 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 803 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 804 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 805 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 806 807 if (Subtarget.hasDirectMove()) 808 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 809 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 810 811 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 812 } 813 814 if (Subtarget.hasP8Altivec()) { 815 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 816 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 817 } 818 819 if (Subtarget.hasP9Vector()) { 820 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 821 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 822 823 // 128 bit shifts can be accomplished via 3 instructions for SHL and 824 // SRL, but not for SRA because of the instructions available: 825 // VS{RL} and VS{RL}O. 826 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 827 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 828 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 829 830 if (EnableQuadPrecision) { 831 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 832 setOperationAction(ISD::FADD, MVT::f128, Legal); 833 setOperationAction(ISD::FSUB, MVT::f128, Legal); 834 setOperationAction(ISD::FDIV, MVT::f128, Legal); 835 setOperationAction(ISD::FMUL, MVT::f128, Legal); 836 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 837 // No extending loads to f128 on PPC. 838 for (MVT FPT : MVT::fp_valuetypes()) 839 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 840 setOperationAction(ISD::FMA, MVT::f128, Legal); 841 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 842 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 843 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 844 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 845 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 846 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 847 848 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 849 setOperationAction(ISD::FRINT, MVT::f128, Legal); 850 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 851 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 852 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 853 setOperationAction(ISD::FROUND, MVT::f128, Legal); 854 855 setOperationAction(ISD::SELECT, MVT::f128, Expand); 856 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 857 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 858 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 859 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 860 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 861 // No implementation for these ops for PowerPC. 862 setOperationAction(ISD::FSIN , MVT::f128, Expand); 863 setOperationAction(ISD::FCOS , MVT::f128, Expand); 864 setOperationAction(ISD::FPOW, MVT::f128, Expand); 865 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 866 setOperationAction(ISD::FREM, MVT::f128, Expand); 867 } 868 869 } 870 871 if (Subtarget.hasP9Altivec()) { 872 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 873 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 874 } 875 } 876 877 if (Subtarget.hasQPX()) { 878 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 879 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 880 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 881 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 882 883 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 884 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 885 886 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 887 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 888 889 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 890 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 891 892 if (!Subtarget.useCRBits()) 893 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 894 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 895 896 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 897 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 898 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 899 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 900 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 901 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 902 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 903 904 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 905 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 906 907 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 908 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand); 909 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 910 911 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 912 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 913 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 914 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 915 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 916 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 917 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 918 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 919 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 920 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 921 922 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 923 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 924 925 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 926 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 927 928 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 929 930 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 931 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 932 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 933 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 934 935 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 936 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 937 938 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 939 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 940 941 if (!Subtarget.useCRBits()) 942 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 943 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 944 945 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 946 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 947 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 948 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 949 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 950 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 951 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 952 953 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 954 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 955 956 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 957 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 958 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 959 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 960 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 961 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 962 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 963 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 964 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 965 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 966 967 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 968 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 969 970 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 971 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 972 973 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 974 975 setOperationAction(ISD::AND , MVT::v4i1, Legal); 976 setOperationAction(ISD::OR , MVT::v4i1, Legal); 977 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 978 979 if (!Subtarget.useCRBits()) 980 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 981 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 982 983 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 984 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 985 986 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 987 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 988 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 989 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 990 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 991 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 992 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 993 994 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 995 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 996 997 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 998 999 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 1000 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 1001 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 1002 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 1003 1004 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 1005 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 1006 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 1007 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1008 1009 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 1010 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 1011 1012 // These need to set FE_INEXACT, and so cannot be vectorized here. 1013 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 1014 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 1015 1016 if (TM.Options.UnsafeFPMath) { 1017 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 1018 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 1019 1020 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 1021 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 1022 } else { 1023 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 1024 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 1025 1026 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 1027 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 1028 } 1029 } 1030 1031 if (Subtarget.has64BitSupport()) 1032 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1033 1034 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1035 1036 if (!isPPC64) { 1037 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1038 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1039 } 1040 1041 setBooleanContents(ZeroOrOneBooleanContent); 1042 1043 if (Subtarget.hasAltivec()) { 1044 // Altivec instructions set fields to all zeros or all ones. 1045 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1046 } 1047 1048 if (!isPPC64) { 1049 // These libcalls are not available in 32-bit. 1050 setLibcallName(RTLIB::SHL_I128, nullptr); 1051 setLibcallName(RTLIB::SRL_I128, nullptr); 1052 setLibcallName(RTLIB::SRA_I128, nullptr); 1053 } 1054 1055 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1056 1057 // We have target-specific dag combine patterns for the following nodes: 1058 setTargetDAGCombine(ISD::SHL); 1059 setTargetDAGCombine(ISD::SRA); 1060 setTargetDAGCombine(ISD::SRL); 1061 setTargetDAGCombine(ISD::SINT_TO_FP); 1062 setTargetDAGCombine(ISD::BUILD_VECTOR); 1063 if (Subtarget.hasFPCVT()) 1064 setTargetDAGCombine(ISD::UINT_TO_FP); 1065 setTargetDAGCombine(ISD::LOAD); 1066 setTargetDAGCombine(ISD::STORE); 1067 setTargetDAGCombine(ISD::BR_CC); 1068 if (Subtarget.useCRBits()) 1069 setTargetDAGCombine(ISD::BRCOND); 1070 setTargetDAGCombine(ISD::BSWAP); 1071 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1072 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1073 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1074 1075 setTargetDAGCombine(ISD::SIGN_EXTEND); 1076 setTargetDAGCombine(ISD::ZERO_EXTEND); 1077 setTargetDAGCombine(ISD::ANY_EXTEND); 1078 1079 if (Subtarget.useCRBits()) { 1080 setTargetDAGCombine(ISD::TRUNCATE); 1081 setTargetDAGCombine(ISD::SETCC); 1082 setTargetDAGCombine(ISD::SELECT_CC); 1083 } 1084 1085 // Use reciprocal estimates. 1086 if (TM.Options.UnsafeFPMath) { 1087 setTargetDAGCombine(ISD::FDIV); 1088 setTargetDAGCombine(ISD::FSQRT); 1089 } 1090 1091 // Darwin long double math library functions have $LDBL128 appended. 1092 if (Subtarget.isDarwin()) { 1093 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 1094 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 1095 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 1096 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 1097 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 1098 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 1099 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 1100 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 1101 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 1102 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 1103 } 1104 1105 if (EnableQuadPrecision) { 1106 setLibcallName(RTLIB::LOG_F128, "logf128"); 1107 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1108 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1109 setLibcallName(RTLIB::EXP_F128, "expf128"); 1110 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1111 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1112 setLibcallName(RTLIB::COS_F128, "cosf128"); 1113 setLibcallName(RTLIB::POW_F128, "powf128"); 1114 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1115 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1116 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1117 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1118 } 1119 1120 // With 32 condition bits, we don't need to sink (and duplicate) compares 1121 // aggressively in CodeGenPrep. 1122 if (Subtarget.useCRBits()) { 1123 setHasMultipleConditionRegisters(); 1124 setJumpIsExpensive(); 1125 } 1126 1127 setMinFunctionAlignment(2); 1128 if (Subtarget.isDarwin()) 1129 setPrefFunctionAlignment(4); 1130 1131 switch (Subtarget.getDarwinDirective()) { 1132 default: break; 1133 case PPC::DIR_970: 1134 case PPC::DIR_A2: 1135 case PPC::DIR_E500: 1136 case PPC::DIR_E500mc: 1137 case PPC::DIR_E5500: 1138 case PPC::DIR_PWR4: 1139 case PPC::DIR_PWR5: 1140 case PPC::DIR_PWR5X: 1141 case PPC::DIR_PWR6: 1142 case PPC::DIR_PWR6X: 1143 case PPC::DIR_PWR7: 1144 case PPC::DIR_PWR8: 1145 case PPC::DIR_PWR9: 1146 setPrefFunctionAlignment(4); 1147 setPrefLoopAlignment(4); 1148 break; 1149 } 1150 1151 if (Subtarget.enableMachineScheduler()) 1152 setSchedulingPreference(Sched::Source); 1153 else 1154 setSchedulingPreference(Sched::Hybrid); 1155 1156 computeRegisterProperties(STI.getRegisterInfo()); 1157 1158 // The Freescale cores do better with aggressive inlining of memcpy and 1159 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1160 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 1161 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 1162 MaxStoresPerMemset = 32; 1163 MaxStoresPerMemsetOptSize = 16; 1164 MaxStoresPerMemcpy = 32; 1165 MaxStoresPerMemcpyOptSize = 8; 1166 MaxStoresPerMemmove = 32; 1167 MaxStoresPerMemmoveOptSize = 8; 1168 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 1169 // The A2 also benefits from (very) aggressive inlining of memcpy and 1170 // friends. The overhead of a the function call, even when warm, can be 1171 // over one hundred cycles. 1172 MaxStoresPerMemset = 128; 1173 MaxStoresPerMemcpy = 128; 1174 MaxStoresPerMemmove = 128; 1175 MaxLoadsPerMemcmp = 128; 1176 } else { 1177 MaxLoadsPerMemcmp = 8; 1178 MaxLoadsPerMemcmpOptSize = 4; 1179 } 1180 } 1181 1182 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1183 /// the desired ByVal argument alignment. 1184 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 1185 unsigned MaxMaxAlign) { 1186 if (MaxAlign == MaxMaxAlign) 1187 return; 1188 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1189 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 1190 MaxAlign = 32; 1191 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 1192 MaxAlign = 16; 1193 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1194 unsigned EltAlign = 0; 1195 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1196 if (EltAlign > MaxAlign) 1197 MaxAlign = EltAlign; 1198 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1199 for (auto *EltTy : STy->elements()) { 1200 unsigned EltAlign = 0; 1201 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1202 if (EltAlign > MaxAlign) 1203 MaxAlign = EltAlign; 1204 if (MaxAlign == MaxMaxAlign) 1205 break; 1206 } 1207 } 1208 } 1209 1210 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1211 /// function arguments in the caller parameter area. 1212 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1213 const DataLayout &DL) const { 1214 // Darwin passes everything on 4 byte boundary. 1215 if (Subtarget.isDarwin()) 1216 return 4; 1217 1218 // 16byte and wider vectors are passed on 16byte boundary. 1219 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1220 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1221 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1222 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1223 return Align; 1224 } 1225 1226 unsigned PPCTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1227 CallingConv:: ID CC, 1228 EVT VT) const { 1229 if (Subtarget.hasSPE() && VT == MVT::f64) 1230 return 2; 1231 return PPCTargetLowering::getNumRegisters(Context, VT); 1232 } 1233 1234 MVT PPCTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1235 CallingConv:: ID CC, 1236 EVT VT) const { 1237 if (Subtarget.hasSPE() && VT == MVT::f64) 1238 return MVT::i32; 1239 return PPCTargetLowering::getRegisterType(Context, VT); 1240 } 1241 1242 bool PPCTargetLowering::useSoftFloat() const { 1243 return Subtarget.useSoftFloat(); 1244 } 1245 1246 bool PPCTargetLowering::hasSPE() const { 1247 return Subtarget.hasSPE(); 1248 } 1249 1250 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1251 switch ((PPCISD::NodeType)Opcode) { 1252 case PPCISD::FIRST_NUMBER: break; 1253 case PPCISD::FSEL: return "PPCISD::FSEL"; 1254 case PPCISD::FCFID: return "PPCISD::FCFID"; 1255 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1256 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1257 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1258 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1259 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1260 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1261 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1262 case PPCISD::FP_TO_UINT_IN_VSR: 1263 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1264 case PPCISD::FP_TO_SINT_IN_VSR: 1265 return "PPCISD::FP_TO_SINT_IN_VSR"; 1266 case PPCISD::FRE: return "PPCISD::FRE"; 1267 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1268 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1269 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1270 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1271 case PPCISD::VPERM: return "PPCISD::VPERM"; 1272 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1273 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1274 case PPCISD::XXREVERSE: return "PPCISD::XXREVERSE"; 1275 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1276 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1277 case PPCISD::CMPB: return "PPCISD::CMPB"; 1278 case PPCISD::Hi: return "PPCISD::Hi"; 1279 case PPCISD::Lo: return "PPCISD::Lo"; 1280 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1281 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1282 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1283 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1284 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1285 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1286 case PPCISD::SRL: return "PPCISD::SRL"; 1287 case PPCISD::SRA: return "PPCISD::SRA"; 1288 case PPCISD::SHL: return "PPCISD::SHL"; 1289 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1290 case PPCISD::CALL: return "PPCISD::CALL"; 1291 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1292 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1293 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1294 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1295 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1296 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1297 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1298 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1299 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1300 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1301 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1302 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1303 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1304 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1305 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1306 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1307 case PPCISD::VCMP: return "PPCISD::VCMP"; 1308 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1309 case PPCISD::LBRX: return "PPCISD::LBRX"; 1310 case PPCISD::STBRX: return "PPCISD::STBRX"; 1311 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1312 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1313 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1314 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1315 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1316 case PPCISD::SExtVElems: return "PPCISD::SExtVElems"; 1317 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1318 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1319 case PPCISD::ST_VSR_SCAL_INT: 1320 return "PPCISD::ST_VSR_SCAL_INT"; 1321 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1322 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1323 case PPCISD::BDZ: return "PPCISD::BDZ"; 1324 case PPCISD::MFFS: return "PPCISD::MFFS"; 1325 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1326 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1327 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1328 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1329 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1330 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1331 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1332 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1333 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1334 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1335 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1336 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1337 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1338 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1339 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1340 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1341 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1342 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1343 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1344 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1345 case PPCISD::SC: return "PPCISD::SC"; 1346 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1347 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1348 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1349 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1350 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1351 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1352 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1353 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1354 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1355 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1356 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1357 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1358 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1359 } 1360 return nullptr; 1361 } 1362 1363 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1364 EVT VT) const { 1365 if (!VT.isVector()) 1366 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1367 1368 if (Subtarget.hasQPX()) 1369 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1370 1371 return VT.changeVectorElementTypeToInteger(); 1372 } 1373 1374 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1375 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1376 return true; 1377 } 1378 1379 //===----------------------------------------------------------------------===// 1380 // Node matching predicates, for use by the tblgen matching code. 1381 //===----------------------------------------------------------------------===// 1382 1383 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1384 static bool isFloatingPointZero(SDValue Op) { 1385 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1386 return CFP->getValueAPF().isZero(); 1387 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1388 // Maybe this has already been legalized into the constant pool? 1389 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1390 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1391 return CFP->getValueAPF().isZero(); 1392 } 1393 return false; 1394 } 1395 1396 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1397 /// true if Op is undef or if it matches the specified value. 1398 static bool isConstantOrUndef(int Op, int Val) { 1399 return Op < 0 || Op == Val; 1400 } 1401 1402 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1403 /// VPKUHUM instruction. 1404 /// The ShuffleKind distinguishes between big-endian operations with 1405 /// two different inputs (0), either-endian operations with two identical 1406 /// inputs (1), and little-endian operations with two different inputs (2). 1407 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1408 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1409 SelectionDAG &DAG) { 1410 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1411 if (ShuffleKind == 0) { 1412 if (IsLE) 1413 return false; 1414 for (unsigned i = 0; i != 16; ++i) 1415 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1416 return false; 1417 } else if (ShuffleKind == 2) { 1418 if (!IsLE) 1419 return false; 1420 for (unsigned i = 0; i != 16; ++i) 1421 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1422 return false; 1423 } else if (ShuffleKind == 1) { 1424 unsigned j = IsLE ? 0 : 1; 1425 for (unsigned i = 0; i != 8; ++i) 1426 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1427 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1428 return false; 1429 } 1430 return true; 1431 } 1432 1433 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1434 /// VPKUWUM instruction. 1435 /// The ShuffleKind distinguishes between big-endian operations with 1436 /// two different inputs (0), either-endian operations with two identical 1437 /// inputs (1), and little-endian operations with two different inputs (2). 1438 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1439 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1440 SelectionDAG &DAG) { 1441 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1442 if (ShuffleKind == 0) { 1443 if (IsLE) 1444 return false; 1445 for (unsigned i = 0; i != 16; i += 2) 1446 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1447 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1448 return false; 1449 } else if (ShuffleKind == 2) { 1450 if (!IsLE) 1451 return false; 1452 for (unsigned i = 0; i != 16; i += 2) 1453 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1454 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1455 return false; 1456 } else if (ShuffleKind == 1) { 1457 unsigned j = IsLE ? 0 : 2; 1458 for (unsigned i = 0; i != 8; i += 2) 1459 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1460 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1461 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1462 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1463 return false; 1464 } 1465 return true; 1466 } 1467 1468 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1469 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1470 /// current subtarget. 1471 /// 1472 /// The ShuffleKind distinguishes between big-endian operations with 1473 /// two different inputs (0), either-endian operations with two identical 1474 /// inputs (1), and little-endian operations with two different inputs (2). 1475 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1476 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1477 SelectionDAG &DAG) { 1478 const PPCSubtarget& Subtarget = 1479 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1480 if (!Subtarget.hasP8Vector()) 1481 return false; 1482 1483 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1484 if (ShuffleKind == 0) { 1485 if (IsLE) 1486 return false; 1487 for (unsigned i = 0; i != 16; i += 4) 1488 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1489 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1490 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1491 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1492 return false; 1493 } else if (ShuffleKind == 2) { 1494 if (!IsLE) 1495 return false; 1496 for (unsigned i = 0; i != 16; i += 4) 1497 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1498 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1499 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1500 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1501 return false; 1502 } else if (ShuffleKind == 1) { 1503 unsigned j = IsLE ? 0 : 4; 1504 for (unsigned i = 0; i != 8; i += 4) 1505 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1506 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1507 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1508 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1509 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1510 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1511 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1512 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1513 return false; 1514 } 1515 return true; 1516 } 1517 1518 /// isVMerge - Common function, used to match vmrg* shuffles. 1519 /// 1520 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1521 unsigned LHSStart, unsigned RHSStart) { 1522 if (N->getValueType(0) != MVT::v16i8) 1523 return false; 1524 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1525 "Unsupported merge size!"); 1526 1527 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1528 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1529 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1530 LHSStart+j+i*UnitSize) || 1531 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1532 RHSStart+j+i*UnitSize)) 1533 return false; 1534 } 1535 return true; 1536 } 1537 1538 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1539 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1540 /// The ShuffleKind distinguishes between big-endian merges with two 1541 /// different inputs (0), either-endian merges with two identical inputs (1), 1542 /// and little-endian merges with two different inputs (2). For the latter, 1543 /// the input operands are swapped (see PPCInstrAltivec.td). 1544 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1545 unsigned ShuffleKind, SelectionDAG &DAG) { 1546 if (DAG.getDataLayout().isLittleEndian()) { 1547 if (ShuffleKind == 1) // unary 1548 return isVMerge(N, UnitSize, 0, 0); 1549 else if (ShuffleKind == 2) // swapped 1550 return isVMerge(N, UnitSize, 0, 16); 1551 else 1552 return false; 1553 } else { 1554 if (ShuffleKind == 1) // unary 1555 return isVMerge(N, UnitSize, 8, 8); 1556 else if (ShuffleKind == 0) // normal 1557 return isVMerge(N, UnitSize, 8, 24); 1558 else 1559 return false; 1560 } 1561 } 1562 1563 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1564 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1565 /// The ShuffleKind distinguishes between big-endian merges with two 1566 /// different inputs (0), either-endian merges with two identical inputs (1), 1567 /// and little-endian merges with two different inputs (2). For the latter, 1568 /// the input operands are swapped (see PPCInstrAltivec.td). 1569 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1570 unsigned ShuffleKind, SelectionDAG &DAG) { 1571 if (DAG.getDataLayout().isLittleEndian()) { 1572 if (ShuffleKind == 1) // unary 1573 return isVMerge(N, UnitSize, 8, 8); 1574 else if (ShuffleKind == 2) // swapped 1575 return isVMerge(N, UnitSize, 8, 24); 1576 else 1577 return false; 1578 } else { 1579 if (ShuffleKind == 1) // unary 1580 return isVMerge(N, UnitSize, 0, 0); 1581 else if (ShuffleKind == 0) // normal 1582 return isVMerge(N, UnitSize, 0, 16); 1583 else 1584 return false; 1585 } 1586 } 1587 1588 /** 1589 * Common function used to match vmrgew and vmrgow shuffles 1590 * 1591 * The indexOffset determines whether to look for even or odd words in 1592 * the shuffle mask. This is based on the of the endianness of the target 1593 * machine. 1594 * - Little Endian: 1595 * - Use offset of 0 to check for odd elements 1596 * - Use offset of 4 to check for even elements 1597 * - Big Endian: 1598 * - Use offset of 0 to check for even elements 1599 * - Use offset of 4 to check for odd elements 1600 * A detailed description of the vector element ordering for little endian and 1601 * big endian can be found at 1602 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1603 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1604 * compiler differences mean to you 1605 * 1606 * The mask to the shuffle vector instruction specifies the indices of the 1607 * elements from the two input vectors to place in the result. The elements are 1608 * numbered in array-access order, starting with the first vector. These vectors 1609 * are always of type v16i8, thus each vector will contain 16 elements of size 1610 * 8. More info on the shuffle vector can be found in the 1611 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1612 * Language Reference. 1613 * 1614 * The RHSStartValue indicates whether the same input vectors are used (unary) 1615 * or two different input vectors are used, based on the following: 1616 * - If the instruction uses the same vector for both inputs, the range of the 1617 * indices will be 0 to 15. In this case, the RHSStart value passed should 1618 * be 0. 1619 * - If the instruction has two different vectors then the range of the 1620 * indices will be 0 to 31. In this case, the RHSStart value passed should 1621 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1622 * to 31 specify elements in the second vector). 1623 * 1624 * \param[in] N The shuffle vector SD Node to analyze 1625 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1626 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1627 * vector to the shuffle_vector instruction 1628 * \return true iff this shuffle vector represents an even or odd word merge 1629 */ 1630 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1631 unsigned RHSStartValue) { 1632 if (N->getValueType(0) != MVT::v16i8) 1633 return false; 1634 1635 for (unsigned i = 0; i < 2; ++i) 1636 for (unsigned j = 0; j < 4; ++j) 1637 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1638 i*RHSStartValue+j+IndexOffset) || 1639 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1640 i*RHSStartValue+j+IndexOffset+8)) 1641 return false; 1642 return true; 1643 } 1644 1645 /** 1646 * Determine if the specified shuffle mask is suitable for the vmrgew or 1647 * vmrgow instructions. 1648 * 1649 * \param[in] N The shuffle vector SD Node to analyze 1650 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1651 * \param[in] ShuffleKind Identify the type of merge: 1652 * - 0 = big-endian merge with two different inputs; 1653 * - 1 = either-endian merge with two identical inputs; 1654 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1655 * little-endian merges). 1656 * \param[in] DAG The current SelectionDAG 1657 * \return true iff this shuffle mask 1658 */ 1659 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1660 unsigned ShuffleKind, SelectionDAG &DAG) { 1661 if (DAG.getDataLayout().isLittleEndian()) { 1662 unsigned indexOffset = CheckEven ? 4 : 0; 1663 if (ShuffleKind == 1) // Unary 1664 return isVMerge(N, indexOffset, 0); 1665 else if (ShuffleKind == 2) // swapped 1666 return isVMerge(N, indexOffset, 16); 1667 else 1668 return false; 1669 } 1670 else { 1671 unsigned indexOffset = CheckEven ? 0 : 4; 1672 if (ShuffleKind == 1) // Unary 1673 return isVMerge(N, indexOffset, 0); 1674 else if (ShuffleKind == 0) // Normal 1675 return isVMerge(N, indexOffset, 16); 1676 else 1677 return false; 1678 } 1679 return false; 1680 } 1681 1682 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1683 /// amount, otherwise return -1. 1684 /// The ShuffleKind distinguishes between big-endian operations with two 1685 /// different inputs (0), either-endian operations with two identical inputs 1686 /// (1), and little-endian operations with two different inputs (2). For the 1687 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1688 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1689 SelectionDAG &DAG) { 1690 if (N->getValueType(0) != MVT::v16i8) 1691 return -1; 1692 1693 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1694 1695 // Find the first non-undef value in the shuffle mask. 1696 unsigned i; 1697 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1698 /*search*/; 1699 1700 if (i == 16) return -1; // all undef. 1701 1702 // Otherwise, check to see if the rest of the elements are consecutively 1703 // numbered from this value. 1704 unsigned ShiftAmt = SVOp->getMaskElt(i); 1705 if (ShiftAmt < i) return -1; 1706 1707 ShiftAmt -= i; 1708 bool isLE = DAG.getDataLayout().isLittleEndian(); 1709 1710 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1711 // Check the rest of the elements to see if they are consecutive. 1712 for (++i; i != 16; ++i) 1713 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1714 return -1; 1715 } else if (ShuffleKind == 1) { 1716 // Check the rest of the elements to see if they are consecutive. 1717 for (++i; i != 16; ++i) 1718 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1719 return -1; 1720 } else 1721 return -1; 1722 1723 if (isLE) 1724 ShiftAmt = 16 - ShiftAmt; 1725 1726 return ShiftAmt; 1727 } 1728 1729 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1730 /// specifies a splat of a single element that is suitable for input to 1731 /// VSPLTB/VSPLTH/VSPLTW. 1732 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1733 assert(N->getValueType(0) == MVT::v16i8 && 1734 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1735 1736 // The consecutive indices need to specify an element, not part of two 1737 // different elements. So abandon ship early if this isn't the case. 1738 if (N->getMaskElt(0) % EltSize != 0) 1739 return false; 1740 1741 // This is a splat operation if each element of the permute is the same, and 1742 // if the value doesn't reference the second vector. 1743 unsigned ElementBase = N->getMaskElt(0); 1744 1745 // FIXME: Handle UNDEF elements too! 1746 if (ElementBase >= 16) 1747 return false; 1748 1749 // Check that the indices are consecutive, in the case of a multi-byte element 1750 // splatted with a v16i8 mask. 1751 for (unsigned i = 1; i != EltSize; ++i) 1752 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1753 return false; 1754 1755 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1756 if (N->getMaskElt(i) < 0) continue; 1757 for (unsigned j = 0; j != EltSize; ++j) 1758 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1759 return false; 1760 } 1761 return true; 1762 } 1763 1764 /// Check that the mask is shuffling N byte elements. Within each N byte 1765 /// element of the mask, the indices could be either in increasing or 1766 /// decreasing order as long as they are consecutive. 1767 /// \param[in] N the shuffle vector SD Node to analyze 1768 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1769 /// Word/DoubleWord/QuadWord). 1770 /// \param[in] StepLen the delta indices number among the N byte element, if 1771 /// the mask is in increasing/decreasing order then it is 1/-1. 1772 /// \return true iff the mask is shuffling N byte elements. 1773 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1774 int StepLen) { 1775 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1776 "Unexpected element width."); 1777 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1778 1779 unsigned NumOfElem = 16 / Width; 1780 unsigned MaskVal[16]; // Width is never greater than 16 1781 for (unsigned i = 0; i < NumOfElem; ++i) { 1782 MaskVal[0] = N->getMaskElt(i * Width); 1783 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1784 return false; 1785 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1786 return false; 1787 } 1788 1789 for (unsigned int j = 1; j < Width; ++j) { 1790 MaskVal[j] = N->getMaskElt(i * Width + j); 1791 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1792 return false; 1793 } 1794 } 1795 } 1796 1797 return true; 1798 } 1799 1800 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1801 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1802 if (!isNByteElemShuffleMask(N, 4, 1)) 1803 return false; 1804 1805 // Now we look at mask elements 0,4,8,12 1806 unsigned M0 = N->getMaskElt(0) / 4; 1807 unsigned M1 = N->getMaskElt(4) / 4; 1808 unsigned M2 = N->getMaskElt(8) / 4; 1809 unsigned M3 = N->getMaskElt(12) / 4; 1810 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1811 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1812 1813 // Below, let H and L be arbitrary elements of the shuffle mask 1814 // where H is in the range [4,7] and L is in the range [0,3]. 1815 // H, 1, 2, 3 or L, 5, 6, 7 1816 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1817 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1818 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1819 InsertAtByte = IsLE ? 12 : 0; 1820 Swap = M0 < 4; 1821 return true; 1822 } 1823 // 0, H, 2, 3 or 4, L, 6, 7 1824 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1825 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1826 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1827 InsertAtByte = IsLE ? 8 : 4; 1828 Swap = M1 < 4; 1829 return true; 1830 } 1831 // 0, 1, H, 3 or 4, 5, L, 7 1832 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1833 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1834 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1835 InsertAtByte = IsLE ? 4 : 8; 1836 Swap = M2 < 4; 1837 return true; 1838 } 1839 // 0, 1, 2, H or 4, 5, 6, L 1840 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1841 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1842 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1843 InsertAtByte = IsLE ? 0 : 12; 1844 Swap = M3 < 4; 1845 return true; 1846 } 1847 1848 // If both vector operands for the shuffle are the same vector, the mask will 1849 // contain only elements from the first one and the second one will be undef. 1850 if (N->getOperand(1).isUndef()) { 1851 ShiftElts = 0; 1852 Swap = true; 1853 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1854 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1855 InsertAtByte = IsLE ? 12 : 0; 1856 return true; 1857 } 1858 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 1859 InsertAtByte = IsLE ? 8 : 4; 1860 return true; 1861 } 1862 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 1863 InsertAtByte = IsLE ? 4 : 8; 1864 return true; 1865 } 1866 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 1867 InsertAtByte = IsLE ? 0 : 12; 1868 return true; 1869 } 1870 } 1871 1872 return false; 1873 } 1874 1875 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1876 bool &Swap, bool IsLE) { 1877 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1878 // Ensure each byte index of the word is consecutive. 1879 if (!isNByteElemShuffleMask(N, 4, 1)) 1880 return false; 1881 1882 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 1883 unsigned M0 = N->getMaskElt(0) / 4; 1884 unsigned M1 = N->getMaskElt(4) / 4; 1885 unsigned M2 = N->getMaskElt(8) / 4; 1886 unsigned M3 = N->getMaskElt(12) / 4; 1887 1888 // If both vector operands for the shuffle are the same vector, the mask will 1889 // contain only elements from the first one and the second one will be undef. 1890 if (N->getOperand(1).isUndef()) { 1891 assert(M0 < 4 && "Indexing into an undef vector?"); 1892 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 1893 return false; 1894 1895 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 1896 Swap = false; 1897 return true; 1898 } 1899 1900 // Ensure each word index of the ShuffleVector Mask is consecutive. 1901 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 1902 return false; 1903 1904 if (IsLE) { 1905 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 1906 // Input vectors don't need to be swapped if the leading element 1907 // of the result is one of the 3 left elements of the second vector 1908 // (or if there is no shift to be done at all). 1909 Swap = false; 1910 ShiftElts = (8 - M0) % 8; 1911 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 1912 // Input vectors need to be swapped if the leading element 1913 // of the result is one of the 3 left elements of the first vector 1914 // (or if we're shifting by 4 - thereby simply swapping the vectors). 1915 Swap = true; 1916 ShiftElts = (4 - M0) % 4; 1917 } 1918 1919 return true; 1920 } else { // BE 1921 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 1922 // Input vectors don't need to be swapped if the leading element 1923 // of the result is one of the 4 elements of the first vector. 1924 Swap = false; 1925 ShiftElts = M0; 1926 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 1927 // Input vectors need to be swapped if the leading element 1928 // of the result is one of the 4 elements of the right vector. 1929 Swap = true; 1930 ShiftElts = M0 - 4; 1931 } 1932 1933 return true; 1934 } 1935 } 1936 1937 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 1938 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1939 1940 if (!isNByteElemShuffleMask(N, Width, -1)) 1941 return false; 1942 1943 for (int i = 0; i < 16; i += Width) 1944 if (N->getMaskElt(i) != i + Width - 1) 1945 return false; 1946 1947 return true; 1948 } 1949 1950 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 1951 return isXXBRShuffleMaskHelper(N, 2); 1952 } 1953 1954 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 1955 return isXXBRShuffleMaskHelper(N, 4); 1956 } 1957 1958 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 1959 return isXXBRShuffleMaskHelper(N, 8); 1960 } 1961 1962 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 1963 return isXXBRShuffleMaskHelper(N, 16); 1964 } 1965 1966 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 1967 /// if the inputs to the instruction should be swapped and set \p DM to the 1968 /// value for the immediate. 1969 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 1970 /// AND element 0 of the result comes from the first input (LE) or second input 1971 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 1972 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 1973 /// mask. 1974 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 1975 bool &Swap, bool IsLE) { 1976 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1977 1978 // Ensure each byte index of the double word is consecutive. 1979 if (!isNByteElemShuffleMask(N, 8, 1)) 1980 return false; 1981 1982 unsigned M0 = N->getMaskElt(0) / 8; 1983 unsigned M1 = N->getMaskElt(8) / 8; 1984 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 1985 1986 // If both vector operands for the shuffle are the same vector, the mask will 1987 // contain only elements from the first one and the second one will be undef. 1988 if (N->getOperand(1).isUndef()) { 1989 if ((M0 | M1) < 2) { 1990 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 1991 Swap = false; 1992 return true; 1993 } else 1994 return false; 1995 } 1996 1997 if (IsLE) { 1998 if (M0 > 1 && M1 < 2) { 1999 Swap = false; 2000 } else if (M0 < 2 && M1 > 1) { 2001 M0 = (M0 + 2) % 4; 2002 M1 = (M1 + 2) % 4; 2003 Swap = true; 2004 } else 2005 return false; 2006 2007 // Note: if control flow comes here that means Swap is already set above 2008 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2009 return true; 2010 } else { // BE 2011 if (M0 < 2 && M1 > 1) { 2012 Swap = false; 2013 } else if (M0 > 1 && M1 < 2) { 2014 M0 = (M0 + 2) % 4; 2015 M1 = (M1 + 2) % 4; 2016 Swap = true; 2017 } else 2018 return false; 2019 2020 // Note: if control flow comes here that means Swap is already set above 2021 DM = (M0 << 1) + (M1 & 1); 2022 return true; 2023 } 2024 } 2025 2026 2027 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 2028 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 2029 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 2030 SelectionDAG &DAG) { 2031 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2032 assert(isSplatShuffleMask(SVOp, EltSize)); 2033 if (DAG.getDataLayout().isLittleEndian()) 2034 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2035 else 2036 return SVOp->getMaskElt(0) / EltSize; 2037 } 2038 2039 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2040 /// by using a vspltis[bhw] instruction of the specified element size, return 2041 /// the constant being splatted. The ByteSize field indicates the number of 2042 /// bytes of each element [124] -> [bhw]. 2043 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2044 SDValue OpVal(nullptr, 0); 2045 2046 // If ByteSize of the splat is bigger than the element size of the 2047 // build_vector, then we have a case where we are checking for a splat where 2048 // multiple elements of the buildvector are folded together into a single 2049 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2050 unsigned EltSize = 16/N->getNumOperands(); 2051 if (EltSize < ByteSize) { 2052 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2053 SDValue UniquedVals[4]; 2054 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2055 2056 // See if all of the elements in the buildvector agree across. 2057 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2058 if (N->getOperand(i).isUndef()) continue; 2059 // If the element isn't a constant, bail fully out. 2060 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2061 2062 if (!UniquedVals[i&(Multiple-1)].getNode()) 2063 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2064 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2065 return SDValue(); // no match. 2066 } 2067 2068 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2069 // either constant or undef values that are identical for each chunk. See 2070 // if these chunks can form into a larger vspltis*. 2071 2072 // Check to see if all of the leading entries are either 0 or -1. If 2073 // neither, then this won't fit into the immediate field. 2074 bool LeadingZero = true; 2075 bool LeadingOnes = true; 2076 for (unsigned i = 0; i != Multiple-1; ++i) { 2077 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2078 2079 LeadingZero &= isNullConstant(UniquedVals[i]); 2080 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2081 } 2082 // Finally, check the least significant entry. 2083 if (LeadingZero) { 2084 if (!UniquedVals[Multiple-1].getNode()) 2085 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2086 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2087 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2088 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2089 } 2090 if (LeadingOnes) { 2091 if (!UniquedVals[Multiple-1].getNode()) 2092 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2093 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2094 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2095 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2096 } 2097 2098 return SDValue(); 2099 } 2100 2101 // Check to see if this buildvec has a single non-undef value in its elements. 2102 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2103 if (N->getOperand(i).isUndef()) continue; 2104 if (!OpVal.getNode()) 2105 OpVal = N->getOperand(i); 2106 else if (OpVal != N->getOperand(i)) 2107 return SDValue(); 2108 } 2109 2110 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2111 2112 unsigned ValSizeInBytes = EltSize; 2113 uint64_t Value = 0; 2114 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2115 Value = CN->getZExtValue(); 2116 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2117 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2118 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2119 } 2120 2121 // If the splat value is larger than the element value, then we can never do 2122 // this splat. The only case that we could fit the replicated bits into our 2123 // immediate field for would be zero, and we prefer to use vxor for it. 2124 if (ValSizeInBytes < ByteSize) return SDValue(); 2125 2126 // If the element value is larger than the splat value, check if it consists 2127 // of a repeated bit pattern of size ByteSize. 2128 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2129 return SDValue(); 2130 2131 // Properly sign extend the value. 2132 int MaskVal = SignExtend32(Value, ByteSize * 8); 2133 2134 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2135 if (MaskVal == 0) return SDValue(); 2136 2137 // Finally, if this value fits in a 5 bit sext field, return it 2138 if (SignExtend32<5>(MaskVal) == MaskVal) 2139 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2140 return SDValue(); 2141 } 2142 2143 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2144 /// amount, otherwise return -1. 2145 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2146 EVT VT = N->getValueType(0); 2147 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2148 return -1; 2149 2150 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2151 2152 // Find the first non-undef value in the shuffle mask. 2153 unsigned i; 2154 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2155 /*search*/; 2156 2157 if (i == 4) return -1; // all undef. 2158 2159 // Otherwise, check to see if the rest of the elements are consecutively 2160 // numbered from this value. 2161 unsigned ShiftAmt = SVOp->getMaskElt(i); 2162 if (ShiftAmt < i) return -1; 2163 ShiftAmt -= i; 2164 2165 // Check the rest of the elements to see if they are consecutive. 2166 for (++i; i != 4; ++i) 2167 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2168 return -1; 2169 2170 return ShiftAmt; 2171 } 2172 2173 //===----------------------------------------------------------------------===// 2174 // Addressing Mode Selection 2175 //===----------------------------------------------------------------------===// 2176 2177 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2178 /// or 64-bit immediate, and if the value can be accurately represented as a 2179 /// sign extension from a 16-bit value. If so, this returns true and the 2180 /// immediate. 2181 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2182 if (!isa<ConstantSDNode>(N)) 2183 return false; 2184 2185 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2186 if (N->getValueType(0) == MVT::i32) 2187 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2188 else 2189 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2190 } 2191 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2192 return isIntS16Immediate(Op.getNode(), Imm); 2193 } 2194 2195 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2196 /// can be represented as an indexed [r+r] operation. Returns false if it 2197 /// can be more efficiently represented with [r+imm]. 2198 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 2199 SDValue &Index, 2200 SelectionDAG &DAG) const { 2201 int16_t imm = 0; 2202 if (N.getOpcode() == ISD::ADD) { 2203 if (isIntS16Immediate(N.getOperand(1), imm)) 2204 return false; // r+i 2205 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2206 return false; // r+i 2207 2208 Base = N.getOperand(0); 2209 Index = N.getOperand(1); 2210 return true; 2211 } else if (N.getOpcode() == ISD::OR) { 2212 if (isIntS16Immediate(N.getOperand(1), imm)) 2213 return false; // r+i can fold it if we can. 2214 2215 // If this is an or of disjoint bitfields, we can codegen this as an add 2216 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2217 // disjoint. 2218 KnownBits LHSKnown, RHSKnown; 2219 DAG.computeKnownBits(N.getOperand(0), LHSKnown); 2220 2221 if (LHSKnown.Zero.getBoolValue()) { 2222 DAG.computeKnownBits(N.getOperand(1), RHSKnown); 2223 // If all of the bits are known zero on the LHS or RHS, the add won't 2224 // carry. 2225 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2226 Base = N.getOperand(0); 2227 Index = N.getOperand(1); 2228 return true; 2229 } 2230 } 2231 } 2232 2233 return false; 2234 } 2235 2236 // If we happen to be doing an i64 load or store into a stack slot that has 2237 // less than a 4-byte alignment, then the frame-index elimination may need to 2238 // use an indexed load or store instruction (because the offset may not be a 2239 // multiple of 4). The extra register needed to hold the offset comes from the 2240 // register scavenger, and it is possible that the scavenger will need to use 2241 // an emergency spill slot. As a result, we need to make sure that a spill slot 2242 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2243 // stack slot. 2244 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2245 // FIXME: This does not handle the LWA case. 2246 if (VT != MVT::i64) 2247 return; 2248 2249 // NOTE: We'll exclude negative FIs here, which come from argument 2250 // lowering, because there are no known test cases triggering this problem 2251 // using packed structures (or similar). We can remove this exclusion if 2252 // we find such a test case. The reason why this is so test-case driven is 2253 // because this entire 'fixup' is only to prevent crashes (from the 2254 // register scavenger) on not-really-valid inputs. For example, if we have: 2255 // %a = alloca i1 2256 // %b = bitcast i1* %a to i64* 2257 // store i64* a, i64 b 2258 // then the store should really be marked as 'align 1', but is not. If it 2259 // were marked as 'align 1' then the indexed form would have been 2260 // instruction-selected initially, and the problem this 'fixup' is preventing 2261 // won't happen regardless. 2262 if (FrameIdx < 0) 2263 return; 2264 2265 MachineFunction &MF = DAG.getMachineFunction(); 2266 MachineFrameInfo &MFI = MF.getFrameInfo(); 2267 2268 unsigned Align = MFI.getObjectAlignment(FrameIdx); 2269 if (Align >= 4) 2270 return; 2271 2272 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2273 FuncInfo->setHasNonRISpills(); 2274 } 2275 2276 /// Returns true if the address N can be represented by a base register plus 2277 /// a signed 16-bit displacement [r+imm], and if it is not better 2278 /// represented as reg+reg. If \p Alignment is non-zero, only accept 2279 /// displacements that are multiples of that value. 2280 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 2281 SDValue &Base, 2282 SelectionDAG &DAG, 2283 unsigned Alignment) const { 2284 // FIXME dl should come from parent load or store, not from address 2285 SDLoc dl(N); 2286 // If this can be more profitably realized as r+r, fail. 2287 if (SelectAddressRegReg(N, Disp, Base, DAG)) 2288 return false; 2289 2290 if (N.getOpcode() == ISD::ADD) { 2291 int16_t imm = 0; 2292 if (isIntS16Immediate(N.getOperand(1), imm) && 2293 (!Alignment || (imm % Alignment) == 0)) { 2294 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2295 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2296 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2297 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2298 } else { 2299 Base = N.getOperand(0); 2300 } 2301 return true; // [r+i] 2302 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2303 // Match LOAD (ADD (X, Lo(G))). 2304 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2305 && "Cannot handle constant offsets yet!"); 2306 Disp = N.getOperand(1).getOperand(0); // The global address. 2307 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2308 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2309 Disp.getOpcode() == ISD::TargetConstantPool || 2310 Disp.getOpcode() == ISD::TargetJumpTable); 2311 Base = N.getOperand(0); 2312 return true; // [&g+r] 2313 } 2314 } else if (N.getOpcode() == ISD::OR) { 2315 int16_t imm = 0; 2316 if (isIntS16Immediate(N.getOperand(1), imm) && 2317 (!Alignment || (imm % Alignment) == 0)) { 2318 // If this is an or of disjoint bitfields, we can codegen this as an add 2319 // (for better address arithmetic) if the LHS and RHS of the OR are 2320 // provably disjoint. 2321 KnownBits LHSKnown; 2322 DAG.computeKnownBits(N.getOperand(0), LHSKnown); 2323 2324 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2325 // If all of the bits are known zero on the LHS or RHS, the add won't 2326 // carry. 2327 if (FrameIndexSDNode *FI = 2328 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2329 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2330 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2331 } else { 2332 Base = N.getOperand(0); 2333 } 2334 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2335 return true; 2336 } 2337 } 2338 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2339 // Loading from a constant address. 2340 2341 // If this address fits entirely in a 16-bit sext immediate field, codegen 2342 // this as "d, 0" 2343 int16_t Imm; 2344 if (isIntS16Immediate(CN, Imm) && (!Alignment || (Imm % Alignment) == 0)) { 2345 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2346 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2347 CN->getValueType(0)); 2348 return true; 2349 } 2350 2351 // Handle 32-bit sext immediates with LIS + addr mode. 2352 if ((CN->getValueType(0) == MVT::i32 || 2353 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2354 (!Alignment || (CN->getZExtValue() % Alignment) == 0)) { 2355 int Addr = (int)CN->getZExtValue(); 2356 2357 // Otherwise, break this down into an LIS + disp. 2358 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2359 2360 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2361 MVT::i32); 2362 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2363 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2364 return true; 2365 } 2366 } 2367 2368 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2369 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2370 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2371 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2372 } else 2373 Base = N; 2374 return true; // [r+0] 2375 } 2376 2377 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2378 /// represented as an indexed [r+r] operation. 2379 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2380 SDValue &Index, 2381 SelectionDAG &DAG) const { 2382 // Check to see if we can easily represent this as an [r+r] address. This 2383 // will fail if it thinks that the address is more profitably represented as 2384 // reg+imm, e.g. where imm = 0. 2385 if (SelectAddressRegReg(N, Base, Index, DAG)) 2386 return true; 2387 2388 // If the address is the result of an add, we will utilize the fact that the 2389 // address calculation includes an implicit add. However, we can reduce 2390 // register pressure if we do not materialize a constant just for use as the 2391 // index register. We only get rid of the add if it is not an add of a 2392 // value and a 16-bit signed constant and both have a single use. 2393 int16_t imm = 0; 2394 if (N.getOpcode() == ISD::ADD && 2395 (!isIntS16Immediate(N.getOperand(1), imm) || 2396 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2397 Base = N.getOperand(0); 2398 Index = N.getOperand(1); 2399 return true; 2400 } 2401 2402 // Otherwise, do it the hard way, using R0 as the base register. 2403 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2404 N.getValueType()); 2405 Index = N; 2406 return true; 2407 } 2408 2409 /// Returns true if we should use a direct load into vector instruction 2410 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2411 static bool usePartialVectorLoads(SDNode *N) { 2412 if (!N->hasOneUse()) 2413 return false; 2414 2415 // If there are any other uses other than scalar to vector, then we should 2416 // keep it as a scalar load -> direct move pattern to prevent multiple 2417 // loads. Currently, only check for i64 since we have lxsd/lfd to do this 2418 // efficiently, but no update equivalent. 2419 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2420 EVT MemVT = LD->getMemoryVT(); 2421 if (MemVT.isSimple() && MemVT.getSimpleVT().SimpleTy == MVT::i64) { 2422 SDNode *User = *(LD->use_begin()); 2423 if (User->getOpcode() == ISD::SCALAR_TO_VECTOR) 2424 return true; 2425 } 2426 } 2427 2428 return false; 2429 } 2430 2431 /// getPreIndexedAddressParts - returns true by value, base pointer and 2432 /// offset pointer and addressing mode by reference if the node's address 2433 /// can be legally represented as pre-indexed load / store address. 2434 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2435 SDValue &Offset, 2436 ISD::MemIndexedMode &AM, 2437 SelectionDAG &DAG) const { 2438 if (DisablePPCPreinc) return false; 2439 2440 bool isLoad = true; 2441 SDValue Ptr; 2442 EVT VT; 2443 unsigned Alignment; 2444 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2445 Ptr = LD->getBasePtr(); 2446 VT = LD->getMemoryVT(); 2447 Alignment = LD->getAlignment(); 2448 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2449 Ptr = ST->getBasePtr(); 2450 VT = ST->getMemoryVT(); 2451 Alignment = ST->getAlignment(); 2452 isLoad = false; 2453 } else 2454 return false; 2455 2456 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2457 // instructions because we can fold these into a more efficient instruction 2458 // instead, (such as LXSD). 2459 if (isLoad && usePartialVectorLoads(N)) { 2460 return false; 2461 } 2462 2463 // PowerPC doesn't have preinc load/store instructions for vectors (except 2464 // for QPX, which does have preinc r+r forms). 2465 if (VT.isVector()) { 2466 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2467 return false; 2468 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2469 AM = ISD::PRE_INC; 2470 return true; 2471 } 2472 } 2473 2474 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2475 // Common code will reject creating a pre-inc form if the base pointer 2476 // is a frame index, or if N is a store and the base pointer is either 2477 // the same as or a predecessor of the value being stored. Check for 2478 // those situations here, and try with swapped Base/Offset instead. 2479 bool Swap = false; 2480 2481 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2482 Swap = true; 2483 else if (!isLoad) { 2484 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2485 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2486 Swap = true; 2487 } 2488 2489 if (Swap) 2490 std::swap(Base, Offset); 2491 2492 AM = ISD::PRE_INC; 2493 return true; 2494 } 2495 2496 // LDU/STU can only handle immediates that are a multiple of 4. 2497 if (VT != MVT::i64) { 2498 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0)) 2499 return false; 2500 } else { 2501 // LDU/STU need an address with at least 4-byte alignment. 2502 if (Alignment < 4) 2503 return false; 2504 2505 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4)) 2506 return false; 2507 } 2508 2509 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2510 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2511 // sext i32 to i64 when addr mode is r+i. 2512 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2513 LD->getExtensionType() == ISD::SEXTLOAD && 2514 isa<ConstantSDNode>(Offset)) 2515 return false; 2516 } 2517 2518 AM = ISD::PRE_INC; 2519 return true; 2520 } 2521 2522 //===----------------------------------------------------------------------===// 2523 // LowerOperation implementation 2524 //===----------------------------------------------------------------------===// 2525 2526 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2527 /// and LoOpFlags to the target MO flags. 2528 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2529 unsigned &HiOpFlags, unsigned &LoOpFlags, 2530 const GlobalValue *GV = nullptr) { 2531 HiOpFlags = PPCII::MO_HA; 2532 LoOpFlags = PPCII::MO_LO; 2533 2534 // Don't use the pic base if not in PIC relocation model. 2535 if (IsPIC) { 2536 HiOpFlags |= PPCII::MO_PIC_FLAG; 2537 LoOpFlags |= PPCII::MO_PIC_FLAG; 2538 } 2539 2540 // If this is a reference to a global value that requires a non-lazy-ptr, make 2541 // sure that instruction lowering adds it. 2542 if (GV && Subtarget.hasLazyResolverStub(GV)) { 2543 HiOpFlags |= PPCII::MO_NLP_FLAG; 2544 LoOpFlags |= PPCII::MO_NLP_FLAG; 2545 2546 if (GV->hasHiddenVisibility()) { 2547 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2548 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2549 } 2550 } 2551 } 2552 2553 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2554 SelectionDAG &DAG) { 2555 SDLoc DL(HiPart); 2556 EVT PtrVT = HiPart.getValueType(); 2557 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2558 2559 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2560 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2561 2562 // With PIC, the first instruction is actually "GR+hi(&G)". 2563 if (isPIC) 2564 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2565 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2566 2567 // Generate non-pic code that has direct accesses to the constant pool. 2568 // The address of the global is just (hi(&g)+lo(&g)). 2569 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2570 } 2571 2572 static void setUsesTOCBasePtr(MachineFunction &MF) { 2573 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2574 FuncInfo->setUsesTOCBasePtr(); 2575 } 2576 2577 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2578 setUsesTOCBasePtr(DAG.getMachineFunction()); 2579 } 2580 2581 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit, 2582 SDValue GA) { 2583 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2584 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : 2585 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2586 2587 SDValue Ops[] = { GA, Reg }; 2588 return DAG.getMemIntrinsicNode( 2589 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2590 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, 2591 MachineMemOperand::MOLoad); 2592 } 2593 2594 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2595 SelectionDAG &DAG) const { 2596 EVT PtrVT = Op.getValueType(); 2597 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2598 const Constant *C = CP->getConstVal(); 2599 2600 // 64-bit SVR4 ABI code is always position-independent. 2601 // The actual address of the GlobalValue is stored in the TOC. 2602 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2603 setUsesTOCBasePtr(DAG); 2604 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2605 return getTOCEntry(DAG, SDLoc(CP), true, GA); 2606 } 2607 2608 unsigned MOHiFlag, MOLoFlag; 2609 bool IsPIC = isPositionIndependent(); 2610 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2611 2612 if (IsPIC && Subtarget.isSVR4ABI()) { 2613 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2614 PPCII::MO_PIC_FLAG); 2615 return getTOCEntry(DAG, SDLoc(CP), false, GA); 2616 } 2617 2618 SDValue CPIHi = 2619 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2620 SDValue CPILo = 2621 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2622 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2623 } 2624 2625 // For 64-bit PowerPC, prefer the more compact relative encodings. 2626 // This trades 32 bits per jump table entry for one or two instructions 2627 // on the jump site. 2628 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2629 if (isJumpTableRelative()) 2630 return MachineJumpTableInfo::EK_LabelDifference32; 2631 2632 return TargetLowering::getJumpTableEncoding(); 2633 } 2634 2635 bool PPCTargetLowering::isJumpTableRelative() const { 2636 if (Subtarget.isPPC64()) 2637 return true; 2638 return TargetLowering::isJumpTableRelative(); 2639 } 2640 2641 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2642 SelectionDAG &DAG) const { 2643 if (!Subtarget.isPPC64()) 2644 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2645 2646 switch (getTargetMachine().getCodeModel()) { 2647 case CodeModel::Small: 2648 case CodeModel::Medium: 2649 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2650 default: 2651 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2652 getPointerTy(DAG.getDataLayout())); 2653 } 2654 } 2655 2656 const MCExpr * 2657 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2658 unsigned JTI, 2659 MCContext &Ctx) const { 2660 if (!Subtarget.isPPC64()) 2661 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2662 2663 switch (getTargetMachine().getCodeModel()) { 2664 case CodeModel::Small: 2665 case CodeModel::Medium: 2666 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2667 default: 2668 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2669 } 2670 } 2671 2672 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2673 EVT PtrVT = Op.getValueType(); 2674 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2675 2676 // 64-bit SVR4 ABI code is always position-independent. 2677 // The actual address of the GlobalValue is stored in the TOC. 2678 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2679 setUsesTOCBasePtr(DAG); 2680 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2681 return getTOCEntry(DAG, SDLoc(JT), true, GA); 2682 } 2683 2684 unsigned MOHiFlag, MOLoFlag; 2685 bool IsPIC = isPositionIndependent(); 2686 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2687 2688 if (IsPIC && Subtarget.isSVR4ABI()) { 2689 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2690 PPCII::MO_PIC_FLAG); 2691 return getTOCEntry(DAG, SDLoc(GA), false, GA); 2692 } 2693 2694 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2695 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2696 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2697 } 2698 2699 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2700 SelectionDAG &DAG) const { 2701 EVT PtrVT = Op.getValueType(); 2702 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2703 const BlockAddress *BA = BASDN->getBlockAddress(); 2704 2705 // 64-bit SVR4 ABI code is always position-independent. 2706 // The actual BlockAddress is stored in the TOC. 2707 if (Subtarget.isSVR4ABI() && isPositionIndependent()) { 2708 if (Subtarget.isPPC64()) 2709 setUsesTOCBasePtr(DAG); 2710 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2711 return getTOCEntry(DAG, SDLoc(BASDN), Subtarget.isPPC64(), GA); 2712 } 2713 2714 unsigned MOHiFlag, MOLoFlag; 2715 bool IsPIC = isPositionIndependent(); 2716 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2717 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2718 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2719 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2720 } 2721 2722 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2723 SelectionDAG &DAG) const { 2724 // FIXME: TLS addresses currently use medium model code sequences, 2725 // which is the most useful form. Eventually support for small and 2726 // large models could be added if users need it, at the cost of 2727 // additional complexity. 2728 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2729 if (DAG.getTarget().useEmulatedTLS()) 2730 return LowerToTLSEmulatedModel(GA, DAG); 2731 2732 SDLoc dl(GA); 2733 const GlobalValue *GV = GA->getGlobal(); 2734 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2735 bool is64bit = Subtarget.isPPC64(); 2736 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2737 PICLevel::Level picLevel = M->getPICLevel(); 2738 2739 TLSModel::Model Model = getTargetMachine().getTLSModel(GV); 2740 2741 if (Model == TLSModel::LocalExec) { 2742 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2743 PPCII::MO_TPREL_HA); 2744 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2745 PPCII::MO_TPREL_LO); 2746 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 2747 : DAG.getRegister(PPC::R2, MVT::i32); 2748 2749 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2750 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2751 } 2752 2753 if (Model == TLSModel::InitialExec) { 2754 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2755 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2756 PPCII::MO_TLS); 2757 SDValue GOTPtr; 2758 if (is64bit) { 2759 setUsesTOCBasePtr(DAG); 2760 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2761 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2762 PtrVT, GOTReg, TGA); 2763 } else 2764 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2765 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2766 PtrVT, TGA, GOTPtr); 2767 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2768 } 2769 2770 if (Model == TLSModel::GeneralDynamic) { 2771 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2772 SDValue GOTPtr; 2773 if (is64bit) { 2774 setUsesTOCBasePtr(DAG); 2775 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2776 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2777 GOTReg, TGA); 2778 } else { 2779 if (picLevel == PICLevel::SmallPIC) 2780 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2781 else 2782 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2783 } 2784 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2785 GOTPtr, TGA, TGA); 2786 } 2787 2788 if (Model == TLSModel::LocalDynamic) { 2789 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2790 SDValue GOTPtr; 2791 if (is64bit) { 2792 setUsesTOCBasePtr(DAG); 2793 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2794 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2795 GOTReg, TGA); 2796 } else { 2797 if (picLevel == PICLevel::SmallPIC) 2798 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2799 else 2800 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2801 } 2802 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2803 PtrVT, GOTPtr, TGA, TGA); 2804 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2805 PtrVT, TLSAddr, TGA); 2806 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2807 } 2808 2809 llvm_unreachable("Unknown TLS model!"); 2810 } 2811 2812 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2813 SelectionDAG &DAG) const { 2814 EVT PtrVT = Op.getValueType(); 2815 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2816 SDLoc DL(GSDN); 2817 const GlobalValue *GV = GSDN->getGlobal(); 2818 2819 // 64-bit SVR4 ABI code is always position-independent. 2820 // The actual address of the GlobalValue is stored in the TOC. 2821 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2822 setUsesTOCBasePtr(DAG); 2823 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2824 return getTOCEntry(DAG, DL, true, GA); 2825 } 2826 2827 unsigned MOHiFlag, MOLoFlag; 2828 bool IsPIC = isPositionIndependent(); 2829 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 2830 2831 if (IsPIC && Subtarget.isSVR4ABI()) { 2832 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2833 GSDN->getOffset(), 2834 PPCII::MO_PIC_FLAG); 2835 return getTOCEntry(DAG, DL, false, GA); 2836 } 2837 2838 SDValue GAHi = 2839 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2840 SDValue GALo = 2841 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2842 2843 SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG); 2844 2845 // If the global reference is actually to a non-lazy-pointer, we have to do an 2846 // extra load to get the address of the global. 2847 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2848 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2849 return Ptr; 2850 } 2851 2852 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2853 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2854 SDLoc dl(Op); 2855 2856 if (Op.getValueType() == MVT::v2i64) { 2857 // When the operands themselves are v2i64 values, we need to do something 2858 // special because VSX has no underlying comparison operations for these. 2859 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2860 // Equality can be handled by casting to the legal type for Altivec 2861 // comparisons, everything else needs to be expanded. 2862 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2863 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2864 DAG.getSetCC(dl, MVT::v4i32, 2865 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2866 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2867 CC)); 2868 } 2869 2870 return SDValue(); 2871 } 2872 2873 // We handle most of these in the usual way. 2874 return Op; 2875 } 2876 2877 // If we're comparing for equality to zero, expose the fact that this is 2878 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 2879 // fold the new nodes. 2880 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 2881 return V; 2882 2883 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2884 // Leave comparisons against 0 and -1 alone for now, since they're usually 2885 // optimized. FIXME: revisit this when we can custom lower all setcc 2886 // optimizations. 2887 if (C->isAllOnesValue() || C->isNullValue()) 2888 return SDValue(); 2889 } 2890 2891 // If we have an integer seteq/setne, turn it into a compare against zero 2892 // by xor'ing the rhs with the lhs, which is faster than setting a 2893 // condition register, reading it back out, and masking the correct bit. The 2894 // normal approach here uses sub to do this instead of xor. Using xor exposes 2895 // the result to other bit-twiddling opportunities. 2896 EVT LHSVT = Op.getOperand(0).getValueType(); 2897 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2898 EVT VT = Op.getValueType(); 2899 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 2900 Op.getOperand(1)); 2901 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 2902 } 2903 return SDValue(); 2904 } 2905 2906 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 2907 SDNode *Node = Op.getNode(); 2908 EVT VT = Node->getValueType(0); 2909 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2910 SDValue InChain = Node->getOperand(0); 2911 SDValue VAListPtr = Node->getOperand(1); 2912 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2913 SDLoc dl(Node); 2914 2915 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 2916 2917 // gpr_index 2918 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2919 VAListPtr, MachinePointerInfo(SV), MVT::i8); 2920 InChain = GprIndex.getValue(1); 2921 2922 if (VT == MVT::i64) { 2923 // Check if GprIndex is even 2924 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 2925 DAG.getConstant(1, dl, MVT::i32)); 2926 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 2927 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 2928 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 2929 DAG.getConstant(1, dl, MVT::i32)); 2930 // Align GprIndex to be even if it isn't 2931 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 2932 GprIndex); 2933 } 2934 2935 // fpr index is 1 byte after gpr 2936 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2937 DAG.getConstant(1, dl, MVT::i32)); 2938 2939 // fpr 2940 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2941 FprPtr, MachinePointerInfo(SV), MVT::i8); 2942 InChain = FprIndex.getValue(1); 2943 2944 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2945 DAG.getConstant(8, dl, MVT::i32)); 2946 2947 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2948 DAG.getConstant(4, dl, MVT::i32)); 2949 2950 // areas 2951 SDValue OverflowArea = 2952 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 2953 InChain = OverflowArea.getValue(1); 2954 2955 SDValue RegSaveArea = 2956 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 2957 InChain = RegSaveArea.getValue(1); 2958 2959 // select overflow_area if index > 8 2960 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 2961 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 2962 2963 // adjustment constant gpr_index * 4/8 2964 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 2965 VT.isInteger() ? GprIndex : FprIndex, 2966 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 2967 MVT::i32)); 2968 2969 // OurReg = RegSaveArea + RegConstant 2970 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 2971 RegConstant); 2972 2973 // Floating types are 32 bytes into RegSaveArea 2974 if (VT.isFloatingPoint()) 2975 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 2976 DAG.getConstant(32, dl, MVT::i32)); 2977 2978 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 2979 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2980 VT.isInteger() ? GprIndex : FprIndex, 2981 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 2982 MVT::i32)); 2983 2984 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 2985 VT.isInteger() ? VAListPtr : FprPtr, 2986 MachinePointerInfo(SV), MVT::i8); 2987 2988 // determine if we should load from reg_save_area or overflow_area 2989 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 2990 2991 // increase overflow_area by 4/8 if gpr/fpr > 8 2992 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 2993 DAG.getConstant(VT.isInteger() ? 4 : 8, 2994 dl, MVT::i32)); 2995 2996 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 2997 OverflowAreaPlusN); 2998 2999 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3000 MachinePointerInfo(), MVT::i32); 3001 3002 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3003 } 3004 3005 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3006 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3007 3008 // We have to copy the entire va_list struct: 3009 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3010 return DAG.getMemcpy(Op.getOperand(0), Op, 3011 Op.getOperand(1), Op.getOperand(2), 3012 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 3013 false, MachinePointerInfo(), MachinePointerInfo()); 3014 } 3015 3016 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3017 SelectionDAG &DAG) const { 3018 return Op.getOperand(0); 3019 } 3020 3021 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3022 SelectionDAG &DAG) const { 3023 SDValue Chain = Op.getOperand(0); 3024 SDValue Trmp = Op.getOperand(1); // trampoline 3025 SDValue FPtr = Op.getOperand(2); // nested function 3026 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3027 SDLoc dl(Op); 3028 3029 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3030 bool isPPC64 = (PtrVT == MVT::i64); 3031 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3032 3033 TargetLowering::ArgListTy Args; 3034 TargetLowering::ArgListEntry Entry; 3035 3036 Entry.Ty = IntPtrTy; 3037 Entry.Node = Trmp; Args.push_back(Entry); 3038 3039 // TrampSize == (isPPC64 ? 48 : 40); 3040 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3041 isPPC64 ? MVT::i64 : MVT::i32); 3042 Args.push_back(Entry); 3043 3044 Entry.Node = FPtr; Args.push_back(Entry); 3045 Entry.Node = Nest; Args.push_back(Entry); 3046 3047 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3048 TargetLowering::CallLoweringInfo CLI(DAG); 3049 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3050 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3051 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3052 3053 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3054 return CallResult.second; 3055 } 3056 3057 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3058 MachineFunction &MF = DAG.getMachineFunction(); 3059 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3060 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3061 3062 SDLoc dl(Op); 3063 3064 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 3065 // vastart just stores the address of the VarArgsFrameIndex slot into the 3066 // memory location argument. 3067 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3068 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3069 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3070 MachinePointerInfo(SV)); 3071 } 3072 3073 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3074 // We suppose the given va_list is already allocated. 3075 // 3076 // typedef struct { 3077 // char gpr; /* index into the array of 8 GPRs 3078 // * stored in the register save area 3079 // * gpr=0 corresponds to r3, 3080 // * gpr=1 to r4, etc. 3081 // */ 3082 // char fpr; /* index into the array of 8 FPRs 3083 // * stored in the register save area 3084 // * fpr=0 corresponds to f1, 3085 // * fpr=1 to f2, etc. 3086 // */ 3087 // char *overflow_arg_area; 3088 // /* location on stack that holds 3089 // * the next overflow argument 3090 // */ 3091 // char *reg_save_area; 3092 // /* where r3:r10 and f1:f8 (if saved) 3093 // * are stored 3094 // */ 3095 // } va_list[1]; 3096 3097 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3098 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3099 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3100 PtrVT); 3101 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3102 PtrVT); 3103 3104 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3105 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3106 3107 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3108 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3109 3110 uint64_t FPROffset = 1; 3111 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3112 3113 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3114 3115 // Store first byte : number of int regs 3116 SDValue firstStore = 3117 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3118 MachinePointerInfo(SV), MVT::i8); 3119 uint64_t nextOffset = FPROffset; 3120 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3121 ConstFPROffset); 3122 3123 // Store second byte : number of float regs 3124 SDValue secondStore = 3125 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3126 MachinePointerInfo(SV, nextOffset), MVT::i8); 3127 nextOffset += StackOffset; 3128 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3129 3130 // Store second word : arguments given on stack 3131 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3132 MachinePointerInfo(SV, nextOffset)); 3133 nextOffset += FrameOffset; 3134 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3135 3136 // Store third word : arguments given in registers 3137 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3138 MachinePointerInfo(SV, nextOffset)); 3139 } 3140 3141 #include "PPCGenCallingConv.inc" 3142 3143 // Function whose sole purpose is to kill compiler warnings 3144 // stemming from unused functions included from PPCGenCallingConv.inc. 3145 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const { 3146 return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS; 3147 } 3148 3149 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 3150 CCValAssign::LocInfo &LocInfo, 3151 ISD::ArgFlagsTy &ArgFlags, 3152 CCState &State) { 3153 return true; 3154 } 3155 3156 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 3157 MVT &LocVT, 3158 CCValAssign::LocInfo &LocInfo, 3159 ISD::ArgFlagsTy &ArgFlags, 3160 CCState &State) { 3161 static const MCPhysReg ArgRegs[] = { 3162 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3163 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3164 }; 3165 const unsigned NumArgRegs = array_lengthof(ArgRegs); 3166 3167 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 3168 3169 // Skip one register if the first unallocated register has an even register 3170 // number and there are still argument registers available which have not been 3171 // allocated yet. RegNum is actually an index into ArgRegs, which means we 3172 // need to skip a register if RegNum is odd. 3173 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 3174 State.AllocateReg(ArgRegs[RegNum]); 3175 } 3176 3177 // Always return false here, as this function only makes sure that the first 3178 // unallocated register has an odd register number and does not actually 3179 // allocate a register for the current argument. 3180 return false; 3181 } 3182 3183 bool 3184 llvm::CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT, 3185 MVT &LocVT, 3186 CCValAssign::LocInfo &LocInfo, 3187 ISD::ArgFlagsTy &ArgFlags, 3188 CCState &State) { 3189 static const MCPhysReg ArgRegs[] = { 3190 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3191 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3192 }; 3193 const unsigned NumArgRegs = array_lengthof(ArgRegs); 3194 3195 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 3196 int RegsLeft = NumArgRegs - RegNum; 3197 3198 // Skip if there is not enough registers left for long double type (4 gpr regs 3199 // in soft float mode) and put long double argument on the stack. 3200 if (RegNum != NumArgRegs && RegsLeft < 4) { 3201 for (int i = 0; i < RegsLeft; i++) { 3202 State.AllocateReg(ArgRegs[RegNum + i]); 3203 } 3204 } 3205 3206 return false; 3207 } 3208 3209 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 3210 MVT &LocVT, 3211 CCValAssign::LocInfo &LocInfo, 3212 ISD::ArgFlagsTy &ArgFlags, 3213 CCState &State) { 3214 static const MCPhysReg ArgRegs[] = { 3215 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3216 PPC::F8 3217 }; 3218 3219 const unsigned NumArgRegs = array_lengthof(ArgRegs); 3220 3221 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 3222 3223 // If there is only one Floating-point register left we need to put both f64 3224 // values of a split ppc_fp128 value on the stack. 3225 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 3226 State.AllocateReg(ArgRegs[RegNum]); 3227 } 3228 3229 // Always return false here, as this function only makes sure that the two f64 3230 // values a ppc_fp128 value is split into are both passed in registers or both 3231 // passed on the stack and does not actually allocate a register for the 3232 // current argument. 3233 return false; 3234 } 3235 3236 /// FPR - The set of FP registers that should be allocated for arguments, 3237 /// on Darwin. 3238 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3239 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3240 PPC::F11, PPC::F12, PPC::F13}; 3241 3242 /// QFPR - The set of QPX registers that should be allocated for arguments. 3243 static const MCPhysReg QFPR[] = { 3244 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3245 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3246 3247 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3248 /// the stack. 3249 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3250 unsigned PtrByteSize) { 3251 unsigned ArgSize = ArgVT.getStoreSize(); 3252 if (Flags.isByVal()) 3253 ArgSize = Flags.getByValSize(); 3254 3255 // Round up to multiples of the pointer size, except for array members, 3256 // which are always packed. 3257 if (!Flags.isInConsecutiveRegs()) 3258 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3259 3260 return ArgSize; 3261 } 3262 3263 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3264 /// on the stack. 3265 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3266 ISD::ArgFlagsTy Flags, 3267 unsigned PtrByteSize) { 3268 unsigned Align = PtrByteSize; 3269 3270 // Altivec parameters are padded to a 16 byte boundary. 3271 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3272 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3273 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3274 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3275 Align = 16; 3276 // QPX vector types stored in double-precision are padded to a 32 byte 3277 // boundary. 3278 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3279 Align = 32; 3280 3281 // ByVal parameters are aligned as requested. 3282 if (Flags.isByVal()) { 3283 unsigned BVAlign = Flags.getByValAlign(); 3284 if (BVAlign > PtrByteSize) { 3285 if (BVAlign % PtrByteSize != 0) 3286 llvm_unreachable( 3287 "ByVal alignment is not a multiple of the pointer size"); 3288 3289 Align = BVAlign; 3290 } 3291 } 3292 3293 // Array members are always packed to their original alignment. 3294 if (Flags.isInConsecutiveRegs()) { 3295 // If the array member was split into multiple registers, the first 3296 // needs to be aligned to the size of the full type. (Except for 3297 // ppcf128, which is only aligned as its f64 components.) 3298 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3299 Align = OrigVT.getStoreSize(); 3300 else 3301 Align = ArgVT.getStoreSize(); 3302 } 3303 3304 return Align; 3305 } 3306 3307 /// CalculateStackSlotUsed - Return whether this argument will use its 3308 /// stack slot (instead of being passed in registers). ArgOffset, 3309 /// AvailableFPRs, and AvailableVRs must hold the current argument 3310 /// position, and will be updated to account for this argument. 3311 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3312 ISD::ArgFlagsTy Flags, 3313 unsigned PtrByteSize, 3314 unsigned LinkageSize, 3315 unsigned ParamAreaSize, 3316 unsigned &ArgOffset, 3317 unsigned &AvailableFPRs, 3318 unsigned &AvailableVRs, bool HasQPX) { 3319 bool UseMemory = false; 3320 3321 // Respect alignment of argument on the stack. 3322 unsigned Align = 3323 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3324 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3325 // If there's no space left in the argument save area, we must 3326 // use memory (this check also catches zero-sized arguments). 3327 if (ArgOffset >= LinkageSize + ParamAreaSize) 3328 UseMemory = true; 3329 3330 // Allocate argument on the stack. 3331 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3332 if (Flags.isInConsecutiveRegsLast()) 3333 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3334 // If we overran the argument save area, we must use memory 3335 // (this check catches arguments passed partially in memory) 3336 if (ArgOffset > LinkageSize + ParamAreaSize) 3337 UseMemory = true; 3338 3339 // However, if the argument is actually passed in an FPR or a VR, 3340 // we don't use memory after all. 3341 if (!Flags.isByVal()) { 3342 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3343 // QPX registers overlap with the scalar FP registers. 3344 (HasQPX && (ArgVT == MVT::v4f32 || 3345 ArgVT == MVT::v4f64 || 3346 ArgVT == MVT::v4i1))) 3347 if (AvailableFPRs > 0) { 3348 --AvailableFPRs; 3349 return false; 3350 } 3351 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3352 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3353 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3354 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3355 if (AvailableVRs > 0) { 3356 --AvailableVRs; 3357 return false; 3358 } 3359 } 3360 3361 return UseMemory; 3362 } 3363 3364 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3365 /// ensure minimum alignment required for target. 3366 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3367 unsigned NumBytes) { 3368 unsigned TargetAlign = Lowering->getStackAlignment(); 3369 unsigned AlignMask = TargetAlign - 1; 3370 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 3371 return NumBytes; 3372 } 3373 3374 SDValue PPCTargetLowering::LowerFormalArguments( 3375 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3376 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3377 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3378 if (Subtarget.isSVR4ABI()) { 3379 if (Subtarget.isPPC64()) 3380 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 3381 dl, DAG, InVals); 3382 else 3383 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 3384 dl, DAG, InVals); 3385 } else { 3386 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 3387 dl, DAG, InVals); 3388 } 3389 } 3390 3391 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3392 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3393 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3394 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3395 3396 // 32-bit SVR4 ABI Stack Frame Layout: 3397 // +-----------------------------------+ 3398 // +--> | Back chain | 3399 // | +-----------------------------------+ 3400 // | | Floating-point register save area | 3401 // | +-----------------------------------+ 3402 // | | General register save area | 3403 // | +-----------------------------------+ 3404 // | | CR save word | 3405 // | +-----------------------------------+ 3406 // | | VRSAVE save word | 3407 // | +-----------------------------------+ 3408 // | | Alignment padding | 3409 // | +-----------------------------------+ 3410 // | | Vector register save area | 3411 // | +-----------------------------------+ 3412 // | | Local variable space | 3413 // | +-----------------------------------+ 3414 // | | Parameter list area | 3415 // | +-----------------------------------+ 3416 // | | LR save word | 3417 // | +-----------------------------------+ 3418 // SP--> +--- | Back chain | 3419 // +-----------------------------------+ 3420 // 3421 // Specifications: 3422 // System V Application Binary Interface PowerPC Processor Supplement 3423 // AltiVec Technology Programming Interface Manual 3424 3425 MachineFunction &MF = DAG.getMachineFunction(); 3426 MachineFrameInfo &MFI = MF.getFrameInfo(); 3427 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3428 3429 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3430 // Potential tail calls could cause overwriting of argument stack slots. 3431 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3432 (CallConv == CallingConv::Fast)); 3433 unsigned PtrByteSize = 4; 3434 3435 // Assign locations to all of the incoming arguments. 3436 SmallVector<CCValAssign, 16> ArgLocs; 3437 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3438 *DAG.getContext()); 3439 3440 // Reserve space for the linkage area on the stack. 3441 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3442 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 3443 if (useSoftFloat() || hasSPE()) 3444 CCInfo.PreAnalyzeFormalArguments(Ins); 3445 3446 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3447 CCInfo.clearWasPPCF128(); 3448 3449 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3450 CCValAssign &VA = ArgLocs[i]; 3451 3452 // Arguments stored in registers. 3453 if (VA.isRegLoc()) { 3454 const TargetRegisterClass *RC; 3455 EVT ValVT = VA.getValVT(); 3456 3457 switch (ValVT.getSimpleVT().SimpleTy) { 3458 default: 3459 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3460 case MVT::i1: 3461 case MVT::i32: 3462 RC = &PPC::GPRCRegClass; 3463 break; 3464 case MVT::f32: 3465 if (Subtarget.hasP8Vector()) 3466 RC = &PPC::VSSRCRegClass; 3467 else if (Subtarget.hasSPE()) 3468 RC = &PPC::SPE4RCRegClass; 3469 else 3470 RC = &PPC::F4RCRegClass; 3471 break; 3472 case MVT::f64: 3473 if (Subtarget.hasVSX()) 3474 RC = &PPC::VSFRCRegClass; 3475 else if (Subtarget.hasSPE()) 3476 RC = &PPC::SPERCRegClass; 3477 else 3478 RC = &PPC::F8RCRegClass; 3479 break; 3480 case MVT::v16i8: 3481 case MVT::v8i16: 3482 case MVT::v4i32: 3483 RC = &PPC::VRRCRegClass; 3484 break; 3485 case MVT::v4f32: 3486 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3487 break; 3488 case MVT::v2f64: 3489 case MVT::v2i64: 3490 RC = &PPC::VRRCRegClass; 3491 break; 3492 case MVT::v4f64: 3493 RC = &PPC::QFRCRegClass; 3494 break; 3495 case MVT::v4i1: 3496 RC = &PPC::QBRCRegClass; 3497 break; 3498 } 3499 3500 // Transform the arguments stored in physical registers into virtual ones. 3501 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3502 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3503 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3504 3505 if (ValVT == MVT::i1) 3506 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3507 3508 InVals.push_back(ArgValue); 3509 } else { 3510 // Argument stored in memory. 3511 assert(VA.isMemLoc()); 3512 3513 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3514 int FI = MFI.CreateFixedObject(ArgSize, VA.getLocMemOffset(), 3515 isImmutable); 3516 3517 // Create load nodes to retrieve arguments from the stack. 3518 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3519 InVals.push_back( 3520 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3521 } 3522 } 3523 3524 // Assign locations to all of the incoming aggregate by value arguments. 3525 // Aggregates passed by value are stored in the local variable space of the 3526 // caller's stack frame, right above the parameter list area. 3527 SmallVector<CCValAssign, 16> ByValArgLocs; 3528 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3529 ByValArgLocs, *DAG.getContext()); 3530 3531 // Reserve stack space for the allocations in CCInfo. 3532 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3533 3534 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3535 3536 // Area that is at least reserved in the caller of this function. 3537 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3538 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3539 3540 // Set the size that is at least reserved in caller of this function. Tail 3541 // call optimized function's reserved stack space needs to be aligned so that 3542 // taking the difference between two stack areas will result in an aligned 3543 // stack. 3544 MinReservedArea = 3545 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3546 FuncInfo->setMinReservedArea(MinReservedArea); 3547 3548 SmallVector<SDValue, 8> MemOps; 3549 3550 // If the function takes variable number of arguments, make a frame index for 3551 // the start of the first vararg value... for expansion of llvm.va_start. 3552 if (isVarArg) { 3553 static const MCPhysReg GPArgRegs[] = { 3554 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3555 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3556 }; 3557 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3558 3559 static const MCPhysReg FPArgRegs[] = { 3560 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3561 PPC::F8 3562 }; 3563 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3564 3565 if (useSoftFloat() || hasSPE()) 3566 NumFPArgRegs = 0; 3567 3568 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3569 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3570 3571 // Make room for NumGPArgRegs and NumFPArgRegs. 3572 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3573 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3574 3575 FuncInfo->setVarArgsStackOffset( 3576 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3577 CCInfo.getNextStackOffset(), true)); 3578 3579 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3580 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3581 3582 // The fixed integer arguments of a variadic function are stored to the 3583 // VarArgsFrameIndex on the stack so that they may be loaded by 3584 // dereferencing the result of va_next. 3585 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3586 // Get an existing live-in vreg, or add a new one. 3587 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3588 if (!VReg) 3589 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3590 3591 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3592 SDValue Store = 3593 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3594 MemOps.push_back(Store); 3595 // Increment the address by four for the next argument to store 3596 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3597 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3598 } 3599 3600 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3601 // is set. 3602 // The double arguments are stored to the VarArgsFrameIndex 3603 // on the stack. 3604 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3605 // Get an existing live-in vreg, or add a new one. 3606 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3607 if (!VReg) 3608 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3609 3610 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3611 SDValue Store = 3612 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3613 MemOps.push_back(Store); 3614 // Increment the address by eight for the next argument to store 3615 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3616 PtrVT); 3617 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3618 } 3619 } 3620 3621 if (!MemOps.empty()) 3622 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3623 3624 return Chain; 3625 } 3626 3627 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3628 // value to MVT::i64 and then truncate to the correct register size. 3629 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3630 EVT ObjectVT, SelectionDAG &DAG, 3631 SDValue ArgVal, 3632 const SDLoc &dl) const { 3633 if (Flags.isSExt()) 3634 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3635 DAG.getValueType(ObjectVT)); 3636 else if (Flags.isZExt()) 3637 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3638 DAG.getValueType(ObjectVT)); 3639 3640 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3641 } 3642 3643 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3644 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3645 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3646 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3647 // TODO: add description of PPC stack frame format, or at least some docs. 3648 // 3649 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3650 bool isLittleEndian = Subtarget.isLittleEndian(); 3651 MachineFunction &MF = DAG.getMachineFunction(); 3652 MachineFrameInfo &MFI = MF.getFrameInfo(); 3653 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3654 3655 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3656 "fastcc not supported on varargs functions"); 3657 3658 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3659 // Potential tail calls could cause overwriting of argument stack slots. 3660 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3661 (CallConv == CallingConv::Fast)); 3662 unsigned PtrByteSize = 8; 3663 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3664 3665 static const MCPhysReg GPR[] = { 3666 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3667 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3668 }; 3669 static const MCPhysReg VR[] = { 3670 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3671 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3672 }; 3673 3674 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3675 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3676 const unsigned Num_VR_Regs = array_lengthof(VR); 3677 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3678 3679 // Do a first pass over the arguments to determine whether the ABI 3680 // guarantees that our caller has allocated the parameter save area 3681 // on its stack frame. In the ELFv1 ABI, this is always the case; 3682 // in the ELFv2 ABI, it is true if this is a vararg function or if 3683 // any parameter is located in a stack slot. 3684 3685 bool HasParameterArea = !isELFv2ABI || isVarArg; 3686 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3687 unsigned NumBytes = LinkageSize; 3688 unsigned AvailableFPRs = Num_FPR_Regs; 3689 unsigned AvailableVRs = Num_VR_Regs; 3690 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3691 if (Ins[i].Flags.isNest()) 3692 continue; 3693 3694 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3695 PtrByteSize, LinkageSize, ParamAreaSize, 3696 NumBytes, AvailableFPRs, AvailableVRs, 3697 Subtarget.hasQPX())) 3698 HasParameterArea = true; 3699 } 3700 3701 // Add DAG nodes to load the arguments or copy them out of registers. On 3702 // entry to a function on PPC, the arguments start after the linkage area, 3703 // although the first ones are often in registers. 3704 3705 unsigned ArgOffset = LinkageSize; 3706 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3707 unsigned &QFPR_idx = FPR_idx; 3708 SmallVector<SDValue, 8> MemOps; 3709 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3710 unsigned CurArgIdx = 0; 3711 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3712 SDValue ArgVal; 3713 bool needsLoad = false; 3714 EVT ObjectVT = Ins[ArgNo].VT; 3715 EVT OrigVT = Ins[ArgNo].ArgVT; 3716 unsigned ObjSize = ObjectVT.getStoreSize(); 3717 unsigned ArgSize = ObjSize; 3718 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3719 if (Ins[ArgNo].isOrigArg()) { 3720 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3721 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3722 } 3723 // We re-align the argument offset for each argument, except when using the 3724 // fast calling convention, when we need to make sure we do that only when 3725 // we'll actually use a stack slot. 3726 unsigned CurArgOffset, Align; 3727 auto ComputeArgOffset = [&]() { 3728 /* Respect alignment of argument on the stack. */ 3729 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3730 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3731 CurArgOffset = ArgOffset; 3732 }; 3733 3734 if (CallConv != CallingConv::Fast) { 3735 ComputeArgOffset(); 3736 3737 /* Compute GPR index associated with argument offset. */ 3738 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3739 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3740 } 3741 3742 // FIXME the codegen can be much improved in some cases. 3743 // We do not have to keep everything in memory. 3744 if (Flags.isByVal()) { 3745 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3746 3747 if (CallConv == CallingConv::Fast) 3748 ComputeArgOffset(); 3749 3750 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3751 ObjSize = Flags.getByValSize(); 3752 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3753 // Empty aggregate parameters do not take up registers. Examples: 3754 // struct { } a; 3755 // union { } b; 3756 // int c[0]; 3757 // etc. However, we have to provide a place-holder in InVals, so 3758 // pretend we have an 8-byte item at the current address for that 3759 // purpose. 3760 if (!ObjSize) { 3761 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3762 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3763 InVals.push_back(FIN); 3764 continue; 3765 } 3766 3767 // Create a stack object covering all stack doublewords occupied 3768 // by the argument. If the argument is (fully or partially) on 3769 // the stack, or if the argument is fully in registers but the 3770 // caller has allocated the parameter save anyway, we can refer 3771 // directly to the caller's stack frame. Otherwise, create a 3772 // local copy in our own frame. 3773 int FI; 3774 if (HasParameterArea || 3775 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3776 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3777 else 3778 FI = MFI.CreateStackObject(ArgSize, Align, false); 3779 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3780 3781 // Handle aggregates smaller than 8 bytes. 3782 if (ObjSize < PtrByteSize) { 3783 // The value of the object is its address, which differs from the 3784 // address of the enclosing doubleword on big-endian systems. 3785 SDValue Arg = FIN; 3786 if (!isLittleEndian) { 3787 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3788 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3789 } 3790 InVals.push_back(Arg); 3791 3792 if (GPR_idx != Num_GPR_Regs) { 3793 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3794 FuncInfo->addLiveInAttr(VReg, Flags); 3795 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3796 SDValue Store; 3797 3798 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3799 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3800 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3801 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3802 MachinePointerInfo(&*FuncArg), ObjType); 3803 } else { 3804 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3805 // store the whole register as-is to the parameter save area 3806 // slot. 3807 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3808 MachinePointerInfo(&*FuncArg)); 3809 } 3810 3811 MemOps.push_back(Store); 3812 } 3813 // Whether we copied from a register or not, advance the offset 3814 // into the parameter save area by a full doubleword. 3815 ArgOffset += PtrByteSize; 3816 continue; 3817 } 3818 3819 // The value of the object is its address, which is the address of 3820 // its first stack doubleword. 3821 InVals.push_back(FIN); 3822 3823 // Store whatever pieces of the object are in registers to memory. 3824 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3825 if (GPR_idx == Num_GPR_Regs) 3826 break; 3827 3828 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3829 FuncInfo->addLiveInAttr(VReg, Flags); 3830 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3831 SDValue Addr = FIN; 3832 if (j) { 3833 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3834 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3835 } 3836 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3837 MachinePointerInfo(&*FuncArg, j)); 3838 MemOps.push_back(Store); 3839 ++GPR_idx; 3840 } 3841 ArgOffset += ArgSize; 3842 continue; 3843 } 3844 3845 switch (ObjectVT.getSimpleVT().SimpleTy) { 3846 default: llvm_unreachable("Unhandled argument type!"); 3847 case MVT::i1: 3848 case MVT::i32: 3849 case MVT::i64: 3850 if (Flags.isNest()) { 3851 // The 'nest' parameter, if any, is passed in R11. 3852 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3853 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3854 3855 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3856 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3857 3858 break; 3859 } 3860 3861 // These can be scalar arguments or elements of an integer array type 3862 // passed directly. Clang may use those instead of "byval" aggregate 3863 // types to avoid forcing arguments to memory unnecessarily. 3864 if (GPR_idx != Num_GPR_Regs) { 3865 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3866 FuncInfo->addLiveInAttr(VReg, Flags); 3867 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3868 3869 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3870 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3871 // value to MVT::i64 and then truncate to the correct register size. 3872 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3873 } else { 3874 if (CallConv == CallingConv::Fast) 3875 ComputeArgOffset(); 3876 3877 needsLoad = true; 3878 ArgSize = PtrByteSize; 3879 } 3880 if (CallConv != CallingConv::Fast || needsLoad) 3881 ArgOffset += 8; 3882 break; 3883 3884 case MVT::f32: 3885 case MVT::f64: 3886 // These can be scalar arguments or elements of a float array type 3887 // passed directly. The latter are used to implement ELFv2 homogenous 3888 // float aggregates. 3889 if (FPR_idx != Num_FPR_Regs) { 3890 unsigned VReg; 3891 3892 if (ObjectVT == MVT::f32) 3893 VReg = MF.addLiveIn(FPR[FPR_idx], 3894 Subtarget.hasP8Vector() 3895 ? &PPC::VSSRCRegClass 3896 : &PPC::F4RCRegClass); 3897 else 3898 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3899 ? &PPC::VSFRCRegClass 3900 : &PPC::F8RCRegClass); 3901 3902 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3903 ++FPR_idx; 3904 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3905 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3906 // once we support fp <-> gpr moves. 3907 3908 // This can only ever happen in the presence of f32 array types, 3909 // since otherwise we never run out of FPRs before running out 3910 // of GPRs. 3911 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3912 FuncInfo->addLiveInAttr(VReg, Flags); 3913 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3914 3915 if (ObjectVT == MVT::f32) { 3916 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3917 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3918 DAG.getConstant(32, dl, MVT::i32)); 3919 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3920 } 3921 3922 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3923 } else { 3924 if (CallConv == CallingConv::Fast) 3925 ComputeArgOffset(); 3926 3927 needsLoad = true; 3928 } 3929 3930 // When passing an array of floats, the array occupies consecutive 3931 // space in the argument area; only round up to the next doubleword 3932 // at the end of the array. Otherwise, each float takes 8 bytes. 3933 if (CallConv != CallingConv::Fast || needsLoad) { 3934 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3935 ArgOffset += ArgSize; 3936 if (Flags.isInConsecutiveRegsLast()) 3937 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3938 } 3939 break; 3940 case MVT::v4f32: 3941 case MVT::v4i32: 3942 case MVT::v8i16: 3943 case MVT::v16i8: 3944 case MVT::v2f64: 3945 case MVT::v2i64: 3946 case MVT::v1i128: 3947 case MVT::f128: 3948 if (!Subtarget.hasQPX()) { 3949 // These can be scalar arguments or elements of a vector array type 3950 // passed directly. The latter are used to implement ELFv2 homogenous 3951 // vector aggregates. 3952 if (VR_idx != Num_VR_Regs) { 3953 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3954 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3955 ++VR_idx; 3956 } else { 3957 if (CallConv == CallingConv::Fast) 3958 ComputeArgOffset(); 3959 needsLoad = true; 3960 } 3961 if (CallConv != CallingConv::Fast || needsLoad) 3962 ArgOffset += 16; 3963 break; 3964 } // not QPX 3965 3966 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 3967 "Invalid QPX parameter type"); 3968 /* fall through */ 3969 3970 case MVT::v4f64: 3971 case MVT::v4i1: 3972 // QPX vectors are treated like their scalar floating-point subregisters 3973 // (except that they're larger). 3974 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 3975 if (QFPR_idx != Num_QFPR_Regs) { 3976 const TargetRegisterClass *RC; 3977 switch (ObjectVT.getSimpleVT().SimpleTy) { 3978 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 3979 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 3980 default: RC = &PPC::QBRCRegClass; break; 3981 } 3982 3983 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 3984 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3985 ++QFPR_idx; 3986 } else { 3987 if (CallConv == CallingConv::Fast) 3988 ComputeArgOffset(); 3989 needsLoad = true; 3990 } 3991 if (CallConv != CallingConv::Fast || needsLoad) 3992 ArgOffset += Sz; 3993 break; 3994 } 3995 3996 // We need to load the argument to a virtual register if we determined 3997 // above that we ran out of physical registers of the appropriate type. 3998 if (needsLoad) { 3999 if (ObjSize < ArgSize && !isLittleEndian) 4000 CurArgOffset += ArgSize - ObjSize; 4001 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4002 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4003 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4004 } 4005 4006 InVals.push_back(ArgVal); 4007 } 4008 4009 // Area that is at least reserved in the caller of this function. 4010 unsigned MinReservedArea; 4011 if (HasParameterArea) 4012 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4013 else 4014 MinReservedArea = LinkageSize; 4015 4016 // Set the size that is at least reserved in caller of this function. Tail 4017 // call optimized functions' reserved stack space needs to be aligned so that 4018 // taking the difference between two stack areas will result in an aligned 4019 // stack. 4020 MinReservedArea = 4021 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4022 FuncInfo->setMinReservedArea(MinReservedArea); 4023 4024 // If the function takes variable number of arguments, make a frame index for 4025 // the start of the first vararg value... for expansion of llvm.va_start. 4026 if (isVarArg) { 4027 int Depth = ArgOffset; 4028 4029 FuncInfo->setVarArgsFrameIndex( 4030 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4031 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4032 4033 // If this function is vararg, store any remaining integer argument regs 4034 // to their spots on the stack so that they may be loaded by dereferencing 4035 // the result of va_next. 4036 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4037 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4038 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4039 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4040 SDValue Store = 4041 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4042 MemOps.push_back(Store); 4043 // Increment the address by four for the next argument to store 4044 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4045 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4046 } 4047 } 4048 4049 if (!MemOps.empty()) 4050 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4051 4052 return Chain; 4053 } 4054 4055 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4056 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4057 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4058 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4059 // TODO: add description of PPC stack frame format, or at least some docs. 4060 // 4061 MachineFunction &MF = DAG.getMachineFunction(); 4062 MachineFrameInfo &MFI = MF.getFrameInfo(); 4063 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4064 4065 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4066 bool isPPC64 = PtrVT == MVT::i64; 4067 // Potential tail calls could cause overwriting of argument stack slots. 4068 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4069 (CallConv == CallingConv::Fast)); 4070 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4071 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4072 unsigned ArgOffset = LinkageSize; 4073 // Area that is at least reserved in caller of this function. 4074 unsigned MinReservedArea = ArgOffset; 4075 4076 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4077 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4078 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4079 }; 4080 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4081 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4082 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4083 }; 4084 static const MCPhysReg VR[] = { 4085 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4086 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4087 }; 4088 4089 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4090 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4091 const unsigned Num_VR_Regs = array_lengthof( VR); 4092 4093 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4094 4095 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4096 4097 // In 32-bit non-varargs functions, the stack space for vectors is after the 4098 // stack space for non-vectors. We do not use this space unless we have 4099 // too many vectors to fit in registers, something that only occurs in 4100 // constructed examples:), but we have to walk the arglist to figure 4101 // that out...for the pathological case, compute VecArgOffset as the 4102 // start of the vector parameter area. Computing VecArgOffset is the 4103 // entire point of the following loop. 4104 unsigned VecArgOffset = ArgOffset; 4105 if (!isVarArg && !isPPC64) { 4106 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4107 ++ArgNo) { 4108 EVT ObjectVT = Ins[ArgNo].VT; 4109 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4110 4111 if (Flags.isByVal()) { 4112 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4113 unsigned ObjSize = Flags.getByValSize(); 4114 unsigned ArgSize = 4115 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4116 VecArgOffset += ArgSize; 4117 continue; 4118 } 4119 4120 switch(ObjectVT.getSimpleVT().SimpleTy) { 4121 default: llvm_unreachable("Unhandled argument type!"); 4122 case MVT::i1: 4123 case MVT::i32: 4124 case MVT::f32: 4125 VecArgOffset += 4; 4126 break; 4127 case MVT::i64: // PPC64 4128 case MVT::f64: 4129 // FIXME: We are guaranteed to be !isPPC64 at this point. 4130 // Does MVT::i64 apply? 4131 VecArgOffset += 8; 4132 break; 4133 case MVT::v4f32: 4134 case MVT::v4i32: 4135 case MVT::v8i16: 4136 case MVT::v16i8: 4137 // Nothing to do, we're only looking at Nonvector args here. 4138 break; 4139 } 4140 } 4141 } 4142 // We've found where the vector parameter area in memory is. Skip the 4143 // first 12 parameters; these don't use that memory. 4144 VecArgOffset = ((VecArgOffset+15)/16)*16; 4145 VecArgOffset += 12*16; 4146 4147 // Add DAG nodes to load the arguments or copy them out of registers. On 4148 // entry to a function on PPC, the arguments start after the linkage area, 4149 // although the first ones are often in registers. 4150 4151 SmallVector<SDValue, 8> MemOps; 4152 unsigned nAltivecParamsAtEnd = 0; 4153 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4154 unsigned CurArgIdx = 0; 4155 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4156 SDValue ArgVal; 4157 bool needsLoad = false; 4158 EVT ObjectVT = Ins[ArgNo].VT; 4159 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4160 unsigned ArgSize = ObjSize; 4161 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4162 if (Ins[ArgNo].isOrigArg()) { 4163 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4164 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4165 } 4166 unsigned CurArgOffset = ArgOffset; 4167 4168 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4169 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4170 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4171 if (isVarArg || isPPC64) { 4172 MinReservedArea = ((MinReservedArea+15)/16)*16; 4173 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4174 Flags, 4175 PtrByteSize); 4176 } else nAltivecParamsAtEnd++; 4177 } else 4178 // Calculate min reserved area. 4179 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4180 Flags, 4181 PtrByteSize); 4182 4183 // FIXME the codegen can be much improved in some cases. 4184 // We do not have to keep everything in memory. 4185 if (Flags.isByVal()) { 4186 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4187 4188 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4189 ObjSize = Flags.getByValSize(); 4190 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4191 // Objects of size 1 and 2 are right justified, everything else is 4192 // left justified. This means the memory address is adjusted forwards. 4193 if (ObjSize==1 || ObjSize==2) { 4194 CurArgOffset = CurArgOffset + (4 - ObjSize); 4195 } 4196 // The value of the object is its address. 4197 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4198 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4199 InVals.push_back(FIN); 4200 if (ObjSize==1 || ObjSize==2) { 4201 if (GPR_idx != Num_GPR_Regs) { 4202 unsigned VReg; 4203 if (isPPC64) 4204 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4205 else 4206 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4207 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4208 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4209 SDValue Store = 4210 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4211 MachinePointerInfo(&*FuncArg), ObjType); 4212 MemOps.push_back(Store); 4213 ++GPR_idx; 4214 } 4215 4216 ArgOffset += PtrByteSize; 4217 4218 continue; 4219 } 4220 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4221 // Store whatever pieces of the object are in registers 4222 // to memory. ArgOffset will be the address of the beginning 4223 // of the object. 4224 if (GPR_idx != Num_GPR_Regs) { 4225 unsigned VReg; 4226 if (isPPC64) 4227 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4228 else 4229 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4230 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4231 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4232 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4233 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4234 MachinePointerInfo(&*FuncArg, j)); 4235 MemOps.push_back(Store); 4236 ++GPR_idx; 4237 ArgOffset += PtrByteSize; 4238 } else { 4239 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4240 break; 4241 } 4242 } 4243 continue; 4244 } 4245 4246 switch (ObjectVT.getSimpleVT().SimpleTy) { 4247 default: llvm_unreachable("Unhandled argument type!"); 4248 case MVT::i1: 4249 case MVT::i32: 4250 if (!isPPC64) { 4251 if (GPR_idx != Num_GPR_Regs) { 4252 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4253 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4254 4255 if (ObjectVT == MVT::i1) 4256 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4257 4258 ++GPR_idx; 4259 } else { 4260 needsLoad = true; 4261 ArgSize = PtrByteSize; 4262 } 4263 // All int arguments reserve stack space in the Darwin ABI. 4264 ArgOffset += PtrByteSize; 4265 break; 4266 } 4267 LLVM_FALLTHROUGH; 4268 case MVT::i64: // PPC64 4269 if (GPR_idx != Num_GPR_Regs) { 4270 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4271 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4272 4273 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4274 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4275 // value to MVT::i64 and then truncate to the correct register size. 4276 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4277 4278 ++GPR_idx; 4279 } else { 4280 needsLoad = true; 4281 ArgSize = PtrByteSize; 4282 } 4283 // All int arguments reserve stack space in the Darwin ABI. 4284 ArgOffset += 8; 4285 break; 4286 4287 case MVT::f32: 4288 case MVT::f64: 4289 // Every 4 bytes of argument space consumes one of the GPRs available for 4290 // argument passing. 4291 if (GPR_idx != Num_GPR_Regs) { 4292 ++GPR_idx; 4293 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4294 ++GPR_idx; 4295 } 4296 if (FPR_idx != Num_FPR_Regs) { 4297 unsigned VReg; 4298 4299 if (ObjectVT == MVT::f32) 4300 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4301 else 4302 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4303 4304 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4305 ++FPR_idx; 4306 } else { 4307 needsLoad = true; 4308 } 4309 4310 // All FP arguments reserve stack space in the Darwin ABI. 4311 ArgOffset += isPPC64 ? 8 : ObjSize; 4312 break; 4313 case MVT::v4f32: 4314 case MVT::v4i32: 4315 case MVT::v8i16: 4316 case MVT::v16i8: 4317 // Note that vector arguments in registers don't reserve stack space, 4318 // except in varargs functions. 4319 if (VR_idx != Num_VR_Regs) { 4320 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4321 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4322 if (isVarArg) { 4323 while ((ArgOffset % 16) != 0) { 4324 ArgOffset += PtrByteSize; 4325 if (GPR_idx != Num_GPR_Regs) 4326 GPR_idx++; 4327 } 4328 ArgOffset += 16; 4329 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4330 } 4331 ++VR_idx; 4332 } else { 4333 if (!isVarArg && !isPPC64) { 4334 // Vectors go after all the nonvectors. 4335 CurArgOffset = VecArgOffset; 4336 VecArgOffset += 16; 4337 } else { 4338 // Vectors are aligned. 4339 ArgOffset = ((ArgOffset+15)/16)*16; 4340 CurArgOffset = ArgOffset; 4341 ArgOffset += 16; 4342 } 4343 needsLoad = true; 4344 } 4345 break; 4346 } 4347 4348 // We need to load the argument to a virtual register if we determined above 4349 // that we ran out of physical registers of the appropriate type. 4350 if (needsLoad) { 4351 int FI = MFI.CreateFixedObject(ObjSize, 4352 CurArgOffset + (ArgSize - ObjSize), 4353 isImmutable); 4354 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4355 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4356 } 4357 4358 InVals.push_back(ArgVal); 4359 } 4360 4361 // Allow for Altivec parameters at the end, if needed. 4362 if (nAltivecParamsAtEnd) { 4363 MinReservedArea = ((MinReservedArea+15)/16)*16; 4364 MinReservedArea += 16*nAltivecParamsAtEnd; 4365 } 4366 4367 // Area that is at least reserved in the caller of this function. 4368 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4369 4370 // Set the size that is at least reserved in caller of this function. Tail 4371 // call optimized functions' reserved stack space needs to be aligned so that 4372 // taking the difference between two stack areas will result in an aligned 4373 // stack. 4374 MinReservedArea = 4375 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4376 FuncInfo->setMinReservedArea(MinReservedArea); 4377 4378 // If the function takes variable number of arguments, make a frame index for 4379 // the start of the first vararg value... for expansion of llvm.va_start. 4380 if (isVarArg) { 4381 int Depth = ArgOffset; 4382 4383 FuncInfo->setVarArgsFrameIndex( 4384 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4385 Depth, true)); 4386 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4387 4388 // If this function is vararg, store any remaining integer argument regs 4389 // to their spots on the stack so that they may be loaded by dereferencing 4390 // the result of va_next. 4391 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4392 unsigned VReg; 4393 4394 if (isPPC64) 4395 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4396 else 4397 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4398 4399 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4400 SDValue Store = 4401 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4402 MemOps.push_back(Store); 4403 // Increment the address by four for the next argument to store 4404 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4405 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4406 } 4407 } 4408 4409 if (!MemOps.empty()) 4410 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4411 4412 return Chain; 4413 } 4414 4415 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4416 /// adjusted to accommodate the arguments for the tailcall. 4417 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4418 unsigned ParamSize) { 4419 4420 if (!isTailCall) return 0; 4421 4422 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4423 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4424 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4425 // Remember only if the new adjustment is bigger. 4426 if (SPDiff < FI->getTailCallSPDelta()) 4427 FI->setTailCallSPDelta(SPDiff); 4428 4429 return SPDiff; 4430 } 4431 4432 static bool isFunctionGlobalAddress(SDValue Callee); 4433 4434 static bool 4435 callsShareTOCBase(const Function *Caller, SDValue Callee, 4436 const TargetMachine &TM) { 4437 // If !G, Callee can be an external symbol. 4438 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4439 if (!G) 4440 return false; 4441 4442 // The medium and large code models are expected to provide a sufficiently 4443 // large TOC to provide all data addressing needs of a module with a 4444 // single TOC. Since each module will be addressed with a single TOC then we 4445 // only need to check that caller and callee don't cross dso boundaries. 4446 if (CodeModel::Medium == TM.getCodeModel() || 4447 CodeModel::Large == TM.getCodeModel()) 4448 return TM.shouldAssumeDSOLocal(*Caller->getParent(), G->getGlobal()); 4449 4450 // Otherwise we need to ensure callee and caller are in the same section, 4451 // since the linker may allocate multiple TOCs, and we don't know which 4452 // sections will belong to the same TOC base. 4453 4454 const GlobalValue *GV = G->getGlobal(); 4455 if (!GV->isStrongDefinitionForLinker()) 4456 return false; 4457 4458 // Any explicitly-specified sections and section prefixes must also match. 4459 // Also, if we're using -ffunction-sections, then each function is always in 4460 // a different section (the same is true for COMDAT functions). 4461 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4462 GV->getSection() != Caller->getSection()) 4463 return false; 4464 if (const auto *F = dyn_cast<Function>(GV)) { 4465 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4466 return false; 4467 } 4468 4469 // If the callee might be interposed, then we can't assume the ultimate call 4470 // target will be in the same section. Even in cases where we can assume that 4471 // interposition won't happen, in any case where the linker might insert a 4472 // stub to allow for interposition, we must generate code as though 4473 // interposition might occur. To understand why this matters, consider a 4474 // situation where: a -> b -> c where the arrows indicate calls. b and c are 4475 // in the same section, but a is in a different module (i.e. has a different 4476 // TOC base pointer). If the linker allows for interposition between b and c, 4477 // then it will generate a stub for the call edge between b and c which will 4478 // save the TOC pointer into the designated stack slot allocated by b. If we 4479 // return true here, and therefore allow a tail call between b and c, that 4480 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base 4481 // pointer into the stack slot allocated by a (where the a -> b stub saved 4482 // a's TOC base pointer). If we're not considering a tail call, but rather, 4483 // whether a nop is needed after the call instruction in b, because the linker 4484 // will insert a stub, it might complain about a missing nop if we omit it 4485 // (although many don't complain in this case). 4486 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4487 return false; 4488 4489 return true; 4490 } 4491 4492 static bool 4493 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4494 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4495 assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64()); 4496 4497 const unsigned PtrByteSize = 8; 4498 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4499 4500 static const MCPhysReg GPR[] = { 4501 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4502 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4503 }; 4504 static const MCPhysReg VR[] = { 4505 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4506 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4507 }; 4508 4509 const unsigned NumGPRs = array_lengthof(GPR); 4510 const unsigned NumFPRs = 13; 4511 const unsigned NumVRs = array_lengthof(VR); 4512 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4513 4514 unsigned NumBytes = LinkageSize; 4515 unsigned AvailableFPRs = NumFPRs; 4516 unsigned AvailableVRs = NumVRs; 4517 4518 for (const ISD::OutputArg& Param : Outs) { 4519 if (Param.Flags.isNest()) continue; 4520 4521 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4522 PtrByteSize, LinkageSize, ParamAreaSize, 4523 NumBytes, AvailableFPRs, AvailableVRs, 4524 Subtarget.hasQPX())) 4525 return true; 4526 } 4527 return false; 4528 } 4529 4530 static bool 4531 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) { 4532 if (CS.arg_size() != CallerFn->arg_size()) 4533 return false; 4534 4535 ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin(); 4536 ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end(); 4537 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4538 4539 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4540 const Value* CalleeArg = *CalleeArgIter; 4541 const Value* CallerArg = &(*CallerArgIter); 4542 if (CalleeArg == CallerArg) 4543 continue; 4544 4545 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4546 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4547 // } 4548 // 1st argument of callee is undef and has the same type as caller. 4549 if (CalleeArg->getType() == CallerArg->getType() && 4550 isa<UndefValue>(CalleeArg)) 4551 continue; 4552 4553 return false; 4554 } 4555 4556 return true; 4557 } 4558 4559 // Returns true if TCO is possible between the callers and callees 4560 // calling conventions. 4561 static bool 4562 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4563 CallingConv::ID CalleeCC) { 4564 // Tail calls are possible with fastcc and ccc. 4565 auto isTailCallableCC = [] (CallingConv::ID CC){ 4566 return CC == CallingConv::C || CC == CallingConv::Fast; 4567 }; 4568 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4569 return false; 4570 4571 // We can safely tail call both fastcc and ccc callees from a c calling 4572 // convention caller. If the caller is fastcc, we may have less stack space 4573 // than a non-fastcc caller with the same signature so disable tail-calls in 4574 // that case. 4575 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4576 } 4577 4578 bool 4579 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4580 SDValue Callee, 4581 CallingConv::ID CalleeCC, 4582 ImmutableCallSite CS, 4583 bool isVarArg, 4584 const SmallVectorImpl<ISD::OutputArg> &Outs, 4585 const SmallVectorImpl<ISD::InputArg> &Ins, 4586 SelectionDAG& DAG) const { 4587 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4588 4589 if (DisableSCO && !TailCallOpt) return false; 4590 4591 // Variadic argument functions are not supported. 4592 if (isVarArg) return false; 4593 4594 auto &Caller = DAG.getMachineFunction().getFunction(); 4595 // Check that the calling conventions are compatible for tco. 4596 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4597 return false; 4598 4599 // Caller contains any byval parameter is not supported. 4600 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4601 return false; 4602 4603 // Callee contains any byval parameter is not supported, too. 4604 // Note: This is a quick work around, because in some cases, e.g. 4605 // caller's stack size > callee's stack size, we are still able to apply 4606 // sibling call optimization. For example, gcc is able to do SCO for caller1 4607 // in the following example, but not for caller2. 4608 // struct test { 4609 // long int a; 4610 // char ary[56]; 4611 // } gTest; 4612 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4613 // b->a = v.a; 4614 // return 0; 4615 // } 4616 // void caller1(struct test a, struct test c, struct test *b) { 4617 // callee(gTest, b); } 4618 // void caller2(struct test *b) { callee(gTest, b); } 4619 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4620 return false; 4621 4622 // If callee and caller use different calling conventions, we cannot pass 4623 // parameters on stack since offsets for the parameter area may be different. 4624 if (Caller.getCallingConv() != CalleeCC && 4625 needStackSlotPassParameters(Subtarget, Outs)) 4626 return false; 4627 4628 // No TCO/SCO on indirect call because Caller have to restore its TOC 4629 if (!isFunctionGlobalAddress(Callee) && 4630 !isa<ExternalSymbolSDNode>(Callee)) 4631 return false; 4632 4633 // If the caller and callee potentially have different TOC bases then we 4634 // cannot tail call since we need to restore the TOC pointer after the call. 4635 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4636 if (!callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4637 return false; 4638 4639 // TCO allows altering callee ABI, so we don't have to check further. 4640 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4641 return true; 4642 4643 if (DisableSCO) return false; 4644 4645 // If callee use the same argument list that caller is using, then we can 4646 // apply SCO on this case. If it is not, then we need to check if callee needs 4647 // stack for passing arguments. 4648 if (!hasSameArgumentList(&Caller, CS) && 4649 needStackSlotPassParameters(Subtarget, Outs)) { 4650 return false; 4651 } 4652 4653 return true; 4654 } 4655 4656 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4657 /// for tail call optimization. Targets which want to do tail call 4658 /// optimization should implement this function. 4659 bool 4660 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4661 CallingConv::ID CalleeCC, 4662 bool isVarArg, 4663 const SmallVectorImpl<ISD::InputArg> &Ins, 4664 SelectionDAG& DAG) const { 4665 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4666 return false; 4667 4668 // Variable argument functions are not supported. 4669 if (isVarArg) 4670 return false; 4671 4672 MachineFunction &MF = DAG.getMachineFunction(); 4673 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4674 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4675 // Functions containing by val parameters are not supported. 4676 for (unsigned i = 0; i != Ins.size(); i++) { 4677 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4678 if (Flags.isByVal()) return false; 4679 } 4680 4681 // Non-PIC/GOT tail calls are supported. 4682 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4683 return true; 4684 4685 // At the moment we can only do local tail calls (in same module, hidden 4686 // or protected) if we are generating PIC. 4687 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4688 return G->getGlobal()->hasHiddenVisibility() 4689 || G->getGlobal()->hasProtectedVisibility(); 4690 } 4691 4692 return false; 4693 } 4694 4695 /// isCallCompatibleAddress - Return the immediate to use if the specified 4696 /// 32-bit value is representable in the immediate field of a BxA instruction. 4697 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4698 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4699 if (!C) return nullptr; 4700 4701 int Addr = C->getZExtValue(); 4702 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4703 SignExtend32<26>(Addr) != Addr) 4704 return nullptr; // Top 6 bits have to be sext of immediate. 4705 4706 return DAG 4707 .getConstant( 4708 (int)C->getZExtValue() >> 2, SDLoc(Op), 4709 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4710 .getNode(); 4711 } 4712 4713 namespace { 4714 4715 struct TailCallArgumentInfo { 4716 SDValue Arg; 4717 SDValue FrameIdxOp; 4718 int FrameIdx = 0; 4719 4720 TailCallArgumentInfo() = default; 4721 }; 4722 4723 } // end anonymous namespace 4724 4725 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4726 static void StoreTailCallArgumentsToStackSlot( 4727 SelectionDAG &DAG, SDValue Chain, 4728 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4729 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4730 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4731 SDValue Arg = TailCallArgs[i].Arg; 4732 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4733 int FI = TailCallArgs[i].FrameIdx; 4734 // Store relative to framepointer. 4735 MemOpChains.push_back(DAG.getStore( 4736 Chain, dl, Arg, FIN, 4737 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4738 } 4739 } 4740 4741 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4742 /// the appropriate stack slot for the tail call optimized function call. 4743 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4744 SDValue OldRetAddr, SDValue OldFP, 4745 int SPDiff, const SDLoc &dl) { 4746 if (SPDiff) { 4747 // Calculate the new stack slot for the return address. 4748 MachineFunction &MF = DAG.getMachineFunction(); 4749 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4750 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4751 bool isPPC64 = Subtarget.isPPC64(); 4752 int SlotSize = isPPC64 ? 8 : 4; 4753 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4754 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4755 NewRetAddrLoc, true); 4756 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4757 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4758 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4759 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4760 4761 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 4762 // slot as the FP is never overwritten. 4763 if (Subtarget.isDarwinABI()) { 4764 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 4765 int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc, 4766 true); 4767 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 4768 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 4769 MachinePointerInfo::getFixedStack( 4770 DAG.getMachineFunction(), NewFPIdx)); 4771 } 4772 } 4773 return Chain; 4774 } 4775 4776 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4777 /// the position of the argument. 4778 static void 4779 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4780 SDValue Arg, int SPDiff, unsigned ArgOffset, 4781 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4782 int Offset = ArgOffset + SPDiff; 4783 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4784 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4785 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4786 SDValue FIN = DAG.getFrameIndex(FI, VT); 4787 TailCallArgumentInfo Info; 4788 Info.Arg = Arg; 4789 Info.FrameIdxOp = FIN; 4790 Info.FrameIdx = FI; 4791 TailCallArguments.push_back(Info); 4792 } 4793 4794 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4795 /// stack slot. Returns the chain as result and the loaded frame pointers in 4796 /// LROpOut/FPOpout. Used when tail calling. 4797 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4798 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4799 SDValue &FPOpOut, const SDLoc &dl) const { 4800 if (SPDiff) { 4801 // Load the LR and FP stack slot for later adjusting. 4802 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4803 LROpOut = getReturnAddrFrameIndex(DAG); 4804 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4805 Chain = SDValue(LROpOut.getNode(), 1); 4806 4807 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 4808 // slot as the FP is never overwritten. 4809 if (Subtarget.isDarwinABI()) { 4810 FPOpOut = getFramePointerFrameIndex(DAG); 4811 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo()); 4812 Chain = SDValue(FPOpOut.getNode(), 1); 4813 } 4814 } 4815 return Chain; 4816 } 4817 4818 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4819 /// by "Src" to address "Dst" of size "Size". Alignment information is 4820 /// specified by the specific parameter attribute. The copy will be passed as 4821 /// a byval function parameter. 4822 /// Sometimes what we are copying is the end of a larger object, the part that 4823 /// does not fit in registers. 4824 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4825 SDValue Chain, ISD::ArgFlagsTy Flags, 4826 SelectionDAG &DAG, const SDLoc &dl) { 4827 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4828 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4829 false, false, false, MachinePointerInfo(), 4830 MachinePointerInfo()); 4831 } 4832 4833 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4834 /// tail calls. 4835 static void LowerMemOpCallTo( 4836 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4837 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4838 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4839 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4840 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4841 if (!isTailCall) { 4842 if (isVector) { 4843 SDValue StackPtr; 4844 if (isPPC64) 4845 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4846 else 4847 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4848 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4849 DAG.getConstant(ArgOffset, dl, PtrVT)); 4850 } 4851 MemOpChains.push_back( 4852 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4853 // Calculate and remember argument location. 4854 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4855 TailCallArguments); 4856 } 4857 4858 static void 4859 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4860 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4861 SDValue FPOp, 4862 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4863 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4864 // might overwrite each other in case of tail call optimization. 4865 SmallVector<SDValue, 8> MemOpChains2; 4866 // Do not flag preceding copytoreg stuff together with the following stuff. 4867 InFlag = SDValue(); 4868 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4869 MemOpChains2, dl); 4870 if (!MemOpChains2.empty()) 4871 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4872 4873 // Store the return address to the appropriate stack slot. 4874 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4875 4876 // Emit callseq_end just before tailcall node. 4877 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4878 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4879 InFlag = Chain.getValue(1); 4880 } 4881 4882 // Is this global address that of a function that can be called by name? (as 4883 // opposed to something that must hold a descriptor for an indirect call). 4884 static bool isFunctionGlobalAddress(SDValue Callee) { 4885 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4886 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4887 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4888 return false; 4889 4890 return G->getGlobal()->getValueType()->isFunctionTy(); 4891 } 4892 4893 return false; 4894 } 4895 4896 static unsigned 4897 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain, 4898 SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall, 4899 bool isPatchPoint, bool hasNest, 4900 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 4901 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4902 ImmutableCallSite CS, const PPCSubtarget &Subtarget) { 4903 bool isPPC64 = Subtarget.isPPC64(); 4904 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4905 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4906 4907 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4908 NodeTys.push_back(MVT::Other); // Returns a chain 4909 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4910 4911 unsigned CallOpc = PPCISD::CALL; 4912 4913 bool needIndirectCall = true; 4914 if (!isSVR4ABI || !isPPC64) 4915 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4916 // If this is an absolute destination address, use the munged value. 4917 Callee = SDValue(Dest, 0); 4918 needIndirectCall = false; 4919 } 4920 4921 // PC-relative references to external symbols should go through $stub, unless 4922 // we're building with the leopard linker or later, which automatically 4923 // synthesizes these stubs. 4924 const TargetMachine &TM = DAG.getTarget(); 4925 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 4926 const GlobalValue *GV = nullptr; 4927 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4928 GV = G->getGlobal(); 4929 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV); 4930 bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64; 4931 4932 if (isFunctionGlobalAddress(Callee)) { 4933 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4934 // A call to a TLS address is actually an indirect call to a 4935 // thread-specific pointer. 4936 unsigned OpFlags = 0; 4937 if (UsePlt) 4938 OpFlags = PPCII::MO_PLT; 4939 4940 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4941 // every direct call is) turn it into a TargetGlobalAddress / 4942 // TargetExternalSymbol node so that legalize doesn't hack it. 4943 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4944 Callee.getValueType(), 0, OpFlags); 4945 needIndirectCall = false; 4946 } 4947 4948 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4949 unsigned char OpFlags = 0; 4950 4951 if (UsePlt) 4952 OpFlags = PPCII::MO_PLT; 4953 4954 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4955 OpFlags); 4956 needIndirectCall = false; 4957 } 4958 4959 if (isPatchPoint) { 4960 // We'll form an invalid direct call when lowering a patchpoint; the full 4961 // sequence for an indirect call is complicated, and many of the 4962 // instructions introduced might have side effects (and, thus, can't be 4963 // removed later). The call itself will be removed as soon as the 4964 // argument/return lowering is complete, so the fact that it has the wrong 4965 // kind of operands should not really matter. 4966 needIndirectCall = false; 4967 } 4968 4969 if (needIndirectCall) { 4970 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 4971 // to do the call, we can't use PPCISD::CALL. 4972 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 4973 4974 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 4975 // Function pointers in the 64-bit SVR4 ABI do not point to the function 4976 // entry point, but to the function descriptor (the function entry point 4977 // address is part of the function descriptor though). 4978 // The function descriptor is a three doubleword structure with the 4979 // following fields: function entry point, TOC base address and 4980 // environment pointer. 4981 // Thus for a call through a function pointer, the following actions need 4982 // to be performed: 4983 // 1. Save the TOC of the caller in the TOC save area of its stack 4984 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 4985 // 2. Load the address of the function entry point from the function 4986 // descriptor. 4987 // 3. Load the TOC of the callee from the function descriptor into r2. 4988 // 4. Load the environment pointer from the function descriptor into 4989 // r11. 4990 // 5. Branch to the function entry point address. 4991 // 6. On return of the callee, the TOC of the caller needs to be 4992 // restored (this is done in FinishCall()). 4993 // 4994 // The loads are scheduled at the beginning of the call sequence, and the 4995 // register copies are flagged together to ensure that no other 4996 // operations can be scheduled in between. E.g. without flagging the 4997 // copies together, a TOC access in the caller could be scheduled between 4998 // the assignment of the callee TOC and the branch to the callee, which 4999 // results in the TOC access going through the TOC of the callee instead 5000 // of going through the TOC of the caller, which leads to incorrect code. 5001 5002 // Load the address of the function entry point from the function 5003 // descriptor. 5004 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 5005 if (LDChain.getValueType() == MVT::Glue) 5006 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 5007 5008 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5009 ? (MachineMemOperand::MODereferenceable | 5010 MachineMemOperand::MOInvariant) 5011 : MachineMemOperand::MONone; 5012 5013 MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr); 5014 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 5015 /* Alignment = */ 8, MMOFlags); 5016 5017 // Load environment pointer into r11. 5018 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 5019 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 5020 SDValue LoadEnvPtr = 5021 DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16), 5022 /* Alignment = */ 8, MMOFlags); 5023 5024 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 5025 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 5026 SDValue TOCPtr = 5027 DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8), 5028 /* Alignment = */ 8, MMOFlags); 5029 5030 setUsesTOCBasePtr(DAG); 5031 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 5032 InFlag); 5033 Chain = TOCVal.getValue(0); 5034 InFlag = TOCVal.getValue(1); 5035 5036 // If the function call has an explicit 'nest' parameter, it takes the 5037 // place of the environment pointer. 5038 if (!hasNest) { 5039 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 5040 InFlag); 5041 5042 Chain = EnvVal.getValue(0); 5043 InFlag = EnvVal.getValue(1); 5044 } 5045 5046 MTCTROps[0] = Chain; 5047 MTCTROps[1] = LoadFuncPtr; 5048 MTCTROps[2] = InFlag; 5049 } 5050 5051 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 5052 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 5053 InFlag = Chain.getValue(1); 5054 5055 NodeTys.clear(); 5056 NodeTys.push_back(MVT::Other); 5057 NodeTys.push_back(MVT::Glue); 5058 Ops.push_back(Chain); 5059 CallOpc = PPCISD::BCTRL; 5060 Callee.setNode(nullptr); 5061 // Add use of X11 (holding environment pointer) 5062 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest) 5063 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 5064 // Add CTR register as callee so a bctr can be emitted later. 5065 if (isTailCall) 5066 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 5067 } 5068 5069 // If this is a direct call, pass the chain and the callee. 5070 if (Callee.getNode()) { 5071 Ops.push_back(Chain); 5072 Ops.push_back(Callee); 5073 } 5074 // If this is a tail call add stack pointer delta. 5075 if (isTailCall) 5076 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5077 5078 // Add argument registers to the end of the list so that they are known live 5079 // into the call. 5080 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5081 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5082 RegsToPass[i].second.getValueType())); 5083 5084 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live 5085 // into the call. 5086 if (isSVR4ABI && isPPC64 && !isPatchPoint) { 5087 setUsesTOCBasePtr(DAG); 5088 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT)); 5089 } 5090 5091 return CallOpc; 5092 } 5093 5094 SDValue PPCTargetLowering::LowerCallResult( 5095 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5096 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5097 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5098 SmallVector<CCValAssign, 16> RVLocs; 5099 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5100 *DAG.getContext()); 5101 5102 CCRetInfo.AnalyzeCallResult( 5103 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5104 ? RetCC_PPC_Cold 5105 : RetCC_PPC); 5106 5107 // Copy all of the result registers out of their specified physreg. 5108 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5109 CCValAssign &VA = RVLocs[i]; 5110 assert(VA.isRegLoc() && "Can only return in registers!"); 5111 5112 SDValue Val = DAG.getCopyFromReg(Chain, dl, 5113 VA.getLocReg(), VA.getLocVT(), InFlag); 5114 Chain = Val.getValue(1); 5115 InFlag = Val.getValue(2); 5116 5117 switch (VA.getLocInfo()) { 5118 default: llvm_unreachable("Unknown loc info!"); 5119 case CCValAssign::Full: break; 5120 case CCValAssign::AExt: 5121 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5122 break; 5123 case CCValAssign::ZExt: 5124 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5125 DAG.getValueType(VA.getValVT())); 5126 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5127 break; 5128 case CCValAssign::SExt: 5129 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5130 DAG.getValueType(VA.getValVT())); 5131 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5132 break; 5133 } 5134 5135 InVals.push_back(Val); 5136 } 5137 5138 return Chain; 5139 } 5140 5141 SDValue PPCTargetLowering::FinishCall( 5142 CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg, 5143 bool isPatchPoint, bool hasNest, SelectionDAG &DAG, 5144 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag, 5145 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5146 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5147 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const { 5148 std::vector<EVT> NodeTys; 5149 SmallVector<SDValue, 8> Ops; 5150 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 5151 SPDiff, isTailCall, isPatchPoint, hasNest, 5152 RegsToPass, Ops, NodeTys, CS, Subtarget); 5153 5154 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5155 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 5156 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5157 5158 // When performing tail call optimization the callee pops its arguments off 5159 // the stack. Account for this here so these bytes can be pushed back on in 5160 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5161 int BytesCalleePops = 5162 (CallConv == CallingConv::Fast && 5163 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 5164 5165 // Add a register mask operand representing the call-preserved registers. 5166 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5167 const uint32_t *Mask = 5168 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 5169 assert(Mask && "Missing call preserved mask for calling convention"); 5170 Ops.push_back(DAG.getRegisterMask(Mask)); 5171 5172 if (InFlag.getNode()) 5173 Ops.push_back(InFlag); 5174 5175 // Emit tail call. 5176 if (isTailCall) { 5177 assert(((Callee.getOpcode() == ISD::Register && 5178 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5179 Callee.getOpcode() == ISD::TargetExternalSymbol || 5180 Callee.getOpcode() == ISD::TargetGlobalAddress || 5181 isa<ConstantSDNode>(Callee)) && 5182 "Expecting an global address, external symbol, absolute value or register"); 5183 5184 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5185 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 5186 } 5187 5188 // Add a NOP immediately after the branch instruction when using the 64-bit 5189 // SVR4 ABI. At link time, if caller and callee are in a different module and 5190 // thus have a different TOC, the call will be replaced with a call to a stub 5191 // function which saves the current TOC, loads the TOC of the callee and 5192 // branches to the callee. The NOP will be replaced with a load instruction 5193 // which restores the TOC of the caller from the TOC save slot of the current 5194 // stack frame. If caller and callee belong to the same module (and have the 5195 // same TOC), the NOP will remain unchanged. 5196 5197 MachineFunction &MF = DAG.getMachineFunction(); 5198 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() && 5199 !isPatchPoint) { 5200 if (CallOpc == PPCISD::BCTRL) { 5201 // This is a call through a function pointer. 5202 // Restore the caller TOC from the save area into R2. 5203 // See PrepareCall() for more information about calls through function 5204 // pointers in the 64-bit SVR4 ABI. 5205 // We are using a target-specific load with r2 hard coded, because the 5206 // result of a target-independent load would never go directly into r2, 5207 // since r2 is a reserved register (which prevents the register allocator 5208 // from allocating it), resulting in an additional register being 5209 // allocated and an unnecessary move instruction being generated. 5210 CallOpc = PPCISD::BCTRL_LOAD_TOC; 5211 5212 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5213 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 5214 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5215 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5216 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 5217 5218 // The address needs to go after the chain input but before the flag (or 5219 // any other variadic arguments). 5220 Ops.insert(std::next(Ops.begin()), AddTOC); 5221 } else if (CallOpc == PPCISD::CALL && 5222 !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) { 5223 // Otherwise insert NOP for non-local calls. 5224 CallOpc = PPCISD::CALL_NOP; 5225 } 5226 } 5227 5228 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 5229 InFlag = Chain.getValue(1); 5230 5231 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5232 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5233 InFlag, dl); 5234 if (!Ins.empty()) 5235 InFlag = Chain.getValue(1); 5236 5237 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 5238 Ins, dl, DAG, InVals); 5239 } 5240 5241 SDValue 5242 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5243 SmallVectorImpl<SDValue> &InVals) const { 5244 SelectionDAG &DAG = CLI.DAG; 5245 SDLoc &dl = CLI.DL; 5246 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5247 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5248 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5249 SDValue Chain = CLI.Chain; 5250 SDValue Callee = CLI.Callee; 5251 bool &isTailCall = CLI.IsTailCall; 5252 CallingConv::ID CallConv = CLI.CallConv; 5253 bool isVarArg = CLI.IsVarArg; 5254 bool isPatchPoint = CLI.IsPatchPoint; 5255 ImmutableCallSite CS = CLI.CS; 5256 5257 if (isTailCall) { 5258 if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall())) 5259 isTailCall = false; 5260 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5261 isTailCall = 5262 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 5263 isVarArg, Outs, Ins, DAG); 5264 else 5265 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5266 Ins, DAG); 5267 if (isTailCall) { 5268 ++NumTailCalls; 5269 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5270 ++NumSiblingCalls; 5271 5272 assert(isa<GlobalAddressSDNode>(Callee) && 5273 "Callee should be an llvm::Function object."); 5274 LLVM_DEBUG( 5275 const GlobalValue *GV = 5276 cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5277 const unsigned Width = 5278 80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0"); 5279 dbgs() << "TCO caller: " 5280 << left_justify(DAG.getMachineFunction().getName(), Width) 5281 << ", callee linkage: " << GV->getVisibility() << ", " 5282 << GV->getLinkage() << "\n"); 5283 } 5284 } 5285 5286 if (!isTailCall && CS && CS.isMustTailCall()) 5287 report_fatal_error("failed to perform tail call elimination on a call " 5288 "site marked musttail"); 5289 5290 // When long calls (i.e. indirect calls) are always used, calls are always 5291 // made via function pointer. If we have a function name, first translate it 5292 // into a pointer. 5293 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5294 !isTailCall) 5295 Callee = LowerGlobalAddress(Callee, DAG); 5296 5297 if (Subtarget.isSVR4ABI()) { 5298 if (Subtarget.isPPC64()) 5299 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 5300 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5301 dl, DAG, InVals, CS); 5302 else 5303 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 5304 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5305 dl, DAG, InVals, CS); 5306 } 5307 5308 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 5309 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5310 dl, DAG, InVals, CS); 5311 } 5312 5313 SDValue PPCTargetLowering::LowerCall_32SVR4( 5314 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5315 bool isTailCall, bool isPatchPoint, 5316 const SmallVectorImpl<ISD::OutputArg> &Outs, 5317 const SmallVectorImpl<SDValue> &OutVals, 5318 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5319 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5320 ImmutableCallSite CS) const { 5321 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5322 // of the 32-bit SVR4 ABI stack frame layout. 5323 5324 assert((CallConv == CallingConv::C || 5325 CallConv == CallingConv::Cold || 5326 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5327 5328 unsigned PtrByteSize = 4; 5329 5330 MachineFunction &MF = DAG.getMachineFunction(); 5331 5332 // Mark this function as potentially containing a function that contains a 5333 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5334 // and restoring the callers stack pointer in this functions epilog. This is 5335 // done because by tail calling the called function might overwrite the value 5336 // in this function's (MF) stack pointer stack slot 0(SP). 5337 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5338 CallConv == CallingConv::Fast) 5339 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5340 5341 // Count how many bytes are to be pushed on the stack, including the linkage 5342 // area, parameter list area and the part of the local variable space which 5343 // contains copies of aggregates which are passed by value. 5344 5345 // Assign locations to all of the outgoing arguments. 5346 SmallVector<CCValAssign, 16> ArgLocs; 5347 PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 5348 5349 // Reserve space for the linkage area on the stack. 5350 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5351 PtrByteSize); 5352 if (useSoftFloat()) 5353 CCInfo.PreAnalyzeCallOperands(Outs); 5354 5355 if (isVarArg) { 5356 // Handle fixed and variable vector arguments differently. 5357 // Fixed vector arguments go into registers as long as registers are 5358 // available. Variable vector arguments always go into memory. 5359 unsigned NumArgs = Outs.size(); 5360 5361 for (unsigned i = 0; i != NumArgs; ++i) { 5362 MVT ArgVT = Outs[i].VT; 5363 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5364 bool Result; 5365 5366 if (Outs[i].IsFixed) { 5367 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5368 CCInfo); 5369 } else { 5370 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5371 ArgFlags, CCInfo); 5372 } 5373 5374 if (Result) { 5375 #ifndef NDEBUG 5376 errs() << "Call operand #" << i << " has unhandled type " 5377 << EVT(ArgVT).getEVTString() << "\n"; 5378 #endif 5379 llvm_unreachable(nullptr); 5380 } 5381 } 5382 } else { 5383 // All arguments are treated the same. 5384 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5385 } 5386 CCInfo.clearWasPPCF128(); 5387 5388 // Assign locations to all of the outgoing aggregate by value arguments. 5389 SmallVector<CCValAssign, 16> ByValArgLocs; 5390 CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext()); 5391 5392 // Reserve stack space for the allocations in CCInfo. 5393 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 5394 5395 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5396 5397 // Size of the linkage area, parameter list area and the part of the local 5398 // space variable where copies of aggregates which are passed by value are 5399 // stored. 5400 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5401 5402 // Calculate by how many bytes the stack has to be adjusted in case of tail 5403 // call optimization. 5404 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5405 5406 // Adjust the stack pointer for the new arguments... 5407 // These operations are automatically eliminated by the prolog/epilog pass 5408 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5409 SDValue CallSeqStart = Chain; 5410 5411 // Load the return address and frame pointer so it can be moved somewhere else 5412 // later. 5413 SDValue LROp, FPOp; 5414 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5415 5416 // Set up a copy of the stack pointer for use loading and storing any 5417 // arguments that may not fit in the registers available for argument 5418 // passing. 5419 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5420 5421 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5422 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5423 SmallVector<SDValue, 8> MemOpChains; 5424 5425 bool seenFloatArg = false; 5426 // Walk the register/memloc assignments, inserting copies/loads. 5427 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 5428 i != e; 5429 ++i) { 5430 CCValAssign &VA = ArgLocs[i]; 5431 SDValue Arg = OutVals[i]; 5432 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5433 5434 if (Flags.isByVal()) { 5435 // Argument is an aggregate which is passed by value, thus we need to 5436 // create a copy of it in the local variable space of the current stack 5437 // frame (which is the stack frame of the caller) and pass the address of 5438 // this copy to the callee. 5439 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5440 CCValAssign &ByValVA = ByValArgLocs[j++]; 5441 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5442 5443 // Memory reserved in the local variable space of the callers stack frame. 5444 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5445 5446 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5447 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5448 StackPtr, PtrOff); 5449 5450 // Create a copy of the argument in the local area of the current 5451 // stack frame. 5452 SDValue MemcpyCall = 5453 CreateCopyOfByValArgument(Arg, PtrOff, 5454 CallSeqStart.getNode()->getOperand(0), 5455 Flags, DAG, dl); 5456 5457 // This must go outside the CALLSEQ_START..END. 5458 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5459 SDLoc(MemcpyCall)); 5460 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5461 NewCallSeqStart.getNode()); 5462 Chain = CallSeqStart = NewCallSeqStart; 5463 5464 // Pass the address of the aggregate copy on the stack either in a 5465 // physical register or in the parameter list area of the current stack 5466 // frame to the callee. 5467 Arg = PtrOff; 5468 } 5469 5470 if (VA.isRegLoc()) { 5471 if (Arg.getValueType() == MVT::i1) 5472 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg); 5473 5474 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5475 // Put argument in a physical register. 5476 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5477 } else { 5478 // Put argument in the parameter list area of the current stack frame. 5479 assert(VA.isMemLoc()); 5480 unsigned LocMemOffset = VA.getLocMemOffset(); 5481 5482 if (!isTailCall) { 5483 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5484 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5485 StackPtr, PtrOff); 5486 5487 MemOpChains.push_back( 5488 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5489 } else { 5490 // Calculate and remember argument location. 5491 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5492 TailCallArguments); 5493 } 5494 } 5495 } 5496 5497 if (!MemOpChains.empty()) 5498 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5499 5500 // Build a sequence of copy-to-reg nodes chained together with token chain 5501 // and flag operands which copy the outgoing args into the appropriate regs. 5502 SDValue InFlag; 5503 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5504 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5505 RegsToPass[i].second, InFlag); 5506 InFlag = Chain.getValue(1); 5507 } 5508 5509 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5510 // registers. 5511 if (isVarArg) { 5512 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5513 SDValue Ops[] = { Chain, InFlag }; 5514 5515 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5516 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5517 5518 InFlag = Chain.getValue(1); 5519 } 5520 5521 if (isTailCall) 5522 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5523 TailCallArguments); 5524 5525 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 5526 /* unused except on PPC64 ELFv1 */ false, DAG, 5527 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5528 NumBytes, Ins, InVals, CS); 5529 } 5530 5531 // Copy an argument into memory, being careful to do this outside the 5532 // call sequence for the call to which the argument belongs. 5533 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5534 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5535 SelectionDAG &DAG, const SDLoc &dl) const { 5536 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5537 CallSeqStart.getNode()->getOperand(0), 5538 Flags, DAG, dl); 5539 // The MEMCPY must go outside the CALLSEQ_START..END. 5540 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5541 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5542 SDLoc(MemcpyCall)); 5543 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5544 NewCallSeqStart.getNode()); 5545 return NewCallSeqStart; 5546 } 5547 5548 SDValue PPCTargetLowering::LowerCall_64SVR4( 5549 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5550 bool isTailCall, bool isPatchPoint, 5551 const SmallVectorImpl<ISD::OutputArg> &Outs, 5552 const SmallVectorImpl<SDValue> &OutVals, 5553 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5554 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5555 ImmutableCallSite CS) const { 5556 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5557 bool isLittleEndian = Subtarget.isLittleEndian(); 5558 unsigned NumOps = Outs.size(); 5559 bool hasNest = false; 5560 bool IsSibCall = false; 5561 5562 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5563 unsigned PtrByteSize = 8; 5564 5565 MachineFunction &MF = DAG.getMachineFunction(); 5566 5567 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5568 IsSibCall = true; 5569 5570 // Mark this function as potentially containing a function that contains a 5571 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5572 // and restoring the callers stack pointer in this functions epilog. This is 5573 // done because by tail calling the called function might overwrite the value 5574 // in this function's (MF) stack pointer stack slot 0(SP). 5575 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5576 CallConv == CallingConv::Fast) 5577 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5578 5579 assert(!(CallConv == CallingConv::Fast && isVarArg) && 5580 "fastcc not supported on varargs functions"); 5581 5582 // Count how many bytes are to be pushed on the stack, including the linkage 5583 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5584 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5585 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5586 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5587 unsigned NumBytes = LinkageSize; 5588 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5589 unsigned &QFPR_idx = FPR_idx; 5590 5591 static const MCPhysReg GPR[] = { 5592 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5593 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5594 }; 5595 static const MCPhysReg VR[] = { 5596 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5597 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5598 }; 5599 5600 const unsigned NumGPRs = array_lengthof(GPR); 5601 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5602 const unsigned NumVRs = array_lengthof(VR); 5603 const unsigned NumQFPRs = NumFPRs; 5604 5605 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5606 // can be passed to the callee in registers. 5607 // For the fast calling convention, there is another check below. 5608 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5609 bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast; 5610 if (!HasParameterArea) { 5611 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5612 unsigned AvailableFPRs = NumFPRs; 5613 unsigned AvailableVRs = NumVRs; 5614 unsigned NumBytesTmp = NumBytes; 5615 for (unsigned i = 0; i != NumOps; ++i) { 5616 if (Outs[i].Flags.isNest()) continue; 5617 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5618 PtrByteSize, LinkageSize, ParamAreaSize, 5619 NumBytesTmp, AvailableFPRs, AvailableVRs, 5620 Subtarget.hasQPX())) 5621 HasParameterArea = true; 5622 } 5623 } 5624 5625 // When using the fast calling convention, we don't provide backing for 5626 // arguments that will be in registers. 5627 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5628 5629 // Avoid allocating parameter area for fastcc functions if all the arguments 5630 // can be passed in the registers. 5631 if (CallConv == CallingConv::Fast) 5632 HasParameterArea = false; 5633 5634 // Add up all the space actually used. 5635 for (unsigned i = 0; i != NumOps; ++i) { 5636 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5637 EVT ArgVT = Outs[i].VT; 5638 EVT OrigVT = Outs[i].ArgVT; 5639 5640 if (Flags.isNest()) 5641 continue; 5642 5643 if (CallConv == CallingConv::Fast) { 5644 if (Flags.isByVal()) { 5645 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5646 if (NumGPRsUsed > NumGPRs) 5647 HasParameterArea = true; 5648 } else { 5649 switch (ArgVT.getSimpleVT().SimpleTy) { 5650 default: llvm_unreachable("Unexpected ValueType for argument!"); 5651 case MVT::i1: 5652 case MVT::i32: 5653 case MVT::i64: 5654 if (++NumGPRsUsed <= NumGPRs) 5655 continue; 5656 break; 5657 case MVT::v4i32: 5658 case MVT::v8i16: 5659 case MVT::v16i8: 5660 case MVT::v2f64: 5661 case MVT::v2i64: 5662 case MVT::v1i128: 5663 case MVT::f128: 5664 if (++NumVRsUsed <= NumVRs) 5665 continue; 5666 break; 5667 case MVT::v4f32: 5668 // When using QPX, this is handled like a FP register, otherwise, it 5669 // is an Altivec register. 5670 if (Subtarget.hasQPX()) { 5671 if (++NumFPRsUsed <= NumFPRs) 5672 continue; 5673 } else { 5674 if (++NumVRsUsed <= NumVRs) 5675 continue; 5676 } 5677 break; 5678 case MVT::f32: 5679 case MVT::f64: 5680 case MVT::v4f64: // QPX 5681 case MVT::v4i1: // QPX 5682 if (++NumFPRsUsed <= NumFPRs) 5683 continue; 5684 break; 5685 } 5686 HasParameterArea = true; 5687 } 5688 } 5689 5690 /* Respect alignment of argument on the stack. */ 5691 unsigned Align = 5692 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5693 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 5694 5695 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5696 if (Flags.isInConsecutiveRegsLast()) 5697 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5698 } 5699 5700 unsigned NumBytesActuallyUsed = NumBytes; 5701 5702 // In the old ELFv1 ABI, 5703 // the prolog code of the callee may store up to 8 GPR argument registers to 5704 // the stack, allowing va_start to index over them in memory if its varargs. 5705 // Because we cannot tell if this is needed on the caller side, we have to 5706 // conservatively assume that it is needed. As such, make sure we have at 5707 // least enough stack space for the caller to store the 8 GPRs. 5708 // In the ELFv2 ABI, we allocate the parameter area iff a callee 5709 // really requires memory operands, e.g. a vararg function. 5710 if (HasParameterArea) 5711 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5712 else 5713 NumBytes = LinkageSize; 5714 5715 // Tail call needs the stack to be aligned. 5716 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5717 CallConv == CallingConv::Fast) 5718 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5719 5720 int SPDiff = 0; 5721 5722 // Calculate by how many bytes the stack has to be adjusted in case of tail 5723 // call optimization. 5724 if (!IsSibCall) 5725 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5726 5727 // To protect arguments on the stack from being clobbered in a tail call, 5728 // force all the loads to happen before doing any other lowering. 5729 if (isTailCall) 5730 Chain = DAG.getStackArgumentTokenFactor(Chain); 5731 5732 // Adjust the stack pointer for the new arguments... 5733 // These operations are automatically eliminated by the prolog/epilog pass 5734 if (!IsSibCall) 5735 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5736 SDValue CallSeqStart = Chain; 5737 5738 // Load the return address and frame pointer so it can be move somewhere else 5739 // later. 5740 SDValue LROp, FPOp; 5741 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5742 5743 // Set up a copy of the stack pointer for use loading and storing any 5744 // arguments that may not fit in the registers available for argument 5745 // passing. 5746 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5747 5748 // Figure out which arguments are going to go in registers, and which in 5749 // memory. Also, if this is a vararg function, floating point operations 5750 // must be stored to our stack, and loaded into integer regs as well, if 5751 // any integer regs are available for argument passing. 5752 unsigned ArgOffset = LinkageSize; 5753 5754 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5755 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5756 5757 SmallVector<SDValue, 8> MemOpChains; 5758 for (unsigned i = 0; i != NumOps; ++i) { 5759 SDValue Arg = OutVals[i]; 5760 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5761 EVT ArgVT = Outs[i].VT; 5762 EVT OrigVT = Outs[i].ArgVT; 5763 5764 // PtrOff will be used to store the current argument to the stack if a 5765 // register cannot be found for it. 5766 SDValue PtrOff; 5767 5768 // We re-align the argument offset for each argument, except when using the 5769 // fast calling convention, when we need to make sure we do that only when 5770 // we'll actually use a stack slot. 5771 auto ComputePtrOff = [&]() { 5772 /* Respect alignment of argument on the stack. */ 5773 unsigned Align = 5774 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5775 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 5776 5777 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5778 5779 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5780 }; 5781 5782 if (CallConv != CallingConv::Fast) { 5783 ComputePtrOff(); 5784 5785 /* Compute GPR index associated with argument offset. */ 5786 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 5787 GPR_idx = std::min(GPR_idx, NumGPRs); 5788 } 5789 5790 // Promote integers to 64-bit values. 5791 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 5792 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5793 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5794 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5795 } 5796 5797 // FIXME memcpy is used way more than necessary. Correctness first. 5798 // Note: "by value" is code for passing a structure by value, not 5799 // basic types. 5800 if (Flags.isByVal()) { 5801 // Note: Size includes alignment padding, so 5802 // struct x { short a; char b; } 5803 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 5804 // These are the proper values we need for right-justifying the 5805 // aggregate in a parameter register. 5806 unsigned Size = Flags.getByValSize(); 5807 5808 // An empty aggregate parameter takes up no storage and no 5809 // registers. 5810 if (Size == 0) 5811 continue; 5812 5813 if (CallConv == CallingConv::Fast) 5814 ComputePtrOff(); 5815 5816 // All aggregates smaller than 8 bytes must be passed right-justified. 5817 if (Size==1 || Size==2 || Size==4) { 5818 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 5819 if (GPR_idx != NumGPRs) { 5820 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5821 MachinePointerInfo(), VT); 5822 MemOpChains.push_back(Load.getValue(1)); 5823 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5824 5825 ArgOffset += PtrByteSize; 5826 continue; 5827 } 5828 } 5829 5830 if (GPR_idx == NumGPRs && Size < 8) { 5831 SDValue AddPtr = PtrOff; 5832 if (!isLittleEndian) { 5833 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5834 PtrOff.getValueType()); 5835 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5836 } 5837 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5838 CallSeqStart, 5839 Flags, DAG, dl); 5840 ArgOffset += PtrByteSize; 5841 continue; 5842 } 5843 // Copy entire object into memory. There are cases where gcc-generated 5844 // code assumes it is there, even if it could be put entirely into 5845 // registers. (This is not what the doc says.) 5846 5847 // FIXME: The above statement is likely due to a misunderstanding of the 5848 // documents. All arguments must be copied into the parameter area BY 5849 // THE CALLEE in the event that the callee takes the address of any 5850 // formal argument. That has not yet been implemented. However, it is 5851 // reasonable to use the stack area as a staging area for the register 5852 // load. 5853 5854 // Skip this for small aggregates, as we will use the same slot for a 5855 // right-justified copy, below. 5856 if (Size >= 8) 5857 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5858 CallSeqStart, 5859 Flags, DAG, dl); 5860 5861 // When a register is available, pass a small aggregate right-justified. 5862 if (Size < 8 && GPR_idx != NumGPRs) { 5863 // The easiest way to get this right-justified in a register 5864 // is to copy the structure into the rightmost portion of a 5865 // local variable slot, then load the whole slot into the 5866 // register. 5867 // FIXME: The memcpy seems to produce pretty awful code for 5868 // small aggregates, particularly for packed ones. 5869 // FIXME: It would be preferable to use the slot in the 5870 // parameter save area instead of a new local variable. 5871 SDValue AddPtr = PtrOff; 5872 if (!isLittleEndian) { 5873 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5874 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5875 } 5876 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5877 CallSeqStart, 5878 Flags, DAG, dl); 5879 5880 // Load the slot into the register. 5881 SDValue Load = 5882 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 5883 MemOpChains.push_back(Load.getValue(1)); 5884 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5885 5886 // Done with this argument. 5887 ArgOffset += PtrByteSize; 5888 continue; 5889 } 5890 5891 // For aggregates larger than PtrByteSize, copy the pieces of the 5892 // object that fit into registers from the parameter save area. 5893 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5894 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5895 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5896 if (GPR_idx != NumGPRs) { 5897 SDValue Load = 5898 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 5899 MemOpChains.push_back(Load.getValue(1)); 5900 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5901 ArgOffset += PtrByteSize; 5902 } else { 5903 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5904 break; 5905 } 5906 } 5907 continue; 5908 } 5909 5910 switch (Arg.getSimpleValueType().SimpleTy) { 5911 default: llvm_unreachable("Unexpected ValueType for argument!"); 5912 case MVT::i1: 5913 case MVT::i32: 5914 case MVT::i64: 5915 if (Flags.isNest()) { 5916 // The 'nest' parameter, if any, is passed in R11. 5917 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 5918 hasNest = true; 5919 break; 5920 } 5921 5922 // These can be scalar arguments or elements of an integer array type 5923 // passed directly. Clang may use those instead of "byval" aggregate 5924 // types to avoid forcing arguments to memory unnecessarily. 5925 if (GPR_idx != NumGPRs) { 5926 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5927 } else { 5928 if (CallConv == CallingConv::Fast) 5929 ComputePtrOff(); 5930 5931 assert(HasParameterArea && 5932 "Parameter area must exist to pass an argument in memory."); 5933 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5934 true, isTailCall, false, MemOpChains, 5935 TailCallArguments, dl); 5936 if (CallConv == CallingConv::Fast) 5937 ArgOffset += PtrByteSize; 5938 } 5939 if (CallConv != CallingConv::Fast) 5940 ArgOffset += PtrByteSize; 5941 break; 5942 case MVT::f32: 5943 case MVT::f64: { 5944 // These can be scalar arguments or elements of a float array type 5945 // passed directly. The latter are used to implement ELFv2 homogenous 5946 // float aggregates. 5947 5948 // Named arguments go into FPRs first, and once they overflow, the 5949 // remaining arguments go into GPRs and then the parameter save area. 5950 // Unnamed arguments for vararg functions always go to GPRs and 5951 // then the parameter save area. For now, put all arguments to vararg 5952 // routines always in both locations (FPR *and* GPR or stack slot). 5953 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 5954 bool NeededLoad = false; 5955 5956 // First load the argument into the next available FPR. 5957 if (FPR_idx != NumFPRs) 5958 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5959 5960 // Next, load the argument into GPR or stack slot if needed. 5961 if (!NeedGPROrStack) 5962 ; 5963 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 5964 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 5965 // once we support fp <-> gpr moves. 5966 5967 // In the non-vararg case, this can only ever happen in the 5968 // presence of f32 array types, since otherwise we never run 5969 // out of FPRs before running out of GPRs. 5970 SDValue ArgVal; 5971 5972 // Double values are always passed in a single GPR. 5973 if (Arg.getValueType() != MVT::f32) { 5974 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 5975 5976 // Non-array float values are extended and passed in a GPR. 5977 } else if (!Flags.isInConsecutiveRegs()) { 5978 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5979 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5980 5981 // If we have an array of floats, we collect every odd element 5982 // together with its predecessor into one GPR. 5983 } else if (ArgOffset % PtrByteSize != 0) { 5984 SDValue Lo, Hi; 5985 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 5986 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5987 if (!isLittleEndian) 5988 std::swap(Lo, Hi); 5989 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 5990 5991 // The final element, if even, goes into the first half of a GPR. 5992 } else if (Flags.isInConsecutiveRegsLast()) { 5993 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5994 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5995 if (!isLittleEndian) 5996 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 5997 DAG.getConstant(32, dl, MVT::i32)); 5998 5999 // Non-final even elements are skipped; they will be handled 6000 // together the with subsequent argument on the next go-around. 6001 } else 6002 ArgVal = SDValue(); 6003 6004 if (ArgVal.getNode()) 6005 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6006 } else { 6007 if (CallConv == CallingConv::Fast) 6008 ComputePtrOff(); 6009 6010 // Single-precision floating-point values are mapped to the 6011 // second (rightmost) word of the stack doubleword. 6012 if (Arg.getValueType() == MVT::f32 && 6013 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6014 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6015 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6016 } 6017 6018 assert(HasParameterArea && 6019 "Parameter area must exist to pass an argument in memory."); 6020 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6021 true, isTailCall, false, MemOpChains, 6022 TailCallArguments, dl); 6023 6024 NeededLoad = true; 6025 } 6026 // When passing an array of floats, the array occupies consecutive 6027 // space in the argument area; only round up to the next doubleword 6028 // at the end of the array. Otherwise, each float takes 8 bytes. 6029 if (CallConv != CallingConv::Fast || NeededLoad) { 6030 ArgOffset += (Arg.getValueType() == MVT::f32 && 6031 Flags.isInConsecutiveRegs()) ? 4 : 8; 6032 if (Flags.isInConsecutiveRegsLast()) 6033 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6034 } 6035 break; 6036 } 6037 case MVT::v4f32: 6038 case MVT::v4i32: 6039 case MVT::v8i16: 6040 case MVT::v16i8: 6041 case MVT::v2f64: 6042 case MVT::v2i64: 6043 case MVT::v1i128: 6044 case MVT::f128: 6045 if (!Subtarget.hasQPX()) { 6046 // These can be scalar arguments or elements of a vector array type 6047 // passed directly. The latter are used to implement ELFv2 homogenous 6048 // vector aggregates. 6049 6050 // For a varargs call, named arguments go into VRs or on the stack as 6051 // usual; unnamed arguments always go to the stack or the corresponding 6052 // GPRs when within range. For now, we always put the value in both 6053 // locations (or even all three). 6054 if (isVarArg) { 6055 assert(HasParameterArea && 6056 "Parameter area must exist if we have a varargs call."); 6057 // We could elide this store in the case where the object fits 6058 // entirely in R registers. Maybe later. 6059 SDValue Store = 6060 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6061 MemOpChains.push_back(Store); 6062 if (VR_idx != NumVRs) { 6063 SDValue Load = 6064 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6065 MemOpChains.push_back(Load.getValue(1)); 6066 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6067 } 6068 ArgOffset += 16; 6069 for (unsigned i=0; i<16; i+=PtrByteSize) { 6070 if (GPR_idx == NumGPRs) 6071 break; 6072 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6073 DAG.getConstant(i, dl, PtrVT)); 6074 SDValue Load = 6075 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6076 MemOpChains.push_back(Load.getValue(1)); 6077 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6078 } 6079 break; 6080 } 6081 6082 // Non-varargs Altivec params go into VRs or on the stack. 6083 if (VR_idx != NumVRs) { 6084 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6085 } else { 6086 if (CallConv == CallingConv::Fast) 6087 ComputePtrOff(); 6088 6089 assert(HasParameterArea && 6090 "Parameter area must exist to pass an argument in memory."); 6091 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6092 true, isTailCall, true, MemOpChains, 6093 TailCallArguments, dl); 6094 if (CallConv == CallingConv::Fast) 6095 ArgOffset += 16; 6096 } 6097 6098 if (CallConv != CallingConv::Fast) 6099 ArgOffset += 16; 6100 break; 6101 } // not QPX 6102 6103 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 6104 "Invalid QPX parameter type"); 6105 6106 /* fall through */ 6107 case MVT::v4f64: 6108 case MVT::v4i1: { 6109 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 6110 if (isVarArg) { 6111 assert(HasParameterArea && 6112 "Parameter area must exist if we have a varargs call."); 6113 // We could elide this store in the case where the object fits 6114 // entirely in R registers. Maybe later. 6115 SDValue Store = 6116 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6117 MemOpChains.push_back(Store); 6118 if (QFPR_idx != NumQFPRs) { 6119 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 6120 PtrOff, MachinePointerInfo()); 6121 MemOpChains.push_back(Load.getValue(1)); 6122 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 6123 } 6124 ArgOffset += (IsF32 ? 16 : 32); 6125 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 6126 if (GPR_idx == NumGPRs) 6127 break; 6128 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6129 DAG.getConstant(i, dl, PtrVT)); 6130 SDValue Load = 6131 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6132 MemOpChains.push_back(Load.getValue(1)); 6133 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6134 } 6135 break; 6136 } 6137 6138 // Non-varargs QPX params go into registers or on the stack. 6139 if (QFPR_idx != NumQFPRs) { 6140 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6141 } else { 6142 if (CallConv == CallingConv::Fast) 6143 ComputePtrOff(); 6144 6145 assert(HasParameterArea && 6146 "Parameter area must exist to pass an argument in memory."); 6147 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6148 true, isTailCall, true, MemOpChains, 6149 TailCallArguments, dl); 6150 if (CallConv == CallingConv::Fast) 6151 ArgOffset += (IsF32 ? 16 : 32); 6152 } 6153 6154 if (CallConv != CallingConv::Fast) 6155 ArgOffset += (IsF32 ? 16 : 32); 6156 break; 6157 } 6158 } 6159 } 6160 6161 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6162 "mismatch in size of parameter area"); 6163 (void)NumBytesActuallyUsed; 6164 6165 if (!MemOpChains.empty()) 6166 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6167 6168 // Check if this is an indirect call (MTCTR/BCTRL). 6169 // See PrepareCall() for more information about calls through function 6170 // pointers in the 64-bit SVR4 ABI. 6171 if (!isTailCall && !isPatchPoint && 6172 !isFunctionGlobalAddress(Callee) && 6173 !isa<ExternalSymbolSDNode>(Callee)) { 6174 // Load r2 into a virtual register and store it to the TOC save area. 6175 setUsesTOCBasePtr(DAG); 6176 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6177 // TOC save area offset. 6178 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6179 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6180 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6181 Chain = DAG.getStore( 6182 Val.getValue(1), dl, Val, AddPtr, 6183 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 6184 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6185 // This does not mean the MTCTR instruction must use R12; it's easier 6186 // to model this as an extra parameter, so do that. 6187 if (isELFv2ABI && !isPatchPoint) 6188 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6189 } 6190 6191 // Build a sequence of copy-to-reg nodes chained together with token chain 6192 // and flag operands which copy the outgoing args into the appropriate regs. 6193 SDValue InFlag; 6194 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6195 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6196 RegsToPass[i].second, InFlag); 6197 InFlag = Chain.getValue(1); 6198 } 6199 6200 if (isTailCall && !IsSibCall) 6201 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6202 TailCallArguments); 6203 6204 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest, 6205 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 6206 SPDiff, NumBytes, Ins, InVals, CS); 6207 } 6208 6209 SDValue PPCTargetLowering::LowerCall_Darwin( 6210 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 6211 bool isTailCall, bool isPatchPoint, 6212 const SmallVectorImpl<ISD::OutputArg> &Outs, 6213 const SmallVectorImpl<SDValue> &OutVals, 6214 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6215 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6216 ImmutableCallSite CS) const { 6217 unsigned NumOps = Outs.size(); 6218 6219 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6220 bool isPPC64 = PtrVT == MVT::i64; 6221 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6222 6223 MachineFunction &MF = DAG.getMachineFunction(); 6224 6225 // Mark this function as potentially containing a function that contains a 6226 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6227 // and restoring the callers stack pointer in this functions epilog. This is 6228 // done because by tail calling the called function might overwrite the value 6229 // in this function's (MF) stack pointer stack slot 0(SP). 6230 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6231 CallConv == CallingConv::Fast) 6232 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6233 6234 // Count how many bytes are to be pushed on the stack, including the linkage 6235 // area, and parameter passing area. We start with 24/48 bytes, which is 6236 // prereserved space for [SP][CR][LR][3 x unused]. 6237 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6238 unsigned NumBytes = LinkageSize; 6239 6240 // Add up all the space actually used. 6241 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6242 // they all go in registers, but we must reserve stack space for them for 6243 // possible use by the caller. In varargs or 64-bit calls, parameters are 6244 // assigned stack space in order, with padding so Altivec parameters are 6245 // 16-byte aligned. 6246 unsigned nAltivecParamsAtEnd = 0; 6247 for (unsigned i = 0; i != NumOps; ++i) { 6248 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6249 EVT ArgVT = Outs[i].VT; 6250 // Varargs Altivec parameters are padded to a 16 byte boundary. 6251 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6252 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6253 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6254 if (!isVarArg && !isPPC64) { 6255 // Non-varargs Altivec parameters go after all the non-Altivec 6256 // parameters; handle those later so we know how much padding we need. 6257 nAltivecParamsAtEnd++; 6258 continue; 6259 } 6260 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6261 NumBytes = ((NumBytes+15)/16)*16; 6262 } 6263 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6264 } 6265 6266 // Allow for Altivec parameters at the end, if needed. 6267 if (nAltivecParamsAtEnd) { 6268 NumBytes = ((NumBytes+15)/16)*16; 6269 NumBytes += 16*nAltivecParamsAtEnd; 6270 } 6271 6272 // The prolog code of the callee may store up to 8 GPR argument registers to 6273 // the stack, allowing va_start to index over them in memory if its varargs. 6274 // Because we cannot tell if this is needed on the caller side, we have to 6275 // conservatively assume that it is needed. As such, make sure we have at 6276 // least enough stack space for the caller to store the 8 GPRs. 6277 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6278 6279 // Tail call needs the stack to be aligned. 6280 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6281 CallConv == CallingConv::Fast) 6282 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6283 6284 // Calculate by how many bytes the stack has to be adjusted in case of tail 6285 // call optimization. 6286 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 6287 6288 // To protect arguments on the stack from being clobbered in a tail call, 6289 // force all the loads to happen before doing any other lowering. 6290 if (isTailCall) 6291 Chain = DAG.getStackArgumentTokenFactor(Chain); 6292 6293 // Adjust the stack pointer for the new arguments... 6294 // These operations are automatically eliminated by the prolog/epilog pass 6295 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6296 SDValue CallSeqStart = Chain; 6297 6298 // Load the return address and frame pointer so it can be move somewhere else 6299 // later. 6300 SDValue LROp, FPOp; 6301 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6302 6303 // Set up a copy of the stack pointer for use loading and storing any 6304 // arguments that may not fit in the registers available for argument 6305 // passing. 6306 SDValue StackPtr; 6307 if (isPPC64) 6308 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6309 else 6310 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6311 6312 // Figure out which arguments are going to go in registers, and which in 6313 // memory. Also, if this is a vararg function, floating point operations 6314 // must be stored to our stack, and loaded into integer regs as well, if 6315 // any integer regs are available for argument passing. 6316 unsigned ArgOffset = LinkageSize; 6317 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6318 6319 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6320 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6321 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6322 }; 6323 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6324 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6325 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6326 }; 6327 static const MCPhysReg VR[] = { 6328 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6329 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6330 }; 6331 const unsigned NumGPRs = array_lengthof(GPR_32); 6332 const unsigned NumFPRs = 13; 6333 const unsigned NumVRs = array_lengthof(VR); 6334 6335 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6336 6337 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6338 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6339 6340 SmallVector<SDValue, 8> MemOpChains; 6341 for (unsigned i = 0; i != NumOps; ++i) { 6342 SDValue Arg = OutVals[i]; 6343 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6344 6345 // PtrOff will be used to store the current argument to the stack if a 6346 // register cannot be found for it. 6347 SDValue PtrOff; 6348 6349 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6350 6351 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6352 6353 // On PPC64, promote integers to 64-bit values. 6354 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6355 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6356 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6357 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6358 } 6359 6360 // FIXME memcpy is used way more than necessary. Correctness first. 6361 // Note: "by value" is code for passing a structure by value, not 6362 // basic types. 6363 if (Flags.isByVal()) { 6364 unsigned Size = Flags.getByValSize(); 6365 // Very small objects are passed right-justified. Everything else is 6366 // passed left-justified. 6367 if (Size==1 || Size==2) { 6368 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6369 if (GPR_idx != NumGPRs) { 6370 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6371 MachinePointerInfo(), VT); 6372 MemOpChains.push_back(Load.getValue(1)); 6373 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6374 6375 ArgOffset += PtrByteSize; 6376 } else { 6377 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6378 PtrOff.getValueType()); 6379 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6380 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6381 CallSeqStart, 6382 Flags, DAG, dl); 6383 ArgOffset += PtrByteSize; 6384 } 6385 continue; 6386 } 6387 // Copy entire object into memory. There are cases where gcc-generated 6388 // code assumes it is there, even if it could be put entirely into 6389 // registers. (This is not what the doc says.) 6390 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6391 CallSeqStart, 6392 Flags, DAG, dl); 6393 6394 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6395 // copy the pieces of the object that fit into registers from the 6396 // parameter save area. 6397 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6398 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6399 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6400 if (GPR_idx != NumGPRs) { 6401 SDValue Load = 6402 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6403 MemOpChains.push_back(Load.getValue(1)); 6404 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6405 ArgOffset += PtrByteSize; 6406 } else { 6407 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6408 break; 6409 } 6410 } 6411 continue; 6412 } 6413 6414 switch (Arg.getSimpleValueType().SimpleTy) { 6415 default: llvm_unreachable("Unexpected ValueType for argument!"); 6416 case MVT::i1: 6417 case MVT::i32: 6418 case MVT::i64: 6419 if (GPR_idx != NumGPRs) { 6420 if (Arg.getValueType() == MVT::i1) 6421 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6422 6423 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6424 } else { 6425 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6426 isPPC64, isTailCall, false, MemOpChains, 6427 TailCallArguments, dl); 6428 } 6429 ArgOffset += PtrByteSize; 6430 break; 6431 case MVT::f32: 6432 case MVT::f64: 6433 if (FPR_idx != NumFPRs) { 6434 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6435 6436 if (isVarArg) { 6437 SDValue Store = 6438 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6439 MemOpChains.push_back(Store); 6440 6441 // Float varargs are always shadowed in available integer registers 6442 if (GPR_idx != NumGPRs) { 6443 SDValue Load = 6444 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6445 MemOpChains.push_back(Load.getValue(1)); 6446 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6447 } 6448 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6449 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6450 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6451 SDValue Load = 6452 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6453 MemOpChains.push_back(Load.getValue(1)); 6454 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6455 } 6456 } else { 6457 // If we have any FPRs remaining, we may also have GPRs remaining. 6458 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6459 // GPRs. 6460 if (GPR_idx != NumGPRs) 6461 ++GPR_idx; 6462 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6463 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6464 ++GPR_idx; 6465 } 6466 } else 6467 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6468 isPPC64, isTailCall, false, MemOpChains, 6469 TailCallArguments, dl); 6470 if (isPPC64) 6471 ArgOffset += 8; 6472 else 6473 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6474 break; 6475 case MVT::v4f32: 6476 case MVT::v4i32: 6477 case MVT::v8i16: 6478 case MVT::v16i8: 6479 if (isVarArg) { 6480 // These go aligned on the stack, or in the corresponding R registers 6481 // when within range. The Darwin PPC ABI doc claims they also go in 6482 // V registers; in fact gcc does this only for arguments that are 6483 // prototyped, not for those that match the ... We do it for all 6484 // arguments, seems to work. 6485 while (ArgOffset % 16 !=0) { 6486 ArgOffset += PtrByteSize; 6487 if (GPR_idx != NumGPRs) 6488 GPR_idx++; 6489 } 6490 // We could elide this store in the case where the object fits 6491 // entirely in R registers. Maybe later. 6492 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6493 DAG.getConstant(ArgOffset, dl, PtrVT)); 6494 SDValue Store = 6495 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6496 MemOpChains.push_back(Store); 6497 if (VR_idx != NumVRs) { 6498 SDValue Load = 6499 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6500 MemOpChains.push_back(Load.getValue(1)); 6501 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6502 } 6503 ArgOffset += 16; 6504 for (unsigned i=0; i<16; i+=PtrByteSize) { 6505 if (GPR_idx == NumGPRs) 6506 break; 6507 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6508 DAG.getConstant(i, dl, PtrVT)); 6509 SDValue Load = 6510 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6511 MemOpChains.push_back(Load.getValue(1)); 6512 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6513 } 6514 break; 6515 } 6516 6517 // Non-varargs Altivec params generally go in registers, but have 6518 // stack space allocated at the end. 6519 if (VR_idx != NumVRs) { 6520 // Doesn't have GPR space allocated. 6521 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6522 } else if (nAltivecParamsAtEnd==0) { 6523 // We are emitting Altivec params in order. 6524 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6525 isPPC64, isTailCall, true, MemOpChains, 6526 TailCallArguments, dl); 6527 ArgOffset += 16; 6528 } 6529 break; 6530 } 6531 } 6532 // If all Altivec parameters fit in registers, as they usually do, 6533 // they get stack space following the non-Altivec parameters. We 6534 // don't track this here because nobody below needs it. 6535 // If there are more Altivec parameters than fit in registers emit 6536 // the stores here. 6537 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 6538 unsigned j = 0; 6539 // Offset is aligned; skip 1st 12 params which go in V registers. 6540 ArgOffset = ((ArgOffset+15)/16)*16; 6541 ArgOffset += 12*16; 6542 for (unsigned i = 0; i != NumOps; ++i) { 6543 SDValue Arg = OutVals[i]; 6544 EVT ArgType = Outs[i].VT; 6545 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6546 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6547 if (++j > NumVRs) { 6548 SDValue PtrOff; 6549 // We are emitting Altivec params in order. 6550 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6551 isPPC64, isTailCall, true, MemOpChains, 6552 TailCallArguments, dl); 6553 ArgOffset += 16; 6554 } 6555 } 6556 } 6557 } 6558 6559 if (!MemOpChains.empty()) 6560 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6561 6562 // On Darwin, R12 must contain the address of an indirect callee. This does 6563 // not mean the MTCTR instruction must use R12; it's easier to model this as 6564 // an extra parameter, so do that. 6565 if (!isTailCall && 6566 !isFunctionGlobalAddress(Callee) && 6567 !isa<ExternalSymbolSDNode>(Callee) && 6568 !isBLACompatibleAddress(Callee, DAG)) 6569 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6570 PPC::R12), Callee)); 6571 6572 // Build a sequence of copy-to-reg nodes chained together with token chain 6573 // and flag operands which copy the outgoing args into the appropriate regs. 6574 SDValue InFlag; 6575 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6576 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6577 RegsToPass[i].second, InFlag); 6578 InFlag = Chain.getValue(1); 6579 } 6580 6581 if (isTailCall) 6582 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6583 TailCallArguments); 6584 6585 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6586 /* unused except on PPC64 ELFv1 */ false, DAG, 6587 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6588 NumBytes, Ins, InVals, CS); 6589 } 6590 6591 bool 6592 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 6593 MachineFunction &MF, bool isVarArg, 6594 const SmallVectorImpl<ISD::OutputArg> &Outs, 6595 LLVMContext &Context) const { 6596 SmallVector<CCValAssign, 16> RVLocs; 6597 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 6598 return CCInfo.CheckReturn( 6599 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 6600 ? RetCC_PPC_Cold 6601 : RetCC_PPC); 6602 } 6603 6604 SDValue 6605 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 6606 bool isVarArg, 6607 const SmallVectorImpl<ISD::OutputArg> &Outs, 6608 const SmallVectorImpl<SDValue> &OutVals, 6609 const SDLoc &dl, SelectionDAG &DAG) const { 6610 SmallVector<CCValAssign, 16> RVLocs; 6611 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 6612 *DAG.getContext()); 6613 CCInfo.AnalyzeReturn(Outs, 6614 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 6615 ? RetCC_PPC_Cold 6616 : RetCC_PPC); 6617 6618 SDValue Flag; 6619 SmallVector<SDValue, 4> RetOps(1, Chain); 6620 6621 // Copy the result values into the output registers. 6622 for (unsigned i = 0; i != RVLocs.size(); ++i) { 6623 CCValAssign &VA = RVLocs[i]; 6624 assert(VA.isRegLoc() && "Can only return in registers!"); 6625 6626 SDValue Arg = OutVals[i]; 6627 6628 switch (VA.getLocInfo()) { 6629 default: llvm_unreachable("Unknown loc info!"); 6630 case CCValAssign::Full: break; 6631 case CCValAssign::AExt: 6632 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 6633 break; 6634 case CCValAssign::ZExt: 6635 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 6636 break; 6637 case CCValAssign::SExt: 6638 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 6639 break; 6640 } 6641 6642 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 6643 Flag = Chain.getValue(1); 6644 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 6645 } 6646 6647 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 6648 const MCPhysReg *I = 6649 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 6650 if (I) { 6651 for (; *I; ++I) { 6652 6653 if (PPC::G8RCRegClass.contains(*I)) 6654 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 6655 else if (PPC::F8RCRegClass.contains(*I)) 6656 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 6657 else if (PPC::CRRCRegClass.contains(*I)) 6658 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 6659 else if (PPC::VRRCRegClass.contains(*I)) 6660 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 6661 else 6662 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 6663 } 6664 } 6665 6666 RetOps[0] = Chain; // Update chain. 6667 6668 // Add the flag if we have it. 6669 if (Flag.getNode()) 6670 RetOps.push_back(Flag); 6671 6672 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 6673 } 6674 6675 SDValue 6676 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 6677 SelectionDAG &DAG) const { 6678 SDLoc dl(Op); 6679 6680 // Get the correct type for integers. 6681 EVT IntVT = Op.getValueType(); 6682 6683 // Get the inputs. 6684 SDValue Chain = Op.getOperand(0); 6685 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6686 // Build a DYNAREAOFFSET node. 6687 SDValue Ops[2] = {Chain, FPSIdx}; 6688 SDVTList VTs = DAG.getVTList(IntVT); 6689 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 6690 } 6691 6692 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 6693 SelectionDAG &DAG) const { 6694 // When we pop the dynamic allocation we need to restore the SP link. 6695 SDLoc dl(Op); 6696 6697 // Get the correct type for pointers. 6698 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6699 6700 // Construct the stack pointer operand. 6701 bool isPPC64 = Subtarget.isPPC64(); 6702 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 6703 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 6704 6705 // Get the operands for the STACKRESTORE. 6706 SDValue Chain = Op.getOperand(0); 6707 SDValue SaveSP = Op.getOperand(1); 6708 6709 // Load the old link SP. 6710 SDValue LoadLinkSP = 6711 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 6712 6713 // Restore the stack pointer. 6714 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 6715 6716 // Store the old link SP. 6717 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 6718 } 6719 6720 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 6721 MachineFunction &MF = DAG.getMachineFunction(); 6722 bool isPPC64 = Subtarget.isPPC64(); 6723 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6724 6725 // Get current frame pointer save index. The users of this index will be 6726 // primarily DYNALLOC instructions. 6727 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6728 int RASI = FI->getReturnAddrSaveIndex(); 6729 6730 // If the frame pointer save index hasn't been defined yet. 6731 if (!RASI) { 6732 // Find out what the fix offset of the frame pointer save area. 6733 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 6734 // Allocate the frame index for frame pointer save area. 6735 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 6736 // Save the result. 6737 FI->setReturnAddrSaveIndex(RASI); 6738 } 6739 return DAG.getFrameIndex(RASI, PtrVT); 6740 } 6741 6742 SDValue 6743 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 6744 MachineFunction &MF = DAG.getMachineFunction(); 6745 bool isPPC64 = Subtarget.isPPC64(); 6746 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6747 6748 // Get current frame pointer save index. The users of this index will be 6749 // primarily DYNALLOC instructions. 6750 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6751 int FPSI = FI->getFramePointerSaveIndex(); 6752 6753 // If the frame pointer save index hasn't been defined yet. 6754 if (!FPSI) { 6755 // Find out what the fix offset of the frame pointer save area. 6756 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 6757 // Allocate the frame index for frame pointer save area. 6758 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 6759 // Save the result. 6760 FI->setFramePointerSaveIndex(FPSI); 6761 } 6762 return DAG.getFrameIndex(FPSI, PtrVT); 6763 } 6764 6765 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 6766 SelectionDAG &DAG) const { 6767 // Get the inputs. 6768 SDValue Chain = Op.getOperand(0); 6769 SDValue Size = Op.getOperand(1); 6770 SDLoc dl(Op); 6771 6772 // Get the correct type for pointers. 6773 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6774 // Negate the size. 6775 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 6776 DAG.getConstant(0, dl, PtrVT), Size); 6777 // Construct a node for the frame pointer save index. 6778 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6779 // Build a DYNALLOC node. 6780 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 6781 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 6782 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 6783 } 6784 6785 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 6786 SelectionDAG &DAG) const { 6787 MachineFunction &MF = DAG.getMachineFunction(); 6788 6789 bool isPPC64 = Subtarget.isPPC64(); 6790 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6791 6792 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 6793 return DAG.getFrameIndex(FI, PtrVT); 6794 } 6795 6796 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 6797 SelectionDAG &DAG) const { 6798 SDLoc DL(Op); 6799 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 6800 DAG.getVTList(MVT::i32, MVT::Other), 6801 Op.getOperand(0), Op.getOperand(1)); 6802 } 6803 6804 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 6805 SelectionDAG &DAG) const { 6806 SDLoc DL(Op); 6807 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 6808 Op.getOperand(0), Op.getOperand(1)); 6809 } 6810 6811 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 6812 if (Op.getValueType().isVector()) 6813 return LowerVectorLoad(Op, DAG); 6814 6815 assert(Op.getValueType() == MVT::i1 && 6816 "Custom lowering only for i1 loads"); 6817 6818 // First, load 8 bits into 32 bits, then truncate to 1 bit. 6819 6820 SDLoc dl(Op); 6821 LoadSDNode *LD = cast<LoadSDNode>(Op); 6822 6823 SDValue Chain = LD->getChain(); 6824 SDValue BasePtr = LD->getBasePtr(); 6825 MachineMemOperand *MMO = LD->getMemOperand(); 6826 6827 SDValue NewLD = 6828 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 6829 BasePtr, MVT::i8, MMO); 6830 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 6831 6832 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 6833 return DAG.getMergeValues(Ops, dl); 6834 } 6835 6836 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 6837 if (Op.getOperand(1).getValueType().isVector()) 6838 return LowerVectorStore(Op, DAG); 6839 6840 assert(Op.getOperand(1).getValueType() == MVT::i1 && 6841 "Custom lowering only for i1 stores"); 6842 6843 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 6844 6845 SDLoc dl(Op); 6846 StoreSDNode *ST = cast<StoreSDNode>(Op); 6847 6848 SDValue Chain = ST->getChain(); 6849 SDValue BasePtr = ST->getBasePtr(); 6850 SDValue Value = ST->getValue(); 6851 MachineMemOperand *MMO = ST->getMemOperand(); 6852 6853 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 6854 Value); 6855 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 6856 } 6857 6858 // FIXME: Remove this once the ANDI glue bug is fixed: 6859 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 6860 assert(Op.getValueType() == MVT::i1 && 6861 "Custom lowering only for i1 results"); 6862 6863 SDLoc DL(Op); 6864 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 6865 Op.getOperand(0)); 6866 } 6867 6868 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 6869 /// possible. 6870 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 6871 // Not FP? Not a fsel. 6872 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 6873 !Op.getOperand(2).getValueType().isFloatingPoint()) 6874 return Op; 6875 6876 // We might be able to do better than this under some circumstances, but in 6877 // general, fsel-based lowering of select is a finite-math-only optimization. 6878 // For more information, see section F.3 of the 2.06 ISA specification. 6879 if (!DAG.getTarget().Options.NoInfsFPMath || 6880 !DAG.getTarget().Options.NoNaNsFPMath) 6881 return Op; 6882 // TODO: Propagate flags from the select rather than global settings. 6883 SDNodeFlags Flags; 6884 Flags.setNoInfs(true); 6885 Flags.setNoNaNs(true); 6886 6887 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 6888 6889 EVT ResVT = Op.getValueType(); 6890 EVT CmpVT = Op.getOperand(0).getValueType(); 6891 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 6892 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 6893 SDLoc dl(Op); 6894 6895 // If the RHS of the comparison is a 0.0, we don't need to do the 6896 // subtraction at all. 6897 SDValue Sel1; 6898 if (isFloatingPointZero(RHS)) 6899 switch (CC) { 6900 default: break; // SETUO etc aren't handled by fsel. 6901 case ISD::SETNE: 6902 std::swap(TV, FV); 6903 LLVM_FALLTHROUGH; 6904 case ISD::SETEQ: 6905 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6906 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6907 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6908 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6909 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6910 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6911 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 6912 case ISD::SETULT: 6913 case ISD::SETLT: 6914 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6915 LLVM_FALLTHROUGH; 6916 case ISD::SETOGE: 6917 case ISD::SETGE: 6918 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6919 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6920 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6921 case ISD::SETUGT: 6922 case ISD::SETGT: 6923 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6924 LLVM_FALLTHROUGH; 6925 case ISD::SETOLE: 6926 case ISD::SETLE: 6927 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6928 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6929 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6930 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 6931 } 6932 6933 SDValue Cmp; 6934 switch (CC) { 6935 default: break; // SETUO etc aren't handled by fsel. 6936 case ISD::SETNE: 6937 std::swap(TV, FV); 6938 LLVM_FALLTHROUGH; 6939 case ISD::SETEQ: 6940 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 6941 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6942 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6943 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6944 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6945 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6946 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6947 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 6948 case ISD::SETULT: 6949 case ISD::SETLT: 6950 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 6951 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6952 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6953 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6954 case ISD::SETOGE: 6955 case ISD::SETGE: 6956 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 6957 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6958 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6959 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6960 case ISD::SETUGT: 6961 case ISD::SETGT: 6962 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 6963 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6964 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6965 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6966 case ISD::SETOLE: 6967 case ISD::SETLE: 6968 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 6969 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6970 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6971 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6972 } 6973 return Op; 6974 } 6975 6976 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 6977 SelectionDAG &DAG, 6978 const SDLoc &dl) const { 6979 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6980 SDValue Src = Op.getOperand(0); 6981 if (Src.getValueType() == MVT::f32) 6982 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6983 6984 SDValue Tmp; 6985 switch (Op.getSimpleValueType().SimpleTy) { 6986 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6987 case MVT::i32: 6988 Tmp = DAG.getNode( 6989 Op.getOpcode() == ISD::FP_TO_SINT 6990 ? PPCISD::FCTIWZ 6991 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6992 dl, MVT::f64, Src); 6993 break; 6994 case MVT::i64: 6995 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6996 "i64 FP_TO_UINT is supported only with FPCVT"); 6997 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6998 PPCISD::FCTIDUZ, 6999 dl, MVT::f64, Src); 7000 break; 7001 } 7002 7003 // Convert the FP value to an int value through memory. 7004 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 7005 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 7006 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 7007 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 7008 MachinePointerInfo MPI = 7009 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 7010 7011 // Emit a store to the stack slot. 7012 SDValue Chain; 7013 if (i32Stack) { 7014 MachineFunction &MF = DAG.getMachineFunction(); 7015 MachineMemOperand *MMO = 7016 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 7017 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 7018 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 7019 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 7020 } else 7021 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI); 7022 7023 // Result is a load from the stack slot. If loading 4 bytes, make sure to 7024 // add in a bias on big endian. 7025 if (Op.getValueType() == MVT::i32 && !i32Stack) { 7026 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 7027 DAG.getConstant(4, dl, FIPtr.getValueType())); 7028 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 7029 } 7030 7031 RLI.Chain = Chain; 7032 RLI.Ptr = FIPtr; 7033 RLI.MPI = MPI; 7034 } 7035 7036 /// Custom lowers floating point to integer conversions to use 7037 /// the direct move instructions available in ISA 2.07 to avoid the 7038 /// need for load/store combinations. 7039 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 7040 SelectionDAG &DAG, 7041 const SDLoc &dl) const { 7042 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7043 SDValue Src = Op.getOperand(0); 7044 7045 if (Src.getValueType() == MVT::f32) 7046 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7047 7048 SDValue Tmp; 7049 switch (Op.getSimpleValueType().SimpleTy) { 7050 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7051 case MVT::i32: 7052 Tmp = DAG.getNode( 7053 Op.getOpcode() == ISD::FP_TO_SINT 7054 ? PPCISD::FCTIWZ 7055 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7056 dl, MVT::f64, Src); 7057 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 7058 break; 7059 case MVT::i64: 7060 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7061 "i64 FP_TO_UINT is supported only with FPCVT"); 7062 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7063 PPCISD::FCTIDUZ, 7064 dl, MVT::f64, Src); 7065 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 7066 break; 7067 } 7068 return Tmp; 7069 } 7070 7071 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 7072 const SDLoc &dl) const { 7073 7074 // FP to INT conversions are legal for f128. 7075 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128)) 7076 return Op; 7077 7078 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 7079 // PPC (the libcall is not available). 7080 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 7081 if (Op.getValueType() == MVT::i32) { 7082 if (Op.getOpcode() == ISD::FP_TO_SINT) { 7083 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7084 MVT::f64, Op.getOperand(0), 7085 DAG.getIntPtrConstant(0, dl)); 7086 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7087 MVT::f64, Op.getOperand(0), 7088 DAG.getIntPtrConstant(1, dl)); 7089 7090 // Add the two halves of the long double in round-to-zero mode. 7091 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 7092 7093 // Now use a smaller FP_TO_SINT. 7094 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 7095 } 7096 if (Op.getOpcode() == ISD::FP_TO_UINT) { 7097 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 7098 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 7099 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 7100 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 7101 // FIXME: generated code sucks. 7102 // TODO: Are there fast-math-flags to propagate to this FSUB? 7103 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 7104 Op.getOperand(0), Tmp); 7105 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 7106 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 7107 DAG.getConstant(0x80000000, dl, MVT::i32)); 7108 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 7109 Op.getOperand(0)); 7110 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 7111 ISD::SETGE); 7112 } 7113 } 7114 7115 return SDValue(); 7116 } 7117 7118 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 7119 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 7120 7121 ReuseLoadInfo RLI; 7122 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7123 7124 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7125 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7126 } 7127 7128 // We're trying to insert a regular store, S, and then a load, L. If the 7129 // incoming value, O, is a load, we might just be able to have our load use the 7130 // address used by O. However, we don't know if anything else will store to 7131 // that address before we can load from it. To prevent this situation, we need 7132 // to insert our load, L, into the chain as a peer of O. To do this, we give L 7133 // the same chain operand as O, we create a token factor from the chain results 7134 // of O and L, and we replace all uses of O's chain result with that token 7135 // factor (see spliceIntoChain below for this last part). 7136 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 7137 ReuseLoadInfo &RLI, 7138 SelectionDAG &DAG, 7139 ISD::LoadExtType ET) const { 7140 SDLoc dl(Op); 7141 if (ET == ISD::NON_EXTLOAD && 7142 (Op.getOpcode() == ISD::FP_TO_UINT || 7143 Op.getOpcode() == ISD::FP_TO_SINT) && 7144 isOperationLegalOrCustom(Op.getOpcode(), 7145 Op.getOperand(0).getValueType())) { 7146 7147 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7148 return true; 7149 } 7150 7151 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 7152 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 7153 LD->isNonTemporal()) 7154 return false; 7155 if (LD->getMemoryVT() != MemVT) 7156 return false; 7157 7158 RLI.Ptr = LD->getBasePtr(); 7159 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 7160 assert(LD->getAddressingMode() == ISD::PRE_INC && 7161 "Non-pre-inc AM on PPC?"); 7162 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 7163 LD->getOffset()); 7164 } 7165 7166 RLI.Chain = LD->getChain(); 7167 RLI.MPI = LD->getPointerInfo(); 7168 RLI.IsDereferenceable = LD->isDereferenceable(); 7169 RLI.IsInvariant = LD->isInvariant(); 7170 RLI.Alignment = LD->getAlignment(); 7171 RLI.AAInfo = LD->getAAInfo(); 7172 RLI.Ranges = LD->getRanges(); 7173 7174 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 7175 return true; 7176 } 7177 7178 // Given the head of the old chain, ResChain, insert a token factor containing 7179 // it and NewResChain, and make users of ResChain now be users of that token 7180 // factor. 7181 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 7182 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 7183 SDValue NewResChain, 7184 SelectionDAG &DAG) const { 7185 if (!ResChain) 7186 return; 7187 7188 SDLoc dl(NewResChain); 7189 7190 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 7191 NewResChain, DAG.getUNDEF(MVT::Other)); 7192 assert(TF.getNode() != NewResChain.getNode() && 7193 "A new TF really is required here"); 7194 7195 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 7196 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 7197 } 7198 7199 /// Analyze profitability of direct move 7200 /// prefer float load to int load plus direct move 7201 /// when there is no integer use of int load 7202 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 7203 SDNode *Origin = Op.getOperand(0).getNode(); 7204 if (Origin->getOpcode() != ISD::LOAD) 7205 return true; 7206 7207 // If there is no LXSIBZX/LXSIHZX, like Power8, 7208 // prefer direct move if the memory size is 1 or 2 bytes. 7209 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 7210 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 7211 return true; 7212 7213 for (SDNode::use_iterator UI = Origin->use_begin(), 7214 UE = Origin->use_end(); 7215 UI != UE; ++UI) { 7216 7217 // Only look at the users of the loaded value. 7218 if (UI.getUse().get().getResNo() != 0) 7219 continue; 7220 7221 if (UI->getOpcode() != ISD::SINT_TO_FP && 7222 UI->getOpcode() != ISD::UINT_TO_FP) 7223 return true; 7224 } 7225 7226 return false; 7227 } 7228 7229 /// Custom lowers integer to floating point conversions to use 7230 /// the direct move instructions available in ISA 2.07 to avoid the 7231 /// need for load/store combinations. 7232 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 7233 SelectionDAG &DAG, 7234 const SDLoc &dl) const { 7235 assert((Op.getValueType() == MVT::f32 || 7236 Op.getValueType() == MVT::f64) && 7237 "Invalid floating point type as target of conversion"); 7238 assert(Subtarget.hasFPCVT() && 7239 "Int to FP conversions with direct moves require FPCVT"); 7240 SDValue FP; 7241 SDValue Src = Op.getOperand(0); 7242 bool SinglePrec = Op.getValueType() == MVT::f32; 7243 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 7244 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 7245 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 7246 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 7247 7248 if (WordInt) { 7249 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 7250 dl, MVT::f64, Src); 7251 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7252 } 7253 else { 7254 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 7255 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7256 } 7257 7258 return FP; 7259 } 7260 7261 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 7262 SelectionDAG &DAG) const { 7263 SDLoc dl(Op); 7264 7265 // Conversions to f128 are legal. 7266 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128)) 7267 return Op; 7268 7269 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 7270 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 7271 return SDValue(); 7272 7273 SDValue Value = Op.getOperand(0); 7274 // The values are now known to be -1 (false) or 1 (true). To convert this 7275 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7276 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7277 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7278 7279 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 7280 7281 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7282 7283 if (Op.getValueType() != MVT::v4f64) 7284 Value = DAG.getNode(ISD::FP_ROUND, dl, 7285 Op.getValueType(), Value, 7286 DAG.getIntPtrConstant(1, dl)); 7287 return Value; 7288 } 7289 7290 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 7291 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 7292 return SDValue(); 7293 7294 if (Op.getOperand(0).getValueType() == MVT::i1) 7295 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 7296 DAG.getConstantFP(1.0, dl, Op.getValueType()), 7297 DAG.getConstantFP(0.0, dl, Op.getValueType())); 7298 7299 // If we have direct moves, we can do all the conversion, skip the store/load 7300 // however, without FPCVT we can't do most conversions. 7301 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 7302 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 7303 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 7304 7305 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 7306 "UINT_TO_FP is supported only with FPCVT"); 7307 7308 // If we have FCFIDS, then use it when converting to single-precision. 7309 // Otherwise, convert to double-precision and then round. 7310 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7311 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 7312 : PPCISD::FCFIDS) 7313 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 7314 : PPCISD::FCFID); 7315 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7316 ? MVT::f32 7317 : MVT::f64; 7318 7319 if (Op.getOperand(0).getValueType() == MVT::i64) { 7320 SDValue SINT = Op.getOperand(0); 7321 // When converting to single-precision, we actually need to convert 7322 // to double-precision first and then round to single-precision. 7323 // To avoid double-rounding effects during that operation, we have 7324 // to prepare the input operand. Bits that might be truncated when 7325 // converting to double-precision are replaced by a bit that won't 7326 // be lost at this stage, but is below the single-precision rounding 7327 // position. 7328 // 7329 // However, if -enable-unsafe-fp-math is in effect, accept double 7330 // rounding to avoid the extra overhead. 7331 if (Op.getValueType() == MVT::f32 && 7332 !Subtarget.hasFPCVT() && 7333 !DAG.getTarget().Options.UnsafeFPMath) { 7334 7335 // Twiddle input to make sure the low 11 bits are zero. (If this 7336 // is the case, we are guaranteed the value will fit into the 53 bit 7337 // mantissa of an IEEE double-precision value without rounding.) 7338 // If any of those low 11 bits were not zero originally, make sure 7339 // bit 12 (value 2048) is set instead, so that the final rounding 7340 // to single-precision gets the correct result. 7341 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7342 SINT, DAG.getConstant(2047, dl, MVT::i64)); 7343 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 7344 Round, DAG.getConstant(2047, dl, MVT::i64)); 7345 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 7346 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7347 Round, DAG.getConstant(-2048, dl, MVT::i64)); 7348 7349 // However, we cannot use that value unconditionally: if the magnitude 7350 // of the input value is small, the bit-twiddling we did above might 7351 // end up visibly changing the output. Fortunately, in that case, we 7352 // don't need to twiddle bits since the original input will convert 7353 // exactly to double-precision floating-point already. Therefore, 7354 // construct a conditional to use the original value if the top 11 7355 // bits are all sign-bit copies, and use the rounded value computed 7356 // above otherwise. 7357 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 7358 SINT, DAG.getConstant(53, dl, MVT::i32)); 7359 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 7360 Cond, DAG.getConstant(1, dl, MVT::i64)); 7361 Cond = DAG.getSetCC(dl, MVT::i32, 7362 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 7363 7364 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 7365 } 7366 7367 ReuseLoadInfo RLI; 7368 SDValue Bits; 7369 7370 MachineFunction &MF = DAG.getMachineFunction(); 7371 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 7372 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7373 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7374 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7375 } else if (Subtarget.hasLFIWAX() && 7376 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 7377 MachineMemOperand *MMO = 7378 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7379 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7380 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7381 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 7382 DAG.getVTList(MVT::f64, MVT::Other), 7383 Ops, MVT::i32, MMO); 7384 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7385 } else if (Subtarget.hasFPCVT() && 7386 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 7387 MachineMemOperand *MMO = 7388 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7389 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7390 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7391 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 7392 DAG.getVTList(MVT::f64, MVT::Other), 7393 Ops, MVT::i32, MMO); 7394 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7395 } else if (((Subtarget.hasLFIWAX() && 7396 SINT.getOpcode() == ISD::SIGN_EXTEND) || 7397 (Subtarget.hasFPCVT() && 7398 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 7399 SINT.getOperand(0).getValueType() == MVT::i32) { 7400 MachineFrameInfo &MFI = MF.getFrameInfo(); 7401 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7402 7403 int FrameIdx = MFI.CreateStackObject(4, 4, false); 7404 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7405 7406 SDValue Store = 7407 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 7408 MachinePointerInfo::getFixedStack( 7409 DAG.getMachineFunction(), FrameIdx)); 7410 7411 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 7412 "Expected an i32 store"); 7413 7414 RLI.Ptr = FIdx; 7415 RLI.Chain = Store; 7416 RLI.MPI = 7417 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7418 RLI.Alignment = 4; 7419 7420 MachineMemOperand *MMO = 7421 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7422 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7423 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7424 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 7425 PPCISD::LFIWZX : PPCISD::LFIWAX, 7426 dl, DAG.getVTList(MVT::f64, MVT::Other), 7427 Ops, MVT::i32, MMO); 7428 } else 7429 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 7430 7431 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 7432 7433 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 7434 FP = DAG.getNode(ISD::FP_ROUND, dl, 7435 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 7436 return FP; 7437 } 7438 7439 assert(Op.getOperand(0).getValueType() == MVT::i32 && 7440 "Unhandled INT_TO_FP type in custom expander!"); 7441 // Since we only generate this in 64-bit mode, we can take advantage of 7442 // 64-bit registers. In particular, sign extend the input value into the 7443 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 7444 // then lfd it and fcfid it. 7445 MachineFunction &MF = DAG.getMachineFunction(); 7446 MachineFrameInfo &MFI = MF.getFrameInfo(); 7447 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7448 7449 SDValue Ld; 7450 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 7451 ReuseLoadInfo RLI; 7452 bool ReusingLoad; 7453 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 7454 DAG))) { 7455 int FrameIdx = MFI.CreateStackObject(4, 4, false); 7456 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7457 7458 SDValue Store = 7459 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 7460 MachinePointerInfo::getFixedStack( 7461 DAG.getMachineFunction(), FrameIdx)); 7462 7463 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 7464 "Expected an i32 store"); 7465 7466 RLI.Ptr = FIdx; 7467 RLI.Chain = Store; 7468 RLI.MPI = 7469 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7470 RLI.Alignment = 4; 7471 } 7472 7473 MachineMemOperand *MMO = 7474 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7475 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7476 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7477 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 7478 PPCISD::LFIWZX : PPCISD::LFIWAX, 7479 dl, DAG.getVTList(MVT::f64, MVT::Other), 7480 Ops, MVT::i32, MMO); 7481 if (ReusingLoad) 7482 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 7483 } else { 7484 assert(Subtarget.isPPC64() && 7485 "i32->FP without LFIWAX supported only on PPC64"); 7486 7487 int FrameIdx = MFI.CreateStackObject(8, 8, false); 7488 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7489 7490 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 7491 Op.getOperand(0)); 7492 7493 // STD the extended value into the stack slot. 7494 SDValue Store = DAG.getStore( 7495 DAG.getEntryNode(), dl, Ext64, FIdx, 7496 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 7497 7498 // Load the value as a double. 7499 Ld = DAG.getLoad( 7500 MVT::f64, dl, Store, FIdx, 7501 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 7502 } 7503 7504 // FCFID it and return it. 7505 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 7506 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 7507 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 7508 DAG.getIntPtrConstant(0, dl)); 7509 return FP; 7510 } 7511 7512 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 7513 SelectionDAG &DAG) const { 7514 SDLoc dl(Op); 7515 /* 7516 The rounding mode is in bits 30:31 of FPSR, and has the following 7517 settings: 7518 00 Round to nearest 7519 01 Round to 0 7520 10 Round to +inf 7521 11 Round to -inf 7522 7523 FLT_ROUNDS, on the other hand, expects the following: 7524 -1 Undefined 7525 0 Round to 0 7526 1 Round to nearest 7527 2 Round to +inf 7528 3 Round to -inf 7529 7530 To perform the conversion, we do: 7531 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 7532 */ 7533 7534 MachineFunction &MF = DAG.getMachineFunction(); 7535 EVT VT = Op.getValueType(); 7536 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7537 7538 // Save FP Control Word to register 7539 EVT NodeTys[] = { 7540 MVT::f64, // return register 7541 MVT::Glue // unused in this context 7542 }; 7543 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 7544 7545 // Save FP register to stack slot 7546 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 7547 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 7548 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot, 7549 MachinePointerInfo()); 7550 7551 // Load FP Control Word from low 32 bits of stack slot. 7552 SDValue Four = DAG.getConstant(4, dl, PtrVT); 7553 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 7554 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo()); 7555 7556 // Transform as necessary 7557 SDValue CWD1 = 7558 DAG.getNode(ISD::AND, dl, MVT::i32, 7559 CWD, DAG.getConstant(3, dl, MVT::i32)); 7560 SDValue CWD2 = 7561 DAG.getNode(ISD::SRL, dl, MVT::i32, 7562 DAG.getNode(ISD::AND, dl, MVT::i32, 7563 DAG.getNode(ISD::XOR, dl, MVT::i32, 7564 CWD, DAG.getConstant(3, dl, MVT::i32)), 7565 DAG.getConstant(3, dl, MVT::i32)), 7566 DAG.getConstant(1, dl, MVT::i32)); 7567 7568 SDValue RetVal = 7569 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 7570 7571 return DAG.getNode((VT.getSizeInBits() < 16 ? 7572 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 7573 } 7574 7575 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7576 EVT VT = Op.getValueType(); 7577 unsigned BitWidth = VT.getSizeInBits(); 7578 SDLoc dl(Op); 7579 assert(Op.getNumOperands() == 3 && 7580 VT == Op.getOperand(1).getValueType() && 7581 "Unexpected SHL!"); 7582 7583 // Expand into a bunch of logical ops. Note that these ops 7584 // depend on the PPC behavior for oversized shift amounts. 7585 SDValue Lo = Op.getOperand(0); 7586 SDValue Hi = Op.getOperand(1); 7587 SDValue Amt = Op.getOperand(2); 7588 EVT AmtVT = Amt.getValueType(); 7589 7590 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7591 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7592 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 7593 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 7594 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 7595 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7596 DAG.getConstant(-BitWidth, dl, AmtVT)); 7597 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 7598 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 7599 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 7600 SDValue OutOps[] = { OutLo, OutHi }; 7601 return DAG.getMergeValues(OutOps, dl); 7602 } 7603 7604 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7605 EVT VT = Op.getValueType(); 7606 SDLoc dl(Op); 7607 unsigned BitWidth = VT.getSizeInBits(); 7608 assert(Op.getNumOperands() == 3 && 7609 VT == Op.getOperand(1).getValueType() && 7610 "Unexpected SRL!"); 7611 7612 // Expand into a bunch of logical ops. Note that these ops 7613 // depend on the PPC behavior for oversized shift amounts. 7614 SDValue Lo = Op.getOperand(0); 7615 SDValue Hi = Op.getOperand(1); 7616 SDValue Amt = Op.getOperand(2); 7617 EVT AmtVT = Amt.getValueType(); 7618 7619 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7620 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7621 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 7622 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 7623 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7624 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7625 DAG.getConstant(-BitWidth, dl, AmtVT)); 7626 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 7627 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 7628 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 7629 SDValue OutOps[] = { OutLo, OutHi }; 7630 return DAG.getMergeValues(OutOps, dl); 7631 } 7632 7633 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 7634 SDLoc dl(Op); 7635 EVT VT = Op.getValueType(); 7636 unsigned BitWidth = VT.getSizeInBits(); 7637 assert(Op.getNumOperands() == 3 && 7638 VT == Op.getOperand(1).getValueType() && 7639 "Unexpected SRA!"); 7640 7641 // Expand into a bunch of logical ops, followed by a select_cc. 7642 SDValue Lo = Op.getOperand(0); 7643 SDValue Hi = Op.getOperand(1); 7644 SDValue Amt = Op.getOperand(2); 7645 EVT AmtVT = Amt.getValueType(); 7646 7647 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7648 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7649 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 7650 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 7651 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7652 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7653 DAG.getConstant(-BitWidth, dl, AmtVT)); 7654 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 7655 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 7656 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 7657 Tmp4, Tmp6, ISD::SETLE); 7658 SDValue OutOps[] = { OutLo, OutHi }; 7659 return DAG.getMergeValues(OutOps, dl); 7660 } 7661 7662 //===----------------------------------------------------------------------===// 7663 // Vector related lowering. 7664 // 7665 7666 /// BuildSplatI - Build a canonical splati of Val with an element size of 7667 /// SplatSize. Cast the result to VT. 7668 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 7669 SelectionDAG &DAG, const SDLoc &dl) { 7670 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 7671 7672 static const MVT VTys[] = { // canonical VT to use for each size. 7673 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 7674 }; 7675 7676 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 7677 7678 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 7679 if (Val == -1) 7680 SplatSize = 1; 7681 7682 EVT CanonicalVT = VTys[SplatSize-1]; 7683 7684 // Build a canonical splat for this value. 7685 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 7686 } 7687 7688 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 7689 /// specified intrinsic ID. 7690 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 7691 const SDLoc &dl, EVT DestVT = MVT::Other) { 7692 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 7693 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7694 DAG.getConstant(IID, dl, MVT::i32), Op); 7695 } 7696 7697 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 7698 /// specified intrinsic ID. 7699 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 7700 SelectionDAG &DAG, const SDLoc &dl, 7701 EVT DestVT = MVT::Other) { 7702 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 7703 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7704 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 7705 } 7706 7707 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 7708 /// specified intrinsic ID. 7709 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 7710 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 7711 EVT DestVT = MVT::Other) { 7712 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 7713 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7714 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 7715 } 7716 7717 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 7718 /// amount. The result has the specified value type. 7719 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 7720 SelectionDAG &DAG, const SDLoc &dl) { 7721 // Force LHS/RHS to be the right type. 7722 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 7723 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 7724 7725 int Ops[16]; 7726 for (unsigned i = 0; i != 16; ++i) 7727 Ops[i] = i + Amt; 7728 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 7729 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7730 } 7731 7732 /// Do we have an efficient pattern in a .td file for this node? 7733 /// 7734 /// \param V - pointer to the BuildVectorSDNode being matched 7735 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 7736 /// 7737 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 7738 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 7739 /// the opposite is true (expansion is beneficial) are: 7740 /// - The node builds a vector out of integers that are not 32 or 64-bits 7741 /// - The node builds a vector out of constants 7742 /// - The node is a "load-and-splat" 7743 /// In all other cases, we will choose to keep the BUILD_VECTOR. 7744 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 7745 bool HasDirectMove, 7746 bool HasP8Vector) { 7747 EVT VecVT = V->getValueType(0); 7748 bool RightType = VecVT == MVT::v2f64 || 7749 (HasP8Vector && VecVT == MVT::v4f32) || 7750 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 7751 if (!RightType) 7752 return false; 7753 7754 bool IsSplat = true; 7755 bool IsLoad = false; 7756 SDValue Op0 = V->getOperand(0); 7757 7758 // This function is called in a block that confirms the node is not a constant 7759 // splat. So a constant BUILD_VECTOR here means the vector is built out of 7760 // different constants. 7761 if (V->isConstant()) 7762 return false; 7763 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 7764 if (V->getOperand(i).isUndef()) 7765 return false; 7766 // We want to expand nodes that represent load-and-splat even if the 7767 // loaded value is a floating point truncation or conversion to int. 7768 if (V->getOperand(i).getOpcode() == ISD::LOAD || 7769 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 7770 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 7771 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 7772 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 7773 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 7774 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 7775 IsLoad = true; 7776 // If the operands are different or the input is not a load and has more 7777 // uses than just this BV node, then it isn't a splat. 7778 if (V->getOperand(i) != Op0 || 7779 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 7780 IsSplat = false; 7781 } 7782 return !(IsSplat && IsLoad); 7783 } 7784 7785 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 7786 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 7787 7788 SDLoc dl(Op); 7789 SDValue Op0 = Op->getOperand(0); 7790 7791 if (!EnableQuadPrecision || 7792 (Op.getValueType() != MVT::f128 ) || 7793 (Op0.getOpcode() != ISD::BUILD_PAIR) || 7794 (Op0.getOperand(0).getValueType() != MVT::i64) || 7795 (Op0.getOperand(1).getValueType() != MVT::i64)) 7796 return SDValue(); 7797 7798 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 7799 Op0.getOperand(1)); 7800 } 7801 7802 // If this is a case we can't handle, return null and let the default 7803 // expansion code take care of it. If we CAN select this case, and if it 7804 // selects to a single instruction, return Op. Otherwise, if we can codegen 7805 // this case more efficiently than a constant pool load, lower it to the 7806 // sequence of ops that should be used. 7807 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 7808 SelectionDAG &DAG) const { 7809 SDLoc dl(Op); 7810 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 7811 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 7812 7813 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 7814 // We first build an i32 vector, load it into a QPX register, 7815 // then convert it to a floating-point vector and compare it 7816 // to a zero vector to get the boolean result. 7817 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7818 int FrameIdx = MFI.CreateStackObject(16, 16, false); 7819 MachinePointerInfo PtrInfo = 7820 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7821 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7822 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7823 7824 assert(BVN->getNumOperands() == 4 && 7825 "BUILD_VECTOR for v4i1 does not have 4 operands"); 7826 7827 bool IsConst = true; 7828 for (unsigned i = 0; i < 4; ++i) { 7829 if (BVN->getOperand(i).isUndef()) continue; 7830 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 7831 IsConst = false; 7832 break; 7833 } 7834 } 7835 7836 if (IsConst) { 7837 Constant *One = 7838 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 7839 Constant *NegOne = 7840 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 7841 7842 Constant *CV[4]; 7843 for (unsigned i = 0; i < 4; ++i) { 7844 if (BVN->getOperand(i).isUndef()) 7845 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 7846 else if (isNullConstant(BVN->getOperand(i))) 7847 CV[i] = NegOne; 7848 else 7849 CV[i] = One; 7850 } 7851 7852 Constant *CP = ConstantVector::get(CV); 7853 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 7854 16 /* alignment */); 7855 7856 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 7857 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 7858 return DAG.getMemIntrinsicNode( 7859 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 7860 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 7861 } 7862 7863 SmallVector<SDValue, 4> Stores; 7864 for (unsigned i = 0; i < 4; ++i) { 7865 if (BVN->getOperand(i).isUndef()) continue; 7866 7867 unsigned Offset = 4*i; 7868 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7869 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7870 7871 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 7872 if (StoreSize > 4) { 7873 Stores.push_back( 7874 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 7875 PtrInfo.getWithOffset(Offset), MVT::i32)); 7876 } else { 7877 SDValue StoreValue = BVN->getOperand(i); 7878 if (StoreSize < 4) 7879 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 7880 7881 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 7882 PtrInfo.getWithOffset(Offset))); 7883 } 7884 } 7885 7886 SDValue StoreChain; 7887 if (!Stores.empty()) 7888 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7889 else 7890 StoreChain = DAG.getEntryNode(); 7891 7892 // Now load from v4i32 into the QPX register; this will extend it to 7893 // v4i64 but not yet convert it to a floating point. Nevertheless, this 7894 // is typed as v4f64 because the QPX register integer states are not 7895 // explicitly represented. 7896 7897 SDValue Ops[] = {StoreChain, 7898 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 7899 FIdx}; 7900 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 7901 7902 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 7903 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7904 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7905 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 7906 LoadedVect); 7907 7908 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 7909 7910 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 7911 } 7912 7913 // All other QPX vectors are handled by generic code. 7914 if (Subtarget.hasQPX()) 7915 return SDValue(); 7916 7917 // Check if this is a splat of a constant value. 7918 APInt APSplatBits, APSplatUndef; 7919 unsigned SplatBitSize; 7920 bool HasAnyUndefs; 7921 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 7922 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 7923 SplatBitSize > 32) { 7924 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 7925 // lowered to VSX instructions under certain conditions. 7926 // Without VSX, there is no pattern more efficient than expanding the node. 7927 if (Subtarget.hasVSX() && 7928 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 7929 Subtarget.hasP8Vector())) 7930 return Op; 7931 return SDValue(); 7932 } 7933 7934 unsigned SplatBits = APSplatBits.getZExtValue(); 7935 unsigned SplatUndef = APSplatUndef.getZExtValue(); 7936 unsigned SplatSize = SplatBitSize / 8; 7937 7938 // First, handle single instruction cases. 7939 7940 // All zeros? 7941 if (SplatBits == 0) { 7942 // Canonicalize all zero vectors to be v4i32. 7943 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 7944 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 7945 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 7946 } 7947 return Op; 7948 } 7949 7950 // We have XXSPLTIB for constant splats one byte wide 7951 if (Subtarget.hasP9Vector() && SplatSize == 1) { 7952 // This is a splat of 1-byte elements with some elements potentially undef. 7953 // Rather than trying to match undef in the SDAG patterns, ensure that all 7954 // elements are the same constant. 7955 if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) { 7956 SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits, 7957 dl, MVT::i32)); 7958 SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops); 7959 if (Op.getValueType() != MVT::v16i8) 7960 return DAG.getBitcast(Op.getValueType(), NewBV); 7961 return NewBV; 7962 } 7963 7964 // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll 7965 // detect that constant splats like v8i16: 0xABAB are really just splats 7966 // of a 1-byte constant. In this case, we need to convert the node to a 7967 // splat of v16i8 and a bitcast. 7968 if (Op.getValueType() != MVT::v16i8) 7969 return DAG.getBitcast(Op.getValueType(), 7970 DAG.getConstant(SplatBits, dl, MVT::v16i8)); 7971 7972 return Op; 7973 } 7974 7975 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 7976 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 7977 (32-SplatBitSize)); 7978 if (SextVal >= -16 && SextVal <= 15) 7979 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 7980 7981 // Two instruction sequences. 7982 7983 // If this value is in the range [-32,30] and is even, use: 7984 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 7985 // If this value is in the range [17,31] and is odd, use: 7986 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 7987 // If this value is in the range [-31,-17] and is odd, use: 7988 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 7989 // Note the last two are three-instruction sequences. 7990 if (SextVal >= -32 && SextVal <= 31) { 7991 // To avoid having these optimizations undone by constant folding, 7992 // we convert to a pseudo that will be expanded later into one of 7993 // the above forms. 7994 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 7995 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 7996 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 7997 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 7998 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 7999 if (VT == Op.getValueType()) 8000 return RetVal; 8001 else 8002 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 8003 } 8004 8005 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 8006 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 8007 // for fneg/fabs. 8008 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 8009 // Make -1 and vspltisw -1: 8010 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 8011 8012 // Make the VSLW intrinsic, computing 0x8000_0000. 8013 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 8014 OnesV, DAG, dl); 8015 8016 // xor by OnesV to invert it. 8017 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 8018 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8019 } 8020 8021 // Check to see if this is a wide variety of vsplti*, binop self cases. 8022 static const signed char SplatCsts[] = { 8023 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 8024 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 8025 }; 8026 8027 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 8028 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 8029 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 8030 int i = SplatCsts[idx]; 8031 8032 // Figure out what shift amount will be used by altivec if shifted by i in 8033 // this splat size. 8034 unsigned TypeShiftAmt = i & (SplatBitSize-1); 8035 8036 // vsplti + shl self. 8037 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 8038 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8039 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8040 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 8041 Intrinsic::ppc_altivec_vslw 8042 }; 8043 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8044 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8045 } 8046 8047 // vsplti + srl self. 8048 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8049 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8050 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8051 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 8052 Intrinsic::ppc_altivec_vsrw 8053 }; 8054 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8055 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8056 } 8057 8058 // vsplti + sra self. 8059 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8060 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8061 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8062 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 8063 Intrinsic::ppc_altivec_vsraw 8064 }; 8065 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8066 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8067 } 8068 8069 // vsplti + rol self. 8070 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 8071 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 8072 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8073 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8074 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 8075 Intrinsic::ppc_altivec_vrlw 8076 }; 8077 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8078 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8079 } 8080 8081 // t = vsplti c, result = vsldoi t, t, 1 8082 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 8083 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8084 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 8085 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8086 } 8087 // t = vsplti c, result = vsldoi t, t, 2 8088 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 8089 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8090 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 8091 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8092 } 8093 // t = vsplti c, result = vsldoi t, t, 3 8094 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 8095 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8096 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 8097 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8098 } 8099 } 8100 8101 return SDValue(); 8102 } 8103 8104 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 8105 /// the specified operations to build the shuffle. 8106 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 8107 SDValue RHS, SelectionDAG &DAG, 8108 const SDLoc &dl) { 8109 unsigned OpNum = (PFEntry >> 26) & 0x0F; 8110 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 8111 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 8112 8113 enum { 8114 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 8115 OP_VMRGHW, 8116 OP_VMRGLW, 8117 OP_VSPLTISW0, 8118 OP_VSPLTISW1, 8119 OP_VSPLTISW2, 8120 OP_VSPLTISW3, 8121 OP_VSLDOI4, 8122 OP_VSLDOI8, 8123 OP_VSLDOI12 8124 }; 8125 8126 if (OpNum == OP_COPY) { 8127 if (LHSID == (1*9+2)*9+3) return LHS; 8128 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 8129 return RHS; 8130 } 8131 8132 SDValue OpLHS, OpRHS; 8133 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 8134 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 8135 8136 int ShufIdxs[16]; 8137 switch (OpNum) { 8138 default: llvm_unreachable("Unknown i32 permute!"); 8139 case OP_VMRGHW: 8140 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 8141 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 8142 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 8143 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 8144 break; 8145 case OP_VMRGLW: 8146 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 8147 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 8148 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 8149 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 8150 break; 8151 case OP_VSPLTISW0: 8152 for (unsigned i = 0; i != 16; ++i) 8153 ShufIdxs[i] = (i&3)+0; 8154 break; 8155 case OP_VSPLTISW1: 8156 for (unsigned i = 0; i != 16; ++i) 8157 ShufIdxs[i] = (i&3)+4; 8158 break; 8159 case OP_VSPLTISW2: 8160 for (unsigned i = 0; i != 16; ++i) 8161 ShufIdxs[i] = (i&3)+8; 8162 break; 8163 case OP_VSPLTISW3: 8164 for (unsigned i = 0; i != 16; ++i) 8165 ShufIdxs[i] = (i&3)+12; 8166 break; 8167 case OP_VSLDOI4: 8168 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 8169 case OP_VSLDOI8: 8170 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 8171 case OP_VSLDOI12: 8172 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 8173 } 8174 EVT VT = OpLHS.getValueType(); 8175 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 8176 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 8177 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 8178 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8179 } 8180 8181 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 8182 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 8183 /// SDValue. 8184 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 8185 SelectionDAG &DAG) const { 8186 const unsigned BytesInVector = 16; 8187 bool IsLE = Subtarget.isLittleEndian(); 8188 SDLoc dl(N); 8189 SDValue V1 = N->getOperand(0); 8190 SDValue V2 = N->getOperand(1); 8191 unsigned ShiftElts = 0, InsertAtByte = 0; 8192 bool Swap = false; 8193 8194 // Shifts required to get the byte we want at element 7. 8195 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 8196 0, 15, 14, 13, 12, 11, 10, 9}; 8197 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 8198 1, 2, 3, 4, 5, 6, 7, 8}; 8199 8200 ArrayRef<int> Mask = N->getMask(); 8201 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 8202 8203 // For each mask element, find out if we're just inserting something 8204 // from V2 into V1 or vice versa. 8205 // Possible permutations inserting an element from V2 into V1: 8206 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8207 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8208 // ... 8209 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 8210 // Inserting from V1 into V2 will be similar, except mask range will be 8211 // [16,31]. 8212 8213 bool FoundCandidate = false; 8214 // If both vector operands for the shuffle are the same vector, the mask 8215 // will contain only elements from the first one and the second one will be 8216 // undef. 8217 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 8218 // Go through the mask of half-words to find an element that's being moved 8219 // from one vector to the other. 8220 for (unsigned i = 0; i < BytesInVector; ++i) { 8221 unsigned CurrentElement = Mask[i]; 8222 // If 2nd operand is undefined, we should only look for element 7 in the 8223 // Mask. 8224 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 8225 continue; 8226 8227 bool OtherElementsInOrder = true; 8228 // Examine the other elements in the Mask to see if they're in original 8229 // order. 8230 for (unsigned j = 0; j < BytesInVector; ++j) { 8231 if (j == i) 8232 continue; 8233 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 8234 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 8235 // in which we always assume we're always picking from the 1st operand. 8236 int MaskOffset = 8237 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 8238 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 8239 OtherElementsInOrder = false; 8240 break; 8241 } 8242 } 8243 // If other elements are in original order, we record the number of shifts 8244 // we need to get the element we want into element 7. Also record which byte 8245 // in the vector we should insert into. 8246 if (OtherElementsInOrder) { 8247 // If 2nd operand is undefined, we assume no shifts and no swapping. 8248 if (V2.isUndef()) { 8249 ShiftElts = 0; 8250 Swap = false; 8251 } else { 8252 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 8253 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 8254 : BigEndianShifts[CurrentElement & 0xF]; 8255 Swap = CurrentElement < BytesInVector; 8256 } 8257 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 8258 FoundCandidate = true; 8259 break; 8260 } 8261 } 8262 8263 if (!FoundCandidate) 8264 return SDValue(); 8265 8266 // Candidate found, construct the proper SDAG sequence with VINSERTB, 8267 // optionally with VECSHL if shift is required. 8268 if (Swap) 8269 std::swap(V1, V2); 8270 if (V2.isUndef()) 8271 V2 = V1; 8272 if (ShiftElts) { 8273 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8274 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8275 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 8276 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8277 } 8278 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 8279 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8280 } 8281 8282 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 8283 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 8284 /// SDValue. 8285 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 8286 SelectionDAG &DAG) const { 8287 const unsigned NumHalfWords = 8; 8288 const unsigned BytesInVector = NumHalfWords * 2; 8289 // Check that the shuffle is on half-words. 8290 if (!isNByteElemShuffleMask(N, 2, 1)) 8291 return SDValue(); 8292 8293 bool IsLE = Subtarget.isLittleEndian(); 8294 SDLoc dl(N); 8295 SDValue V1 = N->getOperand(0); 8296 SDValue V2 = N->getOperand(1); 8297 unsigned ShiftElts = 0, InsertAtByte = 0; 8298 bool Swap = false; 8299 8300 // Shifts required to get the half-word we want at element 3. 8301 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 8302 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 8303 8304 uint32_t Mask = 0; 8305 uint32_t OriginalOrderLow = 0x1234567; 8306 uint32_t OriginalOrderHigh = 0x89ABCDEF; 8307 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 8308 // 32-bit space, only need 4-bit nibbles per element. 8309 for (unsigned i = 0; i < NumHalfWords; ++i) { 8310 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8311 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 8312 } 8313 8314 // For each mask element, find out if we're just inserting something 8315 // from V2 into V1 or vice versa. Possible permutations inserting an element 8316 // from V2 into V1: 8317 // X, 1, 2, 3, 4, 5, 6, 7 8318 // 0, X, 2, 3, 4, 5, 6, 7 8319 // 0, 1, X, 3, 4, 5, 6, 7 8320 // 0, 1, 2, X, 4, 5, 6, 7 8321 // 0, 1, 2, 3, X, 5, 6, 7 8322 // 0, 1, 2, 3, 4, X, 6, 7 8323 // 0, 1, 2, 3, 4, 5, X, 7 8324 // 0, 1, 2, 3, 4, 5, 6, X 8325 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 8326 8327 bool FoundCandidate = false; 8328 // Go through the mask of half-words to find an element that's being moved 8329 // from one vector to the other. 8330 for (unsigned i = 0; i < NumHalfWords; ++i) { 8331 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8332 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 8333 uint32_t MaskOtherElts = ~(0xF << MaskShift); 8334 uint32_t TargetOrder = 0x0; 8335 8336 // If both vector operands for the shuffle are the same vector, the mask 8337 // will contain only elements from the first one and the second one will be 8338 // undef. 8339 if (V2.isUndef()) { 8340 ShiftElts = 0; 8341 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 8342 TargetOrder = OriginalOrderLow; 8343 Swap = false; 8344 // Skip if not the correct element or mask of other elements don't equal 8345 // to our expected order. 8346 if (MaskOneElt == VINSERTHSrcElem && 8347 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 8348 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 8349 FoundCandidate = true; 8350 break; 8351 } 8352 } else { // If both operands are defined. 8353 // Target order is [8,15] if the current mask is between [0,7]. 8354 TargetOrder = 8355 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 8356 // Skip if mask of other elements don't equal our expected order. 8357 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 8358 // We only need the last 3 bits for the number of shifts. 8359 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 8360 : BigEndianShifts[MaskOneElt & 0x7]; 8361 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 8362 Swap = MaskOneElt < NumHalfWords; 8363 FoundCandidate = true; 8364 break; 8365 } 8366 } 8367 } 8368 8369 if (!FoundCandidate) 8370 return SDValue(); 8371 8372 // Candidate found, construct the proper SDAG sequence with VINSERTH, 8373 // optionally with VECSHL if shift is required. 8374 if (Swap) 8375 std::swap(V1, V2); 8376 if (V2.isUndef()) 8377 V2 = V1; 8378 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 8379 if (ShiftElts) { 8380 // Double ShiftElts because we're left shifting on v16i8 type. 8381 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8382 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 8383 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 8384 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 8385 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8386 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8387 } 8388 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 8389 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 8390 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8391 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8392 } 8393 8394 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 8395 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 8396 /// return the code it can be lowered into. Worst case, it can always be 8397 /// lowered into a vperm. 8398 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 8399 SelectionDAG &DAG) const { 8400 SDLoc dl(Op); 8401 SDValue V1 = Op.getOperand(0); 8402 SDValue V2 = Op.getOperand(1); 8403 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 8404 EVT VT = Op.getValueType(); 8405 bool isLittleEndian = Subtarget.isLittleEndian(); 8406 8407 unsigned ShiftElts, InsertAtByte; 8408 bool Swap = false; 8409 if (Subtarget.hasP9Vector() && 8410 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 8411 isLittleEndian)) { 8412 if (Swap) 8413 std::swap(V1, V2); 8414 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8415 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 8416 if (ShiftElts) { 8417 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 8418 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8419 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 8420 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8421 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8422 } 8423 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 8424 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8425 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8426 } 8427 8428 if (Subtarget.hasP9Altivec()) { 8429 SDValue NewISDNode; 8430 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 8431 return NewISDNode; 8432 8433 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 8434 return NewISDNode; 8435 } 8436 8437 if (Subtarget.hasVSX() && 8438 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 8439 if (Swap) 8440 std::swap(V1, V2); 8441 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8442 SDValue Conv2 = 8443 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 8444 8445 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 8446 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8447 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 8448 } 8449 8450 if (Subtarget.hasVSX() && 8451 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 8452 if (Swap) 8453 std::swap(V1, V2); 8454 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 8455 SDValue Conv2 = 8456 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 8457 8458 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 8459 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8460 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 8461 } 8462 8463 if (Subtarget.hasP9Vector()) { 8464 if (PPC::isXXBRHShuffleMask(SVOp)) { 8465 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 8466 SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv); 8467 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 8468 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 8469 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8470 SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv); 8471 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 8472 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 8473 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 8474 SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv); 8475 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 8476 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 8477 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 8478 SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv); 8479 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 8480 } 8481 } 8482 8483 if (Subtarget.hasVSX()) { 8484 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 8485 int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG); 8486 8487 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8488 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 8489 DAG.getConstant(SplatIdx, dl, MVT::i32)); 8490 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 8491 } 8492 8493 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 8494 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 8495 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 8496 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 8497 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 8498 } 8499 } 8500 8501 if (Subtarget.hasQPX()) { 8502 if (VT.getVectorNumElements() != 4) 8503 return SDValue(); 8504 8505 if (V2.isUndef()) V2 = V1; 8506 8507 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 8508 if (AlignIdx != -1) { 8509 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 8510 DAG.getConstant(AlignIdx, dl, MVT::i32)); 8511 } else if (SVOp->isSplat()) { 8512 int SplatIdx = SVOp->getSplatIndex(); 8513 if (SplatIdx >= 4) { 8514 std::swap(V1, V2); 8515 SplatIdx -= 4; 8516 } 8517 8518 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 8519 DAG.getConstant(SplatIdx, dl, MVT::i32)); 8520 } 8521 8522 // Lower this into a qvgpci/qvfperm pair. 8523 8524 // Compute the qvgpci literal 8525 unsigned idx = 0; 8526 for (unsigned i = 0; i < 4; ++i) { 8527 int m = SVOp->getMaskElt(i); 8528 unsigned mm = m >= 0 ? (unsigned) m : i; 8529 idx |= mm << (3-i)*3; 8530 } 8531 8532 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 8533 DAG.getConstant(idx, dl, MVT::i32)); 8534 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 8535 } 8536 8537 // Cases that are handled by instructions that take permute immediates 8538 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 8539 // selected by the instruction selector. 8540 if (V2.isUndef()) { 8541 if (PPC::isSplatShuffleMask(SVOp, 1) || 8542 PPC::isSplatShuffleMask(SVOp, 2) || 8543 PPC::isSplatShuffleMask(SVOp, 4) || 8544 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 8545 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 8546 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 8547 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 8548 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 8549 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 8550 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 8551 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 8552 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 8553 (Subtarget.hasP8Altivec() && ( 8554 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 8555 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 8556 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 8557 return Op; 8558 } 8559 } 8560 8561 // Altivec has a variety of "shuffle immediates" that take two vector inputs 8562 // and produce a fixed permutation. If any of these match, do not lower to 8563 // VPERM. 8564 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 8565 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 8566 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 8567 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 8568 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 8569 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 8570 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 8571 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 8572 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 8573 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 8574 (Subtarget.hasP8Altivec() && ( 8575 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 8576 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 8577 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 8578 return Op; 8579 8580 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 8581 // perfect shuffle table to emit an optimal matching sequence. 8582 ArrayRef<int> PermMask = SVOp->getMask(); 8583 8584 unsigned PFIndexes[4]; 8585 bool isFourElementShuffle = true; 8586 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 8587 unsigned EltNo = 8; // Start out undef. 8588 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 8589 if (PermMask[i*4+j] < 0) 8590 continue; // Undef, ignore it. 8591 8592 unsigned ByteSource = PermMask[i*4+j]; 8593 if ((ByteSource & 3) != j) { 8594 isFourElementShuffle = false; 8595 break; 8596 } 8597 8598 if (EltNo == 8) { 8599 EltNo = ByteSource/4; 8600 } else if (EltNo != ByteSource/4) { 8601 isFourElementShuffle = false; 8602 break; 8603 } 8604 } 8605 PFIndexes[i] = EltNo; 8606 } 8607 8608 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 8609 // perfect shuffle vector to determine if it is cost effective to do this as 8610 // discrete instructions, or whether we should use a vperm. 8611 // For now, we skip this for little endian until such time as we have a 8612 // little-endian perfect shuffle table. 8613 if (isFourElementShuffle && !isLittleEndian) { 8614 // Compute the index in the perfect shuffle table. 8615 unsigned PFTableIndex = 8616 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 8617 8618 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 8619 unsigned Cost = (PFEntry >> 30); 8620 8621 // Determining when to avoid vperm is tricky. Many things affect the cost 8622 // of vperm, particularly how many times the perm mask needs to be computed. 8623 // For example, if the perm mask can be hoisted out of a loop or is already 8624 // used (perhaps because there are multiple permutes with the same shuffle 8625 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 8626 // the loop requires an extra register. 8627 // 8628 // As a compromise, we only emit discrete instructions if the shuffle can be 8629 // generated in 3 or fewer operations. When we have loop information 8630 // available, if this block is within a loop, we should avoid using vperm 8631 // for 3-operation perms and use a constant pool load instead. 8632 if (Cost < 3) 8633 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 8634 } 8635 8636 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 8637 // vector that will get spilled to the constant pool. 8638 if (V2.isUndef()) V2 = V1; 8639 8640 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 8641 // that it is in input element units, not in bytes. Convert now. 8642 8643 // For little endian, the order of the input vectors is reversed, and 8644 // the permutation mask is complemented with respect to 31. This is 8645 // necessary to produce proper semantics with the big-endian-biased vperm 8646 // instruction. 8647 EVT EltVT = V1.getValueType().getVectorElementType(); 8648 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 8649 8650 SmallVector<SDValue, 16> ResultMask; 8651 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 8652 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 8653 8654 for (unsigned j = 0; j != BytesPerElement; ++j) 8655 if (isLittleEndian) 8656 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 8657 dl, MVT::i32)); 8658 else 8659 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 8660 MVT::i32)); 8661 } 8662 8663 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 8664 if (isLittleEndian) 8665 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 8666 V2, V1, VPermMask); 8667 else 8668 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 8669 V1, V2, VPermMask); 8670 } 8671 8672 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 8673 /// vector comparison. If it is, return true and fill in Opc/isDot with 8674 /// information about the intrinsic. 8675 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 8676 bool &isDot, const PPCSubtarget &Subtarget) { 8677 unsigned IntrinsicID = 8678 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 8679 CompareOpc = -1; 8680 isDot = false; 8681 switch (IntrinsicID) { 8682 default: 8683 return false; 8684 // Comparison predicates. 8685 case Intrinsic::ppc_altivec_vcmpbfp_p: 8686 CompareOpc = 966; 8687 isDot = true; 8688 break; 8689 case Intrinsic::ppc_altivec_vcmpeqfp_p: 8690 CompareOpc = 198; 8691 isDot = true; 8692 break; 8693 case Intrinsic::ppc_altivec_vcmpequb_p: 8694 CompareOpc = 6; 8695 isDot = true; 8696 break; 8697 case Intrinsic::ppc_altivec_vcmpequh_p: 8698 CompareOpc = 70; 8699 isDot = true; 8700 break; 8701 case Intrinsic::ppc_altivec_vcmpequw_p: 8702 CompareOpc = 134; 8703 isDot = true; 8704 break; 8705 case Intrinsic::ppc_altivec_vcmpequd_p: 8706 if (Subtarget.hasP8Altivec()) { 8707 CompareOpc = 199; 8708 isDot = true; 8709 } else 8710 return false; 8711 break; 8712 case Intrinsic::ppc_altivec_vcmpneb_p: 8713 case Intrinsic::ppc_altivec_vcmpneh_p: 8714 case Intrinsic::ppc_altivec_vcmpnew_p: 8715 case Intrinsic::ppc_altivec_vcmpnezb_p: 8716 case Intrinsic::ppc_altivec_vcmpnezh_p: 8717 case Intrinsic::ppc_altivec_vcmpnezw_p: 8718 if (Subtarget.hasP9Altivec()) { 8719 switch (IntrinsicID) { 8720 default: 8721 llvm_unreachable("Unknown comparison intrinsic."); 8722 case Intrinsic::ppc_altivec_vcmpneb_p: 8723 CompareOpc = 7; 8724 break; 8725 case Intrinsic::ppc_altivec_vcmpneh_p: 8726 CompareOpc = 71; 8727 break; 8728 case Intrinsic::ppc_altivec_vcmpnew_p: 8729 CompareOpc = 135; 8730 break; 8731 case Intrinsic::ppc_altivec_vcmpnezb_p: 8732 CompareOpc = 263; 8733 break; 8734 case Intrinsic::ppc_altivec_vcmpnezh_p: 8735 CompareOpc = 327; 8736 break; 8737 case Intrinsic::ppc_altivec_vcmpnezw_p: 8738 CompareOpc = 391; 8739 break; 8740 } 8741 isDot = true; 8742 } else 8743 return false; 8744 break; 8745 case Intrinsic::ppc_altivec_vcmpgefp_p: 8746 CompareOpc = 454; 8747 isDot = true; 8748 break; 8749 case Intrinsic::ppc_altivec_vcmpgtfp_p: 8750 CompareOpc = 710; 8751 isDot = true; 8752 break; 8753 case Intrinsic::ppc_altivec_vcmpgtsb_p: 8754 CompareOpc = 774; 8755 isDot = true; 8756 break; 8757 case Intrinsic::ppc_altivec_vcmpgtsh_p: 8758 CompareOpc = 838; 8759 isDot = true; 8760 break; 8761 case Intrinsic::ppc_altivec_vcmpgtsw_p: 8762 CompareOpc = 902; 8763 isDot = true; 8764 break; 8765 case Intrinsic::ppc_altivec_vcmpgtsd_p: 8766 if (Subtarget.hasP8Altivec()) { 8767 CompareOpc = 967; 8768 isDot = true; 8769 } else 8770 return false; 8771 break; 8772 case Intrinsic::ppc_altivec_vcmpgtub_p: 8773 CompareOpc = 518; 8774 isDot = true; 8775 break; 8776 case Intrinsic::ppc_altivec_vcmpgtuh_p: 8777 CompareOpc = 582; 8778 isDot = true; 8779 break; 8780 case Intrinsic::ppc_altivec_vcmpgtuw_p: 8781 CompareOpc = 646; 8782 isDot = true; 8783 break; 8784 case Intrinsic::ppc_altivec_vcmpgtud_p: 8785 if (Subtarget.hasP8Altivec()) { 8786 CompareOpc = 711; 8787 isDot = true; 8788 } else 8789 return false; 8790 break; 8791 8792 // VSX predicate comparisons use the same infrastructure 8793 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 8794 case Intrinsic::ppc_vsx_xvcmpgedp_p: 8795 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 8796 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 8797 case Intrinsic::ppc_vsx_xvcmpgesp_p: 8798 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 8799 if (Subtarget.hasVSX()) { 8800 switch (IntrinsicID) { 8801 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 8802 CompareOpc = 99; 8803 break; 8804 case Intrinsic::ppc_vsx_xvcmpgedp_p: 8805 CompareOpc = 115; 8806 break; 8807 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 8808 CompareOpc = 107; 8809 break; 8810 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 8811 CompareOpc = 67; 8812 break; 8813 case Intrinsic::ppc_vsx_xvcmpgesp_p: 8814 CompareOpc = 83; 8815 break; 8816 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 8817 CompareOpc = 75; 8818 break; 8819 } 8820 isDot = true; 8821 } else 8822 return false; 8823 break; 8824 8825 // Normal Comparisons. 8826 case Intrinsic::ppc_altivec_vcmpbfp: 8827 CompareOpc = 966; 8828 break; 8829 case Intrinsic::ppc_altivec_vcmpeqfp: 8830 CompareOpc = 198; 8831 break; 8832 case Intrinsic::ppc_altivec_vcmpequb: 8833 CompareOpc = 6; 8834 break; 8835 case Intrinsic::ppc_altivec_vcmpequh: 8836 CompareOpc = 70; 8837 break; 8838 case Intrinsic::ppc_altivec_vcmpequw: 8839 CompareOpc = 134; 8840 break; 8841 case Intrinsic::ppc_altivec_vcmpequd: 8842 if (Subtarget.hasP8Altivec()) 8843 CompareOpc = 199; 8844 else 8845 return false; 8846 break; 8847 case Intrinsic::ppc_altivec_vcmpneb: 8848 case Intrinsic::ppc_altivec_vcmpneh: 8849 case Intrinsic::ppc_altivec_vcmpnew: 8850 case Intrinsic::ppc_altivec_vcmpnezb: 8851 case Intrinsic::ppc_altivec_vcmpnezh: 8852 case Intrinsic::ppc_altivec_vcmpnezw: 8853 if (Subtarget.hasP9Altivec()) 8854 switch (IntrinsicID) { 8855 default: 8856 llvm_unreachable("Unknown comparison intrinsic."); 8857 case Intrinsic::ppc_altivec_vcmpneb: 8858 CompareOpc = 7; 8859 break; 8860 case Intrinsic::ppc_altivec_vcmpneh: 8861 CompareOpc = 71; 8862 break; 8863 case Intrinsic::ppc_altivec_vcmpnew: 8864 CompareOpc = 135; 8865 break; 8866 case Intrinsic::ppc_altivec_vcmpnezb: 8867 CompareOpc = 263; 8868 break; 8869 case Intrinsic::ppc_altivec_vcmpnezh: 8870 CompareOpc = 327; 8871 break; 8872 case Intrinsic::ppc_altivec_vcmpnezw: 8873 CompareOpc = 391; 8874 break; 8875 } 8876 else 8877 return false; 8878 break; 8879 case Intrinsic::ppc_altivec_vcmpgefp: 8880 CompareOpc = 454; 8881 break; 8882 case Intrinsic::ppc_altivec_vcmpgtfp: 8883 CompareOpc = 710; 8884 break; 8885 case Intrinsic::ppc_altivec_vcmpgtsb: 8886 CompareOpc = 774; 8887 break; 8888 case Intrinsic::ppc_altivec_vcmpgtsh: 8889 CompareOpc = 838; 8890 break; 8891 case Intrinsic::ppc_altivec_vcmpgtsw: 8892 CompareOpc = 902; 8893 break; 8894 case Intrinsic::ppc_altivec_vcmpgtsd: 8895 if (Subtarget.hasP8Altivec()) 8896 CompareOpc = 967; 8897 else 8898 return false; 8899 break; 8900 case Intrinsic::ppc_altivec_vcmpgtub: 8901 CompareOpc = 518; 8902 break; 8903 case Intrinsic::ppc_altivec_vcmpgtuh: 8904 CompareOpc = 582; 8905 break; 8906 case Intrinsic::ppc_altivec_vcmpgtuw: 8907 CompareOpc = 646; 8908 break; 8909 case Intrinsic::ppc_altivec_vcmpgtud: 8910 if (Subtarget.hasP8Altivec()) 8911 CompareOpc = 711; 8912 else 8913 return false; 8914 break; 8915 } 8916 return true; 8917 } 8918 8919 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 8920 /// lower, do it, otherwise return null. 8921 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 8922 SelectionDAG &DAG) const { 8923 unsigned IntrinsicID = 8924 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 8925 8926 SDLoc dl(Op); 8927 8928 if (IntrinsicID == Intrinsic::thread_pointer) { 8929 // Reads the thread pointer register, used for __builtin_thread_pointer. 8930 if (Subtarget.isPPC64()) 8931 return DAG.getRegister(PPC::X13, MVT::i64); 8932 return DAG.getRegister(PPC::R2, MVT::i32); 8933 } 8934 8935 // We are looking for absolute values here. 8936 // The idea is to try to fit one of two patterns: 8937 // max (a, (0-a)) OR max ((0-a), a) 8938 if (Subtarget.hasP9Vector() && 8939 (IntrinsicID == Intrinsic::ppc_altivec_vmaxsw || 8940 IntrinsicID == Intrinsic::ppc_altivec_vmaxsh || 8941 IntrinsicID == Intrinsic::ppc_altivec_vmaxsb)) { 8942 SDValue V1 = Op.getOperand(1); 8943 SDValue V2 = Op.getOperand(2); 8944 if (V1.getSimpleValueType() == V2.getSimpleValueType() && 8945 (V1.getSimpleValueType() == MVT::v4i32 || 8946 V1.getSimpleValueType() == MVT::v8i16 || 8947 V1.getSimpleValueType() == MVT::v16i8)) { 8948 if ( V1.getOpcode() == ISD::SUB && 8949 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 8950 V1.getOperand(1) == V2 ) { 8951 // Generate the abs instruction with the operands 8952 return DAG.getNode(ISD::ABS, dl, V2.getValueType(),V2); 8953 } 8954 8955 if ( V2.getOpcode() == ISD::SUB && 8956 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 8957 V2.getOperand(1) == V1 ) { 8958 // Generate the abs instruction with the operands 8959 return DAG.getNode(ISD::ABS, dl, V1.getValueType(),V1); 8960 } 8961 } 8962 } 8963 8964 // If this is a lowered altivec predicate compare, CompareOpc is set to the 8965 // opcode number of the comparison. 8966 int CompareOpc; 8967 bool isDot; 8968 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 8969 return SDValue(); // Don't custom lower most intrinsics. 8970 8971 // If this is a non-dot comparison, make the VCMP node and we are done. 8972 if (!isDot) { 8973 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 8974 Op.getOperand(1), Op.getOperand(2), 8975 DAG.getConstant(CompareOpc, dl, MVT::i32)); 8976 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 8977 } 8978 8979 // Create the PPCISD altivec 'dot' comparison node. 8980 SDValue Ops[] = { 8981 Op.getOperand(2), // LHS 8982 Op.getOperand(3), // RHS 8983 DAG.getConstant(CompareOpc, dl, MVT::i32) 8984 }; 8985 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 8986 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 8987 8988 // Now that we have the comparison, emit a copy from the CR to a GPR. 8989 // This is flagged to the above dot comparison. 8990 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 8991 DAG.getRegister(PPC::CR6, MVT::i32), 8992 CompNode.getValue(1)); 8993 8994 // Unpack the result based on how the target uses it. 8995 unsigned BitNo; // Bit # of CR6. 8996 bool InvertBit; // Invert result? 8997 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 8998 default: // Can't happen, don't crash on invalid number though. 8999 case 0: // Return the value of the EQ bit of CR6. 9000 BitNo = 0; InvertBit = false; 9001 break; 9002 case 1: // Return the inverted value of the EQ bit of CR6. 9003 BitNo = 0; InvertBit = true; 9004 break; 9005 case 2: // Return the value of the LT bit of CR6. 9006 BitNo = 2; InvertBit = false; 9007 break; 9008 case 3: // Return the inverted value of the LT bit of CR6. 9009 BitNo = 2; InvertBit = true; 9010 break; 9011 } 9012 9013 // Shift the bit into the low position. 9014 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 9015 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 9016 // Isolate the bit. 9017 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 9018 DAG.getConstant(1, dl, MVT::i32)); 9019 9020 // If we are supposed to, toggle the bit. 9021 if (InvertBit) 9022 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 9023 DAG.getConstant(1, dl, MVT::i32)); 9024 return Flags; 9025 } 9026 9027 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 9028 SelectionDAG &DAG) const { 9029 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 9030 // the beginning of the argument list. 9031 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 9032 SDLoc DL(Op); 9033 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 9034 case Intrinsic::ppc_cfence: { 9035 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 9036 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 9037 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 9038 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 9039 Op.getOperand(ArgStart + 1)), 9040 Op.getOperand(0)), 9041 0); 9042 } 9043 default: 9044 break; 9045 } 9046 return SDValue(); 9047 } 9048 9049 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const { 9050 // Check for a DIV with the same operands as this REM. 9051 for (auto UI : Op.getOperand(1)->uses()) { 9052 if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) || 9053 (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV)) 9054 if (UI->getOperand(0) == Op.getOperand(0) && 9055 UI->getOperand(1) == Op.getOperand(1)) 9056 return SDValue(); 9057 } 9058 return Op; 9059 } 9060 9061 // Lower scalar BSWAP64 to xxbrd. 9062 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 9063 SDLoc dl(Op); 9064 // MTVSRDD 9065 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 9066 Op.getOperand(0)); 9067 // XXBRD 9068 Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op); 9069 // MFVSRD 9070 int VectorIndex = 0; 9071 if (Subtarget.isLittleEndian()) 9072 VectorIndex = 1; 9073 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 9074 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 9075 return Op; 9076 } 9077 9078 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 9079 // compared to a value that is atomically loaded (atomic loads zero-extend). 9080 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 9081 SelectionDAG &DAG) const { 9082 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 9083 "Expecting an atomic compare-and-swap here."); 9084 SDLoc dl(Op); 9085 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 9086 EVT MemVT = AtomicNode->getMemoryVT(); 9087 if (MemVT.getSizeInBits() >= 32) 9088 return Op; 9089 9090 SDValue CmpOp = Op.getOperand(2); 9091 // If this is already correctly zero-extended, leave it alone. 9092 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 9093 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 9094 return Op; 9095 9096 // Clear the high bits of the compare operand. 9097 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 9098 SDValue NewCmpOp = 9099 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 9100 DAG.getConstant(MaskVal, dl, MVT::i32)); 9101 9102 // Replace the existing compare operand with the properly zero-extended one. 9103 SmallVector<SDValue, 4> Ops; 9104 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 9105 Ops.push_back(AtomicNode->getOperand(i)); 9106 Ops[2] = NewCmpOp; 9107 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 9108 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 9109 auto NodeTy = 9110 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 9111 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 9112 } 9113 9114 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 9115 SelectionDAG &DAG) const { 9116 SDLoc dl(Op); 9117 // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int 9118 // instructions), but for smaller types, we need to first extend up to v2i32 9119 // before doing going farther. 9120 if (Op.getValueType() == MVT::v2i64) { 9121 EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 9122 if (ExtVT != MVT::v2i32) { 9123 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)); 9124 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op, 9125 DAG.getValueType(EVT::getVectorVT(*DAG.getContext(), 9126 ExtVT.getVectorElementType(), 4))); 9127 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op); 9128 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op, 9129 DAG.getValueType(MVT::v2i32)); 9130 } 9131 9132 return Op; 9133 } 9134 9135 return SDValue(); 9136 } 9137 9138 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 9139 SelectionDAG &DAG) const { 9140 SDLoc dl(Op); 9141 // Create a stack slot that is 16-byte aligned. 9142 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9143 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9144 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9145 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9146 9147 // Store the input value into Value#0 of the stack slot. 9148 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 9149 MachinePointerInfo()); 9150 // Load it out. 9151 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 9152 } 9153 9154 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 9155 SelectionDAG &DAG) const { 9156 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 9157 "Should only be called for ISD::INSERT_VECTOR_ELT"); 9158 9159 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 9160 // We have legal lowering for constant indices but not for variable ones. 9161 if (!C) 9162 return SDValue(); 9163 9164 EVT VT = Op.getValueType(); 9165 SDLoc dl(Op); 9166 SDValue V1 = Op.getOperand(0); 9167 SDValue V2 = Op.getOperand(1); 9168 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 9169 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 9170 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 9171 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 9172 unsigned InsertAtElement = C->getZExtValue(); 9173 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 9174 if (Subtarget.isLittleEndian()) { 9175 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 9176 } 9177 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 9178 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9179 } 9180 return Op; 9181 } 9182 9183 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 9184 SelectionDAG &DAG) const { 9185 SDLoc dl(Op); 9186 SDNode *N = Op.getNode(); 9187 9188 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 9189 "Unknown extract_vector_elt type"); 9190 9191 SDValue Value = N->getOperand(0); 9192 9193 // The first part of this is like the store lowering except that we don't 9194 // need to track the chain. 9195 9196 // The values are now known to be -1 (false) or 1 (true). To convert this 9197 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9198 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9199 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9200 9201 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9202 // understand how to form the extending load. 9203 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9204 9205 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9206 9207 // Now convert to an integer and store. 9208 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9209 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9210 Value); 9211 9212 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9213 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9214 MachinePointerInfo PtrInfo = 9215 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9216 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9217 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9218 9219 SDValue StoreChain = DAG.getEntryNode(); 9220 SDValue Ops[] = {StoreChain, 9221 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9222 Value, FIdx}; 9223 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9224 9225 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9226 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9227 9228 // Extract the value requested. 9229 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 9230 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9231 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9232 9233 SDValue IntVal = 9234 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 9235 9236 if (!Subtarget.useCRBits()) 9237 return IntVal; 9238 9239 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 9240 } 9241 9242 /// Lowering for QPX v4i1 loads 9243 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 9244 SelectionDAG &DAG) const { 9245 SDLoc dl(Op); 9246 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 9247 SDValue LoadChain = LN->getChain(); 9248 SDValue BasePtr = LN->getBasePtr(); 9249 9250 if (Op.getValueType() == MVT::v4f64 || 9251 Op.getValueType() == MVT::v4f32) { 9252 EVT MemVT = LN->getMemoryVT(); 9253 unsigned Alignment = LN->getAlignment(); 9254 9255 // If this load is properly aligned, then it is legal. 9256 if (Alignment >= MemVT.getStoreSize()) 9257 return Op; 9258 9259 EVT ScalarVT = Op.getValueType().getScalarType(), 9260 ScalarMemVT = MemVT.getScalarType(); 9261 unsigned Stride = ScalarMemVT.getStoreSize(); 9262 9263 SDValue Vals[4], LoadChains[4]; 9264 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9265 SDValue Load; 9266 if (ScalarVT != ScalarMemVT) 9267 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 9268 BasePtr, 9269 LN->getPointerInfo().getWithOffset(Idx * Stride), 9270 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9271 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9272 else 9273 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 9274 LN->getPointerInfo().getWithOffset(Idx * Stride), 9275 MinAlign(Alignment, Idx * Stride), 9276 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9277 9278 if (Idx == 0 && LN->isIndexed()) { 9279 assert(LN->getAddressingMode() == ISD::PRE_INC && 9280 "Unknown addressing mode on vector load"); 9281 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 9282 LN->getAddressingMode()); 9283 } 9284 9285 Vals[Idx] = Load; 9286 LoadChains[Idx] = Load.getValue(1); 9287 9288 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9289 DAG.getConstant(Stride, dl, 9290 BasePtr.getValueType())); 9291 } 9292 9293 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9294 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 9295 9296 if (LN->isIndexed()) { 9297 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 9298 return DAG.getMergeValues(RetOps, dl); 9299 } 9300 9301 SDValue RetOps[] = { Value, TF }; 9302 return DAG.getMergeValues(RetOps, dl); 9303 } 9304 9305 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 9306 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 9307 9308 // To lower v4i1 from a byte array, we load the byte elements of the 9309 // vector and then reuse the BUILD_VECTOR logic. 9310 9311 SDValue VectElmts[4], VectElmtChains[4]; 9312 for (unsigned i = 0; i < 4; ++i) { 9313 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9314 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9315 9316 VectElmts[i] = DAG.getExtLoad( 9317 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 9318 LN->getPointerInfo().getWithOffset(i), MVT::i8, 9319 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9320 VectElmtChains[i] = VectElmts[i].getValue(1); 9321 } 9322 9323 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 9324 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 9325 9326 SDValue RVals[] = { Value, LoadChain }; 9327 return DAG.getMergeValues(RVals, dl); 9328 } 9329 9330 /// Lowering for QPX v4i1 stores 9331 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 9332 SelectionDAG &DAG) const { 9333 SDLoc dl(Op); 9334 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 9335 SDValue StoreChain = SN->getChain(); 9336 SDValue BasePtr = SN->getBasePtr(); 9337 SDValue Value = SN->getValue(); 9338 9339 if (Value.getValueType() == MVT::v4f64 || 9340 Value.getValueType() == MVT::v4f32) { 9341 EVT MemVT = SN->getMemoryVT(); 9342 unsigned Alignment = SN->getAlignment(); 9343 9344 // If this store is properly aligned, then it is legal. 9345 if (Alignment >= MemVT.getStoreSize()) 9346 return Op; 9347 9348 EVT ScalarVT = Value.getValueType().getScalarType(), 9349 ScalarMemVT = MemVT.getScalarType(); 9350 unsigned Stride = ScalarMemVT.getStoreSize(); 9351 9352 SDValue Stores[4]; 9353 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9354 SDValue Ex = DAG.getNode( 9355 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 9356 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 9357 SDValue Store; 9358 if (ScalarVT != ScalarMemVT) 9359 Store = 9360 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 9361 SN->getPointerInfo().getWithOffset(Idx * Stride), 9362 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9363 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 9364 else 9365 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 9366 SN->getPointerInfo().getWithOffset(Idx * Stride), 9367 MinAlign(Alignment, Idx * Stride), 9368 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 9369 9370 if (Idx == 0 && SN->isIndexed()) { 9371 assert(SN->getAddressingMode() == ISD::PRE_INC && 9372 "Unknown addressing mode on vector store"); 9373 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 9374 SN->getAddressingMode()); 9375 } 9376 9377 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9378 DAG.getConstant(Stride, dl, 9379 BasePtr.getValueType())); 9380 Stores[Idx] = Store; 9381 } 9382 9383 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9384 9385 if (SN->isIndexed()) { 9386 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 9387 return DAG.getMergeValues(RetOps, dl); 9388 } 9389 9390 return TF; 9391 } 9392 9393 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 9394 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 9395 9396 // The values are now known to be -1 (false) or 1 (true). To convert this 9397 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9398 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9399 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9400 9401 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9402 // understand how to form the extending load. 9403 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9404 9405 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9406 9407 // Now convert to an integer and store. 9408 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9409 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9410 Value); 9411 9412 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9413 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9414 MachinePointerInfo PtrInfo = 9415 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9416 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9417 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9418 9419 SDValue Ops[] = {StoreChain, 9420 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9421 Value, FIdx}; 9422 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9423 9424 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9425 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9426 9427 // Move data into the byte array. 9428 SDValue Loads[4], LoadChains[4]; 9429 for (unsigned i = 0; i < 4; ++i) { 9430 unsigned Offset = 4*i; 9431 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9432 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9433 9434 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 9435 PtrInfo.getWithOffset(Offset)); 9436 LoadChains[i] = Loads[i].getValue(1); 9437 } 9438 9439 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9440 9441 SDValue Stores[4]; 9442 for (unsigned i = 0; i < 4; ++i) { 9443 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9444 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9445 9446 Stores[i] = DAG.getTruncStore( 9447 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 9448 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 9449 SN->getAAInfo()); 9450 } 9451 9452 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9453 9454 return StoreChain; 9455 } 9456 9457 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 9458 SDLoc dl(Op); 9459 if (Op.getValueType() == MVT::v4i32) { 9460 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9461 9462 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 9463 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 9464 9465 SDValue RHSSwap = // = vrlw RHS, 16 9466 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 9467 9468 // Shrinkify inputs to v8i16. 9469 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 9470 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 9471 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 9472 9473 // Low parts multiplied together, generating 32-bit results (we ignore the 9474 // top parts). 9475 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 9476 LHS, RHS, DAG, dl, MVT::v4i32); 9477 9478 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 9479 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 9480 // Shift the high parts up 16 bits. 9481 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 9482 Neg16, DAG, dl); 9483 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 9484 } else if (Op.getValueType() == MVT::v8i16) { 9485 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9486 9487 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 9488 9489 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 9490 LHS, RHS, Zero, DAG, dl); 9491 } else if (Op.getValueType() == MVT::v16i8) { 9492 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9493 bool isLittleEndian = Subtarget.isLittleEndian(); 9494 9495 // Multiply the even 8-bit parts, producing 16-bit sums. 9496 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 9497 LHS, RHS, DAG, dl, MVT::v8i16); 9498 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 9499 9500 // Multiply the odd 8-bit parts, producing 16-bit sums. 9501 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 9502 LHS, RHS, DAG, dl, MVT::v8i16); 9503 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 9504 9505 // Merge the results together. Because vmuleub and vmuloub are 9506 // instructions with a big-endian bias, we must reverse the 9507 // element numbering and reverse the meaning of "odd" and "even" 9508 // when generating little endian code. 9509 int Ops[16]; 9510 for (unsigned i = 0; i != 8; ++i) { 9511 if (isLittleEndian) { 9512 Ops[i*2 ] = 2*i; 9513 Ops[i*2+1] = 2*i+16; 9514 } else { 9515 Ops[i*2 ] = 2*i+1; 9516 Ops[i*2+1] = 2*i+1+16; 9517 } 9518 } 9519 if (isLittleEndian) 9520 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 9521 else 9522 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 9523 } else { 9524 llvm_unreachable("Unknown mul to lower!"); 9525 } 9526 } 9527 9528 /// LowerOperation - Provide custom lowering hooks for some operations. 9529 /// 9530 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9531 switch (Op.getOpcode()) { 9532 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 9533 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 9534 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 9535 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 9536 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 9537 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 9538 case ISD::SETCC: return LowerSETCC(Op, DAG); 9539 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 9540 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 9541 9542 // Variable argument lowering. 9543 case ISD::VASTART: return LowerVASTART(Op, DAG); 9544 case ISD::VAARG: return LowerVAARG(Op, DAG); 9545 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 9546 9547 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 9548 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 9549 case ISD::GET_DYNAMIC_AREA_OFFSET: 9550 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 9551 9552 // Exception handling lowering. 9553 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 9554 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 9555 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 9556 9557 case ISD::LOAD: return LowerLOAD(Op, DAG); 9558 case ISD::STORE: return LowerSTORE(Op, DAG); 9559 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 9560 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 9561 case ISD::FP_TO_UINT: 9562 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 9563 case ISD::UINT_TO_FP: 9564 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 9565 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 9566 9567 // Lower 64-bit shifts. 9568 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 9569 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 9570 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 9571 9572 // Vector-related lowering. 9573 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 9574 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 9575 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 9576 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 9577 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 9578 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 9579 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 9580 case ISD::MUL: return LowerMUL(Op, DAG); 9581 9582 // For counter-based loop handling. 9583 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 9584 9585 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 9586 9587 // Frame & Return address. 9588 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 9589 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 9590 9591 case ISD::INTRINSIC_VOID: 9592 return LowerINTRINSIC_VOID(Op, DAG); 9593 case ISD::SREM: 9594 case ISD::UREM: 9595 return LowerREM(Op, DAG); 9596 case ISD::BSWAP: 9597 return LowerBSWAP(Op, DAG); 9598 case ISD::ATOMIC_CMP_SWAP: 9599 return LowerATOMIC_CMP_SWAP(Op, DAG); 9600 } 9601 } 9602 9603 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 9604 SmallVectorImpl<SDValue>&Results, 9605 SelectionDAG &DAG) const { 9606 SDLoc dl(N); 9607 switch (N->getOpcode()) { 9608 default: 9609 llvm_unreachable("Do not know how to custom type legalize this operation!"); 9610 case ISD::READCYCLECOUNTER: { 9611 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 9612 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 9613 9614 Results.push_back(RTB); 9615 Results.push_back(RTB.getValue(1)); 9616 Results.push_back(RTB.getValue(2)); 9617 break; 9618 } 9619 case ISD::INTRINSIC_W_CHAIN: { 9620 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 9621 Intrinsic::ppc_is_decremented_ctr_nonzero) 9622 break; 9623 9624 assert(N->getValueType(0) == MVT::i1 && 9625 "Unexpected result type for CTR decrement intrinsic"); 9626 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 9627 N->getValueType(0)); 9628 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 9629 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 9630 N->getOperand(1)); 9631 9632 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 9633 Results.push_back(NewInt.getValue(1)); 9634 break; 9635 } 9636 case ISD::VAARG: { 9637 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 9638 return; 9639 9640 EVT VT = N->getValueType(0); 9641 9642 if (VT == MVT::i64) { 9643 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 9644 9645 Results.push_back(NewNode); 9646 Results.push_back(NewNode.getValue(1)); 9647 } 9648 return; 9649 } 9650 case ISD::FP_TO_SINT: 9651 case ISD::FP_TO_UINT: 9652 // LowerFP_TO_INT() can only handle f32 and f64. 9653 if (N->getOperand(0).getValueType() == MVT::ppcf128) 9654 return; 9655 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 9656 return; 9657 } 9658 } 9659 9660 //===----------------------------------------------------------------------===// 9661 // Other Lowering Code 9662 //===----------------------------------------------------------------------===// 9663 9664 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 9665 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 9666 Function *Func = Intrinsic::getDeclaration(M, Id); 9667 return Builder.CreateCall(Func, {}); 9668 } 9669 9670 // The mappings for emitLeading/TrailingFence is taken from 9671 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 9672 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 9673 Instruction *Inst, 9674 AtomicOrdering Ord) const { 9675 if (Ord == AtomicOrdering::SequentiallyConsistent) 9676 return callIntrinsic(Builder, Intrinsic::ppc_sync); 9677 if (isReleaseOrStronger(Ord)) 9678 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 9679 return nullptr; 9680 } 9681 9682 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 9683 Instruction *Inst, 9684 AtomicOrdering Ord) const { 9685 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 9686 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 9687 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 9688 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 9689 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 9690 return Builder.CreateCall( 9691 Intrinsic::getDeclaration( 9692 Builder.GetInsertBlock()->getParent()->getParent(), 9693 Intrinsic::ppc_cfence, {Inst->getType()}), 9694 {Inst}); 9695 // FIXME: Can use isync for rmw operation. 9696 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 9697 } 9698 return nullptr; 9699 } 9700 9701 MachineBasicBlock * 9702 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 9703 unsigned AtomicSize, 9704 unsigned BinOpcode, 9705 unsigned CmpOpcode, 9706 unsigned CmpPred) const { 9707 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 9708 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 9709 9710 auto LoadMnemonic = PPC::LDARX; 9711 auto StoreMnemonic = PPC::STDCX; 9712 switch (AtomicSize) { 9713 default: 9714 llvm_unreachable("Unexpected size of atomic entity"); 9715 case 1: 9716 LoadMnemonic = PPC::LBARX; 9717 StoreMnemonic = PPC::STBCX; 9718 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 9719 break; 9720 case 2: 9721 LoadMnemonic = PPC::LHARX; 9722 StoreMnemonic = PPC::STHCX; 9723 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 9724 break; 9725 case 4: 9726 LoadMnemonic = PPC::LWARX; 9727 StoreMnemonic = PPC::STWCX; 9728 break; 9729 case 8: 9730 LoadMnemonic = PPC::LDARX; 9731 StoreMnemonic = PPC::STDCX; 9732 break; 9733 } 9734 9735 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9736 MachineFunction *F = BB->getParent(); 9737 MachineFunction::iterator It = ++BB->getIterator(); 9738 9739 unsigned dest = MI.getOperand(0).getReg(); 9740 unsigned ptrA = MI.getOperand(1).getReg(); 9741 unsigned ptrB = MI.getOperand(2).getReg(); 9742 unsigned incr = MI.getOperand(3).getReg(); 9743 DebugLoc dl = MI.getDebugLoc(); 9744 9745 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 9746 MachineBasicBlock *loop2MBB = 9747 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 9748 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9749 F->insert(It, loopMBB); 9750 if (CmpOpcode) 9751 F->insert(It, loop2MBB); 9752 F->insert(It, exitMBB); 9753 exitMBB->splice(exitMBB->begin(), BB, 9754 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9755 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9756 9757 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9758 unsigned TmpReg = (!BinOpcode) ? incr : 9759 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 9760 : &PPC::GPRCRegClass); 9761 9762 // thisMBB: 9763 // ... 9764 // fallthrough --> loopMBB 9765 BB->addSuccessor(loopMBB); 9766 9767 // loopMBB: 9768 // l[wd]arx dest, ptr 9769 // add r0, dest, incr 9770 // st[wd]cx. r0, ptr 9771 // bne- loopMBB 9772 // fallthrough --> exitMBB 9773 9774 // For max/min... 9775 // loopMBB: 9776 // l[wd]arx dest, ptr 9777 // cmpl?[wd] incr, dest 9778 // bgt exitMBB 9779 // loop2MBB: 9780 // st[wd]cx. dest, ptr 9781 // bne- loopMBB 9782 // fallthrough --> exitMBB 9783 9784 BB = loopMBB; 9785 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 9786 .addReg(ptrA).addReg(ptrB); 9787 if (BinOpcode) 9788 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 9789 if (CmpOpcode) { 9790 // Signed comparisons of byte or halfword values must be sign-extended. 9791 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 9792 unsigned ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 9793 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 9794 ExtReg).addReg(dest); 9795 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 9796 .addReg(incr).addReg(ExtReg); 9797 } else 9798 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 9799 .addReg(incr).addReg(dest); 9800 9801 BuildMI(BB, dl, TII->get(PPC::BCC)) 9802 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 9803 BB->addSuccessor(loop2MBB); 9804 BB->addSuccessor(exitMBB); 9805 BB = loop2MBB; 9806 } 9807 BuildMI(BB, dl, TII->get(StoreMnemonic)) 9808 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 9809 BuildMI(BB, dl, TII->get(PPC::BCC)) 9810 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 9811 BB->addSuccessor(loopMBB); 9812 BB->addSuccessor(exitMBB); 9813 9814 // exitMBB: 9815 // ... 9816 BB = exitMBB; 9817 return BB; 9818 } 9819 9820 MachineBasicBlock * 9821 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr &MI, 9822 MachineBasicBlock *BB, 9823 bool is8bit, // operation 9824 unsigned BinOpcode, 9825 unsigned CmpOpcode, 9826 unsigned CmpPred) const { 9827 // If we support part-word atomic mnemonics, just use them 9828 if (Subtarget.hasPartwordAtomics()) 9829 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, 9830 CmpOpcode, CmpPred); 9831 9832 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 9833 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 9834 // In 64 bit mode we have to use 64 bits for addresses, even though the 9835 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 9836 // registers without caring whether they're 32 or 64, but here we're 9837 // doing actual arithmetic on the addresses. 9838 bool is64bit = Subtarget.isPPC64(); 9839 bool isLittleEndian = Subtarget.isLittleEndian(); 9840 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 9841 9842 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9843 MachineFunction *F = BB->getParent(); 9844 MachineFunction::iterator It = ++BB->getIterator(); 9845 9846 unsigned dest = MI.getOperand(0).getReg(); 9847 unsigned ptrA = MI.getOperand(1).getReg(); 9848 unsigned ptrB = MI.getOperand(2).getReg(); 9849 unsigned incr = MI.getOperand(3).getReg(); 9850 DebugLoc dl = MI.getDebugLoc(); 9851 9852 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 9853 MachineBasicBlock *loop2MBB = 9854 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 9855 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9856 F->insert(It, loopMBB); 9857 if (CmpOpcode) 9858 F->insert(It, loop2MBB); 9859 F->insert(It, exitMBB); 9860 exitMBB->splice(exitMBB->begin(), BB, 9861 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9862 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9863 9864 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9865 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 9866 : &PPC::GPRCRegClass; 9867 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 9868 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 9869 unsigned ShiftReg = 9870 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC); 9871 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 9872 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 9873 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 9874 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 9875 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 9876 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 9877 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 9878 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 9879 unsigned Ptr1Reg; 9880 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 9881 9882 // thisMBB: 9883 // ... 9884 // fallthrough --> loopMBB 9885 BB->addSuccessor(loopMBB); 9886 9887 // The 4-byte load must be aligned, while a char or short may be 9888 // anywhere in the word. Hence all this nasty bookkeeping code. 9889 // add ptr1, ptrA, ptrB [copy if ptrA==0] 9890 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 9891 // xori shift, shift1, 24 [16] 9892 // rlwinm ptr, ptr1, 0, 0, 29 9893 // slw incr2, incr, shift 9894 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 9895 // slw mask, mask2, shift 9896 // loopMBB: 9897 // lwarx tmpDest, ptr 9898 // add tmp, tmpDest, incr2 9899 // andc tmp2, tmpDest, mask 9900 // and tmp3, tmp, mask 9901 // or tmp4, tmp3, tmp2 9902 // stwcx. tmp4, ptr 9903 // bne- loopMBB 9904 // fallthrough --> exitMBB 9905 // srw dest, tmpDest, shift 9906 if (ptrA != ZeroReg) { 9907 Ptr1Reg = RegInfo.createVirtualRegister(RC); 9908 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 9909 .addReg(ptrA).addReg(ptrB); 9910 } else { 9911 Ptr1Reg = ptrB; 9912 } 9913 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 9914 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 9915 if (!isLittleEndian) 9916 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 9917 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 9918 if (is64bit) 9919 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 9920 .addReg(Ptr1Reg).addImm(0).addImm(61); 9921 else 9922 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 9923 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 9924 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 9925 .addReg(incr).addReg(ShiftReg); 9926 if (is8bit) 9927 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 9928 else { 9929 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 9930 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 9931 } 9932 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 9933 .addReg(Mask2Reg).addReg(ShiftReg); 9934 9935 BB = loopMBB; 9936 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 9937 .addReg(ZeroReg).addReg(PtrReg); 9938 if (BinOpcode) 9939 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 9940 .addReg(Incr2Reg).addReg(TmpDestReg); 9941 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 9942 .addReg(TmpDestReg).addReg(MaskReg); 9943 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 9944 .addReg(TmpReg).addReg(MaskReg); 9945 if (CmpOpcode) { 9946 // For unsigned comparisons, we can directly compare the shifted values. 9947 // For signed comparisons we shift and sign extend. 9948 unsigned SReg = RegInfo.createVirtualRegister(RC); 9949 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), SReg) 9950 .addReg(TmpDestReg).addReg(MaskReg); 9951 unsigned ValueReg = SReg; 9952 unsigned CmpReg = Incr2Reg; 9953 if (CmpOpcode == PPC::CMPW) { 9954 ValueReg = RegInfo.createVirtualRegister(RC); 9955 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 9956 .addReg(SReg).addReg(ShiftReg); 9957 unsigned ValueSReg = RegInfo.createVirtualRegister(RC); 9958 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 9959 .addReg(ValueReg); 9960 ValueReg = ValueSReg; 9961 CmpReg = incr; 9962 } 9963 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 9964 .addReg(CmpReg).addReg(ValueReg); 9965 BuildMI(BB, dl, TII->get(PPC::BCC)) 9966 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 9967 BB->addSuccessor(loop2MBB); 9968 BB->addSuccessor(exitMBB); 9969 BB = loop2MBB; 9970 } 9971 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 9972 .addReg(Tmp3Reg).addReg(Tmp2Reg); 9973 BuildMI(BB, dl, TII->get(PPC::STWCX)) 9974 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 9975 BuildMI(BB, dl, TII->get(PPC::BCC)) 9976 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 9977 BB->addSuccessor(loopMBB); 9978 BB->addSuccessor(exitMBB); 9979 9980 // exitMBB: 9981 // ... 9982 BB = exitMBB; 9983 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 9984 .addReg(ShiftReg); 9985 return BB; 9986 } 9987 9988 llvm::MachineBasicBlock * 9989 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 9990 MachineBasicBlock *MBB) const { 9991 DebugLoc DL = MI.getDebugLoc(); 9992 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 9993 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9994 9995 MachineFunction *MF = MBB->getParent(); 9996 MachineRegisterInfo &MRI = MF->getRegInfo(); 9997 9998 const BasicBlock *BB = MBB->getBasicBlock(); 9999 MachineFunction::iterator I = ++MBB->getIterator(); 10000 10001 unsigned DstReg = MI.getOperand(0).getReg(); 10002 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 10003 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 10004 unsigned mainDstReg = MRI.createVirtualRegister(RC); 10005 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 10006 10007 MVT PVT = getPointerTy(MF->getDataLayout()); 10008 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10009 "Invalid Pointer Size!"); 10010 // For v = setjmp(buf), we generate 10011 // 10012 // thisMBB: 10013 // SjLjSetup mainMBB 10014 // bl mainMBB 10015 // v_restore = 1 10016 // b sinkMBB 10017 // 10018 // mainMBB: 10019 // buf[LabelOffset] = LR 10020 // v_main = 0 10021 // 10022 // sinkMBB: 10023 // v = phi(main, restore) 10024 // 10025 10026 MachineBasicBlock *thisMBB = MBB; 10027 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 10028 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 10029 MF->insert(I, mainMBB); 10030 MF->insert(I, sinkMBB); 10031 10032 MachineInstrBuilder MIB; 10033 10034 // Transfer the remainder of BB and its successor edges to sinkMBB. 10035 sinkMBB->splice(sinkMBB->begin(), MBB, 10036 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 10037 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 10038 10039 // Note that the structure of the jmp_buf used here is not compatible 10040 // with that used by libc, and is not designed to be. Specifically, it 10041 // stores only those 'reserved' registers that LLVM does not otherwise 10042 // understand how to spill. Also, by convention, by the time this 10043 // intrinsic is called, Clang has already stored the frame address in the 10044 // first slot of the buffer and stack address in the third. Following the 10045 // X86 target code, we'll store the jump address in the second slot. We also 10046 // need to save the TOC pointer (R2) to handle jumps between shared 10047 // libraries, and that will be stored in the fourth slot. The thread 10048 // identifier (R13) is not affected. 10049 10050 // thisMBB: 10051 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10052 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10053 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10054 10055 // Prepare IP either in reg. 10056 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 10057 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 10058 unsigned BufReg = MI.getOperand(1).getReg(); 10059 10060 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 10061 setUsesTOCBasePtr(*MBB->getParent()); 10062 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 10063 .addReg(PPC::X2) 10064 .addImm(TOCOffset) 10065 .addReg(BufReg) 10066 .cloneMemRefs(MI); 10067 } 10068 10069 // Naked functions never have a base pointer, and so we use r1. For all 10070 // other functions, this decision must be delayed until during PEI. 10071 unsigned BaseReg; 10072 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 10073 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 10074 else 10075 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 10076 10077 MIB = BuildMI(*thisMBB, MI, DL, 10078 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 10079 .addReg(BaseReg) 10080 .addImm(BPOffset) 10081 .addReg(BufReg) 10082 .cloneMemRefs(MI); 10083 10084 // Setup 10085 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 10086 MIB.addRegMask(TRI->getNoPreservedMask()); 10087 10088 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 10089 10090 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 10091 .addMBB(mainMBB); 10092 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 10093 10094 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 10095 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 10096 10097 // mainMBB: 10098 // mainDstReg = 0 10099 MIB = 10100 BuildMI(mainMBB, DL, 10101 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 10102 10103 // Store IP 10104 if (Subtarget.isPPC64()) { 10105 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 10106 .addReg(LabelReg) 10107 .addImm(LabelOffset) 10108 .addReg(BufReg); 10109 } else { 10110 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 10111 .addReg(LabelReg) 10112 .addImm(LabelOffset) 10113 .addReg(BufReg); 10114 } 10115 MIB.cloneMemRefs(MI); 10116 10117 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 10118 mainMBB->addSuccessor(sinkMBB); 10119 10120 // sinkMBB: 10121 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 10122 TII->get(PPC::PHI), DstReg) 10123 .addReg(mainDstReg).addMBB(mainMBB) 10124 .addReg(restoreDstReg).addMBB(thisMBB); 10125 10126 MI.eraseFromParent(); 10127 return sinkMBB; 10128 } 10129 10130 MachineBasicBlock * 10131 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 10132 MachineBasicBlock *MBB) const { 10133 DebugLoc DL = MI.getDebugLoc(); 10134 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10135 10136 MachineFunction *MF = MBB->getParent(); 10137 MachineRegisterInfo &MRI = MF->getRegInfo(); 10138 10139 MVT PVT = getPointerTy(MF->getDataLayout()); 10140 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10141 "Invalid Pointer Size!"); 10142 10143 const TargetRegisterClass *RC = 10144 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10145 unsigned Tmp = MRI.createVirtualRegister(RC); 10146 // Since FP is only updated here but NOT referenced, it's treated as GPR. 10147 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 10148 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 10149 unsigned BP = 10150 (PVT == MVT::i64) 10151 ? PPC::X30 10152 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 10153 : PPC::R30); 10154 10155 MachineInstrBuilder MIB; 10156 10157 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10158 const int64_t SPOffset = 2 * PVT.getStoreSize(); 10159 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10160 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10161 10162 unsigned BufReg = MI.getOperand(0).getReg(); 10163 10164 // Reload FP (the jumped-to function may not have had a 10165 // frame pointer, and if so, then its r31 will be restored 10166 // as necessary). 10167 if (PVT == MVT::i64) { 10168 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 10169 .addImm(0) 10170 .addReg(BufReg); 10171 } else { 10172 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 10173 .addImm(0) 10174 .addReg(BufReg); 10175 } 10176 MIB.cloneMemRefs(MI); 10177 10178 // Reload IP 10179 if (PVT == MVT::i64) { 10180 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 10181 .addImm(LabelOffset) 10182 .addReg(BufReg); 10183 } else { 10184 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 10185 .addImm(LabelOffset) 10186 .addReg(BufReg); 10187 } 10188 MIB.cloneMemRefs(MI); 10189 10190 // Reload SP 10191 if (PVT == MVT::i64) { 10192 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 10193 .addImm(SPOffset) 10194 .addReg(BufReg); 10195 } else { 10196 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 10197 .addImm(SPOffset) 10198 .addReg(BufReg); 10199 } 10200 MIB.cloneMemRefs(MI); 10201 10202 // Reload BP 10203 if (PVT == MVT::i64) { 10204 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 10205 .addImm(BPOffset) 10206 .addReg(BufReg); 10207 } else { 10208 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 10209 .addImm(BPOffset) 10210 .addReg(BufReg); 10211 } 10212 MIB.cloneMemRefs(MI); 10213 10214 // Reload TOC 10215 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 10216 setUsesTOCBasePtr(*MBB->getParent()); 10217 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 10218 .addImm(TOCOffset) 10219 .addReg(BufReg) 10220 .cloneMemRefs(MI); 10221 } 10222 10223 // Jump 10224 BuildMI(*MBB, MI, DL, 10225 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 10226 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 10227 10228 MI.eraseFromParent(); 10229 return MBB; 10230 } 10231 10232 MachineBasicBlock * 10233 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 10234 MachineBasicBlock *BB) const { 10235 if (MI.getOpcode() == TargetOpcode::STACKMAP || 10236 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 10237 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 10238 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 10239 // Call lowering should have added an r2 operand to indicate a dependence 10240 // on the TOC base pointer value. It can't however, because there is no 10241 // way to mark the dependence as implicit there, and so the stackmap code 10242 // will confuse it with a regular operand. Instead, add the dependence 10243 // here. 10244 setUsesTOCBasePtr(*BB->getParent()); 10245 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 10246 } 10247 10248 return emitPatchPoint(MI, BB); 10249 } 10250 10251 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 10252 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 10253 return emitEHSjLjSetJmp(MI, BB); 10254 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 10255 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 10256 return emitEHSjLjLongJmp(MI, BB); 10257 } 10258 10259 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10260 10261 // To "insert" these instructions we actually have to insert their 10262 // control-flow patterns. 10263 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10264 MachineFunction::iterator It = ++BB->getIterator(); 10265 10266 MachineFunction *F = BB->getParent(); 10267 10268 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10269 MI.getOpcode() == PPC::SELECT_CC_I8 || 10270 MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8) { 10271 SmallVector<MachineOperand, 2> Cond; 10272 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10273 MI.getOpcode() == PPC::SELECT_CC_I8) 10274 Cond.push_back(MI.getOperand(4)); 10275 else 10276 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 10277 Cond.push_back(MI.getOperand(1)); 10278 10279 DebugLoc dl = MI.getDebugLoc(); 10280 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 10281 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 10282 } else if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10283 MI.getOpcode() == PPC::SELECT_CC_I8 || 10284 MI.getOpcode() == PPC::SELECT_CC_F4 || 10285 MI.getOpcode() == PPC::SELECT_CC_F8 || 10286 MI.getOpcode() == PPC::SELECT_CC_F16 || 10287 MI.getOpcode() == PPC::SELECT_CC_QFRC || 10288 MI.getOpcode() == PPC::SELECT_CC_QSRC || 10289 MI.getOpcode() == PPC::SELECT_CC_QBRC || 10290 MI.getOpcode() == PPC::SELECT_CC_VRRC || 10291 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 10292 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 10293 MI.getOpcode() == PPC::SELECT_CC_VSRC || 10294 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 10295 MI.getOpcode() == PPC::SELECT_CC_SPE || 10296 MI.getOpcode() == PPC::SELECT_I4 || 10297 MI.getOpcode() == PPC::SELECT_I8 || 10298 MI.getOpcode() == PPC::SELECT_F4 || 10299 MI.getOpcode() == PPC::SELECT_F8 || 10300 MI.getOpcode() == PPC::SELECT_F16 || 10301 MI.getOpcode() == PPC::SELECT_QFRC || 10302 MI.getOpcode() == PPC::SELECT_QSRC || 10303 MI.getOpcode() == PPC::SELECT_QBRC || 10304 MI.getOpcode() == PPC::SELECT_SPE || 10305 MI.getOpcode() == PPC::SELECT_SPE4 || 10306 MI.getOpcode() == PPC::SELECT_VRRC || 10307 MI.getOpcode() == PPC::SELECT_VSFRC || 10308 MI.getOpcode() == PPC::SELECT_VSSRC || 10309 MI.getOpcode() == PPC::SELECT_VSRC) { 10310 // The incoming instruction knows the destination vreg to set, the 10311 // condition code register to branch on, the true/false values to 10312 // select between, and a branch opcode to use. 10313 10314 // thisMBB: 10315 // ... 10316 // TrueVal = ... 10317 // cmpTY ccX, r1, r2 10318 // bCC copy1MBB 10319 // fallthrough --> copy0MBB 10320 MachineBasicBlock *thisMBB = BB; 10321 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 10322 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 10323 DebugLoc dl = MI.getDebugLoc(); 10324 F->insert(It, copy0MBB); 10325 F->insert(It, sinkMBB); 10326 10327 // Transfer the remainder of BB and its successor edges to sinkMBB. 10328 sinkMBB->splice(sinkMBB->begin(), BB, 10329 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10330 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 10331 10332 // Next, add the true and fallthrough blocks as its successors. 10333 BB->addSuccessor(copy0MBB); 10334 BB->addSuccessor(sinkMBB); 10335 10336 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 10337 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 10338 MI.getOpcode() == PPC::SELECT_F16 || 10339 MI.getOpcode() == PPC::SELECT_SPE4 || 10340 MI.getOpcode() == PPC::SELECT_SPE || 10341 MI.getOpcode() == PPC::SELECT_QFRC || 10342 MI.getOpcode() == PPC::SELECT_QSRC || 10343 MI.getOpcode() == PPC::SELECT_QBRC || 10344 MI.getOpcode() == PPC::SELECT_VRRC || 10345 MI.getOpcode() == PPC::SELECT_VSFRC || 10346 MI.getOpcode() == PPC::SELECT_VSSRC || 10347 MI.getOpcode() == PPC::SELECT_VSRC) { 10348 BuildMI(BB, dl, TII->get(PPC::BC)) 10349 .addReg(MI.getOperand(1).getReg()) 10350 .addMBB(sinkMBB); 10351 } else { 10352 unsigned SelectPred = MI.getOperand(4).getImm(); 10353 BuildMI(BB, dl, TII->get(PPC::BCC)) 10354 .addImm(SelectPred) 10355 .addReg(MI.getOperand(1).getReg()) 10356 .addMBB(sinkMBB); 10357 } 10358 10359 // copy0MBB: 10360 // %FalseValue = ... 10361 // # fallthrough to sinkMBB 10362 BB = copy0MBB; 10363 10364 // Update machine-CFG edges 10365 BB->addSuccessor(sinkMBB); 10366 10367 // sinkMBB: 10368 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 10369 // ... 10370 BB = sinkMBB; 10371 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 10372 .addReg(MI.getOperand(3).getReg()) 10373 .addMBB(copy0MBB) 10374 .addReg(MI.getOperand(2).getReg()) 10375 .addMBB(thisMBB); 10376 } else if (MI.getOpcode() == PPC::ReadTB) { 10377 // To read the 64-bit time-base register on a 32-bit target, we read the 10378 // two halves. Should the counter have wrapped while it was being read, we 10379 // need to try again. 10380 // ... 10381 // readLoop: 10382 // mfspr Rx,TBU # load from TBU 10383 // mfspr Ry,TB # load from TB 10384 // mfspr Rz,TBU # load from TBU 10385 // cmpw crX,Rx,Rz # check if 'old'='new' 10386 // bne readLoop # branch if they're not equal 10387 // ... 10388 10389 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 10390 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 10391 DebugLoc dl = MI.getDebugLoc(); 10392 F->insert(It, readMBB); 10393 F->insert(It, sinkMBB); 10394 10395 // Transfer the remainder of BB and its successor edges to sinkMBB. 10396 sinkMBB->splice(sinkMBB->begin(), BB, 10397 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10398 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 10399 10400 BB->addSuccessor(readMBB); 10401 BB = readMBB; 10402 10403 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10404 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10405 unsigned LoReg = MI.getOperand(0).getReg(); 10406 unsigned HiReg = MI.getOperand(1).getReg(); 10407 10408 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 10409 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 10410 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 10411 10412 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 10413 10414 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 10415 .addReg(HiReg).addReg(ReadAgainReg); 10416 BuildMI(BB, dl, TII->get(PPC::BCC)) 10417 .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB); 10418 10419 BB->addSuccessor(readMBB); 10420 BB->addSuccessor(sinkMBB); 10421 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 10422 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 10423 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 10424 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 10425 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 10426 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 10427 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 10428 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 10429 10430 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 10431 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 10432 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 10433 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 10434 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 10435 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 10436 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 10437 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 10438 10439 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 10440 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 10441 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 10442 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 10443 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 10444 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 10445 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 10446 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 10447 10448 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 10449 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 10450 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 10451 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 10452 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 10453 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 10454 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 10455 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 10456 10457 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 10458 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 10459 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 10460 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 10461 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 10462 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 10463 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 10464 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 10465 10466 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 10467 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 10468 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 10469 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 10470 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 10471 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 10472 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 10473 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 10474 10475 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 10476 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 10477 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 10478 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 10479 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 10480 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 10481 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 10482 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 10483 10484 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 10485 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 10486 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 10487 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 10488 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 10489 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 10490 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 10491 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 10492 10493 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 10494 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 10495 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 10496 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 10497 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 10498 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 10499 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 10500 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 10501 10502 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 10503 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 10504 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 10505 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 10506 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 10507 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 10508 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 10509 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 10510 10511 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 10512 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 10513 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 10514 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 10515 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 10516 BB = EmitAtomicBinary(MI, BB, 4, 0); 10517 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 10518 BB = EmitAtomicBinary(MI, BB, 8, 0); 10519 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 10520 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 10521 (Subtarget.hasPartwordAtomics() && 10522 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 10523 (Subtarget.hasPartwordAtomics() && 10524 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 10525 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 10526 10527 auto LoadMnemonic = PPC::LDARX; 10528 auto StoreMnemonic = PPC::STDCX; 10529 switch (MI.getOpcode()) { 10530 default: 10531 llvm_unreachable("Compare and swap of unknown size"); 10532 case PPC::ATOMIC_CMP_SWAP_I8: 10533 LoadMnemonic = PPC::LBARX; 10534 StoreMnemonic = PPC::STBCX; 10535 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 10536 break; 10537 case PPC::ATOMIC_CMP_SWAP_I16: 10538 LoadMnemonic = PPC::LHARX; 10539 StoreMnemonic = PPC::STHCX; 10540 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 10541 break; 10542 case PPC::ATOMIC_CMP_SWAP_I32: 10543 LoadMnemonic = PPC::LWARX; 10544 StoreMnemonic = PPC::STWCX; 10545 break; 10546 case PPC::ATOMIC_CMP_SWAP_I64: 10547 LoadMnemonic = PPC::LDARX; 10548 StoreMnemonic = PPC::STDCX; 10549 break; 10550 } 10551 unsigned dest = MI.getOperand(0).getReg(); 10552 unsigned ptrA = MI.getOperand(1).getReg(); 10553 unsigned ptrB = MI.getOperand(2).getReg(); 10554 unsigned oldval = MI.getOperand(3).getReg(); 10555 unsigned newval = MI.getOperand(4).getReg(); 10556 DebugLoc dl = MI.getDebugLoc(); 10557 10558 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 10559 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 10560 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 10561 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10562 F->insert(It, loop1MBB); 10563 F->insert(It, loop2MBB); 10564 F->insert(It, midMBB); 10565 F->insert(It, exitMBB); 10566 exitMBB->splice(exitMBB->begin(), BB, 10567 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10568 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10569 10570 // thisMBB: 10571 // ... 10572 // fallthrough --> loopMBB 10573 BB->addSuccessor(loop1MBB); 10574 10575 // loop1MBB: 10576 // l[bhwd]arx dest, ptr 10577 // cmp[wd] dest, oldval 10578 // bne- midMBB 10579 // loop2MBB: 10580 // st[bhwd]cx. newval, ptr 10581 // bne- loopMBB 10582 // b exitBB 10583 // midMBB: 10584 // st[bhwd]cx. dest, ptr 10585 // exitBB: 10586 BB = loop1MBB; 10587 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 10588 .addReg(ptrA).addReg(ptrB); 10589 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 10590 .addReg(oldval).addReg(dest); 10591 BuildMI(BB, dl, TII->get(PPC::BCC)) 10592 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 10593 BB->addSuccessor(loop2MBB); 10594 BB->addSuccessor(midMBB); 10595 10596 BB = loop2MBB; 10597 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10598 .addReg(newval).addReg(ptrA).addReg(ptrB); 10599 BuildMI(BB, dl, TII->get(PPC::BCC)) 10600 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 10601 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 10602 BB->addSuccessor(loop1MBB); 10603 BB->addSuccessor(exitMBB); 10604 10605 BB = midMBB; 10606 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10607 .addReg(dest).addReg(ptrA).addReg(ptrB); 10608 BB->addSuccessor(exitMBB); 10609 10610 // exitMBB: 10611 // ... 10612 BB = exitMBB; 10613 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 10614 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 10615 // We must use 64-bit registers for addresses when targeting 64-bit, 10616 // since we're actually doing arithmetic on them. Other registers 10617 // can be 32-bit. 10618 bool is64bit = Subtarget.isPPC64(); 10619 bool isLittleEndian = Subtarget.isLittleEndian(); 10620 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 10621 10622 unsigned dest = MI.getOperand(0).getReg(); 10623 unsigned ptrA = MI.getOperand(1).getReg(); 10624 unsigned ptrB = MI.getOperand(2).getReg(); 10625 unsigned oldval = MI.getOperand(3).getReg(); 10626 unsigned newval = MI.getOperand(4).getReg(); 10627 DebugLoc dl = MI.getDebugLoc(); 10628 10629 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 10630 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 10631 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 10632 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10633 F->insert(It, loop1MBB); 10634 F->insert(It, loop2MBB); 10635 F->insert(It, midMBB); 10636 F->insert(It, exitMBB); 10637 exitMBB->splice(exitMBB->begin(), BB, 10638 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10639 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10640 10641 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10642 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 10643 : &PPC::GPRCRegClass; 10644 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 10645 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 10646 unsigned ShiftReg = 10647 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC); 10648 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 10649 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 10650 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 10651 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 10652 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 10653 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 10654 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 10655 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 10656 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 10657 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 10658 unsigned Ptr1Reg; 10659 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 10660 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 10661 // thisMBB: 10662 // ... 10663 // fallthrough --> loopMBB 10664 BB->addSuccessor(loop1MBB); 10665 10666 // The 4-byte load must be aligned, while a char or short may be 10667 // anywhere in the word. Hence all this nasty bookkeeping code. 10668 // add ptr1, ptrA, ptrB [copy if ptrA==0] 10669 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 10670 // xori shift, shift1, 24 [16] 10671 // rlwinm ptr, ptr1, 0, 0, 29 10672 // slw newval2, newval, shift 10673 // slw oldval2, oldval,shift 10674 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 10675 // slw mask, mask2, shift 10676 // and newval3, newval2, mask 10677 // and oldval3, oldval2, mask 10678 // loop1MBB: 10679 // lwarx tmpDest, ptr 10680 // and tmp, tmpDest, mask 10681 // cmpw tmp, oldval3 10682 // bne- midMBB 10683 // loop2MBB: 10684 // andc tmp2, tmpDest, mask 10685 // or tmp4, tmp2, newval3 10686 // stwcx. tmp4, ptr 10687 // bne- loop1MBB 10688 // b exitBB 10689 // midMBB: 10690 // stwcx. tmpDest, ptr 10691 // exitBB: 10692 // srw dest, tmpDest, shift 10693 if (ptrA != ZeroReg) { 10694 Ptr1Reg = RegInfo.createVirtualRegister(RC); 10695 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 10696 .addReg(ptrA).addReg(ptrB); 10697 } else { 10698 Ptr1Reg = ptrB; 10699 } 10700 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 10701 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 10702 if (!isLittleEndian) 10703 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 10704 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 10705 if (is64bit) 10706 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 10707 .addReg(Ptr1Reg).addImm(0).addImm(61); 10708 else 10709 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 10710 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 10711 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 10712 .addReg(newval).addReg(ShiftReg); 10713 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 10714 .addReg(oldval).addReg(ShiftReg); 10715 if (is8bit) 10716 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 10717 else { 10718 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 10719 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 10720 .addReg(Mask3Reg).addImm(65535); 10721 } 10722 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 10723 .addReg(Mask2Reg).addReg(ShiftReg); 10724 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 10725 .addReg(NewVal2Reg).addReg(MaskReg); 10726 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 10727 .addReg(OldVal2Reg).addReg(MaskReg); 10728 10729 BB = loop1MBB; 10730 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 10731 .addReg(ZeroReg).addReg(PtrReg); 10732 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 10733 .addReg(TmpDestReg).addReg(MaskReg); 10734 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 10735 .addReg(TmpReg).addReg(OldVal3Reg); 10736 BuildMI(BB, dl, TII->get(PPC::BCC)) 10737 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 10738 BB->addSuccessor(loop2MBB); 10739 BB->addSuccessor(midMBB); 10740 10741 BB = loop2MBB; 10742 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 10743 .addReg(TmpDestReg).addReg(MaskReg); 10744 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 10745 .addReg(Tmp2Reg).addReg(NewVal3Reg); 10746 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 10747 .addReg(ZeroReg).addReg(PtrReg); 10748 BuildMI(BB, dl, TII->get(PPC::BCC)) 10749 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 10750 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 10751 BB->addSuccessor(loop1MBB); 10752 BB->addSuccessor(exitMBB); 10753 10754 BB = midMBB; 10755 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 10756 .addReg(ZeroReg).addReg(PtrReg); 10757 BB->addSuccessor(exitMBB); 10758 10759 // exitMBB: 10760 // ... 10761 BB = exitMBB; 10762 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 10763 .addReg(ShiftReg); 10764 } else if (MI.getOpcode() == PPC::FADDrtz) { 10765 // This pseudo performs an FADD with rounding mode temporarily forced 10766 // to round-to-zero. We emit this via custom inserter since the FPSCR 10767 // is not modeled at the SelectionDAG level. 10768 unsigned Dest = MI.getOperand(0).getReg(); 10769 unsigned Src1 = MI.getOperand(1).getReg(); 10770 unsigned Src2 = MI.getOperand(2).getReg(); 10771 DebugLoc dl = MI.getDebugLoc(); 10772 10773 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10774 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 10775 10776 // Save FPSCR value. 10777 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 10778 10779 // Set rounding mode to round-to-zero. 10780 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 10781 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 10782 10783 // Perform addition. 10784 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 10785 10786 // Restore FPSCR value. 10787 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 10788 } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 10789 MI.getOpcode() == PPC::ANDIo_1_GT_BIT || 10790 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 10791 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) { 10792 unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 10793 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) 10794 ? PPC::ANDIo8 10795 : PPC::ANDIo; 10796 bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 10797 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8); 10798 10799 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10800 unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ? 10801 &PPC::GPRCRegClass : 10802 &PPC::G8RCRegClass); 10803 10804 DebugLoc dl = MI.getDebugLoc(); 10805 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 10806 .addReg(MI.getOperand(1).getReg()) 10807 .addImm(1); 10808 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 10809 MI.getOperand(0).getReg()) 10810 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 10811 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 10812 DebugLoc Dl = MI.getDebugLoc(); 10813 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10814 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 10815 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 10816 return BB; 10817 } else { 10818 llvm_unreachable("Unexpected instr type to insert"); 10819 } 10820 10821 MI.eraseFromParent(); // The pseudo instruction is gone now. 10822 return BB; 10823 } 10824 10825 //===----------------------------------------------------------------------===// 10826 // Target Optimization Hooks 10827 //===----------------------------------------------------------------------===// 10828 10829 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 10830 // For the estimates, convergence is quadratic, so we essentially double the 10831 // number of digits correct after every iteration. For both FRE and FRSQRTE, 10832 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 10833 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 10834 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 10835 if (VT.getScalarType() == MVT::f64) 10836 RefinementSteps++; 10837 return RefinementSteps; 10838 } 10839 10840 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 10841 int Enabled, int &RefinementSteps, 10842 bool &UseOneConstNR, 10843 bool Reciprocal) const { 10844 EVT VT = Operand.getValueType(); 10845 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 10846 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 10847 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 10848 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 10849 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 10850 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 10851 if (RefinementSteps == ReciprocalEstimate::Unspecified) 10852 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 10853 10854 UseOneConstNR = true; 10855 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 10856 } 10857 return SDValue(); 10858 } 10859 10860 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 10861 int Enabled, 10862 int &RefinementSteps) const { 10863 EVT VT = Operand.getValueType(); 10864 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 10865 (VT == MVT::f64 && Subtarget.hasFRE()) || 10866 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 10867 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 10868 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 10869 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 10870 if (RefinementSteps == ReciprocalEstimate::Unspecified) 10871 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 10872 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 10873 } 10874 return SDValue(); 10875 } 10876 10877 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 10878 // Note: This functionality is used only when unsafe-fp-math is enabled, and 10879 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 10880 // enabled for division), this functionality is redundant with the default 10881 // combiner logic (once the division -> reciprocal/multiply transformation 10882 // has taken place). As a result, this matters more for older cores than for 10883 // newer ones. 10884 10885 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 10886 // reciprocal if there are two or more FDIVs (for embedded cores with only 10887 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 10888 switch (Subtarget.getDarwinDirective()) { 10889 default: 10890 return 3; 10891 case PPC::DIR_440: 10892 case PPC::DIR_A2: 10893 case PPC::DIR_E500: 10894 case PPC::DIR_E500mc: 10895 case PPC::DIR_E5500: 10896 return 2; 10897 } 10898 } 10899 10900 // isConsecutiveLSLoc needs to work even if all adds have not yet been 10901 // collapsed, and so we need to look through chains of them. 10902 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 10903 int64_t& Offset, SelectionDAG &DAG) { 10904 if (DAG.isBaseWithConstantOffset(Loc)) { 10905 Base = Loc.getOperand(0); 10906 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 10907 10908 // The base might itself be a base plus an offset, and if so, accumulate 10909 // that as well. 10910 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 10911 } 10912 } 10913 10914 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 10915 unsigned Bytes, int Dist, 10916 SelectionDAG &DAG) { 10917 if (VT.getSizeInBits() / 8 != Bytes) 10918 return false; 10919 10920 SDValue BaseLoc = Base->getBasePtr(); 10921 if (Loc.getOpcode() == ISD::FrameIndex) { 10922 if (BaseLoc.getOpcode() != ISD::FrameIndex) 10923 return false; 10924 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10925 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 10926 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 10927 int FS = MFI.getObjectSize(FI); 10928 int BFS = MFI.getObjectSize(BFI); 10929 if (FS != BFS || FS != (int)Bytes) return false; 10930 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 10931 } 10932 10933 SDValue Base1 = Loc, Base2 = BaseLoc; 10934 int64_t Offset1 = 0, Offset2 = 0; 10935 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 10936 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 10937 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 10938 return true; 10939 10940 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10941 const GlobalValue *GV1 = nullptr; 10942 const GlobalValue *GV2 = nullptr; 10943 Offset1 = 0; 10944 Offset2 = 0; 10945 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 10946 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 10947 if (isGA1 && isGA2 && GV1 == GV2) 10948 return Offset1 == (Offset2 + Dist*Bytes); 10949 return false; 10950 } 10951 10952 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 10953 // not enforce equality of the chain operands. 10954 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 10955 unsigned Bytes, int Dist, 10956 SelectionDAG &DAG) { 10957 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 10958 EVT VT = LS->getMemoryVT(); 10959 SDValue Loc = LS->getBasePtr(); 10960 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 10961 } 10962 10963 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 10964 EVT VT; 10965 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10966 default: return false; 10967 case Intrinsic::ppc_qpx_qvlfd: 10968 case Intrinsic::ppc_qpx_qvlfda: 10969 VT = MVT::v4f64; 10970 break; 10971 case Intrinsic::ppc_qpx_qvlfs: 10972 case Intrinsic::ppc_qpx_qvlfsa: 10973 VT = MVT::v4f32; 10974 break; 10975 case Intrinsic::ppc_qpx_qvlfcd: 10976 case Intrinsic::ppc_qpx_qvlfcda: 10977 VT = MVT::v2f64; 10978 break; 10979 case Intrinsic::ppc_qpx_qvlfcs: 10980 case Intrinsic::ppc_qpx_qvlfcsa: 10981 VT = MVT::v2f32; 10982 break; 10983 case Intrinsic::ppc_qpx_qvlfiwa: 10984 case Intrinsic::ppc_qpx_qvlfiwz: 10985 case Intrinsic::ppc_altivec_lvx: 10986 case Intrinsic::ppc_altivec_lvxl: 10987 case Intrinsic::ppc_vsx_lxvw4x: 10988 case Intrinsic::ppc_vsx_lxvw4x_be: 10989 VT = MVT::v4i32; 10990 break; 10991 case Intrinsic::ppc_vsx_lxvd2x: 10992 case Intrinsic::ppc_vsx_lxvd2x_be: 10993 VT = MVT::v2f64; 10994 break; 10995 case Intrinsic::ppc_altivec_lvebx: 10996 VT = MVT::i8; 10997 break; 10998 case Intrinsic::ppc_altivec_lvehx: 10999 VT = MVT::i16; 11000 break; 11001 case Intrinsic::ppc_altivec_lvewx: 11002 VT = MVT::i32; 11003 break; 11004 } 11005 11006 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 11007 } 11008 11009 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 11010 EVT VT; 11011 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11012 default: return false; 11013 case Intrinsic::ppc_qpx_qvstfd: 11014 case Intrinsic::ppc_qpx_qvstfda: 11015 VT = MVT::v4f64; 11016 break; 11017 case Intrinsic::ppc_qpx_qvstfs: 11018 case Intrinsic::ppc_qpx_qvstfsa: 11019 VT = MVT::v4f32; 11020 break; 11021 case Intrinsic::ppc_qpx_qvstfcd: 11022 case Intrinsic::ppc_qpx_qvstfcda: 11023 VT = MVT::v2f64; 11024 break; 11025 case Intrinsic::ppc_qpx_qvstfcs: 11026 case Intrinsic::ppc_qpx_qvstfcsa: 11027 VT = MVT::v2f32; 11028 break; 11029 case Intrinsic::ppc_qpx_qvstfiw: 11030 case Intrinsic::ppc_qpx_qvstfiwa: 11031 case Intrinsic::ppc_altivec_stvx: 11032 case Intrinsic::ppc_altivec_stvxl: 11033 case Intrinsic::ppc_vsx_stxvw4x: 11034 VT = MVT::v4i32; 11035 break; 11036 case Intrinsic::ppc_vsx_stxvd2x: 11037 VT = MVT::v2f64; 11038 break; 11039 case Intrinsic::ppc_vsx_stxvw4x_be: 11040 VT = MVT::v4i32; 11041 break; 11042 case Intrinsic::ppc_vsx_stxvd2x_be: 11043 VT = MVT::v2f64; 11044 break; 11045 case Intrinsic::ppc_altivec_stvebx: 11046 VT = MVT::i8; 11047 break; 11048 case Intrinsic::ppc_altivec_stvehx: 11049 VT = MVT::i16; 11050 break; 11051 case Intrinsic::ppc_altivec_stvewx: 11052 VT = MVT::i32; 11053 break; 11054 } 11055 11056 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 11057 } 11058 11059 return false; 11060 } 11061 11062 // Return true is there is a nearyby consecutive load to the one provided 11063 // (regardless of alignment). We search up and down the chain, looking though 11064 // token factors and other loads (but nothing else). As a result, a true result 11065 // indicates that it is safe to create a new consecutive load adjacent to the 11066 // load provided. 11067 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 11068 SDValue Chain = LD->getChain(); 11069 EVT VT = LD->getMemoryVT(); 11070 11071 SmallSet<SDNode *, 16> LoadRoots; 11072 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 11073 SmallSet<SDNode *, 16> Visited; 11074 11075 // First, search up the chain, branching to follow all token-factor operands. 11076 // If we find a consecutive load, then we're done, otherwise, record all 11077 // nodes just above the top-level loads and token factors. 11078 while (!Queue.empty()) { 11079 SDNode *ChainNext = Queue.pop_back_val(); 11080 if (!Visited.insert(ChainNext).second) 11081 continue; 11082 11083 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 11084 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 11085 return true; 11086 11087 if (!Visited.count(ChainLD->getChain().getNode())) 11088 Queue.push_back(ChainLD->getChain().getNode()); 11089 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 11090 for (const SDUse &O : ChainNext->ops()) 11091 if (!Visited.count(O.getNode())) 11092 Queue.push_back(O.getNode()); 11093 } else 11094 LoadRoots.insert(ChainNext); 11095 } 11096 11097 // Second, search down the chain, starting from the top-level nodes recorded 11098 // in the first phase. These top-level nodes are the nodes just above all 11099 // loads and token factors. Starting with their uses, recursively look though 11100 // all loads (just the chain uses) and token factors to find a consecutive 11101 // load. 11102 Visited.clear(); 11103 Queue.clear(); 11104 11105 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 11106 IE = LoadRoots.end(); I != IE; ++I) { 11107 Queue.push_back(*I); 11108 11109 while (!Queue.empty()) { 11110 SDNode *LoadRoot = Queue.pop_back_val(); 11111 if (!Visited.insert(LoadRoot).second) 11112 continue; 11113 11114 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 11115 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 11116 return true; 11117 11118 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 11119 UE = LoadRoot->use_end(); UI != UE; ++UI) 11120 if (((isa<MemSDNode>(*UI) && 11121 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 11122 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 11123 Queue.push_back(*UI); 11124 } 11125 } 11126 11127 return false; 11128 } 11129 11130 /// This function is called when we have proved that a SETCC node can be replaced 11131 /// by subtraction (and other supporting instructions) so that the result of 11132 /// comparison is kept in a GPR instead of CR. This function is purely for 11133 /// codegen purposes and has some flags to guide the codegen process. 11134 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 11135 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 11136 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 11137 11138 // Zero extend the operands to the largest legal integer. Originally, they 11139 // must be of a strictly smaller size. 11140 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 11141 DAG.getConstant(Size, DL, MVT::i32)); 11142 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 11143 DAG.getConstant(Size, DL, MVT::i32)); 11144 11145 // Swap if needed. Depends on the condition code. 11146 if (Swap) 11147 std::swap(Op0, Op1); 11148 11149 // Subtract extended integers. 11150 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 11151 11152 // Move the sign bit to the least significant position and zero out the rest. 11153 // Now the least significant bit carries the result of original comparison. 11154 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 11155 DAG.getConstant(Size - 1, DL, MVT::i32)); 11156 auto Final = Shifted; 11157 11158 // Complement the result if needed. Based on the condition code. 11159 if (Complement) 11160 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 11161 DAG.getConstant(1, DL, MVT::i64)); 11162 11163 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 11164 } 11165 11166 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 11167 DAGCombinerInfo &DCI) const { 11168 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 11169 11170 SelectionDAG &DAG = DCI.DAG; 11171 SDLoc DL(N); 11172 11173 // Size of integers being compared has a critical role in the following 11174 // analysis, so we prefer to do this when all types are legal. 11175 if (!DCI.isAfterLegalizeDAG()) 11176 return SDValue(); 11177 11178 // If all users of SETCC extend its value to a legal integer type 11179 // then we replace SETCC with a subtraction 11180 for (SDNode::use_iterator UI = N->use_begin(), 11181 UE = N->use_end(); UI != UE; ++UI) { 11182 if (UI->getOpcode() != ISD::ZERO_EXTEND) 11183 return SDValue(); 11184 } 11185 11186 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 11187 auto OpSize = N->getOperand(0).getValueSizeInBits(); 11188 11189 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 11190 11191 if (OpSize < Size) { 11192 switch (CC) { 11193 default: break; 11194 case ISD::SETULT: 11195 return generateEquivalentSub(N, Size, false, false, DL, DAG); 11196 case ISD::SETULE: 11197 return generateEquivalentSub(N, Size, true, true, DL, DAG); 11198 case ISD::SETUGT: 11199 return generateEquivalentSub(N, Size, false, true, DL, DAG); 11200 case ISD::SETUGE: 11201 return generateEquivalentSub(N, Size, true, false, DL, DAG); 11202 } 11203 } 11204 11205 return SDValue(); 11206 } 11207 11208 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 11209 DAGCombinerInfo &DCI) const { 11210 SelectionDAG &DAG = DCI.DAG; 11211 SDLoc dl(N); 11212 11213 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 11214 // If we're tracking CR bits, we need to be careful that we don't have: 11215 // trunc(binary-ops(zext(x), zext(y))) 11216 // or 11217 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 11218 // such that we're unnecessarily moving things into GPRs when it would be 11219 // better to keep them in CR bits. 11220 11221 // Note that trunc here can be an actual i1 trunc, or can be the effective 11222 // truncation that comes from a setcc or select_cc. 11223 if (N->getOpcode() == ISD::TRUNCATE && 11224 N->getValueType(0) != MVT::i1) 11225 return SDValue(); 11226 11227 if (N->getOperand(0).getValueType() != MVT::i32 && 11228 N->getOperand(0).getValueType() != MVT::i64) 11229 return SDValue(); 11230 11231 if (N->getOpcode() == ISD::SETCC || 11232 N->getOpcode() == ISD::SELECT_CC) { 11233 // If we're looking at a comparison, then we need to make sure that the 11234 // high bits (all except for the first) don't matter the result. 11235 ISD::CondCode CC = 11236 cast<CondCodeSDNode>(N->getOperand( 11237 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 11238 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 11239 11240 if (ISD::isSignedIntSetCC(CC)) { 11241 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 11242 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 11243 return SDValue(); 11244 } else if (ISD::isUnsignedIntSetCC(CC)) { 11245 if (!DAG.MaskedValueIsZero(N->getOperand(0), 11246 APInt::getHighBitsSet(OpBits, OpBits-1)) || 11247 !DAG.MaskedValueIsZero(N->getOperand(1), 11248 APInt::getHighBitsSet(OpBits, OpBits-1))) 11249 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 11250 : SDValue()); 11251 } else { 11252 // This is neither a signed nor an unsigned comparison, just make sure 11253 // that the high bits are equal. 11254 KnownBits Op1Known, Op2Known; 11255 DAG.computeKnownBits(N->getOperand(0), Op1Known); 11256 DAG.computeKnownBits(N->getOperand(1), Op2Known); 11257 11258 // We don't really care about what is known about the first bit (if 11259 // anything), so clear it in all masks prior to comparing them. 11260 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 11261 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 11262 11263 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 11264 return SDValue(); 11265 } 11266 } 11267 11268 // We now know that the higher-order bits are irrelevant, we just need to 11269 // make sure that all of the intermediate operations are bit operations, and 11270 // all inputs are extensions. 11271 if (N->getOperand(0).getOpcode() != ISD::AND && 11272 N->getOperand(0).getOpcode() != ISD::OR && 11273 N->getOperand(0).getOpcode() != ISD::XOR && 11274 N->getOperand(0).getOpcode() != ISD::SELECT && 11275 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 11276 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 11277 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 11278 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 11279 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 11280 return SDValue(); 11281 11282 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 11283 N->getOperand(1).getOpcode() != ISD::AND && 11284 N->getOperand(1).getOpcode() != ISD::OR && 11285 N->getOperand(1).getOpcode() != ISD::XOR && 11286 N->getOperand(1).getOpcode() != ISD::SELECT && 11287 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 11288 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 11289 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 11290 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 11291 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 11292 return SDValue(); 11293 11294 SmallVector<SDValue, 4> Inputs; 11295 SmallVector<SDValue, 8> BinOps, PromOps; 11296 SmallPtrSet<SDNode *, 16> Visited; 11297 11298 for (unsigned i = 0; i < 2; ++i) { 11299 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11300 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11301 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 11302 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 11303 isa<ConstantSDNode>(N->getOperand(i))) 11304 Inputs.push_back(N->getOperand(i)); 11305 else 11306 BinOps.push_back(N->getOperand(i)); 11307 11308 if (N->getOpcode() == ISD::TRUNCATE) 11309 break; 11310 } 11311 11312 // Visit all inputs, collect all binary operations (and, or, xor and 11313 // select) that are all fed by extensions. 11314 while (!BinOps.empty()) { 11315 SDValue BinOp = BinOps.back(); 11316 BinOps.pop_back(); 11317 11318 if (!Visited.insert(BinOp.getNode()).second) 11319 continue; 11320 11321 PromOps.push_back(BinOp); 11322 11323 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 11324 // The condition of the select is not promoted. 11325 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 11326 continue; 11327 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 11328 continue; 11329 11330 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11331 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11332 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 11333 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 11334 isa<ConstantSDNode>(BinOp.getOperand(i))) { 11335 Inputs.push_back(BinOp.getOperand(i)); 11336 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 11337 BinOp.getOperand(i).getOpcode() == ISD::OR || 11338 BinOp.getOperand(i).getOpcode() == ISD::XOR || 11339 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 11340 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 11341 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 11342 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11343 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11344 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 11345 BinOps.push_back(BinOp.getOperand(i)); 11346 } else { 11347 // We have an input that is not an extension or another binary 11348 // operation; we'll abort this transformation. 11349 return SDValue(); 11350 } 11351 } 11352 } 11353 11354 // Make sure that this is a self-contained cluster of operations (which 11355 // is not quite the same thing as saying that everything has only one 11356 // use). 11357 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11358 if (isa<ConstantSDNode>(Inputs[i])) 11359 continue; 11360 11361 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 11362 UE = Inputs[i].getNode()->use_end(); 11363 UI != UE; ++UI) { 11364 SDNode *User = *UI; 11365 if (User != N && !Visited.count(User)) 11366 return SDValue(); 11367 11368 // Make sure that we're not going to promote the non-output-value 11369 // operand(s) or SELECT or SELECT_CC. 11370 // FIXME: Although we could sometimes handle this, and it does occur in 11371 // practice that one of the condition inputs to the select is also one of 11372 // the outputs, we currently can't deal with this. 11373 if (User->getOpcode() == ISD::SELECT) { 11374 if (User->getOperand(0) == Inputs[i]) 11375 return SDValue(); 11376 } else if (User->getOpcode() == ISD::SELECT_CC) { 11377 if (User->getOperand(0) == Inputs[i] || 11378 User->getOperand(1) == Inputs[i]) 11379 return SDValue(); 11380 } 11381 } 11382 } 11383 11384 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 11385 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 11386 UE = PromOps[i].getNode()->use_end(); 11387 UI != UE; ++UI) { 11388 SDNode *User = *UI; 11389 if (User != N && !Visited.count(User)) 11390 return SDValue(); 11391 11392 // Make sure that we're not going to promote the non-output-value 11393 // operand(s) or SELECT or SELECT_CC. 11394 // FIXME: Although we could sometimes handle this, and it does occur in 11395 // practice that one of the condition inputs to the select is also one of 11396 // the outputs, we currently can't deal with this. 11397 if (User->getOpcode() == ISD::SELECT) { 11398 if (User->getOperand(0) == PromOps[i]) 11399 return SDValue(); 11400 } else if (User->getOpcode() == ISD::SELECT_CC) { 11401 if (User->getOperand(0) == PromOps[i] || 11402 User->getOperand(1) == PromOps[i]) 11403 return SDValue(); 11404 } 11405 } 11406 } 11407 11408 // Replace all inputs with the extension operand. 11409 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11410 // Constants may have users outside the cluster of to-be-promoted nodes, 11411 // and so we need to replace those as we do the promotions. 11412 if (isa<ConstantSDNode>(Inputs[i])) 11413 continue; 11414 else 11415 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 11416 } 11417 11418 std::list<HandleSDNode> PromOpHandles; 11419 for (auto &PromOp : PromOps) 11420 PromOpHandles.emplace_back(PromOp); 11421 11422 // Replace all operations (these are all the same, but have a different 11423 // (i1) return type). DAG.getNode will validate that the types of 11424 // a binary operator match, so go through the list in reverse so that 11425 // we've likely promoted both operands first. Any intermediate truncations or 11426 // extensions disappear. 11427 while (!PromOpHandles.empty()) { 11428 SDValue PromOp = PromOpHandles.back().getValue(); 11429 PromOpHandles.pop_back(); 11430 11431 if (PromOp.getOpcode() == ISD::TRUNCATE || 11432 PromOp.getOpcode() == ISD::SIGN_EXTEND || 11433 PromOp.getOpcode() == ISD::ZERO_EXTEND || 11434 PromOp.getOpcode() == ISD::ANY_EXTEND) { 11435 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 11436 PromOp.getOperand(0).getValueType() != MVT::i1) { 11437 // The operand is not yet ready (see comment below). 11438 PromOpHandles.emplace_front(PromOp); 11439 continue; 11440 } 11441 11442 SDValue RepValue = PromOp.getOperand(0); 11443 if (isa<ConstantSDNode>(RepValue)) 11444 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 11445 11446 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 11447 continue; 11448 } 11449 11450 unsigned C; 11451 switch (PromOp.getOpcode()) { 11452 default: C = 0; break; 11453 case ISD::SELECT: C = 1; break; 11454 case ISD::SELECT_CC: C = 2; break; 11455 } 11456 11457 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 11458 PromOp.getOperand(C).getValueType() != MVT::i1) || 11459 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 11460 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 11461 // The to-be-promoted operands of this node have not yet been 11462 // promoted (this should be rare because we're going through the 11463 // list backward, but if one of the operands has several users in 11464 // this cluster of to-be-promoted nodes, it is possible). 11465 PromOpHandles.emplace_front(PromOp); 11466 continue; 11467 } 11468 11469 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 11470 PromOp.getNode()->op_end()); 11471 11472 // If there are any constant inputs, make sure they're replaced now. 11473 for (unsigned i = 0; i < 2; ++i) 11474 if (isa<ConstantSDNode>(Ops[C+i])) 11475 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 11476 11477 DAG.ReplaceAllUsesOfValueWith(PromOp, 11478 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 11479 } 11480 11481 // Now we're left with the initial truncation itself. 11482 if (N->getOpcode() == ISD::TRUNCATE) 11483 return N->getOperand(0); 11484 11485 // Otherwise, this is a comparison. The operands to be compared have just 11486 // changed type (to i1), but everything else is the same. 11487 return SDValue(N, 0); 11488 } 11489 11490 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 11491 DAGCombinerInfo &DCI) const { 11492 SelectionDAG &DAG = DCI.DAG; 11493 SDLoc dl(N); 11494 11495 // If we're tracking CR bits, we need to be careful that we don't have: 11496 // zext(binary-ops(trunc(x), trunc(y))) 11497 // or 11498 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 11499 // such that we're unnecessarily moving things into CR bits that can more 11500 // efficiently stay in GPRs. Note that if we're not certain that the high 11501 // bits are set as required by the final extension, we still may need to do 11502 // some masking to get the proper behavior. 11503 11504 // This same functionality is important on PPC64 when dealing with 11505 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 11506 // the return values of functions. Because it is so similar, it is handled 11507 // here as well. 11508 11509 if (N->getValueType(0) != MVT::i32 && 11510 N->getValueType(0) != MVT::i64) 11511 return SDValue(); 11512 11513 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 11514 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 11515 return SDValue(); 11516 11517 if (N->getOperand(0).getOpcode() != ISD::AND && 11518 N->getOperand(0).getOpcode() != ISD::OR && 11519 N->getOperand(0).getOpcode() != ISD::XOR && 11520 N->getOperand(0).getOpcode() != ISD::SELECT && 11521 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 11522 return SDValue(); 11523 11524 SmallVector<SDValue, 4> Inputs; 11525 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 11526 SmallPtrSet<SDNode *, 16> Visited; 11527 11528 // Visit all inputs, collect all binary operations (and, or, xor and 11529 // select) that are all fed by truncations. 11530 while (!BinOps.empty()) { 11531 SDValue BinOp = BinOps.back(); 11532 BinOps.pop_back(); 11533 11534 if (!Visited.insert(BinOp.getNode()).second) 11535 continue; 11536 11537 PromOps.push_back(BinOp); 11538 11539 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 11540 // The condition of the select is not promoted. 11541 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 11542 continue; 11543 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 11544 continue; 11545 11546 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 11547 isa<ConstantSDNode>(BinOp.getOperand(i))) { 11548 Inputs.push_back(BinOp.getOperand(i)); 11549 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 11550 BinOp.getOperand(i).getOpcode() == ISD::OR || 11551 BinOp.getOperand(i).getOpcode() == ISD::XOR || 11552 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 11553 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 11554 BinOps.push_back(BinOp.getOperand(i)); 11555 } else { 11556 // We have an input that is not a truncation or another binary 11557 // operation; we'll abort this transformation. 11558 return SDValue(); 11559 } 11560 } 11561 } 11562 11563 // The operands of a select that must be truncated when the select is 11564 // promoted because the operand is actually part of the to-be-promoted set. 11565 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 11566 11567 // Make sure that this is a self-contained cluster of operations (which 11568 // is not quite the same thing as saying that everything has only one 11569 // use). 11570 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11571 if (isa<ConstantSDNode>(Inputs[i])) 11572 continue; 11573 11574 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 11575 UE = Inputs[i].getNode()->use_end(); 11576 UI != UE; ++UI) { 11577 SDNode *User = *UI; 11578 if (User != N && !Visited.count(User)) 11579 return SDValue(); 11580 11581 // If we're going to promote the non-output-value operand(s) or SELECT or 11582 // SELECT_CC, record them for truncation. 11583 if (User->getOpcode() == ISD::SELECT) { 11584 if (User->getOperand(0) == Inputs[i]) 11585 SelectTruncOp[0].insert(std::make_pair(User, 11586 User->getOperand(0).getValueType())); 11587 } else if (User->getOpcode() == ISD::SELECT_CC) { 11588 if (User->getOperand(0) == Inputs[i]) 11589 SelectTruncOp[0].insert(std::make_pair(User, 11590 User->getOperand(0).getValueType())); 11591 if (User->getOperand(1) == Inputs[i]) 11592 SelectTruncOp[1].insert(std::make_pair(User, 11593 User->getOperand(1).getValueType())); 11594 } 11595 } 11596 } 11597 11598 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 11599 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 11600 UE = PromOps[i].getNode()->use_end(); 11601 UI != UE; ++UI) { 11602 SDNode *User = *UI; 11603 if (User != N && !Visited.count(User)) 11604 return SDValue(); 11605 11606 // If we're going to promote the non-output-value operand(s) or SELECT or 11607 // SELECT_CC, record them for truncation. 11608 if (User->getOpcode() == ISD::SELECT) { 11609 if (User->getOperand(0) == PromOps[i]) 11610 SelectTruncOp[0].insert(std::make_pair(User, 11611 User->getOperand(0).getValueType())); 11612 } else if (User->getOpcode() == ISD::SELECT_CC) { 11613 if (User->getOperand(0) == PromOps[i]) 11614 SelectTruncOp[0].insert(std::make_pair(User, 11615 User->getOperand(0).getValueType())); 11616 if (User->getOperand(1) == PromOps[i]) 11617 SelectTruncOp[1].insert(std::make_pair(User, 11618 User->getOperand(1).getValueType())); 11619 } 11620 } 11621 } 11622 11623 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 11624 bool ReallyNeedsExt = false; 11625 if (N->getOpcode() != ISD::ANY_EXTEND) { 11626 // If all of the inputs are not already sign/zero extended, then 11627 // we'll still need to do that at the end. 11628 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11629 if (isa<ConstantSDNode>(Inputs[i])) 11630 continue; 11631 11632 unsigned OpBits = 11633 Inputs[i].getOperand(0).getValueSizeInBits(); 11634 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 11635 11636 if ((N->getOpcode() == ISD::ZERO_EXTEND && 11637 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 11638 APInt::getHighBitsSet(OpBits, 11639 OpBits-PromBits))) || 11640 (N->getOpcode() == ISD::SIGN_EXTEND && 11641 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 11642 (OpBits-(PromBits-1)))) { 11643 ReallyNeedsExt = true; 11644 break; 11645 } 11646 } 11647 } 11648 11649 // Replace all inputs, either with the truncation operand, or a 11650 // truncation or extension to the final output type. 11651 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11652 // Constant inputs need to be replaced with the to-be-promoted nodes that 11653 // use them because they might have users outside of the cluster of 11654 // promoted nodes. 11655 if (isa<ConstantSDNode>(Inputs[i])) 11656 continue; 11657 11658 SDValue InSrc = Inputs[i].getOperand(0); 11659 if (Inputs[i].getValueType() == N->getValueType(0)) 11660 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 11661 else if (N->getOpcode() == ISD::SIGN_EXTEND) 11662 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 11663 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 11664 else if (N->getOpcode() == ISD::ZERO_EXTEND) 11665 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 11666 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 11667 else 11668 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 11669 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 11670 } 11671 11672 std::list<HandleSDNode> PromOpHandles; 11673 for (auto &PromOp : PromOps) 11674 PromOpHandles.emplace_back(PromOp); 11675 11676 // Replace all operations (these are all the same, but have a different 11677 // (promoted) return type). DAG.getNode will validate that the types of 11678 // a binary operator match, so go through the list in reverse so that 11679 // we've likely promoted both operands first. 11680 while (!PromOpHandles.empty()) { 11681 SDValue PromOp = PromOpHandles.back().getValue(); 11682 PromOpHandles.pop_back(); 11683 11684 unsigned C; 11685 switch (PromOp.getOpcode()) { 11686 default: C = 0; break; 11687 case ISD::SELECT: C = 1; break; 11688 case ISD::SELECT_CC: C = 2; break; 11689 } 11690 11691 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 11692 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 11693 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 11694 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 11695 // The to-be-promoted operands of this node have not yet been 11696 // promoted (this should be rare because we're going through the 11697 // list backward, but if one of the operands has several users in 11698 // this cluster of to-be-promoted nodes, it is possible). 11699 PromOpHandles.emplace_front(PromOp); 11700 continue; 11701 } 11702 11703 // For SELECT and SELECT_CC nodes, we do a similar check for any 11704 // to-be-promoted comparison inputs. 11705 if (PromOp.getOpcode() == ISD::SELECT || 11706 PromOp.getOpcode() == ISD::SELECT_CC) { 11707 if ((SelectTruncOp[0].count(PromOp.getNode()) && 11708 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 11709 (SelectTruncOp[1].count(PromOp.getNode()) && 11710 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 11711 PromOpHandles.emplace_front(PromOp); 11712 continue; 11713 } 11714 } 11715 11716 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 11717 PromOp.getNode()->op_end()); 11718 11719 // If this node has constant inputs, then they'll need to be promoted here. 11720 for (unsigned i = 0; i < 2; ++i) { 11721 if (!isa<ConstantSDNode>(Ops[C+i])) 11722 continue; 11723 if (Ops[C+i].getValueType() == N->getValueType(0)) 11724 continue; 11725 11726 if (N->getOpcode() == ISD::SIGN_EXTEND) 11727 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 11728 else if (N->getOpcode() == ISD::ZERO_EXTEND) 11729 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 11730 else 11731 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 11732 } 11733 11734 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 11735 // truncate them again to the original value type. 11736 if (PromOp.getOpcode() == ISD::SELECT || 11737 PromOp.getOpcode() == ISD::SELECT_CC) { 11738 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 11739 if (SI0 != SelectTruncOp[0].end()) 11740 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 11741 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 11742 if (SI1 != SelectTruncOp[1].end()) 11743 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 11744 } 11745 11746 DAG.ReplaceAllUsesOfValueWith(PromOp, 11747 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 11748 } 11749 11750 // Now we're left with the initial extension itself. 11751 if (!ReallyNeedsExt) 11752 return N->getOperand(0); 11753 11754 // To zero extend, just mask off everything except for the first bit (in the 11755 // i1 case). 11756 if (N->getOpcode() == ISD::ZERO_EXTEND) 11757 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 11758 DAG.getConstant(APInt::getLowBitsSet( 11759 N->getValueSizeInBits(0), PromBits), 11760 dl, N->getValueType(0))); 11761 11762 assert(N->getOpcode() == ISD::SIGN_EXTEND && 11763 "Invalid extension type"); 11764 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 11765 SDValue ShiftCst = 11766 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 11767 return DAG.getNode( 11768 ISD::SRA, dl, N->getValueType(0), 11769 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 11770 ShiftCst); 11771 } 11772 11773 // Is this an extending load from an f32 to an f64? 11774 static bool isFPExtLoad(SDValue Op) { 11775 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 11776 return LD->getExtensionType() == ISD::EXTLOAD && 11777 Op.getValueType() == MVT::f64; 11778 return false; 11779 } 11780 11781 /// Reduces the number of fp-to-int conversion when building a vector. 11782 /// 11783 /// If this vector is built out of floating to integer conversions, 11784 /// transform it to a vector built out of floating point values followed by a 11785 /// single floating to integer conversion of the vector. 11786 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 11787 /// becomes (fptosi (build_vector ($A, $B, ...))) 11788 SDValue PPCTargetLowering:: 11789 combineElementTruncationToVectorTruncation(SDNode *N, 11790 DAGCombinerInfo &DCI) const { 11791 assert(N->getOpcode() == ISD::BUILD_VECTOR && 11792 "Should be called with a BUILD_VECTOR node"); 11793 11794 SelectionDAG &DAG = DCI.DAG; 11795 SDLoc dl(N); 11796 11797 SDValue FirstInput = N->getOperand(0); 11798 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 11799 "The input operand must be an fp-to-int conversion."); 11800 11801 // This combine happens after legalization so the fp_to_[su]i nodes are 11802 // already converted to PPCSISD nodes. 11803 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 11804 if (FirstConversion == PPCISD::FCTIDZ || 11805 FirstConversion == PPCISD::FCTIDUZ || 11806 FirstConversion == PPCISD::FCTIWZ || 11807 FirstConversion == PPCISD::FCTIWUZ) { 11808 bool IsSplat = true; 11809 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 11810 FirstConversion == PPCISD::FCTIWUZ; 11811 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 11812 SmallVector<SDValue, 4> Ops; 11813 EVT TargetVT = N->getValueType(0); 11814 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 11815 SDValue NextOp = N->getOperand(i); 11816 if (NextOp.getOpcode() != PPCISD::MFVSR) 11817 return SDValue(); 11818 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 11819 if (NextConversion != FirstConversion) 11820 return SDValue(); 11821 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 11822 // This is not valid if the input was originally double precision. It is 11823 // also not profitable to do unless this is an extending load in which 11824 // case doing this combine will allow us to combine consecutive loads. 11825 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 11826 return SDValue(); 11827 if (N->getOperand(i) != FirstInput) 11828 IsSplat = false; 11829 } 11830 11831 // If this is a splat, we leave it as-is since there will be only a single 11832 // fp-to-int conversion followed by a splat of the integer. This is better 11833 // for 32-bit and smaller ints and neutral for 64-bit ints. 11834 if (IsSplat) 11835 return SDValue(); 11836 11837 // Now that we know we have the right type of node, get its operands 11838 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 11839 SDValue In = N->getOperand(i).getOperand(0); 11840 if (Is32Bit) { 11841 // For 32-bit values, we need to add an FP_ROUND node (if we made it 11842 // here, we know that all inputs are extending loads so this is safe). 11843 if (In.isUndef()) 11844 Ops.push_back(DAG.getUNDEF(SrcVT)); 11845 else { 11846 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 11847 MVT::f32, In.getOperand(0), 11848 DAG.getIntPtrConstant(1, dl)); 11849 Ops.push_back(Trunc); 11850 } 11851 } else 11852 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 11853 } 11854 11855 unsigned Opcode; 11856 if (FirstConversion == PPCISD::FCTIDZ || 11857 FirstConversion == PPCISD::FCTIWZ) 11858 Opcode = ISD::FP_TO_SINT; 11859 else 11860 Opcode = ISD::FP_TO_UINT; 11861 11862 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 11863 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 11864 return DAG.getNode(Opcode, dl, TargetVT, BV); 11865 } 11866 return SDValue(); 11867 } 11868 11869 /// Reduce the number of loads when building a vector. 11870 /// 11871 /// Building a vector out of multiple loads can be converted to a load 11872 /// of the vector type if the loads are consecutive. If the loads are 11873 /// consecutive but in descending order, a shuffle is added at the end 11874 /// to reorder the vector. 11875 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 11876 assert(N->getOpcode() == ISD::BUILD_VECTOR && 11877 "Should be called with a BUILD_VECTOR node"); 11878 11879 SDLoc dl(N); 11880 bool InputsAreConsecutiveLoads = true; 11881 bool InputsAreReverseConsecutive = true; 11882 unsigned ElemSize = N->getValueType(0).getScalarSizeInBits() / 8; 11883 SDValue FirstInput = N->getOperand(0); 11884 bool IsRoundOfExtLoad = false; 11885 11886 if (FirstInput.getOpcode() == ISD::FP_ROUND && 11887 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 11888 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 11889 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 11890 } 11891 // Not a build vector of (possibly fp_rounded) loads. 11892 if (!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) 11893 return SDValue(); 11894 11895 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 11896 // If any inputs are fp_round(extload), they all must be. 11897 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 11898 return SDValue(); 11899 11900 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 11901 N->getOperand(i); 11902 if (NextInput.getOpcode() != ISD::LOAD) 11903 return SDValue(); 11904 11905 SDValue PreviousInput = 11906 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 11907 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 11908 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 11909 11910 // If any inputs are fp_round(extload), they all must be. 11911 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 11912 return SDValue(); 11913 11914 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 11915 InputsAreConsecutiveLoads = false; 11916 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 11917 InputsAreReverseConsecutive = false; 11918 11919 // Exit early if the loads are neither consecutive nor reverse consecutive. 11920 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 11921 return SDValue(); 11922 } 11923 11924 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 11925 "The loads cannot be both consecutive and reverse consecutive."); 11926 11927 SDValue FirstLoadOp = 11928 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 11929 SDValue LastLoadOp = 11930 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 11931 N->getOperand(N->getNumOperands()-1); 11932 11933 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 11934 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 11935 if (InputsAreConsecutiveLoads) { 11936 assert(LD1 && "Input needs to be a LoadSDNode."); 11937 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 11938 LD1->getBasePtr(), LD1->getPointerInfo(), 11939 LD1->getAlignment()); 11940 } 11941 if (InputsAreReverseConsecutive) { 11942 assert(LDL && "Input needs to be a LoadSDNode."); 11943 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 11944 LDL->getBasePtr(), LDL->getPointerInfo(), 11945 LDL->getAlignment()); 11946 SmallVector<int, 16> Ops; 11947 for (int i = N->getNumOperands() - 1; i >= 0; i--) 11948 Ops.push_back(i); 11949 11950 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 11951 DAG.getUNDEF(N->getValueType(0)), Ops); 11952 } 11953 return SDValue(); 11954 } 11955 11956 // This function adds the required vector_shuffle needed to get 11957 // the elements of the vector extract in the correct position 11958 // as specified by the CorrectElems encoding. 11959 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 11960 SDValue Input, uint64_t Elems, 11961 uint64_t CorrectElems) { 11962 SDLoc dl(N); 11963 11964 unsigned NumElems = Input.getValueType().getVectorNumElements(); 11965 SmallVector<int, 16> ShuffleMask(NumElems, -1); 11966 11967 // Knowing the element indices being extracted from the original 11968 // vector and the order in which they're being inserted, just put 11969 // them at element indices required for the instruction. 11970 for (unsigned i = 0; i < N->getNumOperands(); i++) { 11971 if (DAG.getDataLayout().isLittleEndian()) 11972 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 11973 else 11974 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 11975 CorrectElems = CorrectElems >> 8; 11976 Elems = Elems >> 8; 11977 } 11978 11979 SDValue Shuffle = 11980 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 11981 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 11982 11983 EVT Ty = N->getValueType(0); 11984 SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle); 11985 return BV; 11986 } 11987 11988 // Look for build vector patterns where input operands come from sign 11989 // extended vector_extract elements of specific indices. If the correct indices 11990 // aren't used, add a vector shuffle to fix up the indices and create a new 11991 // PPCISD:SExtVElems node which selects the vector sign extend instructions 11992 // during instruction selection. 11993 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 11994 // This array encodes the indices that the vector sign extend instructions 11995 // extract from when extending from one type to another for both BE and LE. 11996 // The right nibble of each byte corresponds to the LE incides. 11997 // and the left nibble of each byte corresponds to the BE incides. 11998 // For example: 0x3074B8FC byte->word 11999 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 12000 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 12001 // For example: 0x000070F8 byte->double word 12002 // For LE: the allowed indices are: 0x0,0x8 12003 // For BE: the allowed indices are: 0x7,0xF 12004 uint64_t TargetElems[] = { 12005 0x3074B8FC, // b->w 12006 0x000070F8, // b->d 12007 0x10325476, // h->w 12008 0x00003074, // h->d 12009 0x00001032, // w->d 12010 }; 12011 12012 uint64_t Elems = 0; 12013 int Index; 12014 SDValue Input; 12015 12016 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 12017 if (!Op) 12018 return false; 12019 if (Op.getOpcode() != ISD::SIGN_EXTEND && 12020 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 12021 return false; 12022 12023 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 12024 // of the right width. 12025 SDValue Extract = Op.getOperand(0); 12026 if (Extract.getOpcode() == ISD::ANY_EXTEND) 12027 Extract = Extract.getOperand(0); 12028 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 12029 return false; 12030 12031 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 12032 if (!ExtOp) 12033 return false; 12034 12035 Index = ExtOp->getZExtValue(); 12036 if (Input && Input != Extract.getOperand(0)) 12037 return false; 12038 12039 if (!Input) 12040 Input = Extract.getOperand(0); 12041 12042 Elems = Elems << 8; 12043 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 12044 Elems |= Index; 12045 12046 return true; 12047 }; 12048 12049 // If the build vector operands aren't sign extended vector extracts, 12050 // of the same input vector, then return. 12051 for (unsigned i = 0; i < N->getNumOperands(); i++) { 12052 if (!isSExtOfVecExtract(N->getOperand(i))) { 12053 return SDValue(); 12054 } 12055 } 12056 12057 // If the vector extract indicies are not correct, add the appropriate 12058 // vector_shuffle. 12059 int TgtElemArrayIdx; 12060 int InputSize = Input.getValueType().getScalarSizeInBits(); 12061 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 12062 if (InputSize + OutputSize == 40) 12063 TgtElemArrayIdx = 0; 12064 else if (InputSize + OutputSize == 72) 12065 TgtElemArrayIdx = 1; 12066 else if (InputSize + OutputSize == 48) 12067 TgtElemArrayIdx = 2; 12068 else if (InputSize + OutputSize == 80) 12069 TgtElemArrayIdx = 3; 12070 else if (InputSize + OutputSize == 96) 12071 TgtElemArrayIdx = 4; 12072 else 12073 return SDValue(); 12074 12075 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 12076 CorrectElems = DAG.getDataLayout().isLittleEndian() 12077 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 12078 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 12079 if (Elems != CorrectElems) { 12080 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 12081 } 12082 12083 // Regular lowering will catch cases where a shuffle is not needed. 12084 return SDValue(); 12085 } 12086 12087 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 12088 DAGCombinerInfo &DCI) const { 12089 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12090 "Should be called with a BUILD_VECTOR node"); 12091 12092 SelectionDAG &DAG = DCI.DAG; 12093 SDLoc dl(N); 12094 12095 if (!Subtarget.hasVSX()) 12096 return SDValue(); 12097 12098 // The target independent DAG combiner will leave a build_vector of 12099 // float-to-int conversions intact. We can generate MUCH better code for 12100 // a float-to-int conversion of a vector of floats. 12101 SDValue FirstInput = N->getOperand(0); 12102 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 12103 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 12104 if (Reduced) 12105 return Reduced; 12106 } 12107 12108 // If we're building a vector out of consecutive loads, just load that 12109 // vector type. 12110 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 12111 if (Reduced) 12112 return Reduced; 12113 12114 // If we're building a vector out of extended elements from another vector 12115 // we have P9 vector integer extend instructions. The code assumes legal 12116 // input types (i.e. it can't handle things like v4i16) so do not run before 12117 // legalization. 12118 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 12119 Reduced = combineBVOfVecSExt(N, DAG); 12120 if (Reduced) 12121 return Reduced; 12122 } 12123 12124 12125 if (N->getValueType(0) != MVT::v2f64) 12126 return SDValue(); 12127 12128 // Looking for: 12129 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 12130 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 12131 FirstInput.getOpcode() != ISD::UINT_TO_FP) 12132 return SDValue(); 12133 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 12134 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 12135 return SDValue(); 12136 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 12137 return SDValue(); 12138 12139 SDValue Ext1 = FirstInput.getOperand(0); 12140 SDValue Ext2 = N->getOperand(1).getOperand(0); 12141 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 12142 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 12143 return SDValue(); 12144 12145 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 12146 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 12147 if (!Ext1Op || !Ext2Op) 12148 return SDValue(); 12149 if (Ext1.getValueType() != MVT::i32 || 12150 Ext2.getValueType() != MVT::i32) 12151 if (Ext1.getOperand(0) != Ext2.getOperand(0)) 12152 return SDValue(); 12153 12154 int FirstElem = Ext1Op->getZExtValue(); 12155 int SecondElem = Ext2Op->getZExtValue(); 12156 int SubvecIdx; 12157 if (FirstElem == 0 && SecondElem == 1) 12158 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 12159 else if (FirstElem == 2 && SecondElem == 3) 12160 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 12161 else 12162 return SDValue(); 12163 12164 SDValue SrcVec = Ext1.getOperand(0); 12165 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 12166 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 12167 return DAG.getNode(NodeType, dl, MVT::v2f64, 12168 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 12169 } 12170 12171 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 12172 DAGCombinerInfo &DCI) const { 12173 assert((N->getOpcode() == ISD::SINT_TO_FP || 12174 N->getOpcode() == ISD::UINT_TO_FP) && 12175 "Need an int -> FP conversion node here"); 12176 12177 if (useSoftFloat() || !Subtarget.has64BitSupport()) 12178 return SDValue(); 12179 12180 SelectionDAG &DAG = DCI.DAG; 12181 SDLoc dl(N); 12182 SDValue Op(N, 0); 12183 12184 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 12185 // from the hardware. 12186 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 12187 return SDValue(); 12188 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 12189 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 12190 return SDValue(); 12191 12192 SDValue FirstOperand(Op.getOperand(0)); 12193 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 12194 (FirstOperand.getValueType() == MVT::i8 || 12195 FirstOperand.getValueType() == MVT::i16); 12196 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 12197 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 12198 bool DstDouble = Op.getValueType() == MVT::f64; 12199 unsigned ConvOp = Signed ? 12200 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 12201 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 12202 SDValue WidthConst = 12203 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 12204 dl, false); 12205 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 12206 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 12207 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 12208 DAG.getVTList(MVT::f64, MVT::Other), 12209 Ops, MVT::i8, LDN->getMemOperand()); 12210 12211 // For signed conversion, we need to sign-extend the value in the VSR 12212 if (Signed) { 12213 SDValue ExtOps[] = { Ld, WidthConst }; 12214 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 12215 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 12216 } else 12217 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 12218 } 12219 12220 12221 // For i32 intermediate values, unfortunately, the conversion functions 12222 // leave the upper 32 bits of the value are undefined. Within the set of 12223 // scalar instructions, we have no method for zero- or sign-extending the 12224 // value. Thus, we cannot handle i32 intermediate values here. 12225 if (Op.getOperand(0).getValueType() == MVT::i32) 12226 return SDValue(); 12227 12228 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 12229 "UINT_TO_FP is supported only with FPCVT"); 12230 12231 // If we have FCFIDS, then use it when converting to single-precision. 12232 // Otherwise, convert to double-precision and then round. 12233 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 12234 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 12235 : PPCISD::FCFIDS) 12236 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 12237 : PPCISD::FCFID); 12238 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 12239 ? MVT::f32 12240 : MVT::f64; 12241 12242 // If we're converting from a float, to an int, and back to a float again, 12243 // then we don't need the store/load pair at all. 12244 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 12245 Subtarget.hasFPCVT()) || 12246 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 12247 SDValue Src = Op.getOperand(0).getOperand(0); 12248 if (Src.getValueType() == MVT::f32) { 12249 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 12250 DCI.AddToWorklist(Src.getNode()); 12251 } else if (Src.getValueType() != MVT::f64) { 12252 // Make sure that we don't pick up a ppc_fp128 source value. 12253 return SDValue(); 12254 } 12255 12256 unsigned FCTOp = 12257 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 12258 PPCISD::FCTIDUZ; 12259 12260 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 12261 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 12262 12263 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 12264 FP = DAG.getNode(ISD::FP_ROUND, dl, 12265 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 12266 DCI.AddToWorklist(FP.getNode()); 12267 } 12268 12269 return FP; 12270 } 12271 12272 return SDValue(); 12273 } 12274 12275 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 12276 // builtins) into loads with swaps. 12277 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 12278 DAGCombinerInfo &DCI) const { 12279 SelectionDAG &DAG = DCI.DAG; 12280 SDLoc dl(N); 12281 SDValue Chain; 12282 SDValue Base; 12283 MachineMemOperand *MMO; 12284 12285 switch (N->getOpcode()) { 12286 default: 12287 llvm_unreachable("Unexpected opcode for little endian VSX load"); 12288 case ISD::LOAD: { 12289 LoadSDNode *LD = cast<LoadSDNode>(N); 12290 Chain = LD->getChain(); 12291 Base = LD->getBasePtr(); 12292 MMO = LD->getMemOperand(); 12293 // If the MMO suggests this isn't a load of a full vector, leave 12294 // things alone. For a built-in, we have to make the change for 12295 // correctness, so if there is a size problem that will be a bug. 12296 if (MMO->getSize() < 16) 12297 return SDValue(); 12298 break; 12299 } 12300 case ISD::INTRINSIC_W_CHAIN: { 12301 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 12302 Chain = Intrin->getChain(); 12303 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 12304 // us what we want. Get operand 2 instead. 12305 Base = Intrin->getOperand(2); 12306 MMO = Intrin->getMemOperand(); 12307 break; 12308 } 12309 } 12310 12311 MVT VecTy = N->getValueType(0).getSimpleVT(); 12312 12313 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 12314 // aligned and the type is a vector with elements up to 4 bytes 12315 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 12316 && VecTy.getScalarSizeInBits() <= 32 ) { 12317 return SDValue(); 12318 } 12319 12320 SDValue LoadOps[] = { Chain, Base }; 12321 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 12322 DAG.getVTList(MVT::v2f64, MVT::Other), 12323 LoadOps, MVT::v2f64, MMO); 12324 12325 DCI.AddToWorklist(Load.getNode()); 12326 Chain = Load.getValue(1); 12327 SDValue Swap = DAG.getNode( 12328 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 12329 DCI.AddToWorklist(Swap.getNode()); 12330 12331 // Add a bitcast if the resulting load type doesn't match v2f64. 12332 if (VecTy != MVT::v2f64) { 12333 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 12334 DCI.AddToWorklist(N.getNode()); 12335 // Package {bitcast value, swap's chain} to match Load's shape. 12336 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 12337 N, Swap.getValue(1)); 12338 } 12339 12340 return Swap; 12341 } 12342 12343 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 12344 // builtins) into stores with swaps. 12345 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 12346 DAGCombinerInfo &DCI) const { 12347 SelectionDAG &DAG = DCI.DAG; 12348 SDLoc dl(N); 12349 SDValue Chain; 12350 SDValue Base; 12351 unsigned SrcOpnd; 12352 MachineMemOperand *MMO; 12353 12354 switch (N->getOpcode()) { 12355 default: 12356 llvm_unreachable("Unexpected opcode for little endian VSX store"); 12357 case ISD::STORE: { 12358 StoreSDNode *ST = cast<StoreSDNode>(N); 12359 Chain = ST->getChain(); 12360 Base = ST->getBasePtr(); 12361 MMO = ST->getMemOperand(); 12362 SrcOpnd = 1; 12363 // If the MMO suggests this isn't a store of a full vector, leave 12364 // things alone. For a built-in, we have to make the change for 12365 // correctness, so if there is a size problem that will be a bug. 12366 if (MMO->getSize() < 16) 12367 return SDValue(); 12368 break; 12369 } 12370 case ISD::INTRINSIC_VOID: { 12371 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 12372 Chain = Intrin->getChain(); 12373 // Intrin->getBasePtr() oddly does not get what we want. 12374 Base = Intrin->getOperand(3); 12375 MMO = Intrin->getMemOperand(); 12376 SrcOpnd = 2; 12377 break; 12378 } 12379 } 12380 12381 SDValue Src = N->getOperand(SrcOpnd); 12382 MVT VecTy = Src.getValueType().getSimpleVT(); 12383 12384 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 12385 // aligned and the type is a vector with elements up to 4 bytes 12386 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 12387 && VecTy.getScalarSizeInBits() <= 32 ) { 12388 return SDValue(); 12389 } 12390 12391 // All stores are done as v2f64 and possible bit cast. 12392 if (VecTy != MVT::v2f64) { 12393 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 12394 DCI.AddToWorklist(Src.getNode()); 12395 } 12396 12397 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 12398 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 12399 DCI.AddToWorklist(Swap.getNode()); 12400 Chain = Swap.getValue(1); 12401 SDValue StoreOps[] = { Chain, Swap, Base }; 12402 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 12403 DAG.getVTList(MVT::Other), 12404 StoreOps, VecTy, MMO); 12405 DCI.AddToWorklist(Store.getNode()); 12406 return Store; 12407 } 12408 12409 // Handle DAG combine for STORE (FP_TO_INT F). 12410 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 12411 DAGCombinerInfo &DCI) const { 12412 12413 SelectionDAG &DAG = DCI.DAG; 12414 SDLoc dl(N); 12415 unsigned Opcode = N->getOperand(1).getOpcode(); 12416 12417 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 12418 && "Not a FP_TO_INT Instruction!"); 12419 12420 SDValue Val = N->getOperand(1).getOperand(0); 12421 EVT Op1VT = N->getOperand(1).getValueType(); 12422 EVT ResVT = Val.getValueType(); 12423 12424 // Floating point types smaller than 32 bits are not legal on Power. 12425 if (ResVT.getScalarSizeInBits() < 32) 12426 return SDValue(); 12427 12428 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 12429 bool ValidTypeForStoreFltAsInt = 12430 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 12431 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 12432 12433 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() || 12434 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 12435 return SDValue(); 12436 12437 // Extend f32 values to f64 12438 if (ResVT.getScalarSizeInBits() == 32) { 12439 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 12440 DCI.AddToWorklist(Val.getNode()); 12441 } 12442 12443 // Set signed or unsigned conversion opcode. 12444 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 12445 PPCISD::FP_TO_SINT_IN_VSR : 12446 PPCISD::FP_TO_UINT_IN_VSR; 12447 12448 Val = DAG.getNode(ConvOpcode, 12449 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 12450 DCI.AddToWorklist(Val.getNode()); 12451 12452 // Set number of bytes being converted. 12453 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 12454 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 12455 DAG.getIntPtrConstant(ByteSize, dl, false), 12456 DAG.getValueType(Op1VT) }; 12457 12458 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 12459 DAG.getVTList(MVT::Other), Ops, 12460 cast<StoreSDNode>(N)->getMemoryVT(), 12461 cast<StoreSDNode>(N)->getMemOperand()); 12462 12463 DCI.AddToWorklist(Val.getNode()); 12464 return Val; 12465 } 12466 12467 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 12468 DAGCombinerInfo &DCI) const { 12469 SelectionDAG &DAG = DCI.DAG; 12470 SDLoc dl(N); 12471 switch (N->getOpcode()) { 12472 default: break; 12473 case ISD::SHL: 12474 return combineSHL(N, DCI); 12475 case ISD::SRA: 12476 return combineSRA(N, DCI); 12477 case ISD::SRL: 12478 return combineSRL(N, DCI); 12479 case PPCISD::SHL: 12480 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 12481 return N->getOperand(0); 12482 break; 12483 case PPCISD::SRL: 12484 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 12485 return N->getOperand(0); 12486 break; 12487 case PPCISD::SRA: 12488 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 12489 if (C->isNullValue() || // 0 >>s V -> 0. 12490 C->isAllOnesValue()) // -1 >>s V -> -1. 12491 return N->getOperand(0); 12492 } 12493 break; 12494 case ISD::SIGN_EXTEND: 12495 case ISD::ZERO_EXTEND: 12496 case ISD::ANY_EXTEND: 12497 return DAGCombineExtBoolTrunc(N, DCI); 12498 case ISD::TRUNCATE: 12499 case ISD::SETCC: 12500 case ISD::SELECT_CC: 12501 return DAGCombineTruncBoolExt(N, DCI); 12502 case ISD::SINT_TO_FP: 12503 case ISD::UINT_TO_FP: 12504 return combineFPToIntToFP(N, DCI); 12505 case ISD::STORE: { 12506 12507 EVT Op1VT = N->getOperand(1).getValueType(); 12508 unsigned Opcode = N->getOperand(1).getOpcode(); 12509 12510 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 12511 SDValue Val= combineStoreFPToInt(N, DCI); 12512 if (Val) 12513 return Val; 12514 } 12515 12516 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 12517 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 12518 N->getOperand(1).getNode()->hasOneUse() && 12519 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 12520 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 12521 12522 // STBRX can only handle simple types. 12523 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 12524 if (mVT.isExtended()) 12525 break; 12526 12527 SDValue BSwapOp = N->getOperand(1).getOperand(0); 12528 // Do an any-extend to 32-bits if this is a half-word input. 12529 if (BSwapOp.getValueType() == MVT::i16) 12530 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 12531 12532 // If the type of BSWAP operand is wider than stored memory width 12533 // it need to be shifted to the right side before STBRX. 12534 if (Op1VT.bitsGT(mVT)) { 12535 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 12536 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 12537 DAG.getConstant(Shift, dl, MVT::i32)); 12538 // Need to truncate if this is a bswap of i64 stored as i32/i16. 12539 if (Op1VT == MVT::i64) 12540 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 12541 } 12542 12543 SDValue Ops[] = { 12544 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 12545 }; 12546 return 12547 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 12548 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 12549 cast<StoreSDNode>(N)->getMemOperand()); 12550 } 12551 12552 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 12553 // So it can increase the chance of CSE constant construction. 12554 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 12555 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 12556 // Need to sign-extended to 64-bits to handle negative values. 12557 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 12558 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 12559 MemVT.getSizeInBits()); 12560 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 12561 12562 // DAG.getTruncStore() can't be used here because it doesn't accept 12563 // the general (base + offset) addressing mode. 12564 // So we use UpdateNodeOperands and setTruncatingStore instead. 12565 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 12566 N->getOperand(3)); 12567 cast<StoreSDNode>(N)->setTruncatingStore(true); 12568 return SDValue(N, 0); 12569 } 12570 12571 // For little endian, VSX stores require generating xxswapd/lxvd2x. 12572 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 12573 if (Op1VT.isSimple()) { 12574 MVT StoreVT = Op1VT.getSimpleVT(); 12575 if (Subtarget.needsSwapsForVSXMemOps() && 12576 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 12577 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 12578 return expandVSXStoreForLE(N, DCI); 12579 } 12580 break; 12581 } 12582 case ISD::LOAD: { 12583 LoadSDNode *LD = cast<LoadSDNode>(N); 12584 EVT VT = LD->getValueType(0); 12585 12586 // For little endian, VSX loads require generating lxvd2x/xxswapd. 12587 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 12588 if (VT.isSimple()) { 12589 MVT LoadVT = VT.getSimpleVT(); 12590 if (Subtarget.needsSwapsForVSXMemOps() && 12591 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 12592 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 12593 return expandVSXLoadForLE(N, DCI); 12594 } 12595 12596 // We sometimes end up with a 64-bit integer load, from which we extract 12597 // two single-precision floating-point numbers. This happens with 12598 // std::complex<float>, and other similar structures, because of the way we 12599 // canonicalize structure copies. However, if we lack direct moves, 12600 // then the final bitcasts from the extracted integer values to the 12601 // floating-point numbers turn into store/load pairs. Even with direct moves, 12602 // just loading the two floating-point numbers is likely better. 12603 auto ReplaceTwoFloatLoad = [&]() { 12604 if (VT != MVT::i64) 12605 return false; 12606 12607 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 12608 LD->isVolatile()) 12609 return false; 12610 12611 // We're looking for a sequence like this: 12612 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 12613 // t16: i64 = srl t13, Constant:i32<32> 12614 // t17: i32 = truncate t16 12615 // t18: f32 = bitcast t17 12616 // t19: i32 = truncate t13 12617 // t20: f32 = bitcast t19 12618 12619 if (!LD->hasNUsesOfValue(2, 0)) 12620 return false; 12621 12622 auto UI = LD->use_begin(); 12623 while (UI.getUse().getResNo() != 0) ++UI; 12624 SDNode *Trunc = *UI++; 12625 while (UI.getUse().getResNo() != 0) ++UI; 12626 SDNode *RightShift = *UI; 12627 if (Trunc->getOpcode() != ISD::TRUNCATE) 12628 std::swap(Trunc, RightShift); 12629 12630 if (Trunc->getOpcode() != ISD::TRUNCATE || 12631 Trunc->getValueType(0) != MVT::i32 || 12632 !Trunc->hasOneUse()) 12633 return false; 12634 if (RightShift->getOpcode() != ISD::SRL || 12635 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 12636 RightShift->getConstantOperandVal(1) != 32 || 12637 !RightShift->hasOneUse()) 12638 return false; 12639 12640 SDNode *Trunc2 = *RightShift->use_begin(); 12641 if (Trunc2->getOpcode() != ISD::TRUNCATE || 12642 Trunc2->getValueType(0) != MVT::i32 || 12643 !Trunc2->hasOneUse()) 12644 return false; 12645 12646 SDNode *Bitcast = *Trunc->use_begin(); 12647 SDNode *Bitcast2 = *Trunc2->use_begin(); 12648 12649 if (Bitcast->getOpcode() != ISD::BITCAST || 12650 Bitcast->getValueType(0) != MVT::f32) 12651 return false; 12652 if (Bitcast2->getOpcode() != ISD::BITCAST || 12653 Bitcast2->getValueType(0) != MVT::f32) 12654 return false; 12655 12656 if (Subtarget.isLittleEndian()) 12657 std::swap(Bitcast, Bitcast2); 12658 12659 // Bitcast has the second float (in memory-layout order) and Bitcast2 12660 // has the first one. 12661 12662 SDValue BasePtr = LD->getBasePtr(); 12663 if (LD->isIndexed()) { 12664 assert(LD->getAddressingMode() == ISD::PRE_INC && 12665 "Non-pre-inc AM on PPC?"); 12666 BasePtr = 12667 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 12668 LD->getOffset()); 12669 } 12670 12671 auto MMOFlags = 12672 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 12673 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 12674 LD->getPointerInfo(), LD->getAlignment(), 12675 MMOFlags, LD->getAAInfo()); 12676 SDValue AddPtr = 12677 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 12678 BasePtr, DAG.getIntPtrConstant(4, dl)); 12679 SDValue FloatLoad2 = DAG.getLoad( 12680 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 12681 LD->getPointerInfo().getWithOffset(4), 12682 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 12683 12684 if (LD->isIndexed()) { 12685 // Note that DAGCombine should re-form any pre-increment load(s) from 12686 // what is produced here if that makes sense. 12687 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 12688 } 12689 12690 DCI.CombineTo(Bitcast2, FloatLoad); 12691 DCI.CombineTo(Bitcast, FloatLoad2); 12692 12693 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 12694 SDValue(FloatLoad2.getNode(), 1)); 12695 return true; 12696 }; 12697 12698 if (ReplaceTwoFloatLoad()) 12699 return SDValue(N, 0); 12700 12701 EVT MemVT = LD->getMemoryVT(); 12702 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 12703 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 12704 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 12705 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 12706 if (LD->isUnindexed() && VT.isVector() && 12707 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 12708 // P8 and later hardware should just use LOAD. 12709 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 12710 VT == MVT::v4i32 || VT == MVT::v4f32)) || 12711 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 12712 LD->getAlignment() >= ScalarABIAlignment)) && 12713 LD->getAlignment() < ABIAlignment) { 12714 // This is a type-legal unaligned Altivec or QPX load. 12715 SDValue Chain = LD->getChain(); 12716 SDValue Ptr = LD->getBasePtr(); 12717 bool isLittleEndian = Subtarget.isLittleEndian(); 12718 12719 // This implements the loading of unaligned vectors as described in 12720 // the venerable Apple Velocity Engine overview. Specifically: 12721 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 12722 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 12723 // 12724 // The general idea is to expand a sequence of one or more unaligned 12725 // loads into an alignment-based permutation-control instruction (lvsl 12726 // or lvsr), a series of regular vector loads (which always truncate 12727 // their input address to an aligned address), and a series of 12728 // permutations. The results of these permutations are the requested 12729 // loaded values. The trick is that the last "extra" load is not taken 12730 // from the address you might suspect (sizeof(vector) bytes after the 12731 // last requested load), but rather sizeof(vector) - 1 bytes after the 12732 // last requested vector. The point of this is to avoid a page fault if 12733 // the base address happened to be aligned. This works because if the 12734 // base address is aligned, then adding less than a full vector length 12735 // will cause the last vector in the sequence to be (re)loaded. 12736 // Otherwise, the next vector will be fetched as you might suspect was 12737 // necessary. 12738 12739 // We might be able to reuse the permutation generation from 12740 // a different base address offset from this one by an aligned amount. 12741 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 12742 // optimization later. 12743 Intrinsic::ID Intr, IntrLD, IntrPerm; 12744 MVT PermCntlTy, PermTy, LDTy; 12745 if (Subtarget.hasAltivec()) { 12746 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 12747 Intrinsic::ppc_altivec_lvsl; 12748 IntrLD = Intrinsic::ppc_altivec_lvx; 12749 IntrPerm = Intrinsic::ppc_altivec_vperm; 12750 PermCntlTy = MVT::v16i8; 12751 PermTy = MVT::v4i32; 12752 LDTy = MVT::v4i32; 12753 } else { 12754 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 12755 Intrinsic::ppc_qpx_qvlpcls; 12756 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 12757 Intrinsic::ppc_qpx_qvlfs; 12758 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 12759 PermCntlTy = MVT::v4f64; 12760 PermTy = MVT::v4f64; 12761 LDTy = MemVT.getSimpleVT(); 12762 } 12763 12764 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 12765 12766 // Create the new MMO for the new base load. It is like the original MMO, 12767 // but represents an area in memory almost twice the vector size centered 12768 // on the original address. If the address is unaligned, we might start 12769 // reading up to (sizeof(vector)-1) bytes below the address of the 12770 // original unaligned load. 12771 MachineFunction &MF = DAG.getMachineFunction(); 12772 MachineMemOperand *BaseMMO = 12773 MF.getMachineMemOperand(LD->getMemOperand(), 12774 -(long)MemVT.getStoreSize()+1, 12775 2*MemVT.getStoreSize()-1); 12776 12777 // Create the new base load. 12778 SDValue LDXIntID = 12779 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 12780 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 12781 SDValue BaseLoad = 12782 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 12783 DAG.getVTList(PermTy, MVT::Other), 12784 BaseLoadOps, LDTy, BaseMMO); 12785 12786 // Note that the value of IncOffset (which is provided to the next 12787 // load's pointer info offset value, and thus used to calculate the 12788 // alignment), and the value of IncValue (which is actually used to 12789 // increment the pointer value) are different! This is because we 12790 // require the next load to appear to be aligned, even though it 12791 // is actually offset from the base pointer by a lesser amount. 12792 int IncOffset = VT.getSizeInBits() / 8; 12793 int IncValue = IncOffset; 12794 12795 // Walk (both up and down) the chain looking for another load at the real 12796 // (aligned) offset (the alignment of the other load does not matter in 12797 // this case). If found, then do not use the offset reduction trick, as 12798 // that will prevent the loads from being later combined (as they would 12799 // otherwise be duplicates). 12800 if (!findConsecutiveLoad(LD, DAG)) 12801 --IncValue; 12802 12803 SDValue Increment = 12804 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 12805 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 12806 12807 MachineMemOperand *ExtraMMO = 12808 MF.getMachineMemOperand(LD->getMemOperand(), 12809 1, 2*MemVT.getStoreSize()-1); 12810 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 12811 SDValue ExtraLoad = 12812 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 12813 DAG.getVTList(PermTy, MVT::Other), 12814 ExtraLoadOps, LDTy, ExtraMMO); 12815 12816 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 12817 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 12818 12819 // Because vperm has a big-endian bias, we must reverse the order 12820 // of the input vectors and complement the permute control vector 12821 // when generating little endian code. We have already handled the 12822 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 12823 // and ExtraLoad here. 12824 SDValue Perm; 12825 if (isLittleEndian) 12826 Perm = BuildIntrinsicOp(IntrPerm, 12827 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 12828 else 12829 Perm = BuildIntrinsicOp(IntrPerm, 12830 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 12831 12832 if (VT != PermTy) 12833 Perm = Subtarget.hasAltivec() ? 12834 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 12835 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 12836 DAG.getTargetConstant(1, dl, MVT::i64)); 12837 // second argument is 1 because this rounding 12838 // is always exact. 12839 12840 // The output of the permutation is our loaded result, the TokenFactor is 12841 // our new chain. 12842 DCI.CombineTo(N, Perm, TF); 12843 return SDValue(N, 0); 12844 } 12845 } 12846 break; 12847 case ISD::INTRINSIC_WO_CHAIN: { 12848 bool isLittleEndian = Subtarget.isLittleEndian(); 12849 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 12850 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 12851 : Intrinsic::ppc_altivec_lvsl); 12852 if ((IID == Intr || 12853 IID == Intrinsic::ppc_qpx_qvlpcld || 12854 IID == Intrinsic::ppc_qpx_qvlpcls) && 12855 N->getOperand(1)->getOpcode() == ISD::ADD) { 12856 SDValue Add = N->getOperand(1); 12857 12858 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 12859 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 12860 12861 if (DAG.MaskedValueIsZero(Add->getOperand(1), 12862 APInt::getAllOnesValue(Bits /* alignment */) 12863 .zext(Add.getScalarValueSizeInBits()))) { 12864 SDNode *BasePtr = Add->getOperand(0).getNode(); 12865 for (SDNode::use_iterator UI = BasePtr->use_begin(), 12866 UE = BasePtr->use_end(); 12867 UI != UE; ++UI) { 12868 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 12869 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 12870 // We've found another LVSL/LVSR, and this address is an aligned 12871 // multiple of that one. The results will be the same, so use the 12872 // one we've just found instead. 12873 12874 return SDValue(*UI, 0); 12875 } 12876 } 12877 } 12878 12879 if (isa<ConstantSDNode>(Add->getOperand(1))) { 12880 SDNode *BasePtr = Add->getOperand(0).getNode(); 12881 for (SDNode::use_iterator UI = BasePtr->use_begin(), 12882 UE = BasePtr->use_end(); UI != UE; ++UI) { 12883 if (UI->getOpcode() == ISD::ADD && 12884 isa<ConstantSDNode>(UI->getOperand(1)) && 12885 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 12886 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 12887 (1ULL << Bits) == 0) { 12888 SDNode *OtherAdd = *UI; 12889 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 12890 VE = OtherAdd->use_end(); VI != VE; ++VI) { 12891 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 12892 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 12893 return SDValue(*VI, 0); 12894 } 12895 } 12896 } 12897 } 12898 } 12899 } 12900 } 12901 12902 break; 12903 case ISD::INTRINSIC_W_CHAIN: 12904 // For little endian, VSX loads require generating lxvd2x/xxswapd. 12905 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 12906 if (Subtarget.needsSwapsForVSXMemOps()) { 12907 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12908 default: 12909 break; 12910 case Intrinsic::ppc_vsx_lxvw4x: 12911 case Intrinsic::ppc_vsx_lxvd2x: 12912 return expandVSXLoadForLE(N, DCI); 12913 } 12914 } 12915 break; 12916 case ISD::INTRINSIC_VOID: 12917 // For little endian, VSX stores require generating xxswapd/stxvd2x. 12918 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 12919 if (Subtarget.needsSwapsForVSXMemOps()) { 12920 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12921 default: 12922 break; 12923 case Intrinsic::ppc_vsx_stxvw4x: 12924 case Intrinsic::ppc_vsx_stxvd2x: 12925 return expandVSXStoreForLE(N, DCI); 12926 } 12927 } 12928 break; 12929 case ISD::BSWAP: 12930 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 12931 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 12932 N->getOperand(0).hasOneUse() && 12933 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 12934 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 12935 N->getValueType(0) == MVT::i64))) { 12936 SDValue Load = N->getOperand(0); 12937 LoadSDNode *LD = cast<LoadSDNode>(Load); 12938 // Create the byte-swapping load. 12939 SDValue Ops[] = { 12940 LD->getChain(), // Chain 12941 LD->getBasePtr(), // Ptr 12942 DAG.getValueType(N->getValueType(0)) // VT 12943 }; 12944 SDValue BSLoad = 12945 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 12946 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 12947 MVT::i64 : MVT::i32, MVT::Other), 12948 Ops, LD->getMemoryVT(), LD->getMemOperand()); 12949 12950 // If this is an i16 load, insert the truncate. 12951 SDValue ResVal = BSLoad; 12952 if (N->getValueType(0) == MVT::i16) 12953 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 12954 12955 // First, combine the bswap away. This makes the value produced by the 12956 // load dead. 12957 DCI.CombineTo(N, ResVal); 12958 12959 // Next, combine the load away, we give it a bogus result value but a real 12960 // chain result. The result value is dead because the bswap is dead. 12961 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 12962 12963 // Return N so it doesn't get rechecked! 12964 return SDValue(N, 0); 12965 } 12966 break; 12967 case PPCISD::VCMP: 12968 // If a VCMPo node already exists with exactly the same operands as this 12969 // node, use its result instead of this node (VCMPo computes both a CR6 and 12970 // a normal output). 12971 // 12972 if (!N->getOperand(0).hasOneUse() && 12973 !N->getOperand(1).hasOneUse() && 12974 !N->getOperand(2).hasOneUse()) { 12975 12976 // Scan all of the users of the LHS, looking for VCMPo's that match. 12977 SDNode *VCMPoNode = nullptr; 12978 12979 SDNode *LHSN = N->getOperand(0).getNode(); 12980 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 12981 UI != E; ++UI) 12982 if (UI->getOpcode() == PPCISD::VCMPo && 12983 UI->getOperand(1) == N->getOperand(1) && 12984 UI->getOperand(2) == N->getOperand(2) && 12985 UI->getOperand(0) == N->getOperand(0)) { 12986 VCMPoNode = *UI; 12987 break; 12988 } 12989 12990 // If there is no VCMPo node, or if the flag value has a single use, don't 12991 // transform this. 12992 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 12993 break; 12994 12995 // Look at the (necessarily single) use of the flag value. If it has a 12996 // chain, this transformation is more complex. Note that multiple things 12997 // could use the value result, which we should ignore. 12998 SDNode *FlagUser = nullptr; 12999 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 13000 FlagUser == nullptr; ++UI) { 13001 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 13002 SDNode *User = *UI; 13003 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 13004 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 13005 FlagUser = User; 13006 break; 13007 } 13008 } 13009 } 13010 13011 // If the user is a MFOCRF instruction, we know this is safe. 13012 // Otherwise we give up for right now. 13013 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 13014 return SDValue(VCMPoNode, 0); 13015 } 13016 break; 13017 case ISD::BRCOND: { 13018 SDValue Cond = N->getOperand(1); 13019 SDValue Target = N->getOperand(2); 13020 13021 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 13022 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 13023 Intrinsic::ppc_is_decremented_ctr_nonzero) { 13024 13025 // We now need to make the intrinsic dead (it cannot be instruction 13026 // selected). 13027 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 13028 assert(Cond.getNode()->hasOneUse() && 13029 "Counter decrement has more than one use"); 13030 13031 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 13032 N->getOperand(0), Target); 13033 } 13034 } 13035 break; 13036 case ISD::BR_CC: { 13037 // If this is a branch on an altivec predicate comparison, lower this so 13038 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 13039 // lowering is done pre-legalize, because the legalizer lowers the predicate 13040 // compare down to code that is difficult to reassemble. 13041 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 13042 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 13043 13044 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 13045 // value. If so, pass-through the AND to get to the intrinsic. 13046 if (LHS.getOpcode() == ISD::AND && 13047 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 13048 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 13049 Intrinsic::ppc_is_decremented_ctr_nonzero && 13050 isa<ConstantSDNode>(LHS.getOperand(1)) && 13051 !isNullConstant(LHS.getOperand(1))) 13052 LHS = LHS.getOperand(0); 13053 13054 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 13055 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 13056 Intrinsic::ppc_is_decremented_ctr_nonzero && 13057 isa<ConstantSDNode>(RHS)) { 13058 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 13059 "Counter decrement comparison is not EQ or NE"); 13060 13061 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 13062 bool isBDNZ = (CC == ISD::SETEQ && Val) || 13063 (CC == ISD::SETNE && !Val); 13064 13065 // We now need to make the intrinsic dead (it cannot be instruction 13066 // selected). 13067 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 13068 assert(LHS.getNode()->hasOneUse() && 13069 "Counter decrement has more than one use"); 13070 13071 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 13072 N->getOperand(0), N->getOperand(4)); 13073 } 13074 13075 int CompareOpc; 13076 bool isDot; 13077 13078 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13079 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 13080 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 13081 assert(isDot && "Can't compare against a vector result!"); 13082 13083 // If this is a comparison against something other than 0/1, then we know 13084 // that the condition is never/always true. 13085 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 13086 if (Val != 0 && Val != 1) { 13087 if (CC == ISD::SETEQ) // Cond never true, remove branch. 13088 return N->getOperand(0); 13089 // Always !=, turn it into an unconditional branch. 13090 return DAG.getNode(ISD::BR, dl, MVT::Other, 13091 N->getOperand(0), N->getOperand(4)); 13092 } 13093 13094 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 13095 13096 // Create the PPCISD altivec 'dot' comparison node. 13097 SDValue Ops[] = { 13098 LHS.getOperand(2), // LHS of compare 13099 LHS.getOperand(3), // RHS of compare 13100 DAG.getConstant(CompareOpc, dl, MVT::i32) 13101 }; 13102 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 13103 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 13104 13105 // Unpack the result based on how the target uses it. 13106 PPC::Predicate CompOpc; 13107 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 13108 default: // Can't happen, don't crash on invalid number though. 13109 case 0: // Branch on the value of the EQ bit of CR6. 13110 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 13111 break; 13112 case 1: // Branch on the inverted value of the EQ bit of CR6. 13113 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 13114 break; 13115 case 2: // Branch on the value of the LT bit of CR6. 13116 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 13117 break; 13118 case 3: // Branch on the inverted value of the LT bit of CR6. 13119 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 13120 break; 13121 } 13122 13123 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 13124 DAG.getConstant(CompOpc, dl, MVT::i32), 13125 DAG.getRegister(PPC::CR6, MVT::i32), 13126 N->getOperand(4), CompNode.getValue(1)); 13127 } 13128 break; 13129 } 13130 case ISD::BUILD_VECTOR: 13131 return DAGCombineBuildVector(N, DCI); 13132 } 13133 13134 return SDValue(); 13135 } 13136 13137 SDValue 13138 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 13139 SelectionDAG &DAG, 13140 SmallVectorImpl<SDNode *> &Created) const { 13141 // fold (sdiv X, pow2) 13142 EVT VT = N->getValueType(0); 13143 if (VT == MVT::i64 && !Subtarget.isPPC64()) 13144 return SDValue(); 13145 if ((VT != MVT::i32 && VT != MVT::i64) || 13146 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 13147 return SDValue(); 13148 13149 SDLoc DL(N); 13150 SDValue N0 = N->getOperand(0); 13151 13152 bool IsNegPow2 = (-Divisor).isPowerOf2(); 13153 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 13154 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 13155 13156 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 13157 Created.push_back(Op.getNode()); 13158 13159 if (IsNegPow2) { 13160 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 13161 Created.push_back(Op.getNode()); 13162 } 13163 13164 return Op; 13165 } 13166 13167 //===----------------------------------------------------------------------===// 13168 // Inline Assembly Support 13169 //===----------------------------------------------------------------------===// 13170 13171 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 13172 KnownBits &Known, 13173 const APInt &DemandedElts, 13174 const SelectionDAG &DAG, 13175 unsigned Depth) const { 13176 Known.resetAll(); 13177 switch (Op.getOpcode()) { 13178 default: break; 13179 case PPCISD::LBRX: { 13180 // lhbrx is known to have the top bits cleared out. 13181 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 13182 Known.Zero = 0xFFFF0000; 13183 break; 13184 } 13185 case ISD::INTRINSIC_WO_CHAIN: { 13186 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 13187 default: break; 13188 case Intrinsic::ppc_altivec_vcmpbfp_p: 13189 case Intrinsic::ppc_altivec_vcmpeqfp_p: 13190 case Intrinsic::ppc_altivec_vcmpequb_p: 13191 case Intrinsic::ppc_altivec_vcmpequh_p: 13192 case Intrinsic::ppc_altivec_vcmpequw_p: 13193 case Intrinsic::ppc_altivec_vcmpequd_p: 13194 case Intrinsic::ppc_altivec_vcmpgefp_p: 13195 case Intrinsic::ppc_altivec_vcmpgtfp_p: 13196 case Intrinsic::ppc_altivec_vcmpgtsb_p: 13197 case Intrinsic::ppc_altivec_vcmpgtsh_p: 13198 case Intrinsic::ppc_altivec_vcmpgtsw_p: 13199 case Intrinsic::ppc_altivec_vcmpgtsd_p: 13200 case Intrinsic::ppc_altivec_vcmpgtub_p: 13201 case Intrinsic::ppc_altivec_vcmpgtuh_p: 13202 case Intrinsic::ppc_altivec_vcmpgtuw_p: 13203 case Intrinsic::ppc_altivec_vcmpgtud_p: 13204 Known.Zero = ~1U; // All bits but the low one are known to be zero. 13205 break; 13206 } 13207 } 13208 } 13209 } 13210 13211 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 13212 switch (Subtarget.getDarwinDirective()) { 13213 default: break; 13214 case PPC::DIR_970: 13215 case PPC::DIR_PWR4: 13216 case PPC::DIR_PWR5: 13217 case PPC::DIR_PWR5X: 13218 case PPC::DIR_PWR6: 13219 case PPC::DIR_PWR6X: 13220 case PPC::DIR_PWR7: 13221 case PPC::DIR_PWR8: 13222 case PPC::DIR_PWR9: { 13223 if (!ML) 13224 break; 13225 13226 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 13227 13228 // For small loops (between 5 and 8 instructions), align to a 32-byte 13229 // boundary so that the entire loop fits in one instruction-cache line. 13230 uint64_t LoopSize = 0; 13231 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 13232 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 13233 LoopSize += TII->getInstSizeInBytes(*J); 13234 if (LoopSize > 32) 13235 break; 13236 } 13237 13238 if (LoopSize > 16 && LoopSize <= 32) 13239 return 5; 13240 13241 break; 13242 } 13243 } 13244 13245 return TargetLowering::getPrefLoopAlignment(ML); 13246 } 13247 13248 /// getConstraintType - Given a constraint, return the type of 13249 /// constraint it is for this target. 13250 PPCTargetLowering::ConstraintType 13251 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 13252 if (Constraint.size() == 1) { 13253 switch (Constraint[0]) { 13254 default: break; 13255 case 'b': 13256 case 'r': 13257 case 'f': 13258 case 'd': 13259 case 'v': 13260 case 'y': 13261 return C_RegisterClass; 13262 case 'Z': 13263 // FIXME: While Z does indicate a memory constraint, it specifically 13264 // indicates an r+r address (used in conjunction with the 'y' modifier 13265 // in the replacement string). Currently, we're forcing the base 13266 // register to be r0 in the asm printer (which is interpreted as zero) 13267 // and forming the complete address in the second register. This is 13268 // suboptimal. 13269 return C_Memory; 13270 } 13271 } else if (Constraint == "wc") { // individual CR bits. 13272 return C_RegisterClass; 13273 } else if (Constraint == "wa" || Constraint == "wd" || 13274 Constraint == "wf" || Constraint == "ws") { 13275 return C_RegisterClass; // VSX registers. 13276 } 13277 return TargetLowering::getConstraintType(Constraint); 13278 } 13279 13280 /// Examine constraint type and operand type and determine a weight value. 13281 /// This object must already have been set up with the operand type 13282 /// and the current alternative constraint selected. 13283 TargetLowering::ConstraintWeight 13284 PPCTargetLowering::getSingleConstraintMatchWeight( 13285 AsmOperandInfo &info, const char *constraint) const { 13286 ConstraintWeight weight = CW_Invalid; 13287 Value *CallOperandVal = info.CallOperandVal; 13288 // If we don't have a value, we can't do a match, 13289 // but allow it at the lowest weight. 13290 if (!CallOperandVal) 13291 return CW_Default; 13292 Type *type = CallOperandVal->getType(); 13293 13294 // Look at the constraint type. 13295 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 13296 return CW_Register; // an individual CR bit. 13297 else if ((StringRef(constraint) == "wa" || 13298 StringRef(constraint) == "wd" || 13299 StringRef(constraint) == "wf") && 13300 type->isVectorTy()) 13301 return CW_Register; 13302 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 13303 return CW_Register; 13304 13305 switch (*constraint) { 13306 default: 13307 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 13308 break; 13309 case 'b': 13310 if (type->isIntegerTy()) 13311 weight = CW_Register; 13312 break; 13313 case 'f': 13314 if (type->isFloatTy()) 13315 weight = CW_Register; 13316 break; 13317 case 'd': 13318 if (type->isDoubleTy()) 13319 weight = CW_Register; 13320 break; 13321 case 'v': 13322 if (type->isVectorTy()) 13323 weight = CW_Register; 13324 break; 13325 case 'y': 13326 weight = CW_Register; 13327 break; 13328 case 'Z': 13329 weight = CW_Memory; 13330 break; 13331 } 13332 return weight; 13333 } 13334 13335 std::pair<unsigned, const TargetRegisterClass *> 13336 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 13337 StringRef Constraint, 13338 MVT VT) const { 13339 if (Constraint.size() == 1) { 13340 // GCC RS6000 Constraint Letters 13341 switch (Constraint[0]) { 13342 case 'b': // R1-R31 13343 if (VT == MVT::i64 && Subtarget.isPPC64()) 13344 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 13345 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 13346 case 'r': // R0-R31 13347 if (VT == MVT::i64 && Subtarget.isPPC64()) 13348 return std::make_pair(0U, &PPC::G8RCRegClass); 13349 return std::make_pair(0U, &PPC::GPRCRegClass); 13350 // 'd' and 'f' constraints are both defined to be "the floating point 13351 // registers", where one is for 32-bit and the other for 64-bit. We don't 13352 // really care overly much here so just give them all the same reg classes. 13353 case 'd': 13354 case 'f': 13355 if (Subtarget.hasSPE()) { 13356 if (VT == MVT::f32 || VT == MVT::i32) 13357 return std::make_pair(0U, &PPC::SPE4RCRegClass); 13358 if (VT == MVT::f64 || VT == MVT::i64) 13359 return std::make_pair(0U, &PPC::SPERCRegClass); 13360 } else { 13361 if (VT == MVT::f32 || VT == MVT::i32) 13362 return std::make_pair(0U, &PPC::F4RCRegClass); 13363 if (VT == MVT::f64 || VT == MVT::i64) 13364 return std::make_pair(0U, &PPC::F8RCRegClass); 13365 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 13366 return std::make_pair(0U, &PPC::QFRCRegClass); 13367 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 13368 return std::make_pair(0U, &PPC::QSRCRegClass); 13369 } 13370 break; 13371 case 'v': 13372 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 13373 return std::make_pair(0U, &PPC::QFRCRegClass); 13374 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 13375 return std::make_pair(0U, &PPC::QSRCRegClass); 13376 if (Subtarget.hasAltivec()) 13377 return std::make_pair(0U, &PPC::VRRCRegClass); 13378 break; 13379 case 'y': // crrc 13380 return std::make_pair(0U, &PPC::CRRCRegClass); 13381 } 13382 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 13383 // An individual CR bit. 13384 return std::make_pair(0U, &PPC::CRBITRCRegClass); 13385 } else if ((Constraint == "wa" || Constraint == "wd" || 13386 Constraint == "wf") && Subtarget.hasVSX()) { 13387 return std::make_pair(0U, &PPC::VSRCRegClass); 13388 } else if (Constraint == "ws" && Subtarget.hasVSX()) { 13389 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 13390 return std::make_pair(0U, &PPC::VSSRCRegClass); 13391 else 13392 return std::make_pair(0U, &PPC::VSFRCRegClass); 13393 } 13394 13395 std::pair<unsigned, const TargetRegisterClass *> R = 13396 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 13397 13398 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 13399 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 13400 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 13401 // register. 13402 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 13403 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 13404 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 13405 PPC::GPRCRegClass.contains(R.first)) 13406 return std::make_pair(TRI->getMatchingSuperReg(R.first, 13407 PPC::sub_32, &PPC::G8RCRegClass), 13408 &PPC::G8RCRegClass); 13409 13410 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 13411 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 13412 R.first = PPC::CR0; 13413 R.second = &PPC::CRRCRegClass; 13414 } 13415 13416 return R; 13417 } 13418 13419 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 13420 /// vector. If it is invalid, don't add anything to Ops. 13421 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 13422 std::string &Constraint, 13423 std::vector<SDValue>&Ops, 13424 SelectionDAG &DAG) const { 13425 SDValue Result; 13426 13427 // Only support length 1 constraints. 13428 if (Constraint.length() > 1) return; 13429 13430 char Letter = Constraint[0]; 13431 switch (Letter) { 13432 default: break; 13433 case 'I': 13434 case 'J': 13435 case 'K': 13436 case 'L': 13437 case 'M': 13438 case 'N': 13439 case 'O': 13440 case 'P': { 13441 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 13442 if (!CST) return; // Must be an immediate to match. 13443 SDLoc dl(Op); 13444 int64_t Value = CST->getSExtValue(); 13445 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 13446 // numbers are printed as such. 13447 switch (Letter) { 13448 default: llvm_unreachable("Unknown constraint letter!"); 13449 case 'I': // "I" is a signed 16-bit constant. 13450 if (isInt<16>(Value)) 13451 Result = DAG.getTargetConstant(Value, dl, TCVT); 13452 break; 13453 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 13454 if (isShiftedUInt<16, 16>(Value)) 13455 Result = DAG.getTargetConstant(Value, dl, TCVT); 13456 break; 13457 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 13458 if (isShiftedInt<16, 16>(Value)) 13459 Result = DAG.getTargetConstant(Value, dl, TCVT); 13460 break; 13461 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 13462 if (isUInt<16>(Value)) 13463 Result = DAG.getTargetConstant(Value, dl, TCVT); 13464 break; 13465 case 'M': // "M" is a constant that is greater than 31. 13466 if (Value > 31) 13467 Result = DAG.getTargetConstant(Value, dl, TCVT); 13468 break; 13469 case 'N': // "N" is a positive constant that is an exact power of two. 13470 if (Value > 0 && isPowerOf2_64(Value)) 13471 Result = DAG.getTargetConstant(Value, dl, TCVT); 13472 break; 13473 case 'O': // "O" is the constant zero. 13474 if (Value == 0) 13475 Result = DAG.getTargetConstant(Value, dl, TCVT); 13476 break; 13477 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 13478 if (isInt<16>(-Value)) 13479 Result = DAG.getTargetConstant(Value, dl, TCVT); 13480 break; 13481 } 13482 break; 13483 } 13484 } 13485 13486 if (Result.getNode()) { 13487 Ops.push_back(Result); 13488 return; 13489 } 13490 13491 // Handle standard constraint letters. 13492 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 13493 } 13494 13495 // isLegalAddressingMode - Return true if the addressing mode represented 13496 // by AM is legal for this target, for a load/store of the specified type. 13497 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 13498 const AddrMode &AM, Type *Ty, 13499 unsigned AS, Instruction *I) const { 13500 // PPC does not allow r+i addressing modes for vectors! 13501 if (Ty->isVectorTy() && AM.BaseOffs != 0) 13502 return false; 13503 13504 // PPC allows a sign-extended 16-bit immediate field. 13505 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 13506 return false; 13507 13508 // No global is ever allowed as a base. 13509 if (AM.BaseGV) 13510 return false; 13511 13512 // PPC only support r+r, 13513 switch (AM.Scale) { 13514 case 0: // "r+i" or just "i", depending on HasBaseReg. 13515 break; 13516 case 1: 13517 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 13518 return false; 13519 // Otherwise we have r+r or r+i. 13520 break; 13521 case 2: 13522 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 13523 return false; 13524 // Allow 2*r as r+r. 13525 break; 13526 default: 13527 // No other scales are supported. 13528 return false; 13529 } 13530 13531 return true; 13532 } 13533 13534 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 13535 SelectionDAG &DAG) const { 13536 MachineFunction &MF = DAG.getMachineFunction(); 13537 MachineFrameInfo &MFI = MF.getFrameInfo(); 13538 MFI.setReturnAddressIsTaken(true); 13539 13540 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 13541 return SDValue(); 13542 13543 SDLoc dl(Op); 13544 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 13545 13546 // Make sure the function does not optimize away the store of the RA to 13547 // the stack. 13548 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 13549 FuncInfo->setLRStoreRequired(); 13550 bool isPPC64 = Subtarget.isPPC64(); 13551 auto PtrVT = getPointerTy(MF.getDataLayout()); 13552 13553 if (Depth > 0) { 13554 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 13555 SDValue Offset = 13556 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 13557 isPPC64 ? MVT::i64 : MVT::i32); 13558 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 13559 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 13560 MachinePointerInfo()); 13561 } 13562 13563 // Just load the return address off the stack. 13564 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 13565 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 13566 MachinePointerInfo()); 13567 } 13568 13569 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 13570 SelectionDAG &DAG) const { 13571 SDLoc dl(Op); 13572 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 13573 13574 MachineFunction &MF = DAG.getMachineFunction(); 13575 MachineFrameInfo &MFI = MF.getFrameInfo(); 13576 MFI.setFrameAddressIsTaken(true); 13577 13578 EVT PtrVT = getPointerTy(MF.getDataLayout()); 13579 bool isPPC64 = PtrVT == MVT::i64; 13580 13581 // Naked functions never have a frame pointer, and so we use r1. For all 13582 // other functions, this decision must be delayed until during PEI. 13583 unsigned FrameReg; 13584 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 13585 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 13586 else 13587 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 13588 13589 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 13590 PtrVT); 13591 while (Depth--) 13592 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 13593 FrameAddr, MachinePointerInfo()); 13594 return FrameAddr; 13595 } 13596 13597 // FIXME? Maybe this could be a TableGen attribute on some registers and 13598 // this table could be generated automatically from RegInfo. 13599 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 13600 SelectionDAG &DAG) const { 13601 bool isPPC64 = Subtarget.isPPC64(); 13602 bool isDarwinABI = Subtarget.isDarwinABI(); 13603 13604 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 13605 (!isPPC64 && VT != MVT::i32)) 13606 report_fatal_error("Invalid register global variable type"); 13607 13608 bool is64Bit = isPPC64 && VT == MVT::i64; 13609 unsigned Reg = StringSwitch<unsigned>(RegName) 13610 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 13611 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 13612 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 13613 (is64Bit ? PPC::X13 : PPC::R13)) 13614 .Default(0); 13615 13616 if (Reg) 13617 return Reg; 13618 report_fatal_error("Invalid register name global variable"); 13619 } 13620 13621 bool 13622 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 13623 // The PowerPC target isn't yet aware of offsets. 13624 return false; 13625 } 13626 13627 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 13628 const CallInst &I, 13629 MachineFunction &MF, 13630 unsigned Intrinsic) const { 13631 switch (Intrinsic) { 13632 case Intrinsic::ppc_qpx_qvlfd: 13633 case Intrinsic::ppc_qpx_qvlfs: 13634 case Intrinsic::ppc_qpx_qvlfcd: 13635 case Intrinsic::ppc_qpx_qvlfcs: 13636 case Intrinsic::ppc_qpx_qvlfiwa: 13637 case Intrinsic::ppc_qpx_qvlfiwz: 13638 case Intrinsic::ppc_altivec_lvx: 13639 case Intrinsic::ppc_altivec_lvxl: 13640 case Intrinsic::ppc_altivec_lvebx: 13641 case Intrinsic::ppc_altivec_lvehx: 13642 case Intrinsic::ppc_altivec_lvewx: 13643 case Intrinsic::ppc_vsx_lxvd2x: 13644 case Intrinsic::ppc_vsx_lxvw4x: { 13645 EVT VT; 13646 switch (Intrinsic) { 13647 case Intrinsic::ppc_altivec_lvebx: 13648 VT = MVT::i8; 13649 break; 13650 case Intrinsic::ppc_altivec_lvehx: 13651 VT = MVT::i16; 13652 break; 13653 case Intrinsic::ppc_altivec_lvewx: 13654 VT = MVT::i32; 13655 break; 13656 case Intrinsic::ppc_vsx_lxvd2x: 13657 VT = MVT::v2f64; 13658 break; 13659 case Intrinsic::ppc_qpx_qvlfd: 13660 VT = MVT::v4f64; 13661 break; 13662 case Intrinsic::ppc_qpx_qvlfs: 13663 VT = MVT::v4f32; 13664 break; 13665 case Intrinsic::ppc_qpx_qvlfcd: 13666 VT = MVT::v2f64; 13667 break; 13668 case Intrinsic::ppc_qpx_qvlfcs: 13669 VT = MVT::v2f32; 13670 break; 13671 default: 13672 VT = MVT::v4i32; 13673 break; 13674 } 13675 13676 Info.opc = ISD::INTRINSIC_W_CHAIN; 13677 Info.memVT = VT; 13678 Info.ptrVal = I.getArgOperand(0); 13679 Info.offset = -VT.getStoreSize()+1; 13680 Info.size = 2*VT.getStoreSize()-1; 13681 Info.align = 1; 13682 Info.flags = MachineMemOperand::MOLoad; 13683 return true; 13684 } 13685 case Intrinsic::ppc_qpx_qvlfda: 13686 case Intrinsic::ppc_qpx_qvlfsa: 13687 case Intrinsic::ppc_qpx_qvlfcda: 13688 case Intrinsic::ppc_qpx_qvlfcsa: 13689 case Intrinsic::ppc_qpx_qvlfiwaa: 13690 case Intrinsic::ppc_qpx_qvlfiwza: { 13691 EVT VT; 13692 switch (Intrinsic) { 13693 case Intrinsic::ppc_qpx_qvlfda: 13694 VT = MVT::v4f64; 13695 break; 13696 case Intrinsic::ppc_qpx_qvlfsa: 13697 VT = MVT::v4f32; 13698 break; 13699 case Intrinsic::ppc_qpx_qvlfcda: 13700 VT = MVT::v2f64; 13701 break; 13702 case Intrinsic::ppc_qpx_qvlfcsa: 13703 VT = MVT::v2f32; 13704 break; 13705 default: 13706 VT = MVT::v4i32; 13707 break; 13708 } 13709 13710 Info.opc = ISD::INTRINSIC_W_CHAIN; 13711 Info.memVT = VT; 13712 Info.ptrVal = I.getArgOperand(0); 13713 Info.offset = 0; 13714 Info.size = VT.getStoreSize(); 13715 Info.align = 1; 13716 Info.flags = MachineMemOperand::MOLoad; 13717 return true; 13718 } 13719 case Intrinsic::ppc_qpx_qvstfd: 13720 case Intrinsic::ppc_qpx_qvstfs: 13721 case Intrinsic::ppc_qpx_qvstfcd: 13722 case Intrinsic::ppc_qpx_qvstfcs: 13723 case Intrinsic::ppc_qpx_qvstfiw: 13724 case Intrinsic::ppc_altivec_stvx: 13725 case Intrinsic::ppc_altivec_stvxl: 13726 case Intrinsic::ppc_altivec_stvebx: 13727 case Intrinsic::ppc_altivec_stvehx: 13728 case Intrinsic::ppc_altivec_stvewx: 13729 case Intrinsic::ppc_vsx_stxvd2x: 13730 case Intrinsic::ppc_vsx_stxvw4x: { 13731 EVT VT; 13732 switch (Intrinsic) { 13733 case Intrinsic::ppc_altivec_stvebx: 13734 VT = MVT::i8; 13735 break; 13736 case Intrinsic::ppc_altivec_stvehx: 13737 VT = MVT::i16; 13738 break; 13739 case Intrinsic::ppc_altivec_stvewx: 13740 VT = MVT::i32; 13741 break; 13742 case Intrinsic::ppc_vsx_stxvd2x: 13743 VT = MVT::v2f64; 13744 break; 13745 case Intrinsic::ppc_qpx_qvstfd: 13746 VT = MVT::v4f64; 13747 break; 13748 case Intrinsic::ppc_qpx_qvstfs: 13749 VT = MVT::v4f32; 13750 break; 13751 case Intrinsic::ppc_qpx_qvstfcd: 13752 VT = MVT::v2f64; 13753 break; 13754 case Intrinsic::ppc_qpx_qvstfcs: 13755 VT = MVT::v2f32; 13756 break; 13757 default: 13758 VT = MVT::v4i32; 13759 break; 13760 } 13761 13762 Info.opc = ISD::INTRINSIC_VOID; 13763 Info.memVT = VT; 13764 Info.ptrVal = I.getArgOperand(1); 13765 Info.offset = -VT.getStoreSize()+1; 13766 Info.size = 2*VT.getStoreSize()-1; 13767 Info.align = 1; 13768 Info.flags = MachineMemOperand::MOStore; 13769 return true; 13770 } 13771 case Intrinsic::ppc_qpx_qvstfda: 13772 case Intrinsic::ppc_qpx_qvstfsa: 13773 case Intrinsic::ppc_qpx_qvstfcda: 13774 case Intrinsic::ppc_qpx_qvstfcsa: 13775 case Intrinsic::ppc_qpx_qvstfiwa: { 13776 EVT VT; 13777 switch (Intrinsic) { 13778 case Intrinsic::ppc_qpx_qvstfda: 13779 VT = MVT::v4f64; 13780 break; 13781 case Intrinsic::ppc_qpx_qvstfsa: 13782 VT = MVT::v4f32; 13783 break; 13784 case Intrinsic::ppc_qpx_qvstfcda: 13785 VT = MVT::v2f64; 13786 break; 13787 case Intrinsic::ppc_qpx_qvstfcsa: 13788 VT = MVT::v2f32; 13789 break; 13790 default: 13791 VT = MVT::v4i32; 13792 break; 13793 } 13794 13795 Info.opc = ISD::INTRINSIC_VOID; 13796 Info.memVT = VT; 13797 Info.ptrVal = I.getArgOperand(1); 13798 Info.offset = 0; 13799 Info.size = VT.getStoreSize(); 13800 Info.align = 1; 13801 Info.flags = MachineMemOperand::MOStore; 13802 return true; 13803 } 13804 default: 13805 break; 13806 } 13807 13808 return false; 13809 } 13810 13811 /// getOptimalMemOpType - Returns the target specific optimal type for load 13812 /// and store operations as a result of memset, memcpy, and memmove 13813 /// lowering. If DstAlign is zero that means it's safe to destination 13814 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 13815 /// means there isn't a need to check it against alignment requirement, 13816 /// probably because the source does not need to be loaded. If 'IsMemset' is 13817 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 13818 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 13819 /// source is constant so it does not need to be loaded. 13820 /// It returns EVT::Other if the type should be determined using generic 13821 /// target-independent logic. 13822 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 13823 unsigned DstAlign, unsigned SrcAlign, 13824 bool IsMemset, bool ZeroMemset, 13825 bool MemcpyStrSrc, 13826 MachineFunction &MF) const { 13827 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 13828 const Function &F = MF.getFunction(); 13829 // When expanding a memset, require at least two QPX instructions to cover 13830 // the cost of loading the value to be stored from the constant pool. 13831 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 13832 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 13833 !F.hasFnAttribute(Attribute::NoImplicitFloat)) { 13834 return MVT::v4f64; 13835 } 13836 13837 // We should use Altivec/VSX loads and stores when available. For unaligned 13838 // addresses, unaligned VSX loads are only fast starting with the P8. 13839 if (Subtarget.hasAltivec() && Size >= 16 && 13840 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 13841 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 13842 return MVT::v4i32; 13843 } 13844 13845 if (Subtarget.isPPC64()) { 13846 return MVT::i64; 13847 } 13848 13849 return MVT::i32; 13850 } 13851 13852 /// Returns true if it is beneficial to convert a load of a constant 13853 /// to just the constant itself. 13854 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 13855 Type *Ty) const { 13856 assert(Ty->isIntegerTy()); 13857 13858 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 13859 return !(BitSize == 0 || BitSize > 64); 13860 } 13861 13862 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 13863 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 13864 return false; 13865 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 13866 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 13867 return NumBits1 == 64 && NumBits2 == 32; 13868 } 13869 13870 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 13871 if (!VT1.isInteger() || !VT2.isInteger()) 13872 return false; 13873 unsigned NumBits1 = VT1.getSizeInBits(); 13874 unsigned NumBits2 = VT2.getSizeInBits(); 13875 return NumBits1 == 64 && NumBits2 == 32; 13876 } 13877 13878 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 13879 // Generally speaking, zexts are not free, but they are free when they can be 13880 // folded with other operations. 13881 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 13882 EVT MemVT = LD->getMemoryVT(); 13883 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 13884 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 13885 (LD->getExtensionType() == ISD::NON_EXTLOAD || 13886 LD->getExtensionType() == ISD::ZEXTLOAD)) 13887 return true; 13888 } 13889 13890 // FIXME: Add other cases... 13891 // - 32-bit shifts with a zext to i64 13892 // - zext after ctlz, bswap, etc. 13893 // - zext after and by a constant mask 13894 13895 return TargetLowering::isZExtFree(Val, VT2); 13896 } 13897 13898 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 13899 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 13900 "invalid fpext types"); 13901 // Extending to float128 is not free. 13902 if (DestVT == MVT::f128) 13903 return false; 13904 return true; 13905 } 13906 13907 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 13908 return isInt<16>(Imm) || isUInt<16>(Imm); 13909 } 13910 13911 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 13912 return isInt<16>(Imm) || isUInt<16>(Imm); 13913 } 13914 13915 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 13916 unsigned, 13917 unsigned, 13918 bool *Fast) const { 13919 if (DisablePPCUnaligned) 13920 return false; 13921 13922 // PowerPC supports unaligned memory access for simple non-vector types. 13923 // Although accessing unaligned addresses is not as efficient as accessing 13924 // aligned addresses, it is generally more efficient than manual expansion, 13925 // and generally only traps for software emulation when crossing page 13926 // boundaries. 13927 13928 if (!VT.isSimple()) 13929 return false; 13930 13931 if (VT.getSimpleVT().isVector()) { 13932 if (Subtarget.hasVSX()) { 13933 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 13934 VT != MVT::v4f32 && VT != MVT::v4i32) 13935 return false; 13936 } else { 13937 return false; 13938 } 13939 } 13940 13941 if (VT == MVT::ppcf128) 13942 return false; 13943 13944 if (Fast) 13945 *Fast = true; 13946 13947 return true; 13948 } 13949 13950 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 13951 VT = VT.getScalarType(); 13952 13953 if (!VT.isSimple()) 13954 return false; 13955 13956 switch (VT.getSimpleVT().SimpleTy) { 13957 case MVT::f32: 13958 case MVT::f64: 13959 return true; 13960 case MVT::f128: 13961 return (EnableQuadPrecision && Subtarget.hasP9Vector()); 13962 default: 13963 break; 13964 } 13965 13966 return false; 13967 } 13968 13969 const MCPhysReg * 13970 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 13971 // LR is a callee-save register, but we must treat it as clobbered by any call 13972 // site. Hence we include LR in the scratch registers, which are in turn added 13973 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 13974 // to CTR, which is used by any indirect call. 13975 static const MCPhysReg ScratchRegs[] = { 13976 PPC::X12, PPC::LR8, PPC::CTR8, 0 13977 }; 13978 13979 return ScratchRegs; 13980 } 13981 13982 unsigned PPCTargetLowering::getExceptionPointerRegister( 13983 const Constant *PersonalityFn) const { 13984 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 13985 } 13986 13987 unsigned PPCTargetLowering::getExceptionSelectorRegister( 13988 const Constant *PersonalityFn) const { 13989 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 13990 } 13991 13992 bool 13993 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 13994 EVT VT , unsigned DefinedValues) const { 13995 if (VT == MVT::v2i64) 13996 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 13997 13998 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 13999 return true; 14000 14001 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 14002 } 14003 14004 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 14005 if (DisableILPPref || Subtarget.enableMachineScheduler()) 14006 return TargetLowering::getSchedulingPreference(N); 14007 14008 return Sched::ILP; 14009 } 14010 14011 // Create a fast isel object. 14012 FastISel * 14013 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 14014 const TargetLibraryInfo *LibInfo) const { 14015 return PPC::createFastISel(FuncInfo, LibInfo); 14016 } 14017 14018 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 14019 if (Subtarget.isDarwinABI()) return; 14020 if (!Subtarget.isPPC64()) return; 14021 14022 // Update IsSplitCSR in PPCFunctionInfo 14023 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 14024 PFI->setIsSplitCSR(true); 14025 } 14026 14027 void PPCTargetLowering::insertCopiesSplitCSR( 14028 MachineBasicBlock *Entry, 14029 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 14030 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 14031 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 14032 if (!IStart) 14033 return; 14034 14035 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 14036 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 14037 MachineBasicBlock::iterator MBBI = Entry->begin(); 14038 for (const MCPhysReg *I = IStart; *I; ++I) { 14039 const TargetRegisterClass *RC = nullptr; 14040 if (PPC::G8RCRegClass.contains(*I)) 14041 RC = &PPC::G8RCRegClass; 14042 else if (PPC::F8RCRegClass.contains(*I)) 14043 RC = &PPC::F8RCRegClass; 14044 else if (PPC::CRRCRegClass.contains(*I)) 14045 RC = &PPC::CRRCRegClass; 14046 else if (PPC::VRRCRegClass.contains(*I)) 14047 RC = &PPC::VRRCRegClass; 14048 else 14049 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 14050 14051 unsigned NewVR = MRI->createVirtualRegister(RC); 14052 // Create copy from CSR to a virtual register. 14053 // FIXME: this currently does not emit CFI pseudo-instructions, it works 14054 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 14055 // nounwind. If we want to generalize this later, we may need to emit 14056 // CFI pseudo-instructions. 14057 assert(Entry->getParent()->getFunction().hasFnAttribute( 14058 Attribute::NoUnwind) && 14059 "Function should be nounwind in insertCopiesSplitCSR!"); 14060 Entry->addLiveIn(*I); 14061 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 14062 .addReg(*I); 14063 14064 // Insert the copy-back instructions right before the terminator 14065 for (auto *Exit : Exits) 14066 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 14067 TII->get(TargetOpcode::COPY), *I) 14068 .addReg(NewVR); 14069 } 14070 } 14071 14072 // Override to enable LOAD_STACK_GUARD lowering on Linux. 14073 bool PPCTargetLowering::useLoadStackGuardNode() const { 14074 if (!Subtarget.isTargetLinux()) 14075 return TargetLowering::useLoadStackGuardNode(); 14076 return true; 14077 } 14078 14079 // Override to disable global variable loading on Linux. 14080 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 14081 if (!Subtarget.isTargetLinux()) 14082 return TargetLowering::insertSSPDeclarations(M); 14083 } 14084 14085 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 14086 if (!VT.isSimple() || !Subtarget.hasVSX()) 14087 return false; 14088 14089 switch(VT.getSimpleVT().SimpleTy) { 14090 default: 14091 // For FP types that are currently not supported by PPC backend, return 14092 // false. Examples: f16, f80. 14093 return false; 14094 case MVT::f32: 14095 case MVT::f64: 14096 case MVT::ppcf128: 14097 return Imm.isPosZero(); 14098 } 14099 } 14100 14101 // For vector shift operation op, fold 14102 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 14103 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 14104 SelectionDAG &DAG) { 14105 SDValue N0 = N->getOperand(0); 14106 SDValue N1 = N->getOperand(1); 14107 EVT VT = N0.getValueType(); 14108 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 14109 unsigned Opcode = N->getOpcode(); 14110 unsigned TargetOpcode; 14111 14112 switch (Opcode) { 14113 default: 14114 llvm_unreachable("Unexpected shift operation"); 14115 case ISD::SHL: 14116 TargetOpcode = PPCISD::SHL; 14117 break; 14118 case ISD::SRL: 14119 TargetOpcode = PPCISD::SRL; 14120 break; 14121 case ISD::SRA: 14122 TargetOpcode = PPCISD::SRA; 14123 break; 14124 } 14125 14126 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 14127 N1->getOpcode() == ISD::AND) 14128 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 14129 if (Mask->getZExtValue() == OpSizeInBits - 1) 14130 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 14131 14132 return SDValue(); 14133 } 14134 14135 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 14136 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 14137 return Value; 14138 14139 SDValue N0 = N->getOperand(0); 14140 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 14141 if (!Subtarget.isISA3_0() || 14142 N0.getOpcode() != ISD::SIGN_EXTEND || 14143 N0.getOperand(0).getValueType() != MVT::i32 || 14144 CN1 == nullptr || N->getValueType(0) != MVT::i64) 14145 return SDValue(); 14146 14147 // We can't save an operation here if the value is already extended, and 14148 // the existing shift is easier to combine. 14149 SDValue ExtsSrc = N0.getOperand(0); 14150 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 14151 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 14152 return SDValue(); 14153 14154 SDLoc DL(N0); 14155 SDValue ShiftBy = SDValue(CN1, 0); 14156 // We want the shift amount to be i32 on the extswli, but the shift could 14157 // have an i64. 14158 if (ShiftBy.getValueType() == MVT::i64) 14159 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 14160 14161 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 14162 ShiftBy); 14163 } 14164 14165 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 14166 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 14167 return Value; 14168 14169 return SDValue(); 14170 } 14171 14172 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 14173 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 14174 return Value; 14175 14176 return SDValue(); 14177 } 14178 14179 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 14180 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 14181 if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64()) 14182 return false; 14183 14184 // If not a tail call then no need to proceed. 14185 if (!CI->isTailCall()) 14186 return false; 14187 14188 // If tail calls are disabled for the caller then we are done. 14189 const Function *Caller = CI->getParent()->getParent(); 14190 auto Attr = Caller->getFnAttribute("disable-tail-calls"); 14191 if (Attr.getValueAsString() == "true") 14192 return false; 14193 14194 // If sibling calls have been disabled and tail-calls aren't guaranteed 14195 // there is no reason to duplicate. 14196 auto &TM = getTargetMachine(); 14197 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 14198 return false; 14199 14200 // Can't tail call a function called indirectly, or if it has variadic args. 14201 const Function *Callee = CI->getCalledFunction(); 14202 if (!Callee || Callee->isVarArg()) 14203 return false; 14204 14205 // Make sure the callee and caller calling conventions are eligible for tco. 14206 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 14207 CI->getCallingConv())) 14208 return false; 14209 14210 // If the function is local then we have a good chance at tail-calling it 14211 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 14212 } 14213 14214 bool PPCTargetLowering:: 14215 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 14216 const Value *Mask = AndI.getOperand(1); 14217 // If the mask is suitable for andi. or andis. we should sink the and. 14218 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 14219 // Can't handle constants wider than 64-bits. 14220 if (CI->getBitWidth() > 64) 14221 return false; 14222 int64_t ConstVal = CI->getZExtValue(); 14223 return isUInt<16>(ConstVal) || 14224 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 14225 } 14226 14227 // For non-constant masks, we can always use the record-form and. 14228 return true; 14229 } 14230