1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineOperand.h" 48 #include "llvm/CodeGen/MachineRegisterInfo.h" 49 #include "llvm/CodeGen/RuntimeLibcalls.h" 50 #include "llvm/CodeGen/SelectionDAG.h" 51 #include "llvm/CodeGen/SelectionDAGNodes.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetLowering.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/ValueTypes.h" 56 #include "llvm/IR/CallSite.h" 57 #include "llvm/IR/CallingConv.h" 58 #include "llvm/IR/Constant.h" 59 #include "llvm/IR/Constants.h" 60 #include "llvm/IR/DataLayout.h" 61 #include "llvm/IR/DebugLoc.h" 62 #include "llvm/IR/DerivedTypes.h" 63 #include "llvm/IR/Function.h" 64 #include "llvm/IR/GlobalValue.h" 65 #include "llvm/IR/IRBuilder.h" 66 #include "llvm/IR/Instructions.h" 67 #include "llvm/IR/Intrinsics.h" 68 #include "llvm/IR/Module.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/MC/MCExpr.h" 73 #include "llvm/MC/MCRegisterInfo.h" 74 #include "llvm/Support/AtomicOrdering.h" 75 #include "llvm/Support/BranchProbability.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CodeGen.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/Format.h" 83 #include "llvm/Support/KnownBits.h" 84 #include "llvm/Support/MachineValueType.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetMachine.h" 88 #include "llvm/Target/TargetOptions.h" 89 #include <algorithm> 90 #include <cassert> 91 #include <cstdint> 92 #include <iterator> 93 #include <list> 94 #include <utility> 95 #include <vector> 96 97 using namespace llvm; 98 99 #define DEBUG_TYPE "ppc-lowering" 100 101 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 102 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 103 104 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 105 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 106 107 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 108 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 109 110 static cl::opt<bool> DisableSCO("disable-ppc-sco", 111 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 112 113 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision", 114 cl::desc("enable quad precision float support on ppc"), cl::Hidden); 115 116 STATISTIC(NumTailCalls, "Number of tail calls"); 117 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 118 119 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 120 121 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 122 123 // FIXME: Remove this once the bug has been fixed! 124 extern cl::opt<bool> ANDIGlueBug; 125 126 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 127 const PPCSubtarget &STI) 128 : TargetLowering(TM), Subtarget(STI) { 129 // Use _setjmp/_longjmp instead of setjmp/longjmp. 130 setUseUnderscoreSetJmp(true); 131 setUseUnderscoreLongJmp(true); 132 133 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 134 // arguments are at least 4/8 bytes aligned. 135 bool isPPC64 = Subtarget.isPPC64(); 136 setMinStackArgumentAlignment(isPPC64 ? 8:4); 137 138 // Set up the register classes. 139 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 140 if (!useSoftFloat()) { 141 if (hasSPE()) { 142 addRegisterClass(MVT::f32, &PPC::SPE4RCRegClass); 143 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 144 } else { 145 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 146 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 147 } 148 } 149 150 // Match BITREVERSE to customized fast code sequence in the td file. 151 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 152 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 153 154 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 155 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 156 157 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 158 for (MVT VT : MVT::integer_valuetypes()) { 159 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 160 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 161 } 162 163 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 164 165 // PowerPC has pre-inc load and store's. 166 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 167 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 168 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 169 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 170 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 171 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 172 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 173 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 174 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 175 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 176 if (!Subtarget.hasSPE()) { 177 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 178 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 179 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 180 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 181 } 182 183 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 184 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 185 for (MVT VT : ScalarIntVTs) { 186 setOperationAction(ISD::ADDC, VT, Legal); 187 setOperationAction(ISD::ADDE, VT, Legal); 188 setOperationAction(ISD::SUBC, VT, Legal); 189 setOperationAction(ISD::SUBE, VT, Legal); 190 } 191 192 if (Subtarget.useCRBits()) { 193 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 194 195 if (isPPC64 || Subtarget.hasFPCVT()) { 196 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 197 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 198 isPPC64 ? MVT::i64 : MVT::i32); 199 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 200 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 201 isPPC64 ? MVT::i64 : MVT::i32); 202 } else { 203 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 204 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 205 } 206 207 // PowerPC does not support direct load/store of condition registers. 208 setOperationAction(ISD::LOAD, MVT::i1, Custom); 209 setOperationAction(ISD::STORE, MVT::i1, Custom); 210 211 // FIXME: Remove this once the ANDI glue bug is fixed: 212 if (ANDIGlueBug) 213 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 214 215 for (MVT VT : MVT::integer_valuetypes()) { 216 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 217 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 218 setTruncStoreAction(VT, MVT::i1, Expand); 219 } 220 221 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 222 } 223 224 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 225 // PPC (the libcall is not available). 226 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 227 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 228 229 // We do not currently implement these libm ops for PowerPC. 230 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 231 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 232 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 233 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 234 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 235 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 236 237 // PowerPC has no SREM/UREM instructions unless we are on P9 238 // On P9 we may use a hardware instruction to compute the remainder. 239 // The instructions are not legalized directly because in the cases where the 240 // result of both the remainder and the division is required it is more 241 // efficient to compute the remainder from the result of the division rather 242 // than use the remainder instruction. 243 if (Subtarget.isISA3_0()) { 244 setOperationAction(ISD::SREM, MVT::i32, Custom); 245 setOperationAction(ISD::UREM, MVT::i32, Custom); 246 setOperationAction(ISD::SREM, MVT::i64, Custom); 247 setOperationAction(ISD::UREM, MVT::i64, Custom); 248 } else { 249 setOperationAction(ISD::SREM, MVT::i32, Expand); 250 setOperationAction(ISD::UREM, MVT::i32, Expand); 251 setOperationAction(ISD::SREM, MVT::i64, Expand); 252 setOperationAction(ISD::UREM, MVT::i64, Expand); 253 } 254 255 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 256 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 257 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 258 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 259 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 260 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 261 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 262 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 263 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 264 265 // We don't support sin/cos/sqrt/fmod/pow 266 setOperationAction(ISD::FSIN , MVT::f64, Expand); 267 setOperationAction(ISD::FCOS , MVT::f64, Expand); 268 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 269 setOperationAction(ISD::FREM , MVT::f64, Expand); 270 setOperationAction(ISD::FPOW , MVT::f64, Expand); 271 setOperationAction(ISD::FSIN , MVT::f32, Expand); 272 setOperationAction(ISD::FCOS , MVT::f32, Expand); 273 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 274 setOperationAction(ISD::FREM , MVT::f32, Expand); 275 setOperationAction(ISD::FPOW , MVT::f32, Expand); 276 if (Subtarget.hasSPE()) { 277 setOperationAction(ISD::FMA , MVT::f64, Expand); 278 setOperationAction(ISD::FMA , MVT::f32, Expand); 279 } else { 280 setOperationAction(ISD::FMA , MVT::f64, Legal); 281 setOperationAction(ISD::FMA , MVT::f32, Legal); 282 } 283 284 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 285 286 // If we're enabling GP optimizations, use hardware square root 287 if (!Subtarget.hasFSQRT() && 288 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 289 Subtarget.hasFRE())) 290 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 291 292 if (!Subtarget.hasFSQRT() && 293 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 294 Subtarget.hasFRES())) 295 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 296 297 if (Subtarget.hasFCPSGN()) { 298 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 299 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 300 } else { 301 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 302 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 303 } 304 305 if (Subtarget.hasFPRND()) { 306 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 307 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 308 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 309 setOperationAction(ISD::FROUND, MVT::f64, Legal); 310 311 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 312 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 313 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 314 setOperationAction(ISD::FROUND, MVT::f32, Legal); 315 } 316 317 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 318 // to speed up scalar BSWAP64. 319 // CTPOP or CTTZ were introduced in P8/P9 respectively 320 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 321 if (Subtarget.hasP9Vector()) 322 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 323 else 324 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 325 if (Subtarget.isISA3_0()) { 326 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 327 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 328 } else { 329 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 330 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 331 } 332 333 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 334 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 335 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 336 } else { 337 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 338 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 339 } 340 341 // PowerPC does not have ROTR 342 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 343 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 344 345 if (!Subtarget.useCRBits()) { 346 // PowerPC does not have Select 347 setOperationAction(ISD::SELECT, MVT::i32, Expand); 348 setOperationAction(ISD::SELECT, MVT::i64, Expand); 349 setOperationAction(ISD::SELECT, MVT::f32, Expand); 350 setOperationAction(ISD::SELECT, MVT::f64, Expand); 351 } 352 353 // PowerPC wants to turn select_cc of FP into fsel when possible. 354 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 355 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 356 357 // PowerPC wants to optimize integer setcc a bit 358 if (!Subtarget.useCRBits()) 359 setOperationAction(ISD::SETCC, MVT::i32, Custom); 360 361 // PowerPC does not have BRCOND which requires SetCC 362 if (!Subtarget.useCRBits()) 363 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 364 365 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 366 367 if (Subtarget.hasSPE()) { 368 // SPE has built-in conversions 369 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 370 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 371 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 372 } else { 373 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 374 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 375 376 // PowerPC does not have [U|S]INT_TO_FP 377 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 378 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 379 } 380 381 if (Subtarget.hasDirectMove() && isPPC64) { 382 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 383 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 384 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 385 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 386 } else { 387 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 388 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 389 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 390 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 391 } 392 393 // We cannot sextinreg(i1). Expand to shifts. 394 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 395 396 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 397 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 398 // support continuation, user-level threading, and etc.. As a result, no 399 // other SjLj exception interfaces are implemented and please don't build 400 // your own exception handling based on them. 401 // LLVM/Clang supports zero-cost DWARF exception handling. 402 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 403 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 404 405 // We want to legalize GlobalAddress and ConstantPool nodes into the 406 // appropriate instructions to materialize the address. 407 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 408 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 409 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 410 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 411 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 412 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 413 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 414 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 415 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 416 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 417 418 // TRAP is legal. 419 setOperationAction(ISD::TRAP, MVT::Other, Legal); 420 421 // TRAMPOLINE is custom lowered. 422 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 423 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 424 425 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 426 setOperationAction(ISD::VASTART , MVT::Other, Custom); 427 428 if (Subtarget.isSVR4ABI()) { 429 if (isPPC64) { 430 // VAARG always uses double-word chunks, so promote anything smaller. 431 setOperationAction(ISD::VAARG, MVT::i1, Promote); 432 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 433 setOperationAction(ISD::VAARG, MVT::i8, Promote); 434 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 435 setOperationAction(ISD::VAARG, MVT::i16, Promote); 436 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 437 setOperationAction(ISD::VAARG, MVT::i32, Promote); 438 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 439 setOperationAction(ISD::VAARG, MVT::Other, Expand); 440 } else { 441 // VAARG is custom lowered with the 32-bit SVR4 ABI. 442 setOperationAction(ISD::VAARG, MVT::Other, Custom); 443 setOperationAction(ISD::VAARG, MVT::i64, Custom); 444 } 445 } else 446 setOperationAction(ISD::VAARG, MVT::Other, Expand); 447 448 if (Subtarget.isSVR4ABI() && !isPPC64) 449 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 450 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 451 else 452 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 453 454 // Use the default implementation. 455 setOperationAction(ISD::VAEND , MVT::Other, Expand); 456 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 457 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 458 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 459 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 460 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 461 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 462 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 463 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 464 465 // We want to custom lower some of our intrinsics. 466 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 467 468 // To handle counter-based loop conditions. 469 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 470 471 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 472 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 473 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 474 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 475 476 // Comparisons that require checking two conditions. 477 if (Subtarget.hasSPE()) { 478 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 479 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 480 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 481 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 482 } 483 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 484 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 485 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 486 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 487 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 488 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 489 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 490 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 491 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 492 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 493 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 494 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 495 496 if (Subtarget.has64BitSupport()) { 497 // They also have instructions for converting between i64 and fp. 498 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 499 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 500 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 501 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 502 // This is just the low 32 bits of a (signed) fp->i64 conversion. 503 // We cannot do this with Promote because i64 is not a legal type. 504 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 505 506 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 507 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 508 } else { 509 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 510 if (Subtarget.hasSPE()) 511 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 512 else 513 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 514 } 515 516 // With the instructions enabled under FPCVT, we can do everything. 517 if (Subtarget.hasFPCVT()) { 518 if (Subtarget.has64BitSupport()) { 519 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 520 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 521 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 522 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 523 } 524 525 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 526 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 527 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 528 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 529 } 530 531 if (Subtarget.use64BitRegs()) { 532 // 64-bit PowerPC implementations can support i64 types directly 533 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 534 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 535 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 536 // 64-bit PowerPC wants to expand i128 shifts itself. 537 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 538 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 539 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 540 } else { 541 // 32-bit PowerPC wants to expand i64 shifts itself. 542 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 543 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 544 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 545 } 546 547 if (Subtarget.hasAltivec()) { 548 // First set operation action for all vector types to expand. Then we 549 // will selectively turn on ones that can be effectively codegen'd. 550 for (MVT VT : MVT::vector_valuetypes()) { 551 // add/sub are legal for all supported vector VT's. 552 setOperationAction(ISD::ADD, VT, Legal); 553 setOperationAction(ISD::SUB, VT, Legal); 554 555 // Vector instructions introduced in P8 556 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 557 setOperationAction(ISD::CTPOP, VT, Legal); 558 setOperationAction(ISD::CTLZ, VT, Legal); 559 } 560 else { 561 setOperationAction(ISD::CTPOP, VT, Expand); 562 setOperationAction(ISD::CTLZ, VT, Expand); 563 } 564 565 // Vector instructions introduced in P9 566 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 567 setOperationAction(ISD::CTTZ, VT, Legal); 568 else 569 setOperationAction(ISD::CTTZ, VT, Expand); 570 571 // We promote all shuffles to v16i8. 572 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 573 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 574 575 // We promote all non-typed operations to v4i32. 576 setOperationAction(ISD::AND , VT, Promote); 577 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 578 setOperationAction(ISD::OR , VT, Promote); 579 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 580 setOperationAction(ISD::XOR , VT, Promote); 581 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 582 setOperationAction(ISD::LOAD , VT, Promote); 583 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 584 setOperationAction(ISD::SELECT, VT, Promote); 585 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 586 setOperationAction(ISD::VSELECT, VT, Legal); 587 setOperationAction(ISD::SELECT_CC, VT, Promote); 588 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 589 setOperationAction(ISD::STORE, VT, Promote); 590 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 591 592 // No other operations are legal. 593 setOperationAction(ISD::MUL , VT, Expand); 594 setOperationAction(ISD::SDIV, VT, Expand); 595 setOperationAction(ISD::SREM, VT, Expand); 596 setOperationAction(ISD::UDIV, VT, Expand); 597 setOperationAction(ISD::UREM, VT, Expand); 598 setOperationAction(ISD::FDIV, VT, Expand); 599 setOperationAction(ISD::FREM, VT, Expand); 600 setOperationAction(ISD::FNEG, VT, Expand); 601 setOperationAction(ISD::FSQRT, VT, Expand); 602 setOperationAction(ISD::FLOG, VT, Expand); 603 setOperationAction(ISD::FLOG10, VT, Expand); 604 setOperationAction(ISD::FLOG2, VT, Expand); 605 setOperationAction(ISD::FEXP, VT, Expand); 606 setOperationAction(ISD::FEXP2, VT, Expand); 607 setOperationAction(ISD::FSIN, VT, Expand); 608 setOperationAction(ISD::FCOS, VT, Expand); 609 setOperationAction(ISD::FABS, VT, Expand); 610 setOperationAction(ISD::FFLOOR, VT, Expand); 611 setOperationAction(ISD::FCEIL, VT, Expand); 612 setOperationAction(ISD::FTRUNC, VT, Expand); 613 setOperationAction(ISD::FRINT, VT, Expand); 614 setOperationAction(ISD::FNEARBYINT, VT, Expand); 615 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 616 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 617 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 618 setOperationAction(ISD::MULHU, VT, Expand); 619 setOperationAction(ISD::MULHS, VT, Expand); 620 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 621 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 622 setOperationAction(ISD::UDIVREM, VT, Expand); 623 setOperationAction(ISD::SDIVREM, VT, Expand); 624 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 625 setOperationAction(ISD::FPOW, VT, Expand); 626 setOperationAction(ISD::BSWAP, VT, Expand); 627 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 628 setOperationAction(ISD::ROTL, VT, Expand); 629 setOperationAction(ISD::ROTR, VT, Expand); 630 631 for (MVT InnerVT : MVT::vector_valuetypes()) { 632 setTruncStoreAction(VT, InnerVT, Expand); 633 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 634 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 635 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 636 } 637 } 638 639 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 640 setOperationAction(ISD::ABS, VT, Custom); 641 642 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 643 // with merges, splats, etc. 644 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 645 646 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 647 // are cheap, so handle them before they get expanded to scalar. 648 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 649 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 650 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 651 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 652 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 653 654 setOperationAction(ISD::AND , MVT::v4i32, Legal); 655 setOperationAction(ISD::OR , MVT::v4i32, Legal); 656 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 657 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 658 setOperationAction(ISD::SELECT, MVT::v4i32, 659 Subtarget.useCRBits() ? Legal : Expand); 660 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 661 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 662 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 663 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 664 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 665 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 666 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 667 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 668 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 669 670 // Without hasP8Altivec set, v2i64 SMAX isn't available. 671 // But ABS custom lowering requires SMAX support. 672 if (!Subtarget.hasP8Altivec()) 673 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 674 675 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 676 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 677 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 678 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 679 680 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 681 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 682 683 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 684 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 685 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 686 } 687 688 if (Subtarget.hasP8Altivec()) 689 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 690 else 691 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 692 693 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 694 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 695 696 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 697 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 698 699 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 700 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 701 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 702 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 703 704 // Altivec does not contain unordered floating-point compare instructions 705 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 706 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 707 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 708 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 709 710 if (Subtarget.hasVSX()) { 711 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 712 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 713 if (Subtarget.hasP8Vector()) { 714 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 715 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 716 } 717 if (Subtarget.hasDirectMove() && isPPC64) { 718 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 719 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 720 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 721 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 722 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 723 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 724 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 725 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 726 } 727 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 728 729 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 730 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 731 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 732 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 733 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 734 735 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 736 737 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 738 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 739 740 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 741 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 742 743 // Share the Altivec comparison restrictions. 744 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 745 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 746 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 747 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 748 749 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 750 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 751 752 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 753 754 if (Subtarget.hasP8Vector()) 755 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 756 757 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 758 759 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 760 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 761 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 762 763 if (Subtarget.hasP8Altivec()) { 764 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 765 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 766 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 767 768 // 128 bit shifts can be accomplished via 3 instructions for SHL and 769 // SRL, but not for SRA because of the instructions available: 770 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 771 // doing 772 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 773 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 774 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 775 776 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 777 } 778 else { 779 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 780 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 781 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 782 783 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 784 785 // VSX v2i64 only supports non-arithmetic operations. 786 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 787 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 788 } 789 790 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 791 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 792 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 793 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 794 795 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 796 797 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 798 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 799 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 800 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 801 802 // Custom handling for partial vectors of integers converted to 803 // floating point. We already have optimal handling for v2i32 through 804 // the DAG combine, so those aren't necessary. 805 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 806 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 807 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 808 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 809 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 810 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 811 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 812 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 813 814 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 815 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 816 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 817 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 818 819 if (Subtarget.hasDirectMove()) 820 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 821 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 822 823 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 824 } 825 826 if (Subtarget.hasP8Altivec()) { 827 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 828 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 829 } 830 831 if (Subtarget.hasP9Vector()) { 832 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 833 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 834 835 // 128 bit shifts can be accomplished via 3 instructions for SHL and 836 // SRL, but not for SRA because of the instructions available: 837 // VS{RL} and VS{RL}O. 838 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 839 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 840 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 841 842 if (EnableQuadPrecision) { 843 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 844 setOperationAction(ISD::FADD, MVT::f128, Legal); 845 setOperationAction(ISD::FSUB, MVT::f128, Legal); 846 setOperationAction(ISD::FDIV, MVT::f128, Legal); 847 setOperationAction(ISD::FMUL, MVT::f128, Legal); 848 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 849 // No extending loads to f128 on PPC. 850 for (MVT FPT : MVT::fp_valuetypes()) 851 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 852 setOperationAction(ISD::FMA, MVT::f128, Legal); 853 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 854 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 855 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 856 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 857 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 858 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 859 860 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 861 setOperationAction(ISD::FRINT, MVT::f128, Legal); 862 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 863 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 864 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 865 setOperationAction(ISD::FROUND, MVT::f128, Legal); 866 867 setOperationAction(ISD::SELECT, MVT::f128, Expand); 868 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 869 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 870 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 871 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 872 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 873 // No implementation for these ops for PowerPC. 874 setOperationAction(ISD::FSIN , MVT::f128, Expand); 875 setOperationAction(ISD::FCOS , MVT::f128, Expand); 876 setOperationAction(ISD::FPOW, MVT::f128, Expand); 877 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 878 setOperationAction(ISD::FREM, MVT::f128, Expand); 879 } 880 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 881 882 } 883 884 if (Subtarget.hasP9Altivec()) { 885 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 886 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 887 } 888 } 889 890 if (Subtarget.hasQPX()) { 891 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 892 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 893 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 894 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 895 896 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 897 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 898 899 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 900 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 901 902 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 903 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 904 905 if (!Subtarget.useCRBits()) 906 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 907 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 908 909 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 910 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 911 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 912 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 913 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 914 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 915 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 916 917 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 918 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 919 920 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 921 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand); 922 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 923 924 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 925 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 926 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 927 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 928 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 929 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 930 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 931 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 932 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 933 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 934 935 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 936 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 937 938 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 939 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 940 941 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 942 943 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 944 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 945 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 946 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 947 948 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 949 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 950 951 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 952 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 953 954 if (!Subtarget.useCRBits()) 955 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 956 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 957 958 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 959 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 960 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 961 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 962 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 963 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 964 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 965 966 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 967 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 968 969 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 970 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 971 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 972 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 973 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 974 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 975 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 976 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 977 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 978 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 979 980 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 981 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 982 983 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 984 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 985 986 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 987 988 setOperationAction(ISD::AND , MVT::v4i1, Legal); 989 setOperationAction(ISD::OR , MVT::v4i1, Legal); 990 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 991 992 if (!Subtarget.useCRBits()) 993 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 994 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 995 996 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 997 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 998 999 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 1000 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 1001 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 1002 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 1003 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 1004 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 1005 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 1006 1007 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 1008 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 1009 1010 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 1011 1012 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 1013 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 1014 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 1015 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 1016 1017 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 1018 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 1019 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 1020 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1021 1022 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 1023 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 1024 1025 // These need to set FE_INEXACT, and so cannot be vectorized here. 1026 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 1027 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 1028 1029 if (TM.Options.UnsafeFPMath) { 1030 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 1031 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 1032 1033 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 1034 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 1035 } else { 1036 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 1037 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 1038 1039 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 1040 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 1041 } 1042 } 1043 1044 if (Subtarget.has64BitSupport()) 1045 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1046 1047 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1048 1049 if (!isPPC64) { 1050 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1051 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1052 } 1053 1054 setBooleanContents(ZeroOrOneBooleanContent); 1055 1056 if (Subtarget.hasAltivec()) { 1057 // Altivec instructions set fields to all zeros or all ones. 1058 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1059 } 1060 1061 if (!isPPC64) { 1062 // These libcalls are not available in 32-bit. 1063 setLibcallName(RTLIB::SHL_I128, nullptr); 1064 setLibcallName(RTLIB::SRL_I128, nullptr); 1065 setLibcallName(RTLIB::SRA_I128, nullptr); 1066 } 1067 1068 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1069 1070 // We have target-specific dag combine patterns for the following nodes: 1071 setTargetDAGCombine(ISD::ADD); 1072 setTargetDAGCombine(ISD::SHL); 1073 setTargetDAGCombine(ISD::SRA); 1074 setTargetDAGCombine(ISD::SRL); 1075 setTargetDAGCombine(ISD::MUL); 1076 setTargetDAGCombine(ISD::SINT_TO_FP); 1077 setTargetDAGCombine(ISD::BUILD_VECTOR); 1078 if (Subtarget.hasFPCVT()) 1079 setTargetDAGCombine(ISD::UINT_TO_FP); 1080 setTargetDAGCombine(ISD::LOAD); 1081 setTargetDAGCombine(ISD::STORE); 1082 setTargetDAGCombine(ISD::BR_CC); 1083 if (Subtarget.useCRBits()) 1084 setTargetDAGCombine(ISD::BRCOND); 1085 setTargetDAGCombine(ISD::BSWAP); 1086 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1087 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1088 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1089 1090 setTargetDAGCombine(ISD::SIGN_EXTEND); 1091 setTargetDAGCombine(ISD::ZERO_EXTEND); 1092 setTargetDAGCombine(ISD::ANY_EXTEND); 1093 1094 setTargetDAGCombine(ISD::TRUNCATE); 1095 1096 if (Subtarget.useCRBits()) { 1097 setTargetDAGCombine(ISD::TRUNCATE); 1098 setTargetDAGCombine(ISD::SETCC); 1099 setTargetDAGCombine(ISD::SELECT_CC); 1100 } 1101 1102 // Use reciprocal estimates. 1103 if (TM.Options.UnsafeFPMath) { 1104 setTargetDAGCombine(ISD::FDIV); 1105 setTargetDAGCombine(ISD::FSQRT); 1106 } 1107 1108 if (Subtarget.hasP9Altivec()) { 1109 setTargetDAGCombine(ISD::ABS); 1110 setTargetDAGCombine(ISD::VSELECT); 1111 } 1112 1113 // Darwin long double math library functions have $LDBL128 appended. 1114 if (Subtarget.isDarwin()) { 1115 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 1116 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 1117 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 1118 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 1119 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 1120 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 1121 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 1122 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 1123 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 1124 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 1125 } 1126 1127 if (EnableQuadPrecision) { 1128 setLibcallName(RTLIB::LOG_F128, "logf128"); 1129 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1130 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1131 setLibcallName(RTLIB::EXP_F128, "expf128"); 1132 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1133 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1134 setLibcallName(RTLIB::COS_F128, "cosf128"); 1135 setLibcallName(RTLIB::POW_F128, "powf128"); 1136 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1137 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1138 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1139 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1140 } 1141 1142 // With 32 condition bits, we don't need to sink (and duplicate) compares 1143 // aggressively in CodeGenPrep. 1144 if (Subtarget.useCRBits()) { 1145 setHasMultipleConditionRegisters(); 1146 setJumpIsExpensive(); 1147 } 1148 1149 setMinFunctionAlignment(2); 1150 if (Subtarget.isDarwin()) 1151 setPrefFunctionAlignment(4); 1152 1153 switch (Subtarget.getDarwinDirective()) { 1154 default: break; 1155 case PPC::DIR_970: 1156 case PPC::DIR_A2: 1157 case PPC::DIR_E500: 1158 case PPC::DIR_E500mc: 1159 case PPC::DIR_E5500: 1160 case PPC::DIR_PWR4: 1161 case PPC::DIR_PWR5: 1162 case PPC::DIR_PWR5X: 1163 case PPC::DIR_PWR6: 1164 case PPC::DIR_PWR6X: 1165 case PPC::DIR_PWR7: 1166 case PPC::DIR_PWR8: 1167 case PPC::DIR_PWR9: 1168 setPrefFunctionAlignment(4); 1169 setPrefLoopAlignment(4); 1170 break; 1171 } 1172 1173 if (Subtarget.enableMachineScheduler()) 1174 setSchedulingPreference(Sched::Source); 1175 else 1176 setSchedulingPreference(Sched::Hybrid); 1177 1178 computeRegisterProperties(STI.getRegisterInfo()); 1179 1180 // The Freescale cores do better with aggressive inlining of memcpy and 1181 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1182 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 1183 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 1184 MaxStoresPerMemset = 32; 1185 MaxStoresPerMemsetOptSize = 16; 1186 MaxStoresPerMemcpy = 32; 1187 MaxStoresPerMemcpyOptSize = 8; 1188 MaxStoresPerMemmove = 32; 1189 MaxStoresPerMemmoveOptSize = 8; 1190 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 1191 // The A2 also benefits from (very) aggressive inlining of memcpy and 1192 // friends. The overhead of a the function call, even when warm, can be 1193 // over one hundred cycles. 1194 MaxStoresPerMemset = 128; 1195 MaxStoresPerMemcpy = 128; 1196 MaxStoresPerMemmove = 128; 1197 MaxLoadsPerMemcmp = 128; 1198 } else { 1199 MaxLoadsPerMemcmp = 8; 1200 MaxLoadsPerMemcmpOptSize = 4; 1201 } 1202 } 1203 1204 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1205 /// the desired ByVal argument alignment. 1206 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 1207 unsigned MaxMaxAlign) { 1208 if (MaxAlign == MaxMaxAlign) 1209 return; 1210 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1211 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 1212 MaxAlign = 32; 1213 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 1214 MaxAlign = 16; 1215 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1216 unsigned EltAlign = 0; 1217 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1218 if (EltAlign > MaxAlign) 1219 MaxAlign = EltAlign; 1220 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1221 for (auto *EltTy : STy->elements()) { 1222 unsigned EltAlign = 0; 1223 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1224 if (EltAlign > MaxAlign) 1225 MaxAlign = EltAlign; 1226 if (MaxAlign == MaxMaxAlign) 1227 break; 1228 } 1229 } 1230 } 1231 1232 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1233 /// function arguments in the caller parameter area. 1234 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1235 const DataLayout &DL) const { 1236 // Darwin passes everything on 4 byte boundary. 1237 if (Subtarget.isDarwin()) 1238 return 4; 1239 1240 // 16byte and wider vectors are passed on 16byte boundary. 1241 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1242 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1243 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1244 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1245 return Align; 1246 } 1247 1248 unsigned PPCTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1249 CallingConv:: ID CC, 1250 EVT VT) const { 1251 if (Subtarget.hasSPE() && VT == MVT::f64) 1252 return 2; 1253 return PPCTargetLowering::getNumRegisters(Context, VT); 1254 } 1255 1256 MVT PPCTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1257 CallingConv:: ID CC, 1258 EVT VT) const { 1259 if (Subtarget.hasSPE() && VT == MVT::f64) 1260 return MVT::i32; 1261 return PPCTargetLowering::getRegisterType(Context, VT); 1262 } 1263 1264 bool PPCTargetLowering::useSoftFloat() const { 1265 return Subtarget.useSoftFloat(); 1266 } 1267 1268 bool PPCTargetLowering::hasSPE() const { 1269 return Subtarget.hasSPE(); 1270 } 1271 1272 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1273 switch ((PPCISD::NodeType)Opcode) { 1274 case PPCISD::FIRST_NUMBER: break; 1275 case PPCISD::FSEL: return "PPCISD::FSEL"; 1276 case PPCISD::FCFID: return "PPCISD::FCFID"; 1277 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1278 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1279 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1280 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1281 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1282 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1283 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1284 case PPCISD::FP_TO_UINT_IN_VSR: 1285 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1286 case PPCISD::FP_TO_SINT_IN_VSR: 1287 return "PPCISD::FP_TO_SINT_IN_VSR"; 1288 case PPCISD::FRE: return "PPCISD::FRE"; 1289 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1290 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1291 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1292 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1293 case PPCISD::VPERM: return "PPCISD::VPERM"; 1294 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1295 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1296 case PPCISD::XXREVERSE: return "PPCISD::XXREVERSE"; 1297 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1298 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1299 case PPCISD::CMPB: return "PPCISD::CMPB"; 1300 case PPCISD::Hi: return "PPCISD::Hi"; 1301 case PPCISD::Lo: return "PPCISD::Lo"; 1302 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1303 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1304 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1305 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1306 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1307 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1308 case PPCISD::SRL: return "PPCISD::SRL"; 1309 case PPCISD::SRA: return "PPCISD::SRA"; 1310 case PPCISD::SHL: return "PPCISD::SHL"; 1311 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1312 case PPCISD::CALL: return "PPCISD::CALL"; 1313 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1314 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1315 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1316 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1317 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1318 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1319 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1320 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1321 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1322 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1323 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1324 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1325 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1326 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1327 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1328 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1329 case PPCISD::VCMP: return "PPCISD::VCMP"; 1330 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1331 case PPCISD::LBRX: return "PPCISD::LBRX"; 1332 case PPCISD::STBRX: return "PPCISD::STBRX"; 1333 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1334 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1335 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1336 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1337 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1338 case PPCISD::SExtVElems: return "PPCISD::SExtVElems"; 1339 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1340 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1341 case PPCISD::ST_VSR_SCAL_INT: 1342 return "PPCISD::ST_VSR_SCAL_INT"; 1343 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1344 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1345 case PPCISD::BDZ: return "PPCISD::BDZ"; 1346 case PPCISD::MFFS: return "PPCISD::MFFS"; 1347 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1348 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1349 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1350 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1351 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1352 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1353 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1354 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1355 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1356 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1357 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1358 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1359 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1360 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1361 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1362 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1363 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1364 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1365 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1366 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1367 case PPCISD::SC: return "PPCISD::SC"; 1368 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1369 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1370 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1371 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1372 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1373 case PPCISD::VABSD: return "PPCISD::VABSD"; 1374 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1375 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1376 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1377 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1378 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1379 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1380 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1381 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1382 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1383 case PPCISD::FP_EXTEND_LH: return "PPCISD::FP_EXTEND_LH"; 1384 } 1385 return nullptr; 1386 } 1387 1388 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1389 EVT VT) const { 1390 if (!VT.isVector()) 1391 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1392 1393 if (Subtarget.hasQPX()) 1394 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1395 1396 return VT.changeVectorElementTypeToInteger(); 1397 } 1398 1399 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1400 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1401 return true; 1402 } 1403 1404 //===----------------------------------------------------------------------===// 1405 // Node matching predicates, for use by the tblgen matching code. 1406 //===----------------------------------------------------------------------===// 1407 1408 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1409 static bool isFloatingPointZero(SDValue Op) { 1410 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1411 return CFP->getValueAPF().isZero(); 1412 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1413 // Maybe this has already been legalized into the constant pool? 1414 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1415 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1416 return CFP->getValueAPF().isZero(); 1417 } 1418 return false; 1419 } 1420 1421 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1422 /// true if Op is undef or if it matches the specified value. 1423 static bool isConstantOrUndef(int Op, int Val) { 1424 return Op < 0 || Op == Val; 1425 } 1426 1427 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1428 /// VPKUHUM instruction. 1429 /// The ShuffleKind distinguishes between big-endian operations with 1430 /// two different inputs (0), either-endian operations with two identical 1431 /// inputs (1), and little-endian operations with two different inputs (2). 1432 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1433 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1434 SelectionDAG &DAG) { 1435 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1436 if (ShuffleKind == 0) { 1437 if (IsLE) 1438 return false; 1439 for (unsigned i = 0; i != 16; ++i) 1440 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1441 return false; 1442 } else if (ShuffleKind == 2) { 1443 if (!IsLE) 1444 return false; 1445 for (unsigned i = 0; i != 16; ++i) 1446 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1447 return false; 1448 } else if (ShuffleKind == 1) { 1449 unsigned j = IsLE ? 0 : 1; 1450 for (unsigned i = 0; i != 8; ++i) 1451 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1452 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1453 return false; 1454 } 1455 return true; 1456 } 1457 1458 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1459 /// VPKUWUM instruction. 1460 /// The ShuffleKind distinguishes between big-endian operations with 1461 /// two different inputs (0), either-endian operations with two identical 1462 /// inputs (1), and little-endian operations with two different inputs (2). 1463 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1464 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1465 SelectionDAG &DAG) { 1466 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1467 if (ShuffleKind == 0) { 1468 if (IsLE) 1469 return false; 1470 for (unsigned i = 0; i != 16; i += 2) 1471 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1472 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1473 return false; 1474 } else if (ShuffleKind == 2) { 1475 if (!IsLE) 1476 return false; 1477 for (unsigned i = 0; i != 16; i += 2) 1478 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1479 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1480 return false; 1481 } else if (ShuffleKind == 1) { 1482 unsigned j = IsLE ? 0 : 2; 1483 for (unsigned i = 0; i != 8; i += 2) 1484 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1485 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1486 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1487 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1488 return false; 1489 } 1490 return true; 1491 } 1492 1493 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1494 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1495 /// current subtarget. 1496 /// 1497 /// The ShuffleKind distinguishes between big-endian operations with 1498 /// two different inputs (0), either-endian operations with two identical 1499 /// inputs (1), and little-endian operations with two different inputs (2). 1500 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1501 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1502 SelectionDAG &DAG) { 1503 const PPCSubtarget& Subtarget = 1504 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1505 if (!Subtarget.hasP8Vector()) 1506 return false; 1507 1508 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1509 if (ShuffleKind == 0) { 1510 if (IsLE) 1511 return false; 1512 for (unsigned i = 0; i != 16; i += 4) 1513 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1514 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1515 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1516 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1517 return false; 1518 } else if (ShuffleKind == 2) { 1519 if (!IsLE) 1520 return false; 1521 for (unsigned i = 0; i != 16; i += 4) 1522 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1523 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1524 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1525 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1526 return false; 1527 } else if (ShuffleKind == 1) { 1528 unsigned j = IsLE ? 0 : 4; 1529 for (unsigned i = 0; i != 8; i += 4) 1530 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1531 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1532 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1533 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1534 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1535 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1536 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1537 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1538 return false; 1539 } 1540 return true; 1541 } 1542 1543 /// isVMerge - Common function, used to match vmrg* shuffles. 1544 /// 1545 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1546 unsigned LHSStart, unsigned RHSStart) { 1547 if (N->getValueType(0) != MVT::v16i8) 1548 return false; 1549 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1550 "Unsupported merge size!"); 1551 1552 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1553 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1554 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1555 LHSStart+j+i*UnitSize) || 1556 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1557 RHSStart+j+i*UnitSize)) 1558 return false; 1559 } 1560 return true; 1561 } 1562 1563 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1564 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1565 /// The ShuffleKind distinguishes between big-endian merges with two 1566 /// different inputs (0), either-endian merges with two identical inputs (1), 1567 /// and little-endian merges with two different inputs (2). For the latter, 1568 /// the input operands are swapped (see PPCInstrAltivec.td). 1569 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1570 unsigned ShuffleKind, SelectionDAG &DAG) { 1571 if (DAG.getDataLayout().isLittleEndian()) { 1572 if (ShuffleKind == 1) // unary 1573 return isVMerge(N, UnitSize, 0, 0); 1574 else if (ShuffleKind == 2) // swapped 1575 return isVMerge(N, UnitSize, 0, 16); 1576 else 1577 return false; 1578 } else { 1579 if (ShuffleKind == 1) // unary 1580 return isVMerge(N, UnitSize, 8, 8); 1581 else if (ShuffleKind == 0) // normal 1582 return isVMerge(N, UnitSize, 8, 24); 1583 else 1584 return false; 1585 } 1586 } 1587 1588 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1589 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1590 /// The ShuffleKind distinguishes between big-endian merges with two 1591 /// different inputs (0), either-endian merges with two identical inputs (1), 1592 /// and little-endian merges with two different inputs (2). For the latter, 1593 /// the input operands are swapped (see PPCInstrAltivec.td). 1594 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1595 unsigned ShuffleKind, SelectionDAG &DAG) { 1596 if (DAG.getDataLayout().isLittleEndian()) { 1597 if (ShuffleKind == 1) // unary 1598 return isVMerge(N, UnitSize, 8, 8); 1599 else if (ShuffleKind == 2) // swapped 1600 return isVMerge(N, UnitSize, 8, 24); 1601 else 1602 return false; 1603 } else { 1604 if (ShuffleKind == 1) // unary 1605 return isVMerge(N, UnitSize, 0, 0); 1606 else if (ShuffleKind == 0) // normal 1607 return isVMerge(N, UnitSize, 0, 16); 1608 else 1609 return false; 1610 } 1611 } 1612 1613 /** 1614 * Common function used to match vmrgew and vmrgow shuffles 1615 * 1616 * The indexOffset determines whether to look for even or odd words in 1617 * the shuffle mask. This is based on the of the endianness of the target 1618 * machine. 1619 * - Little Endian: 1620 * - Use offset of 0 to check for odd elements 1621 * - Use offset of 4 to check for even elements 1622 * - Big Endian: 1623 * - Use offset of 0 to check for even elements 1624 * - Use offset of 4 to check for odd elements 1625 * A detailed description of the vector element ordering for little endian and 1626 * big endian can be found at 1627 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1628 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1629 * compiler differences mean to you 1630 * 1631 * The mask to the shuffle vector instruction specifies the indices of the 1632 * elements from the two input vectors to place in the result. The elements are 1633 * numbered in array-access order, starting with the first vector. These vectors 1634 * are always of type v16i8, thus each vector will contain 16 elements of size 1635 * 8. More info on the shuffle vector can be found in the 1636 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1637 * Language Reference. 1638 * 1639 * The RHSStartValue indicates whether the same input vectors are used (unary) 1640 * or two different input vectors are used, based on the following: 1641 * - If the instruction uses the same vector for both inputs, the range of the 1642 * indices will be 0 to 15. In this case, the RHSStart value passed should 1643 * be 0. 1644 * - If the instruction has two different vectors then the range of the 1645 * indices will be 0 to 31. In this case, the RHSStart value passed should 1646 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1647 * to 31 specify elements in the second vector). 1648 * 1649 * \param[in] N The shuffle vector SD Node to analyze 1650 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1651 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1652 * vector to the shuffle_vector instruction 1653 * \return true iff this shuffle vector represents an even or odd word merge 1654 */ 1655 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1656 unsigned RHSStartValue) { 1657 if (N->getValueType(0) != MVT::v16i8) 1658 return false; 1659 1660 for (unsigned i = 0; i < 2; ++i) 1661 for (unsigned j = 0; j < 4; ++j) 1662 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1663 i*RHSStartValue+j+IndexOffset) || 1664 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1665 i*RHSStartValue+j+IndexOffset+8)) 1666 return false; 1667 return true; 1668 } 1669 1670 /** 1671 * Determine if the specified shuffle mask is suitable for the vmrgew or 1672 * vmrgow instructions. 1673 * 1674 * \param[in] N The shuffle vector SD Node to analyze 1675 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1676 * \param[in] ShuffleKind Identify the type of merge: 1677 * - 0 = big-endian merge with two different inputs; 1678 * - 1 = either-endian merge with two identical inputs; 1679 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1680 * little-endian merges). 1681 * \param[in] DAG The current SelectionDAG 1682 * \return true iff this shuffle mask 1683 */ 1684 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1685 unsigned ShuffleKind, SelectionDAG &DAG) { 1686 if (DAG.getDataLayout().isLittleEndian()) { 1687 unsigned indexOffset = CheckEven ? 4 : 0; 1688 if (ShuffleKind == 1) // Unary 1689 return isVMerge(N, indexOffset, 0); 1690 else if (ShuffleKind == 2) // swapped 1691 return isVMerge(N, indexOffset, 16); 1692 else 1693 return false; 1694 } 1695 else { 1696 unsigned indexOffset = CheckEven ? 0 : 4; 1697 if (ShuffleKind == 1) // Unary 1698 return isVMerge(N, indexOffset, 0); 1699 else if (ShuffleKind == 0) // Normal 1700 return isVMerge(N, indexOffset, 16); 1701 else 1702 return false; 1703 } 1704 return false; 1705 } 1706 1707 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1708 /// amount, otherwise return -1. 1709 /// The ShuffleKind distinguishes between big-endian operations with two 1710 /// different inputs (0), either-endian operations with two identical inputs 1711 /// (1), and little-endian operations with two different inputs (2). For the 1712 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1713 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1714 SelectionDAG &DAG) { 1715 if (N->getValueType(0) != MVT::v16i8) 1716 return -1; 1717 1718 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1719 1720 // Find the first non-undef value in the shuffle mask. 1721 unsigned i; 1722 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1723 /*search*/; 1724 1725 if (i == 16) return -1; // all undef. 1726 1727 // Otherwise, check to see if the rest of the elements are consecutively 1728 // numbered from this value. 1729 unsigned ShiftAmt = SVOp->getMaskElt(i); 1730 if (ShiftAmt < i) return -1; 1731 1732 ShiftAmt -= i; 1733 bool isLE = DAG.getDataLayout().isLittleEndian(); 1734 1735 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1736 // Check the rest of the elements to see if they are consecutive. 1737 for (++i; i != 16; ++i) 1738 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1739 return -1; 1740 } else if (ShuffleKind == 1) { 1741 // Check the rest of the elements to see if they are consecutive. 1742 for (++i; i != 16; ++i) 1743 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1744 return -1; 1745 } else 1746 return -1; 1747 1748 if (isLE) 1749 ShiftAmt = 16 - ShiftAmt; 1750 1751 return ShiftAmt; 1752 } 1753 1754 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1755 /// specifies a splat of a single element that is suitable for input to 1756 /// VSPLTB/VSPLTH/VSPLTW. 1757 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1758 assert(N->getValueType(0) == MVT::v16i8 && 1759 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1760 1761 // The consecutive indices need to specify an element, not part of two 1762 // different elements. So abandon ship early if this isn't the case. 1763 if (N->getMaskElt(0) % EltSize != 0) 1764 return false; 1765 1766 // This is a splat operation if each element of the permute is the same, and 1767 // if the value doesn't reference the second vector. 1768 unsigned ElementBase = N->getMaskElt(0); 1769 1770 // FIXME: Handle UNDEF elements too! 1771 if (ElementBase >= 16) 1772 return false; 1773 1774 // Check that the indices are consecutive, in the case of a multi-byte element 1775 // splatted with a v16i8 mask. 1776 for (unsigned i = 1; i != EltSize; ++i) 1777 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1778 return false; 1779 1780 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1781 if (N->getMaskElt(i) < 0) continue; 1782 for (unsigned j = 0; j != EltSize; ++j) 1783 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1784 return false; 1785 } 1786 return true; 1787 } 1788 1789 /// Check that the mask is shuffling N byte elements. Within each N byte 1790 /// element of the mask, the indices could be either in increasing or 1791 /// decreasing order as long as they are consecutive. 1792 /// \param[in] N the shuffle vector SD Node to analyze 1793 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1794 /// Word/DoubleWord/QuadWord). 1795 /// \param[in] StepLen the delta indices number among the N byte element, if 1796 /// the mask is in increasing/decreasing order then it is 1/-1. 1797 /// \return true iff the mask is shuffling N byte elements. 1798 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1799 int StepLen) { 1800 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1801 "Unexpected element width."); 1802 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1803 1804 unsigned NumOfElem = 16 / Width; 1805 unsigned MaskVal[16]; // Width is never greater than 16 1806 for (unsigned i = 0; i < NumOfElem; ++i) { 1807 MaskVal[0] = N->getMaskElt(i * Width); 1808 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1809 return false; 1810 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1811 return false; 1812 } 1813 1814 for (unsigned int j = 1; j < Width; ++j) { 1815 MaskVal[j] = N->getMaskElt(i * Width + j); 1816 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1817 return false; 1818 } 1819 } 1820 } 1821 1822 return true; 1823 } 1824 1825 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1826 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1827 if (!isNByteElemShuffleMask(N, 4, 1)) 1828 return false; 1829 1830 // Now we look at mask elements 0,4,8,12 1831 unsigned M0 = N->getMaskElt(0) / 4; 1832 unsigned M1 = N->getMaskElt(4) / 4; 1833 unsigned M2 = N->getMaskElt(8) / 4; 1834 unsigned M3 = N->getMaskElt(12) / 4; 1835 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1836 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1837 1838 // Below, let H and L be arbitrary elements of the shuffle mask 1839 // where H is in the range [4,7] and L is in the range [0,3]. 1840 // H, 1, 2, 3 or L, 5, 6, 7 1841 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1842 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1843 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1844 InsertAtByte = IsLE ? 12 : 0; 1845 Swap = M0 < 4; 1846 return true; 1847 } 1848 // 0, H, 2, 3 or 4, L, 6, 7 1849 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1850 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1851 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1852 InsertAtByte = IsLE ? 8 : 4; 1853 Swap = M1 < 4; 1854 return true; 1855 } 1856 // 0, 1, H, 3 or 4, 5, L, 7 1857 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1858 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1859 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1860 InsertAtByte = IsLE ? 4 : 8; 1861 Swap = M2 < 4; 1862 return true; 1863 } 1864 // 0, 1, 2, H or 4, 5, 6, L 1865 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1866 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1867 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1868 InsertAtByte = IsLE ? 0 : 12; 1869 Swap = M3 < 4; 1870 return true; 1871 } 1872 1873 // If both vector operands for the shuffle are the same vector, the mask will 1874 // contain only elements from the first one and the second one will be undef. 1875 if (N->getOperand(1).isUndef()) { 1876 ShiftElts = 0; 1877 Swap = true; 1878 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1879 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1880 InsertAtByte = IsLE ? 12 : 0; 1881 return true; 1882 } 1883 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 1884 InsertAtByte = IsLE ? 8 : 4; 1885 return true; 1886 } 1887 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 1888 InsertAtByte = IsLE ? 4 : 8; 1889 return true; 1890 } 1891 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 1892 InsertAtByte = IsLE ? 0 : 12; 1893 return true; 1894 } 1895 } 1896 1897 return false; 1898 } 1899 1900 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1901 bool &Swap, bool IsLE) { 1902 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1903 // Ensure each byte index of the word is consecutive. 1904 if (!isNByteElemShuffleMask(N, 4, 1)) 1905 return false; 1906 1907 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 1908 unsigned M0 = N->getMaskElt(0) / 4; 1909 unsigned M1 = N->getMaskElt(4) / 4; 1910 unsigned M2 = N->getMaskElt(8) / 4; 1911 unsigned M3 = N->getMaskElt(12) / 4; 1912 1913 // If both vector operands for the shuffle are the same vector, the mask will 1914 // contain only elements from the first one and the second one will be undef. 1915 if (N->getOperand(1).isUndef()) { 1916 assert(M0 < 4 && "Indexing into an undef vector?"); 1917 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 1918 return false; 1919 1920 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 1921 Swap = false; 1922 return true; 1923 } 1924 1925 // Ensure each word index of the ShuffleVector Mask is consecutive. 1926 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 1927 return false; 1928 1929 if (IsLE) { 1930 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 1931 // Input vectors don't need to be swapped if the leading element 1932 // of the result is one of the 3 left elements of the second vector 1933 // (or if there is no shift to be done at all). 1934 Swap = false; 1935 ShiftElts = (8 - M0) % 8; 1936 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 1937 // Input vectors need to be swapped if the leading element 1938 // of the result is one of the 3 left elements of the first vector 1939 // (or if we're shifting by 4 - thereby simply swapping the vectors). 1940 Swap = true; 1941 ShiftElts = (4 - M0) % 4; 1942 } 1943 1944 return true; 1945 } else { // BE 1946 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 1947 // Input vectors don't need to be swapped if the leading element 1948 // of the result is one of the 4 elements of the first vector. 1949 Swap = false; 1950 ShiftElts = M0; 1951 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 1952 // Input vectors need to be swapped if the leading element 1953 // of the result is one of the 4 elements of the right vector. 1954 Swap = true; 1955 ShiftElts = M0 - 4; 1956 } 1957 1958 return true; 1959 } 1960 } 1961 1962 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 1963 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1964 1965 if (!isNByteElemShuffleMask(N, Width, -1)) 1966 return false; 1967 1968 for (int i = 0; i < 16; i += Width) 1969 if (N->getMaskElt(i) != i + Width - 1) 1970 return false; 1971 1972 return true; 1973 } 1974 1975 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 1976 return isXXBRShuffleMaskHelper(N, 2); 1977 } 1978 1979 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 1980 return isXXBRShuffleMaskHelper(N, 4); 1981 } 1982 1983 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 1984 return isXXBRShuffleMaskHelper(N, 8); 1985 } 1986 1987 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 1988 return isXXBRShuffleMaskHelper(N, 16); 1989 } 1990 1991 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 1992 /// if the inputs to the instruction should be swapped and set \p DM to the 1993 /// value for the immediate. 1994 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 1995 /// AND element 0 of the result comes from the first input (LE) or second input 1996 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 1997 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 1998 /// mask. 1999 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2000 bool &Swap, bool IsLE) { 2001 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2002 2003 // Ensure each byte index of the double word is consecutive. 2004 if (!isNByteElemShuffleMask(N, 8, 1)) 2005 return false; 2006 2007 unsigned M0 = N->getMaskElt(0) / 8; 2008 unsigned M1 = N->getMaskElt(8) / 8; 2009 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2010 2011 // If both vector operands for the shuffle are the same vector, the mask will 2012 // contain only elements from the first one and the second one will be undef. 2013 if (N->getOperand(1).isUndef()) { 2014 if ((M0 | M1) < 2) { 2015 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2016 Swap = false; 2017 return true; 2018 } else 2019 return false; 2020 } 2021 2022 if (IsLE) { 2023 if (M0 > 1 && M1 < 2) { 2024 Swap = false; 2025 } else if (M0 < 2 && M1 > 1) { 2026 M0 = (M0 + 2) % 4; 2027 M1 = (M1 + 2) % 4; 2028 Swap = true; 2029 } else 2030 return false; 2031 2032 // Note: if control flow comes here that means Swap is already set above 2033 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2034 return true; 2035 } else { // BE 2036 if (M0 < 2 && M1 > 1) { 2037 Swap = false; 2038 } else if (M0 > 1 && M1 < 2) { 2039 M0 = (M0 + 2) % 4; 2040 M1 = (M1 + 2) % 4; 2041 Swap = true; 2042 } else 2043 return false; 2044 2045 // Note: if control flow comes here that means Swap is already set above 2046 DM = (M0 << 1) + (M1 & 1); 2047 return true; 2048 } 2049 } 2050 2051 2052 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 2053 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 2054 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 2055 SelectionDAG &DAG) { 2056 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2057 assert(isSplatShuffleMask(SVOp, EltSize)); 2058 if (DAG.getDataLayout().isLittleEndian()) 2059 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2060 else 2061 return SVOp->getMaskElt(0) / EltSize; 2062 } 2063 2064 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2065 /// by using a vspltis[bhw] instruction of the specified element size, return 2066 /// the constant being splatted. The ByteSize field indicates the number of 2067 /// bytes of each element [124] -> [bhw]. 2068 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2069 SDValue OpVal(nullptr, 0); 2070 2071 // If ByteSize of the splat is bigger than the element size of the 2072 // build_vector, then we have a case where we are checking for a splat where 2073 // multiple elements of the buildvector are folded together into a single 2074 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2075 unsigned EltSize = 16/N->getNumOperands(); 2076 if (EltSize < ByteSize) { 2077 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2078 SDValue UniquedVals[4]; 2079 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2080 2081 // See if all of the elements in the buildvector agree across. 2082 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2083 if (N->getOperand(i).isUndef()) continue; 2084 // If the element isn't a constant, bail fully out. 2085 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2086 2087 if (!UniquedVals[i&(Multiple-1)].getNode()) 2088 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2089 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2090 return SDValue(); // no match. 2091 } 2092 2093 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2094 // either constant or undef values that are identical for each chunk. See 2095 // if these chunks can form into a larger vspltis*. 2096 2097 // Check to see if all of the leading entries are either 0 or -1. If 2098 // neither, then this won't fit into the immediate field. 2099 bool LeadingZero = true; 2100 bool LeadingOnes = true; 2101 for (unsigned i = 0; i != Multiple-1; ++i) { 2102 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2103 2104 LeadingZero &= isNullConstant(UniquedVals[i]); 2105 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2106 } 2107 // Finally, check the least significant entry. 2108 if (LeadingZero) { 2109 if (!UniquedVals[Multiple-1].getNode()) 2110 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2111 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2112 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2113 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2114 } 2115 if (LeadingOnes) { 2116 if (!UniquedVals[Multiple-1].getNode()) 2117 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2118 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2119 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2120 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2121 } 2122 2123 return SDValue(); 2124 } 2125 2126 // Check to see if this buildvec has a single non-undef value in its elements. 2127 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2128 if (N->getOperand(i).isUndef()) continue; 2129 if (!OpVal.getNode()) 2130 OpVal = N->getOperand(i); 2131 else if (OpVal != N->getOperand(i)) 2132 return SDValue(); 2133 } 2134 2135 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2136 2137 unsigned ValSizeInBytes = EltSize; 2138 uint64_t Value = 0; 2139 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2140 Value = CN->getZExtValue(); 2141 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2142 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2143 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2144 } 2145 2146 // If the splat value is larger than the element value, then we can never do 2147 // this splat. The only case that we could fit the replicated bits into our 2148 // immediate field for would be zero, and we prefer to use vxor for it. 2149 if (ValSizeInBytes < ByteSize) return SDValue(); 2150 2151 // If the element value is larger than the splat value, check if it consists 2152 // of a repeated bit pattern of size ByteSize. 2153 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2154 return SDValue(); 2155 2156 // Properly sign extend the value. 2157 int MaskVal = SignExtend32(Value, ByteSize * 8); 2158 2159 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2160 if (MaskVal == 0) return SDValue(); 2161 2162 // Finally, if this value fits in a 5 bit sext field, return it 2163 if (SignExtend32<5>(MaskVal) == MaskVal) 2164 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2165 return SDValue(); 2166 } 2167 2168 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2169 /// amount, otherwise return -1. 2170 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2171 EVT VT = N->getValueType(0); 2172 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2173 return -1; 2174 2175 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2176 2177 // Find the first non-undef value in the shuffle mask. 2178 unsigned i; 2179 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2180 /*search*/; 2181 2182 if (i == 4) return -1; // all undef. 2183 2184 // Otherwise, check to see if the rest of the elements are consecutively 2185 // numbered from this value. 2186 unsigned ShiftAmt = SVOp->getMaskElt(i); 2187 if (ShiftAmt < i) return -1; 2188 ShiftAmt -= i; 2189 2190 // Check the rest of the elements to see if they are consecutive. 2191 for (++i; i != 4; ++i) 2192 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2193 return -1; 2194 2195 return ShiftAmt; 2196 } 2197 2198 //===----------------------------------------------------------------------===// 2199 // Addressing Mode Selection 2200 //===----------------------------------------------------------------------===// 2201 2202 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2203 /// or 64-bit immediate, and if the value can be accurately represented as a 2204 /// sign extension from a 16-bit value. If so, this returns true and the 2205 /// immediate. 2206 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2207 if (!isa<ConstantSDNode>(N)) 2208 return false; 2209 2210 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2211 if (N->getValueType(0) == MVT::i32) 2212 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2213 else 2214 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2215 } 2216 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2217 return isIntS16Immediate(Op.getNode(), Imm); 2218 } 2219 2220 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2221 /// can be represented as an indexed [r+r] operation. Returns false if it 2222 /// can be more efficiently represented with [r+imm]. 2223 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 2224 SDValue &Index, 2225 SelectionDAG &DAG) const { 2226 int16_t imm = 0; 2227 if (N.getOpcode() == ISD::ADD) { 2228 if (isIntS16Immediate(N.getOperand(1), imm)) 2229 return false; // r+i 2230 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2231 return false; // r+i 2232 2233 Base = N.getOperand(0); 2234 Index = N.getOperand(1); 2235 return true; 2236 } else if (N.getOpcode() == ISD::OR) { 2237 if (isIntS16Immediate(N.getOperand(1), imm)) 2238 return false; // r+i can fold it if we can. 2239 2240 // If this is an or of disjoint bitfields, we can codegen this as an add 2241 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2242 // disjoint. 2243 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2244 2245 if (LHSKnown.Zero.getBoolValue()) { 2246 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2247 // If all of the bits are known zero on the LHS or RHS, the add won't 2248 // carry. 2249 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2250 Base = N.getOperand(0); 2251 Index = N.getOperand(1); 2252 return true; 2253 } 2254 } 2255 } 2256 2257 return false; 2258 } 2259 2260 // If we happen to be doing an i64 load or store into a stack slot that has 2261 // less than a 4-byte alignment, then the frame-index elimination may need to 2262 // use an indexed load or store instruction (because the offset may not be a 2263 // multiple of 4). The extra register needed to hold the offset comes from the 2264 // register scavenger, and it is possible that the scavenger will need to use 2265 // an emergency spill slot. As a result, we need to make sure that a spill slot 2266 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2267 // stack slot. 2268 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2269 // FIXME: This does not handle the LWA case. 2270 if (VT != MVT::i64) 2271 return; 2272 2273 // NOTE: We'll exclude negative FIs here, which come from argument 2274 // lowering, because there are no known test cases triggering this problem 2275 // using packed structures (or similar). We can remove this exclusion if 2276 // we find such a test case. The reason why this is so test-case driven is 2277 // because this entire 'fixup' is only to prevent crashes (from the 2278 // register scavenger) on not-really-valid inputs. For example, if we have: 2279 // %a = alloca i1 2280 // %b = bitcast i1* %a to i64* 2281 // store i64* a, i64 b 2282 // then the store should really be marked as 'align 1', but is not. If it 2283 // were marked as 'align 1' then the indexed form would have been 2284 // instruction-selected initially, and the problem this 'fixup' is preventing 2285 // won't happen regardless. 2286 if (FrameIdx < 0) 2287 return; 2288 2289 MachineFunction &MF = DAG.getMachineFunction(); 2290 MachineFrameInfo &MFI = MF.getFrameInfo(); 2291 2292 unsigned Align = MFI.getObjectAlignment(FrameIdx); 2293 if (Align >= 4) 2294 return; 2295 2296 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2297 FuncInfo->setHasNonRISpills(); 2298 } 2299 2300 /// Returns true if the address N can be represented by a base register plus 2301 /// a signed 16-bit displacement [r+imm], and if it is not better 2302 /// represented as reg+reg. If \p Alignment is non-zero, only accept 2303 /// displacements that are multiples of that value. 2304 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 2305 SDValue &Base, 2306 SelectionDAG &DAG, 2307 unsigned Alignment) const { 2308 // FIXME dl should come from parent load or store, not from address 2309 SDLoc dl(N); 2310 // If this can be more profitably realized as r+r, fail. 2311 if (SelectAddressRegReg(N, Disp, Base, DAG)) 2312 return false; 2313 2314 if (N.getOpcode() == ISD::ADD) { 2315 int16_t imm = 0; 2316 if (isIntS16Immediate(N.getOperand(1), imm) && 2317 (!Alignment || (imm % Alignment) == 0)) { 2318 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2319 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2320 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2321 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2322 } else { 2323 Base = N.getOperand(0); 2324 } 2325 return true; // [r+i] 2326 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2327 // Match LOAD (ADD (X, Lo(G))). 2328 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2329 && "Cannot handle constant offsets yet!"); 2330 Disp = N.getOperand(1).getOperand(0); // The global address. 2331 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2332 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2333 Disp.getOpcode() == ISD::TargetConstantPool || 2334 Disp.getOpcode() == ISD::TargetJumpTable); 2335 Base = N.getOperand(0); 2336 return true; // [&g+r] 2337 } 2338 } else if (N.getOpcode() == ISD::OR) { 2339 int16_t imm = 0; 2340 if (isIntS16Immediate(N.getOperand(1), imm) && 2341 (!Alignment || (imm % Alignment) == 0)) { 2342 // If this is an or of disjoint bitfields, we can codegen this as an add 2343 // (for better address arithmetic) if the LHS and RHS of the OR are 2344 // provably disjoint. 2345 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2346 2347 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2348 // If all of the bits are known zero on the LHS or RHS, the add won't 2349 // carry. 2350 if (FrameIndexSDNode *FI = 2351 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2352 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2353 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2354 } else { 2355 Base = N.getOperand(0); 2356 } 2357 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2358 return true; 2359 } 2360 } 2361 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2362 // Loading from a constant address. 2363 2364 // If this address fits entirely in a 16-bit sext immediate field, codegen 2365 // this as "d, 0" 2366 int16_t Imm; 2367 if (isIntS16Immediate(CN, Imm) && (!Alignment || (Imm % Alignment) == 0)) { 2368 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2369 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2370 CN->getValueType(0)); 2371 return true; 2372 } 2373 2374 // Handle 32-bit sext immediates with LIS + addr mode. 2375 if ((CN->getValueType(0) == MVT::i32 || 2376 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2377 (!Alignment || (CN->getZExtValue() % Alignment) == 0)) { 2378 int Addr = (int)CN->getZExtValue(); 2379 2380 // Otherwise, break this down into an LIS + disp. 2381 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2382 2383 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2384 MVT::i32); 2385 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2386 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2387 return true; 2388 } 2389 } 2390 2391 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2392 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2393 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2394 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2395 } else 2396 Base = N; 2397 return true; // [r+0] 2398 } 2399 2400 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2401 /// represented as an indexed [r+r] operation. 2402 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2403 SDValue &Index, 2404 SelectionDAG &DAG) const { 2405 // Check to see if we can easily represent this as an [r+r] address. This 2406 // will fail if it thinks that the address is more profitably represented as 2407 // reg+imm, e.g. where imm = 0. 2408 if (SelectAddressRegReg(N, Base, Index, DAG)) 2409 return true; 2410 2411 // If the address is the result of an add, we will utilize the fact that the 2412 // address calculation includes an implicit add. However, we can reduce 2413 // register pressure if we do not materialize a constant just for use as the 2414 // index register. We only get rid of the add if it is not an add of a 2415 // value and a 16-bit signed constant and both have a single use. 2416 int16_t imm = 0; 2417 if (N.getOpcode() == ISD::ADD && 2418 (!isIntS16Immediate(N.getOperand(1), imm) || 2419 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2420 Base = N.getOperand(0); 2421 Index = N.getOperand(1); 2422 return true; 2423 } 2424 2425 // Otherwise, do it the hard way, using R0 as the base register. 2426 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2427 N.getValueType()); 2428 Index = N; 2429 return true; 2430 } 2431 2432 /// Returns true if we should use a direct load into vector instruction 2433 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2434 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2435 2436 // If there are any other uses other than scalar to vector, then we should 2437 // keep it as a scalar load -> direct move pattern to prevent multiple 2438 // loads. 2439 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2440 if (!LD) 2441 return false; 2442 2443 EVT MemVT = LD->getMemoryVT(); 2444 if (!MemVT.isSimple()) 2445 return false; 2446 switch(MemVT.getSimpleVT().SimpleTy) { 2447 case MVT::i64: 2448 break; 2449 case MVT::i32: 2450 if (!ST.hasP8Vector()) 2451 return false; 2452 break; 2453 case MVT::i16: 2454 case MVT::i8: 2455 if (!ST.hasP9Vector()) 2456 return false; 2457 break; 2458 default: 2459 return false; 2460 } 2461 2462 SDValue LoadedVal(N, 0); 2463 if (!LoadedVal.hasOneUse()) 2464 return false; 2465 2466 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2467 UI != UE; ++UI) 2468 if (UI.getUse().get().getResNo() == 0 && 2469 UI->getOpcode() != ISD::SCALAR_TO_VECTOR) 2470 return false; 2471 2472 return true; 2473 } 2474 2475 /// getPreIndexedAddressParts - returns true by value, base pointer and 2476 /// offset pointer and addressing mode by reference if the node's address 2477 /// can be legally represented as pre-indexed load / store address. 2478 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2479 SDValue &Offset, 2480 ISD::MemIndexedMode &AM, 2481 SelectionDAG &DAG) const { 2482 if (DisablePPCPreinc) return false; 2483 2484 bool isLoad = true; 2485 SDValue Ptr; 2486 EVT VT; 2487 unsigned Alignment; 2488 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2489 Ptr = LD->getBasePtr(); 2490 VT = LD->getMemoryVT(); 2491 Alignment = LD->getAlignment(); 2492 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2493 Ptr = ST->getBasePtr(); 2494 VT = ST->getMemoryVT(); 2495 Alignment = ST->getAlignment(); 2496 isLoad = false; 2497 } else 2498 return false; 2499 2500 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2501 // instructions because we can fold these into a more efficient instruction 2502 // instead, (such as LXSD). 2503 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2504 return false; 2505 } 2506 2507 // PowerPC doesn't have preinc load/store instructions for vectors (except 2508 // for QPX, which does have preinc r+r forms). 2509 if (VT.isVector()) { 2510 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2511 return false; 2512 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2513 AM = ISD::PRE_INC; 2514 return true; 2515 } 2516 } 2517 2518 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2519 // Common code will reject creating a pre-inc form if the base pointer 2520 // is a frame index, or if N is a store and the base pointer is either 2521 // the same as or a predecessor of the value being stored. Check for 2522 // those situations here, and try with swapped Base/Offset instead. 2523 bool Swap = false; 2524 2525 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2526 Swap = true; 2527 else if (!isLoad) { 2528 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2529 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2530 Swap = true; 2531 } 2532 2533 if (Swap) 2534 std::swap(Base, Offset); 2535 2536 AM = ISD::PRE_INC; 2537 return true; 2538 } 2539 2540 // LDU/STU can only handle immediates that are a multiple of 4. 2541 if (VT != MVT::i64) { 2542 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0)) 2543 return false; 2544 } else { 2545 // LDU/STU need an address with at least 4-byte alignment. 2546 if (Alignment < 4) 2547 return false; 2548 2549 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4)) 2550 return false; 2551 } 2552 2553 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2554 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2555 // sext i32 to i64 when addr mode is r+i. 2556 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2557 LD->getExtensionType() == ISD::SEXTLOAD && 2558 isa<ConstantSDNode>(Offset)) 2559 return false; 2560 } 2561 2562 AM = ISD::PRE_INC; 2563 return true; 2564 } 2565 2566 //===----------------------------------------------------------------------===// 2567 // LowerOperation implementation 2568 //===----------------------------------------------------------------------===// 2569 2570 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2571 /// and LoOpFlags to the target MO flags. 2572 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2573 unsigned &HiOpFlags, unsigned &LoOpFlags, 2574 const GlobalValue *GV = nullptr) { 2575 HiOpFlags = PPCII::MO_HA; 2576 LoOpFlags = PPCII::MO_LO; 2577 2578 // Don't use the pic base if not in PIC relocation model. 2579 if (IsPIC) { 2580 HiOpFlags |= PPCII::MO_PIC_FLAG; 2581 LoOpFlags |= PPCII::MO_PIC_FLAG; 2582 } 2583 2584 // If this is a reference to a global value that requires a non-lazy-ptr, make 2585 // sure that instruction lowering adds it. 2586 if (GV && Subtarget.hasLazyResolverStub(GV)) { 2587 HiOpFlags |= PPCII::MO_NLP_FLAG; 2588 LoOpFlags |= PPCII::MO_NLP_FLAG; 2589 2590 if (GV->hasHiddenVisibility()) { 2591 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2592 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2593 } 2594 } 2595 } 2596 2597 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2598 SelectionDAG &DAG) { 2599 SDLoc DL(HiPart); 2600 EVT PtrVT = HiPart.getValueType(); 2601 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2602 2603 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2604 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2605 2606 // With PIC, the first instruction is actually "GR+hi(&G)". 2607 if (isPIC) 2608 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2609 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2610 2611 // Generate non-pic code that has direct accesses to the constant pool. 2612 // The address of the global is just (hi(&g)+lo(&g)). 2613 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2614 } 2615 2616 static void setUsesTOCBasePtr(MachineFunction &MF) { 2617 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2618 FuncInfo->setUsesTOCBasePtr(); 2619 } 2620 2621 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2622 setUsesTOCBasePtr(DAG.getMachineFunction()); 2623 } 2624 2625 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit, 2626 SDValue GA) { 2627 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2628 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : 2629 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2630 2631 SDValue Ops[] = { GA, Reg }; 2632 return DAG.getMemIntrinsicNode( 2633 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2634 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, 2635 MachineMemOperand::MOLoad); 2636 } 2637 2638 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2639 SelectionDAG &DAG) const { 2640 EVT PtrVT = Op.getValueType(); 2641 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2642 const Constant *C = CP->getConstVal(); 2643 2644 // 64-bit SVR4 ABI code is always position-independent. 2645 // The actual address of the GlobalValue is stored in the TOC. 2646 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2647 setUsesTOCBasePtr(DAG); 2648 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2649 return getTOCEntry(DAG, SDLoc(CP), true, GA); 2650 } 2651 2652 unsigned MOHiFlag, MOLoFlag; 2653 bool IsPIC = isPositionIndependent(); 2654 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2655 2656 if (IsPIC && Subtarget.isSVR4ABI()) { 2657 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2658 PPCII::MO_PIC_FLAG); 2659 return getTOCEntry(DAG, SDLoc(CP), false, GA); 2660 } 2661 2662 SDValue CPIHi = 2663 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2664 SDValue CPILo = 2665 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2666 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2667 } 2668 2669 // For 64-bit PowerPC, prefer the more compact relative encodings. 2670 // This trades 32 bits per jump table entry for one or two instructions 2671 // on the jump site. 2672 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2673 if (isJumpTableRelative()) 2674 return MachineJumpTableInfo::EK_LabelDifference32; 2675 2676 return TargetLowering::getJumpTableEncoding(); 2677 } 2678 2679 bool PPCTargetLowering::isJumpTableRelative() const { 2680 if (Subtarget.isPPC64()) 2681 return true; 2682 return TargetLowering::isJumpTableRelative(); 2683 } 2684 2685 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2686 SelectionDAG &DAG) const { 2687 if (!Subtarget.isPPC64()) 2688 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2689 2690 switch (getTargetMachine().getCodeModel()) { 2691 case CodeModel::Small: 2692 case CodeModel::Medium: 2693 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2694 default: 2695 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2696 getPointerTy(DAG.getDataLayout())); 2697 } 2698 } 2699 2700 const MCExpr * 2701 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2702 unsigned JTI, 2703 MCContext &Ctx) const { 2704 if (!Subtarget.isPPC64()) 2705 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2706 2707 switch (getTargetMachine().getCodeModel()) { 2708 case CodeModel::Small: 2709 case CodeModel::Medium: 2710 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2711 default: 2712 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2713 } 2714 } 2715 2716 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2717 EVT PtrVT = Op.getValueType(); 2718 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2719 2720 // 64-bit SVR4 ABI code is always position-independent. 2721 // The actual address of the GlobalValue is stored in the TOC. 2722 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2723 setUsesTOCBasePtr(DAG); 2724 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2725 return getTOCEntry(DAG, SDLoc(JT), true, GA); 2726 } 2727 2728 unsigned MOHiFlag, MOLoFlag; 2729 bool IsPIC = isPositionIndependent(); 2730 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2731 2732 if (IsPIC && Subtarget.isSVR4ABI()) { 2733 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2734 PPCII::MO_PIC_FLAG); 2735 return getTOCEntry(DAG, SDLoc(GA), false, GA); 2736 } 2737 2738 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2739 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2740 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2741 } 2742 2743 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2744 SelectionDAG &DAG) const { 2745 EVT PtrVT = Op.getValueType(); 2746 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2747 const BlockAddress *BA = BASDN->getBlockAddress(); 2748 2749 // 64-bit SVR4 ABI code is always position-independent. 2750 // The actual BlockAddress is stored in the TOC. 2751 if (Subtarget.isSVR4ABI() && 2752 (Subtarget.isPPC64() || isPositionIndependent())) { 2753 if (Subtarget.isPPC64()) 2754 setUsesTOCBasePtr(DAG); 2755 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2756 return getTOCEntry(DAG, SDLoc(BASDN), Subtarget.isPPC64(), GA); 2757 } 2758 2759 unsigned MOHiFlag, MOLoFlag; 2760 bool IsPIC = isPositionIndependent(); 2761 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2762 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2763 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2764 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2765 } 2766 2767 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2768 SelectionDAG &DAG) const { 2769 // FIXME: TLS addresses currently use medium model code sequences, 2770 // which is the most useful form. Eventually support for small and 2771 // large models could be added if users need it, at the cost of 2772 // additional complexity. 2773 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2774 if (DAG.getTarget().useEmulatedTLS()) 2775 return LowerToTLSEmulatedModel(GA, DAG); 2776 2777 SDLoc dl(GA); 2778 const GlobalValue *GV = GA->getGlobal(); 2779 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2780 bool is64bit = Subtarget.isPPC64(); 2781 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2782 PICLevel::Level picLevel = M->getPICLevel(); 2783 2784 const TargetMachine &TM = getTargetMachine(); 2785 TLSModel::Model Model = TM.getTLSModel(GV); 2786 2787 if (Model == TLSModel::LocalExec) { 2788 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2789 PPCII::MO_TPREL_HA); 2790 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2791 PPCII::MO_TPREL_LO); 2792 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 2793 : DAG.getRegister(PPC::R2, MVT::i32); 2794 2795 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2796 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2797 } 2798 2799 if (Model == TLSModel::InitialExec) { 2800 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2801 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2802 PPCII::MO_TLS); 2803 SDValue GOTPtr; 2804 if (is64bit) { 2805 setUsesTOCBasePtr(DAG); 2806 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2807 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2808 PtrVT, GOTReg, TGA); 2809 } else { 2810 if (!TM.isPositionIndependent()) 2811 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2812 else if (picLevel == PICLevel::SmallPIC) 2813 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2814 else 2815 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2816 } 2817 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2818 PtrVT, TGA, GOTPtr); 2819 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2820 } 2821 2822 if (Model == TLSModel::GeneralDynamic) { 2823 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2824 SDValue GOTPtr; 2825 if (is64bit) { 2826 setUsesTOCBasePtr(DAG); 2827 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2828 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2829 GOTReg, TGA); 2830 } else { 2831 if (picLevel == PICLevel::SmallPIC) 2832 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2833 else 2834 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2835 } 2836 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2837 GOTPtr, TGA, TGA); 2838 } 2839 2840 if (Model == TLSModel::LocalDynamic) { 2841 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2842 SDValue GOTPtr; 2843 if (is64bit) { 2844 setUsesTOCBasePtr(DAG); 2845 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2846 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2847 GOTReg, TGA); 2848 } else { 2849 if (picLevel == PICLevel::SmallPIC) 2850 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2851 else 2852 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2853 } 2854 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2855 PtrVT, GOTPtr, TGA, TGA); 2856 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2857 PtrVT, TLSAddr, TGA); 2858 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2859 } 2860 2861 llvm_unreachable("Unknown TLS model!"); 2862 } 2863 2864 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2865 SelectionDAG &DAG) const { 2866 EVT PtrVT = Op.getValueType(); 2867 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2868 SDLoc DL(GSDN); 2869 const GlobalValue *GV = GSDN->getGlobal(); 2870 2871 // 64-bit SVR4 ABI code is always position-independent. 2872 // The actual address of the GlobalValue is stored in the TOC. 2873 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2874 setUsesTOCBasePtr(DAG); 2875 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2876 return getTOCEntry(DAG, DL, true, GA); 2877 } 2878 2879 unsigned MOHiFlag, MOLoFlag; 2880 bool IsPIC = isPositionIndependent(); 2881 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 2882 2883 if (IsPIC && Subtarget.isSVR4ABI()) { 2884 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2885 GSDN->getOffset(), 2886 PPCII::MO_PIC_FLAG); 2887 return getTOCEntry(DAG, DL, false, GA); 2888 } 2889 2890 SDValue GAHi = 2891 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2892 SDValue GALo = 2893 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2894 2895 SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG); 2896 2897 // If the global reference is actually to a non-lazy-pointer, we have to do an 2898 // extra load to get the address of the global. 2899 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2900 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2901 return Ptr; 2902 } 2903 2904 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2905 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2906 SDLoc dl(Op); 2907 2908 if (Op.getValueType() == MVT::v2i64) { 2909 // When the operands themselves are v2i64 values, we need to do something 2910 // special because VSX has no underlying comparison operations for these. 2911 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2912 // Equality can be handled by casting to the legal type for Altivec 2913 // comparisons, everything else needs to be expanded. 2914 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2915 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2916 DAG.getSetCC(dl, MVT::v4i32, 2917 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2918 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2919 CC)); 2920 } 2921 2922 return SDValue(); 2923 } 2924 2925 // We handle most of these in the usual way. 2926 return Op; 2927 } 2928 2929 // If we're comparing for equality to zero, expose the fact that this is 2930 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 2931 // fold the new nodes. 2932 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 2933 return V; 2934 2935 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2936 // Leave comparisons against 0 and -1 alone for now, since they're usually 2937 // optimized. FIXME: revisit this when we can custom lower all setcc 2938 // optimizations. 2939 if (C->isAllOnesValue() || C->isNullValue()) 2940 return SDValue(); 2941 } 2942 2943 // If we have an integer seteq/setne, turn it into a compare against zero 2944 // by xor'ing the rhs with the lhs, which is faster than setting a 2945 // condition register, reading it back out, and masking the correct bit. The 2946 // normal approach here uses sub to do this instead of xor. Using xor exposes 2947 // the result to other bit-twiddling opportunities. 2948 EVT LHSVT = Op.getOperand(0).getValueType(); 2949 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2950 EVT VT = Op.getValueType(); 2951 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 2952 Op.getOperand(1)); 2953 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 2954 } 2955 return SDValue(); 2956 } 2957 2958 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 2959 SDNode *Node = Op.getNode(); 2960 EVT VT = Node->getValueType(0); 2961 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2962 SDValue InChain = Node->getOperand(0); 2963 SDValue VAListPtr = Node->getOperand(1); 2964 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2965 SDLoc dl(Node); 2966 2967 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 2968 2969 // gpr_index 2970 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2971 VAListPtr, MachinePointerInfo(SV), MVT::i8); 2972 InChain = GprIndex.getValue(1); 2973 2974 if (VT == MVT::i64) { 2975 // Check if GprIndex is even 2976 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 2977 DAG.getConstant(1, dl, MVT::i32)); 2978 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 2979 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 2980 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 2981 DAG.getConstant(1, dl, MVT::i32)); 2982 // Align GprIndex to be even if it isn't 2983 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 2984 GprIndex); 2985 } 2986 2987 // fpr index is 1 byte after gpr 2988 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2989 DAG.getConstant(1, dl, MVT::i32)); 2990 2991 // fpr 2992 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2993 FprPtr, MachinePointerInfo(SV), MVT::i8); 2994 InChain = FprIndex.getValue(1); 2995 2996 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2997 DAG.getConstant(8, dl, MVT::i32)); 2998 2999 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3000 DAG.getConstant(4, dl, MVT::i32)); 3001 3002 // areas 3003 SDValue OverflowArea = 3004 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3005 InChain = OverflowArea.getValue(1); 3006 3007 SDValue RegSaveArea = 3008 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3009 InChain = RegSaveArea.getValue(1); 3010 3011 // select overflow_area if index > 8 3012 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3013 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3014 3015 // adjustment constant gpr_index * 4/8 3016 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3017 VT.isInteger() ? GprIndex : FprIndex, 3018 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3019 MVT::i32)); 3020 3021 // OurReg = RegSaveArea + RegConstant 3022 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3023 RegConstant); 3024 3025 // Floating types are 32 bytes into RegSaveArea 3026 if (VT.isFloatingPoint()) 3027 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3028 DAG.getConstant(32, dl, MVT::i32)); 3029 3030 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3031 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3032 VT.isInteger() ? GprIndex : FprIndex, 3033 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3034 MVT::i32)); 3035 3036 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3037 VT.isInteger() ? VAListPtr : FprPtr, 3038 MachinePointerInfo(SV), MVT::i8); 3039 3040 // determine if we should load from reg_save_area or overflow_area 3041 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3042 3043 // increase overflow_area by 4/8 if gpr/fpr > 8 3044 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3045 DAG.getConstant(VT.isInteger() ? 4 : 8, 3046 dl, MVT::i32)); 3047 3048 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3049 OverflowAreaPlusN); 3050 3051 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3052 MachinePointerInfo(), MVT::i32); 3053 3054 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3055 } 3056 3057 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3058 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3059 3060 // We have to copy the entire va_list struct: 3061 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3062 return DAG.getMemcpy(Op.getOperand(0), Op, 3063 Op.getOperand(1), Op.getOperand(2), 3064 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 3065 false, MachinePointerInfo(), MachinePointerInfo()); 3066 } 3067 3068 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3069 SelectionDAG &DAG) const { 3070 return Op.getOperand(0); 3071 } 3072 3073 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3074 SelectionDAG &DAG) const { 3075 SDValue Chain = Op.getOperand(0); 3076 SDValue Trmp = Op.getOperand(1); // trampoline 3077 SDValue FPtr = Op.getOperand(2); // nested function 3078 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3079 SDLoc dl(Op); 3080 3081 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3082 bool isPPC64 = (PtrVT == MVT::i64); 3083 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3084 3085 TargetLowering::ArgListTy Args; 3086 TargetLowering::ArgListEntry Entry; 3087 3088 Entry.Ty = IntPtrTy; 3089 Entry.Node = Trmp; Args.push_back(Entry); 3090 3091 // TrampSize == (isPPC64 ? 48 : 40); 3092 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3093 isPPC64 ? MVT::i64 : MVT::i32); 3094 Args.push_back(Entry); 3095 3096 Entry.Node = FPtr; Args.push_back(Entry); 3097 Entry.Node = Nest; Args.push_back(Entry); 3098 3099 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3100 TargetLowering::CallLoweringInfo CLI(DAG); 3101 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3102 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3103 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3104 3105 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3106 return CallResult.second; 3107 } 3108 3109 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3110 MachineFunction &MF = DAG.getMachineFunction(); 3111 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3112 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3113 3114 SDLoc dl(Op); 3115 3116 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 3117 // vastart just stores the address of the VarArgsFrameIndex slot into the 3118 // memory location argument. 3119 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3120 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3121 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3122 MachinePointerInfo(SV)); 3123 } 3124 3125 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3126 // We suppose the given va_list is already allocated. 3127 // 3128 // typedef struct { 3129 // char gpr; /* index into the array of 8 GPRs 3130 // * stored in the register save area 3131 // * gpr=0 corresponds to r3, 3132 // * gpr=1 to r4, etc. 3133 // */ 3134 // char fpr; /* index into the array of 8 FPRs 3135 // * stored in the register save area 3136 // * fpr=0 corresponds to f1, 3137 // * fpr=1 to f2, etc. 3138 // */ 3139 // char *overflow_arg_area; 3140 // /* location on stack that holds 3141 // * the next overflow argument 3142 // */ 3143 // char *reg_save_area; 3144 // /* where r3:r10 and f1:f8 (if saved) 3145 // * are stored 3146 // */ 3147 // } va_list[1]; 3148 3149 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3150 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3151 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3152 PtrVT); 3153 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3154 PtrVT); 3155 3156 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3157 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3158 3159 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3160 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3161 3162 uint64_t FPROffset = 1; 3163 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3164 3165 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3166 3167 // Store first byte : number of int regs 3168 SDValue firstStore = 3169 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3170 MachinePointerInfo(SV), MVT::i8); 3171 uint64_t nextOffset = FPROffset; 3172 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3173 ConstFPROffset); 3174 3175 // Store second byte : number of float regs 3176 SDValue secondStore = 3177 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3178 MachinePointerInfo(SV, nextOffset), MVT::i8); 3179 nextOffset += StackOffset; 3180 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3181 3182 // Store second word : arguments given on stack 3183 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3184 MachinePointerInfo(SV, nextOffset)); 3185 nextOffset += FrameOffset; 3186 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3187 3188 // Store third word : arguments given in registers 3189 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3190 MachinePointerInfo(SV, nextOffset)); 3191 } 3192 3193 /// FPR - The set of FP registers that should be allocated for arguments, 3194 /// on Darwin. 3195 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3196 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3197 PPC::F11, PPC::F12, PPC::F13}; 3198 3199 /// QFPR - The set of QPX registers that should be allocated for arguments. 3200 static const MCPhysReg QFPR[] = { 3201 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3202 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3203 3204 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3205 /// the stack. 3206 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3207 unsigned PtrByteSize) { 3208 unsigned ArgSize = ArgVT.getStoreSize(); 3209 if (Flags.isByVal()) 3210 ArgSize = Flags.getByValSize(); 3211 3212 // Round up to multiples of the pointer size, except for array members, 3213 // which are always packed. 3214 if (!Flags.isInConsecutiveRegs()) 3215 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3216 3217 return ArgSize; 3218 } 3219 3220 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3221 /// on the stack. 3222 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3223 ISD::ArgFlagsTy Flags, 3224 unsigned PtrByteSize) { 3225 unsigned Align = PtrByteSize; 3226 3227 // Altivec parameters are padded to a 16 byte boundary. 3228 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3229 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3230 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3231 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3232 Align = 16; 3233 // QPX vector types stored in double-precision are padded to a 32 byte 3234 // boundary. 3235 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3236 Align = 32; 3237 3238 // ByVal parameters are aligned as requested. 3239 if (Flags.isByVal()) { 3240 unsigned BVAlign = Flags.getByValAlign(); 3241 if (BVAlign > PtrByteSize) { 3242 if (BVAlign % PtrByteSize != 0) 3243 llvm_unreachable( 3244 "ByVal alignment is not a multiple of the pointer size"); 3245 3246 Align = BVAlign; 3247 } 3248 } 3249 3250 // Array members are always packed to their original alignment. 3251 if (Flags.isInConsecutiveRegs()) { 3252 // If the array member was split into multiple registers, the first 3253 // needs to be aligned to the size of the full type. (Except for 3254 // ppcf128, which is only aligned as its f64 components.) 3255 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3256 Align = OrigVT.getStoreSize(); 3257 else 3258 Align = ArgVT.getStoreSize(); 3259 } 3260 3261 return Align; 3262 } 3263 3264 /// CalculateStackSlotUsed - Return whether this argument will use its 3265 /// stack slot (instead of being passed in registers). ArgOffset, 3266 /// AvailableFPRs, and AvailableVRs must hold the current argument 3267 /// position, and will be updated to account for this argument. 3268 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3269 ISD::ArgFlagsTy Flags, 3270 unsigned PtrByteSize, 3271 unsigned LinkageSize, 3272 unsigned ParamAreaSize, 3273 unsigned &ArgOffset, 3274 unsigned &AvailableFPRs, 3275 unsigned &AvailableVRs, bool HasQPX) { 3276 bool UseMemory = false; 3277 3278 // Respect alignment of argument on the stack. 3279 unsigned Align = 3280 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3281 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3282 // If there's no space left in the argument save area, we must 3283 // use memory (this check also catches zero-sized arguments). 3284 if (ArgOffset >= LinkageSize + ParamAreaSize) 3285 UseMemory = true; 3286 3287 // Allocate argument on the stack. 3288 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3289 if (Flags.isInConsecutiveRegsLast()) 3290 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3291 // If we overran the argument save area, we must use memory 3292 // (this check catches arguments passed partially in memory) 3293 if (ArgOffset > LinkageSize + ParamAreaSize) 3294 UseMemory = true; 3295 3296 // However, if the argument is actually passed in an FPR or a VR, 3297 // we don't use memory after all. 3298 if (!Flags.isByVal()) { 3299 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3300 // QPX registers overlap with the scalar FP registers. 3301 (HasQPX && (ArgVT == MVT::v4f32 || 3302 ArgVT == MVT::v4f64 || 3303 ArgVT == MVT::v4i1))) 3304 if (AvailableFPRs > 0) { 3305 --AvailableFPRs; 3306 return false; 3307 } 3308 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3309 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3310 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3311 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3312 if (AvailableVRs > 0) { 3313 --AvailableVRs; 3314 return false; 3315 } 3316 } 3317 3318 return UseMemory; 3319 } 3320 3321 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3322 /// ensure minimum alignment required for target. 3323 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3324 unsigned NumBytes) { 3325 unsigned TargetAlign = Lowering->getStackAlignment(); 3326 unsigned AlignMask = TargetAlign - 1; 3327 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 3328 return NumBytes; 3329 } 3330 3331 SDValue PPCTargetLowering::LowerFormalArguments( 3332 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3333 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3334 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3335 if (Subtarget.isSVR4ABI()) { 3336 if (Subtarget.isPPC64()) 3337 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 3338 dl, DAG, InVals); 3339 else 3340 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 3341 dl, DAG, InVals); 3342 } else { 3343 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 3344 dl, DAG, InVals); 3345 } 3346 } 3347 3348 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3349 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3350 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3351 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3352 3353 // 32-bit SVR4 ABI Stack Frame Layout: 3354 // +-----------------------------------+ 3355 // +--> | Back chain | 3356 // | +-----------------------------------+ 3357 // | | Floating-point register save area | 3358 // | +-----------------------------------+ 3359 // | | General register save area | 3360 // | +-----------------------------------+ 3361 // | | CR save word | 3362 // | +-----------------------------------+ 3363 // | | VRSAVE save word | 3364 // | +-----------------------------------+ 3365 // | | Alignment padding | 3366 // | +-----------------------------------+ 3367 // | | Vector register save area | 3368 // | +-----------------------------------+ 3369 // | | Local variable space | 3370 // | +-----------------------------------+ 3371 // | | Parameter list area | 3372 // | +-----------------------------------+ 3373 // | | LR save word | 3374 // | +-----------------------------------+ 3375 // SP--> +--- | Back chain | 3376 // +-----------------------------------+ 3377 // 3378 // Specifications: 3379 // System V Application Binary Interface PowerPC Processor Supplement 3380 // AltiVec Technology Programming Interface Manual 3381 3382 MachineFunction &MF = DAG.getMachineFunction(); 3383 MachineFrameInfo &MFI = MF.getFrameInfo(); 3384 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3385 3386 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3387 // Potential tail calls could cause overwriting of argument stack slots. 3388 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3389 (CallConv == CallingConv::Fast)); 3390 unsigned PtrByteSize = 4; 3391 3392 // Assign locations to all of the incoming arguments. 3393 SmallVector<CCValAssign, 16> ArgLocs; 3394 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3395 *DAG.getContext()); 3396 3397 // Reserve space for the linkage area on the stack. 3398 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3399 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 3400 if (useSoftFloat() || hasSPE()) 3401 CCInfo.PreAnalyzeFormalArguments(Ins); 3402 3403 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3404 CCInfo.clearWasPPCF128(); 3405 3406 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3407 CCValAssign &VA = ArgLocs[i]; 3408 3409 // Arguments stored in registers. 3410 if (VA.isRegLoc()) { 3411 const TargetRegisterClass *RC; 3412 EVT ValVT = VA.getValVT(); 3413 3414 switch (ValVT.getSimpleVT().SimpleTy) { 3415 default: 3416 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3417 case MVT::i1: 3418 case MVT::i32: 3419 RC = &PPC::GPRCRegClass; 3420 break; 3421 case MVT::f32: 3422 if (Subtarget.hasP8Vector()) 3423 RC = &PPC::VSSRCRegClass; 3424 else if (Subtarget.hasSPE()) 3425 RC = &PPC::SPE4RCRegClass; 3426 else 3427 RC = &PPC::F4RCRegClass; 3428 break; 3429 case MVT::f64: 3430 if (Subtarget.hasVSX()) 3431 RC = &PPC::VSFRCRegClass; 3432 else if (Subtarget.hasSPE()) 3433 RC = &PPC::SPERCRegClass; 3434 else 3435 RC = &PPC::F8RCRegClass; 3436 break; 3437 case MVT::v16i8: 3438 case MVT::v8i16: 3439 case MVT::v4i32: 3440 RC = &PPC::VRRCRegClass; 3441 break; 3442 case MVT::v4f32: 3443 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3444 break; 3445 case MVT::v2f64: 3446 case MVT::v2i64: 3447 RC = &PPC::VRRCRegClass; 3448 break; 3449 case MVT::v4f64: 3450 RC = &PPC::QFRCRegClass; 3451 break; 3452 case MVT::v4i1: 3453 RC = &PPC::QBRCRegClass; 3454 break; 3455 } 3456 3457 // Transform the arguments stored in physical registers into virtual ones. 3458 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3459 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3460 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3461 3462 if (ValVT == MVT::i1) 3463 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3464 3465 InVals.push_back(ArgValue); 3466 } else { 3467 // Argument stored in memory. 3468 assert(VA.isMemLoc()); 3469 3470 // Get the extended size of the argument type in stack 3471 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3472 // Get the actual size of the argument type 3473 unsigned ObjSize = VA.getValVT().getStoreSize(); 3474 unsigned ArgOffset = VA.getLocMemOffset(); 3475 // Stack objects in PPC32 are right justified. 3476 ArgOffset += ArgSize - ObjSize; 3477 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3478 3479 // Create load nodes to retrieve arguments from the stack. 3480 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3481 InVals.push_back( 3482 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3483 } 3484 } 3485 3486 // Assign locations to all of the incoming aggregate by value arguments. 3487 // Aggregates passed by value are stored in the local variable space of the 3488 // caller's stack frame, right above the parameter list area. 3489 SmallVector<CCValAssign, 16> ByValArgLocs; 3490 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3491 ByValArgLocs, *DAG.getContext()); 3492 3493 // Reserve stack space for the allocations in CCInfo. 3494 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3495 3496 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3497 3498 // Area that is at least reserved in the caller of this function. 3499 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3500 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3501 3502 // Set the size that is at least reserved in caller of this function. Tail 3503 // call optimized function's reserved stack space needs to be aligned so that 3504 // taking the difference between two stack areas will result in an aligned 3505 // stack. 3506 MinReservedArea = 3507 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3508 FuncInfo->setMinReservedArea(MinReservedArea); 3509 3510 SmallVector<SDValue, 8> MemOps; 3511 3512 // If the function takes variable number of arguments, make a frame index for 3513 // the start of the first vararg value... for expansion of llvm.va_start. 3514 if (isVarArg) { 3515 static const MCPhysReg GPArgRegs[] = { 3516 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3517 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3518 }; 3519 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3520 3521 static const MCPhysReg FPArgRegs[] = { 3522 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3523 PPC::F8 3524 }; 3525 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3526 3527 if (useSoftFloat() || hasSPE()) 3528 NumFPArgRegs = 0; 3529 3530 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3531 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3532 3533 // Make room for NumGPArgRegs and NumFPArgRegs. 3534 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3535 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3536 3537 FuncInfo->setVarArgsStackOffset( 3538 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3539 CCInfo.getNextStackOffset(), true)); 3540 3541 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3542 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3543 3544 // The fixed integer arguments of a variadic function are stored to the 3545 // VarArgsFrameIndex on the stack so that they may be loaded by 3546 // dereferencing the result of va_next. 3547 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3548 // Get an existing live-in vreg, or add a new one. 3549 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3550 if (!VReg) 3551 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3552 3553 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3554 SDValue Store = 3555 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3556 MemOps.push_back(Store); 3557 // Increment the address by four for the next argument to store 3558 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3559 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3560 } 3561 3562 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3563 // is set. 3564 // The double arguments are stored to the VarArgsFrameIndex 3565 // on the stack. 3566 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3567 // Get an existing live-in vreg, or add a new one. 3568 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3569 if (!VReg) 3570 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3571 3572 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3573 SDValue Store = 3574 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3575 MemOps.push_back(Store); 3576 // Increment the address by eight for the next argument to store 3577 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3578 PtrVT); 3579 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3580 } 3581 } 3582 3583 if (!MemOps.empty()) 3584 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3585 3586 return Chain; 3587 } 3588 3589 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3590 // value to MVT::i64 and then truncate to the correct register size. 3591 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3592 EVT ObjectVT, SelectionDAG &DAG, 3593 SDValue ArgVal, 3594 const SDLoc &dl) const { 3595 if (Flags.isSExt()) 3596 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3597 DAG.getValueType(ObjectVT)); 3598 else if (Flags.isZExt()) 3599 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3600 DAG.getValueType(ObjectVT)); 3601 3602 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3603 } 3604 3605 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3606 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3607 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3608 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3609 // TODO: add description of PPC stack frame format, or at least some docs. 3610 // 3611 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3612 bool isLittleEndian = Subtarget.isLittleEndian(); 3613 MachineFunction &MF = DAG.getMachineFunction(); 3614 MachineFrameInfo &MFI = MF.getFrameInfo(); 3615 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3616 3617 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3618 "fastcc not supported on varargs functions"); 3619 3620 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3621 // Potential tail calls could cause overwriting of argument stack slots. 3622 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3623 (CallConv == CallingConv::Fast)); 3624 unsigned PtrByteSize = 8; 3625 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3626 3627 static const MCPhysReg GPR[] = { 3628 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3629 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3630 }; 3631 static const MCPhysReg VR[] = { 3632 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3633 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3634 }; 3635 3636 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3637 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3638 const unsigned Num_VR_Regs = array_lengthof(VR); 3639 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3640 3641 // Do a first pass over the arguments to determine whether the ABI 3642 // guarantees that our caller has allocated the parameter save area 3643 // on its stack frame. In the ELFv1 ABI, this is always the case; 3644 // in the ELFv2 ABI, it is true if this is a vararg function or if 3645 // any parameter is located in a stack slot. 3646 3647 bool HasParameterArea = !isELFv2ABI || isVarArg; 3648 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3649 unsigned NumBytes = LinkageSize; 3650 unsigned AvailableFPRs = Num_FPR_Regs; 3651 unsigned AvailableVRs = Num_VR_Regs; 3652 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3653 if (Ins[i].Flags.isNest()) 3654 continue; 3655 3656 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3657 PtrByteSize, LinkageSize, ParamAreaSize, 3658 NumBytes, AvailableFPRs, AvailableVRs, 3659 Subtarget.hasQPX())) 3660 HasParameterArea = true; 3661 } 3662 3663 // Add DAG nodes to load the arguments or copy them out of registers. On 3664 // entry to a function on PPC, the arguments start after the linkage area, 3665 // although the first ones are often in registers. 3666 3667 unsigned ArgOffset = LinkageSize; 3668 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3669 unsigned &QFPR_idx = FPR_idx; 3670 SmallVector<SDValue, 8> MemOps; 3671 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3672 unsigned CurArgIdx = 0; 3673 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3674 SDValue ArgVal; 3675 bool needsLoad = false; 3676 EVT ObjectVT = Ins[ArgNo].VT; 3677 EVT OrigVT = Ins[ArgNo].ArgVT; 3678 unsigned ObjSize = ObjectVT.getStoreSize(); 3679 unsigned ArgSize = ObjSize; 3680 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3681 if (Ins[ArgNo].isOrigArg()) { 3682 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3683 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3684 } 3685 // We re-align the argument offset for each argument, except when using the 3686 // fast calling convention, when we need to make sure we do that only when 3687 // we'll actually use a stack slot. 3688 unsigned CurArgOffset, Align; 3689 auto ComputeArgOffset = [&]() { 3690 /* Respect alignment of argument on the stack. */ 3691 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3692 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3693 CurArgOffset = ArgOffset; 3694 }; 3695 3696 if (CallConv != CallingConv::Fast) { 3697 ComputeArgOffset(); 3698 3699 /* Compute GPR index associated with argument offset. */ 3700 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3701 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3702 } 3703 3704 // FIXME the codegen can be much improved in some cases. 3705 // We do not have to keep everything in memory. 3706 if (Flags.isByVal()) { 3707 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3708 3709 if (CallConv == CallingConv::Fast) 3710 ComputeArgOffset(); 3711 3712 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3713 ObjSize = Flags.getByValSize(); 3714 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3715 // Empty aggregate parameters do not take up registers. Examples: 3716 // struct { } a; 3717 // union { } b; 3718 // int c[0]; 3719 // etc. However, we have to provide a place-holder in InVals, so 3720 // pretend we have an 8-byte item at the current address for that 3721 // purpose. 3722 if (!ObjSize) { 3723 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3724 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3725 InVals.push_back(FIN); 3726 continue; 3727 } 3728 3729 // Create a stack object covering all stack doublewords occupied 3730 // by the argument. If the argument is (fully or partially) on 3731 // the stack, or if the argument is fully in registers but the 3732 // caller has allocated the parameter save anyway, we can refer 3733 // directly to the caller's stack frame. Otherwise, create a 3734 // local copy in our own frame. 3735 int FI; 3736 if (HasParameterArea || 3737 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3738 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3739 else 3740 FI = MFI.CreateStackObject(ArgSize, Align, false); 3741 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3742 3743 // Handle aggregates smaller than 8 bytes. 3744 if (ObjSize < PtrByteSize) { 3745 // The value of the object is its address, which differs from the 3746 // address of the enclosing doubleword on big-endian systems. 3747 SDValue Arg = FIN; 3748 if (!isLittleEndian) { 3749 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3750 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3751 } 3752 InVals.push_back(Arg); 3753 3754 if (GPR_idx != Num_GPR_Regs) { 3755 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3756 FuncInfo->addLiveInAttr(VReg, Flags); 3757 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3758 SDValue Store; 3759 3760 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3761 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3762 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3763 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3764 MachinePointerInfo(&*FuncArg), ObjType); 3765 } else { 3766 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3767 // store the whole register as-is to the parameter save area 3768 // slot. 3769 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3770 MachinePointerInfo(&*FuncArg)); 3771 } 3772 3773 MemOps.push_back(Store); 3774 } 3775 // Whether we copied from a register or not, advance the offset 3776 // into the parameter save area by a full doubleword. 3777 ArgOffset += PtrByteSize; 3778 continue; 3779 } 3780 3781 // The value of the object is its address, which is the address of 3782 // its first stack doubleword. 3783 InVals.push_back(FIN); 3784 3785 // Store whatever pieces of the object are in registers to memory. 3786 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3787 if (GPR_idx == Num_GPR_Regs) 3788 break; 3789 3790 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3791 FuncInfo->addLiveInAttr(VReg, Flags); 3792 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3793 SDValue Addr = FIN; 3794 if (j) { 3795 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3796 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3797 } 3798 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3799 MachinePointerInfo(&*FuncArg, j)); 3800 MemOps.push_back(Store); 3801 ++GPR_idx; 3802 } 3803 ArgOffset += ArgSize; 3804 continue; 3805 } 3806 3807 switch (ObjectVT.getSimpleVT().SimpleTy) { 3808 default: llvm_unreachable("Unhandled argument type!"); 3809 case MVT::i1: 3810 case MVT::i32: 3811 case MVT::i64: 3812 if (Flags.isNest()) { 3813 // The 'nest' parameter, if any, is passed in R11. 3814 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3815 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3816 3817 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3818 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3819 3820 break; 3821 } 3822 3823 // These can be scalar arguments or elements of an integer array type 3824 // passed directly. Clang may use those instead of "byval" aggregate 3825 // types to avoid forcing arguments to memory unnecessarily. 3826 if (GPR_idx != Num_GPR_Regs) { 3827 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3828 FuncInfo->addLiveInAttr(VReg, Flags); 3829 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3830 3831 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3832 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3833 // value to MVT::i64 and then truncate to the correct register size. 3834 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3835 } else { 3836 if (CallConv == CallingConv::Fast) 3837 ComputeArgOffset(); 3838 3839 needsLoad = true; 3840 ArgSize = PtrByteSize; 3841 } 3842 if (CallConv != CallingConv::Fast || needsLoad) 3843 ArgOffset += 8; 3844 break; 3845 3846 case MVT::f32: 3847 case MVT::f64: 3848 // These can be scalar arguments or elements of a float array type 3849 // passed directly. The latter are used to implement ELFv2 homogenous 3850 // float aggregates. 3851 if (FPR_idx != Num_FPR_Regs) { 3852 unsigned VReg; 3853 3854 if (ObjectVT == MVT::f32) 3855 VReg = MF.addLiveIn(FPR[FPR_idx], 3856 Subtarget.hasP8Vector() 3857 ? &PPC::VSSRCRegClass 3858 : &PPC::F4RCRegClass); 3859 else 3860 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3861 ? &PPC::VSFRCRegClass 3862 : &PPC::F8RCRegClass); 3863 3864 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3865 ++FPR_idx; 3866 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3867 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3868 // once we support fp <-> gpr moves. 3869 3870 // This can only ever happen in the presence of f32 array types, 3871 // since otherwise we never run out of FPRs before running out 3872 // of GPRs. 3873 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3874 FuncInfo->addLiveInAttr(VReg, Flags); 3875 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3876 3877 if (ObjectVT == MVT::f32) { 3878 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3879 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3880 DAG.getConstant(32, dl, MVT::i32)); 3881 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3882 } 3883 3884 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3885 } else { 3886 if (CallConv == CallingConv::Fast) 3887 ComputeArgOffset(); 3888 3889 needsLoad = true; 3890 } 3891 3892 // When passing an array of floats, the array occupies consecutive 3893 // space in the argument area; only round up to the next doubleword 3894 // at the end of the array. Otherwise, each float takes 8 bytes. 3895 if (CallConv != CallingConv::Fast || needsLoad) { 3896 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3897 ArgOffset += ArgSize; 3898 if (Flags.isInConsecutiveRegsLast()) 3899 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3900 } 3901 break; 3902 case MVT::v4f32: 3903 case MVT::v4i32: 3904 case MVT::v8i16: 3905 case MVT::v16i8: 3906 case MVT::v2f64: 3907 case MVT::v2i64: 3908 case MVT::v1i128: 3909 case MVT::f128: 3910 if (!Subtarget.hasQPX()) { 3911 // These can be scalar arguments or elements of a vector array type 3912 // passed directly. The latter are used to implement ELFv2 homogenous 3913 // vector aggregates. 3914 if (VR_idx != Num_VR_Regs) { 3915 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3916 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3917 ++VR_idx; 3918 } else { 3919 if (CallConv == CallingConv::Fast) 3920 ComputeArgOffset(); 3921 needsLoad = true; 3922 } 3923 if (CallConv != CallingConv::Fast || needsLoad) 3924 ArgOffset += 16; 3925 break; 3926 } // not QPX 3927 3928 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 3929 "Invalid QPX parameter type"); 3930 LLVM_FALLTHROUGH; 3931 3932 case MVT::v4f64: 3933 case MVT::v4i1: 3934 // QPX vectors are treated like their scalar floating-point subregisters 3935 // (except that they're larger). 3936 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 3937 if (QFPR_idx != Num_QFPR_Regs) { 3938 const TargetRegisterClass *RC; 3939 switch (ObjectVT.getSimpleVT().SimpleTy) { 3940 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 3941 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 3942 default: RC = &PPC::QBRCRegClass; break; 3943 } 3944 3945 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 3946 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3947 ++QFPR_idx; 3948 } else { 3949 if (CallConv == CallingConv::Fast) 3950 ComputeArgOffset(); 3951 needsLoad = true; 3952 } 3953 if (CallConv != CallingConv::Fast || needsLoad) 3954 ArgOffset += Sz; 3955 break; 3956 } 3957 3958 // We need to load the argument to a virtual register if we determined 3959 // above that we ran out of physical registers of the appropriate type. 3960 if (needsLoad) { 3961 if (ObjSize < ArgSize && !isLittleEndian) 3962 CurArgOffset += ArgSize - ObjSize; 3963 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 3964 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3965 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 3966 } 3967 3968 InVals.push_back(ArgVal); 3969 } 3970 3971 // Area that is at least reserved in the caller of this function. 3972 unsigned MinReservedArea; 3973 if (HasParameterArea) 3974 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 3975 else 3976 MinReservedArea = LinkageSize; 3977 3978 // Set the size that is at least reserved in caller of this function. Tail 3979 // call optimized functions' reserved stack space needs to be aligned so that 3980 // taking the difference between two stack areas will result in an aligned 3981 // stack. 3982 MinReservedArea = 3983 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3984 FuncInfo->setMinReservedArea(MinReservedArea); 3985 3986 // If the function takes variable number of arguments, make a frame index for 3987 // the start of the first vararg value... for expansion of llvm.va_start. 3988 if (isVarArg) { 3989 int Depth = ArgOffset; 3990 3991 FuncInfo->setVarArgsFrameIndex( 3992 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 3993 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3994 3995 // If this function is vararg, store any remaining integer argument regs 3996 // to their spots on the stack so that they may be loaded by dereferencing 3997 // the result of va_next. 3998 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3999 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4000 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4001 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4002 SDValue Store = 4003 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4004 MemOps.push_back(Store); 4005 // Increment the address by four for the next argument to store 4006 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4007 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4008 } 4009 } 4010 4011 if (!MemOps.empty()) 4012 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4013 4014 return Chain; 4015 } 4016 4017 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4018 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4019 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4020 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4021 // TODO: add description of PPC stack frame format, or at least some docs. 4022 // 4023 MachineFunction &MF = DAG.getMachineFunction(); 4024 MachineFrameInfo &MFI = MF.getFrameInfo(); 4025 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4026 4027 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4028 bool isPPC64 = PtrVT == MVT::i64; 4029 // Potential tail calls could cause overwriting of argument stack slots. 4030 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4031 (CallConv == CallingConv::Fast)); 4032 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4033 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4034 unsigned ArgOffset = LinkageSize; 4035 // Area that is at least reserved in caller of this function. 4036 unsigned MinReservedArea = ArgOffset; 4037 4038 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4039 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4040 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4041 }; 4042 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4043 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4044 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4045 }; 4046 static const MCPhysReg VR[] = { 4047 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4048 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4049 }; 4050 4051 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4052 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4053 const unsigned Num_VR_Regs = array_lengthof( VR); 4054 4055 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4056 4057 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4058 4059 // In 32-bit non-varargs functions, the stack space for vectors is after the 4060 // stack space for non-vectors. We do not use this space unless we have 4061 // too many vectors to fit in registers, something that only occurs in 4062 // constructed examples:), but we have to walk the arglist to figure 4063 // that out...for the pathological case, compute VecArgOffset as the 4064 // start of the vector parameter area. Computing VecArgOffset is the 4065 // entire point of the following loop. 4066 unsigned VecArgOffset = ArgOffset; 4067 if (!isVarArg && !isPPC64) { 4068 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4069 ++ArgNo) { 4070 EVT ObjectVT = Ins[ArgNo].VT; 4071 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4072 4073 if (Flags.isByVal()) { 4074 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4075 unsigned ObjSize = Flags.getByValSize(); 4076 unsigned ArgSize = 4077 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4078 VecArgOffset += ArgSize; 4079 continue; 4080 } 4081 4082 switch(ObjectVT.getSimpleVT().SimpleTy) { 4083 default: llvm_unreachable("Unhandled argument type!"); 4084 case MVT::i1: 4085 case MVT::i32: 4086 case MVT::f32: 4087 VecArgOffset += 4; 4088 break; 4089 case MVT::i64: // PPC64 4090 case MVT::f64: 4091 // FIXME: We are guaranteed to be !isPPC64 at this point. 4092 // Does MVT::i64 apply? 4093 VecArgOffset += 8; 4094 break; 4095 case MVT::v4f32: 4096 case MVT::v4i32: 4097 case MVT::v8i16: 4098 case MVT::v16i8: 4099 // Nothing to do, we're only looking at Nonvector args here. 4100 break; 4101 } 4102 } 4103 } 4104 // We've found where the vector parameter area in memory is. Skip the 4105 // first 12 parameters; these don't use that memory. 4106 VecArgOffset = ((VecArgOffset+15)/16)*16; 4107 VecArgOffset += 12*16; 4108 4109 // Add DAG nodes to load the arguments or copy them out of registers. On 4110 // entry to a function on PPC, the arguments start after the linkage area, 4111 // although the first ones are often in registers. 4112 4113 SmallVector<SDValue, 8> MemOps; 4114 unsigned nAltivecParamsAtEnd = 0; 4115 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4116 unsigned CurArgIdx = 0; 4117 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4118 SDValue ArgVal; 4119 bool needsLoad = false; 4120 EVT ObjectVT = Ins[ArgNo].VT; 4121 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4122 unsigned ArgSize = ObjSize; 4123 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4124 if (Ins[ArgNo].isOrigArg()) { 4125 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4126 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4127 } 4128 unsigned CurArgOffset = ArgOffset; 4129 4130 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4131 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4132 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4133 if (isVarArg || isPPC64) { 4134 MinReservedArea = ((MinReservedArea+15)/16)*16; 4135 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4136 Flags, 4137 PtrByteSize); 4138 } else nAltivecParamsAtEnd++; 4139 } else 4140 // Calculate min reserved area. 4141 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4142 Flags, 4143 PtrByteSize); 4144 4145 // FIXME the codegen can be much improved in some cases. 4146 // We do not have to keep everything in memory. 4147 if (Flags.isByVal()) { 4148 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4149 4150 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4151 ObjSize = Flags.getByValSize(); 4152 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4153 // Objects of size 1 and 2 are right justified, everything else is 4154 // left justified. This means the memory address is adjusted forwards. 4155 if (ObjSize==1 || ObjSize==2) { 4156 CurArgOffset = CurArgOffset + (4 - ObjSize); 4157 } 4158 // The value of the object is its address. 4159 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4160 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4161 InVals.push_back(FIN); 4162 if (ObjSize==1 || ObjSize==2) { 4163 if (GPR_idx != Num_GPR_Regs) { 4164 unsigned VReg; 4165 if (isPPC64) 4166 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4167 else 4168 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4169 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4170 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4171 SDValue Store = 4172 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4173 MachinePointerInfo(&*FuncArg), ObjType); 4174 MemOps.push_back(Store); 4175 ++GPR_idx; 4176 } 4177 4178 ArgOffset += PtrByteSize; 4179 4180 continue; 4181 } 4182 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4183 // Store whatever pieces of the object are in registers 4184 // to memory. ArgOffset will be the address of the beginning 4185 // of the object. 4186 if (GPR_idx != Num_GPR_Regs) { 4187 unsigned VReg; 4188 if (isPPC64) 4189 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4190 else 4191 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4192 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4193 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4194 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4195 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4196 MachinePointerInfo(&*FuncArg, j)); 4197 MemOps.push_back(Store); 4198 ++GPR_idx; 4199 ArgOffset += PtrByteSize; 4200 } else { 4201 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4202 break; 4203 } 4204 } 4205 continue; 4206 } 4207 4208 switch (ObjectVT.getSimpleVT().SimpleTy) { 4209 default: llvm_unreachable("Unhandled argument type!"); 4210 case MVT::i1: 4211 case MVT::i32: 4212 if (!isPPC64) { 4213 if (GPR_idx != Num_GPR_Regs) { 4214 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4215 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4216 4217 if (ObjectVT == MVT::i1) 4218 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4219 4220 ++GPR_idx; 4221 } else { 4222 needsLoad = true; 4223 ArgSize = PtrByteSize; 4224 } 4225 // All int arguments reserve stack space in the Darwin ABI. 4226 ArgOffset += PtrByteSize; 4227 break; 4228 } 4229 LLVM_FALLTHROUGH; 4230 case MVT::i64: // PPC64 4231 if (GPR_idx != Num_GPR_Regs) { 4232 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4233 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4234 4235 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4236 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4237 // value to MVT::i64 and then truncate to the correct register size. 4238 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4239 4240 ++GPR_idx; 4241 } else { 4242 needsLoad = true; 4243 ArgSize = PtrByteSize; 4244 } 4245 // All int arguments reserve stack space in the Darwin ABI. 4246 ArgOffset += 8; 4247 break; 4248 4249 case MVT::f32: 4250 case MVT::f64: 4251 // Every 4 bytes of argument space consumes one of the GPRs available for 4252 // argument passing. 4253 if (GPR_idx != Num_GPR_Regs) { 4254 ++GPR_idx; 4255 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4256 ++GPR_idx; 4257 } 4258 if (FPR_idx != Num_FPR_Regs) { 4259 unsigned VReg; 4260 4261 if (ObjectVT == MVT::f32) 4262 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4263 else 4264 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4265 4266 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4267 ++FPR_idx; 4268 } else { 4269 needsLoad = true; 4270 } 4271 4272 // All FP arguments reserve stack space in the Darwin ABI. 4273 ArgOffset += isPPC64 ? 8 : ObjSize; 4274 break; 4275 case MVT::v4f32: 4276 case MVT::v4i32: 4277 case MVT::v8i16: 4278 case MVT::v16i8: 4279 // Note that vector arguments in registers don't reserve stack space, 4280 // except in varargs functions. 4281 if (VR_idx != Num_VR_Regs) { 4282 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4283 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4284 if (isVarArg) { 4285 while ((ArgOffset % 16) != 0) { 4286 ArgOffset += PtrByteSize; 4287 if (GPR_idx != Num_GPR_Regs) 4288 GPR_idx++; 4289 } 4290 ArgOffset += 16; 4291 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4292 } 4293 ++VR_idx; 4294 } else { 4295 if (!isVarArg && !isPPC64) { 4296 // Vectors go after all the nonvectors. 4297 CurArgOffset = VecArgOffset; 4298 VecArgOffset += 16; 4299 } else { 4300 // Vectors are aligned. 4301 ArgOffset = ((ArgOffset+15)/16)*16; 4302 CurArgOffset = ArgOffset; 4303 ArgOffset += 16; 4304 } 4305 needsLoad = true; 4306 } 4307 break; 4308 } 4309 4310 // We need to load the argument to a virtual register if we determined above 4311 // that we ran out of physical registers of the appropriate type. 4312 if (needsLoad) { 4313 int FI = MFI.CreateFixedObject(ObjSize, 4314 CurArgOffset + (ArgSize - ObjSize), 4315 isImmutable); 4316 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4317 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4318 } 4319 4320 InVals.push_back(ArgVal); 4321 } 4322 4323 // Allow for Altivec parameters at the end, if needed. 4324 if (nAltivecParamsAtEnd) { 4325 MinReservedArea = ((MinReservedArea+15)/16)*16; 4326 MinReservedArea += 16*nAltivecParamsAtEnd; 4327 } 4328 4329 // Area that is at least reserved in the caller of this function. 4330 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4331 4332 // Set the size that is at least reserved in caller of this function. Tail 4333 // call optimized functions' reserved stack space needs to be aligned so that 4334 // taking the difference between two stack areas will result in an aligned 4335 // stack. 4336 MinReservedArea = 4337 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4338 FuncInfo->setMinReservedArea(MinReservedArea); 4339 4340 // If the function takes variable number of arguments, make a frame index for 4341 // the start of the first vararg value... for expansion of llvm.va_start. 4342 if (isVarArg) { 4343 int Depth = ArgOffset; 4344 4345 FuncInfo->setVarArgsFrameIndex( 4346 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4347 Depth, true)); 4348 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4349 4350 // If this function is vararg, store any remaining integer argument regs 4351 // to their spots on the stack so that they may be loaded by dereferencing 4352 // the result of va_next. 4353 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4354 unsigned VReg; 4355 4356 if (isPPC64) 4357 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4358 else 4359 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4360 4361 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4362 SDValue Store = 4363 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4364 MemOps.push_back(Store); 4365 // Increment the address by four for the next argument to store 4366 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4367 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4368 } 4369 } 4370 4371 if (!MemOps.empty()) 4372 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4373 4374 return Chain; 4375 } 4376 4377 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4378 /// adjusted to accommodate the arguments for the tailcall. 4379 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4380 unsigned ParamSize) { 4381 4382 if (!isTailCall) return 0; 4383 4384 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4385 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4386 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4387 // Remember only if the new adjustment is bigger. 4388 if (SPDiff < FI->getTailCallSPDelta()) 4389 FI->setTailCallSPDelta(SPDiff); 4390 4391 return SPDiff; 4392 } 4393 4394 static bool isFunctionGlobalAddress(SDValue Callee); 4395 4396 static bool 4397 callsShareTOCBase(const Function *Caller, SDValue Callee, 4398 const TargetMachine &TM) { 4399 // If !G, Callee can be an external symbol. 4400 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4401 if (!G) 4402 return false; 4403 4404 // The medium and large code models are expected to provide a sufficiently 4405 // large TOC to provide all data addressing needs of a module with a 4406 // single TOC. Since each module will be addressed with a single TOC then we 4407 // only need to check that caller and callee don't cross dso boundaries. 4408 if (CodeModel::Medium == TM.getCodeModel() || 4409 CodeModel::Large == TM.getCodeModel()) 4410 return TM.shouldAssumeDSOLocal(*Caller->getParent(), G->getGlobal()); 4411 4412 // Otherwise we need to ensure callee and caller are in the same section, 4413 // since the linker may allocate multiple TOCs, and we don't know which 4414 // sections will belong to the same TOC base. 4415 4416 const GlobalValue *GV = G->getGlobal(); 4417 if (!GV->isStrongDefinitionForLinker()) 4418 return false; 4419 4420 // Any explicitly-specified sections and section prefixes must also match. 4421 // Also, if we're using -ffunction-sections, then each function is always in 4422 // a different section (the same is true for COMDAT functions). 4423 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4424 GV->getSection() != Caller->getSection()) 4425 return false; 4426 if (const auto *F = dyn_cast<Function>(GV)) { 4427 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4428 return false; 4429 } 4430 4431 // If the callee might be interposed, then we can't assume the ultimate call 4432 // target will be in the same section. Even in cases where we can assume that 4433 // interposition won't happen, in any case where the linker might insert a 4434 // stub to allow for interposition, we must generate code as though 4435 // interposition might occur. To understand why this matters, consider a 4436 // situation where: a -> b -> c where the arrows indicate calls. b and c are 4437 // in the same section, but a is in a different module (i.e. has a different 4438 // TOC base pointer). If the linker allows for interposition between b and c, 4439 // then it will generate a stub for the call edge between b and c which will 4440 // save the TOC pointer into the designated stack slot allocated by b. If we 4441 // return true here, and therefore allow a tail call between b and c, that 4442 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base 4443 // pointer into the stack slot allocated by a (where the a -> b stub saved 4444 // a's TOC base pointer). If we're not considering a tail call, but rather, 4445 // whether a nop is needed after the call instruction in b, because the linker 4446 // will insert a stub, it might complain about a missing nop if we omit it 4447 // (although many don't complain in this case). 4448 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4449 return false; 4450 4451 return true; 4452 } 4453 4454 static bool 4455 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4456 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4457 assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64()); 4458 4459 const unsigned PtrByteSize = 8; 4460 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4461 4462 static const MCPhysReg GPR[] = { 4463 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4464 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4465 }; 4466 static const MCPhysReg VR[] = { 4467 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4468 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4469 }; 4470 4471 const unsigned NumGPRs = array_lengthof(GPR); 4472 const unsigned NumFPRs = 13; 4473 const unsigned NumVRs = array_lengthof(VR); 4474 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4475 4476 unsigned NumBytes = LinkageSize; 4477 unsigned AvailableFPRs = NumFPRs; 4478 unsigned AvailableVRs = NumVRs; 4479 4480 for (const ISD::OutputArg& Param : Outs) { 4481 if (Param.Flags.isNest()) continue; 4482 4483 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4484 PtrByteSize, LinkageSize, ParamAreaSize, 4485 NumBytes, AvailableFPRs, AvailableVRs, 4486 Subtarget.hasQPX())) 4487 return true; 4488 } 4489 return false; 4490 } 4491 4492 static bool 4493 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) { 4494 if (CS.arg_size() != CallerFn->arg_size()) 4495 return false; 4496 4497 ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin(); 4498 ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end(); 4499 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4500 4501 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4502 const Value* CalleeArg = *CalleeArgIter; 4503 const Value* CallerArg = &(*CallerArgIter); 4504 if (CalleeArg == CallerArg) 4505 continue; 4506 4507 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4508 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4509 // } 4510 // 1st argument of callee is undef and has the same type as caller. 4511 if (CalleeArg->getType() == CallerArg->getType() && 4512 isa<UndefValue>(CalleeArg)) 4513 continue; 4514 4515 return false; 4516 } 4517 4518 return true; 4519 } 4520 4521 // Returns true if TCO is possible between the callers and callees 4522 // calling conventions. 4523 static bool 4524 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4525 CallingConv::ID CalleeCC) { 4526 // Tail calls are possible with fastcc and ccc. 4527 auto isTailCallableCC = [] (CallingConv::ID CC){ 4528 return CC == CallingConv::C || CC == CallingConv::Fast; 4529 }; 4530 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4531 return false; 4532 4533 // We can safely tail call both fastcc and ccc callees from a c calling 4534 // convention caller. If the caller is fastcc, we may have less stack space 4535 // than a non-fastcc caller with the same signature so disable tail-calls in 4536 // that case. 4537 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4538 } 4539 4540 bool 4541 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4542 SDValue Callee, 4543 CallingConv::ID CalleeCC, 4544 ImmutableCallSite CS, 4545 bool isVarArg, 4546 const SmallVectorImpl<ISD::OutputArg> &Outs, 4547 const SmallVectorImpl<ISD::InputArg> &Ins, 4548 SelectionDAG& DAG) const { 4549 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4550 4551 if (DisableSCO && !TailCallOpt) return false; 4552 4553 // Variadic argument functions are not supported. 4554 if (isVarArg) return false; 4555 4556 auto &Caller = DAG.getMachineFunction().getFunction(); 4557 // Check that the calling conventions are compatible for tco. 4558 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4559 return false; 4560 4561 // Caller contains any byval parameter is not supported. 4562 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4563 return false; 4564 4565 // Callee contains any byval parameter is not supported, too. 4566 // Note: This is a quick work around, because in some cases, e.g. 4567 // caller's stack size > callee's stack size, we are still able to apply 4568 // sibling call optimization. For example, gcc is able to do SCO for caller1 4569 // in the following example, but not for caller2. 4570 // struct test { 4571 // long int a; 4572 // char ary[56]; 4573 // } gTest; 4574 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4575 // b->a = v.a; 4576 // return 0; 4577 // } 4578 // void caller1(struct test a, struct test c, struct test *b) { 4579 // callee(gTest, b); } 4580 // void caller2(struct test *b) { callee(gTest, b); } 4581 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4582 return false; 4583 4584 // If callee and caller use different calling conventions, we cannot pass 4585 // parameters on stack since offsets for the parameter area may be different. 4586 if (Caller.getCallingConv() != CalleeCC && 4587 needStackSlotPassParameters(Subtarget, Outs)) 4588 return false; 4589 4590 // No TCO/SCO on indirect call because Caller have to restore its TOC 4591 if (!isFunctionGlobalAddress(Callee) && 4592 !isa<ExternalSymbolSDNode>(Callee)) 4593 return false; 4594 4595 // If the caller and callee potentially have different TOC bases then we 4596 // cannot tail call since we need to restore the TOC pointer after the call. 4597 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4598 if (!callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4599 return false; 4600 4601 // TCO allows altering callee ABI, so we don't have to check further. 4602 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4603 return true; 4604 4605 if (DisableSCO) return false; 4606 4607 // If callee use the same argument list that caller is using, then we can 4608 // apply SCO on this case. If it is not, then we need to check if callee needs 4609 // stack for passing arguments. 4610 if (!hasSameArgumentList(&Caller, CS) && 4611 needStackSlotPassParameters(Subtarget, Outs)) { 4612 return false; 4613 } 4614 4615 return true; 4616 } 4617 4618 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4619 /// for tail call optimization. Targets which want to do tail call 4620 /// optimization should implement this function. 4621 bool 4622 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4623 CallingConv::ID CalleeCC, 4624 bool isVarArg, 4625 const SmallVectorImpl<ISD::InputArg> &Ins, 4626 SelectionDAG& DAG) const { 4627 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4628 return false; 4629 4630 // Variable argument functions are not supported. 4631 if (isVarArg) 4632 return false; 4633 4634 MachineFunction &MF = DAG.getMachineFunction(); 4635 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4636 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4637 // Functions containing by val parameters are not supported. 4638 for (unsigned i = 0; i != Ins.size(); i++) { 4639 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4640 if (Flags.isByVal()) return false; 4641 } 4642 4643 // Non-PIC/GOT tail calls are supported. 4644 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4645 return true; 4646 4647 // At the moment we can only do local tail calls (in same module, hidden 4648 // or protected) if we are generating PIC. 4649 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4650 return G->getGlobal()->hasHiddenVisibility() 4651 || G->getGlobal()->hasProtectedVisibility(); 4652 } 4653 4654 return false; 4655 } 4656 4657 /// isCallCompatibleAddress - Return the immediate to use if the specified 4658 /// 32-bit value is representable in the immediate field of a BxA instruction. 4659 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4660 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4661 if (!C) return nullptr; 4662 4663 int Addr = C->getZExtValue(); 4664 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4665 SignExtend32<26>(Addr) != Addr) 4666 return nullptr; // Top 6 bits have to be sext of immediate. 4667 4668 return DAG 4669 .getConstant( 4670 (int)C->getZExtValue() >> 2, SDLoc(Op), 4671 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4672 .getNode(); 4673 } 4674 4675 namespace { 4676 4677 struct TailCallArgumentInfo { 4678 SDValue Arg; 4679 SDValue FrameIdxOp; 4680 int FrameIdx = 0; 4681 4682 TailCallArgumentInfo() = default; 4683 }; 4684 4685 } // end anonymous namespace 4686 4687 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4688 static void StoreTailCallArgumentsToStackSlot( 4689 SelectionDAG &DAG, SDValue Chain, 4690 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4691 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4692 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4693 SDValue Arg = TailCallArgs[i].Arg; 4694 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4695 int FI = TailCallArgs[i].FrameIdx; 4696 // Store relative to framepointer. 4697 MemOpChains.push_back(DAG.getStore( 4698 Chain, dl, Arg, FIN, 4699 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4700 } 4701 } 4702 4703 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4704 /// the appropriate stack slot for the tail call optimized function call. 4705 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4706 SDValue OldRetAddr, SDValue OldFP, 4707 int SPDiff, const SDLoc &dl) { 4708 if (SPDiff) { 4709 // Calculate the new stack slot for the return address. 4710 MachineFunction &MF = DAG.getMachineFunction(); 4711 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4712 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4713 bool isPPC64 = Subtarget.isPPC64(); 4714 int SlotSize = isPPC64 ? 8 : 4; 4715 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4716 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4717 NewRetAddrLoc, true); 4718 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4719 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4720 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4721 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4722 4723 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 4724 // slot as the FP is never overwritten. 4725 if (Subtarget.isDarwinABI()) { 4726 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 4727 int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc, 4728 true); 4729 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 4730 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 4731 MachinePointerInfo::getFixedStack( 4732 DAG.getMachineFunction(), NewFPIdx)); 4733 } 4734 } 4735 return Chain; 4736 } 4737 4738 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4739 /// the position of the argument. 4740 static void 4741 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4742 SDValue Arg, int SPDiff, unsigned ArgOffset, 4743 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4744 int Offset = ArgOffset + SPDiff; 4745 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4746 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4747 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4748 SDValue FIN = DAG.getFrameIndex(FI, VT); 4749 TailCallArgumentInfo Info; 4750 Info.Arg = Arg; 4751 Info.FrameIdxOp = FIN; 4752 Info.FrameIdx = FI; 4753 TailCallArguments.push_back(Info); 4754 } 4755 4756 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4757 /// stack slot. Returns the chain as result and the loaded frame pointers in 4758 /// LROpOut/FPOpout. Used when tail calling. 4759 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4760 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4761 SDValue &FPOpOut, const SDLoc &dl) const { 4762 if (SPDiff) { 4763 // Load the LR and FP stack slot for later adjusting. 4764 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4765 LROpOut = getReturnAddrFrameIndex(DAG); 4766 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4767 Chain = SDValue(LROpOut.getNode(), 1); 4768 4769 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 4770 // slot as the FP is never overwritten. 4771 if (Subtarget.isDarwinABI()) { 4772 FPOpOut = getFramePointerFrameIndex(DAG); 4773 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo()); 4774 Chain = SDValue(FPOpOut.getNode(), 1); 4775 } 4776 } 4777 return Chain; 4778 } 4779 4780 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4781 /// by "Src" to address "Dst" of size "Size". Alignment information is 4782 /// specified by the specific parameter attribute. The copy will be passed as 4783 /// a byval function parameter. 4784 /// Sometimes what we are copying is the end of a larger object, the part that 4785 /// does not fit in registers. 4786 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4787 SDValue Chain, ISD::ArgFlagsTy Flags, 4788 SelectionDAG &DAG, const SDLoc &dl) { 4789 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4790 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4791 false, false, false, MachinePointerInfo(), 4792 MachinePointerInfo()); 4793 } 4794 4795 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4796 /// tail calls. 4797 static void LowerMemOpCallTo( 4798 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4799 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4800 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4801 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4802 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4803 if (!isTailCall) { 4804 if (isVector) { 4805 SDValue StackPtr; 4806 if (isPPC64) 4807 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4808 else 4809 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4810 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4811 DAG.getConstant(ArgOffset, dl, PtrVT)); 4812 } 4813 MemOpChains.push_back( 4814 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4815 // Calculate and remember argument location. 4816 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4817 TailCallArguments); 4818 } 4819 4820 static void 4821 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4822 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4823 SDValue FPOp, 4824 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4825 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4826 // might overwrite each other in case of tail call optimization. 4827 SmallVector<SDValue, 8> MemOpChains2; 4828 // Do not flag preceding copytoreg stuff together with the following stuff. 4829 InFlag = SDValue(); 4830 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4831 MemOpChains2, dl); 4832 if (!MemOpChains2.empty()) 4833 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4834 4835 // Store the return address to the appropriate stack slot. 4836 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4837 4838 // Emit callseq_end just before tailcall node. 4839 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4840 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4841 InFlag = Chain.getValue(1); 4842 } 4843 4844 // Is this global address that of a function that can be called by name? (as 4845 // opposed to something that must hold a descriptor for an indirect call). 4846 static bool isFunctionGlobalAddress(SDValue Callee) { 4847 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4848 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4849 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4850 return false; 4851 4852 return G->getGlobal()->getValueType()->isFunctionTy(); 4853 } 4854 4855 return false; 4856 } 4857 4858 static unsigned 4859 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain, 4860 SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall, 4861 bool isPatchPoint, bool hasNest, 4862 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 4863 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4864 ImmutableCallSite CS, const PPCSubtarget &Subtarget) { 4865 bool isPPC64 = Subtarget.isPPC64(); 4866 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4867 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4868 4869 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4870 NodeTys.push_back(MVT::Other); // Returns a chain 4871 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4872 4873 unsigned CallOpc = PPCISD::CALL; 4874 4875 bool needIndirectCall = true; 4876 if (!isSVR4ABI || !isPPC64) 4877 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4878 // If this is an absolute destination address, use the munged value. 4879 Callee = SDValue(Dest, 0); 4880 needIndirectCall = false; 4881 } 4882 4883 // PC-relative references to external symbols should go through $stub, unless 4884 // we're building with the leopard linker or later, which automatically 4885 // synthesizes these stubs. 4886 const TargetMachine &TM = DAG.getTarget(); 4887 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 4888 const GlobalValue *GV = nullptr; 4889 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4890 GV = G->getGlobal(); 4891 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV); 4892 bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64; 4893 4894 if (isFunctionGlobalAddress(Callee)) { 4895 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4896 // A call to a TLS address is actually an indirect call to a 4897 // thread-specific pointer. 4898 unsigned OpFlags = 0; 4899 if (UsePlt) 4900 OpFlags = PPCII::MO_PLT; 4901 4902 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4903 // every direct call is) turn it into a TargetGlobalAddress / 4904 // TargetExternalSymbol node so that legalize doesn't hack it. 4905 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4906 Callee.getValueType(), 0, OpFlags); 4907 needIndirectCall = false; 4908 } 4909 4910 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4911 unsigned char OpFlags = 0; 4912 4913 if (UsePlt) 4914 OpFlags = PPCII::MO_PLT; 4915 4916 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4917 OpFlags); 4918 needIndirectCall = false; 4919 } 4920 4921 if (isPatchPoint) { 4922 // We'll form an invalid direct call when lowering a patchpoint; the full 4923 // sequence for an indirect call is complicated, and many of the 4924 // instructions introduced might have side effects (and, thus, can't be 4925 // removed later). The call itself will be removed as soon as the 4926 // argument/return lowering is complete, so the fact that it has the wrong 4927 // kind of operands should not really matter. 4928 needIndirectCall = false; 4929 } 4930 4931 if (needIndirectCall) { 4932 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 4933 // to do the call, we can't use PPCISD::CALL. 4934 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 4935 4936 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 4937 // Function pointers in the 64-bit SVR4 ABI do not point to the function 4938 // entry point, but to the function descriptor (the function entry point 4939 // address is part of the function descriptor though). 4940 // The function descriptor is a three doubleword structure with the 4941 // following fields: function entry point, TOC base address and 4942 // environment pointer. 4943 // Thus for a call through a function pointer, the following actions need 4944 // to be performed: 4945 // 1. Save the TOC of the caller in the TOC save area of its stack 4946 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 4947 // 2. Load the address of the function entry point from the function 4948 // descriptor. 4949 // 3. Load the TOC of the callee from the function descriptor into r2. 4950 // 4. Load the environment pointer from the function descriptor into 4951 // r11. 4952 // 5. Branch to the function entry point address. 4953 // 6. On return of the callee, the TOC of the caller needs to be 4954 // restored (this is done in FinishCall()). 4955 // 4956 // The loads are scheduled at the beginning of the call sequence, and the 4957 // register copies are flagged together to ensure that no other 4958 // operations can be scheduled in between. E.g. without flagging the 4959 // copies together, a TOC access in the caller could be scheduled between 4960 // the assignment of the callee TOC and the branch to the callee, which 4961 // results in the TOC access going through the TOC of the callee instead 4962 // of going through the TOC of the caller, which leads to incorrect code. 4963 4964 // Load the address of the function entry point from the function 4965 // descriptor. 4966 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 4967 if (LDChain.getValueType() == MVT::Glue) 4968 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 4969 4970 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 4971 ? (MachineMemOperand::MODereferenceable | 4972 MachineMemOperand::MOInvariant) 4973 : MachineMemOperand::MONone; 4974 4975 MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr); 4976 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 4977 /* Alignment = */ 8, MMOFlags); 4978 4979 // Load environment pointer into r11. 4980 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 4981 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 4982 SDValue LoadEnvPtr = 4983 DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16), 4984 /* Alignment = */ 8, MMOFlags); 4985 4986 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 4987 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 4988 SDValue TOCPtr = 4989 DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8), 4990 /* Alignment = */ 8, MMOFlags); 4991 4992 setUsesTOCBasePtr(DAG); 4993 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 4994 InFlag); 4995 Chain = TOCVal.getValue(0); 4996 InFlag = TOCVal.getValue(1); 4997 4998 // If the function call has an explicit 'nest' parameter, it takes the 4999 // place of the environment pointer. 5000 if (!hasNest) { 5001 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 5002 InFlag); 5003 5004 Chain = EnvVal.getValue(0); 5005 InFlag = EnvVal.getValue(1); 5006 } 5007 5008 MTCTROps[0] = Chain; 5009 MTCTROps[1] = LoadFuncPtr; 5010 MTCTROps[2] = InFlag; 5011 } 5012 5013 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 5014 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 5015 InFlag = Chain.getValue(1); 5016 5017 NodeTys.clear(); 5018 NodeTys.push_back(MVT::Other); 5019 NodeTys.push_back(MVT::Glue); 5020 Ops.push_back(Chain); 5021 CallOpc = PPCISD::BCTRL; 5022 Callee.setNode(nullptr); 5023 // Add use of X11 (holding environment pointer) 5024 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest) 5025 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 5026 // Add CTR register as callee so a bctr can be emitted later. 5027 if (isTailCall) 5028 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 5029 } 5030 5031 // If this is a direct call, pass the chain and the callee. 5032 if (Callee.getNode()) { 5033 Ops.push_back(Chain); 5034 Ops.push_back(Callee); 5035 } 5036 // If this is a tail call add stack pointer delta. 5037 if (isTailCall) 5038 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5039 5040 // Add argument registers to the end of the list so that they are known live 5041 // into the call. 5042 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5043 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5044 RegsToPass[i].second.getValueType())); 5045 5046 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live 5047 // into the call. 5048 // We do need to reserve X2 to appease the verifier for the PATCHPOINT. 5049 if (isSVR4ABI && isPPC64) { 5050 setUsesTOCBasePtr(DAG); 5051 5052 // We cannot add X2 as an operand here for PATCHPOINT, because there is no 5053 // way to mark dependencies as implicit here. We will add the X2 dependency 5054 // in EmitInstrWithCustomInserter. 5055 if (!isPatchPoint) 5056 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT)); 5057 } 5058 5059 return CallOpc; 5060 } 5061 5062 SDValue PPCTargetLowering::LowerCallResult( 5063 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5064 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5065 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5066 SmallVector<CCValAssign, 16> RVLocs; 5067 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5068 *DAG.getContext()); 5069 5070 CCRetInfo.AnalyzeCallResult( 5071 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5072 ? RetCC_PPC_Cold 5073 : RetCC_PPC); 5074 5075 // Copy all of the result registers out of their specified physreg. 5076 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5077 CCValAssign &VA = RVLocs[i]; 5078 assert(VA.isRegLoc() && "Can only return in registers!"); 5079 5080 SDValue Val = DAG.getCopyFromReg(Chain, dl, 5081 VA.getLocReg(), VA.getLocVT(), InFlag); 5082 Chain = Val.getValue(1); 5083 InFlag = Val.getValue(2); 5084 5085 switch (VA.getLocInfo()) { 5086 default: llvm_unreachable("Unknown loc info!"); 5087 case CCValAssign::Full: break; 5088 case CCValAssign::AExt: 5089 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5090 break; 5091 case CCValAssign::ZExt: 5092 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5093 DAG.getValueType(VA.getValVT())); 5094 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5095 break; 5096 case CCValAssign::SExt: 5097 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5098 DAG.getValueType(VA.getValVT())); 5099 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5100 break; 5101 } 5102 5103 InVals.push_back(Val); 5104 } 5105 5106 return Chain; 5107 } 5108 5109 SDValue PPCTargetLowering::FinishCall( 5110 CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg, 5111 bool isPatchPoint, bool hasNest, SelectionDAG &DAG, 5112 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag, 5113 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5114 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5115 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const { 5116 std::vector<EVT> NodeTys; 5117 SmallVector<SDValue, 8> Ops; 5118 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 5119 SPDiff, isTailCall, isPatchPoint, hasNest, 5120 RegsToPass, Ops, NodeTys, CS, Subtarget); 5121 5122 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5123 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 5124 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5125 5126 // When performing tail call optimization the callee pops its arguments off 5127 // the stack. Account for this here so these bytes can be pushed back on in 5128 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5129 int BytesCalleePops = 5130 (CallConv == CallingConv::Fast && 5131 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 5132 5133 // Add a register mask operand representing the call-preserved registers. 5134 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5135 const uint32_t *Mask = 5136 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 5137 assert(Mask && "Missing call preserved mask for calling convention"); 5138 Ops.push_back(DAG.getRegisterMask(Mask)); 5139 5140 if (InFlag.getNode()) 5141 Ops.push_back(InFlag); 5142 5143 // Emit tail call. 5144 if (isTailCall) { 5145 assert(((Callee.getOpcode() == ISD::Register && 5146 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5147 Callee.getOpcode() == ISD::TargetExternalSymbol || 5148 Callee.getOpcode() == ISD::TargetGlobalAddress || 5149 isa<ConstantSDNode>(Callee)) && 5150 "Expecting an global address, external symbol, absolute value or register"); 5151 5152 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5153 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 5154 } 5155 5156 // Add a NOP immediately after the branch instruction when using the 64-bit 5157 // SVR4 ABI. At link time, if caller and callee are in a different module and 5158 // thus have a different TOC, the call will be replaced with a call to a stub 5159 // function which saves the current TOC, loads the TOC of the callee and 5160 // branches to the callee. The NOP will be replaced with a load instruction 5161 // which restores the TOC of the caller from the TOC save slot of the current 5162 // stack frame. If caller and callee belong to the same module (and have the 5163 // same TOC), the NOP will remain unchanged. 5164 5165 MachineFunction &MF = DAG.getMachineFunction(); 5166 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() && 5167 !isPatchPoint) { 5168 if (CallOpc == PPCISD::BCTRL) { 5169 // This is a call through a function pointer. 5170 // Restore the caller TOC from the save area into R2. 5171 // See PrepareCall() for more information about calls through function 5172 // pointers in the 64-bit SVR4 ABI. 5173 // We are using a target-specific load with r2 hard coded, because the 5174 // result of a target-independent load would never go directly into r2, 5175 // since r2 is a reserved register (which prevents the register allocator 5176 // from allocating it), resulting in an additional register being 5177 // allocated and an unnecessary move instruction being generated. 5178 CallOpc = PPCISD::BCTRL_LOAD_TOC; 5179 5180 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5181 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 5182 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5183 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5184 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 5185 5186 // The address needs to go after the chain input but before the flag (or 5187 // any other variadic arguments). 5188 Ops.insert(std::next(Ops.begin()), AddTOC); 5189 } else if (CallOpc == PPCISD::CALL && 5190 !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) { 5191 // Otherwise insert NOP for non-local calls. 5192 CallOpc = PPCISD::CALL_NOP; 5193 } 5194 } 5195 5196 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 5197 InFlag = Chain.getValue(1); 5198 5199 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5200 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5201 InFlag, dl); 5202 if (!Ins.empty()) 5203 InFlag = Chain.getValue(1); 5204 5205 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 5206 Ins, dl, DAG, InVals); 5207 } 5208 5209 SDValue 5210 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5211 SmallVectorImpl<SDValue> &InVals) const { 5212 SelectionDAG &DAG = CLI.DAG; 5213 SDLoc &dl = CLI.DL; 5214 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5215 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5216 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5217 SDValue Chain = CLI.Chain; 5218 SDValue Callee = CLI.Callee; 5219 bool &isTailCall = CLI.IsTailCall; 5220 CallingConv::ID CallConv = CLI.CallConv; 5221 bool isVarArg = CLI.IsVarArg; 5222 bool isPatchPoint = CLI.IsPatchPoint; 5223 ImmutableCallSite CS = CLI.CS; 5224 5225 if (isTailCall) { 5226 if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall())) 5227 isTailCall = false; 5228 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5229 isTailCall = 5230 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 5231 isVarArg, Outs, Ins, DAG); 5232 else 5233 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5234 Ins, DAG); 5235 if (isTailCall) { 5236 ++NumTailCalls; 5237 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5238 ++NumSiblingCalls; 5239 5240 assert(isa<GlobalAddressSDNode>(Callee) && 5241 "Callee should be an llvm::Function object."); 5242 LLVM_DEBUG( 5243 const GlobalValue *GV = 5244 cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5245 const unsigned Width = 5246 80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0"); 5247 dbgs() << "TCO caller: " 5248 << left_justify(DAG.getMachineFunction().getName(), Width) 5249 << ", callee linkage: " << GV->getVisibility() << ", " 5250 << GV->getLinkage() << "\n"); 5251 } 5252 } 5253 5254 if (!isTailCall && CS && CS.isMustTailCall()) 5255 report_fatal_error("failed to perform tail call elimination on a call " 5256 "site marked musttail"); 5257 5258 // When long calls (i.e. indirect calls) are always used, calls are always 5259 // made via function pointer. If we have a function name, first translate it 5260 // into a pointer. 5261 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5262 !isTailCall) 5263 Callee = LowerGlobalAddress(Callee, DAG); 5264 5265 if (Subtarget.isSVR4ABI()) { 5266 if (Subtarget.isPPC64()) 5267 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 5268 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5269 dl, DAG, InVals, CS); 5270 else 5271 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 5272 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5273 dl, DAG, InVals, CS); 5274 } 5275 5276 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 5277 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5278 dl, DAG, InVals, CS); 5279 } 5280 5281 SDValue PPCTargetLowering::LowerCall_32SVR4( 5282 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5283 bool isTailCall, bool isPatchPoint, 5284 const SmallVectorImpl<ISD::OutputArg> &Outs, 5285 const SmallVectorImpl<SDValue> &OutVals, 5286 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5287 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5288 ImmutableCallSite CS) const { 5289 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5290 // of the 32-bit SVR4 ABI stack frame layout. 5291 5292 assert((CallConv == CallingConv::C || 5293 CallConv == CallingConv::Cold || 5294 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5295 5296 unsigned PtrByteSize = 4; 5297 5298 MachineFunction &MF = DAG.getMachineFunction(); 5299 5300 // Mark this function as potentially containing a function that contains a 5301 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5302 // and restoring the callers stack pointer in this functions epilog. This is 5303 // done because by tail calling the called function might overwrite the value 5304 // in this function's (MF) stack pointer stack slot 0(SP). 5305 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5306 CallConv == CallingConv::Fast) 5307 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5308 5309 // Count how many bytes are to be pushed on the stack, including the linkage 5310 // area, parameter list area and the part of the local variable space which 5311 // contains copies of aggregates which are passed by value. 5312 5313 // Assign locations to all of the outgoing arguments. 5314 SmallVector<CCValAssign, 16> ArgLocs; 5315 PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 5316 5317 // Reserve space for the linkage area on the stack. 5318 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5319 PtrByteSize); 5320 if (useSoftFloat()) 5321 CCInfo.PreAnalyzeCallOperands(Outs); 5322 5323 if (isVarArg) { 5324 // Handle fixed and variable vector arguments differently. 5325 // Fixed vector arguments go into registers as long as registers are 5326 // available. Variable vector arguments always go into memory. 5327 unsigned NumArgs = Outs.size(); 5328 5329 for (unsigned i = 0; i != NumArgs; ++i) { 5330 MVT ArgVT = Outs[i].VT; 5331 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5332 bool Result; 5333 5334 if (Outs[i].IsFixed) { 5335 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5336 CCInfo); 5337 } else { 5338 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5339 ArgFlags, CCInfo); 5340 } 5341 5342 if (Result) { 5343 #ifndef NDEBUG 5344 errs() << "Call operand #" << i << " has unhandled type " 5345 << EVT(ArgVT).getEVTString() << "\n"; 5346 #endif 5347 llvm_unreachable(nullptr); 5348 } 5349 } 5350 } else { 5351 // All arguments are treated the same. 5352 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5353 } 5354 CCInfo.clearWasPPCF128(); 5355 5356 // Assign locations to all of the outgoing aggregate by value arguments. 5357 SmallVector<CCValAssign, 16> ByValArgLocs; 5358 CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext()); 5359 5360 // Reserve stack space for the allocations in CCInfo. 5361 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 5362 5363 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5364 5365 // Size of the linkage area, parameter list area and the part of the local 5366 // space variable where copies of aggregates which are passed by value are 5367 // stored. 5368 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5369 5370 // Calculate by how many bytes the stack has to be adjusted in case of tail 5371 // call optimization. 5372 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5373 5374 // Adjust the stack pointer for the new arguments... 5375 // These operations are automatically eliminated by the prolog/epilog pass 5376 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5377 SDValue CallSeqStart = Chain; 5378 5379 // Load the return address and frame pointer so it can be moved somewhere else 5380 // later. 5381 SDValue LROp, FPOp; 5382 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5383 5384 // Set up a copy of the stack pointer for use loading and storing any 5385 // arguments that may not fit in the registers available for argument 5386 // passing. 5387 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5388 5389 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5390 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5391 SmallVector<SDValue, 8> MemOpChains; 5392 5393 bool seenFloatArg = false; 5394 // Walk the register/memloc assignments, inserting copies/loads. 5395 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 5396 i != e; 5397 ++i) { 5398 CCValAssign &VA = ArgLocs[i]; 5399 SDValue Arg = OutVals[i]; 5400 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5401 5402 if (Flags.isByVal()) { 5403 // Argument is an aggregate which is passed by value, thus we need to 5404 // create a copy of it in the local variable space of the current stack 5405 // frame (which is the stack frame of the caller) and pass the address of 5406 // this copy to the callee. 5407 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5408 CCValAssign &ByValVA = ByValArgLocs[j++]; 5409 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5410 5411 // Memory reserved in the local variable space of the callers stack frame. 5412 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5413 5414 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5415 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5416 StackPtr, PtrOff); 5417 5418 // Create a copy of the argument in the local area of the current 5419 // stack frame. 5420 SDValue MemcpyCall = 5421 CreateCopyOfByValArgument(Arg, PtrOff, 5422 CallSeqStart.getNode()->getOperand(0), 5423 Flags, DAG, dl); 5424 5425 // This must go outside the CALLSEQ_START..END. 5426 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5427 SDLoc(MemcpyCall)); 5428 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5429 NewCallSeqStart.getNode()); 5430 Chain = CallSeqStart = NewCallSeqStart; 5431 5432 // Pass the address of the aggregate copy on the stack either in a 5433 // physical register or in the parameter list area of the current stack 5434 // frame to the callee. 5435 Arg = PtrOff; 5436 } 5437 5438 // When useCRBits() is true, there can be i1 arguments. 5439 // It is because getRegisterType(MVT::i1) => MVT::i1, 5440 // and for other integer types getRegisterType() => MVT::i32. 5441 // Extend i1 and ensure callee will get i32. 5442 if (Arg.getValueType() == MVT::i1) 5443 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5444 dl, MVT::i32, Arg); 5445 5446 if (VA.isRegLoc()) { 5447 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5448 // Put argument in a physical register. 5449 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5450 } else { 5451 // Put argument in the parameter list area of the current stack frame. 5452 assert(VA.isMemLoc()); 5453 unsigned LocMemOffset = VA.getLocMemOffset(); 5454 5455 if (!isTailCall) { 5456 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5457 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5458 StackPtr, PtrOff); 5459 5460 MemOpChains.push_back( 5461 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5462 } else { 5463 // Calculate and remember argument location. 5464 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5465 TailCallArguments); 5466 } 5467 } 5468 } 5469 5470 if (!MemOpChains.empty()) 5471 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5472 5473 // Build a sequence of copy-to-reg nodes chained together with token chain 5474 // and flag operands which copy the outgoing args into the appropriate regs. 5475 SDValue InFlag; 5476 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5477 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5478 RegsToPass[i].second, InFlag); 5479 InFlag = Chain.getValue(1); 5480 } 5481 5482 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5483 // registers. 5484 if (isVarArg) { 5485 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5486 SDValue Ops[] = { Chain, InFlag }; 5487 5488 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5489 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5490 5491 InFlag = Chain.getValue(1); 5492 } 5493 5494 if (isTailCall) 5495 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5496 TailCallArguments); 5497 5498 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 5499 /* unused except on PPC64 ELFv1 */ false, DAG, 5500 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5501 NumBytes, Ins, InVals, CS); 5502 } 5503 5504 // Copy an argument into memory, being careful to do this outside the 5505 // call sequence for the call to which the argument belongs. 5506 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5507 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5508 SelectionDAG &DAG, const SDLoc &dl) const { 5509 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5510 CallSeqStart.getNode()->getOperand(0), 5511 Flags, DAG, dl); 5512 // The MEMCPY must go outside the CALLSEQ_START..END. 5513 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5514 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5515 SDLoc(MemcpyCall)); 5516 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5517 NewCallSeqStart.getNode()); 5518 return NewCallSeqStart; 5519 } 5520 5521 SDValue PPCTargetLowering::LowerCall_64SVR4( 5522 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5523 bool isTailCall, bool isPatchPoint, 5524 const SmallVectorImpl<ISD::OutputArg> &Outs, 5525 const SmallVectorImpl<SDValue> &OutVals, 5526 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5527 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5528 ImmutableCallSite CS) const { 5529 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5530 bool isLittleEndian = Subtarget.isLittleEndian(); 5531 unsigned NumOps = Outs.size(); 5532 bool hasNest = false; 5533 bool IsSibCall = false; 5534 5535 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5536 unsigned PtrByteSize = 8; 5537 5538 MachineFunction &MF = DAG.getMachineFunction(); 5539 5540 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5541 IsSibCall = true; 5542 5543 // Mark this function as potentially containing a function that contains a 5544 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5545 // and restoring the callers stack pointer in this functions epilog. This is 5546 // done because by tail calling the called function might overwrite the value 5547 // in this function's (MF) stack pointer stack slot 0(SP). 5548 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5549 CallConv == CallingConv::Fast) 5550 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5551 5552 assert(!(CallConv == CallingConv::Fast && isVarArg) && 5553 "fastcc not supported on varargs functions"); 5554 5555 // Count how many bytes are to be pushed on the stack, including the linkage 5556 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5557 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5558 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5559 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5560 unsigned NumBytes = LinkageSize; 5561 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5562 unsigned &QFPR_idx = FPR_idx; 5563 5564 static const MCPhysReg GPR[] = { 5565 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5566 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5567 }; 5568 static const MCPhysReg VR[] = { 5569 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5570 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5571 }; 5572 5573 const unsigned NumGPRs = array_lengthof(GPR); 5574 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5575 const unsigned NumVRs = array_lengthof(VR); 5576 const unsigned NumQFPRs = NumFPRs; 5577 5578 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5579 // can be passed to the callee in registers. 5580 // For the fast calling convention, there is another check below. 5581 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5582 bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast; 5583 if (!HasParameterArea) { 5584 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5585 unsigned AvailableFPRs = NumFPRs; 5586 unsigned AvailableVRs = NumVRs; 5587 unsigned NumBytesTmp = NumBytes; 5588 for (unsigned i = 0; i != NumOps; ++i) { 5589 if (Outs[i].Flags.isNest()) continue; 5590 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5591 PtrByteSize, LinkageSize, ParamAreaSize, 5592 NumBytesTmp, AvailableFPRs, AvailableVRs, 5593 Subtarget.hasQPX())) 5594 HasParameterArea = true; 5595 } 5596 } 5597 5598 // When using the fast calling convention, we don't provide backing for 5599 // arguments that will be in registers. 5600 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5601 5602 // Avoid allocating parameter area for fastcc functions if all the arguments 5603 // can be passed in the registers. 5604 if (CallConv == CallingConv::Fast) 5605 HasParameterArea = false; 5606 5607 // Add up all the space actually used. 5608 for (unsigned i = 0; i != NumOps; ++i) { 5609 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5610 EVT ArgVT = Outs[i].VT; 5611 EVT OrigVT = Outs[i].ArgVT; 5612 5613 if (Flags.isNest()) 5614 continue; 5615 5616 if (CallConv == CallingConv::Fast) { 5617 if (Flags.isByVal()) { 5618 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5619 if (NumGPRsUsed > NumGPRs) 5620 HasParameterArea = true; 5621 } else { 5622 switch (ArgVT.getSimpleVT().SimpleTy) { 5623 default: llvm_unreachable("Unexpected ValueType for argument!"); 5624 case MVT::i1: 5625 case MVT::i32: 5626 case MVT::i64: 5627 if (++NumGPRsUsed <= NumGPRs) 5628 continue; 5629 break; 5630 case MVT::v4i32: 5631 case MVT::v8i16: 5632 case MVT::v16i8: 5633 case MVT::v2f64: 5634 case MVT::v2i64: 5635 case MVT::v1i128: 5636 case MVT::f128: 5637 if (++NumVRsUsed <= NumVRs) 5638 continue; 5639 break; 5640 case MVT::v4f32: 5641 // When using QPX, this is handled like a FP register, otherwise, it 5642 // is an Altivec register. 5643 if (Subtarget.hasQPX()) { 5644 if (++NumFPRsUsed <= NumFPRs) 5645 continue; 5646 } else { 5647 if (++NumVRsUsed <= NumVRs) 5648 continue; 5649 } 5650 break; 5651 case MVT::f32: 5652 case MVT::f64: 5653 case MVT::v4f64: // QPX 5654 case MVT::v4i1: // QPX 5655 if (++NumFPRsUsed <= NumFPRs) 5656 continue; 5657 break; 5658 } 5659 HasParameterArea = true; 5660 } 5661 } 5662 5663 /* Respect alignment of argument on the stack. */ 5664 unsigned Align = 5665 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5666 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 5667 5668 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5669 if (Flags.isInConsecutiveRegsLast()) 5670 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5671 } 5672 5673 unsigned NumBytesActuallyUsed = NumBytes; 5674 5675 // In the old ELFv1 ABI, 5676 // the prolog code of the callee may store up to 8 GPR argument registers to 5677 // the stack, allowing va_start to index over them in memory if its varargs. 5678 // Because we cannot tell if this is needed on the caller side, we have to 5679 // conservatively assume that it is needed. As such, make sure we have at 5680 // least enough stack space for the caller to store the 8 GPRs. 5681 // In the ELFv2 ABI, we allocate the parameter area iff a callee 5682 // really requires memory operands, e.g. a vararg function. 5683 if (HasParameterArea) 5684 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5685 else 5686 NumBytes = LinkageSize; 5687 5688 // Tail call needs the stack to be aligned. 5689 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5690 CallConv == CallingConv::Fast) 5691 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5692 5693 int SPDiff = 0; 5694 5695 // Calculate by how many bytes the stack has to be adjusted in case of tail 5696 // call optimization. 5697 if (!IsSibCall) 5698 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5699 5700 // To protect arguments on the stack from being clobbered in a tail call, 5701 // force all the loads to happen before doing any other lowering. 5702 if (isTailCall) 5703 Chain = DAG.getStackArgumentTokenFactor(Chain); 5704 5705 // Adjust the stack pointer for the new arguments... 5706 // These operations are automatically eliminated by the prolog/epilog pass 5707 if (!IsSibCall) 5708 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5709 SDValue CallSeqStart = Chain; 5710 5711 // Load the return address and frame pointer so it can be move somewhere else 5712 // later. 5713 SDValue LROp, FPOp; 5714 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5715 5716 // Set up a copy of the stack pointer for use loading and storing any 5717 // arguments that may not fit in the registers available for argument 5718 // passing. 5719 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5720 5721 // Figure out which arguments are going to go in registers, and which in 5722 // memory. Also, if this is a vararg function, floating point operations 5723 // must be stored to our stack, and loaded into integer regs as well, if 5724 // any integer regs are available for argument passing. 5725 unsigned ArgOffset = LinkageSize; 5726 5727 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5728 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5729 5730 SmallVector<SDValue, 8> MemOpChains; 5731 for (unsigned i = 0; i != NumOps; ++i) { 5732 SDValue Arg = OutVals[i]; 5733 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5734 EVT ArgVT = Outs[i].VT; 5735 EVT OrigVT = Outs[i].ArgVT; 5736 5737 // PtrOff will be used to store the current argument to the stack if a 5738 // register cannot be found for it. 5739 SDValue PtrOff; 5740 5741 // We re-align the argument offset for each argument, except when using the 5742 // fast calling convention, when we need to make sure we do that only when 5743 // we'll actually use a stack slot. 5744 auto ComputePtrOff = [&]() { 5745 /* Respect alignment of argument on the stack. */ 5746 unsigned Align = 5747 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5748 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 5749 5750 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5751 5752 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5753 }; 5754 5755 if (CallConv != CallingConv::Fast) { 5756 ComputePtrOff(); 5757 5758 /* Compute GPR index associated with argument offset. */ 5759 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 5760 GPR_idx = std::min(GPR_idx, NumGPRs); 5761 } 5762 5763 // Promote integers to 64-bit values. 5764 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 5765 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5766 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5767 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5768 } 5769 5770 // FIXME memcpy is used way more than necessary. Correctness first. 5771 // Note: "by value" is code for passing a structure by value, not 5772 // basic types. 5773 if (Flags.isByVal()) { 5774 // Note: Size includes alignment padding, so 5775 // struct x { short a; char b; } 5776 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 5777 // These are the proper values we need for right-justifying the 5778 // aggregate in a parameter register. 5779 unsigned Size = Flags.getByValSize(); 5780 5781 // An empty aggregate parameter takes up no storage and no 5782 // registers. 5783 if (Size == 0) 5784 continue; 5785 5786 if (CallConv == CallingConv::Fast) 5787 ComputePtrOff(); 5788 5789 // All aggregates smaller than 8 bytes must be passed right-justified. 5790 if (Size==1 || Size==2 || Size==4) { 5791 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 5792 if (GPR_idx != NumGPRs) { 5793 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5794 MachinePointerInfo(), VT); 5795 MemOpChains.push_back(Load.getValue(1)); 5796 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5797 5798 ArgOffset += PtrByteSize; 5799 continue; 5800 } 5801 } 5802 5803 if (GPR_idx == NumGPRs && Size < 8) { 5804 SDValue AddPtr = PtrOff; 5805 if (!isLittleEndian) { 5806 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5807 PtrOff.getValueType()); 5808 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5809 } 5810 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5811 CallSeqStart, 5812 Flags, DAG, dl); 5813 ArgOffset += PtrByteSize; 5814 continue; 5815 } 5816 // Copy entire object into memory. There are cases where gcc-generated 5817 // code assumes it is there, even if it could be put entirely into 5818 // registers. (This is not what the doc says.) 5819 5820 // FIXME: The above statement is likely due to a misunderstanding of the 5821 // documents. All arguments must be copied into the parameter area BY 5822 // THE CALLEE in the event that the callee takes the address of any 5823 // formal argument. That has not yet been implemented. However, it is 5824 // reasonable to use the stack area as a staging area for the register 5825 // load. 5826 5827 // Skip this for small aggregates, as we will use the same slot for a 5828 // right-justified copy, below. 5829 if (Size >= 8) 5830 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5831 CallSeqStart, 5832 Flags, DAG, dl); 5833 5834 // When a register is available, pass a small aggregate right-justified. 5835 if (Size < 8 && GPR_idx != NumGPRs) { 5836 // The easiest way to get this right-justified in a register 5837 // is to copy the structure into the rightmost portion of a 5838 // local variable slot, then load the whole slot into the 5839 // register. 5840 // FIXME: The memcpy seems to produce pretty awful code for 5841 // small aggregates, particularly for packed ones. 5842 // FIXME: It would be preferable to use the slot in the 5843 // parameter save area instead of a new local variable. 5844 SDValue AddPtr = PtrOff; 5845 if (!isLittleEndian) { 5846 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5847 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5848 } 5849 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5850 CallSeqStart, 5851 Flags, DAG, dl); 5852 5853 // Load the slot into the register. 5854 SDValue Load = 5855 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 5856 MemOpChains.push_back(Load.getValue(1)); 5857 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5858 5859 // Done with this argument. 5860 ArgOffset += PtrByteSize; 5861 continue; 5862 } 5863 5864 // For aggregates larger than PtrByteSize, copy the pieces of the 5865 // object that fit into registers from the parameter save area. 5866 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5867 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5868 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5869 if (GPR_idx != NumGPRs) { 5870 SDValue Load = 5871 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 5872 MemOpChains.push_back(Load.getValue(1)); 5873 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5874 ArgOffset += PtrByteSize; 5875 } else { 5876 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5877 break; 5878 } 5879 } 5880 continue; 5881 } 5882 5883 switch (Arg.getSimpleValueType().SimpleTy) { 5884 default: llvm_unreachable("Unexpected ValueType for argument!"); 5885 case MVT::i1: 5886 case MVT::i32: 5887 case MVT::i64: 5888 if (Flags.isNest()) { 5889 // The 'nest' parameter, if any, is passed in R11. 5890 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 5891 hasNest = true; 5892 break; 5893 } 5894 5895 // These can be scalar arguments or elements of an integer array type 5896 // passed directly. Clang may use those instead of "byval" aggregate 5897 // types to avoid forcing arguments to memory unnecessarily. 5898 if (GPR_idx != NumGPRs) { 5899 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5900 } else { 5901 if (CallConv == CallingConv::Fast) 5902 ComputePtrOff(); 5903 5904 assert(HasParameterArea && 5905 "Parameter area must exist to pass an argument in memory."); 5906 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5907 true, isTailCall, false, MemOpChains, 5908 TailCallArguments, dl); 5909 if (CallConv == CallingConv::Fast) 5910 ArgOffset += PtrByteSize; 5911 } 5912 if (CallConv != CallingConv::Fast) 5913 ArgOffset += PtrByteSize; 5914 break; 5915 case MVT::f32: 5916 case MVT::f64: { 5917 // These can be scalar arguments or elements of a float array type 5918 // passed directly. The latter are used to implement ELFv2 homogenous 5919 // float aggregates. 5920 5921 // Named arguments go into FPRs first, and once they overflow, the 5922 // remaining arguments go into GPRs and then the parameter save area. 5923 // Unnamed arguments for vararg functions always go to GPRs and 5924 // then the parameter save area. For now, put all arguments to vararg 5925 // routines always in both locations (FPR *and* GPR or stack slot). 5926 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 5927 bool NeededLoad = false; 5928 5929 // First load the argument into the next available FPR. 5930 if (FPR_idx != NumFPRs) 5931 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5932 5933 // Next, load the argument into GPR or stack slot if needed. 5934 if (!NeedGPROrStack) 5935 ; 5936 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 5937 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 5938 // once we support fp <-> gpr moves. 5939 5940 // In the non-vararg case, this can only ever happen in the 5941 // presence of f32 array types, since otherwise we never run 5942 // out of FPRs before running out of GPRs. 5943 SDValue ArgVal; 5944 5945 // Double values are always passed in a single GPR. 5946 if (Arg.getValueType() != MVT::f32) { 5947 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 5948 5949 // Non-array float values are extended and passed in a GPR. 5950 } else if (!Flags.isInConsecutiveRegs()) { 5951 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5952 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5953 5954 // If we have an array of floats, we collect every odd element 5955 // together with its predecessor into one GPR. 5956 } else if (ArgOffset % PtrByteSize != 0) { 5957 SDValue Lo, Hi; 5958 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 5959 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5960 if (!isLittleEndian) 5961 std::swap(Lo, Hi); 5962 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 5963 5964 // The final element, if even, goes into the first half of a GPR. 5965 } else if (Flags.isInConsecutiveRegsLast()) { 5966 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5967 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5968 if (!isLittleEndian) 5969 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 5970 DAG.getConstant(32, dl, MVT::i32)); 5971 5972 // Non-final even elements are skipped; they will be handled 5973 // together the with subsequent argument on the next go-around. 5974 } else 5975 ArgVal = SDValue(); 5976 5977 if (ArgVal.getNode()) 5978 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 5979 } else { 5980 if (CallConv == CallingConv::Fast) 5981 ComputePtrOff(); 5982 5983 // Single-precision floating-point values are mapped to the 5984 // second (rightmost) word of the stack doubleword. 5985 if (Arg.getValueType() == MVT::f32 && 5986 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 5987 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5988 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5989 } 5990 5991 assert(HasParameterArea && 5992 "Parameter area must exist to pass an argument in memory."); 5993 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5994 true, isTailCall, false, MemOpChains, 5995 TailCallArguments, dl); 5996 5997 NeededLoad = true; 5998 } 5999 // When passing an array of floats, the array occupies consecutive 6000 // space in the argument area; only round up to the next doubleword 6001 // at the end of the array. Otherwise, each float takes 8 bytes. 6002 if (CallConv != CallingConv::Fast || NeededLoad) { 6003 ArgOffset += (Arg.getValueType() == MVT::f32 && 6004 Flags.isInConsecutiveRegs()) ? 4 : 8; 6005 if (Flags.isInConsecutiveRegsLast()) 6006 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6007 } 6008 break; 6009 } 6010 case MVT::v4f32: 6011 case MVT::v4i32: 6012 case MVT::v8i16: 6013 case MVT::v16i8: 6014 case MVT::v2f64: 6015 case MVT::v2i64: 6016 case MVT::v1i128: 6017 case MVT::f128: 6018 if (!Subtarget.hasQPX()) { 6019 // These can be scalar arguments or elements of a vector array type 6020 // passed directly. The latter are used to implement ELFv2 homogenous 6021 // vector aggregates. 6022 6023 // For a varargs call, named arguments go into VRs or on the stack as 6024 // usual; unnamed arguments always go to the stack or the corresponding 6025 // GPRs when within range. For now, we always put the value in both 6026 // locations (or even all three). 6027 if (isVarArg) { 6028 assert(HasParameterArea && 6029 "Parameter area must exist if we have a varargs call."); 6030 // We could elide this store in the case where the object fits 6031 // entirely in R registers. Maybe later. 6032 SDValue Store = 6033 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6034 MemOpChains.push_back(Store); 6035 if (VR_idx != NumVRs) { 6036 SDValue Load = 6037 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6038 MemOpChains.push_back(Load.getValue(1)); 6039 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6040 } 6041 ArgOffset += 16; 6042 for (unsigned i=0; i<16; i+=PtrByteSize) { 6043 if (GPR_idx == NumGPRs) 6044 break; 6045 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6046 DAG.getConstant(i, dl, PtrVT)); 6047 SDValue Load = 6048 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6049 MemOpChains.push_back(Load.getValue(1)); 6050 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6051 } 6052 break; 6053 } 6054 6055 // Non-varargs Altivec params go into VRs or on the stack. 6056 if (VR_idx != NumVRs) { 6057 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6058 } else { 6059 if (CallConv == CallingConv::Fast) 6060 ComputePtrOff(); 6061 6062 assert(HasParameterArea && 6063 "Parameter area must exist to pass an argument in memory."); 6064 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6065 true, isTailCall, true, MemOpChains, 6066 TailCallArguments, dl); 6067 if (CallConv == CallingConv::Fast) 6068 ArgOffset += 16; 6069 } 6070 6071 if (CallConv != CallingConv::Fast) 6072 ArgOffset += 16; 6073 break; 6074 } // not QPX 6075 6076 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 6077 "Invalid QPX parameter type"); 6078 6079 LLVM_FALLTHROUGH; 6080 case MVT::v4f64: 6081 case MVT::v4i1: { 6082 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 6083 if (isVarArg) { 6084 assert(HasParameterArea && 6085 "Parameter area must exist if we have a varargs call."); 6086 // We could elide this store in the case where the object fits 6087 // entirely in R registers. Maybe later. 6088 SDValue Store = 6089 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6090 MemOpChains.push_back(Store); 6091 if (QFPR_idx != NumQFPRs) { 6092 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 6093 PtrOff, MachinePointerInfo()); 6094 MemOpChains.push_back(Load.getValue(1)); 6095 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 6096 } 6097 ArgOffset += (IsF32 ? 16 : 32); 6098 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 6099 if (GPR_idx == NumGPRs) 6100 break; 6101 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6102 DAG.getConstant(i, dl, PtrVT)); 6103 SDValue Load = 6104 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6105 MemOpChains.push_back(Load.getValue(1)); 6106 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6107 } 6108 break; 6109 } 6110 6111 // Non-varargs QPX params go into registers or on the stack. 6112 if (QFPR_idx != NumQFPRs) { 6113 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6114 } else { 6115 if (CallConv == CallingConv::Fast) 6116 ComputePtrOff(); 6117 6118 assert(HasParameterArea && 6119 "Parameter area must exist to pass an argument in memory."); 6120 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6121 true, isTailCall, true, MemOpChains, 6122 TailCallArguments, dl); 6123 if (CallConv == CallingConv::Fast) 6124 ArgOffset += (IsF32 ? 16 : 32); 6125 } 6126 6127 if (CallConv != CallingConv::Fast) 6128 ArgOffset += (IsF32 ? 16 : 32); 6129 break; 6130 } 6131 } 6132 } 6133 6134 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6135 "mismatch in size of parameter area"); 6136 (void)NumBytesActuallyUsed; 6137 6138 if (!MemOpChains.empty()) 6139 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6140 6141 // Check if this is an indirect call (MTCTR/BCTRL). 6142 // See PrepareCall() for more information about calls through function 6143 // pointers in the 64-bit SVR4 ABI. 6144 if (!isTailCall && !isPatchPoint && 6145 !isFunctionGlobalAddress(Callee) && 6146 !isa<ExternalSymbolSDNode>(Callee)) { 6147 // Load r2 into a virtual register and store it to the TOC save area. 6148 setUsesTOCBasePtr(DAG); 6149 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6150 // TOC save area offset. 6151 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6152 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6153 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6154 Chain = DAG.getStore( 6155 Val.getValue(1), dl, Val, AddPtr, 6156 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 6157 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6158 // This does not mean the MTCTR instruction must use R12; it's easier 6159 // to model this as an extra parameter, so do that. 6160 if (isELFv2ABI && !isPatchPoint) 6161 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6162 } 6163 6164 // Build a sequence of copy-to-reg nodes chained together with token chain 6165 // and flag operands which copy the outgoing args into the appropriate regs. 6166 SDValue InFlag; 6167 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6168 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6169 RegsToPass[i].second, InFlag); 6170 InFlag = Chain.getValue(1); 6171 } 6172 6173 if (isTailCall && !IsSibCall) 6174 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6175 TailCallArguments); 6176 6177 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest, 6178 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 6179 SPDiff, NumBytes, Ins, InVals, CS); 6180 } 6181 6182 SDValue PPCTargetLowering::LowerCall_Darwin( 6183 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 6184 bool isTailCall, bool isPatchPoint, 6185 const SmallVectorImpl<ISD::OutputArg> &Outs, 6186 const SmallVectorImpl<SDValue> &OutVals, 6187 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6188 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6189 ImmutableCallSite CS) const { 6190 unsigned NumOps = Outs.size(); 6191 6192 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6193 bool isPPC64 = PtrVT == MVT::i64; 6194 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6195 6196 MachineFunction &MF = DAG.getMachineFunction(); 6197 6198 // Mark this function as potentially containing a function that contains a 6199 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6200 // and restoring the callers stack pointer in this functions epilog. This is 6201 // done because by tail calling the called function might overwrite the value 6202 // in this function's (MF) stack pointer stack slot 0(SP). 6203 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6204 CallConv == CallingConv::Fast) 6205 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6206 6207 // Count how many bytes are to be pushed on the stack, including the linkage 6208 // area, and parameter passing area. We start with 24/48 bytes, which is 6209 // prereserved space for [SP][CR][LR][3 x unused]. 6210 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6211 unsigned NumBytes = LinkageSize; 6212 6213 // Add up all the space actually used. 6214 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6215 // they all go in registers, but we must reserve stack space for them for 6216 // possible use by the caller. In varargs or 64-bit calls, parameters are 6217 // assigned stack space in order, with padding so Altivec parameters are 6218 // 16-byte aligned. 6219 unsigned nAltivecParamsAtEnd = 0; 6220 for (unsigned i = 0; i != NumOps; ++i) { 6221 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6222 EVT ArgVT = Outs[i].VT; 6223 // Varargs Altivec parameters are padded to a 16 byte boundary. 6224 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6225 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6226 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6227 if (!isVarArg && !isPPC64) { 6228 // Non-varargs Altivec parameters go after all the non-Altivec 6229 // parameters; handle those later so we know how much padding we need. 6230 nAltivecParamsAtEnd++; 6231 continue; 6232 } 6233 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6234 NumBytes = ((NumBytes+15)/16)*16; 6235 } 6236 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6237 } 6238 6239 // Allow for Altivec parameters at the end, if needed. 6240 if (nAltivecParamsAtEnd) { 6241 NumBytes = ((NumBytes+15)/16)*16; 6242 NumBytes += 16*nAltivecParamsAtEnd; 6243 } 6244 6245 // The prolog code of the callee may store up to 8 GPR argument registers to 6246 // the stack, allowing va_start to index over them in memory if its varargs. 6247 // Because we cannot tell if this is needed on the caller side, we have to 6248 // conservatively assume that it is needed. As such, make sure we have at 6249 // least enough stack space for the caller to store the 8 GPRs. 6250 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6251 6252 // Tail call needs the stack to be aligned. 6253 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6254 CallConv == CallingConv::Fast) 6255 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6256 6257 // Calculate by how many bytes the stack has to be adjusted in case of tail 6258 // call optimization. 6259 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 6260 6261 // To protect arguments on the stack from being clobbered in a tail call, 6262 // force all the loads to happen before doing any other lowering. 6263 if (isTailCall) 6264 Chain = DAG.getStackArgumentTokenFactor(Chain); 6265 6266 // Adjust the stack pointer for the new arguments... 6267 // These operations are automatically eliminated by the prolog/epilog pass 6268 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6269 SDValue CallSeqStart = Chain; 6270 6271 // Load the return address and frame pointer so it can be move somewhere else 6272 // later. 6273 SDValue LROp, FPOp; 6274 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6275 6276 // Set up a copy of the stack pointer for use loading and storing any 6277 // arguments that may not fit in the registers available for argument 6278 // passing. 6279 SDValue StackPtr; 6280 if (isPPC64) 6281 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6282 else 6283 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6284 6285 // Figure out which arguments are going to go in registers, and which in 6286 // memory. Also, if this is a vararg function, floating point operations 6287 // must be stored to our stack, and loaded into integer regs as well, if 6288 // any integer regs are available for argument passing. 6289 unsigned ArgOffset = LinkageSize; 6290 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6291 6292 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6293 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6294 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6295 }; 6296 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6297 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6298 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6299 }; 6300 static const MCPhysReg VR[] = { 6301 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6302 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6303 }; 6304 const unsigned NumGPRs = array_lengthof(GPR_32); 6305 const unsigned NumFPRs = 13; 6306 const unsigned NumVRs = array_lengthof(VR); 6307 6308 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6309 6310 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6311 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6312 6313 SmallVector<SDValue, 8> MemOpChains; 6314 for (unsigned i = 0; i != NumOps; ++i) { 6315 SDValue Arg = OutVals[i]; 6316 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6317 6318 // PtrOff will be used to store the current argument to the stack if a 6319 // register cannot be found for it. 6320 SDValue PtrOff; 6321 6322 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6323 6324 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6325 6326 // On PPC64, promote integers to 64-bit values. 6327 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6328 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6329 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6330 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6331 } 6332 6333 // FIXME memcpy is used way more than necessary. Correctness first. 6334 // Note: "by value" is code for passing a structure by value, not 6335 // basic types. 6336 if (Flags.isByVal()) { 6337 unsigned Size = Flags.getByValSize(); 6338 // Very small objects are passed right-justified. Everything else is 6339 // passed left-justified. 6340 if (Size==1 || Size==2) { 6341 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6342 if (GPR_idx != NumGPRs) { 6343 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6344 MachinePointerInfo(), VT); 6345 MemOpChains.push_back(Load.getValue(1)); 6346 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6347 6348 ArgOffset += PtrByteSize; 6349 } else { 6350 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6351 PtrOff.getValueType()); 6352 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6353 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6354 CallSeqStart, 6355 Flags, DAG, dl); 6356 ArgOffset += PtrByteSize; 6357 } 6358 continue; 6359 } 6360 // Copy entire object into memory. There are cases where gcc-generated 6361 // code assumes it is there, even if it could be put entirely into 6362 // registers. (This is not what the doc says.) 6363 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6364 CallSeqStart, 6365 Flags, DAG, dl); 6366 6367 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6368 // copy the pieces of the object that fit into registers from the 6369 // parameter save area. 6370 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6371 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6372 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6373 if (GPR_idx != NumGPRs) { 6374 SDValue Load = 6375 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6376 MemOpChains.push_back(Load.getValue(1)); 6377 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6378 ArgOffset += PtrByteSize; 6379 } else { 6380 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6381 break; 6382 } 6383 } 6384 continue; 6385 } 6386 6387 switch (Arg.getSimpleValueType().SimpleTy) { 6388 default: llvm_unreachable("Unexpected ValueType for argument!"); 6389 case MVT::i1: 6390 case MVT::i32: 6391 case MVT::i64: 6392 if (GPR_idx != NumGPRs) { 6393 if (Arg.getValueType() == MVT::i1) 6394 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6395 6396 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6397 } else { 6398 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6399 isPPC64, isTailCall, false, MemOpChains, 6400 TailCallArguments, dl); 6401 } 6402 ArgOffset += PtrByteSize; 6403 break; 6404 case MVT::f32: 6405 case MVT::f64: 6406 if (FPR_idx != NumFPRs) { 6407 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6408 6409 if (isVarArg) { 6410 SDValue Store = 6411 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6412 MemOpChains.push_back(Store); 6413 6414 // Float varargs are always shadowed in available integer registers 6415 if (GPR_idx != NumGPRs) { 6416 SDValue Load = 6417 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6418 MemOpChains.push_back(Load.getValue(1)); 6419 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6420 } 6421 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6422 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6423 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6424 SDValue Load = 6425 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6426 MemOpChains.push_back(Load.getValue(1)); 6427 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6428 } 6429 } else { 6430 // If we have any FPRs remaining, we may also have GPRs remaining. 6431 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6432 // GPRs. 6433 if (GPR_idx != NumGPRs) 6434 ++GPR_idx; 6435 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6436 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6437 ++GPR_idx; 6438 } 6439 } else 6440 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6441 isPPC64, isTailCall, false, MemOpChains, 6442 TailCallArguments, dl); 6443 if (isPPC64) 6444 ArgOffset += 8; 6445 else 6446 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6447 break; 6448 case MVT::v4f32: 6449 case MVT::v4i32: 6450 case MVT::v8i16: 6451 case MVT::v16i8: 6452 if (isVarArg) { 6453 // These go aligned on the stack, or in the corresponding R registers 6454 // when within range. The Darwin PPC ABI doc claims they also go in 6455 // V registers; in fact gcc does this only for arguments that are 6456 // prototyped, not for those that match the ... We do it for all 6457 // arguments, seems to work. 6458 while (ArgOffset % 16 !=0) { 6459 ArgOffset += PtrByteSize; 6460 if (GPR_idx != NumGPRs) 6461 GPR_idx++; 6462 } 6463 // We could elide this store in the case where the object fits 6464 // entirely in R registers. Maybe later. 6465 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6466 DAG.getConstant(ArgOffset, dl, PtrVT)); 6467 SDValue Store = 6468 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6469 MemOpChains.push_back(Store); 6470 if (VR_idx != NumVRs) { 6471 SDValue Load = 6472 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6473 MemOpChains.push_back(Load.getValue(1)); 6474 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6475 } 6476 ArgOffset += 16; 6477 for (unsigned i=0; i<16; i+=PtrByteSize) { 6478 if (GPR_idx == NumGPRs) 6479 break; 6480 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6481 DAG.getConstant(i, dl, PtrVT)); 6482 SDValue Load = 6483 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6484 MemOpChains.push_back(Load.getValue(1)); 6485 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6486 } 6487 break; 6488 } 6489 6490 // Non-varargs Altivec params generally go in registers, but have 6491 // stack space allocated at the end. 6492 if (VR_idx != NumVRs) { 6493 // Doesn't have GPR space allocated. 6494 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6495 } else if (nAltivecParamsAtEnd==0) { 6496 // We are emitting Altivec params in order. 6497 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6498 isPPC64, isTailCall, true, MemOpChains, 6499 TailCallArguments, dl); 6500 ArgOffset += 16; 6501 } 6502 break; 6503 } 6504 } 6505 // If all Altivec parameters fit in registers, as they usually do, 6506 // they get stack space following the non-Altivec parameters. We 6507 // don't track this here because nobody below needs it. 6508 // If there are more Altivec parameters than fit in registers emit 6509 // the stores here. 6510 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 6511 unsigned j = 0; 6512 // Offset is aligned; skip 1st 12 params which go in V registers. 6513 ArgOffset = ((ArgOffset+15)/16)*16; 6514 ArgOffset += 12*16; 6515 for (unsigned i = 0; i != NumOps; ++i) { 6516 SDValue Arg = OutVals[i]; 6517 EVT ArgType = Outs[i].VT; 6518 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6519 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6520 if (++j > NumVRs) { 6521 SDValue PtrOff; 6522 // We are emitting Altivec params in order. 6523 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6524 isPPC64, isTailCall, true, MemOpChains, 6525 TailCallArguments, dl); 6526 ArgOffset += 16; 6527 } 6528 } 6529 } 6530 } 6531 6532 if (!MemOpChains.empty()) 6533 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6534 6535 // On Darwin, R12 must contain the address of an indirect callee. This does 6536 // not mean the MTCTR instruction must use R12; it's easier to model this as 6537 // an extra parameter, so do that. 6538 if (!isTailCall && 6539 !isFunctionGlobalAddress(Callee) && 6540 !isa<ExternalSymbolSDNode>(Callee) && 6541 !isBLACompatibleAddress(Callee, DAG)) 6542 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6543 PPC::R12), Callee)); 6544 6545 // Build a sequence of copy-to-reg nodes chained together with token chain 6546 // and flag operands which copy the outgoing args into the appropriate regs. 6547 SDValue InFlag; 6548 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6549 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6550 RegsToPass[i].second, InFlag); 6551 InFlag = Chain.getValue(1); 6552 } 6553 6554 if (isTailCall) 6555 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6556 TailCallArguments); 6557 6558 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6559 /* unused except on PPC64 ELFv1 */ false, DAG, 6560 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6561 NumBytes, Ins, InVals, CS); 6562 } 6563 6564 bool 6565 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 6566 MachineFunction &MF, bool isVarArg, 6567 const SmallVectorImpl<ISD::OutputArg> &Outs, 6568 LLVMContext &Context) const { 6569 SmallVector<CCValAssign, 16> RVLocs; 6570 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 6571 return CCInfo.CheckReturn( 6572 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 6573 ? RetCC_PPC_Cold 6574 : RetCC_PPC); 6575 } 6576 6577 SDValue 6578 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 6579 bool isVarArg, 6580 const SmallVectorImpl<ISD::OutputArg> &Outs, 6581 const SmallVectorImpl<SDValue> &OutVals, 6582 const SDLoc &dl, SelectionDAG &DAG) const { 6583 SmallVector<CCValAssign, 16> RVLocs; 6584 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 6585 *DAG.getContext()); 6586 CCInfo.AnalyzeReturn(Outs, 6587 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 6588 ? RetCC_PPC_Cold 6589 : RetCC_PPC); 6590 6591 SDValue Flag; 6592 SmallVector<SDValue, 4> RetOps(1, Chain); 6593 6594 // Copy the result values into the output registers. 6595 for (unsigned i = 0; i != RVLocs.size(); ++i) { 6596 CCValAssign &VA = RVLocs[i]; 6597 assert(VA.isRegLoc() && "Can only return in registers!"); 6598 6599 SDValue Arg = OutVals[i]; 6600 6601 switch (VA.getLocInfo()) { 6602 default: llvm_unreachable("Unknown loc info!"); 6603 case CCValAssign::Full: break; 6604 case CCValAssign::AExt: 6605 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 6606 break; 6607 case CCValAssign::ZExt: 6608 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 6609 break; 6610 case CCValAssign::SExt: 6611 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 6612 break; 6613 } 6614 6615 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 6616 Flag = Chain.getValue(1); 6617 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 6618 } 6619 6620 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 6621 const MCPhysReg *I = 6622 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 6623 if (I) { 6624 for (; *I; ++I) { 6625 6626 if (PPC::G8RCRegClass.contains(*I)) 6627 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 6628 else if (PPC::F8RCRegClass.contains(*I)) 6629 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 6630 else if (PPC::CRRCRegClass.contains(*I)) 6631 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 6632 else if (PPC::VRRCRegClass.contains(*I)) 6633 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 6634 else 6635 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 6636 } 6637 } 6638 6639 RetOps[0] = Chain; // Update chain. 6640 6641 // Add the flag if we have it. 6642 if (Flag.getNode()) 6643 RetOps.push_back(Flag); 6644 6645 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 6646 } 6647 6648 SDValue 6649 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 6650 SelectionDAG &DAG) const { 6651 SDLoc dl(Op); 6652 6653 // Get the correct type for integers. 6654 EVT IntVT = Op.getValueType(); 6655 6656 // Get the inputs. 6657 SDValue Chain = Op.getOperand(0); 6658 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6659 // Build a DYNAREAOFFSET node. 6660 SDValue Ops[2] = {Chain, FPSIdx}; 6661 SDVTList VTs = DAG.getVTList(IntVT); 6662 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 6663 } 6664 6665 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 6666 SelectionDAG &DAG) const { 6667 // When we pop the dynamic allocation we need to restore the SP link. 6668 SDLoc dl(Op); 6669 6670 // Get the correct type for pointers. 6671 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6672 6673 // Construct the stack pointer operand. 6674 bool isPPC64 = Subtarget.isPPC64(); 6675 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 6676 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 6677 6678 // Get the operands for the STACKRESTORE. 6679 SDValue Chain = Op.getOperand(0); 6680 SDValue SaveSP = Op.getOperand(1); 6681 6682 // Load the old link SP. 6683 SDValue LoadLinkSP = 6684 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 6685 6686 // Restore the stack pointer. 6687 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 6688 6689 // Store the old link SP. 6690 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 6691 } 6692 6693 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 6694 MachineFunction &MF = DAG.getMachineFunction(); 6695 bool isPPC64 = Subtarget.isPPC64(); 6696 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6697 6698 // Get current frame pointer save index. The users of this index will be 6699 // primarily DYNALLOC instructions. 6700 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6701 int RASI = FI->getReturnAddrSaveIndex(); 6702 6703 // If the frame pointer save index hasn't been defined yet. 6704 if (!RASI) { 6705 // Find out what the fix offset of the frame pointer save area. 6706 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 6707 // Allocate the frame index for frame pointer save area. 6708 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 6709 // Save the result. 6710 FI->setReturnAddrSaveIndex(RASI); 6711 } 6712 return DAG.getFrameIndex(RASI, PtrVT); 6713 } 6714 6715 SDValue 6716 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 6717 MachineFunction &MF = DAG.getMachineFunction(); 6718 bool isPPC64 = Subtarget.isPPC64(); 6719 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6720 6721 // Get current frame pointer save index. The users of this index will be 6722 // primarily DYNALLOC instructions. 6723 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6724 int FPSI = FI->getFramePointerSaveIndex(); 6725 6726 // If the frame pointer save index hasn't been defined yet. 6727 if (!FPSI) { 6728 // Find out what the fix offset of the frame pointer save area. 6729 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 6730 // Allocate the frame index for frame pointer save area. 6731 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 6732 // Save the result. 6733 FI->setFramePointerSaveIndex(FPSI); 6734 } 6735 return DAG.getFrameIndex(FPSI, PtrVT); 6736 } 6737 6738 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 6739 SelectionDAG &DAG) const { 6740 // Get the inputs. 6741 SDValue Chain = Op.getOperand(0); 6742 SDValue Size = Op.getOperand(1); 6743 SDLoc dl(Op); 6744 6745 // Get the correct type for pointers. 6746 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6747 // Negate the size. 6748 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 6749 DAG.getConstant(0, dl, PtrVT), Size); 6750 // Construct a node for the frame pointer save index. 6751 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6752 // Build a DYNALLOC node. 6753 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 6754 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 6755 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 6756 } 6757 6758 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 6759 SelectionDAG &DAG) const { 6760 MachineFunction &MF = DAG.getMachineFunction(); 6761 6762 bool isPPC64 = Subtarget.isPPC64(); 6763 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6764 6765 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 6766 return DAG.getFrameIndex(FI, PtrVT); 6767 } 6768 6769 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 6770 SelectionDAG &DAG) const { 6771 SDLoc DL(Op); 6772 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 6773 DAG.getVTList(MVT::i32, MVT::Other), 6774 Op.getOperand(0), Op.getOperand(1)); 6775 } 6776 6777 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 6778 SelectionDAG &DAG) const { 6779 SDLoc DL(Op); 6780 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 6781 Op.getOperand(0), Op.getOperand(1)); 6782 } 6783 6784 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 6785 if (Op.getValueType().isVector()) 6786 return LowerVectorLoad(Op, DAG); 6787 6788 assert(Op.getValueType() == MVT::i1 && 6789 "Custom lowering only for i1 loads"); 6790 6791 // First, load 8 bits into 32 bits, then truncate to 1 bit. 6792 6793 SDLoc dl(Op); 6794 LoadSDNode *LD = cast<LoadSDNode>(Op); 6795 6796 SDValue Chain = LD->getChain(); 6797 SDValue BasePtr = LD->getBasePtr(); 6798 MachineMemOperand *MMO = LD->getMemOperand(); 6799 6800 SDValue NewLD = 6801 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 6802 BasePtr, MVT::i8, MMO); 6803 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 6804 6805 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 6806 return DAG.getMergeValues(Ops, dl); 6807 } 6808 6809 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 6810 if (Op.getOperand(1).getValueType().isVector()) 6811 return LowerVectorStore(Op, DAG); 6812 6813 assert(Op.getOperand(1).getValueType() == MVT::i1 && 6814 "Custom lowering only for i1 stores"); 6815 6816 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 6817 6818 SDLoc dl(Op); 6819 StoreSDNode *ST = cast<StoreSDNode>(Op); 6820 6821 SDValue Chain = ST->getChain(); 6822 SDValue BasePtr = ST->getBasePtr(); 6823 SDValue Value = ST->getValue(); 6824 MachineMemOperand *MMO = ST->getMemOperand(); 6825 6826 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 6827 Value); 6828 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 6829 } 6830 6831 // FIXME: Remove this once the ANDI glue bug is fixed: 6832 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 6833 assert(Op.getValueType() == MVT::i1 && 6834 "Custom lowering only for i1 results"); 6835 6836 SDLoc DL(Op); 6837 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 6838 Op.getOperand(0)); 6839 } 6840 6841 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 6842 SelectionDAG &DAG) const { 6843 6844 // Implements a vector truncate that fits in a vector register as a shuffle. 6845 // We want to legalize vector truncates down to where the source fits in 6846 // a vector register (and target is therefore smaller than vector register 6847 // size). At that point legalization will try to custom lower the sub-legal 6848 // result and get here - where we can contain the truncate as a single target 6849 // operation. 6850 6851 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 6852 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 6853 // 6854 // We will implement it for big-endian ordering as this (where x denotes 6855 // undefined): 6856 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 6857 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 6858 // 6859 // The same operation in little-endian ordering will be: 6860 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 6861 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 6862 6863 assert(Op.getValueType().isVector() && "Vector type expected."); 6864 6865 SDLoc DL(Op); 6866 SDValue N1 = Op.getOperand(0); 6867 unsigned SrcSize = N1.getValueType().getSizeInBits(); 6868 assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector"); 6869 SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 6870 6871 EVT TrgVT = Op.getValueType(); 6872 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 6873 EVT EltVT = TrgVT.getVectorElementType(); 6874 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 6875 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 6876 6877 // First list the elements we want to keep. 6878 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 6879 SmallVector<int, 16> ShuffV; 6880 if (Subtarget.isLittleEndian()) 6881 for (unsigned i = 0; i < TrgNumElts; ++i) 6882 ShuffV.push_back(i * SizeMult); 6883 else 6884 for (unsigned i = 1; i <= TrgNumElts; ++i) 6885 ShuffV.push_back(i * SizeMult - 1); 6886 6887 // Populate the remaining elements with undefs. 6888 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 6889 // ShuffV.push_back(i + WideNumElts); 6890 ShuffV.push_back(WideNumElts + 1); 6891 6892 SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc); 6893 return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV); 6894 } 6895 6896 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 6897 /// possible. 6898 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 6899 // Not FP? Not a fsel. 6900 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 6901 !Op.getOperand(2).getValueType().isFloatingPoint()) 6902 return Op; 6903 6904 // We might be able to do better than this under some circumstances, but in 6905 // general, fsel-based lowering of select is a finite-math-only optimization. 6906 // For more information, see section F.3 of the 2.06 ISA specification. 6907 if (!DAG.getTarget().Options.NoInfsFPMath || 6908 !DAG.getTarget().Options.NoNaNsFPMath) 6909 return Op; 6910 // TODO: Propagate flags from the select rather than global settings. 6911 SDNodeFlags Flags; 6912 Flags.setNoInfs(true); 6913 Flags.setNoNaNs(true); 6914 6915 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 6916 6917 EVT ResVT = Op.getValueType(); 6918 EVT CmpVT = Op.getOperand(0).getValueType(); 6919 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 6920 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 6921 SDLoc dl(Op); 6922 6923 // If the RHS of the comparison is a 0.0, we don't need to do the 6924 // subtraction at all. 6925 SDValue Sel1; 6926 if (isFloatingPointZero(RHS)) 6927 switch (CC) { 6928 default: break; // SETUO etc aren't handled by fsel. 6929 case ISD::SETNE: 6930 std::swap(TV, FV); 6931 LLVM_FALLTHROUGH; 6932 case ISD::SETEQ: 6933 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6934 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6935 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6936 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6937 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6938 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6939 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 6940 case ISD::SETULT: 6941 case ISD::SETLT: 6942 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6943 LLVM_FALLTHROUGH; 6944 case ISD::SETOGE: 6945 case ISD::SETGE: 6946 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6947 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6948 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6949 case ISD::SETUGT: 6950 case ISD::SETGT: 6951 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6952 LLVM_FALLTHROUGH; 6953 case ISD::SETOLE: 6954 case ISD::SETLE: 6955 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6956 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6957 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6958 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 6959 } 6960 6961 SDValue Cmp; 6962 switch (CC) { 6963 default: break; // SETUO etc aren't handled by fsel. 6964 case ISD::SETNE: 6965 std::swap(TV, FV); 6966 LLVM_FALLTHROUGH; 6967 case ISD::SETEQ: 6968 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 6969 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6970 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6971 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6972 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6973 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6974 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6975 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 6976 case ISD::SETULT: 6977 case ISD::SETLT: 6978 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 6979 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6980 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6981 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6982 case ISD::SETOGE: 6983 case ISD::SETGE: 6984 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 6985 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6986 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6987 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6988 case ISD::SETUGT: 6989 case ISD::SETGT: 6990 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 6991 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6992 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6993 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6994 case ISD::SETOLE: 6995 case ISD::SETLE: 6996 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 6997 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6998 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6999 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7000 } 7001 return Op; 7002 } 7003 7004 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 7005 SelectionDAG &DAG, 7006 const SDLoc &dl) const { 7007 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7008 SDValue Src = Op.getOperand(0); 7009 if (Src.getValueType() == MVT::f32) 7010 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7011 7012 SDValue Tmp; 7013 switch (Op.getSimpleValueType().SimpleTy) { 7014 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7015 case MVT::i32: 7016 Tmp = DAG.getNode( 7017 Op.getOpcode() == ISD::FP_TO_SINT 7018 ? PPCISD::FCTIWZ 7019 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7020 dl, MVT::f64, Src); 7021 break; 7022 case MVT::i64: 7023 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7024 "i64 FP_TO_UINT is supported only with FPCVT"); 7025 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7026 PPCISD::FCTIDUZ, 7027 dl, MVT::f64, Src); 7028 break; 7029 } 7030 7031 // Convert the FP value to an int value through memory. 7032 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 7033 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 7034 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 7035 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 7036 MachinePointerInfo MPI = 7037 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 7038 7039 // Emit a store to the stack slot. 7040 SDValue Chain; 7041 if (i32Stack) { 7042 MachineFunction &MF = DAG.getMachineFunction(); 7043 MachineMemOperand *MMO = 7044 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 7045 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 7046 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 7047 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 7048 } else 7049 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI); 7050 7051 // Result is a load from the stack slot. If loading 4 bytes, make sure to 7052 // add in a bias on big endian. 7053 if (Op.getValueType() == MVT::i32 && !i32Stack) { 7054 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 7055 DAG.getConstant(4, dl, FIPtr.getValueType())); 7056 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 7057 } 7058 7059 RLI.Chain = Chain; 7060 RLI.Ptr = FIPtr; 7061 RLI.MPI = MPI; 7062 } 7063 7064 /// Custom lowers floating point to integer conversions to use 7065 /// the direct move instructions available in ISA 2.07 to avoid the 7066 /// need for load/store combinations. 7067 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 7068 SelectionDAG &DAG, 7069 const SDLoc &dl) const { 7070 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7071 SDValue Src = Op.getOperand(0); 7072 7073 if (Src.getValueType() == MVT::f32) 7074 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7075 7076 SDValue Tmp; 7077 switch (Op.getSimpleValueType().SimpleTy) { 7078 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7079 case MVT::i32: 7080 Tmp = DAG.getNode( 7081 Op.getOpcode() == ISD::FP_TO_SINT 7082 ? PPCISD::FCTIWZ 7083 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7084 dl, MVT::f64, Src); 7085 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 7086 break; 7087 case MVT::i64: 7088 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7089 "i64 FP_TO_UINT is supported only with FPCVT"); 7090 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7091 PPCISD::FCTIDUZ, 7092 dl, MVT::f64, Src); 7093 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 7094 break; 7095 } 7096 return Tmp; 7097 } 7098 7099 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 7100 const SDLoc &dl) const { 7101 7102 // FP to INT conversions are legal for f128. 7103 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128)) 7104 return Op; 7105 7106 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 7107 // PPC (the libcall is not available). 7108 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 7109 if (Op.getValueType() == MVT::i32) { 7110 if (Op.getOpcode() == ISD::FP_TO_SINT) { 7111 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7112 MVT::f64, Op.getOperand(0), 7113 DAG.getIntPtrConstant(0, dl)); 7114 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7115 MVT::f64, Op.getOperand(0), 7116 DAG.getIntPtrConstant(1, dl)); 7117 7118 // Add the two halves of the long double in round-to-zero mode. 7119 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 7120 7121 // Now use a smaller FP_TO_SINT. 7122 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 7123 } 7124 if (Op.getOpcode() == ISD::FP_TO_UINT) { 7125 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 7126 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 7127 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 7128 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 7129 // FIXME: generated code sucks. 7130 // TODO: Are there fast-math-flags to propagate to this FSUB? 7131 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 7132 Op.getOperand(0), Tmp); 7133 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 7134 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 7135 DAG.getConstant(0x80000000, dl, MVT::i32)); 7136 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 7137 Op.getOperand(0)); 7138 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 7139 ISD::SETGE); 7140 } 7141 } 7142 7143 return SDValue(); 7144 } 7145 7146 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 7147 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 7148 7149 ReuseLoadInfo RLI; 7150 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7151 7152 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7153 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7154 } 7155 7156 // We're trying to insert a regular store, S, and then a load, L. If the 7157 // incoming value, O, is a load, we might just be able to have our load use the 7158 // address used by O. However, we don't know if anything else will store to 7159 // that address before we can load from it. To prevent this situation, we need 7160 // to insert our load, L, into the chain as a peer of O. To do this, we give L 7161 // the same chain operand as O, we create a token factor from the chain results 7162 // of O and L, and we replace all uses of O's chain result with that token 7163 // factor (see spliceIntoChain below for this last part). 7164 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 7165 ReuseLoadInfo &RLI, 7166 SelectionDAG &DAG, 7167 ISD::LoadExtType ET) const { 7168 SDLoc dl(Op); 7169 if (ET == ISD::NON_EXTLOAD && 7170 (Op.getOpcode() == ISD::FP_TO_UINT || 7171 Op.getOpcode() == ISD::FP_TO_SINT) && 7172 isOperationLegalOrCustom(Op.getOpcode(), 7173 Op.getOperand(0).getValueType())) { 7174 7175 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7176 return true; 7177 } 7178 7179 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 7180 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 7181 LD->isNonTemporal()) 7182 return false; 7183 if (LD->getMemoryVT() != MemVT) 7184 return false; 7185 7186 RLI.Ptr = LD->getBasePtr(); 7187 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 7188 assert(LD->getAddressingMode() == ISD::PRE_INC && 7189 "Non-pre-inc AM on PPC?"); 7190 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 7191 LD->getOffset()); 7192 } 7193 7194 RLI.Chain = LD->getChain(); 7195 RLI.MPI = LD->getPointerInfo(); 7196 RLI.IsDereferenceable = LD->isDereferenceable(); 7197 RLI.IsInvariant = LD->isInvariant(); 7198 RLI.Alignment = LD->getAlignment(); 7199 RLI.AAInfo = LD->getAAInfo(); 7200 RLI.Ranges = LD->getRanges(); 7201 7202 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 7203 return true; 7204 } 7205 7206 // Given the head of the old chain, ResChain, insert a token factor containing 7207 // it and NewResChain, and make users of ResChain now be users of that token 7208 // factor. 7209 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 7210 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 7211 SDValue NewResChain, 7212 SelectionDAG &DAG) const { 7213 if (!ResChain) 7214 return; 7215 7216 SDLoc dl(NewResChain); 7217 7218 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 7219 NewResChain, DAG.getUNDEF(MVT::Other)); 7220 assert(TF.getNode() != NewResChain.getNode() && 7221 "A new TF really is required here"); 7222 7223 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 7224 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 7225 } 7226 7227 /// Analyze profitability of direct move 7228 /// prefer float load to int load plus direct move 7229 /// when there is no integer use of int load 7230 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 7231 SDNode *Origin = Op.getOperand(0).getNode(); 7232 if (Origin->getOpcode() != ISD::LOAD) 7233 return true; 7234 7235 // If there is no LXSIBZX/LXSIHZX, like Power8, 7236 // prefer direct move if the memory size is 1 or 2 bytes. 7237 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 7238 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 7239 return true; 7240 7241 for (SDNode::use_iterator UI = Origin->use_begin(), 7242 UE = Origin->use_end(); 7243 UI != UE; ++UI) { 7244 7245 // Only look at the users of the loaded value. 7246 if (UI.getUse().get().getResNo() != 0) 7247 continue; 7248 7249 if (UI->getOpcode() != ISD::SINT_TO_FP && 7250 UI->getOpcode() != ISD::UINT_TO_FP) 7251 return true; 7252 } 7253 7254 return false; 7255 } 7256 7257 /// Custom lowers integer to floating point conversions to use 7258 /// the direct move instructions available in ISA 2.07 to avoid the 7259 /// need for load/store combinations. 7260 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 7261 SelectionDAG &DAG, 7262 const SDLoc &dl) const { 7263 assert((Op.getValueType() == MVT::f32 || 7264 Op.getValueType() == MVT::f64) && 7265 "Invalid floating point type as target of conversion"); 7266 assert(Subtarget.hasFPCVT() && 7267 "Int to FP conversions with direct moves require FPCVT"); 7268 SDValue FP; 7269 SDValue Src = Op.getOperand(0); 7270 bool SinglePrec = Op.getValueType() == MVT::f32; 7271 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 7272 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 7273 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 7274 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 7275 7276 if (WordInt) { 7277 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 7278 dl, MVT::f64, Src); 7279 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7280 } 7281 else { 7282 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 7283 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7284 } 7285 7286 return FP; 7287 } 7288 7289 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 7290 7291 EVT VecVT = Vec.getValueType(); 7292 assert(VecVT.isVector() && "Expected a vector type."); 7293 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 7294 7295 EVT EltVT = VecVT.getVectorElementType(); 7296 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7297 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7298 7299 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 7300 SmallVector<SDValue, 16> Ops(NumConcat); 7301 Ops[0] = Vec; 7302 SDValue UndefVec = DAG.getUNDEF(VecVT); 7303 for (unsigned i = 1; i < NumConcat; ++i) 7304 Ops[i] = UndefVec; 7305 7306 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 7307 } 7308 7309 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 7310 const SDLoc &dl) const { 7311 7312 unsigned Opc = Op.getOpcode(); 7313 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) && 7314 "Unexpected conversion type"); 7315 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 7316 "Supports conversions to v2f64/v4f32 only."); 7317 7318 bool SignedConv = Opc == ISD::SINT_TO_FP; 7319 bool FourEltRes = Op.getValueType() == MVT::v4f32; 7320 7321 SDValue Wide = widenVec(DAG, Op.getOperand(0), dl); 7322 EVT WideVT = Wide.getValueType(); 7323 unsigned WideNumElts = WideVT.getVectorNumElements(); 7324 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 7325 7326 SmallVector<int, 16> ShuffV; 7327 for (unsigned i = 0; i < WideNumElts; ++i) 7328 ShuffV.push_back(i + WideNumElts); 7329 7330 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 7331 int SaveElts = FourEltRes ? 4 : 2; 7332 if (Subtarget.isLittleEndian()) 7333 for (int i = 0; i < SaveElts; i++) 7334 ShuffV[i * Stride] = i; 7335 else 7336 for (int i = 1; i <= SaveElts; i++) 7337 ShuffV[i * Stride - 1] = i - 1; 7338 7339 SDValue ShuffleSrc2 = 7340 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 7341 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 7342 unsigned ExtendOp = 7343 SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST; 7344 7345 SDValue Extend; 7346 if (!Subtarget.hasP9Altivec() && SignedConv) { 7347 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 7348 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 7349 DAG.getValueType(Op.getOperand(0).getValueType())); 7350 } else 7351 Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange); 7352 7353 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 7354 } 7355 7356 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 7357 SelectionDAG &DAG) const { 7358 SDLoc dl(Op); 7359 7360 EVT InVT = Op.getOperand(0).getValueType(); 7361 EVT OutVT = Op.getValueType(); 7362 if (OutVT.isVector() && OutVT.isFloatingPoint() && 7363 isOperationCustom(Op.getOpcode(), InVT)) 7364 return LowerINT_TO_FPVector(Op, DAG, dl); 7365 7366 // Conversions to f128 are legal. 7367 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128)) 7368 return Op; 7369 7370 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 7371 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 7372 return SDValue(); 7373 7374 SDValue Value = Op.getOperand(0); 7375 // The values are now known to be -1 (false) or 1 (true). To convert this 7376 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7377 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7378 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7379 7380 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 7381 7382 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7383 7384 if (Op.getValueType() != MVT::v4f64) 7385 Value = DAG.getNode(ISD::FP_ROUND, dl, 7386 Op.getValueType(), Value, 7387 DAG.getIntPtrConstant(1, dl)); 7388 return Value; 7389 } 7390 7391 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 7392 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 7393 return SDValue(); 7394 7395 if (Op.getOperand(0).getValueType() == MVT::i1) 7396 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 7397 DAG.getConstantFP(1.0, dl, Op.getValueType()), 7398 DAG.getConstantFP(0.0, dl, Op.getValueType())); 7399 7400 // If we have direct moves, we can do all the conversion, skip the store/load 7401 // however, without FPCVT we can't do most conversions. 7402 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 7403 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 7404 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 7405 7406 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 7407 "UINT_TO_FP is supported only with FPCVT"); 7408 7409 // If we have FCFIDS, then use it when converting to single-precision. 7410 // Otherwise, convert to double-precision and then round. 7411 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7412 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 7413 : PPCISD::FCFIDS) 7414 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 7415 : PPCISD::FCFID); 7416 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7417 ? MVT::f32 7418 : MVT::f64; 7419 7420 if (Op.getOperand(0).getValueType() == MVT::i64) { 7421 SDValue SINT = Op.getOperand(0); 7422 // When converting to single-precision, we actually need to convert 7423 // to double-precision first and then round to single-precision. 7424 // To avoid double-rounding effects during that operation, we have 7425 // to prepare the input operand. Bits that might be truncated when 7426 // converting to double-precision are replaced by a bit that won't 7427 // be lost at this stage, but is below the single-precision rounding 7428 // position. 7429 // 7430 // However, if -enable-unsafe-fp-math is in effect, accept double 7431 // rounding to avoid the extra overhead. 7432 if (Op.getValueType() == MVT::f32 && 7433 !Subtarget.hasFPCVT() && 7434 !DAG.getTarget().Options.UnsafeFPMath) { 7435 7436 // Twiddle input to make sure the low 11 bits are zero. (If this 7437 // is the case, we are guaranteed the value will fit into the 53 bit 7438 // mantissa of an IEEE double-precision value without rounding.) 7439 // If any of those low 11 bits were not zero originally, make sure 7440 // bit 12 (value 2048) is set instead, so that the final rounding 7441 // to single-precision gets the correct result. 7442 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7443 SINT, DAG.getConstant(2047, dl, MVT::i64)); 7444 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 7445 Round, DAG.getConstant(2047, dl, MVT::i64)); 7446 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 7447 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7448 Round, DAG.getConstant(-2048, dl, MVT::i64)); 7449 7450 // However, we cannot use that value unconditionally: if the magnitude 7451 // of the input value is small, the bit-twiddling we did above might 7452 // end up visibly changing the output. Fortunately, in that case, we 7453 // don't need to twiddle bits since the original input will convert 7454 // exactly to double-precision floating-point already. Therefore, 7455 // construct a conditional to use the original value if the top 11 7456 // bits are all sign-bit copies, and use the rounded value computed 7457 // above otherwise. 7458 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 7459 SINT, DAG.getConstant(53, dl, MVT::i32)); 7460 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 7461 Cond, DAG.getConstant(1, dl, MVT::i64)); 7462 Cond = DAG.getSetCC(dl, MVT::i32, 7463 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 7464 7465 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 7466 } 7467 7468 ReuseLoadInfo RLI; 7469 SDValue Bits; 7470 7471 MachineFunction &MF = DAG.getMachineFunction(); 7472 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 7473 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7474 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7475 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7476 } else if (Subtarget.hasLFIWAX() && 7477 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 7478 MachineMemOperand *MMO = 7479 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7480 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7481 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7482 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 7483 DAG.getVTList(MVT::f64, MVT::Other), 7484 Ops, MVT::i32, MMO); 7485 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7486 } else if (Subtarget.hasFPCVT() && 7487 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 7488 MachineMemOperand *MMO = 7489 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7490 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7491 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7492 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 7493 DAG.getVTList(MVT::f64, MVT::Other), 7494 Ops, MVT::i32, MMO); 7495 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7496 } else if (((Subtarget.hasLFIWAX() && 7497 SINT.getOpcode() == ISD::SIGN_EXTEND) || 7498 (Subtarget.hasFPCVT() && 7499 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 7500 SINT.getOperand(0).getValueType() == MVT::i32) { 7501 MachineFrameInfo &MFI = MF.getFrameInfo(); 7502 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7503 7504 int FrameIdx = MFI.CreateStackObject(4, 4, false); 7505 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7506 7507 SDValue Store = 7508 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 7509 MachinePointerInfo::getFixedStack( 7510 DAG.getMachineFunction(), FrameIdx)); 7511 7512 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 7513 "Expected an i32 store"); 7514 7515 RLI.Ptr = FIdx; 7516 RLI.Chain = Store; 7517 RLI.MPI = 7518 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7519 RLI.Alignment = 4; 7520 7521 MachineMemOperand *MMO = 7522 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7523 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7524 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7525 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 7526 PPCISD::LFIWZX : PPCISD::LFIWAX, 7527 dl, DAG.getVTList(MVT::f64, MVT::Other), 7528 Ops, MVT::i32, MMO); 7529 } else 7530 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 7531 7532 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 7533 7534 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 7535 FP = DAG.getNode(ISD::FP_ROUND, dl, 7536 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 7537 return FP; 7538 } 7539 7540 assert(Op.getOperand(0).getValueType() == MVT::i32 && 7541 "Unhandled INT_TO_FP type in custom expander!"); 7542 // Since we only generate this in 64-bit mode, we can take advantage of 7543 // 64-bit registers. In particular, sign extend the input value into the 7544 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 7545 // then lfd it and fcfid it. 7546 MachineFunction &MF = DAG.getMachineFunction(); 7547 MachineFrameInfo &MFI = MF.getFrameInfo(); 7548 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7549 7550 SDValue Ld; 7551 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 7552 ReuseLoadInfo RLI; 7553 bool ReusingLoad; 7554 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 7555 DAG))) { 7556 int FrameIdx = MFI.CreateStackObject(4, 4, false); 7557 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7558 7559 SDValue Store = 7560 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 7561 MachinePointerInfo::getFixedStack( 7562 DAG.getMachineFunction(), FrameIdx)); 7563 7564 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 7565 "Expected an i32 store"); 7566 7567 RLI.Ptr = FIdx; 7568 RLI.Chain = Store; 7569 RLI.MPI = 7570 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7571 RLI.Alignment = 4; 7572 } 7573 7574 MachineMemOperand *MMO = 7575 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7576 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7577 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7578 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 7579 PPCISD::LFIWZX : PPCISD::LFIWAX, 7580 dl, DAG.getVTList(MVT::f64, MVT::Other), 7581 Ops, MVT::i32, MMO); 7582 if (ReusingLoad) 7583 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 7584 } else { 7585 assert(Subtarget.isPPC64() && 7586 "i32->FP without LFIWAX supported only on PPC64"); 7587 7588 int FrameIdx = MFI.CreateStackObject(8, 8, false); 7589 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7590 7591 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 7592 Op.getOperand(0)); 7593 7594 // STD the extended value into the stack slot. 7595 SDValue Store = DAG.getStore( 7596 DAG.getEntryNode(), dl, Ext64, FIdx, 7597 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 7598 7599 // Load the value as a double. 7600 Ld = DAG.getLoad( 7601 MVT::f64, dl, Store, FIdx, 7602 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 7603 } 7604 7605 // FCFID it and return it. 7606 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 7607 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 7608 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 7609 DAG.getIntPtrConstant(0, dl)); 7610 return FP; 7611 } 7612 7613 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 7614 SelectionDAG &DAG) const { 7615 SDLoc dl(Op); 7616 /* 7617 The rounding mode is in bits 30:31 of FPSR, and has the following 7618 settings: 7619 00 Round to nearest 7620 01 Round to 0 7621 10 Round to +inf 7622 11 Round to -inf 7623 7624 FLT_ROUNDS, on the other hand, expects the following: 7625 -1 Undefined 7626 0 Round to 0 7627 1 Round to nearest 7628 2 Round to +inf 7629 3 Round to -inf 7630 7631 To perform the conversion, we do: 7632 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 7633 */ 7634 7635 MachineFunction &MF = DAG.getMachineFunction(); 7636 EVT VT = Op.getValueType(); 7637 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7638 7639 // Save FP Control Word to register 7640 EVT NodeTys[] = { 7641 MVT::f64, // return register 7642 MVT::Glue // unused in this context 7643 }; 7644 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 7645 7646 // Save FP register to stack slot 7647 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 7648 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 7649 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot, 7650 MachinePointerInfo()); 7651 7652 // Load FP Control Word from low 32 bits of stack slot. 7653 SDValue Four = DAG.getConstant(4, dl, PtrVT); 7654 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 7655 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo()); 7656 7657 // Transform as necessary 7658 SDValue CWD1 = 7659 DAG.getNode(ISD::AND, dl, MVT::i32, 7660 CWD, DAG.getConstant(3, dl, MVT::i32)); 7661 SDValue CWD2 = 7662 DAG.getNode(ISD::SRL, dl, MVT::i32, 7663 DAG.getNode(ISD::AND, dl, MVT::i32, 7664 DAG.getNode(ISD::XOR, dl, MVT::i32, 7665 CWD, DAG.getConstant(3, dl, MVT::i32)), 7666 DAG.getConstant(3, dl, MVT::i32)), 7667 DAG.getConstant(1, dl, MVT::i32)); 7668 7669 SDValue RetVal = 7670 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 7671 7672 return DAG.getNode((VT.getSizeInBits() < 16 ? 7673 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 7674 } 7675 7676 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7677 EVT VT = Op.getValueType(); 7678 unsigned BitWidth = VT.getSizeInBits(); 7679 SDLoc dl(Op); 7680 assert(Op.getNumOperands() == 3 && 7681 VT == Op.getOperand(1).getValueType() && 7682 "Unexpected SHL!"); 7683 7684 // Expand into a bunch of logical ops. Note that these ops 7685 // depend on the PPC behavior for oversized shift amounts. 7686 SDValue Lo = Op.getOperand(0); 7687 SDValue Hi = Op.getOperand(1); 7688 SDValue Amt = Op.getOperand(2); 7689 EVT AmtVT = Amt.getValueType(); 7690 7691 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7692 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7693 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 7694 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 7695 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 7696 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7697 DAG.getConstant(-BitWidth, dl, AmtVT)); 7698 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 7699 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 7700 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 7701 SDValue OutOps[] = { OutLo, OutHi }; 7702 return DAG.getMergeValues(OutOps, dl); 7703 } 7704 7705 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7706 EVT VT = Op.getValueType(); 7707 SDLoc dl(Op); 7708 unsigned BitWidth = VT.getSizeInBits(); 7709 assert(Op.getNumOperands() == 3 && 7710 VT == Op.getOperand(1).getValueType() && 7711 "Unexpected SRL!"); 7712 7713 // Expand into a bunch of logical ops. Note that these ops 7714 // depend on the PPC behavior for oversized shift amounts. 7715 SDValue Lo = Op.getOperand(0); 7716 SDValue Hi = Op.getOperand(1); 7717 SDValue Amt = Op.getOperand(2); 7718 EVT AmtVT = Amt.getValueType(); 7719 7720 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7721 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7722 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 7723 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 7724 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7725 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7726 DAG.getConstant(-BitWidth, dl, AmtVT)); 7727 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 7728 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 7729 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 7730 SDValue OutOps[] = { OutLo, OutHi }; 7731 return DAG.getMergeValues(OutOps, dl); 7732 } 7733 7734 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 7735 SDLoc dl(Op); 7736 EVT VT = Op.getValueType(); 7737 unsigned BitWidth = VT.getSizeInBits(); 7738 assert(Op.getNumOperands() == 3 && 7739 VT == Op.getOperand(1).getValueType() && 7740 "Unexpected SRA!"); 7741 7742 // Expand into a bunch of logical ops, followed by a select_cc. 7743 SDValue Lo = Op.getOperand(0); 7744 SDValue Hi = Op.getOperand(1); 7745 SDValue Amt = Op.getOperand(2); 7746 EVT AmtVT = Amt.getValueType(); 7747 7748 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7749 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7750 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 7751 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 7752 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7753 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7754 DAG.getConstant(-BitWidth, dl, AmtVT)); 7755 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 7756 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 7757 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 7758 Tmp4, Tmp6, ISD::SETLE); 7759 SDValue OutOps[] = { OutLo, OutHi }; 7760 return DAG.getMergeValues(OutOps, dl); 7761 } 7762 7763 //===----------------------------------------------------------------------===// 7764 // Vector related lowering. 7765 // 7766 7767 /// BuildSplatI - Build a canonical splati of Val with an element size of 7768 /// SplatSize. Cast the result to VT. 7769 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 7770 SelectionDAG &DAG, const SDLoc &dl) { 7771 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 7772 7773 static const MVT VTys[] = { // canonical VT to use for each size. 7774 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 7775 }; 7776 7777 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 7778 7779 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 7780 if (Val == -1) 7781 SplatSize = 1; 7782 7783 EVT CanonicalVT = VTys[SplatSize-1]; 7784 7785 // Build a canonical splat for this value. 7786 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 7787 } 7788 7789 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 7790 /// specified intrinsic ID. 7791 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 7792 const SDLoc &dl, EVT DestVT = MVT::Other) { 7793 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 7794 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7795 DAG.getConstant(IID, dl, MVT::i32), Op); 7796 } 7797 7798 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 7799 /// specified intrinsic ID. 7800 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 7801 SelectionDAG &DAG, const SDLoc &dl, 7802 EVT DestVT = MVT::Other) { 7803 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 7804 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7805 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 7806 } 7807 7808 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 7809 /// specified intrinsic ID. 7810 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 7811 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 7812 EVT DestVT = MVT::Other) { 7813 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 7814 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7815 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 7816 } 7817 7818 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 7819 /// amount. The result has the specified value type. 7820 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 7821 SelectionDAG &DAG, const SDLoc &dl) { 7822 // Force LHS/RHS to be the right type. 7823 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 7824 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 7825 7826 int Ops[16]; 7827 for (unsigned i = 0; i != 16; ++i) 7828 Ops[i] = i + Amt; 7829 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 7830 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7831 } 7832 7833 /// Do we have an efficient pattern in a .td file for this node? 7834 /// 7835 /// \param V - pointer to the BuildVectorSDNode being matched 7836 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 7837 /// 7838 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 7839 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 7840 /// the opposite is true (expansion is beneficial) are: 7841 /// - The node builds a vector out of integers that are not 32 or 64-bits 7842 /// - The node builds a vector out of constants 7843 /// - The node is a "load-and-splat" 7844 /// In all other cases, we will choose to keep the BUILD_VECTOR. 7845 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 7846 bool HasDirectMove, 7847 bool HasP8Vector) { 7848 EVT VecVT = V->getValueType(0); 7849 bool RightType = VecVT == MVT::v2f64 || 7850 (HasP8Vector && VecVT == MVT::v4f32) || 7851 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 7852 if (!RightType) 7853 return false; 7854 7855 bool IsSplat = true; 7856 bool IsLoad = false; 7857 SDValue Op0 = V->getOperand(0); 7858 7859 // This function is called in a block that confirms the node is not a constant 7860 // splat. So a constant BUILD_VECTOR here means the vector is built out of 7861 // different constants. 7862 if (V->isConstant()) 7863 return false; 7864 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 7865 if (V->getOperand(i).isUndef()) 7866 return false; 7867 // We want to expand nodes that represent load-and-splat even if the 7868 // loaded value is a floating point truncation or conversion to int. 7869 if (V->getOperand(i).getOpcode() == ISD::LOAD || 7870 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 7871 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 7872 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 7873 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 7874 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 7875 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 7876 IsLoad = true; 7877 // If the operands are different or the input is not a load and has more 7878 // uses than just this BV node, then it isn't a splat. 7879 if (V->getOperand(i) != Op0 || 7880 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 7881 IsSplat = false; 7882 } 7883 return !(IsSplat && IsLoad); 7884 } 7885 7886 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 7887 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 7888 7889 SDLoc dl(Op); 7890 SDValue Op0 = Op->getOperand(0); 7891 7892 if (!EnableQuadPrecision || 7893 (Op.getValueType() != MVT::f128 ) || 7894 (Op0.getOpcode() != ISD::BUILD_PAIR) || 7895 (Op0.getOperand(0).getValueType() != MVT::i64) || 7896 (Op0.getOperand(1).getValueType() != MVT::i64)) 7897 return SDValue(); 7898 7899 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 7900 Op0.getOperand(1)); 7901 } 7902 7903 // If this is a case we can't handle, return null and let the default 7904 // expansion code take care of it. If we CAN select this case, and if it 7905 // selects to a single instruction, return Op. Otherwise, if we can codegen 7906 // this case more efficiently than a constant pool load, lower it to the 7907 // sequence of ops that should be used. 7908 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 7909 SelectionDAG &DAG) const { 7910 SDLoc dl(Op); 7911 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 7912 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 7913 7914 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 7915 // We first build an i32 vector, load it into a QPX register, 7916 // then convert it to a floating-point vector and compare it 7917 // to a zero vector to get the boolean result. 7918 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7919 int FrameIdx = MFI.CreateStackObject(16, 16, false); 7920 MachinePointerInfo PtrInfo = 7921 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7922 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7923 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7924 7925 assert(BVN->getNumOperands() == 4 && 7926 "BUILD_VECTOR for v4i1 does not have 4 operands"); 7927 7928 bool IsConst = true; 7929 for (unsigned i = 0; i < 4; ++i) { 7930 if (BVN->getOperand(i).isUndef()) continue; 7931 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 7932 IsConst = false; 7933 break; 7934 } 7935 } 7936 7937 if (IsConst) { 7938 Constant *One = 7939 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 7940 Constant *NegOne = 7941 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 7942 7943 Constant *CV[4]; 7944 for (unsigned i = 0; i < 4; ++i) { 7945 if (BVN->getOperand(i).isUndef()) 7946 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 7947 else if (isNullConstant(BVN->getOperand(i))) 7948 CV[i] = NegOne; 7949 else 7950 CV[i] = One; 7951 } 7952 7953 Constant *CP = ConstantVector::get(CV); 7954 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 7955 16 /* alignment */); 7956 7957 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 7958 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 7959 return DAG.getMemIntrinsicNode( 7960 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 7961 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 7962 } 7963 7964 SmallVector<SDValue, 4> Stores; 7965 for (unsigned i = 0; i < 4; ++i) { 7966 if (BVN->getOperand(i).isUndef()) continue; 7967 7968 unsigned Offset = 4*i; 7969 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7970 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7971 7972 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 7973 if (StoreSize > 4) { 7974 Stores.push_back( 7975 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 7976 PtrInfo.getWithOffset(Offset), MVT::i32)); 7977 } else { 7978 SDValue StoreValue = BVN->getOperand(i); 7979 if (StoreSize < 4) 7980 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 7981 7982 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 7983 PtrInfo.getWithOffset(Offset))); 7984 } 7985 } 7986 7987 SDValue StoreChain; 7988 if (!Stores.empty()) 7989 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7990 else 7991 StoreChain = DAG.getEntryNode(); 7992 7993 // Now load from v4i32 into the QPX register; this will extend it to 7994 // v4i64 but not yet convert it to a floating point. Nevertheless, this 7995 // is typed as v4f64 because the QPX register integer states are not 7996 // explicitly represented. 7997 7998 SDValue Ops[] = {StoreChain, 7999 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 8000 FIdx}; 8001 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 8002 8003 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 8004 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8005 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8006 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 8007 LoadedVect); 8008 8009 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 8010 8011 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 8012 } 8013 8014 // All other QPX vectors are handled by generic code. 8015 if (Subtarget.hasQPX()) 8016 return SDValue(); 8017 8018 // Check if this is a splat of a constant value. 8019 APInt APSplatBits, APSplatUndef; 8020 unsigned SplatBitSize; 8021 bool HasAnyUndefs; 8022 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 8023 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 8024 SplatBitSize > 32) { 8025 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 8026 // lowered to VSX instructions under certain conditions. 8027 // Without VSX, there is no pattern more efficient than expanding the node. 8028 if (Subtarget.hasVSX() && 8029 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 8030 Subtarget.hasP8Vector())) 8031 return Op; 8032 return SDValue(); 8033 } 8034 8035 unsigned SplatBits = APSplatBits.getZExtValue(); 8036 unsigned SplatUndef = APSplatUndef.getZExtValue(); 8037 unsigned SplatSize = SplatBitSize / 8; 8038 8039 // First, handle single instruction cases. 8040 8041 // All zeros? 8042 if (SplatBits == 0) { 8043 // Canonicalize all zero vectors to be v4i32. 8044 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 8045 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 8046 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 8047 } 8048 return Op; 8049 } 8050 8051 // We have XXSPLTIB for constant splats one byte wide 8052 if (Subtarget.hasP9Vector() && SplatSize == 1) { 8053 // This is a splat of 1-byte elements with some elements potentially undef. 8054 // Rather than trying to match undef in the SDAG patterns, ensure that all 8055 // elements are the same constant. 8056 if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) { 8057 SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits, 8058 dl, MVT::i32)); 8059 SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops); 8060 if (Op.getValueType() != MVT::v16i8) 8061 return DAG.getBitcast(Op.getValueType(), NewBV); 8062 return NewBV; 8063 } 8064 8065 // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll 8066 // detect that constant splats like v8i16: 0xABAB are really just splats 8067 // of a 1-byte constant. In this case, we need to convert the node to a 8068 // splat of v16i8 and a bitcast. 8069 if (Op.getValueType() != MVT::v16i8) 8070 return DAG.getBitcast(Op.getValueType(), 8071 DAG.getConstant(SplatBits, dl, MVT::v16i8)); 8072 8073 return Op; 8074 } 8075 8076 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 8077 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 8078 (32-SplatBitSize)); 8079 if (SextVal >= -16 && SextVal <= 15) 8080 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 8081 8082 // Two instruction sequences. 8083 8084 // If this value is in the range [-32,30] and is even, use: 8085 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 8086 // If this value is in the range [17,31] and is odd, use: 8087 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 8088 // If this value is in the range [-31,-17] and is odd, use: 8089 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 8090 // Note the last two are three-instruction sequences. 8091 if (SextVal >= -32 && SextVal <= 31) { 8092 // To avoid having these optimizations undone by constant folding, 8093 // we convert to a pseudo that will be expanded later into one of 8094 // the above forms. 8095 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 8096 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 8097 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 8098 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 8099 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 8100 if (VT == Op.getValueType()) 8101 return RetVal; 8102 else 8103 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 8104 } 8105 8106 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 8107 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 8108 // for fneg/fabs. 8109 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 8110 // Make -1 and vspltisw -1: 8111 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 8112 8113 // Make the VSLW intrinsic, computing 0x8000_0000. 8114 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 8115 OnesV, DAG, dl); 8116 8117 // xor by OnesV to invert it. 8118 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 8119 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8120 } 8121 8122 // Check to see if this is a wide variety of vsplti*, binop self cases. 8123 static const signed char SplatCsts[] = { 8124 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 8125 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 8126 }; 8127 8128 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 8129 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 8130 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 8131 int i = SplatCsts[idx]; 8132 8133 // Figure out what shift amount will be used by altivec if shifted by i in 8134 // this splat size. 8135 unsigned TypeShiftAmt = i & (SplatBitSize-1); 8136 8137 // vsplti + shl self. 8138 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 8139 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8140 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8141 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 8142 Intrinsic::ppc_altivec_vslw 8143 }; 8144 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8145 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8146 } 8147 8148 // vsplti + srl self. 8149 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8150 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8151 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8152 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 8153 Intrinsic::ppc_altivec_vsrw 8154 }; 8155 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8156 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8157 } 8158 8159 // vsplti + sra self. 8160 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8161 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8162 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8163 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 8164 Intrinsic::ppc_altivec_vsraw 8165 }; 8166 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8167 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8168 } 8169 8170 // vsplti + rol self. 8171 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 8172 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 8173 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8174 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8175 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 8176 Intrinsic::ppc_altivec_vrlw 8177 }; 8178 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8179 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8180 } 8181 8182 // t = vsplti c, result = vsldoi t, t, 1 8183 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 8184 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8185 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 8186 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8187 } 8188 // t = vsplti c, result = vsldoi t, t, 2 8189 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 8190 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8191 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 8192 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8193 } 8194 // t = vsplti c, result = vsldoi t, t, 3 8195 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 8196 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8197 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 8198 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8199 } 8200 } 8201 8202 return SDValue(); 8203 } 8204 8205 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 8206 /// the specified operations to build the shuffle. 8207 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 8208 SDValue RHS, SelectionDAG &DAG, 8209 const SDLoc &dl) { 8210 unsigned OpNum = (PFEntry >> 26) & 0x0F; 8211 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 8212 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 8213 8214 enum { 8215 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 8216 OP_VMRGHW, 8217 OP_VMRGLW, 8218 OP_VSPLTISW0, 8219 OP_VSPLTISW1, 8220 OP_VSPLTISW2, 8221 OP_VSPLTISW3, 8222 OP_VSLDOI4, 8223 OP_VSLDOI8, 8224 OP_VSLDOI12 8225 }; 8226 8227 if (OpNum == OP_COPY) { 8228 if (LHSID == (1*9+2)*9+3) return LHS; 8229 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 8230 return RHS; 8231 } 8232 8233 SDValue OpLHS, OpRHS; 8234 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 8235 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 8236 8237 int ShufIdxs[16]; 8238 switch (OpNum) { 8239 default: llvm_unreachable("Unknown i32 permute!"); 8240 case OP_VMRGHW: 8241 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 8242 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 8243 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 8244 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 8245 break; 8246 case OP_VMRGLW: 8247 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 8248 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 8249 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 8250 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 8251 break; 8252 case OP_VSPLTISW0: 8253 for (unsigned i = 0; i != 16; ++i) 8254 ShufIdxs[i] = (i&3)+0; 8255 break; 8256 case OP_VSPLTISW1: 8257 for (unsigned i = 0; i != 16; ++i) 8258 ShufIdxs[i] = (i&3)+4; 8259 break; 8260 case OP_VSPLTISW2: 8261 for (unsigned i = 0; i != 16; ++i) 8262 ShufIdxs[i] = (i&3)+8; 8263 break; 8264 case OP_VSPLTISW3: 8265 for (unsigned i = 0; i != 16; ++i) 8266 ShufIdxs[i] = (i&3)+12; 8267 break; 8268 case OP_VSLDOI4: 8269 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 8270 case OP_VSLDOI8: 8271 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 8272 case OP_VSLDOI12: 8273 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 8274 } 8275 EVT VT = OpLHS.getValueType(); 8276 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 8277 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 8278 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 8279 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8280 } 8281 8282 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 8283 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 8284 /// SDValue. 8285 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 8286 SelectionDAG &DAG) const { 8287 const unsigned BytesInVector = 16; 8288 bool IsLE = Subtarget.isLittleEndian(); 8289 SDLoc dl(N); 8290 SDValue V1 = N->getOperand(0); 8291 SDValue V2 = N->getOperand(1); 8292 unsigned ShiftElts = 0, InsertAtByte = 0; 8293 bool Swap = false; 8294 8295 // Shifts required to get the byte we want at element 7. 8296 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 8297 0, 15, 14, 13, 12, 11, 10, 9}; 8298 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 8299 1, 2, 3, 4, 5, 6, 7, 8}; 8300 8301 ArrayRef<int> Mask = N->getMask(); 8302 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 8303 8304 // For each mask element, find out if we're just inserting something 8305 // from V2 into V1 or vice versa. 8306 // Possible permutations inserting an element from V2 into V1: 8307 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8308 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8309 // ... 8310 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 8311 // Inserting from V1 into V2 will be similar, except mask range will be 8312 // [16,31]. 8313 8314 bool FoundCandidate = false; 8315 // If both vector operands for the shuffle are the same vector, the mask 8316 // will contain only elements from the first one and the second one will be 8317 // undef. 8318 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 8319 // Go through the mask of half-words to find an element that's being moved 8320 // from one vector to the other. 8321 for (unsigned i = 0; i < BytesInVector; ++i) { 8322 unsigned CurrentElement = Mask[i]; 8323 // If 2nd operand is undefined, we should only look for element 7 in the 8324 // Mask. 8325 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 8326 continue; 8327 8328 bool OtherElementsInOrder = true; 8329 // Examine the other elements in the Mask to see if they're in original 8330 // order. 8331 for (unsigned j = 0; j < BytesInVector; ++j) { 8332 if (j == i) 8333 continue; 8334 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 8335 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 8336 // in which we always assume we're always picking from the 1st operand. 8337 int MaskOffset = 8338 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 8339 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 8340 OtherElementsInOrder = false; 8341 break; 8342 } 8343 } 8344 // If other elements are in original order, we record the number of shifts 8345 // we need to get the element we want into element 7. Also record which byte 8346 // in the vector we should insert into. 8347 if (OtherElementsInOrder) { 8348 // If 2nd operand is undefined, we assume no shifts and no swapping. 8349 if (V2.isUndef()) { 8350 ShiftElts = 0; 8351 Swap = false; 8352 } else { 8353 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 8354 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 8355 : BigEndianShifts[CurrentElement & 0xF]; 8356 Swap = CurrentElement < BytesInVector; 8357 } 8358 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 8359 FoundCandidate = true; 8360 break; 8361 } 8362 } 8363 8364 if (!FoundCandidate) 8365 return SDValue(); 8366 8367 // Candidate found, construct the proper SDAG sequence with VINSERTB, 8368 // optionally with VECSHL if shift is required. 8369 if (Swap) 8370 std::swap(V1, V2); 8371 if (V2.isUndef()) 8372 V2 = V1; 8373 if (ShiftElts) { 8374 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8375 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8376 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 8377 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8378 } 8379 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 8380 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8381 } 8382 8383 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 8384 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 8385 /// SDValue. 8386 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 8387 SelectionDAG &DAG) const { 8388 const unsigned NumHalfWords = 8; 8389 const unsigned BytesInVector = NumHalfWords * 2; 8390 // Check that the shuffle is on half-words. 8391 if (!isNByteElemShuffleMask(N, 2, 1)) 8392 return SDValue(); 8393 8394 bool IsLE = Subtarget.isLittleEndian(); 8395 SDLoc dl(N); 8396 SDValue V1 = N->getOperand(0); 8397 SDValue V2 = N->getOperand(1); 8398 unsigned ShiftElts = 0, InsertAtByte = 0; 8399 bool Swap = false; 8400 8401 // Shifts required to get the half-word we want at element 3. 8402 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 8403 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 8404 8405 uint32_t Mask = 0; 8406 uint32_t OriginalOrderLow = 0x1234567; 8407 uint32_t OriginalOrderHigh = 0x89ABCDEF; 8408 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 8409 // 32-bit space, only need 4-bit nibbles per element. 8410 for (unsigned i = 0; i < NumHalfWords; ++i) { 8411 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8412 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 8413 } 8414 8415 // For each mask element, find out if we're just inserting something 8416 // from V2 into V1 or vice versa. Possible permutations inserting an element 8417 // from V2 into V1: 8418 // X, 1, 2, 3, 4, 5, 6, 7 8419 // 0, X, 2, 3, 4, 5, 6, 7 8420 // 0, 1, X, 3, 4, 5, 6, 7 8421 // 0, 1, 2, X, 4, 5, 6, 7 8422 // 0, 1, 2, 3, X, 5, 6, 7 8423 // 0, 1, 2, 3, 4, X, 6, 7 8424 // 0, 1, 2, 3, 4, 5, X, 7 8425 // 0, 1, 2, 3, 4, 5, 6, X 8426 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 8427 8428 bool FoundCandidate = false; 8429 // Go through the mask of half-words to find an element that's being moved 8430 // from one vector to the other. 8431 for (unsigned i = 0; i < NumHalfWords; ++i) { 8432 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8433 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 8434 uint32_t MaskOtherElts = ~(0xF << MaskShift); 8435 uint32_t TargetOrder = 0x0; 8436 8437 // If both vector operands for the shuffle are the same vector, the mask 8438 // will contain only elements from the first one and the second one will be 8439 // undef. 8440 if (V2.isUndef()) { 8441 ShiftElts = 0; 8442 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 8443 TargetOrder = OriginalOrderLow; 8444 Swap = false; 8445 // Skip if not the correct element or mask of other elements don't equal 8446 // to our expected order. 8447 if (MaskOneElt == VINSERTHSrcElem && 8448 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 8449 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 8450 FoundCandidate = true; 8451 break; 8452 } 8453 } else { // If both operands are defined. 8454 // Target order is [8,15] if the current mask is between [0,7]. 8455 TargetOrder = 8456 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 8457 // Skip if mask of other elements don't equal our expected order. 8458 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 8459 // We only need the last 3 bits for the number of shifts. 8460 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 8461 : BigEndianShifts[MaskOneElt & 0x7]; 8462 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 8463 Swap = MaskOneElt < NumHalfWords; 8464 FoundCandidate = true; 8465 break; 8466 } 8467 } 8468 } 8469 8470 if (!FoundCandidate) 8471 return SDValue(); 8472 8473 // Candidate found, construct the proper SDAG sequence with VINSERTH, 8474 // optionally with VECSHL if shift is required. 8475 if (Swap) 8476 std::swap(V1, V2); 8477 if (V2.isUndef()) 8478 V2 = V1; 8479 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 8480 if (ShiftElts) { 8481 // Double ShiftElts because we're left shifting on v16i8 type. 8482 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8483 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 8484 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 8485 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 8486 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8487 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8488 } 8489 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 8490 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 8491 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8492 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8493 } 8494 8495 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 8496 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 8497 /// return the code it can be lowered into. Worst case, it can always be 8498 /// lowered into a vperm. 8499 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 8500 SelectionDAG &DAG) const { 8501 SDLoc dl(Op); 8502 SDValue V1 = Op.getOperand(0); 8503 SDValue V2 = Op.getOperand(1); 8504 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 8505 EVT VT = Op.getValueType(); 8506 bool isLittleEndian = Subtarget.isLittleEndian(); 8507 8508 unsigned ShiftElts, InsertAtByte; 8509 bool Swap = false; 8510 if (Subtarget.hasP9Vector() && 8511 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 8512 isLittleEndian)) { 8513 if (Swap) 8514 std::swap(V1, V2); 8515 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8516 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 8517 if (ShiftElts) { 8518 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 8519 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8520 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 8521 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8522 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8523 } 8524 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 8525 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8526 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8527 } 8528 8529 if (Subtarget.hasP9Altivec()) { 8530 SDValue NewISDNode; 8531 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 8532 return NewISDNode; 8533 8534 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 8535 return NewISDNode; 8536 } 8537 8538 if (Subtarget.hasVSX() && 8539 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 8540 if (Swap) 8541 std::swap(V1, V2); 8542 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8543 SDValue Conv2 = 8544 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 8545 8546 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 8547 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8548 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 8549 } 8550 8551 if (Subtarget.hasVSX() && 8552 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 8553 if (Swap) 8554 std::swap(V1, V2); 8555 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 8556 SDValue Conv2 = 8557 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 8558 8559 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 8560 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8561 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 8562 } 8563 8564 if (Subtarget.hasP9Vector()) { 8565 if (PPC::isXXBRHShuffleMask(SVOp)) { 8566 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 8567 SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv); 8568 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 8569 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 8570 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8571 SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv); 8572 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 8573 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 8574 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 8575 SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv); 8576 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 8577 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 8578 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 8579 SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv); 8580 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 8581 } 8582 } 8583 8584 if (Subtarget.hasVSX()) { 8585 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 8586 int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG); 8587 8588 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8589 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 8590 DAG.getConstant(SplatIdx, dl, MVT::i32)); 8591 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 8592 } 8593 8594 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 8595 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 8596 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 8597 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 8598 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 8599 } 8600 } 8601 8602 if (Subtarget.hasQPX()) { 8603 if (VT.getVectorNumElements() != 4) 8604 return SDValue(); 8605 8606 if (V2.isUndef()) V2 = V1; 8607 8608 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 8609 if (AlignIdx != -1) { 8610 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 8611 DAG.getConstant(AlignIdx, dl, MVT::i32)); 8612 } else if (SVOp->isSplat()) { 8613 int SplatIdx = SVOp->getSplatIndex(); 8614 if (SplatIdx >= 4) { 8615 std::swap(V1, V2); 8616 SplatIdx -= 4; 8617 } 8618 8619 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 8620 DAG.getConstant(SplatIdx, dl, MVT::i32)); 8621 } 8622 8623 // Lower this into a qvgpci/qvfperm pair. 8624 8625 // Compute the qvgpci literal 8626 unsigned idx = 0; 8627 for (unsigned i = 0; i < 4; ++i) { 8628 int m = SVOp->getMaskElt(i); 8629 unsigned mm = m >= 0 ? (unsigned) m : i; 8630 idx |= mm << (3-i)*3; 8631 } 8632 8633 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 8634 DAG.getConstant(idx, dl, MVT::i32)); 8635 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 8636 } 8637 8638 // Cases that are handled by instructions that take permute immediates 8639 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 8640 // selected by the instruction selector. 8641 if (V2.isUndef()) { 8642 if (PPC::isSplatShuffleMask(SVOp, 1) || 8643 PPC::isSplatShuffleMask(SVOp, 2) || 8644 PPC::isSplatShuffleMask(SVOp, 4) || 8645 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 8646 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 8647 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 8648 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 8649 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 8650 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 8651 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 8652 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 8653 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 8654 (Subtarget.hasP8Altivec() && ( 8655 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 8656 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 8657 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 8658 return Op; 8659 } 8660 } 8661 8662 // Altivec has a variety of "shuffle immediates" that take two vector inputs 8663 // and produce a fixed permutation. If any of these match, do not lower to 8664 // VPERM. 8665 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 8666 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 8667 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 8668 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 8669 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 8670 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 8671 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 8672 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 8673 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 8674 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 8675 (Subtarget.hasP8Altivec() && ( 8676 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 8677 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 8678 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 8679 return Op; 8680 8681 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 8682 // perfect shuffle table to emit an optimal matching sequence. 8683 ArrayRef<int> PermMask = SVOp->getMask(); 8684 8685 unsigned PFIndexes[4]; 8686 bool isFourElementShuffle = true; 8687 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 8688 unsigned EltNo = 8; // Start out undef. 8689 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 8690 if (PermMask[i*4+j] < 0) 8691 continue; // Undef, ignore it. 8692 8693 unsigned ByteSource = PermMask[i*4+j]; 8694 if ((ByteSource & 3) != j) { 8695 isFourElementShuffle = false; 8696 break; 8697 } 8698 8699 if (EltNo == 8) { 8700 EltNo = ByteSource/4; 8701 } else if (EltNo != ByteSource/4) { 8702 isFourElementShuffle = false; 8703 break; 8704 } 8705 } 8706 PFIndexes[i] = EltNo; 8707 } 8708 8709 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 8710 // perfect shuffle vector to determine if it is cost effective to do this as 8711 // discrete instructions, or whether we should use a vperm. 8712 // For now, we skip this for little endian until such time as we have a 8713 // little-endian perfect shuffle table. 8714 if (isFourElementShuffle && !isLittleEndian) { 8715 // Compute the index in the perfect shuffle table. 8716 unsigned PFTableIndex = 8717 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 8718 8719 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 8720 unsigned Cost = (PFEntry >> 30); 8721 8722 // Determining when to avoid vperm is tricky. Many things affect the cost 8723 // of vperm, particularly how many times the perm mask needs to be computed. 8724 // For example, if the perm mask can be hoisted out of a loop or is already 8725 // used (perhaps because there are multiple permutes with the same shuffle 8726 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 8727 // the loop requires an extra register. 8728 // 8729 // As a compromise, we only emit discrete instructions if the shuffle can be 8730 // generated in 3 or fewer operations. When we have loop information 8731 // available, if this block is within a loop, we should avoid using vperm 8732 // for 3-operation perms and use a constant pool load instead. 8733 if (Cost < 3) 8734 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 8735 } 8736 8737 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 8738 // vector that will get spilled to the constant pool. 8739 if (V2.isUndef()) V2 = V1; 8740 8741 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 8742 // that it is in input element units, not in bytes. Convert now. 8743 8744 // For little endian, the order of the input vectors is reversed, and 8745 // the permutation mask is complemented with respect to 31. This is 8746 // necessary to produce proper semantics with the big-endian-biased vperm 8747 // instruction. 8748 EVT EltVT = V1.getValueType().getVectorElementType(); 8749 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 8750 8751 SmallVector<SDValue, 16> ResultMask; 8752 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 8753 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 8754 8755 for (unsigned j = 0; j != BytesPerElement; ++j) 8756 if (isLittleEndian) 8757 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 8758 dl, MVT::i32)); 8759 else 8760 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 8761 MVT::i32)); 8762 } 8763 8764 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 8765 if (isLittleEndian) 8766 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 8767 V2, V1, VPermMask); 8768 else 8769 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 8770 V1, V2, VPermMask); 8771 } 8772 8773 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 8774 /// vector comparison. If it is, return true and fill in Opc/isDot with 8775 /// information about the intrinsic. 8776 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 8777 bool &isDot, const PPCSubtarget &Subtarget) { 8778 unsigned IntrinsicID = 8779 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 8780 CompareOpc = -1; 8781 isDot = false; 8782 switch (IntrinsicID) { 8783 default: 8784 return false; 8785 // Comparison predicates. 8786 case Intrinsic::ppc_altivec_vcmpbfp_p: 8787 CompareOpc = 966; 8788 isDot = true; 8789 break; 8790 case Intrinsic::ppc_altivec_vcmpeqfp_p: 8791 CompareOpc = 198; 8792 isDot = true; 8793 break; 8794 case Intrinsic::ppc_altivec_vcmpequb_p: 8795 CompareOpc = 6; 8796 isDot = true; 8797 break; 8798 case Intrinsic::ppc_altivec_vcmpequh_p: 8799 CompareOpc = 70; 8800 isDot = true; 8801 break; 8802 case Intrinsic::ppc_altivec_vcmpequw_p: 8803 CompareOpc = 134; 8804 isDot = true; 8805 break; 8806 case Intrinsic::ppc_altivec_vcmpequd_p: 8807 if (Subtarget.hasP8Altivec()) { 8808 CompareOpc = 199; 8809 isDot = true; 8810 } else 8811 return false; 8812 break; 8813 case Intrinsic::ppc_altivec_vcmpneb_p: 8814 case Intrinsic::ppc_altivec_vcmpneh_p: 8815 case Intrinsic::ppc_altivec_vcmpnew_p: 8816 case Intrinsic::ppc_altivec_vcmpnezb_p: 8817 case Intrinsic::ppc_altivec_vcmpnezh_p: 8818 case Intrinsic::ppc_altivec_vcmpnezw_p: 8819 if (Subtarget.hasP9Altivec()) { 8820 switch (IntrinsicID) { 8821 default: 8822 llvm_unreachable("Unknown comparison intrinsic."); 8823 case Intrinsic::ppc_altivec_vcmpneb_p: 8824 CompareOpc = 7; 8825 break; 8826 case Intrinsic::ppc_altivec_vcmpneh_p: 8827 CompareOpc = 71; 8828 break; 8829 case Intrinsic::ppc_altivec_vcmpnew_p: 8830 CompareOpc = 135; 8831 break; 8832 case Intrinsic::ppc_altivec_vcmpnezb_p: 8833 CompareOpc = 263; 8834 break; 8835 case Intrinsic::ppc_altivec_vcmpnezh_p: 8836 CompareOpc = 327; 8837 break; 8838 case Intrinsic::ppc_altivec_vcmpnezw_p: 8839 CompareOpc = 391; 8840 break; 8841 } 8842 isDot = true; 8843 } else 8844 return false; 8845 break; 8846 case Intrinsic::ppc_altivec_vcmpgefp_p: 8847 CompareOpc = 454; 8848 isDot = true; 8849 break; 8850 case Intrinsic::ppc_altivec_vcmpgtfp_p: 8851 CompareOpc = 710; 8852 isDot = true; 8853 break; 8854 case Intrinsic::ppc_altivec_vcmpgtsb_p: 8855 CompareOpc = 774; 8856 isDot = true; 8857 break; 8858 case Intrinsic::ppc_altivec_vcmpgtsh_p: 8859 CompareOpc = 838; 8860 isDot = true; 8861 break; 8862 case Intrinsic::ppc_altivec_vcmpgtsw_p: 8863 CompareOpc = 902; 8864 isDot = true; 8865 break; 8866 case Intrinsic::ppc_altivec_vcmpgtsd_p: 8867 if (Subtarget.hasP8Altivec()) { 8868 CompareOpc = 967; 8869 isDot = true; 8870 } else 8871 return false; 8872 break; 8873 case Intrinsic::ppc_altivec_vcmpgtub_p: 8874 CompareOpc = 518; 8875 isDot = true; 8876 break; 8877 case Intrinsic::ppc_altivec_vcmpgtuh_p: 8878 CompareOpc = 582; 8879 isDot = true; 8880 break; 8881 case Intrinsic::ppc_altivec_vcmpgtuw_p: 8882 CompareOpc = 646; 8883 isDot = true; 8884 break; 8885 case Intrinsic::ppc_altivec_vcmpgtud_p: 8886 if (Subtarget.hasP8Altivec()) { 8887 CompareOpc = 711; 8888 isDot = true; 8889 } else 8890 return false; 8891 break; 8892 8893 // VSX predicate comparisons use the same infrastructure 8894 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 8895 case Intrinsic::ppc_vsx_xvcmpgedp_p: 8896 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 8897 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 8898 case Intrinsic::ppc_vsx_xvcmpgesp_p: 8899 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 8900 if (Subtarget.hasVSX()) { 8901 switch (IntrinsicID) { 8902 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 8903 CompareOpc = 99; 8904 break; 8905 case Intrinsic::ppc_vsx_xvcmpgedp_p: 8906 CompareOpc = 115; 8907 break; 8908 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 8909 CompareOpc = 107; 8910 break; 8911 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 8912 CompareOpc = 67; 8913 break; 8914 case Intrinsic::ppc_vsx_xvcmpgesp_p: 8915 CompareOpc = 83; 8916 break; 8917 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 8918 CompareOpc = 75; 8919 break; 8920 } 8921 isDot = true; 8922 } else 8923 return false; 8924 break; 8925 8926 // Normal Comparisons. 8927 case Intrinsic::ppc_altivec_vcmpbfp: 8928 CompareOpc = 966; 8929 break; 8930 case Intrinsic::ppc_altivec_vcmpeqfp: 8931 CompareOpc = 198; 8932 break; 8933 case Intrinsic::ppc_altivec_vcmpequb: 8934 CompareOpc = 6; 8935 break; 8936 case Intrinsic::ppc_altivec_vcmpequh: 8937 CompareOpc = 70; 8938 break; 8939 case Intrinsic::ppc_altivec_vcmpequw: 8940 CompareOpc = 134; 8941 break; 8942 case Intrinsic::ppc_altivec_vcmpequd: 8943 if (Subtarget.hasP8Altivec()) 8944 CompareOpc = 199; 8945 else 8946 return false; 8947 break; 8948 case Intrinsic::ppc_altivec_vcmpneb: 8949 case Intrinsic::ppc_altivec_vcmpneh: 8950 case Intrinsic::ppc_altivec_vcmpnew: 8951 case Intrinsic::ppc_altivec_vcmpnezb: 8952 case Intrinsic::ppc_altivec_vcmpnezh: 8953 case Intrinsic::ppc_altivec_vcmpnezw: 8954 if (Subtarget.hasP9Altivec()) 8955 switch (IntrinsicID) { 8956 default: 8957 llvm_unreachable("Unknown comparison intrinsic."); 8958 case Intrinsic::ppc_altivec_vcmpneb: 8959 CompareOpc = 7; 8960 break; 8961 case Intrinsic::ppc_altivec_vcmpneh: 8962 CompareOpc = 71; 8963 break; 8964 case Intrinsic::ppc_altivec_vcmpnew: 8965 CompareOpc = 135; 8966 break; 8967 case Intrinsic::ppc_altivec_vcmpnezb: 8968 CompareOpc = 263; 8969 break; 8970 case Intrinsic::ppc_altivec_vcmpnezh: 8971 CompareOpc = 327; 8972 break; 8973 case Intrinsic::ppc_altivec_vcmpnezw: 8974 CompareOpc = 391; 8975 break; 8976 } 8977 else 8978 return false; 8979 break; 8980 case Intrinsic::ppc_altivec_vcmpgefp: 8981 CompareOpc = 454; 8982 break; 8983 case Intrinsic::ppc_altivec_vcmpgtfp: 8984 CompareOpc = 710; 8985 break; 8986 case Intrinsic::ppc_altivec_vcmpgtsb: 8987 CompareOpc = 774; 8988 break; 8989 case Intrinsic::ppc_altivec_vcmpgtsh: 8990 CompareOpc = 838; 8991 break; 8992 case Intrinsic::ppc_altivec_vcmpgtsw: 8993 CompareOpc = 902; 8994 break; 8995 case Intrinsic::ppc_altivec_vcmpgtsd: 8996 if (Subtarget.hasP8Altivec()) 8997 CompareOpc = 967; 8998 else 8999 return false; 9000 break; 9001 case Intrinsic::ppc_altivec_vcmpgtub: 9002 CompareOpc = 518; 9003 break; 9004 case Intrinsic::ppc_altivec_vcmpgtuh: 9005 CompareOpc = 582; 9006 break; 9007 case Intrinsic::ppc_altivec_vcmpgtuw: 9008 CompareOpc = 646; 9009 break; 9010 case Intrinsic::ppc_altivec_vcmpgtud: 9011 if (Subtarget.hasP8Altivec()) 9012 CompareOpc = 711; 9013 else 9014 return false; 9015 break; 9016 } 9017 return true; 9018 } 9019 9020 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 9021 /// lower, do it, otherwise return null. 9022 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 9023 SelectionDAG &DAG) const { 9024 unsigned IntrinsicID = 9025 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9026 9027 SDLoc dl(Op); 9028 9029 if (IntrinsicID == Intrinsic::thread_pointer) { 9030 // Reads the thread pointer register, used for __builtin_thread_pointer. 9031 if (Subtarget.isPPC64()) 9032 return DAG.getRegister(PPC::X13, MVT::i64); 9033 return DAG.getRegister(PPC::R2, MVT::i32); 9034 } 9035 9036 // If this is a lowered altivec predicate compare, CompareOpc is set to the 9037 // opcode number of the comparison. 9038 int CompareOpc; 9039 bool isDot; 9040 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 9041 return SDValue(); // Don't custom lower most intrinsics. 9042 9043 // If this is a non-dot comparison, make the VCMP node and we are done. 9044 if (!isDot) { 9045 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 9046 Op.getOperand(1), Op.getOperand(2), 9047 DAG.getConstant(CompareOpc, dl, MVT::i32)); 9048 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 9049 } 9050 9051 // Create the PPCISD altivec 'dot' comparison node. 9052 SDValue Ops[] = { 9053 Op.getOperand(2), // LHS 9054 Op.getOperand(3), // RHS 9055 DAG.getConstant(CompareOpc, dl, MVT::i32) 9056 }; 9057 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 9058 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 9059 9060 // Now that we have the comparison, emit a copy from the CR to a GPR. 9061 // This is flagged to the above dot comparison. 9062 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 9063 DAG.getRegister(PPC::CR6, MVT::i32), 9064 CompNode.getValue(1)); 9065 9066 // Unpack the result based on how the target uses it. 9067 unsigned BitNo; // Bit # of CR6. 9068 bool InvertBit; // Invert result? 9069 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 9070 default: // Can't happen, don't crash on invalid number though. 9071 case 0: // Return the value of the EQ bit of CR6. 9072 BitNo = 0; InvertBit = false; 9073 break; 9074 case 1: // Return the inverted value of the EQ bit of CR6. 9075 BitNo = 0; InvertBit = true; 9076 break; 9077 case 2: // Return the value of the LT bit of CR6. 9078 BitNo = 2; InvertBit = false; 9079 break; 9080 case 3: // Return the inverted value of the LT bit of CR6. 9081 BitNo = 2; InvertBit = true; 9082 break; 9083 } 9084 9085 // Shift the bit into the low position. 9086 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 9087 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 9088 // Isolate the bit. 9089 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 9090 DAG.getConstant(1, dl, MVT::i32)); 9091 9092 // If we are supposed to, toggle the bit. 9093 if (InvertBit) 9094 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 9095 DAG.getConstant(1, dl, MVT::i32)); 9096 return Flags; 9097 } 9098 9099 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 9100 SelectionDAG &DAG) const { 9101 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 9102 // the beginning of the argument list. 9103 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 9104 SDLoc DL(Op); 9105 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 9106 case Intrinsic::ppc_cfence: { 9107 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 9108 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 9109 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 9110 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 9111 Op.getOperand(ArgStart + 1)), 9112 Op.getOperand(0)), 9113 0); 9114 } 9115 default: 9116 break; 9117 } 9118 return SDValue(); 9119 } 9120 9121 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const { 9122 // Check for a DIV with the same operands as this REM. 9123 for (auto UI : Op.getOperand(1)->uses()) { 9124 if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) || 9125 (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV)) 9126 if (UI->getOperand(0) == Op.getOperand(0) && 9127 UI->getOperand(1) == Op.getOperand(1)) 9128 return SDValue(); 9129 } 9130 return Op; 9131 } 9132 9133 // Lower scalar BSWAP64 to xxbrd. 9134 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 9135 SDLoc dl(Op); 9136 // MTVSRDD 9137 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 9138 Op.getOperand(0)); 9139 // XXBRD 9140 Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op); 9141 // MFVSRD 9142 int VectorIndex = 0; 9143 if (Subtarget.isLittleEndian()) 9144 VectorIndex = 1; 9145 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 9146 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 9147 return Op; 9148 } 9149 9150 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 9151 // compared to a value that is atomically loaded (atomic loads zero-extend). 9152 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 9153 SelectionDAG &DAG) const { 9154 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 9155 "Expecting an atomic compare-and-swap here."); 9156 SDLoc dl(Op); 9157 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 9158 EVT MemVT = AtomicNode->getMemoryVT(); 9159 if (MemVT.getSizeInBits() >= 32) 9160 return Op; 9161 9162 SDValue CmpOp = Op.getOperand(2); 9163 // If this is already correctly zero-extended, leave it alone. 9164 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 9165 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 9166 return Op; 9167 9168 // Clear the high bits of the compare operand. 9169 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 9170 SDValue NewCmpOp = 9171 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 9172 DAG.getConstant(MaskVal, dl, MVT::i32)); 9173 9174 // Replace the existing compare operand with the properly zero-extended one. 9175 SmallVector<SDValue, 4> Ops; 9176 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 9177 Ops.push_back(AtomicNode->getOperand(i)); 9178 Ops[2] = NewCmpOp; 9179 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 9180 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 9181 auto NodeTy = 9182 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 9183 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 9184 } 9185 9186 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 9187 SelectionDAG &DAG) const { 9188 SDLoc dl(Op); 9189 // Create a stack slot that is 16-byte aligned. 9190 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9191 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9192 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9193 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9194 9195 // Store the input value into Value#0 of the stack slot. 9196 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 9197 MachinePointerInfo()); 9198 // Load it out. 9199 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 9200 } 9201 9202 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 9203 SelectionDAG &DAG) const { 9204 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 9205 "Should only be called for ISD::INSERT_VECTOR_ELT"); 9206 9207 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 9208 // We have legal lowering for constant indices but not for variable ones. 9209 if (!C) 9210 return SDValue(); 9211 9212 EVT VT = Op.getValueType(); 9213 SDLoc dl(Op); 9214 SDValue V1 = Op.getOperand(0); 9215 SDValue V2 = Op.getOperand(1); 9216 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 9217 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 9218 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 9219 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 9220 unsigned InsertAtElement = C->getZExtValue(); 9221 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 9222 if (Subtarget.isLittleEndian()) { 9223 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 9224 } 9225 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 9226 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9227 } 9228 return Op; 9229 } 9230 9231 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 9232 SelectionDAG &DAG) const { 9233 SDLoc dl(Op); 9234 SDNode *N = Op.getNode(); 9235 9236 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 9237 "Unknown extract_vector_elt type"); 9238 9239 SDValue Value = N->getOperand(0); 9240 9241 // The first part of this is like the store lowering except that we don't 9242 // need to track the chain. 9243 9244 // The values are now known to be -1 (false) or 1 (true). To convert this 9245 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9246 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9247 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9248 9249 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9250 // understand how to form the extending load. 9251 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9252 9253 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9254 9255 // Now convert to an integer and store. 9256 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9257 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9258 Value); 9259 9260 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9261 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9262 MachinePointerInfo PtrInfo = 9263 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9264 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9265 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9266 9267 SDValue StoreChain = DAG.getEntryNode(); 9268 SDValue Ops[] = {StoreChain, 9269 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9270 Value, FIdx}; 9271 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9272 9273 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9274 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9275 9276 // Extract the value requested. 9277 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 9278 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9279 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9280 9281 SDValue IntVal = 9282 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 9283 9284 if (!Subtarget.useCRBits()) 9285 return IntVal; 9286 9287 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 9288 } 9289 9290 /// Lowering for QPX v4i1 loads 9291 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 9292 SelectionDAG &DAG) const { 9293 SDLoc dl(Op); 9294 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 9295 SDValue LoadChain = LN->getChain(); 9296 SDValue BasePtr = LN->getBasePtr(); 9297 9298 if (Op.getValueType() == MVT::v4f64 || 9299 Op.getValueType() == MVT::v4f32) { 9300 EVT MemVT = LN->getMemoryVT(); 9301 unsigned Alignment = LN->getAlignment(); 9302 9303 // If this load is properly aligned, then it is legal. 9304 if (Alignment >= MemVT.getStoreSize()) 9305 return Op; 9306 9307 EVT ScalarVT = Op.getValueType().getScalarType(), 9308 ScalarMemVT = MemVT.getScalarType(); 9309 unsigned Stride = ScalarMemVT.getStoreSize(); 9310 9311 SDValue Vals[4], LoadChains[4]; 9312 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9313 SDValue Load; 9314 if (ScalarVT != ScalarMemVT) 9315 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 9316 BasePtr, 9317 LN->getPointerInfo().getWithOffset(Idx * Stride), 9318 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9319 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9320 else 9321 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 9322 LN->getPointerInfo().getWithOffset(Idx * Stride), 9323 MinAlign(Alignment, Idx * Stride), 9324 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9325 9326 if (Idx == 0 && LN->isIndexed()) { 9327 assert(LN->getAddressingMode() == ISD::PRE_INC && 9328 "Unknown addressing mode on vector load"); 9329 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 9330 LN->getAddressingMode()); 9331 } 9332 9333 Vals[Idx] = Load; 9334 LoadChains[Idx] = Load.getValue(1); 9335 9336 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9337 DAG.getConstant(Stride, dl, 9338 BasePtr.getValueType())); 9339 } 9340 9341 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9342 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 9343 9344 if (LN->isIndexed()) { 9345 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 9346 return DAG.getMergeValues(RetOps, dl); 9347 } 9348 9349 SDValue RetOps[] = { Value, TF }; 9350 return DAG.getMergeValues(RetOps, dl); 9351 } 9352 9353 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 9354 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 9355 9356 // To lower v4i1 from a byte array, we load the byte elements of the 9357 // vector and then reuse the BUILD_VECTOR logic. 9358 9359 SDValue VectElmts[4], VectElmtChains[4]; 9360 for (unsigned i = 0; i < 4; ++i) { 9361 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9362 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9363 9364 VectElmts[i] = DAG.getExtLoad( 9365 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 9366 LN->getPointerInfo().getWithOffset(i), MVT::i8, 9367 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9368 VectElmtChains[i] = VectElmts[i].getValue(1); 9369 } 9370 9371 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 9372 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 9373 9374 SDValue RVals[] = { Value, LoadChain }; 9375 return DAG.getMergeValues(RVals, dl); 9376 } 9377 9378 /// Lowering for QPX v4i1 stores 9379 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 9380 SelectionDAG &DAG) const { 9381 SDLoc dl(Op); 9382 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 9383 SDValue StoreChain = SN->getChain(); 9384 SDValue BasePtr = SN->getBasePtr(); 9385 SDValue Value = SN->getValue(); 9386 9387 if (Value.getValueType() == MVT::v4f64 || 9388 Value.getValueType() == MVT::v4f32) { 9389 EVT MemVT = SN->getMemoryVT(); 9390 unsigned Alignment = SN->getAlignment(); 9391 9392 // If this store is properly aligned, then it is legal. 9393 if (Alignment >= MemVT.getStoreSize()) 9394 return Op; 9395 9396 EVT ScalarVT = Value.getValueType().getScalarType(), 9397 ScalarMemVT = MemVT.getScalarType(); 9398 unsigned Stride = ScalarMemVT.getStoreSize(); 9399 9400 SDValue Stores[4]; 9401 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9402 SDValue Ex = DAG.getNode( 9403 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 9404 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 9405 SDValue Store; 9406 if (ScalarVT != ScalarMemVT) 9407 Store = 9408 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 9409 SN->getPointerInfo().getWithOffset(Idx * Stride), 9410 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9411 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 9412 else 9413 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 9414 SN->getPointerInfo().getWithOffset(Idx * Stride), 9415 MinAlign(Alignment, Idx * Stride), 9416 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 9417 9418 if (Idx == 0 && SN->isIndexed()) { 9419 assert(SN->getAddressingMode() == ISD::PRE_INC && 9420 "Unknown addressing mode on vector store"); 9421 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 9422 SN->getAddressingMode()); 9423 } 9424 9425 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9426 DAG.getConstant(Stride, dl, 9427 BasePtr.getValueType())); 9428 Stores[Idx] = Store; 9429 } 9430 9431 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9432 9433 if (SN->isIndexed()) { 9434 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 9435 return DAG.getMergeValues(RetOps, dl); 9436 } 9437 9438 return TF; 9439 } 9440 9441 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 9442 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 9443 9444 // The values are now known to be -1 (false) or 1 (true). To convert this 9445 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9446 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9447 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9448 9449 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9450 // understand how to form the extending load. 9451 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9452 9453 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9454 9455 // Now convert to an integer and store. 9456 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9457 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9458 Value); 9459 9460 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9461 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9462 MachinePointerInfo PtrInfo = 9463 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9464 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9465 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9466 9467 SDValue Ops[] = {StoreChain, 9468 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9469 Value, FIdx}; 9470 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9471 9472 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9473 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9474 9475 // Move data into the byte array. 9476 SDValue Loads[4], LoadChains[4]; 9477 for (unsigned i = 0; i < 4; ++i) { 9478 unsigned Offset = 4*i; 9479 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9480 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9481 9482 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 9483 PtrInfo.getWithOffset(Offset)); 9484 LoadChains[i] = Loads[i].getValue(1); 9485 } 9486 9487 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9488 9489 SDValue Stores[4]; 9490 for (unsigned i = 0; i < 4; ++i) { 9491 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9492 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9493 9494 Stores[i] = DAG.getTruncStore( 9495 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 9496 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 9497 SN->getAAInfo()); 9498 } 9499 9500 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9501 9502 return StoreChain; 9503 } 9504 9505 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 9506 SDLoc dl(Op); 9507 if (Op.getValueType() == MVT::v4i32) { 9508 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9509 9510 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 9511 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 9512 9513 SDValue RHSSwap = // = vrlw RHS, 16 9514 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 9515 9516 // Shrinkify inputs to v8i16. 9517 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 9518 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 9519 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 9520 9521 // Low parts multiplied together, generating 32-bit results (we ignore the 9522 // top parts). 9523 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 9524 LHS, RHS, DAG, dl, MVT::v4i32); 9525 9526 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 9527 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 9528 // Shift the high parts up 16 bits. 9529 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 9530 Neg16, DAG, dl); 9531 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 9532 } else if (Op.getValueType() == MVT::v8i16) { 9533 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9534 9535 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 9536 9537 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 9538 LHS, RHS, Zero, DAG, dl); 9539 } else if (Op.getValueType() == MVT::v16i8) { 9540 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9541 bool isLittleEndian = Subtarget.isLittleEndian(); 9542 9543 // Multiply the even 8-bit parts, producing 16-bit sums. 9544 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 9545 LHS, RHS, DAG, dl, MVT::v8i16); 9546 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 9547 9548 // Multiply the odd 8-bit parts, producing 16-bit sums. 9549 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 9550 LHS, RHS, DAG, dl, MVT::v8i16); 9551 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 9552 9553 // Merge the results together. Because vmuleub and vmuloub are 9554 // instructions with a big-endian bias, we must reverse the 9555 // element numbering and reverse the meaning of "odd" and "even" 9556 // when generating little endian code. 9557 int Ops[16]; 9558 for (unsigned i = 0; i != 8; ++i) { 9559 if (isLittleEndian) { 9560 Ops[i*2 ] = 2*i; 9561 Ops[i*2+1] = 2*i+16; 9562 } else { 9563 Ops[i*2 ] = 2*i+1; 9564 Ops[i*2+1] = 2*i+1+16; 9565 } 9566 } 9567 if (isLittleEndian) 9568 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 9569 else 9570 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 9571 } else { 9572 llvm_unreachable("Unknown mul to lower!"); 9573 } 9574 } 9575 9576 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 9577 9578 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 9579 9580 EVT VT = Op.getValueType(); 9581 assert(VT.isVector() && 9582 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 9583 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 9584 VT == MVT::v16i8) && 9585 "Unexpected vector element type!"); 9586 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 9587 "Current subtarget doesn't support smax v2i64!"); 9588 9589 // For vector abs, it can be lowered to: 9590 // abs x 9591 // ==> 9592 // y = -x 9593 // smax(x, y) 9594 9595 SDLoc dl(Op); 9596 SDValue X = Op.getOperand(0); 9597 SDValue Zero = DAG.getConstant(0, dl, VT); 9598 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 9599 9600 // SMAX patch https://reviews.llvm.org/D47332 9601 // hasn't landed yet, so use intrinsic first here. 9602 // TODO: Should use SMAX directly once SMAX patch landed 9603 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 9604 if (VT == MVT::v2i64) 9605 BifID = Intrinsic::ppc_altivec_vmaxsd; 9606 else if (VT == MVT::v8i16) 9607 BifID = Intrinsic::ppc_altivec_vmaxsh; 9608 else if (VT == MVT::v16i8) 9609 BifID = Intrinsic::ppc_altivec_vmaxsb; 9610 9611 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 9612 } 9613 9614 // Custom lowering for fpext vf32 to v2f64 9615 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 9616 9617 assert(Op.getOpcode() == ISD::FP_EXTEND && 9618 "Should only be called for ISD::FP_EXTEND"); 9619 9620 // We only want to custom lower an extend from v2f32 to v2f64. 9621 if (Op.getValueType() != MVT::v2f64 || 9622 Op.getOperand(0).getValueType() != MVT::v2f32) 9623 return SDValue(); 9624 9625 SDLoc dl(Op); 9626 SDValue Op0 = Op.getOperand(0); 9627 9628 switch (Op0.getOpcode()) { 9629 default: 9630 return SDValue(); 9631 case ISD::FADD: 9632 case ISD::FMUL: 9633 case ISD::FSUB: { 9634 SDValue NewLoad[2]; 9635 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 9636 // Ensure both input are loads. 9637 SDValue LdOp = Op0.getOperand(i); 9638 if (LdOp.getOpcode() != ISD::LOAD) 9639 return SDValue(); 9640 // Generate new load node. 9641 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 9642 SDValue LoadOps[] = { LD->getChain(), LD->getBasePtr() }; 9643 NewLoad[i] = 9644 DAG.getMemIntrinsicNode(PPCISD::LD_VSX_LH, dl, 9645 DAG.getVTList(MVT::v4f32, MVT::Other), 9646 LoadOps, LD->getMemoryVT(), 9647 LD->getMemOperand()); 9648 } 9649 SDValue NewOp = DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, 9650 NewLoad[0], NewLoad[1], 9651 Op0.getNode()->getFlags()); 9652 return DAG.getNode(PPCISD::FP_EXTEND_LH, dl, MVT::v2f64, NewOp); 9653 } 9654 case ISD::LOAD: { 9655 LoadSDNode *LD = cast<LoadSDNode>(Op0); 9656 SDValue LoadOps[] = { LD->getChain(), LD->getBasePtr() }; 9657 SDValue NewLd = 9658 DAG.getMemIntrinsicNode(PPCISD::LD_VSX_LH, dl, 9659 DAG.getVTList(MVT::v4f32, MVT::Other), 9660 LoadOps, LD->getMemoryVT(), LD->getMemOperand()); 9661 return DAG.getNode(PPCISD::FP_EXTEND_LH, dl, MVT::v2f64, NewLd); 9662 } 9663 } 9664 llvm_unreachable("ERROR:Should return for all cases within swtich."); 9665 } 9666 9667 /// LowerOperation - Provide custom lowering hooks for some operations. 9668 /// 9669 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9670 switch (Op.getOpcode()) { 9671 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 9672 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 9673 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 9674 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 9675 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 9676 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 9677 case ISD::SETCC: return LowerSETCC(Op, DAG); 9678 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 9679 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 9680 9681 // Variable argument lowering. 9682 case ISD::VASTART: return LowerVASTART(Op, DAG); 9683 case ISD::VAARG: return LowerVAARG(Op, DAG); 9684 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 9685 9686 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 9687 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 9688 case ISD::GET_DYNAMIC_AREA_OFFSET: 9689 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 9690 9691 // Exception handling lowering. 9692 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 9693 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 9694 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 9695 9696 case ISD::LOAD: return LowerLOAD(Op, DAG); 9697 case ISD::STORE: return LowerSTORE(Op, DAG); 9698 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 9699 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 9700 case ISD::FP_TO_UINT: 9701 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 9702 case ISD::UINT_TO_FP: 9703 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 9704 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 9705 9706 // Lower 64-bit shifts. 9707 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 9708 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 9709 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 9710 9711 // Vector-related lowering. 9712 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 9713 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 9714 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 9715 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 9716 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 9717 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 9718 case ISD::MUL: return LowerMUL(Op, DAG); 9719 case ISD::ABS: return LowerABS(Op, DAG); 9720 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 9721 9722 // For counter-based loop handling. 9723 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 9724 9725 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 9726 9727 // Frame & Return address. 9728 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 9729 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 9730 9731 case ISD::INTRINSIC_VOID: 9732 return LowerINTRINSIC_VOID(Op, DAG); 9733 case ISD::SREM: 9734 case ISD::UREM: 9735 return LowerREM(Op, DAG); 9736 case ISD::BSWAP: 9737 return LowerBSWAP(Op, DAG); 9738 case ISD::ATOMIC_CMP_SWAP: 9739 return LowerATOMIC_CMP_SWAP(Op, DAG); 9740 } 9741 } 9742 9743 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 9744 SmallVectorImpl<SDValue>&Results, 9745 SelectionDAG &DAG) const { 9746 SDLoc dl(N); 9747 switch (N->getOpcode()) { 9748 default: 9749 llvm_unreachable("Do not know how to custom type legalize this operation!"); 9750 case ISD::READCYCLECOUNTER: { 9751 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 9752 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 9753 9754 Results.push_back(RTB); 9755 Results.push_back(RTB.getValue(1)); 9756 Results.push_back(RTB.getValue(2)); 9757 break; 9758 } 9759 case ISD::INTRINSIC_W_CHAIN: { 9760 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 9761 Intrinsic::ppc_is_decremented_ctr_nonzero) 9762 break; 9763 9764 assert(N->getValueType(0) == MVT::i1 && 9765 "Unexpected result type for CTR decrement intrinsic"); 9766 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 9767 N->getValueType(0)); 9768 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 9769 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 9770 N->getOperand(1)); 9771 9772 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 9773 Results.push_back(NewInt.getValue(1)); 9774 break; 9775 } 9776 case ISD::VAARG: { 9777 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 9778 return; 9779 9780 EVT VT = N->getValueType(0); 9781 9782 if (VT == MVT::i64) { 9783 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 9784 9785 Results.push_back(NewNode); 9786 Results.push_back(NewNode.getValue(1)); 9787 } 9788 return; 9789 } 9790 case ISD::FP_TO_SINT: 9791 case ISD::FP_TO_UINT: 9792 // LowerFP_TO_INT() can only handle f32 and f64. 9793 if (N->getOperand(0).getValueType() == MVT::ppcf128) 9794 return; 9795 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 9796 return; 9797 case ISD::TRUNCATE: { 9798 EVT TrgVT = N->getValueType(0); 9799 if (TrgVT.isVector() && 9800 isOperationCustom(N->getOpcode(), TrgVT) && 9801 N->getOperand(0).getValueType().getSizeInBits() <= 128) 9802 Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG)); 9803 return; 9804 } 9805 case ISD::BITCAST: 9806 // Don't handle bitcast here. 9807 return; 9808 } 9809 } 9810 9811 //===----------------------------------------------------------------------===// 9812 // Other Lowering Code 9813 //===----------------------------------------------------------------------===// 9814 9815 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 9816 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 9817 Function *Func = Intrinsic::getDeclaration(M, Id); 9818 return Builder.CreateCall(Func, {}); 9819 } 9820 9821 // The mappings for emitLeading/TrailingFence is taken from 9822 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 9823 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 9824 Instruction *Inst, 9825 AtomicOrdering Ord) const { 9826 if (Ord == AtomicOrdering::SequentiallyConsistent) 9827 return callIntrinsic(Builder, Intrinsic::ppc_sync); 9828 if (isReleaseOrStronger(Ord)) 9829 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 9830 return nullptr; 9831 } 9832 9833 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 9834 Instruction *Inst, 9835 AtomicOrdering Ord) const { 9836 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 9837 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 9838 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 9839 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 9840 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 9841 return Builder.CreateCall( 9842 Intrinsic::getDeclaration( 9843 Builder.GetInsertBlock()->getParent()->getParent(), 9844 Intrinsic::ppc_cfence, {Inst->getType()}), 9845 {Inst}); 9846 // FIXME: Can use isync for rmw operation. 9847 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 9848 } 9849 return nullptr; 9850 } 9851 9852 MachineBasicBlock * 9853 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 9854 unsigned AtomicSize, 9855 unsigned BinOpcode, 9856 unsigned CmpOpcode, 9857 unsigned CmpPred) const { 9858 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 9859 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 9860 9861 auto LoadMnemonic = PPC::LDARX; 9862 auto StoreMnemonic = PPC::STDCX; 9863 switch (AtomicSize) { 9864 default: 9865 llvm_unreachable("Unexpected size of atomic entity"); 9866 case 1: 9867 LoadMnemonic = PPC::LBARX; 9868 StoreMnemonic = PPC::STBCX; 9869 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 9870 break; 9871 case 2: 9872 LoadMnemonic = PPC::LHARX; 9873 StoreMnemonic = PPC::STHCX; 9874 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 9875 break; 9876 case 4: 9877 LoadMnemonic = PPC::LWARX; 9878 StoreMnemonic = PPC::STWCX; 9879 break; 9880 case 8: 9881 LoadMnemonic = PPC::LDARX; 9882 StoreMnemonic = PPC::STDCX; 9883 break; 9884 } 9885 9886 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9887 MachineFunction *F = BB->getParent(); 9888 MachineFunction::iterator It = ++BB->getIterator(); 9889 9890 unsigned dest = MI.getOperand(0).getReg(); 9891 unsigned ptrA = MI.getOperand(1).getReg(); 9892 unsigned ptrB = MI.getOperand(2).getReg(); 9893 unsigned incr = MI.getOperand(3).getReg(); 9894 DebugLoc dl = MI.getDebugLoc(); 9895 9896 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 9897 MachineBasicBlock *loop2MBB = 9898 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 9899 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9900 F->insert(It, loopMBB); 9901 if (CmpOpcode) 9902 F->insert(It, loop2MBB); 9903 F->insert(It, exitMBB); 9904 exitMBB->splice(exitMBB->begin(), BB, 9905 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9906 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9907 9908 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9909 unsigned TmpReg = (!BinOpcode) ? incr : 9910 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 9911 : &PPC::GPRCRegClass); 9912 9913 // thisMBB: 9914 // ... 9915 // fallthrough --> loopMBB 9916 BB->addSuccessor(loopMBB); 9917 9918 // loopMBB: 9919 // l[wd]arx dest, ptr 9920 // add r0, dest, incr 9921 // st[wd]cx. r0, ptr 9922 // bne- loopMBB 9923 // fallthrough --> exitMBB 9924 9925 // For max/min... 9926 // loopMBB: 9927 // l[wd]arx dest, ptr 9928 // cmpl?[wd] incr, dest 9929 // bgt exitMBB 9930 // loop2MBB: 9931 // st[wd]cx. dest, ptr 9932 // bne- loopMBB 9933 // fallthrough --> exitMBB 9934 9935 BB = loopMBB; 9936 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 9937 .addReg(ptrA).addReg(ptrB); 9938 if (BinOpcode) 9939 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 9940 if (CmpOpcode) { 9941 // Signed comparisons of byte or halfword values must be sign-extended. 9942 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 9943 unsigned ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 9944 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 9945 ExtReg).addReg(dest); 9946 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 9947 .addReg(incr).addReg(ExtReg); 9948 } else 9949 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 9950 .addReg(incr).addReg(dest); 9951 9952 BuildMI(BB, dl, TII->get(PPC::BCC)) 9953 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 9954 BB->addSuccessor(loop2MBB); 9955 BB->addSuccessor(exitMBB); 9956 BB = loop2MBB; 9957 } 9958 BuildMI(BB, dl, TII->get(StoreMnemonic)) 9959 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 9960 BuildMI(BB, dl, TII->get(PPC::BCC)) 9961 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 9962 BB->addSuccessor(loopMBB); 9963 BB->addSuccessor(exitMBB); 9964 9965 // exitMBB: 9966 // ... 9967 BB = exitMBB; 9968 return BB; 9969 } 9970 9971 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 9972 MachineInstr &MI, MachineBasicBlock *BB, 9973 bool is8bit, // operation 9974 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 9975 // If we support part-word atomic mnemonics, just use them 9976 if (Subtarget.hasPartwordAtomics()) 9977 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 9978 CmpPred); 9979 9980 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 9981 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 9982 // In 64 bit mode we have to use 64 bits for addresses, even though the 9983 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 9984 // registers without caring whether they're 32 or 64, but here we're 9985 // doing actual arithmetic on the addresses. 9986 bool is64bit = Subtarget.isPPC64(); 9987 bool isLittleEndian = Subtarget.isLittleEndian(); 9988 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 9989 9990 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9991 MachineFunction *F = BB->getParent(); 9992 MachineFunction::iterator It = ++BB->getIterator(); 9993 9994 unsigned dest = MI.getOperand(0).getReg(); 9995 unsigned ptrA = MI.getOperand(1).getReg(); 9996 unsigned ptrB = MI.getOperand(2).getReg(); 9997 unsigned incr = MI.getOperand(3).getReg(); 9998 DebugLoc dl = MI.getDebugLoc(); 9999 10000 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10001 MachineBasicBlock *loop2MBB = 10002 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10003 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10004 F->insert(It, loopMBB); 10005 if (CmpOpcode) 10006 F->insert(It, loop2MBB); 10007 F->insert(It, exitMBB); 10008 exitMBB->splice(exitMBB->begin(), BB, 10009 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10010 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10011 10012 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10013 const TargetRegisterClass *RC = 10014 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10015 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 10016 10017 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 10018 unsigned Shift1Reg = RegInfo.createVirtualRegister(GPRC); 10019 unsigned ShiftReg = 10020 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 10021 unsigned Incr2Reg = RegInfo.createVirtualRegister(GPRC); 10022 unsigned MaskReg = RegInfo.createVirtualRegister(GPRC); 10023 unsigned Mask2Reg = RegInfo.createVirtualRegister(GPRC); 10024 unsigned Mask3Reg = RegInfo.createVirtualRegister(GPRC); 10025 unsigned Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 10026 unsigned Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 10027 unsigned Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 10028 unsigned TmpDestReg = RegInfo.createVirtualRegister(GPRC); 10029 unsigned Ptr1Reg; 10030 unsigned TmpReg = 10031 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 10032 10033 // thisMBB: 10034 // ... 10035 // fallthrough --> loopMBB 10036 BB->addSuccessor(loopMBB); 10037 10038 // The 4-byte load must be aligned, while a char or short may be 10039 // anywhere in the word. Hence all this nasty bookkeeping code. 10040 // add ptr1, ptrA, ptrB [copy if ptrA==0] 10041 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 10042 // xori shift, shift1, 24 [16] 10043 // rlwinm ptr, ptr1, 0, 0, 29 10044 // slw incr2, incr, shift 10045 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 10046 // slw mask, mask2, shift 10047 // loopMBB: 10048 // lwarx tmpDest, ptr 10049 // add tmp, tmpDest, incr2 10050 // andc tmp2, tmpDest, mask 10051 // and tmp3, tmp, mask 10052 // or tmp4, tmp3, tmp2 10053 // stwcx. tmp4, ptr 10054 // bne- loopMBB 10055 // fallthrough --> exitMBB 10056 // srw dest, tmpDest, shift 10057 if (ptrA != ZeroReg) { 10058 Ptr1Reg = RegInfo.createVirtualRegister(RC); 10059 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 10060 .addReg(ptrA) 10061 .addReg(ptrB); 10062 } else { 10063 Ptr1Reg = ptrB; 10064 } 10065 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 10066 // mode. 10067 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 10068 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 10069 .addImm(3) 10070 .addImm(27) 10071 .addImm(is8bit ? 28 : 27); 10072 if (!isLittleEndian) 10073 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 10074 .addReg(Shift1Reg) 10075 .addImm(is8bit ? 24 : 16); 10076 if (is64bit) 10077 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 10078 .addReg(Ptr1Reg) 10079 .addImm(0) 10080 .addImm(61); 10081 else 10082 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 10083 .addReg(Ptr1Reg) 10084 .addImm(0) 10085 .addImm(0) 10086 .addImm(29); 10087 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 10088 if (is8bit) 10089 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 10090 else { 10091 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 10092 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 10093 .addReg(Mask3Reg) 10094 .addImm(65535); 10095 } 10096 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 10097 .addReg(Mask2Reg) 10098 .addReg(ShiftReg); 10099 10100 BB = loopMBB; 10101 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 10102 .addReg(ZeroReg) 10103 .addReg(PtrReg); 10104 if (BinOpcode) 10105 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 10106 .addReg(Incr2Reg) 10107 .addReg(TmpDestReg); 10108 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 10109 .addReg(TmpDestReg) 10110 .addReg(MaskReg); 10111 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 10112 if (CmpOpcode) { 10113 // For unsigned comparisons, we can directly compare the shifted values. 10114 // For signed comparisons we shift and sign extend. 10115 unsigned SReg = RegInfo.createVirtualRegister(GPRC); 10116 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 10117 .addReg(TmpDestReg) 10118 .addReg(MaskReg); 10119 unsigned ValueReg = SReg; 10120 unsigned CmpReg = Incr2Reg; 10121 if (CmpOpcode == PPC::CMPW) { 10122 ValueReg = RegInfo.createVirtualRegister(GPRC); 10123 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 10124 .addReg(SReg) 10125 .addReg(ShiftReg); 10126 unsigned ValueSReg = RegInfo.createVirtualRegister(GPRC); 10127 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 10128 .addReg(ValueReg); 10129 ValueReg = ValueSReg; 10130 CmpReg = incr; 10131 } 10132 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10133 .addReg(CmpReg) 10134 .addReg(ValueReg); 10135 BuildMI(BB, dl, TII->get(PPC::BCC)) 10136 .addImm(CmpPred) 10137 .addReg(PPC::CR0) 10138 .addMBB(exitMBB); 10139 BB->addSuccessor(loop2MBB); 10140 BB->addSuccessor(exitMBB); 10141 BB = loop2MBB; 10142 } 10143 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 10144 BuildMI(BB, dl, TII->get(PPC::STWCX)) 10145 .addReg(Tmp4Reg) 10146 .addReg(ZeroReg) 10147 .addReg(PtrReg); 10148 BuildMI(BB, dl, TII->get(PPC::BCC)) 10149 .addImm(PPC::PRED_NE) 10150 .addReg(PPC::CR0) 10151 .addMBB(loopMBB); 10152 BB->addSuccessor(loopMBB); 10153 BB->addSuccessor(exitMBB); 10154 10155 // exitMBB: 10156 // ... 10157 BB = exitMBB; 10158 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 10159 .addReg(TmpDestReg) 10160 .addReg(ShiftReg); 10161 return BB; 10162 } 10163 10164 llvm::MachineBasicBlock * 10165 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 10166 MachineBasicBlock *MBB) const { 10167 DebugLoc DL = MI.getDebugLoc(); 10168 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10169 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10170 10171 MachineFunction *MF = MBB->getParent(); 10172 MachineRegisterInfo &MRI = MF->getRegInfo(); 10173 10174 const BasicBlock *BB = MBB->getBasicBlock(); 10175 MachineFunction::iterator I = ++MBB->getIterator(); 10176 10177 unsigned DstReg = MI.getOperand(0).getReg(); 10178 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 10179 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 10180 unsigned mainDstReg = MRI.createVirtualRegister(RC); 10181 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 10182 10183 MVT PVT = getPointerTy(MF->getDataLayout()); 10184 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10185 "Invalid Pointer Size!"); 10186 // For v = setjmp(buf), we generate 10187 // 10188 // thisMBB: 10189 // SjLjSetup mainMBB 10190 // bl mainMBB 10191 // v_restore = 1 10192 // b sinkMBB 10193 // 10194 // mainMBB: 10195 // buf[LabelOffset] = LR 10196 // v_main = 0 10197 // 10198 // sinkMBB: 10199 // v = phi(main, restore) 10200 // 10201 10202 MachineBasicBlock *thisMBB = MBB; 10203 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 10204 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 10205 MF->insert(I, mainMBB); 10206 MF->insert(I, sinkMBB); 10207 10208 MachineInstrBuilder MIB; 10209 10210 // Transfer the remainder of BB and its successor edges to sinkMBB. 10211 sinkMBB->splice(sinkMBB->begin(), MBB, 10212 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 10213 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 10214 10215 // Note that the structure of the jmp_buf used here is not compatible 10216 // with that used by libc, and is not designed to be. Specifically, it 10217 // stores only those 'reserved' registers that LLVM does not otherwise 10218 // understand how to spill. Also, by convention, by the time this 10219 // intrinsic is called, Clang has already stored the frame address in the 10220 // first slot of the buffer and stack address in the third. Following the 10221 // X86 target code, we'll store the jump address in the second slot. We also 10222 // need to save the TOC pointer (R2) to handle jumps between shared 10223 // libraries, and that will be stored in the fourth slot. The thread 10224 // identifier (R13) is not affected. 10225 10226 // thisMBB: 10227 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10228 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10229 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10230 10231 // Prepare IP either in reg. 10232 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 10233 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 10234 unsigned BufReg = MI.getOperand(1).getReg(); 10235 10236 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 10237 setUsesTOCBasePtr(*MBB->getParent()); 10238 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 10239 .addReg(PPC::X2) 10240 .addImm(TOCOffset) 10241 .addReg(BufReg) 10242 .cloneMemRefs(MI); 10243 } 10244 10245 // Naked functions never have a base pointer, and so we use r1. For all 10246 // other functions, this decision must be delayed until during PEI. 10247 unsigned BaseReg; 10248 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 10249 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 10250 else 10251 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 10252 10253 MIB = BuildMI(*thisMBB, MI, DL, 10254 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 10255 .addReg(BaseReg) 10256 .addImm(BPOffset) 10257 .addReg(BufReg) 10258 .cloneMemRefs(MI); 10259 10260 // Setup 10261 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 10262 MIB.addRegMask(TRI->getNoPreservedMask()); 10263 10264 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 10265 10266 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 10267 .addMBB(mainMBB); 10268 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 10269 10270 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 10271 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 10272 10273 // mainMBB: 10274 // mainDstReg = 0 10275 MIB = 10276 BuildMI(mainMBB, DL, 10277 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 10278 10279 // Store IP 10280 if (Subtarget.isPPC64()) { 10281 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 10282 .addReg(LabelReg) 10283 .addImm(LabelOffset) 10284 .addReg(BufReg); 10285 } else { 10286 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 10287 .addReg(LabelReg) 10288 .addImm(LabelOffset) 10289 .addReg(BufReg); 10290 } 10291 MIB.cloneMemRefs(MI); 10292 10293 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 10294 mainMBB->addSuccessor(sinkMBB); 10295 10296 // sinkMBB: 10297 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 10298 TII->get(PPC::PHI), DstReg) 10299 .addReg(mainDstReg).addMBB(mainMBB) 10300 .addReg(restoreDstReg).addMBB(thisMBB); 10301 10302 MI.eraseFromParent(); 10303 return sinkMBB; 10304 } 10305 10306 MachineBasicBlock * 10307 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 10308 MachineBasicBlock *MBB) const { 10309 DebugLoc DL = MI.getDebugLoc(); 10310 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10311 10312 MachineFunction *MF = MBB->getParent(); 10313 MachineRegisterInfo &MRI = MF->getRegInfo(); 10314 10315 MVT PVT = getPointerTy(MF->getDataLayout()); 10316 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10317 "Invalid Pointer Size!"); 10318 10319 const TargetRegisterClass *RC = 10320 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10321 unsigned Tmp = MRI.createVirtualRegister(RC); 10322 // Since FP is only updated here but NOT referenced, it's treated as GPR. 10323 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 10324 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 10325 unsigned BP = 10326 (PVT == MVT::i64) 10327 ? PPC::X30 10328 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 10329 : PPC::R30); 10330 10331 MachineInstrBuilder MIB; 10332 10333 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10334 const int64_t SPOffset = 2 * PVT.getStoreSize(); 10335 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10336 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10337 10338 unsigned BufReg = MI.getOperand(0).getReg(); 10339 10340 // Reload FP (the jumped-to function may not have had a 10341 // frame pointer, and if so, then its r31 will be restored 10342 // as necessary). 10343 if (PVT == MVT::i64) { 10344 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 10345 .addImm(0) 10346 .addReg(BufReg); 10347 } else { 10348 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 10349 .addImm(0) 10350 .addReg(BufReg); 10351 } 10352 MIB.cloneMemRefs(MI); 10353 10354 // Reload IP 10355 if (PVT == MVT::i64) { 10356 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 10357 .addImm(LabelOffset) 10358 .addReg(BufReg); 10359 } else { 10360 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 10361 .addImm(LabelOffset) 10362 .addReg(BufReg); 10363 } 10364 MIB.cloneMemRefs(MI); 10365 10366 // Reload SP 10367 if (PVT == MVT::i64) { 10368 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 10369 .addImm(SPOffset) 10370 .addReg(BufReg); 10371 } else { 10372 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 10373 .addImm(SPOffset) 10374 .addReg(BufReg); 10375 } 10376 MIB.cloneMemRefs(MI); 10377 10378 // Reload BP 10379 if (PVT == MVT::i64) { 10380 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 10381 .addImm(BPOffset) 10382 .addReg(BufReg); 10383 } else { 10384 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 10385 .addImm(BPOffset) 10386 .addReg(BufReg); 10387 } 10388 MIB.cloneMemRefs(MI); 10389 10390 // Reload TOC 10391 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 10392 setUsesTOCBasePtr(*MBB->getParent()); 10393 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 10394 .addImm(TOCOffset) 10395 .addReg(BufReg) 10396 .cloneMemRefs(MI); 10397 } 10398 10399 // Jump 10400 BuildMI(*MBB, MI, DL, 10401 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 10402 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 10403 10404 MI.eraseFromParent(); 10405 return MBB; 10406 } 10407 10408 MachineBasicBlock * 10409 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 10410 MachineBasicBlock *BB) const { 10411 if (MI.getOpcode() == TargetOpcode::STACKMAP || 10412 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 10413 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 10414 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 10415 // Call lowering should have added an r2 operand to indicate a dependence 10416 // on the TOC base pointer value. It can't however, because there is no 10417 // way to mark the dependence as implicit there, and so the stackmap code 10418 // will confuse it with a regular operand. Instead, add the dependence 10419 // here. 10420 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 10421 } 10422 10423 return emitPatchPoint(MI, BB); 10424 } 10425 10426 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 10427 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 10428 return emitEHSjLjSetJmp(MI, BB); 10429 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 10430 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 10431 return emitEHSjLjLongJmp(MI, BB); 10432 } 10433 10434 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10435 10436 // To "insert" these instructions we actually have to insert their 10437 // control-flow patterns. 10438 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10439 MachineFunction::iterator It = ++BB->getIterator(); 10440 10441 MachineFunction *F = BB->getParent(); 10442 10443 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10444 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 10445 MI.getOpcode() == PPC::SELECT_I8) { 10446 SmallVector<MachineOperand, 2> Cond; 10447 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10448 MI.getOpcode() == PPC::SELECT_CC_I8) 10449 Cond.push_back(MI.getOperand(4)); 10450 else 10451 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 10452 Cond.push_back(MI.getOperand(1)); 10453 10454 DebugLoc dl = MI.getDebugLoc(); 10455 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 10456 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 10457 } else if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10458 MI.getOpcode() == PPC::SELECT_CC_I8 || 10459 MI.getOpcode() == PPC::SELECT_CC_F4 || 10460 MI.getOpcode() == PPC::SELECT_CC_F8 || 10461 MI.getOpcode() == PPC::SELECT_CC_F16 || 10462 MI.getOpcode() == PPC::SELECT_CC_QFRC || 10463 MI.getOpcode() == PPC::SELECT_CC_QSRC || 10464 MI.getOpcode() == PPC::SELECT_CC_QBRC || 10465 MI.getOpcode() == PPC::SELECT_CC_VRRC || 10466 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 10467 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 10468 MI.getOpcode() == PPC::SELECT_CC_VSRC || 10469 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 10470 MI.getOpcode() == PPC::SELECT_CC_SPE || 10471 MI.getOpcode() == PPC::SELECT_I4 || 10472 MI.getOpcode() == PPC::SELECT_I8 || 10473 MI.getOpcode() == PPC::SELECT_F4 || 10474 MI.getOpcode() == PPC::SELECT_F8 || 10475 MI.getOpcode() == PPC::SELECT_F16 || 10476 MI.getOpcode() == PPC::SELECT_QFRC || 10477 MI.getOpcode() == PPC::SELECT_QSRC || 10478 MI.getOpcode() == PPC::SELECT_QBRC || 10479 MI.getOpcode() == PPC::SELECT_SPE || 10480 MI.getOpcode() == PPC::SELECT_SPE4 || 10481 MI.getOpcode() == PPC::SELECT_VRRC || 10482 MI.getOpcode() == PPC::SELECT_VSFRC || 10483 MI.getOpcode() == PPC::SELECT_VSSRC || 10484 MI.getOpcode() == PPC::SELECT_VSRC) { 10485 // The incoming instruction knows the destination vreg to set, the 10486 // condition code register to branch on, the true/false values to 10487 // select between, and a branch opcode to use. 10488 10489 // thisMBB: 10490 // ... 10491 // TrueVal = ... 10492 // cmpTY ccX, r1, r2 10493 // bCC copy1MBB 10494 // fallthrough --> copy0MBB 10495 MachineBasicBlock *thisMBB = BB; 10496 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 10497 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 10498 DebugLoc dl = MI.getDebugLoc(); 10499 F->insert(It, copy0MBB); 10500 F->insert(It, sinkMBB); 10501 10502 // Transfer the remainder of BB and its successor edges to sinkMBB. 10503 sinkMBB->splice(sinkMBB->begin(), BB, 10504 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10505 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 10506 10507 // Next, add the true and fallthrough blocks as its successors. 10508 BB->addSuccessor(copy0MBB); 10509 BB->addSuccessor(sinkMBB); 10510 10511 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 10512 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 10513 MI.getOpcode() == PPC::SELECT_F16 || 10514 MI.getOpcode() == PPC::SELECT_SPE4 || 10515 MI.getOpcode() == PPC::SELECT_SPE || 10516 MI.getOpcode() == PPC::SELECT_QFRC || 10517 MI.getOpcode() == PPC::SELECT_QSRC || 10518 MI.getOpcode() == PPC::SELECT_QBRC || 10519 MI.getOpcode() == PPC::SELECT_VRRC || 10520 MI.getOpcode() == PPC::SELECT_VSFRC || 10521 MI.getOpcode() == PPC::SELECT_VSSRC || 10522 MI.getOpcode() == PPC::SELECT_VSRC) { 10523 BuildMI(BB, dl, TII->get(PPC::BC)) 10524 .addReg(MI.getOperand(1).getReg()) 10525 .addMBB(sinkMBB); 10526 } else { 10527 unsigned SelectPred = MI.getOperand(4).getImm(); 10528 BuildMI(BB, dl, TII->get(PPC::BCC)) 10529 .addImm(SelectPred) 10530 .addReg(MI.getOperand(1).getReg()) 10531 .addMBB(sinkMBB); 10532 } 10533 10534 // copy0MBB: 10535 // %FalseValue = ... 10536 // # fallthrough to sinkMBB 10537 BB = copy0MBB; 10538 10539 // Update machine-CFG edges 10540 BB->addSuccessor(sinkMBB); 10541 10542 // sinkMBB: 10543 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 10544 // ... 10545 BB = sinkMBB; 10546 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 10547 .addReg(MI.getOperand(3).getReg()) 10548 .addMBB(copy0MBB) 10549 .addReg(MI.getOperand(2).getReg()) 10550 .addMBB(thisMBB); 10551 } else if (MI.getOpcode() == PPC::ReadTB) { 10552 // To read the 64-bit time-base register on a 32-bit target, we read the 10553 // two halves. Should the counter have wrapped while it was being read, we 10554 // need to try again. 10555 // ... 10556 // readLoop: 10557 // mfspr Rx,TBU # load from TBU 10558 // mfspr Ry,TB # load from TB 10559 // mfspr Rz,TBU # load from TBU 10560 // cmpw crX,Rx,Rz # check if 'old'='new' 10561 // bne readLoop # branch if they're not equal 10562 // ... 10563 10564 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 10565 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 10566 DebugLoc dl = MI.getDebugLoc(); 10567 F->insert(It, readMBB); 10568 F->insert(It, sinkMBB); 10569 10570 // Transfer the remainder of BB and its successor edges to sinkMBB. 10571 sinkMBB->splice(sinkMBB->begin(), BB, 10572 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10573 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 10574 10575 BB->addSuccessor(readMBB); 10576 BB = readMBB; 10577 10578 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10579 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10580 unsigned LoReg = MI.getOperand(0).getReg(); 10581 unsigned HiReg = MI.getOperand(1).getReg(); 10582 10583 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 10584 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 10585 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 10586 10587 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 10588 10589 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 10590 .addReg(HiReg) 10591 .addReg(ReadAgainReg); 10592 BuildMI(BB, dl, TII->get(PPC::BCC)) 10593 .addImm(PPC::PRED_NE) 10594 .addReg(CmpReg) 10595 .addMBB(readMBB); 10596 10597 BB->addSuccessor(readMBB); 10598 BB->addSuccessor(sinkMBB); 10599 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 10600 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 10601 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 10602 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 10603 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 10604 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 10605 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 10606 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 10607 10608 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 10609 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 10610 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 10611 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 10612 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 10613 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 10614 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 10615 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 10616 10617 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 10618 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 10619 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 10620 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 10621 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 10622 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 10623 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 10624 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 10625 10626 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 10627 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 10628 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 10629 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 10630 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 10631 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 10632 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 10633 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 10634 10635 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 10636 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 10637 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 10638 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 10639 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 10640 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 10641 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 10642 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 10643 10644 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 10645 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 10646 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 10647 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 10648 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 10649 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 10650 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 10651 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 10652 10653 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 10654 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 10655 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 10656 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 10657 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 10658 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 10659 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 10660 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 10661 10662 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 10663 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 10664 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 10665 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 10666 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 10667 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 10668 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 10669 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 10670 10671 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 10672 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 10673 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 10674 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 10675 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 10676 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 10677 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 10678 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 10679 10680 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 10681 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 10682 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 10683 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 10684 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 10685 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 10686 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 10687 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 10688 10689 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 10690 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 10691 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 10692 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 10693 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 10694 BB = EmitAtomicBinary(MI, BB, 4, 0); 10695 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 10696 BB = EmitAtomicBinary(MI, BB, 8, 0); 10697 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 10698 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 10699 (Subtarget.hasPartwordAtomics() && 10700 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 10701 (Subtarget.hasPartwordAtomics() && 10702 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 10703 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 10704 10705 auto LoadMnemonic = PPC::LDARX; 10706 auto StoreMnemonic = PPC::STDCX; 10707 switch (MI.getOpcode()) { 10708 default: 10709 llvm_unreachable("Compare and swap of unknown size"); 10710 case PPC::ATOMIC_CMP_SWAP_I8: 10711 LoadMnemonic = PPC::LBARX; 10712 StoreMnemonic = PPC::STBCX; 10713 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 10714 break; 10715 case PPC::ATOMIC_CMP_SWAP_I16: 10716 LoadMnemonic = PPC::LHARX; 10717 StoreMnemonic = PPC::STHCX; 10718 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 10719 break; 10720 case PPC::ATOMIC_CMP_SWAP_I32: 10721 LoadMnemonic = PPC::LWARX; 10722 StoreMnemonic = PPC::STWCX; 10723 break; 10724 case PPC::ATOMIC_CMP_SWAP_I64: 10725 LoadMnemonic = PPC::LDARX; 10726 StoreMnemonic = PPC::STDCX; 10727 break; 10728 } 10729 unsigned dest = MI.getOperand(0).getReg(); 10730 unsigned ptrA = MI.getOperand(1).getReg(); 10731 unsigned ptrB = MI.getOperand(2).getReg(); 10732 unsigned oldval = MI.getOperand(3).getReg(); 10733 unsigned newval = MI.getOperand(4).getReg(); 10734 DebugLoc dl = MI.getDebugLoc(); 10735 10736 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 10737 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 10738 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 10739 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10740 F->insert(It, loop1MBB); 10741 F->insert(It, loop2MBB); 10742 F->insert(It, midMBB); 10743 F->insert(It, exitMBB); 10744 exitMBB->splice(exitMBB->begin(), BB, 10745 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10746 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10747 10748 // thisMBB: 10749 // ... 10750 // fallthrough --> loopMBB 10751 BB->addSuccessor(loop1MBB); 10752 10753 // loop1MBB: 10754 // l[bhwd]arx dest, ptr 10755 // cmp[wd] dest, oldval 10756 // bne- midMBB 10757 // loop2MBB: 10758 // st[bhwd]cx. newval, ptr 10759 // bne- loopMBB 10760 // b exitBB 10761 // midMBB: 10762 // st[bhwd]cx. dest, ptr 10763 // exitBB: 10764 BB = loop1MBB; 10765 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 10766 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 10767 .addReg(oldval) 10768 .addReg(dest); 10769 BuildMI(BB, dl, TII->get(PPC::BCC)) 10770 .addImm(PPC::PRED_NE) 10771 .addReg(PPC::CR0) 10772 .addMBB(midMBB); 10773 BB->addSuccessor(loop2MBB); 10774 BB->addSuccessor(midMBB); 10775 10776 BB = loop2MBB; 10777 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10778 .addReg(newval) 10779 .addReg(ptrA) 10780 .addReg(ptrB); 10781 BuildMI(BB, dl, TII->get(PPC::BCC)) 10782 .addImm(PPC::PRED_NE) 10783 .addReg(PPC::CR0) 10784 .addMBB(loop1MBB); 10785 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 10786 BB->addSuccessor(loop1MBB); 10787 BB->addSuccessor(exitMBB); 10788 10789 BB = midMBB; 10790 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10791 .addReg(dest) 10792 .addReg(ptrA) 10793 .addReg(ptrB); 10794 BB->addSuccessor(exitMBB); 10795 10796 // exitMBB: 10797 // ... 10798 BB = exitMBB; 10799 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 10800 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 10801 // We must use 64-bit registers for addresses when targeting 64-bit, 10802 // since we're actually doing arithmetic on them. Other registers 10803 // can be 32-bit. 10804 bool is64bit = Subtarget.isPPC64(); 10805 bool isLittleEndian = Subtarget.isLittleEndian(); 10806 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 10807 10808 unsigned dest = MI.getOperand(0).getReg(); 10809 unsigned ptrA = MI.getOperand(1).getReg(); 10810 unsigned ptrB = MI.getOperand(2).getReg(); 10811 unsigned oldval = MI.getOperand(3).getReg(); 10812 unsigned newval = MI.getOperand(4).getReg(); 10813 DebugLoc dl = MI.getDebugLoc(); 10814 10815 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 10816 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 10817 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 10818 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10819 F->insert(It, loop1MBB); 10820 F->insert(It, loop2MBB); 10821 F->insert(It, midMBB); 10822 F->insert(It, exitMBB); 10823 exitMBB->splice(exitMBB->begin(), BB, 10824 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10825 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10826 10827 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10828 const TargetRegisterClass *RC = 10829 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10830 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 10831 10832 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 10833 unsigned Shift1Reg = RegInfo.createVirtualRegister(GPRC); 10834 unsigned ShiftReg = 10835 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 10836 unsigned NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 10837 unsigned NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 10838 unsigned OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 10839 unsigned OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 10840 unsigned MaskReg = RegInfo.createVirtualRegister(GPRC); 10841 unsigned Mask2Reg = RegInfo.createVirtualRegister(GPRC); 10842 unsigned Mask3Reg = RegInfo.createVirtualRegister(GPRC); 10843 unsigned Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 10844 unsigned Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 10845 unsigned TmpDestReg = RegInfo.createVirtualRegister(GPRC); 10846 unsigned Ptr1Reg; 10847 unsigned TmpReg = RegInfo.createVirtualRegister(GPRC); 10848 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 10849 // thisMBB: 10850 // ... 10851 // fallthrough --> loopMBB 10852 BB->addSuccessor(loop1MBB); 10853 10854 // The 4-byte load must be aligned, while a char or short may be 10855 // anywhere in the word. Hence all this nasty bookkeeping code. 10856 // add ptr1, ptrA, ptrB [copy if ptrA==0] 10857 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 10858 // xori shift, shift1, 24 [16] 10859 // rlwinm ptr, ptr1, 0, 0, 29 10860 // slw newval2, newval, shift 10861 // slw oldval2, oldval,shift 10862 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 10863 // slw mask, mask2, shift 10864 // and newval3, newval2, mask 10865 // and oldval3, oldval2, mask 10866 // loop1MBB: 10867 // lwarx tmpDest, ptr 10868 // and tmp, tmpDest, mask 10869 // cmpw tmp, oldval3 10870 // bne- midMBB 10871 // loop2MBB: 10872 // andc tmp2, tmpDest, mask 10873 // or tmp4, tmp2, newval3 10874 // stwcx. tmp4, ptr 10875 // bne- loop1MBB 10876 // b exitBB 10877 // midMBB: 10878 // stwcx. tmpDest, ptr 10879 // exitBB: 10880 // srw dest, tmpDest, shift 10881 if (ptrA != ZeroReg) { 10882 Ptr1Reg = RegInfo.createVirtualRegister(RC); 10883 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 10884 .addReg(ptrA) 10885 .addReg(ptrB); 10886 } else { 10887 Ptr1Reg = ptrB; 10888 } 10889 10890 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 10891 // mode. 10892 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 10893 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 10894 .addImm(3) 10895 .addImm(27) 10896 .addImm(is8bit ? 28 : 27); 10897 if (!isLittleEndian) 10898 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 10899 .addReg(Shift1Reg) 10900 .addImm(is8bit ? 24 : 16); 10901 if (is64bit) 10902 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 10903 .addReg(Ptr1Reg) 10904 .addImm(0) 10905 .addImm(61); 10906 else 10907 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 10908 .addReg(Ptr1Reg) 10909 .addImm(0) 10910 .addImm(0) 10911 .addImm(29); 10912 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 10913 .addReg(newval) 10914 .addReg(ShiftReg); 10915 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 10916 .addReg(oldval) 10917 .addReg(ShiftReg); 10918 if (is8bit) 10919 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 10920 else { 10921 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 10922 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 10923 .addReg(Mask3Reg) 10924 .addImm(65535); 10925 } 10926 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 10927 .addReg(Mask2Reg) 10928 .addReg(ShiftReg); 10929 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 10930 .addReg(NewVal2Reg) 10931 .addReg(MaskReg); 10932 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 10933 .addReg(OldVal2Reg) 10934 .addReg(MaskReg); 10935 10936 BB = loop1MBB; 10937 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 10938 .addReg(ZeroReg) 10939 .addReg(PtrReg); 10940 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 10941 .addReg(TmpDestReg) 10942 .addReg(MaskReg); 10943 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 10944 .addReg(TmpReg) 10945 .addReg(OldVal3Reg); 10946 BuildMI(BB, dl, TII->get(PPC::BCC)) 10947 .addImm(PPC::PRED_NE) 10948 .addReg(PPC::CR0) 10949 .addMBB(midMBB); 10950 BB->addSuccessor(loop2MBB); 10951 BB->addSuccessor(midMBB); 10952 10953 BB = loop2MBB; 10954 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 10955 .addReg(TmpDestReg) 10956 .addReg(MaskReg); 10957 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 10958 .addReg(Tmp2Reg) 10959 .addReg(NewVal3Reg); 10960 BuildMI(BB, dl, TII->get(PPC::STWCX)) 10961 .addReg(Tmp4Reg) 10962 .addReg(ZeroReg) 10963 .addReg(PtrReg); 10964 BuildMI(BB, dl, TII->get(PPC::BCC)) 10965 .addImm(PPC::PRED_NE) 10966 .addReg(PPC::CR0) 10967 .addMBB(loop1MBB); 10968 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 10969 BB->addSuccessor(loop1MBB); 10970 BB->addSuccessor(exitMBB); 10971 10972 BB = midMBB; 10973 BuildMI(BB, dl, TII->get(PPC::STWCX)) 10974 .addReg(TmpDestReg) 10975 .addReg(ZeroReg) 10976 .addReg(PtrReg); 10977 BB->addSuccessor(exitMBB); 10978 10979 // exitMBB: 10980 // ... 10981 BB = exitMBB; 10982 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 10983 .addReg(TmpReg) 10984 .addReg(ShiftReg); 10985 } else if (MI.getOpcode() == PPC::FADDrtz) { 10986 // This pseudo performs an FADD with rounding mode temporarily forced 10987 // to round-to-zero. We emit this via custom inserter since the FPSCR 10988 // is not modeled at the SelectionDAG level. 10989 unsigned Dest = MI.getOperand(0).getReg(); 10990 unsigned Src1 = MI.getOperand(1).getReg(); 10991 unsigned Src2 = MI.getOperand(2).getReg(); 10992 DebugLoc dl = MI.getDebugLoc(); 10993 10994 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10995 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 10996 10997 // Save FPSCR value. 10998 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 10999 11000 // Set rounding mode to round-to-zero. 11001 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 11002 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 11003 11004 // Perform addition. 11005 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 11006 11007 // Restore FPSCR value. 11008 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 11009 } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 11010 MI.getOpcode() == PPC::ANDIo_1_GT_BIT || 11011 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 11012 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) { 11013 unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 11014 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) 11015 ? PPC::ANDIo8 11016 : PPC::ANDIo; 11017 bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 11018 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8); 11019 11020 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11021 unsigned Dest = RegInfo.createVirtualRegister( 11022 Opcode == PPC::ANDIo ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 11023 11024 DebugLoc dl = MI.getDebugLoc(); 11025 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 11026 .addReg(MI.getOperand(1).getReg()) 11027 .addImm(1); 11028 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 11029 MI.getOperand(0).getReg()) 11030 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 11031 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 11032 DebugLoc Dl = MI.getDebugLoc(); 11033 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11034 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11035 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 11036 return BB; 11037 } else if (MI.getOpcode() == PPC::SETRNDi) { 11038 DebugLoc dl = MI.getDebugLoc(); 11039 unsigned OldFPSCRReg = MI.getOperand(0).getReg(); 11040 11041 // Save FPSCR value. 11042 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11043 11044 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 11045 // the following settings: 11046 // 00 Round to nearest 11047 // 01 Round to 0 11048 // 10 Round to +inf 11049 // 11 Round to -inf 11050 11051 // When the operand is immediate, using the two least significant bits of 11052 // the immediate to set the bits 62:63 of FPSCR. 11053 unsigned Mode = MI.getOperand(1).getImm(); 11054 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 11055 .addImm(31); 11056 11057 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 11058 .addImm(30); 11059 } else if (MI.getOpcode() == PPC::SETRND) { 11060 DebugLoc dl = MI.getDebugLoc(); 11061 11062 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 11063 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 11064 // If the target doesn't have DirectMove, we should use stack to do the 11065 // conversion, because the target doesn't have the instructions like mtvsrd 11066 // or mfvsrd to do this conversion directly. 11067 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 11068 if (Subtarget.hasDirectMove()) { 11069 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 11070 .addReg(SrcReg); 11071 } else { 11072 // Use stack to do the register copy. 11073 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 11074 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11075 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 11076 if (RC == &PPC::F8RCRegClass) { 11077 // Copy register from F8RCRegClass to G8RCRegclass. 11078 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 11079 "Unsupported RegClass."); 11080 11081 StoreOp = PPC::STFD; 11082 LoadOp = PPC::LD; 11083 } else { 11084 // Copy register from G8RCRegClass to F8RCRegclass. 11085 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 11086 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 11087 "Unsupported RegClass."); 11088 } 11089 11090 MachineFrameInfo &MFI = F->getFrameInfo(); 11091 int FrameIdx = MFI.CreateStackObject(8, 8, false); 11092 11093 MachineMemOperand *MMOStore = F->getMachineMemOperand( 11094 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 11095 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 11096 MFI.getObjectAlignment(FrameIdx)); 11097 11098 // Store the SrcReg into the stack. 11099 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 11100 .addReg(SrcReg) 11101 .addImm(0) 11102 .addFrameIndex(FrameIdx) 11103 .addMemOperand(MMOStore); 11104 11105 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 11106 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 11107 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 11108 MFI.getObjectAlignment(FrameIdx)); 11109 11110 // Load from the stack where SrcReg is stored, and save to DestReg, 11111 // so we have done the RegClass conversion from RegClass::SrcReg to 11112 // RegClass::DestReg. 11113 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 11114 .addImm(0) 11115 .addFrameIndex(FrameIdx) 11116 .addMemOperand(MMOLoad); 11117 } 11118 }; 11119 11120 unsigned OldFPSCRReg = MI.getOperand(0).getReg(); 11121 11122 // Save FPSCR value. 11123 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11124 11125 // When the operand is gprc register, use two least significant bits of the 11126 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 11127 // 11128 // copy OldFPSCRTmpReg, OldFPSCRReg 11129 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 11130 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 11131 // copy NewFPSCRReg, NewFPSCRTmpReg 11132 // mtfsf 255, NewFPSCRReg 11133 MachineOperand SrcOp = MI.getOperand(1); 11134 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11135 unsigned OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11136 11137 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 11138 11139 unsigned ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11140 unsigned ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11141 11142 // The first operand of INSERT_SUBREG should be a register which has 11143 // subregisters, we only care about its RegClass, so we should use an 11144 // IMPLICIT_DEF register. 11145 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 11146 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 11147 .addReg(ImDefReg) 11148 .add(SrcOp) 11149 .addImm(1); 11150 11151 unsigned NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11152 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 11153 .addReg(OldFPSCRTmpReg) 11154 .addReg(ExtSrcReg) 11155 .addImm(0) 11156 .addImm(62); 11157 11158 unsigned NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11159 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 11160 11161 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 11162 // bits of FPSCR. 11163 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 11164 .addImm(255) 11165 .addReg(NewFPSCRReg) 11166 .addImm(0) 11167 .addImm(0); 11168 } else { 11169 llvm_unreachable("Unexpected instr type to insert"); 11170 } 11171 11172 MI.eraseFromParent(); // The pseudo instruction is gone now. 11173 return BB; 11174 } 11175 11176 //===----------------------------------------------------------------------===// 11177 // Target Optimization Hooks 11178 //===----------------------------------------------------------------------===// 11179 11180 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 11181 // For the estimates, convergence is quadratic, so we essentially double the 11182 // number of digits correct after every iteration. For both FRE and FRSQRTE, 11183 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 11184 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 11185 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 11186 if (VT.getScalarType() == MVT::f64) 11187 RefinementSteps++; 11188 return RefinementSteps; 11189 } 11190 11191 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 11192 int Enabled, int &RefinementSteps, 11193 bool &UseOneConstNR, 11194 bool Reciprocal) const { 11195 EVT VT = Operand.getValueType(); 11196 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 11197 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 11198 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 11199 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 11200 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 11201 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 11202 if (RefinementSteps == ReciprocalEstimate::Unspecified) 11203 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 11204 11205 // The Newton-Raphson computation with a single constant does not provide 11206 // enough accuracy on some CPUs. 11207 UseOneConstNR = !Subtarget.needsTwoConstNR(); 11208 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 11209 } 11210 return SDValue(); 11211 } 11212 11213 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 11214 int Enabled, 11215 int &RefinementSteps) const { 11216 EVT VT = Operand.getValueType(); 11217 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 11218 (VT == MVT::f64 && Subtarget.hasFRE()) || 11219 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 11220 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 11221 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 11222 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 11223 if (RefinementSteps == ReciprocalEstimate::Unspecified) 11224 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 11225 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 11226 } 11227 return SDValue(); 11228 } 11229 11230 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 11231 // Note: This functionality is used only when unsafe-fp-math is enabled, and 11232 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 11233 // enabled for division), this functionality is redundant with the default 11234 // combiner logic (once the division -> reciprocal/multiply transformation 11235 // has taken place). As a result, this matters more for older cores than for 11236 // newer ones. 11237 11238 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 11239 // reciprocal if there are two or more FDIVs (for embedded cores with only 11240 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 11241 switch (Subtarget.getDarwinDirective()) { 11242 default: 11243 return 3; 11244 case PPC::DIR_440: 11245 case PPC::DIR_A2: 11246 case PPC::DIR_E500: 11247 case PPC::DIR_E500mc: 11248 case PPC::DIR_E5500: 11249 return 2; 11250 } 11251 } 11252 11253 // isConsecutiveLSLoc needs to work even if all adds have not yet been 11254 // collapsed, and so we need to look through chains of them. 11255 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 11256 int64_t& Offset, SelectionDAG &DAG) { 11257 if (DAG.isBaseWithConstantOffset(Loc)) { 11258 Base = Loc.getOperand(0); 11259 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 11260 11261 // The base might itself be a base plus an offset, and if so, accumulate 11262 // that as well. 11263 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 11264 } 11265 } 11266 11267 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 11268 unsigned Bytes, int Dist, 11269 SelectionDAG &DAG) { 11270 if (VT.getSizeInBits() / 8 != Bytes) 11271 return false; 11272 11273 SDValue BaseLoc = Base->getBasePtr(); 11274 if (Loc.getOpcode() == ISD::FrameIndex) { 11275 if (BaseLoc.getOpcode() != ISD::FrameIndex) 11276 return false; 11277 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 11278 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 11279 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 11280 int FS = MFI.getObjectSize(FI); 11281 int BFS = MFI.getObjectSize(BFI); 11282 if (FS != BFS || FS != (int)Bytes) return false; 11283 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 11284 } 11285 11286 SDValue Base1 = Loc, Base2 = BaseLoc; 11287 int64_t Offset1 = 0, Offset2 = 0; 11288 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 11289 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 11290 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 11291 return true; 11292 11293 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11294 const GlobalValue *GV1 = nullptr; 11295 const GlobalValue *GV2 = nullptr; 11296 Offset1 = 0; 11297 Offset2 = 0; 11298 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 11299 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 11300 if (isGA1 && isGA2 && GV1 == GV2) 11301 return Offset1 == (Offset2 + Dist*Bytes); 11302 return false; 11303 } 11304 11305 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 11306 // not enforce equality of the chain operands. 11307 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 11308 unsigned Bytes, int Dist, 11309 SelectionDAG &DAG) { 11310 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 11311 EVT VT = LS->getMemoryVT(); 11312 SDValue Loc = LS->getBasePtr(); 11313 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 11314 } 11315 11316 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 11317 EVT VT; 11318 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11319 default: return false; 11320 case Intrinsic::ppc_qpx_qvlfd: 11321 case Intrinsic::ppc_qpx_qvlfda: 11322 VT = MVT::v4f64; 11323 break; 11324 case Intrinsic::ppc_qpx_qvlfs: 11325 case Intrinsic::ppc_qpx_qvlfsa: 11326 VT = MVT::v4f32; 11327 break; 11328 case Intrinsic::ppc_qpx_qvlfcd: 11329 case Intrinsic::ppc_qpx_qvlfcda: 11330 VT = MVT::v2f64; 11331 break; 11332 case Intrinsic::ppc_qpx_qvlfcs: 11333 case Intrinsic::ppc_qpx_qvlfcsa: 11334 VT = MVT::v2f32; 11335 break; 11336 case Intrinsic::ppc_qpx_qvlfiwa: 11337 case Intrinsic::ppc_qpx_qvlfiwz: 11338 case Intrinsic::ppc_altivec_lvx: 11339 case Intrinsic::ppc_altivec_lvxl: 11340 case Intrinsic::ppc_vsx_lxvw4x: 11341 case Intrinsic::ppc_vsx_lxvw4x_be: 11342 VT = MVT::v4i32; 11343 break; 11344 case Intrinsic::ppc_vsx_lxvd2x: 11345 case Intrinsic::ppc_vsx_lxvd2x_be: 11346 VT = MVT::v2f64; 11347 break; 11348 case Intrinsic::ppc_altivec_lvebx: 11349 VT = MVT::i8; 11350 break; 11351 case Intrinsic::ppc_altivec_lvehx: 11352 VT = MVT::i16; 11353 break; 11354 case Intrinsic::ppc_altivec_lvewx: 11355 VT = MVT::i32; 11356 break; 11357 } 11358 11359 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 11360 } 11361 11362 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 11363 EVT VT; 11364 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11365 default: return false; 11366 case Intrinsic::ppc_qpx_qvstfd: 11367 case Intrinsic::ppc_qpx_qvstfda: 11368 VT = MVT::v4f64; 11369 break; 11370 case Intrinsic::ppc_qpx_qvstfs: 11371 case Intrinsic::ppc_qpx_qvstfsa: 11372 VT = MVT::v4f32; 11373 break; 11374 case Intrinsic::ppc_qpx_qvstfcd: 11375 case Intrinsic::ppc_qpx_qvstfcda: 11376 VT = MVT::v2f64; 11377 break; 11378 case Intrinsic::ppc_qpx_qvstfcs: 11379 case Intrinsic::ppc_qpx_qvstfcsa: 11380 VT = MVT::v2f32; 11381 break; 11382 case Intrinsic::ppc_qpx_qvstfiw: 11383 case Intrinsic::ppc_qpx_qvstfiwa: 11384 case Intrinsic::ppc_altivec_stvx: 11385 case Intrinsic::ppc_altivec_stvxl: 11386 case Intrinsic::ppc_vsx_stxvw4x: 11387 VT = MVT::v4i32; 11388 break; 11389 case Intrinsic::ppc_vsx_stxvd2x: 11390 VT = MVT::v2f64; 11391 break; 11392 case Intrinsic::ppc_vsx_stxvw4x_be: 11393 VT = MVT::v4i32; 11394 break; 11395 case Intrinsic::ppc_vsx_stxvd2x_be: 11396 VT = MVT::v2f64; 11397 break; 11398 case Intrinsic::ppc_altivec_stvebx: 11399 VT = MVT::i8; 11400 break; 11401 case Intrinsic::ppc_altivec_stvehx: 11402 VT = MVT::i16; 11403 break; 11404 case Intrinsic::ppc_altivec_stvewx: 11405 VT = MVT::i32; 11406 break; 11407 } 11408 11409 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 11410 } 11411 11412 return false; 11413 } 11414 11415 // Return true is there is a nearyby consecutive load to the one provided 11416 // (regardless of alignment). We search up and down the chain, looking though 11417 // token factors and other loads (but nothing else). As a result, a true result 11418 // indicates that it is safe to create a new consecutive load adjacent to the 11419 // load provided. 11420 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 11421 SDValue Chain = LD->getChain(); 11422 EVT VT = LD->getMemoryVT(); 11423 11424 SmallSet<SDNode *, 16> LoadRoots; 11425 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 11426 SmallSet<SDNode *, 16> Visited; 11427 11428 // First, search up the chain, branching to follow all token-factor operands. 11429 // If we find a consecutive load, then we're done, otherwise, record all 11430 // nodes just above the top-level loads and token factors. 11431 while (!Queue.empty()) { 11432 SDNode *ChainNext = Queue.pop_back_val(); 11433 if (!Visited.insert(ChainNext).second) 11434 continue; 11435 11436 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 11437 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 11438 return true; 11439 11440 if (!Visited.count(ChainLD->getChain().getNode())) 11441 Queue.push_back(ChainLD->getChain().getNode()); 11442 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 11443 for (const SDUse &O : ChainNext->ops()) 11444 if (!Visited.count(O.getNode())) 11445 Queue.push_back(O.getNode()); 11446 } else 11447 LoadRoots.insert(ChainNext); 11448 } 11449 11450 // Second, search down the chain, starting from the top-level nodes recorded 11451 // in the first phase. These top-level nodes are the nodes just above all 11452 // loads and token factors. Starting with their uses, recursively look though 11453 // all loads (just the chain uses) and token factors to find a consecutive 11454 // load. 11455 Visited.clear(); 11456 Queue.clear(); 11457 11458 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 11459 IE = LoadRoots.end(); I != IE; ++I) { 11460 Queue.push_back(*I); 11461 11462 while (!Queue.empty()) { 11463 SDNode *LoadRoot = Queue.pop_back_val(); 11464 if (!Visited.insert(LoadRoot).second) 11465 continue; 11466 11467 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 11468 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 11469 return true; 11470 11471 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 11472 UE = LoadRoot->use_end(); UI != UE; ++UI) 11473 if (((isa<MemSDNode>(*UI) && 11474 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 11475 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 11476 Queue.push_back(*UI); 11477 } 11478 } 11479 11480 return false; 11481 } 11482 11483 /// This function is called when we have proved that a SETCC node can be replaced 11484 /// by subtraction (and other supporting instructions) so that the result of 11485 /// comparison is kept in a GPR instead of CR. This function is purely for 11486 /// codegen purposes and has some flags to guide the codegen process. 11487 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 11488 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 11489 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 11490 11491 // Zero extend the operands to the largest legal integer. Originally, they 11492 // must be of a strictly smaller size. 11493 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 11494 DAG.getConstant(Size, DL, MVT::i32)); 11495 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 11496 DAG.getConstant(Size, DL, MVT::i32)); 11497 11498 // Swap if needed. Depends on the condition code. 11499 if (Swap) 11500 std::swap(Op0, Op1); 11501 11502 // Subtract extended integers. 11503 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 11504 11505 // Move the sign bit to the least significant position and zero out the rest. 11506 // Now the least significant bit carries the result of original comparison. 11507 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 11508 DAG.getConstant(Size - 1, DL, MVT::i32)); 11509 auto Final = Shifted; 11510 11511 // Complement the result if needed. Based on the condition code. 11512 if (Complement) 11513 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 11514 DAG.getConstant(1, DL, MVT::i64)); 11515 11516 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 11517 } 11518 11519 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 11520 DAGCombinerInfo &DCI) const { 11521 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 11522 11523 SelectionDAG &DAG = DCI.DAG; 11524 SDLoc DL(N); 11525 11526 // Size of integers being compared has a critical role in the following 11527 // analysis, so we prefer to do this when all types are legal. 11528 if (!DCI.isAfterLegalizeDAG()) 11529 return SDValue(); 11530 11531 // If all users of SETCC extend its value to a legal integer type 11532 // then we replace SETCC with a subtraction 11533 for (SDNode::use_iterator UI = N->use_begin(), 11534 UE = N->use_end(); UI != UE; ++UI) { 11535 if (UI->getOpcode() != ISD::ZERO_EXTEND) 11536 return SDValue(); 11537 } 11538 11539 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 11540 auto OpSize = N->getOperand(0).getValueSizeInBits(); 11541 11542 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 11543 11544 if (OpSize < Size) { 11545 switch (CC) { 11546 default: break; 11547 case ISD::SETULT: 11548 return generateEquivalentSub(N, Size, false, false, DL, DAG); 11549 case ISD::SETULE: 11550 return generateEquivalentSub(N, Size, true, true, DL, DAG); 11551 case ISD::SETUGT: 11552 return generateEquivalentSub(N, Size, false, true, DL, DAG); 11553 case ISD::SETUGE: 11554 return generateEquivalentSub(N, Size, true, false, DL, DAG); 11555 } 11556 } 11557 11558 return SDValue(); 11559 } 11560 11561 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 11562 DAGCombinerInfo &DCI) const { 11563 SelectionDAG &DAG = DCI.DAG; 11564 SDLoc dl(N); 11565 11566 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 11567 // If we're tracking CR bits, we need to be careful that we don't have: 11568 // trunc(binary-ops(zext(x), zext(y))) 11569 // or 11570 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 11571 // such that we're unnecessarily moving things into GPRs when it would be 11572 // better to keep them in CR bits. 11573 11574 // Note that trunc here can be an actual i1 trunc, or can be the effective 11575 // truncation that comes from a setcc or select_cc. 11576 if (N->getOpcode() == ISD::TRUNCATE && 11577 N->getValueType(0) != MVT::i1) 11578 return SDValue(); 11579 11580 if (N->getOperand(0).getValueType() != MVT::i32 && 11581 N->getOperand(0).getValueType() != MVT::i64) 11582 return SDValue(); 11583 11584 if (N->getOpcode() == ISD::SETCC || 11585 N->getOpcode() == ISD::SELECT_CC) { 11586 // If we're looking at a comparison, then we need to make sure that the 11587 // high bits (all except for the first) don't matter the result. 11588 ISD::CondCode CC = 11589 cast<CondCodeSDNode>(N->getOperand( 11590 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 11591 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 11592 11593 if (ISD::isSignedIntSetCC(CC)) { 11594 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 11595 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 11596 return SDValue(); 11597 } else if (ISD::isUnsignedIntSetCC(CC)) { 11598 if (!DAG.MaskedValueIsZero(N->getOperand(0), 11599 APInt::getHighBitsSet(OpBits, OpBits-1)) || 11600 !DAG.MaskedValueIsZero(N->getOperand(1), 11601 APInt::getHighBitsSet(OpBits, OpBits-1))) 11602 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 11603 : SDValue()); 11604 } else { 11605 // This is neither a signed nor an unsigned comparison, just make sure 11606 // that the high bits are equal. 11607 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 11608 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 11609 11610 // We don't really care about what is known about the first bit (if 11611 // anything), so clear it in all masks prior to comparing them. 11612 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 11613 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 11614 11615 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 11616 return SDValue(); 11617 } 11618 } 11619 11620 // We now know that the higher-order bits are irrelevant, we just need to 11621 // make sure that all of the intermediate operations are bit operations, and 11622 // all inputs are extensions. 11623 if (N->getOperand(0).getOpcode() != ISD::AND && 11624 N->getOperand(0).getOpcode() != ISD::OR && 11625 N->getOperand(0).getOpcode() != ISD::XOR && 11626 N->getOperand(0).getOpcode() != ISD::SELECT && 11627 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 11628 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 11629 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 11630 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 11631 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 11632 return SDValue(); 11633 11634 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 11635 N->getOperand(1).getOpcode() != ISD::AND && 11636 N->getOperand(1).getOpcode() != ISD::OR && 11637 N->getOperand(1).getOpcode() != ISD::XOR && 11638 N->getOperand(1).getOpcode() != ISD::SELECT && 11639 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 11640 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 11641 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 11642 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 11643 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 11644 return SDValue(); 11645 11646 SmallVector<SDValue, 4> Inputs; 11647 SmallVector<SDValue, 8> BinOps, PromOps; 11648 SmallPtrSet<SDNode *, 16> Visited; 11649 11650 for (unsigned i = 0; i < 2; ++i) { 11651 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11652 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11653 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 11654 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 11655 isa<ConstantSDNode>(N->getOperand(i))) 11656 Inputs.push_back(N->getOperand(i)); 11657 else 11658 BinOps.push_back(N->getOperand(i)); 11659 11660 if (N->getOpcode() == ISD::TRUNCATE) 11661 break; 11662 } 11663 11664 // Visit all inputs, collect all binary operations (and, or, xor and 11665 // select) that are all fed by extensions. 11666 while (!BinOps.empty()) { 11667 SDValue BinOp = BinOps.back(); 11668 BinOps.pop_back(); 11669 11670 if (!Visited.insert(BinOp.getNode()).second) 11671 continue; 11672 11673 PromOps.push_back(BinOp); 11674 11675 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 11676 // The condition of the select is not promoted. 11677 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 11678 continue; 11679 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 11680 continue; 11681 11682 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11683 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11684 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 11685 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 11686 isa<ConstantSDNode>(BinOp.getOperand(i))) { 11687 Inputs.push_back(BinOp.getOperand(i)); 11688 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 11689 BinOp.getOperand(i).getOpcode() == ISD::OR || 11690 BinOp.getOperand(i).getOpcode() == ISD::XOR || 11691 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 11692 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 11693 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 11694 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11695 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11696 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 11697 BinOps.push_back(BinOp.getOperand(i)); 11698 } else { 11699 // We have an input that is not an extension or another binary 11700 // operation; we'll abort this transformation. 11701 return SDValue(); 11702 } 11703 } 11704 } 11705 11706 // Make sure that this is a self-contained cluster of operations (which 11707 // is not quite the same thing as saying that everything has only one 11708 // use). 11709 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11710 if (isa<ConstantSDNode>(Inputs[i])) 11711 continue; 11712 11713 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 11714 UE = Inputs[i].getNode()->use_end(); 11715 UI != UE; ++UI) { 11716 SDNode *User = *UI; 11717 if (User != N && !Visited.count(User)) 11718 return SDValue(); 11719 11720 // Make sure that we're not going to promote the non-output-value 11721 // operand(s) or SELECT or SELECT_CC. 11722 // FIXME: Although we could sometimes handle this, and it does occur in 11723 // practice that one of the condition inputs to the select is also one of 11724 // the outputs, we currently can't deal with this. 11725 if (User->getOpcode() == ISD::SELECT) { 11726 if (User->getOperand(0) == Inputs[i]) 11727 return SDValue(); 11728 } else if (User->getOpcode() == ISD::SELECT_CC) { 11729 if (User->getOperand(0) == Inputs[i] || 11730 User->getOperand(1) == Inputs[i]) 11731 return SDValue(); 11732 } 11733 } 11734 } 11735 11736 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 11737 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 11738 UE = PromOps[i].getNode()->use_end(); 11739 UI != UE; ++UI) { 11740 SDNode *User = *UI; 11741 if (User != N && !Visited.count(User)) 11742 return SDValue(); 11743 11744 // Make sure that we're not going to promote the non-output-value 11745 // operand(s) or SELECT or SELECT_CC. 11746 // FIXME: Although we could sometimes handle this, and it does occur in 11747 // practice that one of the condition inputs to the select is also one of 11748 // the outputs, we currently can't deal with this. 11749 if (User->getOpcode() == ISD::SELECT) { 11750 if (User->getOperand(0) == PromOps[i]) 11751 return SDValue(); 11752 } else if (User->getOpcode() == ISD::SELECT_CC) { 11753 if (User->getOperand(0) == PromOps[i] || 11754 User->getOperand(1) == PromOps[i]) 11755 return SDValue(); 11756 } 11757 } 11758 } 11759 11760 // Replace all inputs with the extension operand. 11761 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11762 // Constants may have users outside the cluster of to-be-promoted nodes, 11763 // and so we need to replace those as we do the promotions. 11764 if (isa<ConstantSDNode>(Inputs[i])) 11765 continue; 11766 else 11767 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 11768 } 11769 11770 std::list<HandleSDNode> PromOpHandles; 11771 for (auto &PromOp : PromOps) 11772 PromOpHandles.emplace_back(PromOp); 11773 11774 // Replace all operations (these are all the same, but have a different 11775 // (i1) return type). DAG.getNode will validate that the types of 11776 // a binary operator match, so go through the list in reverse so that 11777 // we've likely promoted both operands first. Any intermediate truncations or 11778 // extensions disappear. 11779 while (!PromOpHandles.empty()) { 11780 SDValue PromOp = PromOpHandles.back().getValue(); 11781 PromOpHandles.pop_back(); 11782 11783 if (PromOp.getOpcode() == ISD::TRUNCATE || 11784 PromOp.getOpcode() == ISD::SIGN_EXTEND || 11785 PromOp.getOpcode() == ISD::ZERO_EXTEND || 11786 PromOp.getOpcode() == ISD::ANY_EXTEND) { 11787 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 11788 PromOp.getOperand(0).getValueType() != MVT::i1) { 11789 // The operand is not yet ready (see comment below). 11790 PromOpHandles.emplace_front(PromOp); 11791 continue; 11792 } 11793 11794 SDValue RepValue = PromOp.getOperand(0); 11795 if (isa<ConstantSDNode>(RepValue)) 11796 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 11797 11798 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 11799 continue; 11800 } 11801 11802 unsigned C; 11803 switch (PromOp.getOpcode()) { 11804 default: C = 0; break; 11805 case ISD::SELECT: C = 1; break; 11806 case ISD::SELECT_CC: C = 2; break; 11807 } 11808 11809 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 11810 PromOp.getOperand(C).getValueType() != MVT::i1) || 11811 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 11812 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 11813 // The to-be-promoted operands of this node have not yet been 11814 // promoted (this should be rare because we're going through the 11815 // list backward, but if one of the operands has several users in 11816 // this cluster of to-be-promoted nodes, it is possible). 11817 PromOpHandles.emplace_front(PromOp); 11818 continue; 11819 } 11820 11821 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 11822 PromOp.getNode()->op_end()); 11823 11824 // If there are any constant inputs, make sure they're replaced now. 11825 for (unsigned i = 0; i < 2; ++i) 11826 if (isa<ConstantSDNode>(Ops[C+i])) 11827 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 11828 11829 DAG.ReplaceAllUsesOfValueWith(PromOp, 11830 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 11831 } 11832 11833 // Now we're left with the initial truncation itself. 11834 if (N->getOpcode() == ISD::TRUNCATE) 11835 return N->getOperand(0); 11836 11837 // Otherwise, this is a comparison. The operands to be compared have just 11838 // changed type (to i1), but everything else is the same. 11839 return SDValue(N, 0); 11840 } 11841 11842 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 11843 DAGCombinerInfo &DCI) const { 11844 SelectionDAG &DAG = DCI.DAG; 11845 SDLoc dl(N); 11846 11847 // If we're tracking CR bits, we need to be careful that we don't have: 11848 // zext(binary-ops(trunc(x), trunc(y))) 11849 // or 11850 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 11851 // such that we're unnecessarily moving things into CR bits that can more 11852 // efficiently stay in GPRs. Note that if we're not certain that the high 11853 // bits are set as required by the final extension, we still may need to do 11854 // some masking to get the proper behavior. 11855 11856 // This same functionality is important on PPC64 when dealing with 11857 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 11858 // the return values of functions. Because it is so similar, it is handled 11859 // here as well. 11860 11861 if (N->getValueType(0) != MVT::i32 && 11862 N->getValueType(0) != MVT::i64) 11863 return SDValue(); 11864 11865 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 11866 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 11867 return SDValue(); 11868 11869 if (N->getOperand(0).getOpcode() != ISD::AND && 11870 N->getOperand(0).getOpcode() != ISD::OR && 11871 N->getOperand(0).getOpcode() != ISD::XOR && 11872 N->getOperand(0).getOpcode() != ISD::SELECT && 11873 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 11874 return SDValue(); 11875 11876 SmallVector<SDValue, 4> Inputs; 11877 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 11878 SmallPtrSet<SDNode *, 16> Visited; 11879 11880 // Visit all inputs, collect all binary operations (and, or, xor and 11881 // select) that are all fed by truncations. 11882 while (!BinOps.empty()) { 11883 SDValue BinOp = BinOps.back(); 11884 BinOps.pop_back(); 11885 11886 if (!Visited.insert(BinOp.getNode()).second) 11887 continue; 11888 11889 PromOps.push_back(BinOp); 11890 11891 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 11892 // The condition of the select is not promoted. 11893 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 11894 continue; 11895 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 11896 continue; 11897 11898 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 11899 isa<ConstantSDNode>(BinOp.getOperand(i))) { 11900 Inputs.push_back(BinOp.getOperand(i)); 11901 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 11902 BinOp.getOperand(i).getOpcode() == ISD::OR || 11903 BinOp.getOperand(i).getOpcode() == ISD::XOR || 11904 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 11905 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 11906 BinOps.push_back(BinOp.getOperand(i)); 11907 } else { 11908 // We have an input that is not a truncation or another binary 11909 // operation; we'll abort this transformation. 11910 return SDValue(); 11911 } 11912 } 11913 } 11914 11915 // The operands of a select that must be truncated when the select is 11916 // promoted because the operand is actually part of the to-be-promoted set. 11917 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 11918 11919 // Make sure that this is a self-contained cluster of operations (which 11920 // is not quite the same thing as saying that everything has only one 11921 // use). 11922 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11923 if (isa<ConstantSDNode>(Inputs[i])) 11924 continue; 11925 11926 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 11927 UE = Inputs[i].getNode()->use_end(); 11928 UI != UE; ++UI) { 11929 SDNode *User = *UI; 11930 if (User != N && !Visited.count(User)) 11931 return SDValue(); 11932 11933 // If we're going to promote the non-output-value operand(s) or SELECT or 11934 // SELECT_CC, record them for truncation. 11935 if (User->getOpcode() == ISD::SELECT) { 11936 if (User->getOperand(0) == Inputs[i]) 11937 SelectTruncOp[0].insert(std::make_pair(User, 11938 User->getOperand(0).getValueType())); 11939 } else if (User->getOpcode() == ISD::SELECT_CC) { 11940 if (User->getOperand(0) == Inputs[i]) 11941 SelectTruncOp[0].insert(std::make_pair(User, 11942 User->getOperand(0).getValueType())); 11943 if (User->getOperand(1) == Inputs[i]) 11944 SelectTruncOp[1].insert(std::make_pair(User, 11945 User->getOperand(1).getValueType())); 11946 } 11947 } 11948 } 11949 11950 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 11951 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 11952 UE = PromOps[i].getNode()->use_end(); 11953 UI != UE; ++UI) { 11954 SDNode *User = *UI; 11955 if (User != N && !Visited.count(User)) 11956 return SDValue(); 11957 11958 // If we're going to promote the non-output-value operand(s) or SELECT or 11959 // SELECT_CC, record them for truncation. 11960 if (User->getOpcode() == ISD::SELECT) { 11961 if (User->getOperand(0) == PromOps[i]) 11962 SelectTruncOp[0].insert(std::make_pair(User, 11963 User->getOperand(0).getValueType())); 11964 } else if (User->getOpcode() == ISD::SELECT_CC) { 11965 if (User->getOperand(0) == PromOps[i]) 11966 SelectTruncOp[0].insert(std::make_pair(User, 11967 User->getOperand(0).getValueType())); 11968 if (User->getOperand(1) == PromOps[i]) 11969 SelectTruncOp[1].insert(std::make_pair(User, 11970 User->getOperand(1).getValueType())); 11971 } 11972 } 11973 } 11974 11975 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 11976 bool ReallyNeedsExt = false; 11977 if (N->getOpcode() != ISD::ANY_EXTEND) { 11978 // If all of the inputs are not already sign/zero extended, then 11979 // we'll still need to do that at the end. 11980 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11981 if (isa<ConstantSDNode>(Inputs[i])) 11982 continue; 11983 11984 unsigned OpBits = 11985 Inputs[i].getOperand(0).getValueSizeInBits(); 11986 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 11987 11988 if ((N->getOpcode() == ISD::ZERO_EXTEND && 11989 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 11990 APInt::getHighBitsSet(OpBits, 11991 OpBits-PromBits))) || 11992 (N->getOpcode() == ISD::SIGN_EXTEND && 11993 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 11994 (OpBits-(PromBits-1)))) { 11995 ReallyNeedsExt = true; 11996 break; 11997 } 11998 } 11999 } 12000 12001 // Replace all inputs, either with the truncation operand, or a 12002 // truncation or extension to the final output type. 12003 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12004 // Constant inputs need to be replaced with the to-be-promoted nodes that 12005 // use them because they might have users outside of the cluster of 12006 // promoted nodes. 12007 if (isa<ConstantSDNode>(Inputs[i])) 12008 continue; 12009 12010 SDValue InSrc = Inputs[i].getOperand(0); 12011 if (Inputs[i].getValueType() == N->getValueType(0)) 12012 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 12013 else if (N->getOpcode() == ISD::SIGN_EXTEND) 12014 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12015 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 12016 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12017 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12018 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 12019 else 12020 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12021 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 12022 } 12023 12024 std::list<HandleSDNode> PromOpHandles; 12025 for (auto &PromOp : PromOps) 12026 PromOpHandles.emplace_back(PromOp); 12027 12028 // Replace all operations (these are all the same, but have a different 12029 // (promoted) return type). DAG.getNode will validate that the types of 12030 // a binary operator match, so go through the list in reverse so that 12031 // we've likely promoted both operands first. 12032 while (!PromOpHandles.empty()) { 12033 SDValue PromOp = PromOpHandles.back().getValue(); 12034 PromOpHandles.pop_back(); 12035 12036 unsigned C; 12037 switch (PromOp.getOpcode()) { 12038 default: C = 0; break; 12039 case ISD::SELECT: C = 1; break; 12040 case ISD::SELECT_CC: C = 2; break; 12041 } 12042 12043 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12044 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 12045 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12046 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 12047 // The to-be-promoted operands of this node have not yet been 12048 // promoted (this should be rare because we're going through the 12049 // list backward, but if one of the operands has several users in 12050 // this cluster of to-be-promoted nodes, it is possible). 12051 PromOpHandles.emplace_front(PromOp); 12052 continue; 12053 } 12054 12055 // For SELECT and SELECT_CC nodes, we do a similar check for any 12056 // to-be-promoted comparison inputs. 12057 if (PromOp.getOpcode() == ISD::SELECT || 12058 PromOp.getOpcode() == ISD::SELECT_CC) { 12059 if ((SelectTruncOp[0].count(PromOp.getNode()) && 12060 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 12061 (SelectTruncOp[1].count(PromOp.getNode()) && 12062 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 12063 PromOpHandles.emplace_front(PromOp); 12064 continue; 12065 } 12066 } 12067 12068 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12069 PromOp.getNode()->op_end()); 12070 12071 // If this node has constant inputs, then they'll need to be promoted here. 12072 for (unsigned i = 0; i < 2; ++i) { 12073 if (!isa<ConstantSDNode>(Ops[C+i])) 12074 continue; 12075 if (Ops[C+i].getValueType() == N->getValueType(0)) 12076 continue; 12077 12078 if (N->getOpcode() == ISD::SIGN_EXTEND) 12079 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12080 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12081 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12082 else 12083 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12084 } 12085 12086 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 12087 // truncate them again to the original value type. 12088 if (PromOp.getOpcode() == ISD::SELECT || 12089 PromOp.getOpcode() == ISD::SELECT_CC) { 12090 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 12091 if (SI0 != SelectTruncOp[0].end()) 12092 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 12093 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 12094 if (SI1 != SelectTruncOp[1].end()) 12095 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 12096 } 12097 12098 DAG.ReplaceAllUsesOfValueWith(PromOp, 12099 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 12100 } 12101 12102 // Now we're left with the initial extension itself. 12103 if (!ReallyNeedsExt) 12104 return N->getOperand(0); 12105 12106 // To zero extend, just mask off everything except for the first bit (in the 12107 // i1 case). 12108 if (N->getOpcode() == ISD::ZERO_EXTEND) 12109 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 12110 DAG.getConstant(APInt::getLowBitsSet( 12111 N->getValueSizeInBits(0), PromBits), 12112 dl, N->getValueType(0))); 12113 12114 assert(N->getOpcode() == ISD::SIGN_EXTEND && 12115 "Invalid extension type"); 12116 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 12117 SDValue ShiftCst = 12118 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 12119 return DAG.getNode( 12120 ISD::SRA, dl, N->getValueType(0), 12121 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 12122 ShiftCst); 12123 } 12124 12125 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 12126 DAGCombinerInfo &DCI) const { 12127 assert(N->getOpcode() == ISD::SETCC && 12128 "Should be called with a SETCC node"); 12129 12130 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12131 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 12132 SDValue LHS = N->getOperand(0); 12133 SDValue RHS = N->getOperand(1); 12134 12135 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 12136 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 12137 LHS.hasOneUse()) 12138 std::swap(LHS, RHS); 12139 12140 // x == 0-y --> x+y == 0 12141 // x != 0-y --> x+y != 0 12142 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 12143 RHS.hasOneUse()) { 12144 SDLoc DL(N); 12145 SelectionDAG &DAG = DCI.DAG; 12146 EVT VT = N->getValueType(0); 12147 EVT OpVT = LHS.getValueType(); 12148 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 12149 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 12150 } 12151 } 12152 12153 return DAGCombineTruncBoolExt(N, DCI); 12154 } 12155 12156 // Is this an extending load from an f32 to an f64? 12157 static bool isFPExtLoad(SDValue Op) { 12158 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 12159 return LD->getExtensionType() == ISD::EXTLOAD && 12160 Op.getValueType() == MVT::f64; 12161 return false; 12162 } 12163 12164 /// Reduces the number of fp-to-int conversion when building a vector. 12165 /// 12166 /// If this vector is built out of floating to integer conversions, 12167 /// transform it to a vector built out of floating point values followed by a 12168 /// single floating to integer conversion of the vector. 12169 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 12170 /// becomes (fptosi (build_vector ($A, $B, ...))) 12171 SDValue PPCTargetLowering:: 12172 combineElementTruncationToVectorTruncation(SDNode *N, 12173 DAGCombinerInfo &DCI) const { 12174 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12175 "Should be called with a BUILD_VECTOR node"); 12176 12177 SelectionDAG &DAG = DCI.DAG; 12178 SDLoc dl(N); 12179 12180 SDValue FirstInput = N->getOperand(0); 12181 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 12182 "The input operand must be an fp-to-int conversion."); 12183 12184 // This combine happens after legalization so the fp_to_[su]i nodes are 12185 // already converted to PPCSISD nodes. 12186 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 12187 if (FirstConversion == PPCISD::FCTIDZ || 12188 FirstConversion == PPCISD::FCTIDUZ || 12189 FirstConversion == PPCISD::FCTIWZ || 12190 FirstConversion == PPCISD::FCTIWUZ) { 12191 bool IsSplat = true; 12192 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 12193 FirstConversion == PPCISD::FCTIWUZ; 12194 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 12195 SmallVector<SDValue, 4> Ops; 12196 EVT TargetVT = N->getValueType(0); 12197 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 12198 SDValue NextOp = N->getOperand(i); 12199 if (NextOp.getOpcode() != PPCISD::MFVSR) 12200 return SDValue(); 12201 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 12202 if (NextConversion != FirstConversion) 12203 return SDValue(); 12204 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 12205 // This is not valid if the input was originally double precision. It is 12206 // also not profitable to do unless this is an extending load in which 12207 // case doing this combine will allow us to combine consecutive loads. 12208 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 12209 return SDValue(); 12210 if (N->getOperand(i) != FirstInput) 12211 IsSplat = false; 12212 } 12213 12214 // If this is a splat, we leave it as-is since there will be only a single 12215 // fp-to-int conversion followed by a splat of the integer. This is better 12216 // for 32-bit and smaller ints and neutral for 64-bit ints. 12217 if (IsSplat) 12218 return SDValue(); 12219 12220 // Now that we know we have the right type of node, get its operands 12221 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 12222 SDValue In = N->getOperand(i).getOperand(0); 12223 if (Is32Bit) { 12224 // For 32-bit values, we need to add an FP_ROUND node (if we made it 12225 // here, we know that all inputs are extending loads so this is safe). 12226 if (In.isUndef()) 12227 Ops.push_back(DAG.getUNDEF(SrcVT)); 12228 else { 12229 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 12230 MVT::f32, In.getOperand(0), 12231 DAG.getIntPtrConstant(1, dl)); 12232 Ops.push_back(Trunc); 12233 } 12234 } else 12235 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 12236 } 12237 12238 unsigned Opcode; 12239 if (FirstConversion == PPCISD::FCTIDZ || 12240 FirstConversion == PPCISD::FCTIWZ) 12241 Opcode = ISD::FP_TO_SINT; 12242 else 12243 Opcode = ISD::FP_TO_UINT; 12244 12245 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 12246 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 12247 return DAG.getNode(Opcode, dl, TargetVT, BV); 12248 } 12249 return SDValue(); 12250 } 12251 12252 /// Reduce the number of loads when building a vector. 12253 /// 12254 /// Building a vector out of multiple loads can be converted to a load 12255 /// of the vector type if the loads are consecutive. If the loads are 12256 /// consecutive but in descending order, a shuffle is added at the end 12257 /// to reorder the vector. 12258 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 12259 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12260 "Should be called with a BUILD_VECTOR node"); 12261 12262 SDLoc dl(N); 12263 12264 // Return early for non byte-sized type, as they can't be consecutive. 12265 if (!N->getValueType(0).getVectorElementType().isByteSized()) 12266 return SDValue(); 12267 12268 bool InputsAreConsecutiveLoads = true; 12269 bool InputsAreReverseConsecutive = true; 12270 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 12271 SDValue FirstInput = N->getOperand(0); 12272 bool IsRoundOfExtLoad = false; 12273 12274 if (FirstInput.getOpcode() == ISD::FP_ROUND && 12275 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 12276 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 12277 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 12278 } 12279 // Not a build vector of (possibly fp_rounded) loads. 12280 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 12281 N->getNumOperands() == 1) 12282 return SDValue(); 12283 12284 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 12285 // If any inputs are fp_round(extload), they all must be. 12286 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 12287 return SDValue(); 12288 12289 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 12290 N->getOperand(i); 12291 if (NextInput.getOpcode() != ISD::LOAD) 12292 return SDValue(); 12293 12294 SDValue PreviousInput = 12295 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 12296 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 12297 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 12298 12299 // If any inputs are fp_round(extload), they all must be. 12300 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 12301 return SDValue(); 12302 12303 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 12304 InputsAreConsecutiveLoads = false; 12305 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 12306 InputsAreReverseConsecutive = false; 12307 12308 // Exit early if the loads are neither consecutive nor reverse consecutive. 12309 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 12310 return SDValue(); 12311 } 12312 12313 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 12314 "The loads cannot be both consecutive and reverse consecutive."); 12315 12316 SDValue FirstLoadOp = 12317 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 12318 SDValue LastLoadOp = 12319 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 12320 N->getOperand(N->getNumOperands()-1); 12321 12322 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 12323 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 12324 if (InputsAreConsecutiveLoads) { 12325 assert(LD1 && "Input needs to be a LoadSDNode."); 12326 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 12327 LD1->getBasePtr(), LD1->getPointerInfo(), 12328 LD1->getAlignment()); 12329 } 12330 if (InputsAreReverseConsecutive) { 12331 assert(LDL && "Input needs to be a LoadSDNode."); 12332 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 12333 LDL->getBasePtr(), LDL->getPointerInfo(), 12334 LDL->getAlignment()); 12335 SmallVector<int, 16> Ops; 12336 for (int i = N->getNumOperands() - 1; i >= 0; i--) 12337 Ops.push_back(i); 12338 12339 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 12340 DAG.getUNDEF(N->getValueType(0)), Ops); 12341 } 12342 return SDValue(); 12343 } 12344 12345 // This function adds the required vector_shuffle needed to get 12346 // the elements of the vector extract in the correct position 12347 // as specified by the CorrectElems encoding. 12348 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 12349 SDValue Input, uint64_t Elems, 12350 uint64_t CorrectElems) { 12351 SDLoc dl(N); 12352 12353 unsigned NumElems = Input.getValueType().getVectorNumElements(); 12354 SmallVector<int, 16> ShuffleMask(NumElems, -1); 12355 12356 // Knowing the element indices being extracted from the original 12357 // vector and the order in which they're being inserted, just put 12358 // them at element indices required for the instruction. 12359 for (unsigned i = 0; i < N->getNumOperands(); i++) { 12360 if (DAG.getDataLayout().isLittleEndian()) 12361 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 12362 else 12363 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 12364 CorrectElems = CorrectElems >> 8; 12365 Elems = Elems >> 8; 12366 } 12367 12368 SDValue Shuffle = 12369 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 12370 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 12371 12372 EVT Ty = N->getValueType(0); 12373 SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle); 12374 return BV; 12375 } 12376 12377 // Look for build vector patterns where input operands come from sign 12378 // extended vector_extract elements of specific indices. If the correct indices 12379 // aren't used, add a vector shuffle to fix up the indices and create a new 12380 // PPCISD:SExtVElems node which selects the vector sign extend instructions 12381 // during instruction selection. 12382 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 12383 // This array encodes the indices that the vector sign extend instructions 12384 // extract from when extending from one type to another for both BE and LE. 12385 // The right nibble of each byte corresponds to the LE incides. 12386 // and the left nibble of each byte corresponds to the BE incides. 12387 // For example: 0x3074B8FC byte->word 12388 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 12389 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 12390 // For example: 0x000070F8 byte->double word 12391 // For LE: the allowed indices are: 0x0,0x8 12392 // For BE: the allowed indices are: 0x7,0xF 12393 uint64_t TargetElems[] = { 12394 0x3074B8FC, // b->w 12395 0x000070F8, // b->d 12396 0x10325476, // h->w 12397 0x00003074, // h->d 12398 0x00001032, // w->d 12399 }; 12400 12401 uint64_t Elems = 0; 12402 int Index; 12403 SDValue Input; 12404 12405 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 12406 if (!Op) 12407 return false; 12408 if (Op.getOpcode() != ISD::SIGN_EXTEND && 12409 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 12410 return false; 12411 12412 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 12413 // of the right width. 12414 SDValue Extract = Op.getOperand(0); 12415 if (Extract.getOpcode() == ISD::ANY_EXTEND) 12416 Extract = Extract.getOperand(0); 12417 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 12418 return false; 12419 12420 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 12421 if (!ExtOp) 12422 return false; 12423 12424 Index = ExtOp->getZExtValue(); 12425 if (Input && Input != Extract.getOperand(0)) 12426 return false; 12427 12428 if (!Input) 12429 Input = Extract.getOperand(0); 12430 12431 Elems = Elems << 8; 12432 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 12433 Elems |= Index; 12434 12435 return true; 12436 }; 12437 12438 // If the build vector operands aren't sign extended vector extracts, 12439 // of the same input vector, then return. 12440 for (unsigned i = 0; i < N->getNumOperands(); i++) { 12441 if (!isSExtOfVecExtract(N->getOperand(i))) { 12442 return SDValue(); 12443 } 12444 } 12445 12446 // If the vector extract indicies are not correct, add the appropriate 12447 // vector_shuffle. 12448 int TgtElemArrayIdx; 12449 int InputSize = Input.getValueType().getScalarSizeInBits(); 12450 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 12451 if (InputSize + OutputSize == 40) 12452 TgtElemArrayIdx = 0; 12453 else if (InputSize + OutputSize == 72) 12454 TgtElemArrayIdx = 1; 12455 else if (InputSize + OutputSize == 48) 12456 TgtElemArrayIdx = 2; 12457 else if (InputSize + OutputSize == 80) 12458 TgtElemArrayIdx = 3; 12459 else if (InputSize + OutputSize == 96) 12460 TgtElemArrayIdx = 4; 12461 else 12462 return SDValue(); 12463 12464 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 12465 CorrectElems = DAG.getDataLayout().isLittleEndian() 12466 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 12467 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 12468 if (Elems != CorrectElems) { 12469 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 12470 } 12471 12472 // Regular lowering will catch cases where a shuffle is not needed. 12473 return SDValue(); 12474 } 12475 12476 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 12477 DAGCombinerInfo &DCI) const { 12478 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12479 "Should be called with a BUILD_VECTOR node"); 12480 12481 SelectionDAG &DAG = DCI.DAG; 12482 SDLoc dl(N); 12483 12484 if (!Subtarget.hasVSX()) 12485 return SDValue(); 12486 12487 // The target independent DAG combiner will leave a build_vector of 12488 // float-to-int conversions intact. We can generate MUCH better code for 12489 // a float-to-int conversion of a vector of floats. 12490 SDValue FirstInput = N->getOperand(0); 12491 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 12492 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 12493 if (Reduced) 12494 return Reduced; 12495 } 12496 12497 // If we're building a vector out of consecutive loads, just load that 12498 // vector type. 12499 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 12500 if (Reduced) 12501 return Reduced; 12502 12503 // If we're building a vector out of extended elements from another vector 12504 // we have P9 vector integer extend instructions. The code assumes legal 12505 // input types (i.e. it can't handle things like v4i16) so do not run before 12506 // legalization. 12507 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 12508 Reduced = combineBVOfVecSExt(N, DAG); 12509 if (Reduced) 12510 return Reduced; 12511 } 12512 12513 12514 if (N->getValueType(0) != MVT::v2f64) 12515 return SDValue(); 12516 12517 // Looking for: 12518 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 12519 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 12520 FirstInput.getOpcode() != ISD::UINT_TO_FP) 12521 return SDValue(); 12522 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 12523 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 12524 return SDValue(); 12525 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 12526 return SDValue(); 12527 12528 SDValue Ext1 = FirstInput.getOperand(0); 12529 SDValue Ext2 = N->getOperand(1).getOperand(0); 12530 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 12531 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 12532 return SDValue(); 12533 12534 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 12535 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 12536 if (!Ext1Op || !Ext2Op) 12537 return SDValue(); 12538 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 12539 Ext1.getOperand(0) != Ext2.getOperand(0)) 12540 return SDValue(); 12541 12542 int FirstElem = Ext1Op->getZExtValue(); 12543 int SecondElem = Ext2Op->getZExtValue(); 12544 int SubvecIdx; 12545 if (FirstElem == 0 && SecondElem == 1) 12546 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 12547 else if (FirstElem == 2 && SecondElem == 3) 12548 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 12549 else 12550 return SDValue(); 12551 12552 SDValue SrcVec = Ext1.getOperand(0); 12553 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 12554 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 12555 return DAG.getNode(NodeType, dl, MVT::v2f64, 12556 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 12557 } 12558 12559 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 12560 DAGCombinerInfo &DCI) const { 12561 assert((N->getOpcode() == ISD::SINT_TO_FP || 12562 N->getOpcode() == ISD::UINT_TO_FP) && 12563 "Need an int -> FP conversion node here"); 12564 12565 if (useSoftFloat() || !Subtarget.has64BitSupport()) 12566 return SDValue(); 12567 12568 SelectionDAG &DAG = DCI.DAG; 12569 SDLoc dl(N); 12570 SDValue Op(N, 0); 12571 12572 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 12573 // from the hardware. 12574 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 12575 return SDValue(); 12576 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 12577 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 12578 return SDValue(); 12579 12580 SDValue FirstOperand(Op.getOperand(0)); 12581 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 12582 (FirstOperand.getValueType() == MVT::i8 || 12583 FirstOperand.getValueType() == MVT::i16); 12584 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 12585 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 12586 bool DstDouble = Op.getValueType() == MVT::f64; 12587 unsigned ConvOp = Signed ? 12588 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 12589 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 12590 SDValue WidthConst = 12591 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 12592 dl, false); 12593 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 12594 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 12595 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 12596 DAG.getVTList(MVT::f64, MVT::Other), 12597 Ops, MVT::i8, LDN->getMemOperand()); 12598 12599 // For signed conversion, we need to sign-extend the value in the VSR 12600 if (Signed) { 12601 SDValue ExtOps[] = { Ld, WidthConst }; 12602 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 12603 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 12604 } else 12605 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 12606 } 12607 12608 12609 // For i32 intermediate values, unfortunately, the conversion functions 12610 // leave the upper 32 bits of the value are undefined. Within the set of 12611 // scalar instructions, we have no method for zero- or sign-extending the 12612 // value. Thus, we cannot handle i32 intermediate values here. 12613 if (Op.getOperand(0).getValueType() == MVT::i32) 12614 return SDValue(); 12615 12616 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 12617 "UINT_TO_FP is supported only with FPCVT"); 12618 12619 // If we have FCFIDS, then use it when converting to single-precision. 12620 // Otherwise, convert to double-precision and then round. 12621 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 12622 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 12623 : PPCISD::FCFIDS) 12624 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 12625 : PPCISD::FCFID); 12626 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 12627 ? MVT::f32 12628 : MVT::f64; 12629 12630 // If we're converting from a float, to an int, and back to a float again, 12631 // then we don't need the store/load pair at all. 12632 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 12633 Subtarget.hasFPCVT()) || 12634 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 12635 SDValue Src = Op.getOperand(0).getOperand(0); 12636 if (Src.getValueType() == MVT::f32) { 12637 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 12638 DCI.AddToWorklist(Src.getNode()); 12639 } else if (Src.getValueType() != MVT::f64) { 12640 // Make sure that we don't pick up a ppc_fp128 source value. 12641 return SDValue(); 12642 } 12643 12644 unsigned FCTOp = 12645 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 12646 PPCISD::FCTIDUZ; 12647 12648 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 12649 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 12650 12651 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 12652 FP = DAG.getNode(ISD::FP_ROUND, dl, 12653 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 12654 DCI.AddToWorklist(FP.getNode()); 12655 } 12656 12657 return FP; 12658 } 12659 12660 return SDValue(); 12661 } 12662 12663 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 12664 // builtins) into loads with swaps. 12665 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 12666 DAGCombinerInfo &DCI) const { 12667 SelectionDAG &DAG = DCI.DAG; 12668 SDLoc dl(N); 12669 SDValue Chain; 12670 SDValue Base; 12671 MachineMemOperand *MMO; 12672 12673 switch (N->getOpcode()) { 12674 default: 12675 llvm_unreachable("Unexpected opcode for little endian VSX load"); 12676 case ISD::LOAD: { 12677 LoadSDNode *LD = cast<LoadSDNode>(N); 12678 Chain = LD->getChain(); 12679 Base = LD->getBasePtr(); 12680 MMO = LD->getMemOperand(); 12681 // If the MMO suggests this isn't a load of a full vector, leave 12682 // things alone. For a built-in, we have to make the change for 12683 // correctness, so if there is a size problem that will be a bug. 12684 if (MMO->getSize() < 16) 12685 return SDValue(); 12686 break; 12687 } 12688 case ISD::INTRINSIC_W_CHAIN: { 12689 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 12690 Chain = Intrin->getChain(); 12691 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 12692 // us what we want. Get operand 2 instead. 12693 Base = Intrin->getOperand(2); 12694 MMO = Intrin->getMemOperand(); 12695 break; 12696 } 12697 } 12698 12699 MVT VecTy = N->getValueType(0).getSimpleVT(); 12700 12701 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 12702 // aligned and the type is a vector with elements up to 4 bytes 12703 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 12704 && VecTy.getScalarSizeInBits() <= 32 ) { 12705 return SDValue(); 12706 } 12707 12708 SDValue LoadOps[] = { Chain, Base }; 12709 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 12710 DAG.getVTList(MVT::v2f64, MVT::Other), 12711 LoadOps, MVT::v2f64, MMO); 12712 12713 DCI.AddToWorklist(Load.getNode()); 12714 Chain = Load.getValue(1); 12715 SDValue Swap = DAG.getNode( 12716 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 12717 DCI.AddToWorklist(Swap.getNode()); 12718 12719 // Add a bitcast if the resulting load type doesn't match v2f64. 12720 if (VecTy != MVT::v2f64) { 12721 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 12722 DCI.AddToWorklist(N.getNode()); 12723 // Package {bitcast value, swap's chain} to match Load's shape. 12724 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 12725 N, Swap.getValue(1)); 12726 } 12727 12728 return Swap; 12729 } 12730 12731 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 12732 // builtins) into stores with swaps. 12733 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 12734 DAGCombinerInfo &DCI) const { 12735 SelectionDAG &DAG = DCI.DAG; 12736 SDLoc dl(N); 12737 SDValue Chain; 12738 SDValue Base; 12739 unsigned SrcOpnd; 12740 MachineMemOperand *MMO; 12741 12742 switch (N->getOpcode()) { 12743 default: 12744 llvm_unreachable("Unexpected opcode for little endian VSX store"); 12745 case ISD::STORE: { 12746 StoreSDNode *ST = cast<StoreSDNode>(N); 12747 Chain = ST->getChain(); 12748 Base = ST->getBasePtr(); 12749 MMO = ST->getMemOperand(); 12750 SrcOpnd = 1; 12751 // If the MMO suggests this isn't a store of a full vector, leave 12752 // things alone. For a built-in, we have to make the change for 12753 // correctness, so if there is a size problem that will be a bug. 12754 if (MMO->getSize() < 16) 12755 return SDValue(); 12756 break; 12757 } 12758 case ISD::INTRINSIC_VOID: { 12759 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 12760 Chain = Intrin->getChain(); 12761 // Intrin->getBasePtr() oddly does not get what we want. 12762 Base = Intrin->getOperand(3); 12763 MMO = Intrin->getMemOperand(); 12764 SrcOpnd = 2; 12765 break; 12766 } 12767 } 12768 12769 SDValue Src = N->getOperand(SrcOpnd); 12770 MVT VecTy = Src.getValueType().getSimpleVT(); 12771 12772 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 12773 // aligned and the type is a vector with elements up to 4 bytes 12774 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 12775 && VecTy.getScalarSizeInBits() <= 32 ) { 12776 return SDValue(); 12777 } 12778 12779 // All stores are done as v2f64 and possible bit cast. 12780 if (VecTy != MVT::v2f64) { 12781 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 12782 DCI.AddToWorklist(Src.getNode()); 12783 } 12784 12785 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 12786 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 12787 DCI.AddToWorklist(Swap.getNode()); 12788 Chain = Swap.getValue(1); 12789 SDValue StoreOps[] = { Chain, Swap, Base }; 12790 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 12791 DAG.getVTList(MVT::Other), 12792 StoreOps, VecTy, MMO); 12793 DCI.AddToWorklist(Store.getNode()); 12794 return Store; 12795 } 12796 12797 // Handle DAG combine for STORE (FP_TO_INT F). 12798 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 12799 DAGCombinerInfo &DCI) const { 12800 12801 SelectionDAG &DAG = DCI.DAG; 12802 SDLoc dl(N); 12803 unsigned Opcode = N->getOperand(1).getOpcode(); 12804 12805 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 12806 && "Not a FP_TO_INT Instruction!"); 12807 12808 SDValue Val = N->getOperand(1).getOperand(0); 12809 EVT Op1VT = N->getOperand(1).getValueType(); 12810 EVT ResVT = Val.getValueType(); 12811 12812 // Floating point types smaller than 32 bits are not legal on Power. 12813 if (ResVT.getScalarSizeInBits() < 32) 12814 return SDValue(); 12815 12816 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 12817 bool ValidTypeForStoreFltAsInt = 12818 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 12819 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 12820 12821 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() || 12822 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 12823 return SDValue(); 12824 12825 // Extend f32 values to f64 12826 if (ResVT.getScalarSizeInBits() == 32) { 12827 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 12828 DCI.AddToWorklist(Val.getNode()); 12829 } 12830 12831 // Set signed or unsigned conversion opcode. 12832 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 12833 PPCISD::FP_TO_SINT_IN_VSR : 12834 PPCISD::FP_TO_UINT_IN_VSR; 12835 12836 Val = DAG.getNode(ConvOpcode, 12837 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 12838 DCI.AddToWorklist(Val.getNode()); 12839 12840 // Set number of bytes being converted. 12841 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 12842 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 12843 DAG.getIntPtrConstant(ByteSize, dl, false), 12844 DAG.getValueType(Op1VT) }; 12845 12846 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 12847 DAG.getVTList(MVT::Other), Ops, 12848 cast<StoreSDNode>(N)->getMemoryVT(), 12849 cast<StoreSDNode>(N)->getMemOperand()); 12850 12851 DCI.AddToWorklist(Val.getNode()); 12852 return Val; 12853 } 12854 12855 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 12856 DAGCombinerInfo &DCI) const { 12857 SelectionDAG &DAG = DCI.DAG; 12858 SDLoc dl(N); 12859 switch (N->getOpcode()) { 12860 default: break; 12861 case ISD::ADD: 12862 return combineADD(N, DCI); 12863 case ISD::SHL: 12864 return combineSHL(N, DCI); 12865 case ISD::SRA: 12866 return combineSRA(N, DCI); 12867 case ISD::SRL: 12868 return combineSRL(N, DCI); 12869 case ISD::MUL: 12870 return combineMUL(N, DCI); 12871 case PPCISD::SHL: 12872 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 12873 return N->getOperand(0); 12874 break; 12875 case PPCISD::SRL: 12876 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 12877 return N->getOperand(0); 12878 break; 12879 case PPCISD::SRA: 12880 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 12881 if (C->isNullValue() || // 0 >>s V -> 0. 12882 C->isAllOnesValue()) // -1 >>s V -> -1. 12883 return N->getOperand(0); 12884 } 12885 break; 12886 case ISD::SIGN_EXTEND: 12887 case ISD::ZERO_EXTEND: 12888 case ISD::ANY_EXTEND: 12889 return DAGCombineExtBoolTrunc(N, DCI); 12890 case ISD::TRUNCATE: 12891 return combineTRUNCATE(N, DCI); 12892 case ISD::SETCC: 12893 if (SDValue CSCC = combineSetCC(N, DCI)) 12894 return CSCC; 12895 LLVM_FALLTHROUGH; 12896 case ISD::SELECT_CC: 12897 return DAGCombineTruncBoolExt(N, DCI); 12898 case ISD::SINT_TO_FP: 12899 case ISD::UINT_TO_FP: 12900 return combineFPToIntToFP(N, DCI); 12901 case ISD::STORE: { 12902 12903 EVT Op1VT = N->getOperand(1).getValueType(); 12904 unsigned Opcode = N->getOperand(1).getOpcode(); 12905 12906 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 12907 SDValue Val= combineStoreFPToInt(N, DCI); 12908 if (Val) 12909 return Val; 12910 } 12911 12912 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 12913 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 12914 N->getOperand(1).getNode()->hasOneUse() && 12915 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 12916 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 12917 12918 // STBRX can only handle simple types and it makes no sense to store less 12919 // two bytes in byte-reversed order. 12920 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 12921 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 12922 break; 12923 12924 SDValue BSwapOp = N->getOperand(1).getOperand(0); 12925 // Do an any-extend to 32-bits if this is a half-word input. 12926 if (BSwapOp.getValueType() == MVT::i16) 12927 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 12928 12929 // If the type of BSWAP operand is wider than stored memory width 12930 // it need to be shifted to the right side before STBRX. 12931 if (Op1VT.bitsGT(mVT)) { 12932 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 12933 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 12934 DAG.getConstant(Shift, dl, MVT::i32)); 12935 // Need to truncate if this is a bswap of i64 stored as i32/i16. 12936 if (Op1VT == MVT::i64) 12937 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 12938 } 12939 12940 SDValue Ops[] = { 12941 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 12942 }; 12943 return 12944 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 12945 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 12946 cast<StoreSDNode>(N)->getMemOperand()); 12947 } 12948 12949 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 12950 // So it can increase the chance of CSE constant construction. 12951 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 12952 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 12953 // Need to sign-extended to 64-bits to handle negative values. 12954 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 12955 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 12956 MemVT.getSizeInBits()); 12957 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 12958 12959 // DAG.getTruncStore() can't be used here because it doesn't accept 12960 // the general (base + offset) addressing mode. 12961 // So we use UpdateNodeOperands and setTruncatingStore instead. 12962 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 12963 N->getOperand(3)); 12964 cast<StoreSDNode>(N)->setTruncatingStore(true); 12965 return SDValue(N, 0); 12966 } 12967 12968 // For little endian, VSX stores require generating xxswapd/lxvd2x. 12969 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 12970 if (Op1VT.isSimple()) { 12971 MVT StoreVT = Op1VT.getSimpleVT(); 12972 if (Subtarget.needsSwapsForVSXMemOps() && 12973 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 12974 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 12975 return expandVSXStoreForLE(N, DCI); 12976 } 12977 break; 12978 } 12979 case ISD::LOAD: { 12980 LoadSDNode *LD = cast<LoadSDNode>(N); 12981 EVT VT = LD->getValueType(0); 12982 12983 // For little endian, VSX loads require generating lxvd2x/xxswapd. 12984 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 12985 if (VT.isSimple()) { 12986 MVT LoadVT = VT.getSimpleVT(); 12987 if (Subtarget.needsSwapsForVSXMemOps() && 12988 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 12989 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 12990 return expandVSXLoadForLE(N, DCI); 12991 } 12992 12993 // We sometimes end up with a 64-bit integer load, from which we extract 12994 // two single-precision floating-point numbers. This happens with 12995 // std::complex<float>, and other similar structures, because of the way we 12996 // canonicalize structure copies. However, if we lack direct moves, 12997 // then the final bitcasts from the extracted integer values to the 12998 // floating-point numbers turn into store/load pairs. Even with direct moves, 12999 // just loading the two floating-point numbers is likely better. 13000 auto ReplaceTwoFloatLoad = [&]() { 13001 if (VT != MVT::i64) 13002 return false; 13003 13004 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 13005 LD->isVolatile()) 13006 return false; 13007 13008 // We're looking for a sequence like this: 13009 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 13010 // t16: i64 = srl t13, Constant:i32<32> 13011 // t17: i32 = truncate t16 13012 // t18: f32 = bitcast t17 13013 // t19: i32 = truncate t13 13014 // t20: f32 = bitcast t19 13015 13016 if (!LD->hasNUsesOfValue(2, 0)) 13017 return false; 13018 13019 auto UI = LD->use_begin(); 13020 while (UI.getUse().getResNo() != 0) ++UI; 13021 SDNode *Trunc = *UI++; 13022 while (UI.getUse().getResNo() != 0) ++UI; 13023 SDNode *RightShift = *UI; 13024 if (Trunc->getOpcode() != ISD::TRUNCATE) 13025 std::swap(Trunc, RightShift); 13026 13027 if (Trunc->getOpcode() != ISD::TRUNCATE || 13028 Trunc->getValueType(0) != MVT::i32 || 13029 !Trunc->hasOneUse()) 13030 return false; 13031 if (RightShift->getOpcode() != ISD::SRL || 13032 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 13033 RightShift->getConstantOperandVal(1) != 32 || 13034 !RightShift->hasOneUse()) 13035 return false; 13036 13037 SDNode *Trunc2 = *RightShift->use_begin(); 13038 if (Trunc2->getOpcode() != ISD::TRUNCATE || 13039 Trunc2->getValueType(0) != MVT::i32 || 13040 !Trunc2->hasOneUse()) 13041 return false; 13042 13043 SDNode *Bitcast = *Trunc->use_begin(); 13044 SDNode *Bitcast2 = *Trunc2->use_begin(); 13045 13046 if (Bitcast->getOpcode() != ISD::BITCAST || 13047 Bitcast->getValueType(0) != MVT::f32) 13048 return false; 13049 if (Bitcast2->getOpcode() != ISD::BITCAST || 13050 Bitcast2->getValueType(0) != MVT::f32) 13051 return false; 13052 13053 if (Subtarget.isLittleEndian()) 13054 std::swap(Bitcast, Bitcast2); 13055 13056 // Bitcast has the second float (in memory-layout order) and Bitcast2 13057 // has the first one. 13058 13059 SDValue BasePtr = LD->getBasePtr(); 13060 if (LD->isIndexed()) { 13061 assert(LD->getAddressingMode() == ISD::PRE_INC && 13062 "Non-pre-inc AM on PPC?"); 13063 BasePtr = 13064 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 13065 LD->getOffset()); 13066 } 13067 13068 auto MMOFlags = 13069 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 13070 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 13071 LD->getPointerInfo(), LD->getAlignment(), 13072 MMOFlags, LD->getAAInfo()); 13073 SDValue AddPtr = 13074 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 13075 BasePtr, DAG.getIntPtrConstant(4, dl)); 13076 SDValue FloatLoad2 = DAG.getLoad( 13077 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 13078 LD->getPointerInfo().getWithOffset(4), 13079 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 13080 13081 if (LD->isIndexed()) { 13082 // Note that DAGCombine should re-form any pre-increment load(s) from 13083 // what is produced here if that makes sense. 13084 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 13085 } 13086 13087 DCI.CombineTo(Bitcast2, FloatLoad); 13088 DCI.CombineTo(Bitcast, FloatLoad2); 13089 13090 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 13091 SDValue(FloatLoad2.getNode(), 1)); 13092 return true; 13093 }; 13094 13095 if (ReplaceTwoFloatLoad()) 13096 return SDValue(N, 0); 13097 13098 EVT MemVT = LD->getMemoryVT(); 13099 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 13100 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 13101 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 13102 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 13103 if (LD->isUnindexed() && VT.isVector() && 13104 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 13105 // P8 and later hardware should just use LOAD. 13106 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 13107 VT == MVT::v4i32 || VT == MVT::v4f32)) || 13108 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 13109 LD->getAlignment() >= ScalarABIAlignment)) && 13110 LD->getAlignment() < ABIAlignment) { 13111 // This is a type-legal unaligned Altivec or QPX load. 13112 SDValue Chain = LD->getChain(); 13113 SDValue Ptr = LD->getBasePtr(); 13114 bool isLittleEndian = Subtarget.isLittleEndian(); 13115 13116 // This implements the loading of unaligned vectors as described in 13117 // the venerable Apple Velocity Engine overview. Specifically: 13118 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 13119 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 13120 // 13121 // The general idea is to expand a sequence of one or more unaligned 13122 // loads into an alignment-based permutation-control instruction (lvsl 13123 // or lvsr), a series of regular vector loads (which always truncate 13124 // their input address to an aligned address), and a series of 13125 // permutations. The results of these permutations are the requested 13126 // loaded values. The trick is that the last "extra" load is not taken 13127 // from the address you might suspect (sizeof(vector) bytes after the 13128 // last requested load), but rather sizeof(vector) - 1 bytes after the 13129 // last requested vector. The point of this is to avoid a page fault if 13130 // the base address happened to be aligned. This works because if the 13131 // base address is aligned, then adding less than a full vector length 13132 // will cause the last vector in the sequence to be (re)loaded. 13133 // Otherwise, the next vector will be fetched as you might suspect was 13134 // necessary. 13135 13136 // We might be able to reuse the permutation generation from 13137 // a different base address offset from this one by an aligned amount. 13138 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 13139 // optimization later. 13140 Intrinsic::ID Intr, IntrLD, IntrPerm; 13141 MVT PermCntlTy, PermTy, LDTy; 13142 if (Subtarget.hasAltivec()) { 13143 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 13144 Intrinsic::ppc_altivec_lvsl; 13145 IntrLD = Intrinsic::ppc_altivec_lvx; 13146 IntrPerm = Intrinsic::ppc_altivec_vperm; 13147 PermCntlTy = MVT::v16i8; 13148 PermTy = MVT::v4i32; 13149 LDTy = MVT::v4i32; 13150 } else { 13151 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 13152 Intrinsic::ppc_qpx_qvlpcls; 13153 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 13154 Intrinsic::ppc_qpx_qvlfs; 13155 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 13156 PermCntlTy = MVT::v4f64; 13157 PermTy = MVT::v4f64; 13158 LDTy = MemVT.getSimpleVT(); 13159 } 13160 13161 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 13162 13163 // Create the new MMO for the new base load. It is like the original MMO, 13164 // but represents an area in memory almost twice the vector size centered 13165 // on the original address. If the address is unaligned, we might start 13166 // reading up to (sizeof(vector)-1) bytes below the address of the 13167 // original unaligned load. 13168 MachineFunction &MF = DAG.getMachineFunction(); 13169 MachineMemOperand *BaseMMO = 13170 MF.getMachineMemOperand(LD->getMemOperand(), 13171 -(long)MemVT.getStoreSize()+1, 13172 2*MemVT.getStoreSize()-1); 13173 13174 // Create the new base load. 13175 SDValue LDXIntID = 13176 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 13177 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 13178 SDValue BaseLoad = 13179 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 13180 DAG.getVTList(PermTy, MVT::Other), 13181 BaseLoadOps, LDTy, BaseMMO); 13182 13183 // Note that the value of IncOffset (which is provided to the next 13184 // load's pointer info offset value, and thus used to calculate the 13185 // alignment), and the value of IncValue (which is actually used to 13186 // increment the pointer value) are different! This is because we 13187 // require the next load to appear to be aligned, even though it 13188 // is actually offset from the base pointer by a lesser amount. 13189 int IncOffset = VT.getSizeInBits() / 8; 13190 int IncValue = IncOffset; 13191 13192 // Walk (both up and down) the chain looking for another load at the real 13193 // (aligned) offset (the alignment of the other load does not matter in 13194 // this case). If found, then do not use the offset reduction trick, as 13195 // that will prevent the loads from being later combined (as they would 13196 // otherwise be duplicates). 13197 if (!findConsecutiveLoad(LD, DAG)) 13198 --IncValue; 13199 13200 SDValue Increment = 13201 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 13202 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 13203 13204 MachineMemOperand *ExtraMMO = 13205 MF.getMachineMemOperand(LD->getMemOperand(), 13206 1, 2*MemVT.getStoreSize()-1); 13207 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 13208 SDValue ExtraLoad = 13209 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 13210 DAG.getVTList(PermTy, MVT::Other), 13211 ExtraLoadOps, LDTy, ExtraMMO); 13212 13213 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 13214 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 13215 13216 // Because vperm has a big-endian bias, we must reverse the order 13217 // of the input vectors and complement the permute control vector 13218 // when generating little endian code. We have already handled the 13219 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 13220 // and ExtraLoad here. 13221 SDValue Perm; 13222 if (isLittleEndian) 13223 Perm = BuildIntrinsicOp(IntrPerm, 13224 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 13225 else 13226 Perm = BuildIntrinsicOp(IntrPerm, 13227 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 13228 13229 if (VT != PermTy) 13230 Perm = Subtarget.hasAltivec() ? 13231 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 13232 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 13233 DAG.getTargetConstant(1, dl, MVT::i64)); 13234 // second argument is 1 because this rounding 13235 // is always exact. 13236 13237 // The output of the permutation is our loaded result, the TokenFactor is 13238 // our new chain. 13239 DCI.CombineTo(N, Perm, TF); 13240 return SDValue(N, 0); 13241 } 13242 } 13243 break; 13244 case ISD::INTRINSIC_WO_CHAIN: { 13245 bool isLittleEndian = Subtarget.isLittleEndian(); 13246 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 13247 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 13248 : Intrinsic::ppc_altivec_lvsl); 13249 if ((IID == Intr || 13250 IID == Intrinsic::ppc_qpx_qvlpcld || 13251 IID == Intrinsic::ppc_qpx_qvlpcls) && 13252 N->getOperand(1)->getOpcode() == ISD::ADD) { 13253 SDValue Add = N->getOperand(1); 13254 13255 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 13256 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 13257 13258 if (DAG.MaskedValueIsZero(Add->getOperand(1), 13259 APInt::getAllOnesValue(Bits /* alignment */) 13260 .zext(Add.getScalarValueSizeInBits()))) { 13261 SDNode *BasePtr = Add->getOperand(0).getNode(); 13262 for (SDNode::use_iterator UI = BasePtr->use_begin(), 13263 UE = BasePtr->use_end(); 13264 UI != UE; ++UI) { 13265 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13266 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 13267 // We've found another LVSL/LVSR, and this address is an aligned 13268 // multiple of that one. The results will be the same, so use the 13269 // one we've just found instead. 13270 13271 return SDValue(*UI, 0); 13272 } 13273 } 13274 } 13275 13276 if (isa<ConstantSDNode>(Add->getOperand(1))) { 13277 SDNode *BasePtr = Add->getOperand(0).getNode(); 13278 for (SDNode::use_iterator UI = BasePtr->use_begin(), 13279 UE = BasePtr->use_end(); UI != UE; ++UI) { 13280 if (UI->getOpcode() == ISD::ADD && 13281 isa<ConstantSDNode>(UI->getOperand(1)) && 13282 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 13283 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 13284 (1ULL << Bits) == 0) { 13285 SDNode *OtherAdd = *UI; 13286 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 13287 VE = OtherAdd->use_end(); VI != VE; ++VI) { 13288 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13289 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 13290 return SDValue(*VI, 0); 13291 } 13292 } 13293 } 13294 } 13295 } 13296 } 13297 13298 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 13299 // Expose the vabsduw/h/b opportunity for down stream 13300 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 13301 (IID == Intrinsic::ppc_altivec_vmaxsw || 13302 IID == Intrinsic::ppc_altivec_vmaxsh || 13303 IID == Intrinsic::ppc_altivec_vmaxsb)) { 13304 SDValue V1 = N->getOperand(1); 13305 SDValue V2 = N->getOperand(2); 13306 if ((V1.getSimpleValueType() == MVT::v4i32 || 13307 V1.getSimpleValueType() == MVT::v8i16 || 13308 V1.getSimpleValueType() == MVT::v16i8) && 13309 V1.getSimpleValueType() == V2.getSimpleValueType()) { 13310 // (0-a, a) 13311 if (V1.getOpcode() == ISD::SUB && 13312 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 13313 V1.getOperand(1) == V2) { 13314 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 13315 } 13316 // (a, 0-a) 13317 if (V2.getOpcode() == ISD::SUB && 13318 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 13319 V2.getOperand(1) == V1) { 13320 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 13321 } 13322 // (x-y, y-x) 13323 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 13324 V1.getOperand(0) == V2.getOperand(1) && 13325 V1.getOperand(1) == V2.getOperand(0)) { 13326 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 13327 } 13328 } 13329 } 13330 } 13331 13332 break; 13333 case ISD::INTRINSIC_W_CHAIN: 13334 // For little endian, VSX loads require generating lxvd2x/xxswapd. 13335 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 13336 if (Subtarget.needsSwapsForVSXMemOps()) { 13337 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13338 default: 13339 break; 13340 case Intrinsic::ppc_vsx_lxvw4x: 13341 case Intrinsic::ppc_vsx_lxvd2x: 13342 return expandVSXLoadForLE(N, DCI); 13343 } 13344 } 13345 break; 13346 case ISD::INTRINSIC_VOID: 13347 // For little endian, VSX stores require generating xxswapd/stxvd2x. 13348 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 13349 if (Subtarget.needsSwapsForVSXMemOps()) { 13350 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13351 default: 13352 break; 13353 case Intrinsic::ppc_vsx_stxvw4x: 13354 case Intrinsic::ppc_vsx_stxvd2x: 13355 return expandVSXStoreForLE(N, DCI); 13356 } 13357 } 13358 break; 13359 case ISD::BSWAP: 13360 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 13361 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 13362 N->getOperand(0).hasOneUse() && 13363 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 13364 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 13365 N->getValueType(0) == MVT::i64))) { 13366 SDValue Load = N->getOperand(0); 13367 LoadSDNode *LD = cast<LoadSDNode>(Load); 13368 // Create the byte-swapping load. 13369 SDValue Ops[] = { 13370 LD->getChain(), // Chain 13371 LD->getBasePtr(), // Ptr 13372 DAG.getValueType(N->getValueType(0)) // VT 13373 }; 13374 SDValue BSLoad = 13375 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 13376 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 13377 MVT::i64 : MVT::i32, MVT::Other), 13378 Ops, LD->getMemoryVT(), LD->getMemOperand()); 13379 13380 // If this is an i16 load, insert the truncate. 13381 SDValue ResVal = BSLoad; 13382 if (N->getValueType(0) == MVT::i16) 13383 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 13384 13385 // First, combine the bswap away. This makes the value produced by the 13386 // load dead. 13387 DCI.CombineTo(N, ResVal); 13388 13389 // Next, combine the load away, we give it a bogus result value but a real 13390 // chain result. The result value is dead because the bswap is dead. 13391 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 13392 13393 // Return N so it doesn't get rechecked! 13394 return SDValue(N, 0); 13395 } 13396 break; 13397 case PPCISD::VCMP: 13398 // If a VCMPo node already exists with exactly the same operands as this 13399 // node, use its result instead of this node (VCMPo computes both a CR6 and 13400 // a normal output). 13401 // 13402 if (!N->getOperand(0).hasOneUse() && 13403 !N->getOperand(1).hasOneUse() && 13404 !N->getOperand(2).hasOneUse()) { 13405 13406 // Scan all of the users of the LHS, looking for VCMPo's that match. 13407 SDNode *VCMPoNode = nullptr; 13408 13409 SDNode *LHSN = N->getOperand(0).getNode(); 13410 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 13411 UI != E; ++UI) 13412 if (UI->getOpcode() == PPCISD::VCMPo && 13413 UI->getOperand(1) == N->getOperand(1) && 13414 UI->getOperand(2) == N->getOperand(2) && 13415 UI->getOperand(0) == N->getOperand(0)) { 13416 VCMPoNode = *UI; 13417 break; 13418 } 13419 13420 // If there is no VCMPo node, or if the flag value has a single use, don't 13421 // transform this. 13422 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 13423 break; 13424 13425 // Look at the (necessarily single) use of the flag value. If it has a 13426 // chain, this transformation is more complex. Note that multiple things 13427 // could use the value result, which we should ignore. 13428 SDNode *FlagUser = nullptr; 13429 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 13430 FlagUser == nullptr; ++UI) { 13431 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 13432 SDNode *User = *UI; 13433 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 13434 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 13435 FlagUser = User; 13436 break; 13437 } 13438 } 13439 } 13440 13441 // If the user is a MFOCRF instruction, we know this is safe. 13442 // Otherwise we give up for right now. 13443 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 13444 return SDValue(VCMPoNode, 0); 13445 } 13446 break; 13447 case ISD::BRCOND: { 13448 SDValue Cond = N->getOperand(1); 13449 SDValue Target = N->getOperand(2); 13450 13451 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 13452 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 13453 Intrinsic::ppc_is_decremented_ctr_nonzero) { 13454 13455 // We now need to make the intrinsic dead (it cannot be instruction 13456 // selected). 13457 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 13458 assert(Cond.getNode()->hasOneUse() && 13459 "Counter decrement has more than one use"); 13460 13461 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 13462 N->getOperand(0), Target); 13463 } 13464 } 13465 break; 13466 case ISD::BR_CC: { 13467 // If this is a branch on an altivec predicate comparison, lower this so 13468 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 13469 // lowering is done pre-legalize, because the legalizer lowers the predicate 13470 // compare down to code that is difficult to reassemble. 13471 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 13472 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 13473 13474 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 13475 // value. If so, pass-through the AND to get to the intrinsic. 13476 if (LHS.getOpcode() == ISD::AND && 13477 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 13478 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 13479 Intrinsic::ppc_is_decremented_ctr_nonzero && 13480 isa<ConstantSDNode>(LHS.getOperand(1)) && 13481 !isNullConstant(LHS.getOperand(1))) 13482 LHS = LHS.getOperand(0); 13483 13484 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 13485 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 13486 Intrinsic::ppc_is_decremented_ctr_nonzero && 13487 isa<ConstantSDNode>(RHS)) { 13488 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 13489 "Counter decrement comparison is not EQ or NE"); 13490 13491 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 13492 bool isBDNZ = (CC == ISD::SETEQ && Val) || 13493 (CC == ISD::SETNE && !Val); 13494 13495 // We now need to make the intrinsic dead (it cannot be instruction 13496 // selected). 13497 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 13498 assert(LHS.getNode()->hasOneUse() && 13499 "Counter decrement has more than one use"); 13500 13501 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 13502 N->getOperand(0), N->getOperand(4)); 13503 } 13504 13505 int CompareOpc; 13506 bool isDot; 13507 13508 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13509 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 13510 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 13511 assert(isDot && "Can't compare against a vector result!"); 13512 13513 // If this is a comparison against something other than 0/1, then we know 13514 // that the condition is never/always true. 13515 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 13516 if (Val != 0 && Val != 1) { 13517 if (CC == ISD::SETEQ) // Cond never true, remove branch. 13518 return N->getOperand(0); 13519 // Always !=, turn it into an unconditional branch. 13520 return DAG.getNode(ISD::BR, dl, MVT::Other, 13521 N->getOperand(0), N->getOperand(4)); 13522 } 13523 13524 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 13525 13526 // Create the PPCISD altivec 'dot' comparison node. 13527 SDValue Ops[] = { 13528 LHS.getOperand(2), // LHS of compare 13529 LHS.getOperand(3), // RHS of compare 13530 DAG.getConstant(CompareOpc, dl, MVT::i32) 13531 }; 13532 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 13533 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 13534 13535 // Unpack the result based on how the target uses it. 13536 PPC::Predicate CompOpc; 13537 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 13538 default: // Can't happen, don't crash on invalid number though. 13539 case 0: // Branch on the value of the EQ bit of CR6. 13540 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 13541 break; 13542 case 1: // Branch on the inverted value of the EQ bit of CR6. 13543 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 13544 break; 13545 case 2: // Branch on the value of the LT bit of CR6. 13546 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 13547 break; 13548 case 3: // Branch on the inverted value of the LT bit of CR6. 13549 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 13550 break; 13551 } 13552 13553 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 13554 DAG.getConstant(CompOpc, dl, MVT::i32), 13555 DAG.getRegister(PPC::CR6, MVT::i32), 13556 N->getOperand(4), CompNode.getValue(1)); 13557 } 13558 break; 13559 } 13560 case ISD::BUILD_VECTOR: 13561 return DAGCombineBuildVector(N, DCI); 13562 case ISD::ABS: 13563 return combineABS(N, DCI); 13564 case ISD::VSELECT: 13565 return combineVSelect(N, DCI); 13566 } 13567 13568 return SDValue(); 13569 } 13570 13571 SDValue 13572 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 13573 SelectionDAG &DAG, 13574 SmallVectorImpl<SDNode *> &Created) const { 13575 // fold (sdiv X, pow2) 13576 EVT VT = N->getValueType(0); 13577 if (VT == MVT::i64 && !Subtarget.isPPC64()) 13578 return SDValue(); 13579 if ((VT != MVT::i32 && VT != MVT::i64) || 13580 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 13581 return SDValue(); 13582 13583 SDLoc DL(N); 13584 SDValue N0 = N->getOperand(0); 13585 13586 bool IsNegPow2 = (-Divisor).isPowerOf2(); 13587 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 13588 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 13589 13590 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 13591 Created.push_back(Op.getNode()); 13592 13593 if (IsNegPow2) { 13594 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 13595 Created.push_back(Op.getNode()); 13596 } 13597 13598 return Op; 13599 } 13600 13601 //===----------------------------------------------------------------------===// 13602 // Inline Assembly Support 13603 //===----------------------------------------------------------------------===// 13604 13605 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 13606 KnownBits &Known, 13607 const APInt &DemandedElts, 13608 const SelectionDAG &DAG, 13609 unsigned Depth) const { 13610 Known.resetAll(); 13611 switch (Op.getOpcode()) { 13612 default: break; 13613 case PPCISD::LBRX: { 13614 // lhbrx is known to have the top bits cleared out. 13615 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 13616 Known.Zero = 0xFFFF0000; 13617 break; 13618 } 13619 case ISD::INTRINSIC_WO_CHAIN: { 13620 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 13621 default: break; 13622 case Intrinsic::ppc_altivec_vcmpbfp_p: 13623 case Intrinsic::ppc_altivec_vcmpeqfp_p: 13624 case Intrinsic::ppc_altivec_vcmpequb_p: 13625 case Intrinsic::ppc_altivec_vcmpequh_p: 13626 case Intrinsic::ppc_altivec_vcmpequw_p: 13627 case Intrinsic::ppc_altivec_vcmpequd_p: 13628 case Intrinsic::ppc_altivec_vcmpgefp_p: 13629 case Intrinsic::ppc_altivec_vcmpgtfp_p: 13630 case Intrinsic::ppc_altivec_vcmpgtsb_p: 13631 case Intrinsic::ppc_altivec_vcmpgtsh_p: 13632 case Intrinsic::ppc_altivec_vcmpgtsw_p: 13633 case Intrinsic::ppc_altivec_vcmpgtsd_p: 13634 case Intrinsic::ppc_altivec_vcmpgtub_p: 13635 case Intrinsic::ppc_altivec_vcmpgtuh_p: 13636 case Intrinsic::ppc_altivec_vcmpgtuw_p: 13637 case Intrinsic::ppc_altivec_vcmpgtud_p: 13638 Known.Zero = ~1U; // All bits but the low one are known to be zero. 13639 break; 13640 } 13641 } 13642 } 13643 } 13644 13645 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 13646 switch (Subtarget.getDarwinDirective()) { 13647 default: break; 13648 case PPC::DIR_970: 13649 case PPC::DIR_PWR4: 13650 case PPC::DIR_PWR5: 13651 case PPC::DIR_PWR5X: 13652 case PPC::DIR_PWR6: 13653 case PPC::DIR_PWR6X: 13654 case PPC::DIR_PWR7: 13655 case PPC::DIR_PWR8: 13656 case PPC::DIR_PWR9: { 13657 if (!ML) 13658 break; 13659 13660 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 13661 13662 // For small loops (between 5 and 8 instructions), align to a 32-byte 13663 // boundary so that the entire loop fits in one instruction-cache line. 13664 uint64_t LoopSize = 0; 13665 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 13666 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 13667 LoopSize += TII->getInstSizeInBytes(*J); 13668 if (LoopSize > 32) 13669 break; 13670 } 13671 13672 if (LoopSize > 16 && LoopSize <= 32) 13673 return 5; 13674 13675 break; 13676 } 13677 } 13678 13679 return TargetLowering::getPrefLoopAlignment(ML); 13680 } 13681 13682 /// getConstraintType - Given a constraint, return the type of 13683 /// constraint it is for this target. 13684 PPCTargetLowering::ConstraintType 13685 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 13686 if (Constraint.size() == 1) { 13687 switch (Constraint[0]) { 13688 default: break; 13689 case 'b': 13690 case 'r': 13691 case 'f': 13692 case 'd': 13693 case 'v': 13694 case 'y': 13695 return C_RegisterClass; 13696 case 'Z': 13697 // FIXME: While Z does indicate a memory constraint, it specifically 13698 // indicates an r+r address (used in conjunction with the 'y' modifier 13699 // in the replacement string). Currently, we're forcing the base 13700 // register to be r0 in the asm printer (which is interpreted as zero) 13701 // and forming the complete address in the second register. This is 13702 // suboptimal. 13703 return C_Memory; 13704 } 13705 } else if (Constraint == "wc") { // individual CR bits. 13706 return C_RegisterClass; 13707 } else if (Constraint == "wa" || Constraint == "wd" || 13708 Constraint == "wf" || Constraint == "ws" || 13709 Constraint == "wi") { 13710 return C_RegisterClass; // VSX registers. 13711 } 13712 return TargetLowering::getConstraintType(Constraint); 13713 } 13714 13715 /// Examine constraint type and operand type and determine a weight value. 13716 /// This object must already have been set up with the operand type 13717 /// and the current alternative constraint selected. 13718 TargetLowering::ConstraintWeight 13719 PPCTargetLowering::getSingleConstraintMatchWeight( 13720 AsmOperandInfo &info, const char *constraint) const { 13721 ConstraintWeight weight = CW_Invalid; 13722 Value *CallOperandVal = info.CallOperandVal; 13723 // If we don't have a value, we can't do a match, 13724 // but allow it at the lowest weight. 13725 if (!CallOperandVal) 13726 return CW_Default; 13727 Type *type = CallOperandVal->getType(); 13728 13729 // Look at the constraint type. 13730 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 13731 return CW_Register; // an individual CR bit. 13732 else if ((StringRef(constraint) == "wa" || 13733 StringRef(constraint) == "wd" || 13734 StringRef(constraint) == "wf") && 13735 type->isVectorTy()) 13736 return CW_Register; 13737 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 13738 return CW_Register; 13739 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 13740 return CW_Register; // just hold 64-bit integers data. 13741 13742 switch (*constraint) { 13743 default: 13744 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 13745 break; 13746 case 'b': 13747 if (type->isIntegerTy()) 13748 weight = CW_Register; 13749 break; 13750 case 'f': 13751 if (type->isFloatTy()) 13752 weight = CW_Register; 13753 break; 13754 case 'd': 13755 if (type->isDoubleTy()) 13756 weight = CW_Register; 13757 break; 13758 case 'v': 13759 if (type->isVectorTy()) 13760 weight = CW_Register; 13761 break; 13762 case 'y': 13763 weight = CW_Register; 13764 break; 13765 case 'Z': 13766 weight = CW_Memory; 13767 break; 13768 } 13769 return weight; 13770 } 13771 13772 std::pair<unsigned, const TargetRegisterClass *> 13773 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 13774 StringRef Constraint, 13775 MVT VT) const { 13776 if (Constraint.size() == 1) { 13777 // GCC RS6000 Constraint Letters 13778 switch (Constraint[0]) { 13779 case 'b': // R1-R31 13780 if (VT == MVT::i64 && Subtarget.isPPC64()) 13781 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 13782 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 13783 case 'r': // R0-R31 13784 if (VT == MVT::i64 && Subtarget.isPPC64()) 13785 return std::make_pair(0U, &PPC::G8RCRegClass); 13786 return std::make_pair(0U, &PPC::GPRCRegClass); 13787 // 'd' and 'f' constraints are both defined to be "the floating point 13788 // registers", where one is for 32-bit and the other for 64-bit. We don't 13789 // really care overly much here so just give them all the same reg classes. 13790 case 'd': 13791 case 'f': 13792 if (Subtarget.hasSPE()) { 13793 if (VT == MVT::f32 || VT == MVT::i32) 13794 return std::make_pair(0U, &PPC::SPE4RCRegClass); 13795 if (VT == MVT::f64 || VT == MVT::i64) 13796 return std::make_pair(0U, &PPC::SPERCRegClass); 13797 } else { 13798 if (VT == MVT::f32 || VT == MVT::i32) 13799 return std::make_pair(0U, &PPC::F4RCRegClass); 13800 if (VT == MVT::f64 || VT == MVT::i64) 13801 return std::make_pair(0U, &PPC::F8RCRegClass); 13802 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 13803 return std::make_pair(0U, &PPC::QFRCRegClass); 13804 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 13805 return std::make_pair(0U, &PPC::QSRCRegClass); 13806 } 13807 break; 13808 case 'v': 13809 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 13810 return std::make_pair(0U, &PPC::QFRCRegClass); 13811 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 13812 return std::make_pair(0U, &PPC::QSRCRegClass); 13813 if (Subtarget.hasAltivec()) 13814 return std::make_pair(0U, &PPC::VRRCRegClass); 13815 break; 13816 case 'y': // crrc 13817 return std::make_pair(0U, &PPC::CRRCRegClass); 13818 } 13819 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 13820 // An individual CR bit. 13821 return std::make_pair(0U, &PPC::CRBITRCRegClass); 13822 } else if ((Constraint == "wa" || Constraint == "wd" || 13823 Constraint == "wf" || Constraint == "wi") && 13824 Subtarget.hasVSX()) { 13825 return std::make_pair(0U, &PPC::VSRCRegClass); 13826 } else if (Constraint == "ws" && Subtarget.hasVSX()) { 13827 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 13828 return std::make_pair(0U, &PPC::VSSRCRegClass); 13829 else 13830 return std::make_pair(0U, &PPC::VSFRCRegClass); 13831 } 13832 13833 std::pair<unsigned, const TargetRegisterClass *> R = 13834 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 13835 13836 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 13837 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 13838 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 13839 // register. 13840 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 13841 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 13842 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 13843 PPC::GPRCRegClass.contains(R.first)) 13844 return std::make_pair(TRI->getMatchingSuperReg(R.first, 13845 PPC::sub_32, &PPC::G8RCRegClass), 13846 &PPC::G8RCRegClass); 13847 13848 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 13849 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 13850 R.first = PPC::CR0; 13851 R.second = &PPC::CRRCRegClass; 13852 } 13853 13854 return R; 13855 } 13856 13857 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 13858 /// vector. If it is invalid, don't add anything to Ops. 13859 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 13860 std::string &Constraint, 13861 std::vector<SDValue>&Ops, 13862 SelectionDAG &DAG) const { 13863 SDValue Result; 13864 13865 // Only support length 1 constraints. 13866 if (Constraint.length() > 1) return; 13867 13868 char Letter = Constraint[0]; 13869 switch (Letter) { 13870 default: break; 13871 case 'I': 13872 case 'J': 13873 case 'K': 13874 case 'L': 13875 case 'M': 13876 case 'N': 13877 case 'O': 13878 case 'P': { 13879 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 13880 if (!CST) return; // Must be an immediate to match. 13881 SDLoc dl(Op); 13882 int64_t Value = CST->getSExtValue(); 13883 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 13884 // numbers are printed as such. 13885 switch (Letter) { 13886 default: llvm_unreachable("Unknown constraint letter!"); 13887 case 'I': // "I" is a signed 16-bit constant. 13888 if (isInt<16>(Value)) 13889 Result = DAG.getTargetConstant(Value, dl, TCVT); 13890 break; 13891 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 13892 if (isShiftedUInt<16, 16>(Value)) 13893 Result = DAG.getTargetConstant(Value, dl, TCVT); 13894 break; 13895 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 13896 if (isShiftedInt<16, 16>(Value)) 13897 Result = DAG.getTargetConstant(Value, dl, TCVT); 13898 break; 13899 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 13900 if (isUInt<16>(Value)) 13901 Result = DAG.getTargetConstant(Value, dl, TCVT); 13902 break; 13903 case 'M': // "M" is a constant that is greater than 31. 13904 if (Value > 31) 13905 Result = DAG.getTargetConstant(Value, dl, TCVT); 13906 break; 13907 case 'N': // "N" is a positive constant that is an exact power of two. 13908 if (Value > 0 && isPowerOf2_64(Value)) 13909 Result = DAG.getTargetConstant(Value, dl, TCVT); 13910 break; 13911 case 'O': // "O" is the constant zero. 13912 if (Value == 0) 13913 Result = DAG.getTargetConstant(Value, dl, TCVT); 13914 break; 13915 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 13916 if (isInt<16>(-Value)) 13917 Result = DAG.getTargetConstant(Value, dl, TCVT); 13918 break; 13919 } 13920 break; 13921 } 13922 } 13923 13924 if (Result.getNode()) { 13925 Ops.push_back(Result); 13926 return; 13927 } 13928 13929 // Handle standard constraint letters. 13930 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 13931 } 13932 13933 // isLegalAddressingMode - Return true if the addressing mode represented 13934 // by AM is legal for this target, for a load/store of the specified type. 13935 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 13936 const AddrMode &AM, Type *Ty, 13937 unsigned AS, Instruction *I) const { 13938 // PPC does not allow r+i addressing modes for vectors! 13939 if (Ty->isVectorTy() && AM.BaseOffs != 0) 13940 return false; 13941 13942 // PPC allows a sign-extended 16-bit immediate field. 13943 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 13944 return false; 13945 13946 // No global is ever allowed as a base. 13947 if (AM.BaseGV) 13948 return false; 13949 13950 // PPC only support r+r, 13951 switch (AM.Scale) { 13952 case 0: // "r+i" or just "i", depending on HasBaseReg. 13953 break; 13954 case 1: 13955 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 13956 return false; 13957 // Otherwise we have r+r or r+i. 13958 break; 13959 case 2: 13960 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 13961 return false; 13962 // Allow 2*r as r+r. 13963 break; 13964 default: 13965 // No other scales are supported. 13966 return false; 13967 } 13968 13969 return true; 13970 } 13971 13972 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 13973 SelectionDAG &DAG) const { 13974 MachineFunction &MF = DAG.getMachineFunction(); 13975 MachineFrameInfo &MFI = MF.getFrameInfo(); 13976 MFI.setReturnAddressIsTaken(true); 13977 13978 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 13979 return SDValue(); 13980 13981 SDLoc dl(Op); 13982 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 13983 13984 // Make sure the function does not optimize away the store of the RA to 13985 // the stack. 13986 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 13987 FuncInfo->setLRStoreRequired(); 13988 bool isPPC64 = Subtarget.isPPC64(); 13989 auto PtrVT = getPointerTy(MF.getDataLayout()); 13990 13991 if (Depth > 0) { 13992 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 13993 SDValue Offset = 13994 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 13995 isPPC64 ? MVT::i64 : MVT::i32); 13996 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 13997 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 13998 MachinePointerInfo()); 13999 } 14000 14001 // Just load the return address off the stack. 14002 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 14003 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 14004 MachinePointerInfo()); 14005 } 14006 14007 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 14008 SelectionDAG &DAG) const { 14009 SDLoc dl(Op); 14010 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 14011 14012 MachineFunction &MF = DAG.getMachineFunction(); 14013 MachineFrameInfo &MFI = MF.getFrameInfo(); 14014 MFI.setFrameAddressIsTaken(true); 14015 14016 EVT PtrVT = getPointerTy(MF.getDataLayout()); 14017 bool isPPC64 = PtrVT == MVT::i64; 14018 14019 // Naked functions never have a frame pointer, and so we use r1. For all 14020 // other functions, this decision must be delayed until during PEI. 14021 unsigned FrameReg; 14022 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 14023 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 14024 else 14025 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 14026 14027 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 14028 PtrVT); 14029 while (Depth--) 14030 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 14031 FrameAddr, MachinePointerInfo()); 14032 return FrameAddr; 14033 } 14034 14035 // FIXME? Maybe this could be a TableGen attribute on some registers and 14036 // this table could be generated automatically from RegInfo. 14037 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 14038 SelectionDAG &DAG) const { 14039 bool isPPC64 = Subtarget.isPPC64(); 14040 bool isDarwinABI = Subtarget.isDarwinABI(); 14041 14042 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 14043 (!isPPC64 && VT != MVT::i32)) 14044 report_fatal_error("Invalid register global variable type"); 14045 14046 bool is64Bit = isPPC64 && VT == MVT::i64; 14047 unsigned Reg = StringSwitch<unsigned>(RegName) 14048 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 14049 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 14050 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 14051 (is64Bit ? PPC::X13 : PPC::R13)) 14052 .Default(0); 14053 14054 if (Reg) 14055 return Reg; 14056 report_fatal_error("Invalid register name global variable"); 14057 } 14058 14059 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 14060 // 32-bit SVR4 ABI access everything as got-indirect. 14061 if (Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 14062 return true; 14063 14064 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 14065 // If it is small or large code model, module locals are accessed 14066 // indirectly by loading their address from .toc/.got. The difference 14067 // is that for large code model we have ADDISTocHa + LDtocL and for 14068 // small code model we simply have LDtoc. 14069 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 14070 return true; 14071 14072 // JumpTable and BlockAddress are accessed as got-indirect. 14073 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 14074 return true; 14075 14076 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) { 14077 const GlobalValue *GV = G->getGlobal(); 14078 unsigned char GVFlags = Subtarget.classifyGlobalReference(GV); 14079 // The NLP flag indicates that a global access has to use an 14080 // extra indirection. 14081 if (GVFlags & PPCII::MO_NLP_FLAG) 14082 return true; 14083 } 14084 14085 return false; 14086 } 14087 14088 bool 14089 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 14090 // The PowerPC target isn't yet aware of offsets. 14091 return false; 14092 } 14093 14094 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 14095 const CallInst &I, 14096 MachineFunction &MF, 14097 unsigned Intrinsic) const { 14098 switch (Intrinsic) { 14099 case Intrinsic::ppc_qpx_qvlfd: 14100 case Intrinsic::ppc_qpx_qvlfs: 14101 case Intrinsic::ppc_qpx_qvlfcd: 14102 case Intrinsic::ppc_qpx_qvlfcs: 14103 case Intrinsic::ppc_qpx_qvlfiwa: 14104 case Intrinsic::ppc_qpx_qvlfiwz: 14105 case Intrinsic::ppc_altivec_lvx: 14106 case Intrinsic::ppc_altivec_lvxl: 14107 case Intrinsic::ppc_altivec_lvebx: 14108 case Intrinsic::ppc_altivec_lvehx: 14109 case Intrinsic::ppc_altivec_lvewx: 14110 case Intrinsic::ppc_vsx_lxvd2x: 14111 case Intrinsic::ppc_vsx_lxvw4x: { 14112 EVT VT; 14113 switch (Intrinsic) { 14114 case Intrinsic::ppc_altivec_lvebx: 14115 VT = MVT::i8; 14116 break; 14117 case Intrinsic::ppc_altivec_lvehx: 14118 VT = MVT::i16; 14119 break; 14120 case Intrinsic::ppc_altivec_lvewx: 14121 VT = MVT::i32; 14122 break; 14123 case Intrinsic::ppc_vsx_lxvd2x: 14124 VT = MVT::v2f64; 14125 break; 14126 case Intrinsic::ppc_qpx_qvlfd: 14127 VT = MVT::v4f64; 14128 break; 14129 case Intrinsic::ppc_qpx_qvlfs: 14130 VT = MVT::v4f32; 14131 break; 14132 case Intrinsic::ppc_qpx_qvlfcd: 14133 VT = MVT::v2f64; 14134 break; 14135 case Intrinsic::ppc_qpx_qvlfcs: 14136 VT = MVT::v2f32; 14137 break; 14138 default: 14139 VT = MVT::v4i32; 14140 break; 14141 } 14142 14143 Info.opc = ISD::INTRINSIC_W_CHAIN; 14144 Info.memVT = VT; 14145 Info.ptrVal = I.getArgOperand(0); 14146 Info.offset = -VT.getStoreSize()+1; 14147 Info.size = 2*VT.getStoreSize()-1; 14148 Info.align = 1; 14149 Info.flags = MachineMemOperand::MOLoad; 14150 return true; 14151 } 14152 case Intrinsic::ppc_qpx_qvlfda: 14153 case Intrinsic::ppc_qpx_qvlfsa: 14154 case Intrinsic::ppc_qpx_qvlfcda: 14155 case Intrinsic::ppc_qpx_qvlfcsa: 14156 case Intrinsic::ppc_qpx_qvlfiwaa: 14157 case Intrinsic::ppc_qpx_qvlfiwza: { 14158 EVT VT; 14159 switch (Intrinsic) { 14160 case Intrinsic::ppc_qpx_qvlfda: 14161 VT = MVT::v4f64; 14162 break; 14163 case Intrinsic::ppc_qpx_qvlfsa: 14164 VT = MVT::v4f32; 14165 break; 14166 case Intrinsic::ppc_qpx_qvlfcda: 14167 VT = MVT::v2f64; 14168 break; 14169 case Intrinsic::ppc_qpx_qvlfcsa: 14170 VT = MVT::v2f32; 14171 break; 14172 default: 14173 VT = MVT::v4i32; 14174 break; 14175 } 14176 14177 Info.opc = ISD::INTRINSIC_W_CHAIN; 14178 Info.memVT = VT; 14179 Info.ptrVal = I.getArgOperand(0); 14180 Info.offset = 0; 14181 Info.size = VT.getStoreSize(); 14182 Info.align = 1; 14183 Info.flags = MachineMemOperand::MOLoad; 14184 return true; 14185 } 14186 case Intrinsic::ppc_qpx_qvstfd: 14187 case Intrinsic::ppc_qpx_qvstfs: 14188 case Intrinsic::ppc_qpx_qvstfcd: 14189 case Intrinsic::ppc_qpx_qvstfcs: 14190 case Intrinsic::ppc_qpx_qvstfiw: 14191 case Intrinsic::ppc_altivec_stvx: 14192 case Intrinsic::ppc_altivec_stvxl: 14193 case Intrinsic::ppc_altivec_stvebx: 14194 case Intrinsic::ppc_altivec_stvehx: 14195 case Intrinsic::ppc_altivec_stvewx: 14196 case Intrinsic::ppc_vsx_stxvd2x: 14197 case Intrinsic::ppc_vsx_stxvw4x: { 14198 EVT VT; 14199 switch (Intrinsic) { 14200 case Intrinsic::ppc_altivec_stvebx: 14201 VT = MVT::i8; 14202 break; 14203 case Intrinsic::ppc_altivec_stvehx: 14204 VT = MVT::i16; 14205 break; 14206 case Intrinsic::ppc_altivec_stvewx: 14207 VT = MVT::i32; 14208 break; 14209 case Intrinsic::ppc_vsx_stxvd2x: 14210 VT = MVT::v2f64; 14211 break; 14212 case Intrinsic::ppc_qpx_qvstfd: 14213 VT = MVT::v4f64; 14214 break; 14215 case Intrinsic::ppc_qpx_qvstfs: 14216 VT = MVT::v4f32; 14217 break; 14218 case Intrinsic::ppc_qpx_qvstfcd: 14219 VT = MVT::v2f64; 14220 break; 14221 case Intrinsic::ppc_qpx_qvstfcs: 14222 VT = MVT::v2f32; 14223 break; 14224 default: 14225 VT = MVT::v4i32; 14226 break; 14227 } 14228 14229 Info.opc = ISD::INTRINSIC_VOID; 14230 Info.memVT = VT; 14231 Info.ptrVal = I.getArgOperand(1); 14232 Info.offset = -VT.getStoreSize()+1; 14233 Info.size = 2*VT.getStoreSize()-1; 14234 Info.align = 1; 14235 Info.flags = MachineMemOperand::MOStore; 14236 return true; 14237 } 14238 case Intrinsic::ppc_qpx_qvstfda: 14239 case Intrinsic::ppc_qpx_qvstfsa: 14240 case Intrinsic::ppc_qpx_qvstfcda: 14241 case Intrinsic::ppc_qpx_qvstfcsa: 14242 case Intrinsic::ppc_qpx_qvstfiwa: { 14243 EVT VT; 14244 switch (Intrinsic) { 14245 case Intrinsic::ppc_qpx_qvstfda: 14246 VT = MVT::v4f64; 14247 break; 14248 case Intrinsic::ppc_qpx_qvstfsa: 14249 VT = MVT::v4f32; 14250 break; 14251 case Intrinsic::ppc_qpx_qvstfcda: 14252 VT = MVT::v2f64; 14253 break; 14254 case Intrinsic::ppc_qpx_qvstfcsa: 14255 VT = MVT::v2f32; 14256 break; 14257 default: 14258 VT = MVT::v4i32; 14259 break; 14260 } 14261 14262 Info.opc = ISD::INTRINSIC_VOID; 14263 Info.memVT = VT; 14264 Info.ptrVal = I.getArgOperand(1); 14265 Info.offset = 0; 14266 Info.size = VT.getStoreSize(); 14267 Info.align = 1; 14268 Info.flags = MachineMemOperand::MOStore; 14269 return true; 14270 } 14271 default: 14272 break; 14273 } 14274 14275 return false; 14276 } 14277 14278 /// getOptimalMemOpType - Returns the target specific optimal type for load 14279 /// and store operations as a result of memset, memcpy, and memmove 14280 /// lowering. If DstAlign is zero that means it's safe to destination 14281 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 14282 /// means there isn't a need to check it against alignment requirement, 14283 /// probably because the source does not need to be loaded. If 'IsMemset' is 14284 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 14285 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 14286 /// source is constant so it does not need to be loaded. 14287 /// It returns EVT::Other if the type should be determined using generic 14288 /// target-independent logic. 14289 EVT PPCTargetLowering::getOptimalMemOpType( 14290 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, 14291 bool ZeroMemset, bool MemcpyStrSrc, 14292 const AttributeList &FuncAttributes) const { 14293 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 14294 // When expanding a memset, require at least two QPX instructions to cover 14295 // the cost of loading the value to be stored from the constant pool. 14296 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 14297 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 14298 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) { 14299 return MVT::v4f64; 14300 } 14301 14302 // We should use Altivec/VSX loads and stores when available. For unaligned 14303 // addresses, unaligned VSX loads are only fast starting with the P8. 14304 if (Subtarget.hasAltivec() && Size >= 16 && 14305 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 14306 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 14307 return MVT::v4i32; 14308 } 14309 14310 if (Subtarget.isPPC64()) { 14311 return MVT::i64; 14312 } 14313 14314 return MVT::i32; 14315 } 14316 14317 /// Returns true if it is beneficial to convert a load of a constant 14318 /// to just the constant itself. 14319 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 14320 Type *Ty) const { 14321 assert(Ty->isIntegerTy()); 14322 14323 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 14324 return !(BitSize == 0 || BitSize > 64); 14325 } 14326 14327 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 14328 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 14329 return false; 14330 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 14331 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 14332 return NumBits1 == 64 && NumBits2 == 32; 14333 } 14334 14335 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 14336 if (!VT1.isInteger() || !VT2.isInteger()) 14337 return false; 14338 unsigned NumBits1 = VT1.getSizeInBits(); 14339 unsigned NumBits2 = VT2.getSizeInBits(); 14340 return NumBits1 == 64 && NumBits2 == 32; 14341 } 14342 14343 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 14344 // Generally speaking, zexts are not free, but they are free when they can be 14345 // folded with other operations. 14346 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 14347 EVT MemVT = LD->getMemoryVT(); 14348 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 14349 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 14350 (LD->getExtensionType() == ISD::NON_EXTLOAD || 14351 LD->getExtensionType() == ISD::ZEXTLOAD)) 14352 return true; 14353 } 14354 14355 // FIXME: Add other cases... 14356 // - 32-bit shifts with a zext to i64 14357 // - zext after ctlz, bswap, etc. 14358 // - zext after and by a constant mask 14359 14360 return TargetLowering::isZExtFree(Val, VT2); 14361 } 14362 14363 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 14364 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 14365 "invalid fpext types"); 14366 // Extending to float128 is not free. 14367 if (DestVT == MVT::f128) 14368 return false; 14369 return true; 14370 } 14371 14372 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 14373 return isInt<16>(Imm) || isUInt<16>(Imm); 14374 } 14375 14376 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 14377 return isInt<16>(Imm) || isUInt<16>(Imm); 14378 } 14379 14380 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 14381 unsigned, 14382 unsigned, 14383 bool *Fast) const { 14384 if (DisablePPCUnaligned) 14385 return false; 14386 14387 // PowerPC supports unaligned memory access for simple non-vector types. 14388 // Although accessing unaligned addresses is not as efficient as accessing 14389 // aligned addresses, it is generally more efficient than manual expansion, 14390 // and generally only traps for software emulation when crossing page 14391 // boundaries. 14392 14393 if (!VT.isSimple()) 14394 return false; 14395 14396 if (VT.getSimpleVT().isVector()) { 14397 if (Subtarget.hasVSX()) { 14398 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 14399 VT != MVT::v4f32 && VT != MVT::v4i32) 14400 return false; 14401 } else { 14402 return false; 14403 } 14404 } 14405 14406 if (VT == MVT::ppcf128) 14407 return false; 14408 14409 if (Fast) 14410 *Fast = true; 14411 14412 return true; 14413 } 14414 14415 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 14416 VT = VT.getScalarType(); 14417 14418 if (!VT.isSimple()) 14419 return false; 14420 14421 switch (VT.getSimpleVT().SimpleTy) { 14422 case MVT::f32: 14423 case MVT::f64: 14424 return true; 14425 case MVT::f128: 14426 return (EnableQuadPrecision && Subtarget.hasP9Vector()); 14427 default: 14428 break; 14429 } 14430 14431 return false; 14432 } 14433 14434 const MCPhysReg * 14435 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 14436 // LR is a callee-save register, but we must treat it as clobbered by any call 14437 // site. Hence we include LR in the scratch registers, which are in turn added 14438 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 14439 // to CTR, which is used by any indirect call. 14440 static const MCPhysReg ScratchRegs[] = { 14441 PPC::X12, PPC::LR8, PPC::CTR8, 0 14442 }; 14443 14444 return ScratchRegs; 14445 } 14446 14447 unsigned PPCTargetLowering::getExceptionPointerRegister( 14448 const Constant *PersonalityFn) const { 14449 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 14450 } 14451 14452 unsigned PPCTargetLowering::getExceptionSelectorRegister( 14453 const Constant *PersonalityFn) const { 14454 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 14455 } 14456 14457 bool 14458 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 14459 EVT VT , unsigned DefinedValues) const { 14460 if (VT == MVT::v2i64) 14461 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 14462 14463 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 14464 return true; 14465 14466 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 14467 } 14468 14469 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 14470 if (DisableILPPref || Subtarget.enableMachineScheduler()) 14471 return TargetLowering::getSchedulingPreference(N); 14472 14473 return Sched::ILP; 14474 } 14475 14476 // Create a fast isel object. 14477 FastISel * 14478 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 14479 const TargetLibraryInfo *LibInfo) const { 14480 return PPC::createFastISel(FuncInfo, LibInfo); 14481 } 14482 14483 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 14484 if (Subtarget.isDarwinABI()) return; 14485 if (!Subtarget.isPPC64()) return; 14486 14487 // Update IsSplitCSR in PPCFunctionInfo 14488 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 14489 PFI->setIsSplitCSR(true); 14490 } 14491 14492 void PPCTargetLowering::insertCopiesSplitCSR( 14493 MachineBasicBlock *Entry, 14494 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 14495 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 14496 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 14497 if (!IStart) 14498 return; 14499 14500 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 14501 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 14502 MachineBasicBlock::iterator MBBI = Entry->begin(); 14503 for (const MCPhysReg *I = IStart; *I; ++I) { 14504 const TargetRegisterClass *RC = nullptr; 14505 if (PPC::G8RCRegClass.contains(*I)) 14506 RC = &PPC::G8RCRegClass; 14507 else if (PPC::F8RCRegClass.contains(*I)) 14508 RC = &PPC::F8RCRegClass; 14509 else if (PPC::CRRCRegClass.contains(*I)) 14510 RC = &PPC::CRRCRegClass; 14511 else if (PPC::VRRCRegClass.contains(*I)) 14512 RC = &PPC::VRRCRegClass; 14513 else 14514 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 14515 14516 unsigned NewVR = MRI->createVirtualRegister(RC); 14517 // Create copy from CSR to a virtual register. 14518 // FIXME: this currently does not emit CFI pseudo-instructions, it works 14519 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 14520 // nounwind. If we want to generalize this later, we may need to emit 14521 // CFI pseudo-instructions. 14522 assert(Entry->getParent()->getFunction().hasFnAttribute( 14523 Attribute::NoUnwind) && 14524 "Function should be nounwind in insertCopiesSplitCSR!"); 14525 Entry->addLiveIn(*I); 14526 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 14527 .addReg(*I); 14528 14529 // Insert the copy-back instructions right before the terminator. 14530 for (auto *Exit : Exits) 14531 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 14532 TII->get(TargetOpcode::COPY), *I) 14533 .addReg(NewVR); 14534 } 14535 } 14536 14537 // Override to enable LOAD_STACK_GUARD lowering on Linux. 14538 bool PPCTargetLowering::useLoadStackGuardNode() const { 14539 if (!Subtarget.isTargetLinux()) 14540 return TargetLowering::useLoadStackGuardNode(); 14541 return true; 14542 } 14543 14544 // Override to disable global variable loading on Linux. 14545 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 14546 if (!Subtarget.isTargetLinux()) 14547 return TargetLowering::insertSSPDeclarations(M); 14548 } 14549 14550 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 14551 bool ForCodeSize) const { 14552 if (!VT.isSimple() || !Subtarget.hasVSX()) 14553 return false; 14554 14555 switch(VT.getSimpleVT().SimpleTy) { 14556 default: 14557 // For FP types that are currently not supported by PPC backend, return 14558 // false. Examples: f16, f80. 14559 return false; 14560 case MVT::f32: 14561 case MVT::f64: 14562 case MVT::ppcf128: 14563 return Imm.isPosZero(); 14564 } 14565 } 14566 14567 // For vector shift operation op, fold 14568 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 14569 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 14570 SelectionDAG &DAG) { 14571 SDValue N0 = N->getOperand(0); 14572 SDValue N1 = N->getOperand(1); 14573 EVT VT = N0.getValueType(); 14574 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 14575 unsigned Opcode = N->getOpcode(); 14576 unsigned TargetOpcode; 14577 14578 switch (Opcode) { 14579 default: 14580 llvm_unreachable("Unexpected shift operation"); 14581 case ISD::SHL: 14582 TargetOpcode = PPCISD::SHL; 14583 break; 14584 case ISD::SRL: 14585 TargetOpcode = PPCISD::SRL; 14586 break; 14587 case ISD::SRA: 14588 TargetOpcode = PPCISD::SRA; 14589 break; 14590 } 14591 14592 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 14593 N1->getOpcode() == ISD::AND) 14594 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 14595 if (Mask->getZExtValue() == OpSizeInBits - 1) 14596 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 14597 14598 return SDValue(); 14599 } 14600 14601 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 14602 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 14603 return Value; 14604 14605 SDValue N0 = N->getOperand(0); 14606 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 14607 if (!Subtarget.isISA3_0() || 14608 N0.getOpcode() != ISD::SIGN_EXTEND || 14609 N0.getOperand(0).getValueType() != MVT::i32 || 14610 CN1 == nullptr || N->getValueType(0) != MVT::i64) 14611 return SDValue(); 14612 14613 // We can't save an operation here if the value is already extended, and 14614 // the existing shift is easier to combine. 14615 SDValue ExtsSrc = N0.getOperand(0); 14616 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 14617 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 14618 return SDValue(); 14619 14620 SDLoc DL(N0); 14621 SDValue ShiftBy = SDValue(CN1, 0); 14622 // We want the shift amount to be i32 on the extswli, but the shift could 14623 // have an i64. 14624 if (ShiftBy.getValueType() == MVT::i64) 14625 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 14626 14627 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 14628 ShiftBy); 14629 } 14630 14631 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 14632 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 14633 return Value; 14634 14635 return SDValue(); 14636 } 14637 14638 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 14639 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 14640 return Value; 14641 14642 return SDValue(); 14643 } 14644 14645 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 14646 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 14647 // When C is zero, the equation (addi Z, -C) can be simplified to Z 14648 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 14649 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 14650 const PPCSubtarget &Subtarget) { 14651 if (!Subtarget.isPPC64()) 14652 return SDValue(); 14653 14654 SDValue LHS = N->getOperand(0); 14655 SDValue RHS = N->getOperand(1); 14656 14657 auto isZextOfCompareWithConstant = [](SDValue Op) { 14658 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 14659 Op.getValueType() != MVT::i64) 14660 return false; 14661 14662 SDValue Cmp = Op.getOperand(0); 14663 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 14664 Cmp.getOperand(0).getValueType() != MVT::i64) 14665 return false; 14666 14667 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 14668 int64_t NegConstant = 0 - Constant->getSExtValue(); 14669 // Due to the limitations of the addi instruction, 14670 // -C is required to be [-32768, 32767]. 14671 return isInt<16>(NegConstant); 14672 } 14673 14674 return false; 14675 }; 14676 14677 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 14678 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 14679 14680 // If there is a pattern, canonicalize a zext operand to the RHS. 14681 if (LHSHasPattern && !RHSHasPattern) 14682 std::swap(LHS, RHS); 14683 else if (!LHSHasPattern && !RHSHasPattern) 14684 return SDValue(); 14685 14686 SDLoc DL(N); 14687 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 14688 SDValue Cmp = RHS.getOperand(0); 14689 SDValue Z = Cmp.getOperand(0); 14690 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 14691 14692 assert(Constant && "Constant Should not be a null pointer."); 14693 int64_t NegConstant = 0 - Constant->getSExtValue(); 14694 14695 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 14696 default: break; 14697 case ISD::SETNE: { 14698 // when C == 0 14699 // --> addze X, (addic Z, -1).carry 14700 // / 14701 // add X, (zext(setne Z, C))-- 14702 // \ when -32768 <= -C <= 32767 && C != 0 14703 // --> addze X, (addic (addi Z, -C), -1).carry 14704 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 14705 DAG.getConstant(NegConstant, DL, MVT::i64)); 14706 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 14707 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 14708 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 14709 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 14710 SDValue(Addc.getNode(), 1)); 14711 } 14712 case ISD::SETEQ: { 14713 // when C == 0 14714 // --> addze X, (subfic Z, 0).carry 14715 // / 14716 // add X, (zext(sete Z, C))-- 14717 // \ when -32768 <= -C <= 32767 && C != 0 14718 // --> addze X, (subfic (addi Z, -C), 0).carry 14719 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 14720 DAG.getConstant(NegConstant, DL, MVT::i64)); 14721 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 14722 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 14723 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 14724 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 14725 SDValue(Subc.getNode(), 1)); 14726 } 14727 } 14728 14729 return SDValue(); 14730 } 14731 14732 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 14733 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 14734 return Value; 14735 14736 return SDValue(); 14737 } 14738 14739 // Detect TRUNCATE operations on bitcasts of float128 values. 14740 // What we are looking for here is the situtation where we extract a subset 14741 // of bits from a 128 bit float. 14742 // This can be of two forms: 14743 // 1) BITCAST of f128 feeding TRUNCATE 14744 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 14745 // The reason this is required is because we do not have a legal i128 type 14746 // and so we want to prevent having to store the f128 and then reload part 14747 // of it. 14748 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 14749 DAGCombinerInfo &DCI) const { 14750 // If we are using CRBits then try that first. 14751 if (Subtarget.useCRBits()) { 14752 // Check if CRBits did anything and return that if it did. 14753 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 14754 return CRTruncValue; 14755 } 14756 14757 SDLoc dl(N); 14758 SDValue Op0 = N->getOperand(0); 14759 14760 // Looking for a truncate of i128 to i64. 14761 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 14762 return SDValue(); 14763 14764 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 14765 14766 // SRL feeding TRUNCATE. 14767 if (Op0.getOpcode() == ISD::SRL) { 14768 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 14769 // The right shift has to be by 64 bits. 14770 if (!ConstNode || ConstNode->getZExtValue() != 64) 14771 return SDValue(); 14772 14773 // Switch the element number to extract. 14774 EltToExtract = EltToExtract ? 0 : 1; 14775 // Update Op0 past the SRL. 14776 Op0 = Op0.getOperand(0); 14777 } 14778 14779 // BITCAST feeding a TRUNCATE possibly via SRL. 14780 if (Op0.getOpcode() == ISD::BITCAST && 14781 Op0.getValueType() == MVT::i128 && 14782 Op0.getOperand(0).getValueType() == MVT::f128) { 14783 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 14784 return DCI.DAG.getNode( 14785 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 14786 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 14787 } 14788 return SDValue(); 14789 } 14790 14791 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 14792 SelectionDAG &DAG = DCI.DAG; 14793 14794 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 14795 if (!ConstOpOrElement) 14796 return SDValue(); 14797 14798 // An imul is usually smaller than the alternative sequence for legal type. 14799 if (DAG.getMachineFunction().getFunction().hasMinSize() && 14800 isOperationLegal(ISD::MUL, N->getValueType(0))) 14801 return SDValue(); 14802 14803 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 14804 switch (this->Subtarget.getDarwinDirective()) { 14805 default: 14806 // TODO: enhance the condition for subtarget before pwr8 14807 return false; 14808 case PPC::DIR_PWR8: 14809 // type mul add shl 14810 // scalar 4 1 1 14811 // vector 7 2 2 14812 return true; 14813 case PPC::DIR_PWR9: 14814 // type mul add shl 14815 // scalar 5 2 2 14816 // vector 7 2 2 14817 14818 // The cycle RATIO of related operations are showed as a table above. 14819 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 14820 // scalar and vector type. For 2 instrs patterns, add/sub + shl 14821 // are 4, it is always profitable; but for 3 instrs patterns 14822 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 14823 // So we should only do it for vector type. 14824 return IsAddOne && IsNeg ? VT.isVector() : true; 14825 } 14826 }; 14827 14828 EVT VT = N->getValueType(0); 14829 SDLoc DL(N); 14830 14831 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 14832 bool IsNeg = MulAmt.isNegative(); 14833 APInt MulAmtAbs = MulAmt.abs(); 14834 14835 if ((MulAmtAbs - 1).isPowerOf2()) { 14836 // (mul x, 2^N + 1) => (add (shl x, N), x) 14837 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 14838 14839 if (!IsProfitable(IsNeg, true, VT)) 14840 return SDValue(); 14841 14842 SDValue Op0 = N->getOperand(0); 14843 SDValue Op1 = 14844 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 14845 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 14846 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 14847 14848 if (!IsNeg) 14849 return Res; 14850 14851 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 14852 } else if ((MulAmtAbs + 1).isPowerOf2()) { 14853 // (mul x, 2^N - 1) => (sub (shl x, N), x) 14854 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 14855 14856 if (!IsProfitable(IsNeg, false, VT)) 14857 return SDValue(); 14858 14859 SDValue Op0 = N->getOperand(0); 14860 SDValue Op1 = 14861 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 14862 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 14863 14864 if (!IsNeg) 14865 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 14866 else 14867 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 14868 14869 } else { 14870 return SDValue(); 14871 } 14872 } 14873 14874 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 14875 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 14876 if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64()) 14877 return false; 14878 14879 // If not a tail call then no need to proceed. 14880 if (!CI->isTailCall()) 14881 return false; 14882 14883 // If tail calls are disabled for the caller then we are done. 14884 const Function *Caller = CI->getParent()->getParent(); 14885 auto Attr = Caller->getFnAttribute("disable-tail-calls"); 14886 if (Attr.getValueAsString() == "true") 14887 return false; 14888 14889 // If sibling calls have been disabled and tail-calls aren't guaranteed 14890 // there is no reason to duplicate. 14891 auto &TM = getTargetMachine(); 14892 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 14893 return false; 14894 14895 // Can't tail call a function called indirectly, or if it has variadic args. 14896 const Function *Callee = CI->getCalledFunction(); 14897 if (!Callee || Callee->isVarArg()) 14898 return false; 14899 14900 // Make sure the callee and caller calling conventions are eligible for tco. 14901 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 14902 CI->getCallingConv())) 14903 return false; 14904 14905 // If the function is local then we have a good chance at tail-calling it 14906 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 14907 } 14908 14909 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 14910 if (!Subtarget.hasVSX()) 14911 return false; 14912 if (Subtarget.hasP9Vector() && VT == MVT::f128) 14913 return true; 14914 return VT == MVT::f32 || VT == MVT::f64 || 14915 VT == MVT::v4f32 || VT == MVT::v2f64; 14916 } 14917 14918 bool PPCTargetLowering:: 14919 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 14920 const Value *Mask = AndI.getOperand(1); 14921 // If the mask is suitable for andi. or andis. we should sink the and. 14922 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 14923 // Can't handle constants wider than 64-bits. 14924 if (CI->getBitWidth() > 64) 14925 return false; 14926 int64_t ConstVal = CI->getZExtValue(); 14927 return isUInt<16>(ConstVal) || 14928 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 14929 } 14930 14931 // For non-constant masks, we can always use the record-form and. 14932 return true; 14933 } 14934 14935 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 14936 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 14937 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 14938 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 14939 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 14940 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 14941 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 14942 assert(Subtarget.hasP9Altivec() && 14943 "Only combine this when P9 altivec supported!"); 14944 EVT VT = N->getValueType(0); 14945 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 14946 return SDValue(); 14947 14948 SelectionDAG &DAG = DCI.DAG; 14949 SDLoc dl(N); 14950 if (N->getOperand(0).getOpcode() == ISD::SUB) { 14951 // Even for signed integers, if it's known to be positive (as signed 14952 // integer) due to zero-extended inputs. 14953 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 14954 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 14955 if ((SubOpcd0 == ISD::ZERO_EXTEND || 14956 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 14957 (SubOpcd1 == ISD::ZERO_EXTEND || 14958 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 14959 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 14960 N->getOperand(0)->getOperand(0), 14961 N->getOperand(0)->getOperand(1), 14962 DAG.getTargetConstant(0, dl, MVT::i32)); 14963 } 14964 14965 // For type v4i32, it can be optimized with xvnegsp + vabsduw 14966 if (N->getOperand(0).getValueType() == MVT::v4i32 && 14967 N->getOperand(0).hasOneUse()) { 14968 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 14969 N->getOperand(0)->getOperand(0), 14970 N->getOperand(0)->getOperand(1), 14971 DAG.getTargetConstant(1, dl, MVT::i32)); 14972 } 14973 } 14974 14975 return SDValue(); 14976 } 14977 14978 // For type v4i32/v8ii16/v16i8, transform 14979 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 14980 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 14981 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 14982 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 14983 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 14984 DAGCombinerInfo &DCI) const { 14985 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 14986 assert(Subtarget.hasP9Altivec() && 14987 "Only combine this when P9 altivec supported!"); 14988 14989 SelectionDAG &DAG = DCI.DAG; 14990 SDLoc dl(N); 14991 SDValue Cond = N->getOperand(0); 14992 SDValue TrueOpnd = N->getOperand(1); 14993 SDValue FalseOpnd = N->getOperand(2); 14994 EVT VT = N->getOperand(1).getValueType(); 14995 14996 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 14997 FalseOpnd.getOpcode() != ISD::SUB) 14998 return SDValue(); 14999 15000 // ABSD only available for type v4i32/v8i16/v16i8 15001 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 15002 return SDValue(); 15003 15004 // At least to save one more dependent computation 15005 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 15006 return SDValue(); 15007 15008 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 15009 15010 // Can only handle unsigned comparison here 15011 switch (CC) { 15012 default: 15013 return SDValue(); 15014 case ISD::SETUGT: 15015 case ISD::SETUGE: 15016 break; 15017 case ISD::SETULT: 15018 case ISD::SETULE: 15019 std::swap(TrueOpnd, FalseOpnd); 15020 break; 15021 } 15022 15023 SDValue CmpOpnd1 = Cond.getOperand(0); 15024 SDValue CmpOpnd2 = Cond.getOperand(1); 15025 15026 // SETCC CmpOpnd1 CmpOpnd2 cond 15027 // TrueOpnd = CmpOpnd1 - CmpOpnd2 15028 // FalseOpnd = CmpOpnd2 - CmpOpnd1 15029 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 15030 TrueOpnd.getOperand(1) == CmpOpnd2 && 15031 FalseOpnd.getOperand(0) == CmpOpnd2 && 15032 FalseOpnd.getOperand(1) == CmpOpnd1) { 15033 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 15034 CmpOpnd1, CmpOpnd2, 15035 DAG.getTargetConstant(0, dl, MVT::i32)); 15036 } 15037 15038 return SDValue(); 15039 } 15040