1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSectionXCOFF.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 122 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 123 124 // TODO - Remove this option if soft fp128 has been fully supported . 125 static cl::opt<bool> 126 EnableSoftFP128("enable-soft-fp128", 127 cl::desc("temp option to enable soft fp128"), cl::Hidden); 128 129 STATISTIC(NumTailCalls, "Number of tail calls"); 130 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 133 134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 135 136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 137 138 // FIXME: Remove this once the bug has been fixed! 139 extern cl::opt<bool> ANDIGlueBug; 140 141 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 142 const PPCSubtarget &STI) 143 : TargetLowering(TM), Subtarget(STI) { 144 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 145 // arguments are at least 4/8 bytes aligned. 146 bool isPPC64 = Subtarget.isPPC64(); 147 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 148 149 // Set up the register classes. 150 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 151 if (!useSoftFloat()) { 152 if (hasSPE()) { 153 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 154 // EFPU2 APU only supports f32 155 if (!Subtarget.hasEFPU2()) 156 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 157 } else { 158 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 159 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 160 } 161 } 162 163 // Match BITREVERSE to customized fast code sequence in the td file. 164 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 165 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 166 167 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 168 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 169 170 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 171 for (MVT VT : MVT::integer_valuetypes()) { 172 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 173 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 174 } 175 176 if (Subtarget.isISA3_0()) { 177 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 178 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 179 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 180 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 181 } else { 182 // No extending loads from f16 or HW conversions back and forth. 183 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 184 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 185 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 186 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 187 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 188 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 189 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 190 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 191 } 192 193 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 194 195 // PowerPC has pre-inc load and store's. 196 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 197 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 198 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 199 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 200 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 201 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 202 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 203 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 204 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 205 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 206 if (!Subtarget.hasSPE()) { 207 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 208 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 209 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 210 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 211 } 212 213 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 214 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 215 for (MVT VT : ScalarIntVTs) { 216 setOperationAction(ISD::ADDC, VT, Legal); 217 setOperationAction(ISD::ADDE, VT, Legal); 218 setOperationAction(ISD::SUBC, VT, Legal); 219 setOperationAction(ISD::SUBE, VT, Legal); 220 } 221 222 if (Subtarget.useCRBits()) { 223 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 224 225 if (isPPC64 || Subtarget.hasFPCVT()) { 226 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); 227 AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, 228 isPPC64 ? MVT::i64 : MVT::i32); 229 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); 230 AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, 231 isPPC64 ? MVT::i64 : MVT::i32); 232 233 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 234 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 235 isPPC64 ? MVT::i64 : MVT::i32); 236 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 237 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 238 isPPC64 ? MVT::i64 : MVT::i32); 239 240 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote); 241 AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1, 242 isPPC64 ? MVT::i64 : MVT::i32); 243 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote); 244 AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1, 245 isPPC64 ? MVT::i64 : MVT::i32); 246 247 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); 248 AddPromotedToType(ISD::FP_TO_SINT, MVT::i1, 249 isPPC64 ? MVT::i64 : MVT::i32); 250 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); 251 AddPromotedToType(ISD::FP_TO_UINT, MVT::i1, 252 isPPC64 ? MVT::i64 : MVT::i32); 253 } else { 254 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); 255 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); 256 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 257 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 258 } 259 260 // PowerPC does not support direct load/store of condition registers. 261 setOperationAction(ISD::LOAD, MVT::i1, Custom); 262 setOperationAction(ISD::STORE, MVT::i1, Custom); 263 264 // FIXME: Remove this once the ANDI glue bug is fixed: 265 if (ANDIGlueBug) 266 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 267 268 for (MVT VT : MVT::integer_valuetypes()) { 269 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 270 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 271 setTruncStoreAction(VT, MVT::i1, Expand); 272 } 273 274 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 275 } 276 277 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 278 // PPC (the libcall is not available). 279 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 280 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 281 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); 282 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); 283 284 // We do not currently implement these libm ops for PowerPC. 285 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 286 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 287 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 288 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 289 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 290 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 291 292 // PowerPC has no SREM/UREM instructions unless we are on P9 293 // On P9 we may use a hardware instruction to compute the remainder. 294 // When the result of both the remainder and the division is required it is 295 // more efficient to compute the remainder from the result of the division 296 // rather than use the remainder instruction. The instructions are legalized 297 // directly because the DivRemPairsPass performs the transformation at the IR 298 // level. 299 if (Subtarget.isISA3_0()) { 300 setOperationAction(ISD::SREM, MVT::i32, Legal); 301 setOperationAction(ISD::UREM, MVT::i32, Legal); 302 setOperationAction(ISD::SREM, MVT::i64, Legal); 303 setOperationAction(ISD::UREM, MVT::i64, Legal); 304 } else { 305 setOperationAction(ISD::SREM, MVT::i32, Expand); 306 setOperationAction(ISD::UREM, MVT::i32, Expand); 307 setOperationAction(ISD::SREM, MVT::i64, Expand); 308 setOperationAction(ISD::UREM, MVT::i64, Expand); 309 } 310 311 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 312 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 313 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 314 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 315 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 316 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 317 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 318 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 319 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 320 321 // Handle constrained floating-point operations of scalar. 322 // TODO: Handle SPE specific operation. 323 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 324 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 325 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 326 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 327 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 328 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 329 330 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 331 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 332 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 333 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 334 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 335 if (Subtarget.hasVSX()) { 336 setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); 337 setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); 338 } 339 340 if (Subtarget.hasFSQRT()) { 341 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 342 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 343 } 344 345 if (Subtarget.hasFPRND()) { 346 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 347 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 348 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 349 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 350 351 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 352 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 353 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 354 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 355 } 356 357 // We don't support sin/cos/sqrt/fmod/pow 358 setOperationAction(ISD::FSIN , MVT::f64, Expand); 359 setOperationAction(ISD::FCOS , MVT::f64, Expand); 360 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 361 setOperationAction(ISD::FREM , MVT::f64, Expand); 362 setOperationAction(ISD::FPOW , MVT::f64, Expand); 363 setOperationAction(ISD::FSIN , MVT::f32, Expand); 364 setOperationAction(ISD::FCOS , MVT::f32, Expand); 365 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 366 setOperationAction(ISD::FREM , MVT::f32, Expand); 367 setOperationAction(ISD::FPOW , MVT::f32, Expand); 368 if (Subtarget.hasSPE()) { 369 setOperationAction(ISD::FMA , MVT::f64, Expand); 370 setOperationAction(ISD::FMA , MVT::f32, Expand); 371 } else { 372 setOperationAction(ISD::FMA , MVT::f64, Legal); 373 setOperationAction(ISD::FMA , MVT::f32, Legal); 374 } 375 376 if (Subtarget.hasSPE()) 377 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 378 379 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 380 381 // If we're enabling GP optimizations, use hardware square root 382 if (!Subtarget.hasFSQRT() && 383 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 384 Subtarget.hasFRE())) 385 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 386 387 if (!Subtarget.hasFSQRT() && 388 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 389 Subtarget.hasFRES())) 390 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 391 392 if (Subtarget.hasFCPSGN()) { 393 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 394 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 395 } else { 396 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 397 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 398 } 399 400 if (Subtarget.hasFPRND()) { 401 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 402 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 403 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 404 setOperationAction(ISD::FROUND, MVT::f64, Legal); 405 406 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 407 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 408 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 409 setOperationAction(ISD::FROUND, MVT::f32, Legal); 410 } 411 412 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 413 // to speed up scalar BSWAP64. 414 // CTPOP or CTTZ were introduced in P8/P9 respectively 415 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 416 if (Subtarget.hasP9Vector()) 417 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 418 else 419 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 420 if (Subtarget.isISA3_0()) { 421 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 422 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 423 } else { 424 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 425 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 426 } 427 428 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 429 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 430 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 431 } else { 432 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 433 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 434 } 435 436 // PowerPC does not have ROTR 437 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 438 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 439 440 if (!Subtarget.useCRBits()) { 441 // PowerPC does not have Select 442 setOperationAction(ISD::SELECT, MVT::i32, Expand); 443 setOperationAction(ISD::SELECT, MVT::i64, Expand); 444 setOperationAction(ISD::SELECT, MVT::f32, Expand); 445 setOperationAction(ISD::SELECT, MVT::f64, Expand); 446 } 447 448 // PowerPC wants to turn select_cc of FP into fsel when possible. 449 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 450 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 451 452 // PowerPC wants to optimize integer setcc a bit 453 if (!Subtarget.useCRBits()) 454 setOperationAction(ISD::SETCC, MVT::i32, Custom); 455 456 if (Subtarget.hasFPU()) { 457 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 458 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 459 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 460 461 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 462 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 463 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 464 } 465 466 // PowerPC does not have BRCOND which requires SetCC 467 if (!Subtarget.useCRBits()) 468 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 469 470 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 471 472 if (Subtarget.hasSPE()) { 473 // SPE has built-in conversions 474 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 475 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 476 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 477 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 478 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 479 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 480 } else { 481 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 482 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 483 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 484 485 // PowerPC does not have [U|S]INT_TO_FP 486 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); 487 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); 488 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 489 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 490 } 491 492 if (Subtarget.hasDirectMove() && isPPC64) { 493 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 494 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 495 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 496 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 497 if (TM.Options.UnsafeFPMath) { 498 setOperationAction(ISD::LRINT, MVT::f64, Legal); 499 setOperationAction(ISD::LRINT, MVT::f32, Legal); 500 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 501 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 502 setOperationAction(ISD::LROUND, MVT::f64, Legal); 503 setOperationAction(ISD::LROUND, MVT::f32, Legal); 504 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 505 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 506 } 507 } else { 508 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 509 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 510 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 511 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 512 } 513 514 // We cannot sextinreg(i1). Expand to shifts. 515 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 516 517 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 518 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 519 // support continuation, user-level threading, and etc.. As a result, no 520 // other SjLj exception interfaces are implemented and please don't build 521 // your own exception handling based on them. 522 // LLVM/Clang supports zero-cost DWARF exception handling. 523 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 524 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 525 526 // We want to legalize GlobalAddress and ConstantPool nodes into the 527 // appropriate instructions to materialize the address. 528 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 529 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 530 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 531 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 532 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 533 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 534 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 535 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 536 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 537 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 538 539 // TRAP is legal. 540 setOperationAction(ISD::TRAP, MVT::Other, Legal); 541 542 // TRAMPOLINE is custom lowered. 543 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 544 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 545 546 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 547 setOperationAction(ISD::VASTART , MVT::Other, Custom); 548 549 if (Subtarget.is64BitELFABI()) { 550 // VAARG always uses double-word chunks, so promote anything smaller. 551 setOperationAction(ISD::VAARG, MVT::i1, Promote); 552 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 553 setOperationAction(ISD::VAARG, MVT::i8, Promote); 554 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 555 setOperationAction(ISD::VAARG, MVT::i16, Promote); 556 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 557 setOperationAction(ISD::VAARG, MVT::i32, Promote); 558 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 559 setOperationAction(ISD::VAARG, MVT::Other, Expand); 560 } else if (Subtarget.is32BitELFABI()) { 561 // VAARG is custom lowered with the 32-bit SVR4 ABI. 562 setOperationAction(ISD::VAARG, MVT::Other, Custom); 563 setOperationAction(ISD::VAARG, MVT::i64, Custom); 564 } else 565 setOperationAction(ISD::VAARG, MVT::Other, Expand); 566 567 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 568 if (Subtarget.is32BitELFABI()) 569 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 570 else 571 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 572 573 // Use the default implementation. 574 setOperationAction(ISD::VAEND , MVT::Other, Expand); 575 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 576 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 577 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 578 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 579 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 580 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 581 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 582 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 583 584 // We want to custom lower some of our intrinsics. 585 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 586 587 // To handle counter-based loop conditions. 588 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 589 590 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 591 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 592 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 593 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 594 595 // Comparisons that require checking two conditions. 596 if (Subtarget.hasSPE()) { 597 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 598 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 599 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 600 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 601 } 602 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 603 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 604 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 605 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 606 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 607 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 608 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 609 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 610 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 611 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 612 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 613 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 614 615 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 616 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 617 618 if (Subtarget.has64BitSupport()) { 619 // They also have instructions for converting between i64 and fp. 620 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 621 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); 622 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 623 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 624 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 625 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 626 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 627 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 628 // This is just the low 32 bits of a (signed) fp->i64 conversion. 629 // We cannot do this with Promote because i64 is not a legal type. 630 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 631 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 632 633 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { 634 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 635 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 636 } 637 } else { 638 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 639 if (Subtarget.hasSPE()) { 640 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 641 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 642 } else { 643 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); 644 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 645 } 646 } 647 648 // With the instructions enabled under FPCVT, we can do everything. 649 if (Subtarget.hasFPCVT()) { 650 if (Subtarget.has64BitSupport()) { 651 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 652 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 653 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 654 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 655 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 656 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 657 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 658 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 659 } 660 661 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 662 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 663 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 664 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 665 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 666 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 667 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 668 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 669 } 670 671 if (Subtarget.use64BitRegs()) { 672 // 64-bit PowerPC implementations can support i64 types directly 673 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 674 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 675 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 676 // 64-bit PowerPC wants to expand i128 shifts itself. 677 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 678 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 679 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 680 } else { 681 // 32-bit PowerPC wants to expand i64 shifts itself. 682 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 683 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 684 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 685 } 686 687 // PowerPC has better expansions for funnel shifts than the generic 688 // TargetLowering::expandFunnelShift. 689 if (Subtarget.has64BitSupport()) { 690 setOperationAction(ISD::FSHL, MVT::i64, Custom); 691 setOperationAction(ISD::FSHR, MVT::i64, Custom); 692 } 693 setOperationAction(ISD::FSHL, MVT::i32, Custom); 694 setOperationAction(ISD::FSHR, MVT::i32, Custom); 695 696 if (Subtarget.hasVSX()) { 697 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 698 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 699 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 700 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 701 } 702 703 if (Subtarget.hasAltivec()) { 704 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 705 setOperationAction(ISD::SADDSAT, VT, Legal); 706 setOperationAction(ISD::SSUBSAT, VT, Legal); 707 setOperationAction(ISD::UADDSAT, VT, Legal); 708 setOperationAction(ISD::USUBSAT, VT, Legal); 709 } 710 // First set operation action for all vector types to expand. Then we 711 // will selectively turn on ones that can be effectively codegen'd. 712 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 713 // add/sub are legal for all supported vector VT's. 714 setOperationAction(ISD::ADD, VT, Legal); 715 setOperationAction(ISD::SUB, VT, Legal); 716 717 // For v2i64, these are only valid with P8Vector. This is corrected after 718 // the loop. 719 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 720 setOperationAction(ISD::SMAX, VT, Legal); 721 setOperationAction(ISD::SMIN, VT, Legal); 722 setOperationAction(ISD::UMAX, VT, Legal); 723 setOperationAction(ISD::UMIN, VT, Legal); 724 } 725 else { 726 setOperationAction(ISD::SMAX, VT, Expand); 727 setOperationAction(ISD::SMIN, VT, Expand); 728 setOperationAction(ISD::UMAX, VT, Expand); 729 setOperationAction(ISD::UMIN, VT, Expand); 730 } 731 732 if (Subtarget.hasVSX()) { 733 setOperationAction(ISD::FMAXNUM, VT, Legal); 734 setOperationAction(ISD::FMINNUM, VT, Legal); 735 } 736 737 // Vector instructions introduced in P8 738 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 739 setOperationAction(ISD::CTPOP, VT, Legal); 740 setOperationAction(ISD::CTLZ, VT, Legal); 741 } 742 else { 743 setOperationAction(ISD::CTPOP, VT, Expand); 744 setOperationAction(ISD::CTLZ, VT, Expand); 745 } 746 747 // Vector instructions introduced in P9 748 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 749 setOperationAction(ISD::CTTZ, VT, Legal); 750 else 751 setOperationAction(ISD::CTTZ, VT, Expand); 752 753 // We promote all shuffles to v16i8. 754 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 755 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 756 757 // We promote all non-typed operations to v4i32. 758 setOperationAction(ISD::AND , VT, Promote); 759 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 760 setOperationAction(ISD::OR , VT, Promote); 761 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 762 setOperationAction(ISD::XOR , VT, Promote); 763 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 764 setOperationAction(ISD::LOAD , VT, Promote); 765 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 766 setOperationAction(ISD::SELECT, VT, Promote); 767 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 768 setOperationAction(ISD::VSELECT, VT, Legal); 769 setOperationAction(ISD::SELECT_CC, VT, Promote); 770 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 771 setOperationAction(ISD::STORE, VT, Promote); 772 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 773 774 // No other operations are legal. 775 setOperationAction(ISD::MUL , VT, Expand); 776 setOperationAction(ISD::SDIV, VT, Expand); 777 setOperationAction(ISD::SREM, VT, Expand); 778 setOperationAction(ISD::UDIV, VT, Expand); 779 setOperationAction(ISD::UREM, VT, Expand); 780 setOperationAction(ISD::FDIV, VT, Expand); 781 setOperationAction(ISD::FREM, VT, Expand); 782 setOperationAction(ISD::FNEG, VT, Expand); 783 setOperationAction(ISD::FSQRT, VT, Expand); 784 setOperationAction(ISD::FLOG, VT, Expand); 785 setOperationAction(ISD::FLOG10, VT, Expand); 786 setOperationAction(ISD::FLOG2, VT, Expand); 787 setOperationAction(ISD::FEXP, VT, Expand); 788 setOperationAction(ISD::FEXP2, VT, Expand); 789 setOperationAction(ISD::FSIN, VT, Expand); 790 setOperationAction(ISD::FCOS, VT, Expand); 791 setOperationAction(ISD::FABS, VT, Expand); 792 setOperationAction(ISD::FFLOOR, VT, Expand); 793 setOperationAction(ISD::FCEIL, VT, Expand); 794 setOperationAction(ISD::FTRUNC, VT, Expand); 795 setOperationAction(ISD::FRINT, VT, Expand); 796 setOperationAction(ISD::FNEARBYINT, VT, Expand); 797 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 798 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 799 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 800 setOperationAction(ISD::MULHU, VT, Expand); 801 setOperationAction(ISD::MULHS, VT, Expand); 802 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 803 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 804 setOperationAction(ISD::UDIVREM, VT, Expand); 805 setOperationAction(ISD::SDIVREM, VT, Expand); 806 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 807 setOperationAction(ISD::FPOW, VT, Expand); 808 setOperationAction(ISD::BSWAP, VT, Expand); 809 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 810 setOperationAction(ISD::ROTL, VT, Expand); 811 setOperationAction(ISD::ROTR, VT, Expand); 812 813 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 814 setTruncStoreAction(VT, InnerVT, Expand); 815 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 816 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 817 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 818 } 819 } 820 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 821 if (!Subtarget.hasP8Vector()) { 822 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 823 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 824 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 825 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 826 } 827 828 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 829 // with merges, splats, etc. 830 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 831 832 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 833 // are cheap, so handle them before they get expanded to scalar. 834 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 835 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 836 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 837 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 838 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 839 840 setOperationAction(ISD::AND , MVT::v4i32, Legal); 841 setOperationAction(ISD::OR , MVT::v4i32, Legal); 842 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 843 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 844 setOperationAction(ISD::SELECT, MVT::v4i32, 845 Subtarget.useCRBits() ? Legal : Expand); 846 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 847 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 848 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 849 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 850 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 851 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 852 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 853 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 854 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 855 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 856 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 857 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 858 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 859 860 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 861 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 862 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 863 if (Subtarget.hasAltivec()) 864 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 865 setOperationAction(ISD::ROTL, VT, Legal); 866 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 867 if (Subtarget.hasP8Altivec()) 868 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 869 870 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 871 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 872 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 873 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 874 875 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 876 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 877 878 if (Subtarget.hasVSX()) { 879 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 880 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 881 } 882 883 if (Subtarget.hasP8Altivec()) 884 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 885 else 886 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 887 888 if (Subtarget.isISA3_1()) { 889 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 890 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 891 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 892 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 893 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 894 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 895 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 896 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 897 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 898 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 899 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 900 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 901 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 902 setOperationAction(ISD::UREM, MVT::v1i128, Legal); 903 setOperationAction(ISD::SREM, MVT::v1i128, Legal); 904 setOperationAction(ISD::UDIV, MVT::v1i128, Legal); 905 setOperationAction(ISD::SDIV, MVT::v1i128, Legal); 906 setOperationAction(ISD::ROTL, MVT::v1i128, Legal); 907 } 908 909 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 910 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 911 912 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 913 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 914 915 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 916 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 917 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 918 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 919 920 // Altivec does not contain unordered floating-point compare instructions 921 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 922 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 923 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 924 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 925 926 if (Subtarget.hasVSX()) { 927 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 928 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 929 if (Subtarget.hasP8Vector()) { 930 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 931 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 932 } 933 if (Subtarget.hasDirectMove() && isPPC64) { 934 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 935 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 936 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 937 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 938 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 939 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 940 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 941 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 942 } 943 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 944 945 // The nearbyint variants are not allowed to raise the inexact exception 946 // so we can only code-gen them with unsafe math. 947 if (TM.Options.UnsafeFPMath) { 948 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 949 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 950 } 951 952 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 953 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 954 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 955 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 956 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 957 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 958 setOperationAction(ISD::FROUND, MVT::f64, Legal); 959 setOperationAction(ISD::FRINT, MVT::f64, Legal); 960 961 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 962 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 963 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 964 setOperationAction(ISD::FROUND, MVT::f32, Legal); 965 setOperationAction(ISD::FRINT, MVT::f32, Legal); 966 967 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 968 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 969 970 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 971 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 972 973 // Share the Altivec comparison restrictions. 974 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 975 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 976 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 977 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 978 979 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 980 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 981 982 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 983 984 if (Subtarget.hasP8Vector()) 985 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 986 987 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 988 989 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 990 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 991 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 992 993 if (Subtarget.hasP8Altivec()) { 994 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 995 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 996 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 997 998 // 128 bit shifts can be accomplished via 3 instructions for SHL and 999 // SRL, but not for SRA because of the instructions available: 1000 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 1001 // doing 1002 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 1003 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 1004 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1005 1006 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 1007 } 1008 else { 1009 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 1010 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 1011 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 1012 1013 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 1014 1015 // VSX v2i64 only supports non-arithmetic operations. 1016 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 1017 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 1018 } 1019 1020 if (Subtarget.isISA3_1()) 1021 setOperationAction(ISD::SETCC, MVT::v1i128, Legal); 1022 else 1023 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 1024 1025 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 1026 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 1027 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 1028 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 1029 1030 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 1031 1032 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 1033 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 1034 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 1035 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 1036 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 1037 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 1038 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 1039 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 1040 1041 // Custom handling for partial vectors of integers converted to 1042 // floating point. We already have optimal handling for v2i32 through 1043 // the DAG combine, so those aren't necessary. 1044 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); 1045 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); 1046 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); 1047 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); 1048 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); 1049 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); 1050 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); 1051 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); 1052 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 1053 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 1054 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 1055 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 1056 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 1057 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 1058 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 1059 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 1060 1061 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 1062 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 1063 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 1064 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 1065 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1066 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 1067 1068 if (Subtarget.hasDirectMove()) 1069 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1070 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1071 1072 // Handle constrained floating-point operations of vector. 1073 // The predictor is `hasVSX` because altivec instruction has 1074 // no exception but VSX vector instruction has. 1075 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1076 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1077 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1078 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1079 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1080 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1081 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1082 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1083 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 1084 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1085 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1086 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1087 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1088 1089 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1090 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1091 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1092 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1093 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1094 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1095 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1096 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1097 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 1098 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1099 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1100 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1101 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1102 1103 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1104 } 1105 1106 if (Subtarget.hasP8Altivec()) { 1107 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1108 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1109 } 1110 1111 if (Subtarget.hasP9Vector()) { 1112 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1113 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1114 1115 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1116 // SRL, but not for SRA because of the instructions available: 1117 // VS{RL} and VS{RL}O. 1118 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1119 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1120 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1121 1122 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1123 setOperationAction(ISD::FADD, MVT::f128, Legal); 1124 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1125 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1126 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1127 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1128 // No extending loads to f128 on PPC. 1129 for (MVT FPT : MVT::fp_valuetypes()) 1130 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1131 setOperationAction(ISD::FMA, MVT::f128, Legal); 1132 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1133 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1134 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1135 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1136 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1137 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1138 1139 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1140 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1141 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1142 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1143 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1144 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1145 1146 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1147 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1148 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1149 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1150 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1151 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1152 // No implementation for these ops for PowerPC. 1153 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1154 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1155 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1156 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1157 setOperationAction(ISD::FREM, MVT::f128, Expand); 1158 1159 // Handle constrained floating-point operations of fp128 1160 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1161 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1162 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1163 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1164 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1165 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1166 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1167 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1168 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1169 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1170 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1171 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1172 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1173 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1174 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1175 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1176 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1177 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1178 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1179 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1180 } else if (Subtarget.hasAltivec() && EnableSoftFP128) { 1181 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1182 1183 for (MVT FPT : MVT::fp_valuetypes()) 1184 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1185 1186 setOperationAction(ISD::LOAD, MVT::f128, Promote); 1187 setOperationAction(ISD::STORE, MVT::f128, Promote); 1188 1189 AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32); 1190 AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32); 1191 1192 // Set FADD/FSUB as libcall to avoid the legalizer to expand the 1193 // fp_to_uint and int_to_fp. 1194 setOperationAction(ISD::FADD, MVT::f128, LibCall); 1195 setOperationAction(ISD::FSUB, MVT::f128, LibCall); 1196 1197 setOperationAction(ISD::FMUL, MVT::f128, Expand); 1198 setOperationAction(ISD::FDIV, MVT::f128, Expand); 1199 setOperationAction(ISD::FNEG, MVT::f128, Expand); 1200 setOperationAction(ISD::FABS, MVT::f128, Expand); 1201 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1202 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1203 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1204 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1205 setOperationAction(ISD::FREM, MVT::f128, Expand); 1206 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 1207 setOperationAction(ISD::FMA, MVT::f128, Expand); 1208 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1209 1210 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1211 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1212 1213 // Expand the fp_extend if the target type is fp128. 1214 setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); 1215 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand); 1216 1217 // Expand the fp_round if the source type is fp128. 1218 for (MVT VT : {MVT::f32, MVT::f64}) { 1219 setOperationAction(ISD::FP_ROUND, VT, Custom); 1220 setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom); 1221 } 1222 } 1223 1224 if (Subtarget.hasP9Altivec()) { 1225 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1226 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1227 1228 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1229 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1230 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1231 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1232 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1233 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1234 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1235 } 1236 1237 if (Subtarget.isISA3_1()) { 1238 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); 1239 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 1240 } 1241 } 1242 1243 if (Subtarget.pairedVectorMemops()) { 1244 addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); 1245 setOperationAction(ISD::LOAD, MVT::v256i1, Custom); 1246 setOperationAction(ISD::STORE, MVT::v256i1, Custom); 1247 } 1248 if (Subtarget.hasMMA()) { 1249 addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); 1250 setOperationAction(ISD::LOAD, MVT::v512i1, Custom); 1251 setOperationAction(ISD::STORE, MVT::v512i1, Custom); 1252 setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); 1253 } 1254 1255 if (Subtarget.has64BitSupport()) 1256 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1257 1258 if (Subtarget.isISA3_1()) 1259 setOperationAction(ISD::SRA, MVT::v1i128, Legal); 1260 1261 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1262 1263 if (!isPPC64) { 1264 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1265 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1266 } 1267 1268 setBooleanContents(ZeroOrOneBooleanContent); 1269 1270 if (Subtarget.hasAltivec()) { 1271 // Altivec instructions set fields to all zeros or all ones. 1272 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1273 } 1274 1275 if (!isPPC64) { 1276 // These libcalls are not available in 32-bit. 1277 setLibcallName(RTLIB::SHL_I128, nullptr); 1278 setLibcallName(RTLIB::SRL_I128, nullptr); 1279 setLibcallName(RTLIB::SRA_I128, nullptr); 1280 } 1281 1282 if (!isPPC64) 1283 setMaxAtomicSizeInBitsSupported(32); 1284 1285 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1286 1287 // We have target-specific dag combine patterns for the following nodes: 1288 setTargetDAGCombine(ISD::ADD); 1289 setTargetDAGCombine(ISD::SHL); 1290 setTargetDAGCombine(ISD::SRA); 1291 setTargetDAGCombine(ISD::SRL); 1292 setTargetDAGCombine(ISD::MUL); 1293 setTargetDAGCombine(ISD::FMA); 1294 setTargetDAGCombine(ISD::SINT_TO_FP); 1295 setTargetDAGCombine(ISD::BUILD_VECTOR); 1296 if (Subtarget.hasFPCVT()) 1297 setTargetDAGCombine(ISD::UINT_TO_FP); 1298 setTargetDAGCombine(ISD::LOAD); 1299 setTargetDAGCombine(ISD::STORE); 1300 setTargetDAGCombine(ISD::BR_CC); 1301 if (Subtarget.useCRBits()) 1302 setTargetDAGCombine(ISD::BRCOND); 1303 setTargetDAGCombine(ISD::BSWAP); 1304 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1305 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1306 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1307 1308 setTargetDAGCombine(ISD::SIGN_EXTEND); 1309 setTargetDAGCombine(ISD::ZERO_EXTEND); 1310 setTargetDAGCombine(ISD::ANY_EXTEND); 1311 1312 setTargetDAGCombine(ISD::TRUNCATE); 1313 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1314 1315 1316 if (Subtarget.useCRBits()) { 1317 setTargetDAGCombine(ISD::TRUNCATE); 1318 setTargetDAGCombine(ISD::SETCC); 1319 setTargetDAGCombine(ISD::SELECT_CC); 1320 } 1321 1322 if (Subtarget.hasP9Altivec()) { 1323 setTargetDAGCombine(ISD::ABS); 1324 setTargetDAGCombine(ISD::VSELECT); 1325 } 1326 1327 setLibcallName(RTLIB::LOG_F128, "logf128"); 1328 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1329 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1330 setLibcallName(RTLIB::EXP_F128, "expf128"); 1331 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1332 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1333 setLibcallName(RTLIB::COS_F128, "cosf128"); 1334 setLibcallName(RTLIB::POW_F128, "powf128"); 1335 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1336 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1337 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1338 setLibcallName(RTLIB::SQRT_F128, "sqrtf128"); 1339 setLibcallName(RTLIB::CEIL_F128, "ceilf128"); 1340 setLibcallName(RTLIB::FLOOR_F128, "floorf128"); 1341 setLibcallName(RTLIB::TRUNC_F128, "truncf128"); 1342 setLibcallName(RTLIB::ROUND_F128, "roundf128"); 1343 setLibcallName(RTLIB::LROUND_F128, "lroundf128"); 1344 setLibcallName(RTLIB::LLROUND_F128, "llroundf128"); 1345 setLibcallName(RTLIB::RINT_F128, "rintf128"); 1346 setLibcallName(RTLIB::LRINT_F128, "lrintf128"); 1347 setLibcallName(RTLIB::LLRINT_F128, "llrintf128"); 1348 setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128"); 1349 setLibcallName(RTLIB::FMA_F128, "fmaf128"); 1350 1351 // With 32 condition bits, we don't need to sink (and duplicate) compares 1352 // aggressively in CodeGenPrep. 1353 if (Subtarget.useCRBits()) { 1354 setHasMultipleConditionRegisters(); 1355 setJumpIsExpensive(); 1356 } 1357 1358 setMinFunctionAlignment(Align(4)); 1359 1360 switch (Subtarget.getCPUDirective()) { 1361 default: break; 1362 case PPC::DIR_970: 1363 case PPC::DIR_A2: 1364 case PPC::DIR_E500: 1365 case PPC::DIR_E500mc: 1366 case PPC::DIR_E5500: 1367 case PPC::DIR_PWR4: 1368 case PPC::DIR_PWR5: 1369 case PPC::DIR_PWR5X: 1370 case PPC::DIR_PWR6: 1371 case PPC::DIR_PWR6X: 1372 case PPC::DIR_PWR7: 1373 case PPC::DIR_PWR8: 1374 case PPC::DIR_PWR9: 1375 case PPC::DIR_PWR10: 1376 case PPC::DIR_PWR_FUTURE: 1377 setPrefLoopAlignment(Align(16)); 1378 setPrefFunctionAlignment(Align(16)); 1379 break; 1380 } 1381 1382 if (Subtarget.enableMachineScheduler()) 1383 setSchedulingPreference(Sched::Source); 1384 else 1385 setSchedulingPreference(Sched::Hybrid); 1386 1387 computeRegisterProperties(STI.getRegisterInfo()); 1388 1389 // The Freescale cores do better with aggressive inlining of memcpy and 1390 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1391 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1392 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1393 MaxStoresPerMemset = 32; 1394 MaxStoresPerMemsetOptSize = 16; 1395 MaxStoresPerMemcpy = 32; 1396 MaxStoresPerMemcpyOptSize = 8; 1397 MaxStoresPerMemmove = 32; 1398 MaxStoresPerMemmoveOptSize = 8; 1399 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1400 // The A2 also benefits from (very) aggressive inlining of memcpy and 1401 // friends. The overhead of a the function call, even when warm, can be 1402 // over one hundred cycles. 1403 MaxStoresPerMemset = 128; 1404 MaxStoresPerMemcpy = 128; 1405 MaxStoresPerMemmove = 128; 1406 MaxLoadsPerMemcmp = 128; 1407 } else { 1408 MaxLoadsPerMemcmp = 8; 1409 MaxLoadsPerMemcmpOptSize = 4; 1410 } 1411 1412 IsStrictFPEnabled = true; 1413 1414 // Let the subtarget (CPU) decide if a predictable select is more expensive 1415 // than the corresponding branch. This information is used in CGP to decide 1416 // when to convert selects into branches. 1417 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1418 } 1419 1420 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1421 /// the desired ByVal argument alignment. 1422 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1423 if (MaxAlign == MaxMaxAlign) 1424 return; 1425 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1426 if (MaxMaxAlign >= 32 && 1427 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1428 MaxAlign = Align(32); 1429 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1430 MaxAlign < 16) 1431 MaxAlign = Align(16); 1432 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1433 Align EltAlign; 1434 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1435 if (EltAlign > MaxAlign) 1436 MaxAlign = EltAlign; 1437 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1438 for (auto *EltTy : STy->elements()) { 1439 Align EltAlign; 1440 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1441 if (EltAlign > MaxAlign) 1442 MaxAlign = EltAlign; 1443 if (MaxAlign == MaxMaxAlign) 1444 break; 1445 } 1446 } 1447 } 1448 1449 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1450 /// function arguments in the caller parameter area. 1451 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1452 const DataLayout &DL) const { 1453 // 16byte and wider vectors are passed on 16byte boundary. 1454 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1455 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1456 if (Subtarget.hasAltivec()) 1457 getMaxByValAlign(Ty, Alignment, Align(16)); 1458 return Alignment.value(); 1459 } 1460 1461 bool PPCTargetLowering::useSoftFloat() const { 1462 return Subtarget.useSoftFloat(); 1463 } 1464 1465 bool PPCTargetLowering::hasSPE() const { 1466 return Subtarget.hasSPE(); 1467 } 1468 1469 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1470 return VT.isScalarInteger(); 1471 } 1472 1473 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1474 switch ((PPCISD::NodeType)Opcode) { 1475 case PPCISD::FIRST_NUMBER: break; 1476 case PPCISD::FSEL: return "PPCISD::FSEL"; 1477 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1478 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1479 case PPCISD::FCFID: return "PPCISD::FCFID"; 1480 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1481 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1482 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1483 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1484 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1485 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1486 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1487 case PPCISD::FP_TO_UINT_IN_VSR: 1488 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1489 case PPCISD::FP_TO_SINT_IN_VSR: 1490 return "PPCISD::FP_TO_SINT_IN_VSR"; 1491 case PPCISD::FRE: return "PPCISD::FRE"; 1492 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1493 case PPCISD::FTSQRT: 1494 return "PPCISD::FTSQRT"; 1495 case PPCISD::FSQRT: 1496 return "PPCISD::FSQRT"; 1497 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1498 case PPCISD::VPERM: return "PPCISD::VPERM"; 1499 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1500 case PPCISD::XXSPLTI_SP_TO_DP: 1501 return "PPCISD::XXSPLTI_SP_TO_DP"; 1502 case PPCISD::XXSPLTI32DX: 1503 return "PPCISD::XXSPLTI32DX"; 1504 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1505 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1506 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1507 case PPCISD::CMPB: return "PPCISD::CMPB"; 1508 case PPCISD::Hi: return "PPCISD::Hi"; 1509 case PPCISD::Lo: return "PPCISD::Lo"; 1510 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1511 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1512 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1513 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1514 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1515 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1516 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1517 case PPCISD::SRL: return "PPCISD::SRL"; 1518 case PPCISD::SRA: return "PPCISD::SRA"; 1519 case PPCISD::SHL: return "PPCISD::SHL"; 1520 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1521 case PPCISD::CALL: return "PPCISD::CALL"; 1522 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1523 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1524 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1525 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1526 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1527 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1528 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1529 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1530 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1531 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1532 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1533 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1534 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1535 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1536 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1537 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1538 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1539 case PPCISD::ANDI_rec_1_EQ_BIT: 1540 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1541 case PPCISD::ANDI_rec_1_GT_BIT: 1542 return "PPCISD::ANDI_rec_1_GT_BIT"; 1543 case PPCISD::VCMP: return "PPCISD::VCMP"; 1544 case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; 1545 case PPCISD::LBRX: return "PPCISD::LBRX"; 1546 case PPCISD::STBRX: return "PPCISD::STBRX"; 1547 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1548 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1549 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1550 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1551 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1552 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1553 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1554 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1555 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1556 case PPCISD::ST_VSR_SCAL_INT: 1557 return "PPCISD::ST_VSR_SCAL_INT"; 1558 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1559 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1560 case PPCISD::BDZ: return "PPCISD::BDZ"; 1561 case PPCISD::MFFS: return "PPCISD::MFFS"; 1562 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1563 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1564 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1565 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1566 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1567 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1568 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1569 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1570 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1571 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1572 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1573 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1574 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1575 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1576 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1577 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1578 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1579 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1580 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1581 case PPCISD::PADDI_DTPREL: 1582 return "PPCISD::PADDI_DTPREL"; 1583 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1584 case PPCISD::SC: return "PPCISD::SC"; 1585 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1586 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1587 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1588 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1589 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1590 case PPCISD::VABSD: return "PPCISD::VABSD"; 1591 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1592 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1593 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1594 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1595 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1596 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1597 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1598 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: 1599 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; 1600 case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: 1601 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; 1602 case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; 1603 case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; 1604 case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; 1605 case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; 1606 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1607 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1608 case PPCISD::STRICT_FADDRTZ: 1609 return "PPCISD::STRICT_FADDRTZ"; 1610 case PPCISD::STRICT_FCTIDZ: 1611 return "PPCISD::STRICT_FCTIDZ"; 1612 case PPCISD::STRICT_FCTIWZ: 1613 return "PPCISD::STRICT_FCTIWZ"; 1614 case PPCISD::STRICT_FCTIDUZ: 1615 return "PPCISD::STRICT_FCTIDUZ"; 1616 case PPCISD::STRICT_FCTIWUZ: 1617 return "PPCISD::STRICT_FCTIWUZ"; 1618 case PPCISD::STRICT_FCFID: 1619 return "PPCISD::STRICT_FCFID"; 1620 case PPCISD::STRICT_FCFIDU: 1621 return "PPCISD::STRICT_FCFIDU"; 1622 case PPCISD::STRICT_FCFIDS: 1623 return "PPCISD::STRICT_FCFIDS"; 1624 case PPCISD::STRICT_FCFIDUS: 1625 return "PPCISD::STRICT_FCFIDUS"; 1626 case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; 1627 } 1628 return nullptr; 1629 } 1630 1631 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1632 EVT VT) const { 1633 if (!VT.isVector()) 1634 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1635 1636 return VT.changeVectorElementTypeToInteger(); 1637 } 1638 1639 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1640 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1641 return true; 1642 } 1643 1644 //===----------------------------------------------------------------------===// 1645 // Node matching predicates, for use by the tblgen matching code. 1646 //===----------------------------------------------------------------------===// 1647 1648 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1649 static bool isFloatingPointZero(SDValue Op) { 1650 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1651 return CFP->getValueAPF().isZero(); 1652 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1653 // Maybe this has already been legalized into the constant pool? 1654 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1655 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1656 return CFP->getValueAPF().isZero(); 1657 } 1658 return false; 1659 } 1660 1661 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1662 /// true if Op is undef or if it matches the specified value. 1663 static bool isConstantOrUndef(int Op, int Val) { 1664 return Op < 0 || Op == Val; 1665 } 1666 1667 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1668 /// VPKUHUM instruction. 1669 /// The ShuffleKind distinguishes between big-endian operations with 1670 /// two different inputs (0), either-endian operations with two identical 1671 /// inputs (1), and little-endian operations with two different inputs (2). 1672 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1673 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1674 SelectionDAG &DAG) { 1675 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1676 if (ShuffleKind == 0) { 1677 if (IsLE) 1678 return false; 1679 for (unsigned i = 0; i != 16; ++i) 1680 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1681 return false; 1682 } else if (ShuffleKind == 2) { 1683 if (!IsLE) 1684 return false; 1685 for (unsigned i = 0; i != 16; ++i) 1686 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1687 return false; 1688 } else if (ShuffleKind == 1) { 1689 unsigned j = IsLE ? 0 : 1; 1690 for (unsigned i = 0; i != 8; ++i) 1691 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1692 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1693 return false; 1694 } 1695 return true; 1696 } 1697 1698 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1699 /// VPKUWUM instruction. 1700 /// The ShuffleKind distinguishes between big-endian operations with 1701 /// two different inputs (0), either-endian operations with two identical 1702 /// inputs (1), and little-endian operations with two different inputs (2). 1703 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1704 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1705 SelectionDAG &DAG) { 1706 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1707 if (ShuffleKind == 0) { 1708 if (IsLE) 1709 return false; 1710 for (unsigned i = 0; i != 16; i += 2) 1711 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1712 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1713 return false; 1714 } else if (ShuffleKind == 2) { 1715 if (!IsLE) 1716 return false; 1717 for (unsigned i = 0; i != 16; i += 2) 1718 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1719 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1720 return false; 1721 } else if (ShuffleKind == 1) { 1722 unsigned j = IsLE ? 0 : 2; 1723 for (unsigned i = 0; i != 8; i += 2) 1724 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1725 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1726 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1727 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1728 return false; 1729 } 1730 return true; 1731 } 1732 1733 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1734 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1735 /// current subtarget. 1736 /// 1737 /// The ShuffleKind distinguishes between big-endian operations with 1738 /// two different inputs (0), either-endian operations with two identical 1739 /// inputs (1), and little-endian operations with two different inputs (2). 1740 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1741 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1742 SelectionDAG &DAG) { 1743 const PPCSubtarget& Subtarget = 1744 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1745 if (!Subtarget.hasP8Vector()) 1746 return false; 1747 1748 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1749 if (ShuffleKind == 0) { 1750 if (IsLE) 1751 return false; 1752 for (unsigned i = 0; i != 16; i += 4) 1753 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1754 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1755 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1756 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1757 return false; 1758 } else if (ShuffleKind == 2) { 1759 if (!IsLE) 1760 return false; 1761 for (unsigned i = 0; i != 16; i += 4) 1762 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1763 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1764 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1765 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1766 return false; 1767 } else if (ShuffleKind == 1) { 1768 unsigned j = IsLE ? 0 : 4; 1769 for (unsigned i = 0; i != 8; i += 4) 1770 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1771 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1772 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1773 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1774 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1775 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1776 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1777 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1778 return false; 1779 } 1780 return true; 1781 } 1782 1783 /// isVMerge - Common function, used to match vmrg* shuffles. 1784 /// 1785 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1786 unsigned LHSStart, unsigned RHSStart) { 1787 if (N->getValueType(0) != MVT::v16i8) 1788 return false; 1789 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1790 "Unsupported merge size!"); 1791 1792 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1793 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1794 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1795 LHSStart+j+i*UnitSize) || 1796 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1797 RHSStart+j+i*UnitSize)) 1798 return false; 1799 } 1800 return true; 1801 } 1802 1803 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1804 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1805 /// The ShuffleKind distinguishes between big-endian merges with two 1806 /// different inputs (0), either-endian merges with two identical inputs (1), 1807 /// and little-endian merges with two different inputs (2). For the latter, 1808 /// the input operands are swapped (see PPCInstrAltivec.td). 1809 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1810 unsigned ShuffleKind, SelectionDAG &DAG) { 1811 if (DAG.getDataLayout().isLittleEndian()) { 1812 if (ShuffleKind == 1) // unary 1813 return isVMerge(N, UnitSize, 0, 0); 1814 else if (ShuffleKind == 2) // swapped 1815 return isVMerge(N, UnitSize, 0, 16); 1816 else 1817 return false; 1818 } else { 1819 if (ShuffleKind == 1) // unary 1820 return isVMerge(N, UnitSize, 8, 8); 1821 else if (ShuffleKind == 0) // normal 1822 return isVMerge(N, UnitSize, 8, 24); 1823 else 1824 return false; 1825 } 1826 } 1827 1828 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1829 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1830 /// The ShuffleKind distinguishes between big-endian merges with two 1831 /// different inputs (0), either-endian merges with two identical inputs (1), 1832 /// and little-endian merges with two different inputs (2). For the latter, 1833 /// the input operands are swapped (see PPCInstrAltivec.td). 1834 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1835 unsigned ShuffleKind, SelectionDAG &DAG) { 1836 if (DAG.getDataLayout().isLittleEndian()) { 1837 if (ShuffleKind == 1) // unary 1838 return isVMerge(N, UnitSize, 8, 8); 1839 else if (ShuffleKind == 2) // swapped 1840 return isVMerge(N, UnitSize, 8, 24); 1841 else 1842 return false; 1843 } else { 1844 if (ShuffleKind == 1) // unary 1845 return isVMerge(N, UnitSize, 0, 0); 1846 else if (ShuffleKind == 0) // normal 1847 return isVMerge(N, UnitSize, 0, 16); 1848 else 1849 return false; 1850 } 1851 } 1852 1853 /** 1854 * Common function used to match vmrgew and vmrgow shuffles 1855 * 1856 * The indexOffset determines whether to look for even or odd words in 1857 * the shuffle mask. This is based on the of the endianness of the target 1858 * machine. 1859 * - Little Endian: 1860 * - Use offset of 0 to check for odd elements 1861 * - Use offset of 4 to check for even elements 1862 * - Big Endian: 1863 * - Use offset of 0 to check for even elements 1864 * - Use offset of 4 to check for odd elements 1865 * A detailed description of the vector element ordering for little endian and 1866 * big endian can be found at 1867 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1868 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1869 * compiler differences mean to you 1870 * 1871 * The mask to the shuffle vector instruction specifies the indices of the 1872 * elements from the two input vectors to place in the result. The elements are 1873 * numbered in array-access order, starting with the first vector. These vectors 1874 * are always of type v16i8, thus each vector will contain 16 elements of size 1875 * 8. More info on the shuffle vector can be found in the 1876 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1877 * Language Reference. 1878 * 1879 * The RHSStartValue indicates whether the same input vectors are used (unary) 1880 * or two different input vectors are used, based on the following: 1881 * - If the instruction uses the same vector for both inputs, the range of the 1882 * indices will be 0 to 15. In this case, the RHSStart value passed should 1883 * be 0. 1884 * - If the instruction has two different vectors then the range of the 1885 * indices will be 0 to 31. In this case, the RHSStart value passed should 1886 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1887 * to 31 specify elements in the second vector). 1888 * 1889 * \param[in] N The shuffle vector SD Node to analyze 1890 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1891 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1892 * vector to the shuffle_vector instruction 1893 * \return true iff this shuffle vector represents an even or odd word merge 1894 */ 1895 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1896 unsigned RHSStartValue) { 1897 if (N->getValueType(0) != MVT::v16i8) 1898 return false; 1899 1900 for (unsigned i = 0; i < 2; ++i) 1901 for (unsigned j = 0; j < 4; ++j) 1902 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1903 i*RHSStartValue+j+IndexOffset) || 1904 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1905 i*RHSStartValue+j+IndexOffset+8)) 1906 return false; 1907 return true; 1908 } 1909 1910 /** 1911 * Determine if the specified shuffle mask is suitable for the vmrgew or 1912 * vmrgow instructions. 1913 * 1914 * \param[in] N The shuffle vector SD Node to analyze 1915 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1916 * \param[in] ShuffleKind Identify the type of merge: 1917 * - 0 = big-endian merge with two different inputs; 1918 * - 1 = either-endian merge with two identical inputs; 1919 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1920 * little-endian merges). 1921 * \param[in] DAG The current SelectionDAG 1922 * \return true iff this shuffle mask 1923 */ 1924 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1925 unsigned ShuffleKind, SelectionDAG &DAG) { 1926 if (DAG.getDataLayout().isLittleEndian()) { 1927 unsigned indexOffset = CheckEven ? 4 : 0; 1928 if (ShuffleKind == 1) // Unary 1929 return isVMerge(N, indexOffset, 0); 1930 else if (ShuffleKind == 2) // swapped 1931 return isVMerge(N, indexOffset, 16); 1932 else 1933 return false; 1934 } 1935 else { 1936 unsigned indexOffset = CheckEven ? 0 : 4; 1937 if (ShuffleKind == 1) // Unary 1938 return isVMerge(N, indexOffset, 0); 1939 else if (ShuffleKind == 0) // Normal 1940 return isVMerge(N, indexOffset, 16); 1941 else 1942 return false; 1943 } 1944 return false; 1945 } 1946 1947 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1948 /// amount, otherwise return -1. 1949 /// The ShuffleKind distinguishes between big-endian operations with two 1950 /// different inputs (0), either-endian operations with two identical inputs 1951 /// (1), and little-endian operations with two different inputs (2). For the 1952 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1953 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1954 SelectionDAG &DAG) { 1955 if (N->getValueType(0) != MVT::v16i8) 1956 return -1; 1957 1958 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1959 1960 // Find the first non-undef value in the shuffle mask. 1961 unsigned i; 1962 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1963 /*search*/; 1964 1965 if (i == 16) return -1; // all undef. 1966 1967 // Otherwise, check to see if the rest of the elements are consecutively 1968 // numbered from this value. 1969 unsigned ShiftAmt = SVOp->getMaskElt(i); 1970 if (ShiftAmt < i) return -1; 1971 1972 ShiftAmt -= i; 1973 bool isLE = DAG.getDataLayout().isLittleEndian(); 1974 1975 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1976 // Check the rest of the elements to see if they are consecutive. 1977 for (++i; i != 16; ++i) 1978 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1979 return -1; 1980 } else if (ShuffleKind == 1) { 1981 // Check the rest of the elements to see if they are consecutive. 1982 for (++i; i != 16; ++i) 1983 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1984 return -1; 1985 } else 1986 return -1; 1987 1988 if (isLE) 1989 ShiftAmt = 16 - ShiftAmt; 1990 1991 return ShiftAmt; 1992 } 1993 1994 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1995 /// specifies a splat of a single element that is suitable for input to 1996 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1997 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1998 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1999 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 2000 2001 // The consecutive indices need to specify an element, not part of two 2002 // different elements. So abandon ship early if this isn't the case. 2003 if (N->getMaskElt(0) % EltSize != 0) 2004 return false; 2005 2006 // This is a splat operation if each element of the permute is the same, and 2007 // if the value doesn't reference the second vector. 2008 unsigned ElementBase = N->getMaskElt(0); 2009 2010 // FIXME: Handle UNDEF elements too! 2011 if (ElementBase >= 16) 2012 return false; 2013 2014 // Check that the indices are consecutive, in the case of a multi-byte element 2015 // splatted with a v16i8 mask. 2016 for (unsigned i = 1; i != EltSize; ++i) 2017 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 2018 return false; 2019 2020 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 2021 if (N->getMaskElt(i) < 0) continue; 2022 for (unsigned j = 0; j != EltSize; ++j) 2023 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 2024 return false; 2025 } 2026 return true; 2027 } 2028 2029 /// Check that the mask is shuffling N byte elements. Within each N byte 2030 /// element of the mask, the indices could be either in increasing or 2031 /// decreasing order as long as they are consecutive. 2032 /// \param[in] N the shuffle vector SD Node to analyze 2033 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 2034 /// Word/DoubleWord/QuadWord). 2035 /// \param[in] StepLen the delta indices number among the N byte element, if 2036 /// the mask is in increasing/decreasing order then it is 1/-1. 2037 /// \return true iff the mask is shuffling N byte elements. 2038 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 2039 int StepLen) { 2040 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 2041 "Unexpected element width."); 2042 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 2043 2044 unsigned NumOfElem = 16 / Width; 2045 unsigned MaskVal[16]; // Width is never greater than 16 2046 for (unsigned i = 0; i < NumOfElem; ++i) { 2047 MaskVal[0] = N->getMaskElt(i * Width); 2048 if ((StepLen == 1) && (MaskVal[0] % Width)) { 2049 return false; 2050 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2051 return false; 2052 } 2053 2054 for (unsigned int j = 1; j < Width; ++j) { 2055 MaskVal[j] = N->getMaskElt(i * Width + j); 2056 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2057 return false; 2058 } 2059 } 2060 } 2061 2062 return true; 2063 } 2064 2065 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2066 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2067 if (!isNByteElemShuffleMask(N, 4, 1)) 2068 return false; 2069 2070 // Now we look at mask elements 0,4,8,12 2071 unsigned M0 = N->getMaskElt(0) / 4; 2072 unsigned M1 = N->getMaskElt(4) / 4; 2073 unsigned M2 = N->getMaskElt(8) / 4; 2074 unsigned M3 = N->getMaskElt(12) / 4; 2075 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2076 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2077 2078 // Below, let H and L be arbitrary elements of the shuffle mask 2079 // where H is in the range [4,7] and L is in the range [0,3]. 2080 // H, 1, 2, 3 or L, 5, 6, 7 2081 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2082 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2083 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2084 InsertAtByte = IsLE ? 12 : 0; 2085 Swap = M0 < 4; 2086 return true; 2087 } 2088 // 0, H, 2, 3 or 4, L, 6, 7 2089 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2090 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2091 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2092 InsertAtByte = IsLE ? 8 : 4; 2093 Swap = M1 < 4; 2094 return true; 2095 } 2096 // 0, 1, H, 3 or 4, 5, L, 7 2097 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2098 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2099 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2100 InsertAtByte = IsLE ? 4 : 8; 2101 Swap = M2 < 4; 2102 return true; 2103 } 2104 // 0, 1, 2, H or 4, 5, 6, L 2105 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2106 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2107 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2108 InsertAtByte = IsLE ? 0 : 12; 2109 Swap = M3 < 4; 2110 return true; 2111 } 2112 2113 // If both vector operands for the shuffle are the same vector, the mask will 2114 // contain only elements from the first one and the second one will be undef. 2115 if (N->getOperand(1).isUndef()) { 2116 ShiftElts = 0; 2117 Swap = true; 2118 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2119 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2120 InsertAtByte = IsLE ? 12 : 0; 2121 return true; 2122 } 2123 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2124 InsertAtByte = IsLE ? 8 : 4; 2125 return true; 2126 } 2127 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2128 InsertAtByte = IsLE ? 4 : 8; 2129 return true; 2130 } 2131 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2132 InsertAtByte = IsLE ? 0 : 12; 2133 return true; 2134 } 2135 } 2136 2137 return false; 2138 } 2139 2140 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2141 bool &Swap, bool IsLE) { 2142 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2143 // Ensure each byte index of the word is consecutive. 2144 if (!isNByteElemShuffleMask(N, 4, 1)) 2145 return false; 2146 2147 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2148 unsigned M0 = N->getMaskElt(0) / 4; 2149 unsigned M1 = N->getMaskElt(4) / 4; 2150 unsigned M2 = N->getMaskElt(8) / 4; 2151 unsigned M3 = N->getMaskElt(12) / 4; 2152 2153 // If both vector operands for the shuffle are the same vector, the mask will 2154 // contain only elements from the first one and the second one will be undef. 2155 if (N->getOperand(1).isUndef()) { 2156 assert(M0 < 4 && "Indexing into an undef vector?"); 2157 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2158 return false; 2159 2160 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2161 Swap = false; 2162 return true; 2163 } 2164 2165 // Ensure each word index of the ShuffleVector Mask is consecutive. 2166 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2167 return false; 2168 2169 if (IsLE) { 2170 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2171 // Input vectors don't need to be swapped if the leading element 2172 // of the result is one of the 3 left elements of the second vector 2173 // (or if there is no shift to be done at all). 2174 Swap = false; 2175 ShiftElts = (8 - M0) % 8; 2176 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2177 // Input vectors need to be swapped if the leading element 2178 // of the result is one of the 3 left elements of the first vector 2179 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2180 Swap = true; 2181 ShiftElts = (4 - M0) % 4; 2182 } 2183 2184 return true; 2185 } else { // BE 2186 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2187 // Input vectors don't need to be swapped if the leading element 2188 // of the result is one of the 4 elements of the first vector. 2189 Swap = false; 2190 ShiftElts = M0; 2191 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2192 // Input vectors need to be swapped if the leading element 2193 // of the result is one of the 4 elements of the right vector. 2194 Swap = true; 2195 ShiftElts = M0 - 4; 2196 } 2197 2198 return true; 2199 } 2200 } 2201 2202 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2203 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2204 2205 if (!isNByteElemShuffleMask(N, Width, -1)) 2206 return false; 2207 2208 for (int i = 0; i < 16; i += Width) 2209 if (N->getMaskElt(i) != i + Width - 1) 2210 return false; 2211 2212 return true; 2213 } 2214 2215 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2216 return isXXBRShuffleMaskHelper(N, 2); 2217 } 2218 2219 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2220 return isXXBRShuffleMaskHelper(N, 4); 2221 } 2222 2223 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2224 return isXXBRShuffleMaskHelper(N, 8); 2225 } 2226 2227 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2228 return isXXBRShuffleMaskHelper(N, 16); 2229 } 2230 2231 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2232 /// if the inputs to the instruction should be swapped and set \p DM to the 2233 /// value for the immediate. 2234 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2235 /// AND element 0 of the result comes from the first input (LE) or second input 2236 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2237 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2238 /// mask. 2239 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2240 bool &Swap, bool IsLE) { 2241 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2242 2243 // Ensure each byte index of the double word is consecutive. 2244 if (!isNByteElemShuffleMask(N, 8, 1)) 2245 return false; 2246 2247 unsigned M0 = N->getMaskElt(0) / 8; 2248 unsigned M1 = N->getMaskElt(8) / 8; 2249 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2250 2251 // If both vector operands for the shuffle are the same vector, the mask will 2252 // contain only elements from the first one and the second one will be undef. 2253 if (N->getOperand(1).isUndef()) { 2254 if ((M0 | M1) < 2) { 2255 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2256 Swap = false; 2257 return true; 2258 } else 2259 return false; 2260 } 2261 2262 if (IsLE) { 2263 if (M0 > 1 && M1 < 2) { 2264 Swap = false; 2265 } else if (M0 < 2 && M1 > 1) { 2266 M0 = (M0 + 2) % 4; 2267 M1 = (M1 + 2) % 4; 2268 Swap = true; 2269 } else 2270 return false; 2271 2272 // Note: if control flow comes here that means Swap is already set above 2273 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2274 return true; 2275 } else { // BE 2276 if (M0 < 2 && M1 > 1) { 2277 Swap = false; 2278 } else if (M0 > 1 && M1 < 2) { 2279 M0 = (M0 + 2) % 4; 2280 M1 = (M1 + 2) % 4; 2281 Swap = true; 2282 } else 2283 return false; 2284 2285 // Note: if control flow comes here that means Swap is already set above 2286 DM = (M0 << 1) + (M1 & 1); 2287 return true; 2288 } 2289 } 2290 2291 2292 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2293 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2294 /// elements are counted from the left of the vector register). 2295 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2296 SelectionDAG &DAG) { 2297 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2298 assert(isSplatShuffleMask(SVOp, EltSize)); 2299 if (DAG.getDataLayout().isLittleEndian()) 2300 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2301 else 2302 return SVOp->getMaskElt(0) / EltSize; 2303 } 2304 2305 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2306 /// by using a vspltis[bhw] instruction of the specified element size, return 2307 /// the constant being splatted. The ByteSize field indicates the number of 2308 /// bytes of each element [124] -> [bhw]. 2309 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2310 SDValue OpVal(nullptr, 0); 2311 2312 // If ByteSize of the splat is bigger than the element size of the 2313 // build_vector, then we have a case where we are checking for a splat where 2314 // multiple elements of the buildvector are folded together into a single 2315 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2316 unsigned EltSize = 16/N->getNumOperands(); 2317 if (EltSize < ByteSize) { 2318 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2319 SDValue UniquedVals[4]; 2320 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2321 2322 // See if all of the elements in the buildvector agree across. 2323 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2324 if (N->getOperand(i).isUndef()) continue; 2325 // If the element isn't a constant, bail fully out. 2326 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2327 2328 if (!UniquedVals[i&(Multiple-1)].getNode()) 2329 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2330 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2331 return SDValue(); // no match. 2332 } 2333 2334 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2335 // either constant or undef values that are identical for each chunk. See 2336 // if these chunks can form into a larger vspltis*. 2337 2338 // Check to see if all of the leading entries are either 0 or -1. If 2339 // neither, then this won't fit into the immediate field. 2340 bool LeadingZero = true; 2341 bool LeadingOnes = true; 2342 for (unsigned i = 0; i != Multiple-1; ++i) { 2343 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2344 2345 LeadingZero &= isNullConstant(UniquedVals[i]); 2346 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2347 } 2348 // Finally, check the least significant entry. 2349 if (LeadingZero) { 2350 if (!UniquedVals[Multiple-1].getNode()) 2351 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2352 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2353 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2354 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2355 } 2356 if (LeadingOnes) { 2357 if (!UniquedVals[Multiple-1].getNode()) 2358 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2359 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2360 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2361 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2362 } 2363 2364 return SDValue(); 2365 } 2366 2367 // Check to see if this buildvec has a single non-undef value in its elements. 2368 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2369 if (N->getOperand(i).isUndef()) continue; 2370 if (!OpVal.getNode()) 2371 OpVal = N->getOperand(i); 2372 else if (OpVal != N->getOperand(i)) 2373 return SDValue(); 2374 } 2375 2376 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2377 2378 unsigned ValSizeInBytes = EltSize; 2379 uint64_t Value = 0; 2380 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2381 Value = CN->getZExtValue(); 2382 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2383 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2384 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2385 } 2386 2387 // If the splat value is larger than the element value, then we can never do 2388 // this splat. The only case that we could fit the replicated bits into our 2389 // immediate field for would be zero, and we prefer to use vxor for it. 2390 if (ValSizeInBytes < ByteSize) return SDValue(); 2391 2392 // If the element value is larger than the splat value, check if it consists 2393 // of a repeated bit pattern of size ByteSize. 2394 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2395 return SDValue(); 2396 2397 // Properly sign extend the value. 2398 int MaskVal = SignExtend32(Value, ByteSize * 8); 2399 2400 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2401 if (MaskVal == 0) return SDValue(); 2402 2403 // Finally, if this value fits in a 5 bit sext field, return it 2404 if (SignExtend32<5>(MaskVal) == MaskVal) 2405 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2406 return SDValue(); 2407 } 2408 2409 //===----------------------------------------------------------------------===// 2410 // Addressing Mode Selection 2411 //===----------------------------------------------------------------------===// 2412 2413 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2414 /// or 64-bit immediate, and if the value can be accurately represented as a 2415 /// sign extension from a 16-bit value. If so, this returns true and the 2416 /// immediate. 2417 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2418 if (!isa<ConstantSDNode>(N)) 2419 return false; 2420 2421 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2422 if (N->getValueType(0) == MVT::i32) 2423 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2424 else 2425 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2426 } 2427 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2428 return isIntS16Immediate(Op.getNode(), Imm); 2429 } 2430 2431 2432 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2433 /// be represented as an indexed [r+r] operation. 2434 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2435 SDValue &Index, 2436 SelectionDAG &DAG) const { 2437 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2438 UI != E; ++UI) { 2439 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2440 if (Memop->getMemoryVT() == MVT::f64) { 2441 Base = N.getOperand(0); 2442 Index = N.getOperand(1); 2443 return true; 2444 } 2445 } 2446 } 2447 return false; 2448 } 2449 2450 /// isIntS34Immediate - This method tests if value of node given can be 2451 /// accurately represented as a sign extension from a 34-bit value. If so, 2452 /// this returns true and the immediate. 2453 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) { 2454 if (!isa<ConstantSDNode>(N)) 2455 return false; 2456 2457 Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2458 return isInt<34>(Imm); 2459 } 2460 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) { 2461 return isIntS34Immediate(Op.getNode(), Imm); 2462 } 2463 2464 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2465 /// can be represented as an indexed [r+r] operation. Returns false if it 2466 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2467 /// non-zero and N can be represented by a base register plus a signed 16-bit 2468 /// displacement, make a more precise judgement by checking (displacement % \p 2469 /// EncodingAlignment). 2470 bool PPCTargetLowering::SelectAddressRegReg( 2471 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2472 MaybeAlign EncodingAlignment) const { 2473 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2474 // a [pc+imm]. 2475 if (SelectAddressPCRel(N, Base)) 2476 return false; 2477 2478 int16_t Imm = 0; 2479 if (N.getOpcode() == ISD::ADD) { 2480 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2481 // SPE load/store can only handle 8-bit offsets. 2482 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2483 return true; 2484 if (isIntS16Immediate(N.getOperand(1), Imm) && 2485 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2486 return false; // r+i 2487 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2488 return false; // r+i 2489 2490 Base = N.getOperand(0); 2491 Index = N.getOperand(1); 2492 return true; 2493 } else if (N.getOpcode() == ISD::OR) { 2494 if (isIntS16Immediate(N.getOperand(1), Imm) && 2495 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2496 return false; // r+i can fold it if we can. 2497 2498 // If this is an or of disjoint bitfields, we can codegen this as an add 2499 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2500 // disjoint. 2501 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2502 2503 if (LHSKnown.Zero.getBoolValue()) { 2504 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2505 // If all of the bits are known zero on the LHS or RHS, the add won't 2506 // carry. 2507 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2508 Base = N.getOperand(0); 2509 Index = N.getOperand(1); 2510 return true; 2511 } 2512 } 2513 } 2514 2515 return false; 2516 } 2517 2518 // If we happen to be doing an i64 load or store into a stack slot that has 2519 // less than a 4-byte alignment, then the frame-index elimination may need to 2520 // use an indexed load or store instruction (because the offset may not be a 2521 // multiple of 4). The extra register needed to hold the offset comes from the 2522 // register scavenger, and it is possible that the scavenger will need to use 2523 // an emergency spill slot. As a result, we need to make sure that a spill slot 2524 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2525 // stack slot. 2526 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2527 // FIXME: This does not handle the LWA case. 2528 if (VT != MVT::i64) 2529 return; 2530 2531 // NOTE: We'll exclude negative FIs here, which come from argument 2532 // lowering, because there are no known test cases triggering this problem 2533 // using packed structures (or similar). We can remove this exclusion if 2534 // we find such a test case. The reason why this is so test-case driven is 2535 // because this entire 'fixup' is only to prevent crashes (from the 2536 // register scavenger) on not-really-valid inputs. For example, if we have: 2537 // %a = alloca i1 2538 // %b = bitcast i1* %a to i64* 2539 // store i64* a, i64 b 2540 // then the store should really be marked as 'align 1', but is not. If it 2541 // were marked as 'align 1' then the indexed form would have been 2542 // instruction-selected initially, and the problem this 'fixup' is preventing 2543 // won't happen regardless. 2544 if (FrameIdx < 0) 2545 return; 2546 2547 MachineFunction &MF = DAG.getMachineFunction(); 2548 MachineFrameInfo &MFI = MF.getFrameInfo(); 2549 2550 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2551 return; 2552 2553 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2554 FuncInfo->setHasNonRISpills(); 2555 } 2556 2557 /// Returns true if the address N can be represented by a base register plus 2558 /// a signed 16-bit displacement [r+imm], and if it is not better 2559 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2560 /// displacements that are multiples of that value. 2561 bool PPCTargetLowering::SelectAddressRegImm( 2562 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2563 MaybeAlign EncodingAlignment) const { 2564 // FIXME dl should come from parent load or store, not from address 2565 SDLoc dl(N); 2566 2567 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2568 // a [pc+imm]. 2569 if (SelectAddressPCRel(N, Base)) 2570 return false; 2571 2572 // If this can be more profitably realized as r+r, fail. 2573 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2574 return false; 2575 2576 if (N.getOpcode() == ISD::ADD) { 2577 int16_t imm = 0; 2578 if (isIntS16Immediate(N.getOperand(1), imm) && 2579 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2580 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2581 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2582 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2583 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2584 } else { 2585 Base = N.getOperand(0); 2586 } 2587 return true; // [r+i] 2588 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2589 // Match LOAD (ADD (X, Lo(G))). 2590 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2591 && "Cannot handle constant offsets yet!"); 2592 Disp = N.getOperand(1).getOperand(0); // The global address. 2593 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2594 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2595 Disp.getOpcode() == ISD::TargetConstantPool || 2596 Disp.getOpcode() == ISD::TargetJumpTable); 2597 Base = N.getOperand(0); 2598 return true; // [&g+r] 2599 } 2600 } else if (N.getOpcode() == ISD::OR) { 2601 int16_t imm = 0; 2602 if (isIntS16Immediate(N.getOperand(1), imm) && 2603 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2604 // If this is an or of disjoint bitfields, we can codegen this as an add 2605 // (for better address arithmetic) if the LHS and RHS of the OR are 2606 // provably disjoint. 2607 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2608 2609 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2610 // If all of the bits are known zero on the LHS or RHS, the add won't 2611 // carry. 2612 if (FrameIndexSDNode *FI = 2613 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2614 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2615 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2616 } else { 2617 Base = N.getOperand(0); 2618 } 2619 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2620 return true; 2621 } 2622 } 2623 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2624 // Loading from a constant address. 2625 2626 // If this address fits entirely in a 16-bit sext immediate field, codegen 2627 // this as "d, 0" 2628 int16_t Imm; 2629 if (isIntS16Immediate(CN, Imm) && 2630 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2631 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2632 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2633 CN->getValueType(0)); 2634 return true; 2635 } 2636 2637 // Handle 32-bit sext immediates with LIS + addr mode. 2638 if ((CN->getValueType(0) == MVT::i32 || 2639 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2640 (!EncodingAlignment || 2641 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2642 int Addr = (int)CN->getZExtValue(); 2643 2644 // Otherwise, break this down into an LIS + disp. 2645 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2646 2647 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2648 MVT::i32); 2649 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2650 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2651 return true; 2652 } 2653 } 2654 2655 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2656 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2657 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2658 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2659 } else 2660 Base = N; 2661 return true; // [r+0] 2662 } 2663 2664 /// Similar to the 16-bit case but for instructions that take a 34-bit 2665 /// displacement field (prefixed loads/stores). 2666 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp, 2667 SDValue &Base, 2668 SelectionDAG &DAG) const { 2669 // Only on 64-bit targets. 2670 if (N.getValueType() != MVT::i64) 2671 return false; 2672 2673 SDLoc dl(N); 2674 int64_t Imm = 0; 2675 2676 if (N.getOpcode() == ISD::ADD) { 2677 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2678 return false; 2679 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2680 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2681 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2682 else 2683 Base = N.getOperand(0); 2684 return true; 2685 } 2686 2687 if (N.getOpcode() == ISD::OR) { 2688 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2689 return false; 2690 // If this is an or of disjoint bitfields, we can codegen this as an add 2691 // (for better address arithmetic) if the LHS and RHS of the OR are 2692 // provably disjoint. 2693 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2694 if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL) 2695 return false; 2696 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2697 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2698 else 2699 Base = N.getOperand(0); 2700 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2701 return true; 2702 } 2703 2704 if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const. 2705 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2706 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 2707 return true; 2708 } 2709 2710 return false; 2711 } 2712 2713 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2714 /// represented as an indexed [r+r] operation. 2715 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2716 SDValue &Index, 2717 SelectionDAG &DAG) const { 2718 // Check to see if we can easily represent this as an [r+r] address. This 2719 // will fail if it thinks that the address is more profitably represented as 2720 // reg+imm, e.g. where imm = 0. 2721 if (SelectAddressRegReg(N, Base, Index, DAG)) 2722 return true; 2723 2724 // If the address is the result of an add, we will utilize the fact that the 2725 // address calculation includes an implicit add. However, we can reduce 2726 // register pressure if we do not materialize a constant just for use as the 2727 // index register. We only get rid of the add if it is not an add of a 2728 // value and a 16-bit signed constant and both have a single use. 2729 int16_t imm = 0; 2730 if (N.getOpcode() == ISD::ADD && 2731 (!isIntS16Immediate(N.getOperand(1), imm) || 2732 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2733 Base = N.getOperand(0); 2734 Index = N.getOperand(1); 2735 return true; 2736 } 2737 2738 // Otherwise, do it the hard way, using R0 as the base register. 2739 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2740 N.getValueType()); 2741 Index = N; 2742 return true; 2743 } 2744 2745 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2746 Ty *PCRelCand = dyn_cast<Ty>(N); 2747 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2748 } 2749 2750 /// Returns true if this address is a PC Relative address. 2751 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2752 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2753 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2754 // This is a materialize PC Relative node. Always select this as PC Relative. 2755 Base = N; 2756 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2757 return true; 2758 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2759 isValidPCRelNode<GlobalAddressSDNode>(N) || 2760 isValidPCRelNode<JumpTableSDNode>(N) || 2761 isValidPCRelNode<BlockAddressSDNode>(N)) 2762 return true; 2763 return false; 2764 } 2765 2766 /// Returns true if we should use a direct load into vector instruction 2767 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2768 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2769 2770 // If there are any other uses other than scalar to vector, then we should 2771 // keep it as a scalar load -> direct move pattern to prevent multiple 2772 // loads. 2773 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2774 if (!LD) 2775 return false; 2776 2777 EVT MemVT = LD->getMemoryVT(); 2778 if (!MemVT.isSimple()) 2779 return false; 2780 switch(MemVT.getSimpleVT().SimpleTy) { 2781 case MVT::i64: 2782 break; 2783 case MVT::i32: 2784 if (!ST.hasP8Vector()) 2785 return false; 2786 break; 2787 case MVT::i16: 2788 case MVT::i8: 2789 if (!ST.hasP9Vector()) 2790 return false; 2791 break; 2792 default: 2793 return false; 2794 } 2795 2796 SDValue LoadedVal(N, 0); 2797 if (!LoadedVal.hasOneUse()) 2798 return false; 2799 2800 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2801 UI != UE; ++UI) 2802 if (UI.getUse().get().getResNo() == 0 && 2803 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2804 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2805 return false; 2806 2807 return true; 2808 } 2809 2810 /// getPreIndexedAddressParts - returns true by value, base pointer and 2811 /// offset pointer and addressing mode by reference if the node's address 2812 /// can be legally represented as pre-indexed load / store address. 2813 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2814 SDValue &Offset, 2815 ISD::MemIndexedMode &AM, 2816 SelectionDAG &DAG) const { 2817 if (DisablePPCPreinc) return false; 2818 2819 bool isLoad = true; 2820 SDValue Ptr; 2821 EVT VT; 2822 unsigned Alignment; 2823 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2824 Ptr = LD->getBasePtr(); 2825 VT = LD->getMemoryVT(); 2826 Alignment = LD->getAlignment(); 2827 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2828 Ptr = ST->getBasePtr(); 2829 VT = ST->getMemoryVT(); 2830 Alignment = ST->getAlignment(); 2831 isLoad = false; 2832 } else 2833 return false; 2834 2835 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2836 // instructions because we can fold these into a more efficient instruction 2837 // instead, (such as LXSD). 2838 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2839 return false; 2840 } 2841 2842 // PowerPC doesn't have preinc load/store instructions for vectors 2843 if (VT.isVector()) 2844 return false; 2845 2846 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2847 // Common code will reject creating a pre-inc form if the base pointer 2848 // is a frame index, or if N is a store and the base pointer is either 2849 // the same as or a predecessor of the value being stored. Check for 2850 // those situations here, and try with swapped Base/Offset instead. 2851 bool Swap = false; 2852 2853 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2854 Swap = true; 2855 else if (!isLoad) { 2856 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2857 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2858 Swap = true; 2859 } 2860 2861 if (Swap) 2862 std::swap(Base, Offset); 2863 2864 AM = ISD::PRE_INC; 2865 return true; 2866 } 2867 2868 // LDU/STU can only handle immediates that are a multiple of 4. 2869 if (VT != MVT::i64) { 2870 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 2871 return false; 2872 } else { 2873 // LDU/STU need an address with at least 4-byte alignment. 2874 if (Alignment < 4) 2875 return false; 2876 2877 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 2878 return false; 2879 } 2880 2881 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2882 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2883 // sext i32 to i64 when addr mode is r+i. 2884 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2885 LD->getExtensionType() == ISD::SEXTLOAD && 2886 isa<ConstantSDNode>(Offset)) 2887 return false; 2888 } 2889 2890 AM = ISD::PRE_INC; 2891 return true; 2892 } 2893 2894 //===----------------------------------------------------------------------===// 2895 // LowerOperation implementation 2896 //===----------------------------------------------------------------------===// 2897 2898 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2899 /// and LoOpFlags to the target MO flags. 2900 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2901 unsigned &HiOpFlags, unsigned &LoOpFlags, 2902 const GlobalValue *GV = nullptr) { 2903 HiOpFlags = PPCII::MO_HA; 2904 LoOpFlags = PPCII::MO_LO; 2905 2906 // Don't use the pic base if not in PIC relocation model. 2907 if (IsPIC) { 2908 HiOpFlags |= PPCII::MO_PIC_FLAG; 2909 LoOpFlags |= PPCII::MO_PIC_FLAG; 2910 } 2911 } 2912 2913 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2914 SelectionDAG &DAG) { 2915 SDLoc DL(HiPart); 2916 EVT PtrVT = HiPart.getValueType(); 2917 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2918 2919 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2920 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2921 2922 // With PIC, the first instruction is actually "GR+hi(&G)". 2923 if (isPIC) 2924 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2925 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2926 2927 // Generate non-pic code that has direct accesses to the constant pool. 2928 // The address of the global is just (hi(&g)+lo(&g)). 2929 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2930 } 2931 2932 static void setUsesTOCBasePtr(MachineFunction &MF) { 2933 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2934 FuncInfo->setUsesTOCBasePtr(); 2935 } 2936 2937 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2938 setUsesTOCBasePtr(DAG.getMachineFunction()); 2939 } 2940 2941 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2942 SDValue GA) const { 2943 const bool Is64Bit = Subtarget.isPPC64(); 2944 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2945 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2946 : Subtarget.isAIXABI() 2947 ? DAG.getRegister(PPC::R2, VT) 2948 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2949 SDValue Ops[] = { GA, Reg }; 2950 return DAG.getMemIntrinsicNode( 2951 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2952 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 2953 MachineMemOperand::MOLoad); 2954 } 2955 2956 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2957 SelectionDAG &DAG) const { 2958 EVT PtrVT = Op.getValueType(); 2959 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2960 const Constant *C = CP->getConstVal(); 2961 2962 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2963 // The actual address of the GlobalValue is stored in the TOC. 2964 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2965 if (Subtarget.isUsingPCRelativeCalls()) { 2966 SDLoc DL(CP); 2967 EVT Ty = getPointerTy(DAG.getDataLayout()); 2968 SDValue ConstPool = DAG.getTargetConstantPool( 2969 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 2970 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 2971 } 2972 setUsesTOCBasePtr(DAG); 2973 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 2974 return getTOCEntry(DAG, SDLoc(CP), GA); 2975 } 2976 2977 unsigned MOHiFlag, MOLoFlag; 2978 bool IsPIC = isPositionIndependent(); 2979 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2980 2981 if (IsPIC && Subtarget.isSVR4ABI()) { 2982 SDValue GA = 2983 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 2984 return getTOCEntry(DAG, SDLoc(CP), GA); 2985 } 2986 2987 SDValue CPIHi = 2988 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 2989 SDValue CPILo = 2990 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 2991 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2992 } 2993 2994 // For 64-bit PowerPC, prefer the more compact relative encodings. 2995 // This trades 32 bits per jump table entry for one or two instructions 2996 // on the jump site. 2997 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2998 if (isJumpTableRelative()) 2999 return MachineJumpTableInfo::EK_LabelDifference32; 3000 3001 return TargetLowering::getJumpTableEncoding(); 3002 } 3003 3004 bool PPCTargetLowering::isJumpTableRelative() const { 3005 if (UseAbsoluteJumpTables) 3006 return false; 3007 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 3008 return true; 3009 return TargetLowering::isJumpTableRelative(); 3010 } 3011 3012 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 3013 SelectionDAG &DAG) const { 3014 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3015 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3016 3017 switch (getTargetMachine().getCodeModel()) { 3018 case CodeModel::Small: 3019 case CodeModel::Medium: 3020 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3021 default: 3022 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 3023 getPointerTy(DAG.getDataLayout())); 3024 } 3025 } 3026 3027 const MCExpr * 3028 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 3029 unsigned JTI, 3030 MCContext &Ctx) const { 3031 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3032 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3033 3034 switch (getTargetMachine().getCodeModel()) { 3035 case CodeModel::Small: 3036 case CodeModel::Medium: 3037 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3038 default: 3039 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 3040 } 3041 } 3042 3043 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 3044 EVT PtrVT = Op.getValueType(); 3045 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 3046 3047 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3048 if (Subtarget.isUsingPCRelativeCalls()) { 3049 SDLoc DL(JT); 3050 EVT Ty = getPointerTy(DAG.getDataLayout()); 3051 SDValue GA = 3052 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 3053 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3054 return MatAddr; 3055 } 3056 3057 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3058 // The actual address of the GlobalValue is stored in the TOC. 3059 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3060 setUsesTOCBasePtr(DAG); 3061 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3062 return getTOCEntry(DAG, SDLoc(JT), GA); 3063 } 3064 3065 unsigned MOHiFlag, MOLoFlag; 3066 bool IsPIC = isPositionIndependent(); 3067 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3068 3069 if (IsPIC && Subtarget.isSVR4ABI()) { 3070 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 3071 PPCII::MO_PIC_FLAG); 3072 return getTOCEntry(DAG, SDLoc(GA), GA); 3073 } 3074 3075 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3076 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3077 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3078 } 3079 3080 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3081 SelectionDAG &DAG) const { 3082 EVT PtrVT = Op.getValueType(); 3083 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3084 const BlockAddress *BA = BASDN->getBlockAddress(); 3085 3086 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3087 if (Subtarget.isUsingPCRelativeCalls()) { 3088 SDLoc DL(BASDN); 3089 EVT Ty = getPointerTy(DAG.getDataLayout()); 3090 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3091 PPCII::MO_PCREL_FLAG); 3092 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3093 return MatAddr; 3094 } 3095 3096 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3097 // The actual BlockAddress is stored in the TOC. 3098 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3099 setUsesTOCBasePtr(DAG); 3100 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3101 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3102 } 3103 3104 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3105 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3106 return getTOCEntry( 3107 DAG, SDLoc(BASDN), 3108 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3109 3110 unsigned MOHiFlag, MOLoFlag; 3111 bool IsPIC = isPositionIndependent(); 3112 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3113 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3114 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3115 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3116 } 3117 3118 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3119 SelectionDAG &DAG) const { 3120 if (Subtarget.isAIXABI()) 3121 report_fatal_error("TLS is not yet supported on AIX."); 3122 // FIXME: TLS addresses currently use medium model code sequences, 3123 // which is the most useful form. Eventually support for small and 3124 // large models could be added if users need it, at the cost of 3125 // additional complexity. 3126 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3127 if (DAG.getTarget().useEmulatedTLS()) 3128 return LowerToTLSEmulatedModel(GA, DAG); 3129 3130 SDLoc dl(GA); 3131 const GlobalValue *GV = GA->getGlobal(); 3132 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3133 bool is64bit = Subtarget.isPPC64(); 3134 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3135 PICLevel::Level picLevel = M->getPICLevel(); 3136 3137 const TargetMachine &TM = getTargetMachine(); 3138 TLSModel::Model Model = TM.getTLSModel(GV); 3139 3140 if (Model == TLSModel::LocalExec) { 3141 if (Subtarget.isUsingPCRelativeCalls()) { 3142 SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3143 SDValue TGA = DAG.getTargetGlobalAddress( 3144 GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG)); 3145 SDValue MatAddr = 3146 DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); 3147 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); 3148 } 3149 3150 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3151 PPCII::MO_TPREL_HA); 3152 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3153 PPCII::MO_TPREL_LO); 3154 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3155 : DAG.getRegister(PPC::R2, MVT::i32); 3156 3157 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3158 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3159 } 3160 3161 if (Model == TLSModel::InitialExec) { 3162 bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); 3163 SDValue TGA = DAG.getTargetGlobalAddress( 3164 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); 3165 SDValue TGATLS = DAG.getTargetGlobalAddress( 3166 GV, dl, PtrVT, 0, 3167 IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); 3168 SDValue TPOffset; 3169 if (IsPCRel) { 3170 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); 3171 TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, 3172 MachinePointerInfo()); 3173 } else { 3174 SDValue GOTPtr; 3175 if (is64bit) { 3176 setUsesTOCBasePtr(DAG); 3177 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3178 GOTPtr = 3179 DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); 3180 } else { 3181 if (!TM.isPositionIndependent()) 3182 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3183 else if (picLevel == PICLevel::SmallPIC) 3184 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3185 else 3186 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3187 } 3188 TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); 3189 } 3190 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3191 } 3192 3193 if (Model == TLSModel::GeneralDynamic) { 3194 if (Subtarget.isUsingPCRelativeCalls()) { 3195 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3196 PPCII::MO_GOT_TLSGD_PCREL_FLAG); 3197 return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3198 } 3199 3200 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3201 SDValue GOTPtr; 3202 if (is64bit) { 3203 setUsesTOCBasePtr(DAG); 3204 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3205 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3206 GOTReg, TGA); 3207 } else { 3208 if (picLevel == PICLevel::SmallPIC) 3209 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3210 else 3211 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3212 } 3213 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3214 GOTPtr, TGA, TGA); 3215 } 3216 3217 if (Model == TLSModel::LocalDynamic) { 3218 if (Subtarget.isUsingPCRelativeCalls()) { 3219 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3220 PPCII::MO_GOT_TLSLD_PCREL_FLAG); 3221 SDValue MatPCRel = 3222 DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3223 return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); 3224 } 3225 3226 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3227 SDValue GOTPtr; 3228 if (is64bit) { 3229 setUsesTOCBasePtr(DAG); 3230 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3231 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3232 GOTReg, TGA); 3233 } else { 3234 if (picLevel == PICLevel::SmallPIC) 3235 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3236 else 3237 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3238 } 3239 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3240 PtrVT, GOTPtr, TGA, TGA); 3241 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3242 PtrVT, TLSAddr, TGA); 3243 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3244 } 3245 3246 llvm_unreachable("Unknown TLS model!"); 3247 } 3248 3249 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3250 SelectionDAG &DAG) const { 3251 EVT PtrVT = Op.getValueType(); 3252 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3253 SDLoc DL(GSDN); 3254 const GlobalValue *GV = GSDN->getGlobal(); 3255 3256 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3257 // The actual address of the GlobalValue is stored in the TOC. 3258 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3259 if (Subtarget.isUsingPCRelativeCalls()) { 3260 EVT Ty = getPointerTy(DAG.getDataLayout()); 3261 if (isAccessedAsGotIndirect(Op)) { 3262 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3263 PPCII::MO_PCREL_FLAG | 3264 PPCII::MO_GOT_FLAG); 3265 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3266 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3267 MachinePointerInfo()); 3268 return Load; 3269 } else { 3270 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3271 PPCII::MO_PCREL_FLAG); 3272 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3273 } 3274 } 3275 setUsesTOCBasePtr(DAG); 3276 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3277 return getTOCEntry(DAG, DL, GA); 3278 } 3279 3280 unsigned MOHiFlag, MOLoFlag; 3281 bool IsPIC = isPositionIndependent(); 3282 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3283 3284 if (IsPIC && Subtarget.isSVR4ABI()) { 3285 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3286 GSDN->getOffset(), 3287 PPCII::MO_PIC_FLAG); 3288 return getTOCEntry(DAG, DL, GA); 3289 } 3290 3291 SDValue GAHi = 3292 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3293 SDValue GALo = 3294 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3295 3296 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3297 } 3298 3299 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3300 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3301 SDLoc dl(Op); 3302 3303 if (Op.getValueType() == MVT::v2i64) { 3304 // When the operands themselves are v2i64 values, we need to do something 3305 // special because VSX has no underlying comparison operations for these. 3306 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 3307 // Equality can be handled by casting to the legal type for Altivec 3308 // comparisons, everything else needs to be expanded. 3309 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3310 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 3311 DAG.getSetCC(dl, MVT::v4i32, 3312 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 3313 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 3314 CC)); 3315 } 3316 3317 return SDValue(); 3318 } 3319 3320 // We handle most of these in the usual way. 3321 return Op; 3322 } 3323 3324 // If we're comparing for equality to zero, expose the fact that this is 3325 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3326 // fold the new nodes. 3327 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3328 return V; 3329 3330 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3331 // Leave comparisons against 0 and -1 alone for now, since they're usually 3332 // optimized. FIXME: revisit this when we can custom lower all setcc 3333 // optimizations. 3334 if (C->isAllOnesValue() || C->isNullValue()) 3335 return SDValue(); 3336 } 3337 3338 // If we have an integer seteq/setne, turn it into a compare against zero 3339 // by xor'ing the rhs with the lhs, which is faster than setting a 3340 // condition register, reading it back out, and masking the correct bit. The 3341 // normal approach here uses sub to do this instead of xor. Using xor exposes 3342 // the result to other bit-twiddling opportunities. 3343 EVT LHSVT = Op.getOperand(0).getValueType(); 3344 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3345 EVT VT = Op.getValueType(); 3346 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3347 Op.getOperand(1)); 3348 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3349 } 3350 return SDValue(); 3351 } 3352 3353 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3354 SDNode *Node = Op.getNode(); 3355 EVT VT = Node->getValueType(0); 3356 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3357 SDValue InChain = Node->getOperand(0); 3358 SDValue VAListPtr = Node->getOperand(1); 3359 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3360 SDLoc dl(Node); 3361 3362 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3363 3364 // gpr_index 3365 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3366 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3367 InChain = GprIndex.getValue(1); 3368 3369 if (VT == MVT::i64) { 3370 // Check if GprIndex is even 3371 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3372 DAG.getConstant(1, dl, MVT::i32)); 3373 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3374 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3375 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3376 DAG.getConstant(1, dl, MVT::i32)); 3377 // Align GprIndex to be even if it isn't 3378 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3379 GprIndex); 3380 } 3381 3382 // fpr index is 1 byte after gpr 3383 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3384 DAG.getConstant(1, dl, MVT::i32)); 3385 3386 // fpr 3387 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3388 FprPtr, MachinePointerInfo(SV), MVT::i8); 3389 InChain = FprIndex.getValue(1); 3390 3391 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3392 DAG.getConstant(8, dl, MVT::i32)); 3393 3394 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3395 DAG.getConstant(4, dl, MVT::i32)); 3396 3397 // areas 3398 SDValue OverflowArea = 3399 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3400 InChain = OverflowArea.getValue(1); 3401 3402 SDValue RegSaveArea = 3403 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3404 InChain = RegSaveArea.getValue(1); 3405 3406 // select overflow_area if index > 8 3407 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3408 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3409 3410 // adjustment constant gpr_index * 4/8 3411 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3412 VT.isInteger() ? GprIndex : FprIndex, 3413 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3414 MVT::i32)); 3415 3416 // OurReg = RegSaveArea + RegConstant 3417 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3418 RegConstant); 3419 3420 // Floating types are 32 bytes into RegSaveArea 3421 if (VT.isFloatingPoint()) 3422 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3423 DAG.getConstant(32, dl, MVT::i32)); 3424 3425 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3426 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3427 VT.isInteger() ? GprIndex : FprIndex, 3428 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3429 MVT::i32)); 3430 3431 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3432 VT.isInteger() ? VAListPtr : FprPtr, 3433 MachinePointerInfo(SV), MVT::i8); 3434 3435 // determine if we should load from reg_save_area or overflow_area 3436 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3437 3438 // increase overflow_area by 4/8 if gpr/fpr > 8 3439 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3440 DAG.getConstant(VT.isInteger() ? 4 : 8, 3441 dl, MVT::i32)); 3442 3443 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3444 OverflowAreaPlusN); 3445 3446 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3447 MachinePointerInfo(), MVT::i32); 3448 3449 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3450 } 3451 3452 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3453 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3454 3455 // We have to copy the entire va_list struct: 3456 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3457 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3458 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3459 false, true, false, MachinePointerInfo(), 3460 MachinePointerInfo()); 3461 } 3462 3463 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3464 SelectionDAG &DAG) const { 3465 if (Subtarget.isAIXABI()) 3466 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3467 3468 return Op.getOperand(0); 3469 } 3470 3471 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3472 SelectionDAG &DAG) const { 3473 if (Subtarget.isAIXABI()) 3474 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3475 3476 SDValue Chain = Op.getOperand(0); 3477 SDValue Trmp = Op.getOperand(1); // trampoline 3478 SDValue FPtr = Op.getOperand(2); // nested function 3479 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3480 SDLoc dl(Op); 3481 3482 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3483 bool isPPC64 = (PtrVT == MVT::i64); 3484 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3485 3486 TargetLowering::ArgListTy Args; 3487 TargetLowering::ArgListEntry Entry; 3488 3489 Entry.Ty = IntPtrTy; 3490 Entry.Node = Trmp; Args.push_back(Entry); 3491 3492 // TrampSize == (isPPC64 ? 48 : 40); 3493 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3494 isPPC64 ? MVT::i64 : MVT::i32); 3495 Args.push_back(Entry); 3496 3497 Entry.Node = FPtr; Args.push_back(Entry); 3498 Entry.Node = Nest; Args.push_back(Entry); 3499 3500 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3501 TargetLowering::CallLoweringInfo CLI(DAG); 3502 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3503 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3504 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3505 3506 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3507 return CallResult.second; 3508 } 3509 3510 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3511 MachineFunction &MF = DAG.getMachineFunction(); 3512 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3513 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3514 3515 SDLoc dl(Op); 3516 3517 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3518 // vastart just stores the address of the VarArgsFrameIndex slot into the 3519 // memory location argument. 3520 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3521 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3522 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3523 MachinePointerInfo(SV)); 3524 } 3525 3526 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3527 // We suppose the given va_list is already allocated. 3528 // 3529 // typedef struct { 3530 // char gpr; /* index into the array of 8 GPRs 3531 // * stored in the register save area 3532 // * gpr=0 corresponds to r3, 3533 // * gpr=1 to r4, etc. 3534 // */ 3535 // char fpr; /* index into the array of 8 FPRs 3536 // * stored in the register save area 3537 // * fpr=0 corresponds to f1, 3538 // * fpr=1 to f2, etc. 3539 // */ 3540 // char *overflow_arg_area; 3541 // /* location on stack that holds 3542 // * the next overflow argument 3543 // */ 3544 // char *reg_save_area; 3545 // /* where r3:r10 and f1:f8 (if saved) 3546 // * are stored 3547 // */ 3548 // } va_list[1]; 3549 3550 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3551 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3552 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3553 PtrVT); 3554 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3555 PtrVT); 3556 3557 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3558 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3559 3560 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3561 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3562 3563 uint64_t FPROffset = 1; 3564 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3565 3566 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3567 3568 // Store first byte : number of int regs 3569 SDValue firstStore = 3570 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3571 MachinePointerInfo(SV), MVT::i8); 3572 uint64_t nextOffset = FPROffset; 3573 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3574 ConstFPROffset); 3575 3576 // Store second byte : number of float regs 3577 SDValue secondStore = 3578 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3579 MachinePointerInfo(SV, nextOffset), MVT::i8); 3580 nextOffset += StackOffset; 3581 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3582 3583 // Store second word : arguments given on stack 3584 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3585 MachinePointerInfo(SV, nextOffset)); 3586 nextOffset += FrameOffset; 3587 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3588 3589 // Store third word : arguments given in registers 3590 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3591 MachinePointerInfo(SV, nextOffset)); 3592 } 3593 3594 /// FPR - The set of FP registers that should be allocated for arguments 3595 /// on Darwin and AIX. 3596 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3597 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3598 PPC::F11, PPC::F12, PPC::F13}; 3599 3600 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3601 /// the stack. 3602 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3603 unsigned PtrByteSize) { 3604 unsigned ArgSize = ArgVT.getStoreSize(); 3605 if (Flags.isByVal()) 3606 ArgSize = Flags.getByValSize(); 3607 3608 // Round up to multiples of the pointer size, except for array members, 3609 // which are always packed. 3610 if (!Flags.isInConsecutiveRegs()) 3611 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3612 3613 return ArgSize; 3614 } 3615 3616 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3617 /// on the stack. 3618 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3619 ISD::ArgFlagsTy Flags, 3620 unsigned PtrByteSize) { 3621 Align Alignment(PtrByteSize); 3622 3623 // Altivec parameters are padded to a 16 byte boundary. 3624 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3625 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3626 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3627 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3628 Alignment = Align(16); 3629 3630 // ByVal parameters are aligned as requested. 3631 if (Flags.isByVal()) { 3632 auto BVAlign = Flags.getNonZeroByValAlign(); 3633 if (BVAlign > PtrByteSize) { 3634 if (BVAlign.value() % PtrByteSize != 0) 3635 llvm_unreachable( 3636 "ByVal alignment is not a multiple of the pointer size"); 3637 3638 Alignment = BVAlign; 3639 } 3640 } 3641 3642 // Array members are always packed to their original alignment. 3643 if (Flags.isInConsecutiveRegs()) { 3644 // If the array member was split into multiple registers, the first 3645 // needs to be aligned to the size of the full type. (Except for 3646 // ppcf128, which is only aligned as its f64 components.) 3647 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3648 Alignment = Align(OrigVT.getStoreSize()); 3649 else 3650 Alignment = Align(ArgVT.getStoreSize()); 3651 } 3652 3653 return Alignment; 3654 } 3655 3656 /// CalculateStackSlotUsed - Return whether this argument will use its 3657 /// stack slot (instead of being passed in registers). ArgOffset, 3658 /// AvailableFPRs, and AvailableVRs must hold the current argument 3659 /// position, and will be updated to account for this argument. 3660 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 3661 unsigned PtrByteSize, unsigned LinkageSize, 3662 unsigned ParamAreaSize, unsigned &ArgOffset, 3663 unsigned &AvailableFPRs, 3664 unsigned &AvailableVRs) { 3665 bool UseMemory = false; 3666 3667 // Respect alignment of argument on the stack. 3668 Align Alignment = 3669 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3670 ArgOffset = alignTo(ArgOffset, Alignment); 3671 // If there's no space left in the argument save area, we must 3672 // use memory (this check also catches zero-sized arguments). 3673 if (ArgOffset >= LinkageSize + ParamAreaSize) 3674 UseMemory = true; 3675 3676 // Allocate argument on the stack. 3677 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3678 if (Flags.isInConsecutiveRegsLast()) 3679 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3680 // If we overran the argument save area, we must use memory 3681 // (this check catches arguments passed partially in memory) 3682 if (ArgOffset > LinkageSize + ParamAreaSize) 3683 UseMemory = true; 3684 3685 // However, if the argument is actually passed in an FPR or a VR, 3686 // we don't use memory after all. 3687 if (!Flags.isByVal()) { 3688 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 3689 if (AvailableFPRs > 0) { 3690 --AvailableFPRs; 3691 return false; 3692 } 3693 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3694 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3695 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3696 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3697 if (AvailableVRs > 0) { 3698 --AvailableVRs; 3699 return false; 3700 } 3701 } 3702 3703 return UseMemory; 3704 } 3705 3706 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3707 /// ensure minimum alignment required for target. 3708 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3709 unsigned NumBytes) { 3710 return alignTo(NumBytes, Lowering->getStackAlign()); 3711 } 3712 3713 SDValue PPCTargetLowering::LowerFormalArguments( 3714 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3715 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3716 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3717 if (Subtarget.isAIXABI()) 3718 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3719 InVals); 3720 if (Subtarget.is64BitELFABI()) 3721 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3722 InVals); 3723 assert(Subtarget.is32BitELFABI()); 3724 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3725 InVals); 3726 } 3727 3728 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3729 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3730 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3731 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3732 3733 // 32-bit SVR4 ABI Stack Frame Layout: 3734 // +-----------------------------------+ 3735 // +--> | Back chain | 3736 // | +-----------------------------------+ 3737 // | | Floating-point register save area | 3738 // | +-----------------------------------+ 3739 // | | General register save area | 3740 // | +-----------------------------------+ 3741 // | | CR save word | 3742 // | +-----------------------------------+ 3743 // | | VRSAVE save word | 3744 // | +-----------------------------------+ 3745 // | | Alignment padding | 3746 // | +-----------------------------------+ 3747 // | | Vector register save area | 3748 // | +-----------------------------------+ 3749 // | | Local variable space | 3750 // | +-----------------------------------+ 3751 // | | Parameter list area | 3752 // | +-----------------------------------+ 3753 // | | LR save word | 3754 // | +-----------------------------------+ 3755 // SP--> +--- | Back chain | 3756 // +-----------------------------------+ 3757 // 3758 // Specifications: 3759 // System V Application Binary Interface PowerPC Processor Supplement 3760 // AltiVec Technology Programming Interface Manual 3761 3762 MachineFunction &MF = DAG.getMachineFunction(); 3763 MachineFrameInfo &MFI = MF.getFrameInfo(); 3764 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3765 3766 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3767 // Potential tail calls could cause overwriting of argument stack slots. 3768 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3769 (CallConv == CallingConv::Fast)); 3770 const Align PtrAlign(4); 3771 3772 // Assign locations to all of the incoming arguments. 3773 SmallVector<CCValAssign, 16> ArgLocs; 3774 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3775 *DAG.getContext()); 3776 3777 // Reserve space for the linkage area on the stack. 3778 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3779 CCInfo.AllocateStack(LinkageSize, PtrAlign); 3780 if (useSoftFloat()) 3781 CCInfo.PreAnalyzeFormalArguments(Ins); 3782 3783 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3784 CCInfo.clearWasPPCF128(); 3785 3786 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3787 CCValAssign &VA = ArgLocs[i]; 3788 3789 // Arguments stored in registers. 3790 if (VA.isRegLoc()) { 3791 const TargetRegisterClass *RC; 3792 EVT ValVT = VA.getValVT(); 3793 3794 switch (ValVT.getSimpleVT().SimpleTy) { 3795 default: 3796 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3797 case MVT::i1: 3798 case MVT::i32: 3799 RC = &PPC::GPRCRegClass; 3800 break; 3801 case MVT::f32: 3802 if (Subtarget.hasP8Vector()) 3803 RC = &PPC::VSSRCRegClass; 3804 else if (Subtarget.hasSPE()) 3805 RC = &PPC::GPRCRegClass; 3806 else 3807 RC = &PPC::F4RCRegClass; 3808 break; 3809 case MVT::f64: 3810 if (Subtarget.hasVSX()) 3811 RC = &PPC::VSFRCRegClass; 3812 else if (Subtarget.hasSPE()) 3813 // SPE passes doubles in GPR pairs. 3814 RC = &PPC::GPRCRegClass; 3815 else 3816 RC = &PPC::F8RCRegClass; 3817 break; 3818 case MVT::v16i8: 3819 case MVT::v8i16: 3820 case MVT::v4i32: 3821 RC = &PPC::VRRCRegClass; 3822 break; 3823 case MVT::v4f32: 3824 RC = &PPC::VRRCRegClass; 3825 break; 3826 case MVT::v2f64: 3827 case MVT::v2i64: 3828 RC = &PPC::VRRCRegClass; 3829 break; 3830 } 3831 3832 SDValue ArgValue; 3833 // Transform the arguments stored in physical registers into 3834 // virtual ones. 3835 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3836 assert(i + 1 < e && "No second half of double precision argument"); 3837 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3838 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3839 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3840 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3841 if (!Subtarget.isLittleEndian()) 3842 std::swap (ArgValueLo, ArgValueHi); 3843 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3844 ArgValueHi); 3845 } else { 3846 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3847 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3848 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3849 if (ValVT == MVT::i1) 3850 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3851 } 3852 3853 InVals.push_back(ArgValue); 3854 } else { 3855 // Argument stored in memory. 3856 assert(VA.isMemLoc()); 3857 3858 // Get the extended size of the argument type in stack 3859 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3860 // Get the actual size of the argument type 3861 unsigned ObjSize = VA.getValVT().getStoreSize(); 3862 unsigned ArgOffset = VA.getLocMemOffset(); 3863 // Stack objects in PPC32 are right justified. 3864 ArgOffset += ArgSize - ObjSize; 3865 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3866 3867 // Create load nodes to retrieve arguments from the stack. 3868 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3869 InVals.push_back( 3870 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3871 } 3872 } 3873 3874 // Assign locations to all of the incoming aggregate by value arguments. 3875 // Aggregates passed by value are stored in the local variable space of the 3876 // caller's stack frame, right above the parameter list area. 3877 SmallVector<CCValAssign, 16> ByValArgLocs; 3878 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3879 ByValArgLocs, *DAG.getContext()); 3880 3881 // Reserve stack space for the allocations in CCInfo. 3882 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 3883 3884 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3885 3886 // Area that is at least reserved in the caller of this function. 3887 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3888 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3889 3890 // Set the size that is at least reserved in caller of this function. Tail 3891 // call optimized function's reserved stack space needs to be aligned so that 3892 // taking the difference between two stack areas will result in an aligned 3893 // stack. 3894 MinReservedArea = 3895 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3896 FuncInfo->setMinReservedArea(MinReservedArea); 3897 3898 SmallVector<SDValue, 8> MemOps; 3899 3900 // If the function takes variable number of arguments, make a frame index for 3901 // the start of the first vararg value... for expansion of llvm.va_start. 3902 if (isVarArg) { 3903 static const MCPhysReg GPArgRegs[] = { 3904 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3905 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3906 }; 3907 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3908 3909 static const MCPhysReg FPArgRegs[] = { 3910 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3911 PPC::F8 3912 }; 3913 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3914 3915 if (useSoftFloat() || hasSPE()) 3916 NumFPArgRegs = 0; 3917 3918 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3919 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3920 3921 // Make room for NumGPArgRegs and NumFPArgRegs. 3922 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3923 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3924 3925 FuncInfo->setVarArgsStackOffset( 3926 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3927 CCInfo.getNextStackOffset(), true)); 3928 3929 FuncInfo->setVarArgsFrameIndex( 3930 MFI.CreateStackObject(Depth, Align(8), false)); 3931 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3932 3933 // The fixed integer arguments of a variadic function are stored to the 3934 // VarArgsFrameIndex on the stack so that they may be loaded by 3935 // dereferencing the result of va_next. 3936 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3937 // Get an existing live-in vreg, or add a new one. 3938 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3939 if (!VReg) 3940 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3941 3942 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3943 SDValue Store = 3944 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3945 MemOps.push_back(Store); 3946 // Increment the address by four for the next argument to store 3947 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3948 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3949 } 3950 3951 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3952 // is set. 3953 // The double arguments are stored to the VarArgsFrameIndex 3954 // on the stack. 3955 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3956 // Get an existing live-in vreg, or add a new one. 3957 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3958 if (!VReg) 3959 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3960 3961 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3962 SDValue Store = 3963 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3964 MemOps.push_back(Store); 3965 // Increment the address by eight for the next argument to store 3966 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3967 PtrVT); 3968 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3969 } 3970 } 3971 3972 if (!MemOps.empty()) 3973 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3974 3975 return Chain; 3976 } 3977 3978 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3979 // value to MVT::i64 and then truncate to the correct register size. 3980 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3981 EVT ObjectVT, SelectionDAG &DAG, 3982 SDValue ArgVal, 3983 const SDLoc &dl) const { 3984 if (Flags.isSExt()) 3985 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3986 DAG.getValueType(ObjectVT)); 3987 else if (Flags.isZExt()) 3988 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3989 DAG.getValueType(ObjectVT)); 3990 3991 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3992 } 3993 3994 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3995 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3996 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3997 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3998 // TODO: add description of PPC stack frame format, or at least some docs. 3999 // 4000 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4001 bool isLittleEndian = Subtarget.isLittleEndian(); 4002 MachineFunction &MF = DAG.getMachineFunction(); 4003 MachineFrameInfo &MFI = MF.getFrameInfo(); 4004 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4005 4006 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4007 "fastcc not supported on varargs functions"); 4008 4009 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4010 // Potential tail calls could cause overwriting of argument stack slots. 4011 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4012 (CallConv == CallingConv::Fast)); 4013 unsigned PtrByteSize = 8; 4014 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4015 4016 static const MCPhysReg GPR[] = { 4017 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4018 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4019 }; 4020 static const MCPhysReg VR[] = { 4021 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4022 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4023 }; 4024 4025 const unsigned Num_GPR_Regs = array_lengthof(GPR); 4026 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4027 const unsigned Num_VR_Regs = array_lengthof(VR); 4028 4029 // Do a first pass over the arguments to determine whether the ABI 4030 // guarantees that our caller has allocated the parameter save area 4031 // on its stack frame. In the ELFv1 ABI, this is always the case; 4032 // in the ELFv2 ABI, it is true if this is a vararg function or if 4033 // any parameter is located in a stack slot. 4034 4035 bool HasParameterArea = !isELFv2ABI || isVarArg; 4036 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 4037 unsigned NumBytes = LinkageSize; 4038 unsigned AvailableFPRs = Num_FPR_Regs; 4039 unsigned AvailableVRs = Num_VR_Regs; 4040 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 4041 if (Ins[i].Flags.isNest()) 4042 continue; 4043 4044 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 4045 PtrByteSize, LinkageSize, ParamAreaSize, 4046 NumBytes, AvailableFPRs, AvailableVRs)) 4047 HasParameterArea = true; 4048 } 4049 4050 // Add DAG nodes to load the arguments or copy them out of registers. On 4051 // entry to a function on PPC, the arguments start after the linkage area, 4052 // although the first ones are often in registers. 4053 4054 unsigned ArgOffset = LinkageSize; 4055 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4056 SmallVector<SDValue, 8> MemOps; 4057 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4058 unsigned CurArgIdx = 0; 4059 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4060 SDValue ArgVal; 4061 bool needsLoad = false; 4062 EVT ObjectVT = Ins[ArgNo].VT; 4063 EVT OrigVT = Ins[ArgNo].ArgVT; 4064 unsigned ObjSize = ObjectVT.getStoreSize(); 4065 unsigned ArgSize = ObjSize; 4066 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4067 if (Ins[ArgNo].isOrigArg()) { 4068 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4069 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4070 } 4071 // We re-align the argument offset for each argument, except when using the 4072 // fast calling convention, when we need to make sure we do that only when 4073 // we'll actually use a stack slot. 4074 unsigned CurArgOffset; 4075 Align Alignment; 4076 auto ComputeArgOffset = [&]() { 4077 /* Respect alignment of argument on the stack. */ 4078 Alignment = 4079 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 4080 ArgOffset = alignTo(ArgOffset, Alignment); 4081 CurArgOffset = ArgOffset; 4082 }; 4083 4084 if (CallConv != CallingConv::Fast) { 4085 ComputeArgOffset(); 4086 4087 /* Compute GPR index associated with argument offset. */ 4088 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4089 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4090 } 4091 4092 // FIXME the codegen can be much improved in some cases. 4093 // We do not have to keep everything in memory. 4094 if (Flags.isByVal()) { 4095 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4096 4097 if (CallConv == CallingConv::Fast) 4098 ComputeArgOffset(); 4099 4100 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4101 ObjSize = Flags.getByValSize(); 4102 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4103 // Empty aggregate parameters do not take up registers. Examples: 4104 // struct { } a; 4105 // union { } b; 4106 // int c[0]; 4107 // etc. However, we have to provide a place-holder in InVals, so 4108 // pretend we have an 8-byte item at the current address for that 4109 // purpose. 4110 if (!ObjSize) { 4111 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4112 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4113 InVals.push_back(FIN); 4114 continue; 4115 } 4116 4117 // Create a stack object covering all stack doublewords occupied 4118 // by the argument. If the argument is (fully or partially) on 4119 // the stack, or if the argument is fully in registers but the 4120 // caller has allocated the parameter save anyway, we can refer 4121 // directly to the caller's stack frame. Otherwise, create a 4122 // local copy in our own frame. 4123 int FI; 4124 if (HasParameterArea || 4125 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4126 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4127 else 4128 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4129 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4130 4131 // Handle aggregates smaller than 8 bytes. 4132 if (ObjSize < PtrByteSize) { 4133 // The value of the object is its address, which differs from the 4134 // address of the enclosing doubleword on big-endian systems. 4135 SDValue Arg = FIN; 4136 if (!isLittleEndian) { 4137 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4138 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4139 } 4140 InVals.push_back(Arg); 4141 4142 if (GPR_idx != Num_GPR_Regs) { 4143 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4144 FuncInfo->addLiveInAttr(VReg, Flags); 4145 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4146 SDValue Store; 4147 4148 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 4149 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 4150 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 4151 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4152 MachinePointerInfo(&*FuncArg), ObjType); 4153 } else { 4154 // For sizes that don't fit a truncating store (3, 5, 6, 7), 4155 // store the whole register as-is to the parameter save area 4156 // slot. 4157 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4158 MachinePointerInfo(&*FuncArg)); 4159 } 4160 4161 MemOps.push_back(Store); 4162 } 4163 // Whether we copied from a register or not, advance the offset 4164 // into the parameter save area by a full doubleword. 4165 ArgOffset += PtrByteSize; 4166 continue; 4167 } 4168 4169 // The value of the object is its address, which is the address of 4170 // its first stack doubleword. 4171 InVals.push_back(FIN); 4172 4173 // Store whatever pieces of the object are in registers to memory. 4174 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4175 if (GPR_idx == Num_GPR_Regs) 4176 break; 4177 4178 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4179 FuncInfo->addLiveInAttr(VReg, Flags); 4180 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4181 SDValue Addr = FIN; 4182 if (j) { 4183 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4184 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4185 } 4186 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4187 MachinePointerInfo(&*FuncArg, j)); 4188 MemOps.push_back(Store); 4189 ++GPR_idx; 4190 } 4191 ArgOffset += ArgSize; 4192 continue; 4193 } 4194 4195 switch (ObjectVT.getSimpleVT().SimpleTy) { 4196 default: llvm_unreachable("Unhandled argument type!"); 4197 case MVT::i1: 4198 case MVT::i32: 4199 case MVT::i64: 4200 if (Flags.isNest()) { 4201 // The 'nest' parameter, if any, is passed in R11. 4202 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4203 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4204 4205 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4206 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4207 4208 break; 4209 } 4210 4211 // These can be scalar arguments or elements of an integer array type 4212 // passed directly. Clang may use those instead of "byval" aggregate 4213 // types to avoid forcing arguments to memory unnecessarily. 4214 if (GPR_idx != Num_GPR_Regs) { 4215 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4216 FuncInfo->addLiveInAttr(VReg, Flags); 4217 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4218 4219 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4220 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4221 // value to MVT::i64 and then truncate to the correct register size. 4222 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4223 } else { 4224 if (CallConv == CallingConv::Fast) 4225 ComputeArgOffset(); 4226 4227 needsLoad = true; 4228 ArgSize = PtrByteSize; 4229 } 4230 if (CallConv != CallingConv::Fast || needsLoad) 4231 ArgOffset += 8; 4232 break; 4233 4234 case MVT::f32: 4235 case MVT::f64: 4236 // These can be scalar arguments or elements of a float array type 4237 // passed directly. The latter are used to implement ELFv2 homogenous 4238 // float aggregates. 4239 if (FPR_idx != Num_FPR_Regs) { 4240 unsigned VReg; 4241 4242 if (ObjectVT == MVT::f32) 4243 VReg = MF.addLiveIn(FPR[FPR_idx], 4244 Subtarget.hasP8Vector() 4245 ? &PPC::VSSRCRegClass 4246 : &PPC::F4RCRegClass); 4247 else 4248 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4249 ? &PPC::VSFRCRegClass 4250 : &PPC::F8RCRegClass); 4251 4252 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4253 ++FPR_idx; 4254 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4255 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4256 // once we support fp <-> gpr moves. 4257 4258 // This can only ever happen in the presence of f32 array types, 4259 // since otherwise we never run out of FPRs before running out 4260 // of GPRs. 4261 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4262 FuncInfo->addLiveInAttr(VReg, Flags); 4263 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4264 4265 if (ObjectVT == MVT::f32) { 4266 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4267 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4268 DAG.getConstant(32, dl, MVT::i32)); 4269 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4270 } 4271 4272 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4273 } else { 4274 if (CallConv == CallingConv::Fast) 4275 ComputeArgOffset(); 4276 4277 needsLoad = true; 4278 } 4279 4280 // When passing an array of floats, the array occupies consecutive 4281 // space in the argument area; only round up to the next doubleword 4282 // at the end of the array. Otherwise, each float takes 8 bytes. 4283 if (CallConv != CallingConv::Fast || needsLoad) { 4284 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4285 ArgOffset += ArgSize; 4286 if (Flags.isInConsecutiveRegsLast()) 4287 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4288 } 4289 break; 4290 case MVT::v4f32: 4291 case MVT::v4i32: 4292 case MVT::v8i16: 4293 case MVT::v16i8: 4294 case MVT::v2f64: 4295 case MVT::v2i64: 4296 case MVT::v1i128: 4297 case MVT::f128: 4298 // These can be scalar arguments or elements of a vector array type 4299 // passed directly. The latter are used to implement ELFv2 homogenous 4300 // vector aggregates. 4301 if (VR_idx != Num_VR_Regs) { 4302 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4303 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4304 ++VR_idx; 4305 } else { 4306 if (CallConv == CallingConv::Fast) 4307 ComputeArgOffset(); 4308 needsLoad = true; 4309 } 4310 if (CallConv != CallingConv::Fast || needsLoad) 4311 ArgOffset += 16; 4312 break; 4313 } 4314 4315 // We need to load the argument to a virtual register if we determined 4316 // above that we ran out of physical registers of the appropriate type. 4317 if (needsLoad) { 4318 if (ObjSize < ArgSize && !isLittleEndian) 4319 CurArgOffset += ArgSize - ObjSize; 4320 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4321 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4322 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4323 } 4324 4325 InVals.push_back(ArgVal); 4326 } 4327 4328 // Area that is at least reserved in the caller of this function. 4329 unsigned MinReservedArea; 4330 if (HasParameterArea) 4331 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4332 else 4333 MinReservedArea = LinkageSize; 4334 4335 // Set the size that is at least reserved in caller of this function. Tail 4336 // call optimized functions' reserved stack space needs to be aligned so that 4337 // taking the difference between two stack areas will result in an aligned 4338 // stack. 4339 MinReservedArea = 4340 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4341 FuncInfo->setMinReservedArea(MinReservedArea); 4342 4343 // If the function takes variable number of arguments, make a frame index for 4344 // the start of the first vararg value... for expansion of llvm.va_start. 4345 // On ELFv2ABI spec, it writes: 4346 // C programs that are intended to be *portable* across different compilers 4347 // and architectures must use the header file <stdarg.h> to deal with variable 4348 // argument lists. 4349 if (isVarArg && MFI.hasVAStart()) { 4350 int Depth = ArgOffset; 4351 4352 FuncInfo->setVarArgsFrameIndex( 4353 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4354 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4355 4356 // If this function is vararg, store any remaining integer argument regs 4357 // to their spots on the stack so that they may be loaded by dereferencing 4358 // the result of va_next. 4359 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4360 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4361 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4362 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4363 SDValue Store = 4364 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4365 MemOps.push_back(Store); 4366 // Increment the address by four for the next argument to store 4367 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4368 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4369 } 4370 } 4371 4372 if (!MemOps.empty()) 4373 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4374 4375 return Chain; 4376 } 4377 4378 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4379 /// adjusted to accommodate the arguments for the tailcall. 4380 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4381 unsigned ParamSize) { 4382 4383 if (!isTailCall) return 0; 4384 4385 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4386 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4387 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4388 // Remember only if the new adjustment is bigger. 4389 if (SPDiff < FI->getTailCallSPDelta()) 4390 FI->setTailCallSPDelta(SPDiff); 4391 4392 return SPDiff; 4393 } 4394 4395 static bool isFunctionGlobalAddress(SDValue Callee); 4396 4397 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4398 const TargetMachine &TM) { 4399 // It does not make sense to call callsShareTOCBase() with a caller that 4400 // is PC Relative since PC Relative callers do not have a TOC. 4401 #ifndef NDEBUG 4402 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4403 assert(!STICaller->isUsingPCRelativeCalls() && 4404 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4405 #endif 4406 4407 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4408 // don't have enough information to determine if the caller and callee share 4409 // the same TOC base, so we have to pessimistically assume they don't for 4410 // correctness. 4411 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4412 if (!G) 4413 return false; 4414 4415 const GlobalValue *GV = G->getGlobal(); 4416 4417 // If the callee is preemptable, then the static linker will use a plt-stub 4418 // which saves the toc to the stack, and needs a nop after the call 4419 // instruction to convert to a toc-restore. 4420 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4421 return false; 4422 4423 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4424 // We may need a TOC restore in the situation where the caller requires a 4425 // valid TOC but the callee is PC Relative and does not. 4426 const Function *F = dyn_cast<Function>(GV); 4427 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4428 4429 // If we have an Alias we can try to get the function from there. 4430 if (Alias) { 4431 const GlobalObject *GlobalObj = Alias->getBaseObject(); 4432 F = dyn_cast<Function>(GlobalObj); 4433 } 4434 4435 // If we still have no valid function pointer we do not have enough 4436 // information to determine if the callee uses PC Relative calls so we must 4437 // assume that it does. 4438 if (!F) 4439 return false; 4440 4441 // If the callee uses PC Relative we cannot guarantee that the callee won't 4442 // clobber the TOC of the caller and so we must assume that the two 4443 // functions do not share a TOC base. 4444 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4445 if (STICallee->isUsingPCRelativeCalls()) 4446 return false; 4447 4448 // If the GV is not a strong definition then we need to assume it can be 4449 // replaced by another function at link time. The function that replaces 4450 // it may not share the same TOC as the caller since the callee may be 4451 // replaced by a PC Relative version of the same function. 4452 if (!GV->isStrongDefinitionForLinker()) 4453 return false; 4454 4455 // The medium and large code models are expected to provide a sufficiently 4456 // large TOC to provide all data addressing needs of a module with a 4457 // single TOC. 4458 if (CodeModel::Medium == TM.getCodeModel() || 4459 CodeModel::Large == TM.getCodeModel()) 4460 return true; 4461 4462 // Any explicitly-specified sections and section prefixes must also match. 4463 // Also, if we're using -ffunction-sections, then each function is always in 4464 // a different section (the same is true for COMDAT functions). 4465 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4466 GV->getSection() != Caller->getSection()) 4467 return false; 4468 if (const auto *F = dyn_cast<Function>(GV)) { 4469 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4470 return false; 4471 } 4472 4473 return true; 4474 } 4475 4476 static bool 4477 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4478 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4479 assert(Subtarget.is64BitELFABI()); 4480 4481 const unsigned PtrByteSize = 8; 4482 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4483 4484 static const MCPhysReg GPR[] = { 4485 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4486 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4487 }; 4488 static const MCPhysReg VR[] = { 4489 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4490 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4491 }; 4492 4493 const unsigned NumGPRs = array_lengthof(GPR); 4494 const unsigned NumFPRs = 13; 4495 const unsigned NumVRs = array_lengthof(VR); 4496 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4497 4498 unsigned NumBytes = LinkageSize; 4499 unsigned AvailableFPRs = NumFPRs; 4500 unsigned AvailableVRs = NumVRs; 4501 4502 for (const ISD::OutputArg& Param : Outs) { 4503 if (Param.Flags.isNest()) continue; 4504 4505 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4506 LinkageSize, ParamAreaSize, NumBytes, 4507 AvailableFPRs, AvailableVRs)) 4508 return true; 4509 } 4510 return false; 4511 } 4512 4513 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4514 if (CB.arg_size() != CallerFn->arg_size()) 4515 return false; 4516 4517 auto CalleeArgIter = CB.arg_begin(); 4518 auto CalleeArgEnd = CB.arg_end(); 4519 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4520 4521 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4522 const Value* CalleeArg = *CalleeArgIter; 4523 const Value* CallerArg = &(*CallerArgIter); 4524 if (CalleeArg == CallerArg) 4525 continue; 4526 4527 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4528 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4529 // } 4530 // 1st argument of callee is undef and has the same type as caller. 4531 if (CalleeArg->getType() == CallerArg->getType() && 4532 isa<UndefValue>(CalleeArg)) 4533 continue; 4534 4535 return false; 4536 } 4537 4538 return true; 4539 } 4540 4541 // Returns true if TCO is possible between the callers and callees 4542 // calling conventions. 4543 static bool 4544 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4545 CallingConv::ID CalleeCC) { 4546 // Tail calls are possible with fastcc and ccc. 4547 auto isTailCallableCC = [] (CallingConv::ID CC){ 4548 return CC == CallingConv::C || CC == CallingConv::Fast; 4549 }; 4550 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4551 return false; 4552 4553 // We can safely tail call both fastcc and ccc callees from a c calling 4554 // convention caller. If the caller is fastcc, we may have less stack space 4555 // than a non-fastcc caller with the same signature so disable tail-calls in 4556 // that case. 4557 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4558 } 4559 4560 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4561 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4562 const SmallVectorImpl<ISD::OutputArg> &Outs, 4563 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4564 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4565 4566 if (DisableSCO && !TailCallOpt) return false; 4567 4568 // Variadic argument functions are not supported. 4569 if (isVarArg) return false; 4570 4571 auto &Caller = DAG.getMachineFunction().getFunction(); 4572 // Check that the calling conventions are compatible for tco. 4573 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4574 return false; 4575 4576 // Caller contains any byval parameter is not supported. 4577 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4578 return false; 4579 4580 // Callee contains any byval parameter is not supported, too. 4581 // Note: This is a quick work around, because in some cases, e.g. 4582 // caller's stack size > callee's stack size, we are still able to apply 4583 // sibling call optimization. For example, gcc is able to do SCO for caller1 4584 // in the following example, but not for caller2. 4585 // struct test { 4586 // long int a; 4587 // char ary[56]; 4588 // } gTest; 4589 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4590 // b->a = v.a; 4591 // return 0; 4592 // } 4593 // void caller1(struct test a, struct test c, struct test *b) { 4594 // callee(gTest, b); } 4595 // void caller2(struct test *b) { callee(gTest, b); } 4596 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4597 return false; 4598 4599 // If callee and caller use different calling conventions, we cannot pass 4600 // parameters on stack since offsets for the parameter area may be different. 4601 if (Caller.getCallingConv() != CalleeCC && 4602 needStackSlotPassParameters(Subtarget, Outs)) 4603 return false; 4604 4605 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4606 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4607 // callee potentially have different TOC bases then we cannot tail call since 4608 // we need to restore the TOC pointer after the call. 4609 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4610 // We cannot guarantee this for indirect calls or calls to external functions. 4611 // When PC-Relative addressing is used, the concept of the TOC is no longer 4612 // applicable so this check is not required. 4613 // Check first for indirect calls. 4614 if (!Subtarget.isUsingPCRelativeCalls() && 4615 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4616 return false; 4617 4618 // Check if we share the TOC base. 4619 if (!Subtarget.isUsingPCRelativeCalls() && 4620 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4621 return false; 4622 4623 // TCO allows altering callee ABI, so we don't have to check further. 4624 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4625 return true; 4626 4627 if (DisableSCO) return false; 4628 4629 // If callee use the same argument list that caller is using, then we can 4630 // apply SCO on this case. If it is not, then we need to check if callee needs 4631 // stack for passing arguments. 4632 // PC Relative tail calls may not have a CallBase. 4633 // If there is no CallBase we cannot verify if we have the same argument 4634 // list so assume that we don't have the same argument list. 4635 if (CB && !hasSameArgumentList(&Caller, *CB) && 4636 needStackSlotPassParameters(Subtarget, Outs)) 4637 return false; 4638 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4639 return false; 4640 4641 return true; 4642 } 4643 4644 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4645 /// for tail call optimization. Targets which want to do tail call 4646 /// optimization should implement this function. 4647 bool 4648 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4649 CallingConv::ID CalleeCC, 4650 bool isVarArg, 4651 const SmallVectorImpl<ISD::InputArg> &Ins, 4652 SelectionDAG& DAG) const { 4653 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4654 return false; 4655 4656 // Variable argument functions are not supported. 4657 if (isVarArg) 4658 return false; 4659 4660 MachineFunction &MF = DAG.getMachineFunction(); 4661 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4662 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4663 // Functions containing by val parameters are not supported. 4664 for (unsigned i = 0; i != Ins.size(); i++) { 4665 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4666 if (Flags.isByVal()) return false; 4667 } 4668 4669 // Non-PIC/GOT tail calls are supported. 4670 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4671 return true; 4672 4673 // At the moment we can only do local tail calls (in same module, hidden 4674 // or protected) if we are generating PIC. 4675 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4676 return G->getGlobal()->hasHiddenVisibility() 4677 || G->getGlobal()->hasProtectedVisibility(); 4678 } 4679 4680 return false; 4681 } 4682 4683 /// isCallCompatibleAddress - Return the immediate to use if the specified 4684 /// 32-bit value is representable in the immediate field of a BxA instruction. 4685 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4686 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4687 if (!C) return nullptr; 4688 4689 int Addr = C->getZExtValue(); 4690 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4691 SignExtend32<26>(Addr) != Addr) 4692 return nullptr; // Top 6 bits have to be sext of immediate. 4693 4694 return DAG 4695 .getConstant( 4696 (int)C->getZExtValue() >> 2, SDLoc(Op), 4697 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4698 .getNode(); 4699 } 4700 4701 namespace { 4702 4703 struct TailCallArgumentInfo { 4704 SDValue Arg; 4705 SDValue FrameIdxOp; 4706 int FrameIdx = 0; 4707 4708 TailCallArgumentInfo() = default; 4709 }; 4710 4711 } // end anonymous namespace 4712 4713 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4714 static void StoreTailCallArgumentsToStackSlot( 4715 SelectionDAG &DAG, SDValue Chain, 4716 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4717 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4718 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4719 SDValue Arg = TailCallArgs[i].Arg; 4720 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4721 int FI = TailCallArgs[i].FrameIdx; 4722 // Store relative to framepointer. 4723 MemOpChains.push_back(DAG.getStore( 4724 Chain, dl, Arg, FIN, 4725 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4726 } 4727 } 4728 4729 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4730 /// the appropriate stack slot for the tail call optimized function call. 4731 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4732 SDValue OldRetAddr, SDValue OldFP, 4733 int SPDiff, const SDLoc &dl) { 4734 if (SPDiff) { 4735 // Calculate the new stack slot for the return address. 4736 MachineFunction &MF = DAG.getMachineFunction(); 4737 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4738 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4739 bool isPPC64 = Subtarget.isPPC64(); 4740 int SlotSize = isPPC64 ? 8 : 4; 4741 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4742 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4743 NewRetAddrLoc, true); 4744 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4745 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4746 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4747 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4748 } 4749 return Chain; 4750 } 4751 4752 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4753 /// the position of the argument. 4754 static void 4755 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4756 SDValue Arg, int SPDiff, unsigned ArgOffset, 4757 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4758 int Offset = ArgOffset + SPDiff; 4759 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4760 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4761 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4762 SDValue FIN = DAG.getFrameIndex(FI, VT); 4763 TailCallArgumentInfo Info; 4764 Info.Arg = Arg; 4765 Info.FrameIdxOp = FIN; 4766 Info.FrameIdx = FI; 4767 TailCallArguments.push_back(Info); 4768 } 4769 4770 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4771 /// stack slot. Returns the chain as result and the loaded frame pointers in 4772 /// LROpOut/FPOpout. Used when tail calling. 4773 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4774 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4775 SDValue &FPOpOut, const SDLoc &dl) const { 4776 if (SPDiff) { 4777 // Load the LR and FP stack slot for later adjusting. 4778 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4779 LROpOut = getReturnAddrFrameIndex(DAG); 4780 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4781 Chain = SDValue(LROpOut.getNode(), 1); 4782 } 4783 return Chain; 4784 } 4785 4786 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4787 /// by "Src" to address "Dst" of size "Size". Alignment information is 4788 /// specified by the specific parameter attribute. The copy will be passed as 4789 /// a byval function parameter. 4790 /// Sometimes what we are copying is the end of a larger object, the part that 4791 /// does not fit in registers. 4792 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4793 SDValue Chain, ISD::ArgFlagsTy Flags, 4794 SelectionDAG &DAG, const SDLoc &dl) { 4795 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4796 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 4797 Flags.getNonZeroByValAlign(), false, false, false, 4798 MachinePointerInfo(), MachinePointerInfo()); 4799 } 4800 4801 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4802 /// tail calls. 4803 static void LowerMemOpCallTo( 4804 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4805 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4806 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4807 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4808 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4809 if (!isTailCall) { 4810 if (isVector) { 4811 SDValue StackPtr; 4812 if (isPPC64) 4813 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4814 else 4815 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4816 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4817 DAG.getConstant(ArgOffset, dl, PtrVT)); 4818 } 4819 MemOpChains.push_back( 4820 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4821 // Calculate and remember argument location. 4822 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4823 TailCallArguments); 4824 } 4825 4826 static void 4827 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4828 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4829 SDValue FPOp, 4830 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4831 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4832 // might overwrite each other in case of tail call optimization. 4833 SmallVector<SDValue, 8> MemOpChains2; 4834 // Do not flag preceding copytoreg stuff together with the following stuff. 4835 InFlag = SDValue(); 4836 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4837 MemOpChains2, dl); 4838 if (!MemOpChains2.empty()) 4839 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4840 4841 // Store the return address to the appropriate stack slot. 4842 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4843 4844 // Emit callseq_end just before tailcall node. 4845 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4846 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4847 InFlag = Chain.getValue(1); 4848 } 4849 4850 // Is this global address that of a function that can be called by name? (as 4851 // opposed to something that must hold a descriptor for an indirect call). 4852 static bool isFunctionGlobalAddress(SDValue Callee) { 4853 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4854 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4855 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4856 return false; 4857 4858 return G->getGlobal()->getValueType()->isFunctionTy(); 4859 } 4860 4861 return false; 4862 } 4863 4864 SDValue PPCTargetLowering::LowerCallResult( 4865 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 4866 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4867 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4868 SmallVector<CCValAssign, 16> RVLocs; 4869 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4870 *DAG.getContext()); 4871 4872 CCRetInfo.AnalyzeCallResult( 4873 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 4874 ? RetCC_PPC_Cold 4875 : RetCC_PPC); 4876 4877 // Copy all of the result registers out of their specified physreg. 4878 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4879 CCValAssign &VA = RVLocs[i]; 4880 assert(VA.isRegLoc() && "Can only return in registers!"); 4881 4882 SDValue Val; 4883 4884 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 4885 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 4886 InFlag); 4887 Chain = Lo.getValue(1); 4888 InFlag = Lo.getValue(2); 4889 VA = RVLocs[++i]; // skip ahead to next loc 4890 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 4891 InFlag); 4892 Chain = Hi.getValue(1); 4893 InFlag = Hi.getValue(2); 4894 if (!Subtarget.isLittleEndian()) 4895 std::swap (Lo, Hi); 4896 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 4897 } else { 4898 Val = DAG.getCopyFromReg(Chain, dl, 4899 VA.getLocReg(), VA.getLocVT(), InFlag); 4900 Chain = Val.getValue(1); 4901 InFlag = Val.getValue(2); 4902 } 4903 4904 switch (VA.getLocInfo()) { 4905 default: llvm_unreachable("Unknown loc info!"); 4906 case CCValAssign::Full: break; 4907 case CCValAssign::AExt: 4908 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4909 break; 4910 case CCValAssign::ZExt: 4911 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 4912 DAG.getValueType(VA.getValVT())); 4913 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4914 break; 4915 case CCValAssign::SExt: 4916 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 4917 DAG.getValueType(VA.getValVT())); 4918 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4919 break; 4920 } 4921 4922 InVals.push_back(Val); 4923 } 4924 4925 return Chain; 4926 } 4927 4928 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 4929 const PPCSubtarget &Subtarget, bool isPatchPoint) { 4930 // PatchPoint calls are not indirect. 4931 if (isPatchPoint) 4932 return false; 4933 4934 if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee)) 4935 return false; 4936 4937 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 4938 // becuase the immediate function pointer points to a descriptor instead of 4939 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 4940 // pointer immediate points to the global entry point, while the BLA would 4941 // need to jump to the local entry point (see rL211174). 4942 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 4943 isBLACompatibleAddress(Callee, DAG)) 4944 return false; 4945 4946 return true; 4947 } 4948 4949 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 4950 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 4951 return Subtarget.isAIXABI() || 4952 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 4953 } 4954 4955 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 4956 const Function &Caller, 4957 const SDValue &Callee, 4958 const PPCSubtarget &Subtarget, 4959 const TargetMachine &TM) { 4960 if (CFlags.IsTailCall) 4961 return PPCISD::TC_RETURN; 4962 4963 // This is a call through a function pointer. 4964 if (CFlags.IsIndirect) { 4965 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 4966 // indirect calls. The save of the caller's TOC pointer to the stack will be 4967 // inserted into the DAG as part of call lowering. The restore of the TOC 4968 // pointer is modeled by using a pseudo instruction for the call opcode that 4969 // represents the 2 instruction sequence of an indirect branch and link, 4970 // immediately followed by a load of the TOC pointer from the the stack save 4971 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 4972 // as it is not saved or used. 4973 return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 4974 : PPCISD::BCTRL; 4975 } 4976 4977 if (Subtarget.isUsingPCRelativeCalls()) { 4978 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 4979 return PPCISD::CALL_NOTOC; 4980 } 4981 4982 // The ABIs that maintain a TOC pointer accross calls need to have a nop 4983 // immediately following the call instruction if the caller and callee may 4984 // have different TOC bases. At link time if the linker determines the calls 4985 // may not share a TOC base, the call is redirected to a trampoline inserted 4986 // by the linker. The trampoline will (among other things) save the callers 4987 // TOC pointer at an ABI designated offset in the linkage area and the linker 4988 // will rewrite the nop to be a load of the TOC pointer from the linkage area 4989 // into gpr2. 4990 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 4991 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 4992 : PPCISD::CALL_NOP; 4993 4994 return PPCISD::CALL; 4995 } 4996 4997 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 4998 const SDLoc &dl, const PPCSubtarget &Subtarget) { 4999 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5000 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5001 return SDValue(Dest, 0); 5002 5003 // Returns true if the callee is local, and false otherwise. 5004 auto isLocalCallee = [&]() { 5005 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5006 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5007 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5008 5009 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5010 !dyn_cast_or_null<GlobalIFunc>(GV); 5011 }; 5012 5013 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5014 // a static relocation model causes some versions of GNU LD (2.17.50, at 5015 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5016 // built with secure-PLT. 5017 bool UsePlt = 5018 Subtarget.is32BitELFABI() && !isLocalCallee() && 5019 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5020 5021 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5022 const TargetMachine &TM = Subtarget.getTargetMachine(); 5023 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5024 MCSymbolXCOFF *S = 5025 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5026 5027 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5028 return DAG.getMCSymbol(S, PtrVT); 5029 }; 5030 5031 if (isFunctionGlobalAddress(Callee)) { 5032 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5033 5034 if (Subtarget.isAIXABI()) { 5035 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5036 return getAIXFuncEntryPointSymbolSDNode(GV); 5037 } 5038 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5039 UsePlt ? PPCII::MO_PLT : 0); 5040 } 5041 5042 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5043 const char *SymName = S->getSymbol(); 5044 if (Subtarget.isAIXABI()) { 5045 // If there exists a user-declared function whose name is the same as the 5046 // ExternalSymbol's, then we pick up the user-declared version. 5047 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5048 if (const Function *F = 5049 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5050 return getAIXFuncEntryPointSymbolSDNode(F); 5051 5052 // On AIX, direct function calls reference the symbol for the function's 5053 // entry point, which is named by prepending a "." before the function's 5054 // C-linkage name. A Qualname is returned here because an external 5055 // function entry point is a csect with XTY_ER property. 5056 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5057 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5058 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5059 (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(), 5060 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)); 5061 return Sec->getQualNameSymbol(); 5062 }; 5063 5064 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5065 } 5066 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5067 UsePlt ? PPCII::MO_PLT : 0); 5068 } 5069 5070 // No transformation needed. 5071 assert(Callee.getNode() && "What no callee?"); 5072 return Callee; 5073 } 5074 5075 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5076 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5077 "Expected a CALLSEQ_STARTSDNode."); 5078 5079 // The last operand is the chain, except when the node has glue. If the node 5080 // has glue, then the last operand is the glue, and the chain is the second 5081 // last operand. 5082 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5083 if (LastValue.getValueType() != MVT::Glue) 5084 return LastValue; 5085 5086 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5087 } 5088 5089 // Creates the node that moves a functions address into the count register 5090 // to prepare for an indirect call instruction. 5091 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5092 SDValue &Glue, SDValue &Chain, 5093 const SDLoc &dl) { 5094 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5095 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5096 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5097 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5098 // The glue is the second value produced. 5099 Glue = Chain.getValue(1); 5100 } 5101 5102 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5103 SDValue &Glue, SDValue &Chain, 5104 SDValue CallSeqStart, 5105 const CallBase *CB, const SDLoc &dl, 5106 bool hasNest, 5107 const PPCSubtarget &Subtarget) { 5108 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5109 // entry point, but to the function descriptor (the function entry point 5110 // address is part of the function descriptor though). 5111 // The function descriptor is a three doubleword structure with the 5112 // following fields: function entry point, TOC base address and 5113 // environment pointer. 5114 // Thus for a call through a function pointer, the following actions need 5115 // to be performed: 5116 // 1. Save the TOC of the caller in the TOC save area of its stack 5117 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5118 // 2. Load the address of the function entry point from the function 5119 // descriptor. 5120 // 3. Load the TOC of the callee from the function descriptor into r2. 5121 // 4. Load the environment pointer from the function descriptor into 5122 // r11. 5123 // 5. Branch to the function entry point address. 5124 // 6. On return of the callee, the TOC of the caller needs to be 5125 // restored (this is done in FinishCall()). 5126 // 5127 // The loads are scheduled at the beginning of the call sequence, and the 5128 // register copies are flagged together to ensure that no other 5129 // operations can be scheduled in between. E.g. without flagging the 5130 // copies together, a TOC access in the caller could be scheduled between 5131 // the assignment of the callee TOC and the branch to the callee, which leads 5132 // to incorrect code. 5133 5134 // Start by loading the function address from the descriptor. 5135 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5136 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5137 ? (MachineMemOperand::MODereferenceable | 5138 MachineMemOperand::MOInvariant) 5139 : MachineMemOperand::MONone; 5140 5141 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5142 5143 // Registers used in building the DAG. 5144 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5145 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5146 5147 // Offsets of descriptor members. 5148 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5149 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5150 5151 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5152 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5153 5154 // One load for the functions entry point address. 5155 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5156 Alignment, MMOFlags); 5157 5158 // One for loading the TOC anchor for the module that contains the called 5159 // function. 5160 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5161 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5162 SDValue TOCPtr = 5163 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5164 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5165 5166 // One for loading the environment pointer. 5167 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5168 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5169 SDValue LoadEnvPtr = 5170 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5171 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5172 5173 5174 // Then copy the newly loaded TOC anchor to the TOC pointer. 5175 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5176 Chain = TOCVal.getValue(0); 5177 Glue = TOCVal.getValue(1); 5178 5179 // If the function call has an explicit 'nest' parameter, it takes the 5180 // place of the environment pointer. 5181 assert((!hasNest || !Subtarget.isAIXABI()) && 5182 "Nest parameter is not supported on AIX."); 5183 if (!hasNest) { 5184 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5185 Chain = EnvVal.getValue(0); 5186 Glue = EnvVal.getValue(1); 5187 } 5188 5189 // The rest of the indirect call sequence is the same as the non-descriptor 5190 // DAG. 5191 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5192 } 5193 5194 static void 5195 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5196 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5197 SelectionDAG &DAG, 5198 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5199 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5200 const PPCSubtarget &Subtarget) { 5201 const bool IsPPC64 = Subtarget.isPPC64(); 5202 // MVT for a general purpose register. 5203 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5204 5205 // First operand is always the chain. 5206 Ops.push_back(Chain); 5207 5208 // If it's a direct call pass the callee as the second operand. 5209 if (!CFlags.IsIndirect) 5210 Ops.push_back(Callee); 5211 else { 5212 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5213 5214 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5215 // on the stack (this would have been done in `LowerCall_64SVR4` or 5216 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5217 // represents both the indirect branch and a load that restores the TOC 5218 // pointer from the linkage area. The operand for the TOC restore is an add 5219 // of the TOC save offset to the stack pointer. This must be the second 5220 // operand: after the chain input but before any other variadic arguments. 5221 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5222 // saved or used. 5223 if (isTOCSaveRestoreRequired(Subtarget)) { 5224 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5225 5226 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5227 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5228 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5229 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5230 Ops.push_back(AddTOC); 5231 } 5232 5233 // Add the register used for the environment pointer. 5234 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5235 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5236 RegVT)); 5237 5238 5239 // Add CTR register as callee so a bctr can be emitted later. 5240 if (CFlags.IsTailCall) 5241 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5242 } 5243 5244 // If this is a tail call add stack pointer delta. 5245 if (CFlags.IsTailCall) 5246 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5247 5248 // Add argument registers to the end of the list so that they are known live 5249 // into the call. 5250 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5251 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5252 RegsToPass[i].second.getValueType())); 5253 5254 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5255 // no way to mark dependencies as implicit here. 5256 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5257 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5258 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5259 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5260 5261 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5262 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5263 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5264 5265 // Add a register mask operand representing the call-preserved registers. 5266 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5267 const uint32_t *Mask = 5268 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5269 assert(Mask && "Missing call preserved mask for calling convention"); 5270 Ops.push_back(DAG.getRegisterMask(Mask)); 5271 5272 // If the glue is valid, it is the last operand. 5273 if (Glue.getNode()) 5274 Ops.push_back(Glue); 5275 } 5276 5277 SDValue PPCTargetLowering::FinishCall( 5278 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5279 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5280 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5281 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5282 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5283 5284 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5285 Subtarget.isAIXABI()) 5286 setUsesTOCBasePtr(DAG); 5287 5288 unsigned CallOpc = 5289 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5290 Subtarget, DAG.getTarget()); 5291 5292 if (!CFlags.IsIndirect) 5293 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5294 else if (Subtarget.usesFunctionDescriptors()) 5295 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5296 dl, CFlags.HasNest, Subtarget); 5297 else 5298 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5299 5300 // Build the operand list for the call instruction. 5301 SmallVector<SDValue, 8> Ops; 5302 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5303 SPDiff, Subtarget); 5304 5305 // Emit tail call. 5306 if (CFlags.IsTailCall) { 5307 // Indirect tail call when using PC Relative calls do not have the same 5308 // constraints. 5309 assert(((Callee.getOpcode() == ISD::Register && 5310 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5311 Callee.getOpcode() == ISD::TargetExternalSymbol || 5312 Callee.getOpcode() == ISD::TargetGlobalAddress || 5313 isa<ConstantSDNode>(Callee) || 5314 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5315 "Expecting a global address, external symbol, absolute value, " 5316 "register or an indirect tail call when PC Relative calls are " 5317 "used."); 5318 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5319 assert(CallOpc == PPCISD::TC_RETURN && 5320 "Unexpected call opcode for a tail call."); 5321 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5322 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5323 } 5324 5325 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5326 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5327 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5328 Glue = Chain.getValue(1); 5329 5330 // When performing tail call optimization the callee pops its arguments off 5331 // the stack. Account for this here so these bytes can be pushed back on in 5332 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5333 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5334 getTargetMachine().Options.GuaranteedTailCallOpt) 5335 ? NumBytes 5336 : 0; 5337 5338 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5339 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5340 Glue, dl); 5341 Glue = Chain.getValue(1); 5342 5343 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5344 DAG, InVals); 5345 } 5346 5347 SDValue 5348 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5349 SmallVectorImpl<SDValue> &InVals) const { 5350 SelectionDAG &DAG = CLI.DAG; 5351 SDLoc &dl = CLI.DL; 5352 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5353 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5354 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5355 SDValue Chain = CLI.Chain; 5356 SDValue Callee = CLI.Callee; 5357 bool &isTailCall = CLI.IsTailCall; 5358 CallingConv::ID CallConv = CLI.CallConv; 5359 bool isVarArg = CLI.IsVarArg; 5360 bool isPatchPoint = CLI.IsPatchPoint; 5361 const CallBase *CB = CLI.CB; 5362 5363 if (isTailCall) { 5364 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5365 isTailCall = false; 5366 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5367 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5368 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5369 else 5370 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5371 Ins, DAG); 5372 if (isTailCall) { 5373 ++NumTailCalls; 5374 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5375 ++NumSiblingCalls; 5376 5377 // PC Relative calls no longer guarantee that the callee is a Global 5378 // Address Node. The callee could be an indirect tail call in which 5379 // case the SDValue for the callee could be a load (to load the address 5380 // of a function pointer) or it may be a register copy (to move the 5381 // address of the callee from a function parameter into a virtual 5382 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5383 assert((Subtarget.isUsingPCRelativeCalls() || 5384 isa<GlobalAddressSDNode>(Callee)) && 5385 "Callee should be an llvm::Function object."); 5386 5387 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5388 << "\nTCO callee: "); 5389 LLVM_DEBUG(Callee.dump()); 5390 } 5391 } 5392 5393 if (!isTailCall && CB && CB->isMustTailCall()) 5394 report_fatal_error("failed to perform tail call elimination on a call " 5395 "site marked musttail"); 5396 5397 // When long calls (i.e. indirect calls) are always used, calls are always 5398 // made via function pointer. If we have a function name, first translate it 5399 // into a pointer. 5400 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5401 !isTailCall) 5402 Callee = LowerGlobalAddress(Callee, DAG); 5403 5404 CallFlags CFlags( 5405 CallConv, isTailCall, isVarArg, isPatchPoint, 5406 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5407 // hasNest 5408 Subtarget.is64BitELFABI() && 5409 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5410 CLI.NoMerge); 5411 5412 if (Subtarget.isAIXABI()) 5413 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5414 InVals, CB); 5415 5416 assert(Subtarget.isSVR4ABI()); 5417 if (Subtarget.isPPC64()) 5418 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5419 InVals, CB); 5420 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5421 InVals, CB); 5422 } 5423 5424 SDValue PPCTargetLowering::LowerCall_32SVR4( 5425 SDValue Chain, SDValue Callee, CallFlags CFlags, 5426 const SmallVectorImpl<ISD::OutputArg> &Outs, 5427 const SmallVectorImpl<SDValue> &OutVals, 5428 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5429 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5430 const CallBase *CB) const { 5431 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5432 // of the 32-bit SVR4 ABI stack frame layout. 5433 5434 const CallingConv::ID CallConv = CFlags.CallConv; 5435 const bool IsVarArg = CFlags.IsVarArg; 5436 const bool IsTailCall = CFlags.IsTailCall; 5437 5438 assert((CallConv == CallingConv::C || 5439 CallConv == CallingConv::Cold || 5440 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5441 5442 const Align PtrAlign(4); 5443 5444 MachineFunction &MF = DAG.getMachineFunction(); 5445 5446 // Mark this function as potentially containing a function that contains a 5447 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5448 // and restoring the callers stack pointer in this functions epilog. This is 5449 // done because by tail calling the called function might overwrite the value 5450 // in this function's (MF) stack pointer stack slot 0(SP). 5451 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5452 CallConv == CallingConv::Fast) 5453 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5454 5455 // Count how many bytes are to be pushed on the stack, including the linkage 5456 // area, parameter list area and the part of the local variable space which 5457 // contains copies of aggregates which are passed by value. 5458 5459 // Assign locations to all of the outgoing arguments. 5460 SmallVector<CCValAssign, 16> ArgLocs; 5461 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5462 5463 // Reserve space for the linkage area on the stack. 5464 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5465 PtrAlign); 5466 if (useSoftFloat()) 5467 CCInfo.PreAnalyzeCallOperands(Outs); 5468 5469 if (IsVarArg) { 5470 // Handle fixed and variable vector arguments differently. 5471 // Fixed vector arguments go into registers as long as registers are 5472 // available. Variable vector arguments always go into memory. 5473 unsigned NumArgs = Outs.size(); 5474 5475 for (unsigned i = 0; i != NumArgs; ++i) { 5476 MVT ArgVT = Outs[i].VT; 5477 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5478 bool Result; 5479 5480 if (Outs[i].IsFixed) { 5481 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5482 CCInfo); 5483 } else { 5484 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5485 ArgFlags, CCInfo); 5486 } 5487 5488 if (Result) { 5489 #ifndef NDEBUG 5490 errs() << "Call operand #" << i << " has unhandled type " 5491 << EVT(ArgVT).getEVTString() << "\n"; 5492 #endif 5493 llvm_unreachable(nullptr); 5494 } 5495 } 5496 } else { 5497 // All arguments are treated the same. 5498 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5499 } 5500 CCInfo.clearWasPPCF128(); 5501 5502 // Assign locations to all of the outgoing aggregate by value arguments. 5503 SmallVector<CCValAssign, 16> ByValArgLocs; 5504 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5505 5506 // Reserve stack space for the allocations in CCInfo. 5507 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5508 5509 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5510 5511 // Size of the linkage area, parameter list area and the part of the local 5512 // space variable where copies of aggregates which are passed by value are 5513 // stored. 5514 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5515 5516 // Calculate by how many bytes the stack has to be adjusted in case of tail 5517 // call optimization. 5518 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5519 5520 // Adjust the stack pointer for the new arguments... 5521 // These operations are automatically eliminated by the prolog/epilog pass 5522 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5523 SDValue CallSeqStart = Chain; 5524 5525 // Load the return address and frame pointer so it can be moved somewhere else 5526 // later. 5527 SDValue LROp, FPOp; 5528 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5529 5530 // Set up a copy of the stack pointer for use loading and storing any 5531 // arguments that may not fit in the registers available for argument 5532 // passing. 5533 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5534 5535 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5536 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5537 SmallVector<SDValue, 8> MemOpChains; 5538 5539 bool seenFloatArg = false; 5540 // Walk the register/memloc assignments, inserting copies/loads. 5541 // i - Tracks the index into the list of registers allocated for the call 5542 // RealArgIdx - Tracks the index into the list of actual function arguments 5543 // j - Tracks the index into the list of byval arguments 5544 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5545 i != e; 5546 ++i, ++RealArgIdx) { 5547 CCValAssign &VA = ArgLocs[i]; 5548 SDValue Arg = OutVals[RealArgIdx]; 5549 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5550 5551 if (Flags.isByVal()) { 5552 // Argument is an aggregate which is passed by value, thus we need to 5553 // create a copy of it in the local variable space of the current stack 5554 // frame (which is the stack frame of the caller) and pass the address of 5555 // this copy to the callee. 5556 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5557 CCValAssign &ByValVA = ByValArgLocs[j++]; 5558 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5559 5560 // Memory reserved in the local variable space of the callers stack frame. 5561 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5562 5563 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5564 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5565 StackPtr, PtrOff); 5566 5567 // Create a copy of the argument in the local area of the current 5568 // stack frame. 5569 SDValue MemcpyCall = 5570 CreateCopyOfByValArgument(Arg, PtrOff, 5571 CallSeqStart.getNode()->getOperand(0), 5572 Flags, DAG, dl); 5573 5574 // This must go outside the CALLSEQ_START..END. 5575 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5576 SDLoc(MemcpyCall)); 5577 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5578 NewCallSeqStart.getNode()); 5579 Chain = CallSeqStart = NewCallSeqStart; 5580 5581 // Pass the address of the aggregate copy on the stack either in a 5582 // physical register or in the parameter list area of the current stack 5583 // frame to the callee. 5584 Arg = PtrOff; 5585 } 5586 5587 // When useCRBits() is true, there can be i1 arguments. 5588 // It is because getRegisterType(MVT::i1) => MVT::i1, 5589 // and for other integer types getRegisterType() => MVT::i32. 5590 // Extend i1 and ensure callee will get i32. 5591 if (Arg.getValueType() == MVT::i1) 5592 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5593 dl, MVT::i32, Arg); 5594 5595 if (VA.isRegLoc()) { 5596 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5597 // Put argument in a physical register. 5598 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5599 bool IsLE = Subtarget.isLittleEndian(); 5600 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5601 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5602 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5603 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5604 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5605 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5606 SVal.getValue(0))); 5607 } else 5608 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5609 } else { 5610 // Put argument in the parameter list area of the current stack frame. 5611 assert(VA.isMemLoc()); 5612 unsigned LocMemOffset = VA.getLocMemOffset(); 5613 5614 if (!IsTailCall) { 5615 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5616 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5617 StackPtr, PtrOff); 5618 5619 MemOpChains.push_back( 5620 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5621 } else { 5622 // Calculate and remember argument location. 5623 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5624 TailCallArguments); 5625 } 5626 } 5627 } 5628 5629 if (!MemOpChains.empty()) 5630 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5631 5632 // Build a sequence of copy-to-reg nodes chained together with token chain 5633 // and flag operands which copy the outgoing args into the appropriate regs. 5634 SDValue InFlag; 5635 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5636 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5637 RegsToPass[i].second, InFlag); 5638 InFlag = Chain.getValue(1); 5639 } 5640 5641 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5642 // registers. 5643 if (IsVarArg) { 5644 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5645 SDValue Ops[] = { Chain, InFlag }; 5646 5647 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5648 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5649 5650 InFlag = Chain.getValue(1); 5651 } 5652 5653 if (IsTailCall) 5654 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5655 TailCallArguments); 5656 5657 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5658 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5659 } 5660 5661 // Copy an argument into memory, being careful to do this outside the 5662 // call sequence for the call to which the argument belongs. 5663 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5664 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5665 SelectionDAG &DAG, const SDLoc &dl) const { 5666 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5667 CallSeqStart.getNode()->getOperand(0), 5668 Flags, DAG, dl); 5669 // The MEMCPY must go outside the CALLSEQ_START..END. 5670 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5671 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5672 SDLoc(MemcpyCall)); 5673 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5674 NewCallSeqStart.getNode()); 5675 return NewCallSeqStart; 5676 } 5677 5678 SDValue PPCTargetLowering::LowerCall_64SVR4( 5679 SDValue Chain, SDValue Callee, CallFlags CFlags, 5680 const SmallVectorImpl<ISD::OutputArg> &Outs, 5681 const SmallVectorImpl<SDValue> &OutVals, 5682 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5683 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5684 const CallBase *CB) const { 5685 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5686 bool isLittleEndian = Subtarget.isLittleEndian(); 5687 unsigned NumOps = Outs.size(); 5688 bool IsSibCall = false; 5689 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5690 5691 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5692 unsigned PtrByteSize = 8; 5693 5694 MachineFunction &MF = DAG.getMachineFunction(); 5695 5696 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5697 IsSibCall = true; 5698 5699 // Mark this function as potentially containing a function that contains a 5700 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5701 // and restoring the callers stack pointer in this functions epilog. This is 5702 // done because by tail calling the called function might overwrite the value 5703 // in this function's (MF) stack pointer stack slot 0(SP). 5704 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5705 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5706 5707 assert(!(IsFastCall && CFlags.IsVarArg) && 5708 "fastcc not supported on varargs functions"); 5709 5710 // Count how many bytes are to be pushed on the stack, including the linkage 5711 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5712 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5713 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5714 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5715 unsigned NumBytes = LinkageSize; 5716 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5717 5718 static const MCPhysReg GPR[] = { 5719 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5720 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5721 }; 5722 static const MCPhysReg VR[] = { 5723 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5724 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5725 }; 5726 5727 const unsigned NumGPRs = array_lengthof(GPR); 5728 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5729 const unsigned NumVRs = array_lengthof(VR); 5730 5731 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5732 // can be passed to the callee in registers. 5733 // For the fast calling convention, there is another check below. 5734 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5735 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 5736 if (!HasParameterArea) { 5737 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5738 unsigned AvailableFPRs = NumFPRs; 5739 unsigned AvailableVRs = NumVRs; 5740 unsigned NumBytesTmp = NumBytes; 5741 for (unsigned i = 0; i != NumOps; ++i) { 5742 if (Outs[i].Flags.isNest()) continue; 5743 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5744 PtrByteSize, LinkageSize, ParamAreaSize, 5745 NumBytesTmp, AvailableFPRs, AvailableVRs)) 5746 HasParameterArea = true; 5747 } 5748 } 5749 5750 // When using the fast calling convention, we don't provide backing for 5751 // arguments that will be in registers. 5752 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5753 5754 // Avoid allocating parameter area for fastcc functions if all the arguments 5755 // can be passed in the registers. 5756 if (IsFastCall) 5757 HasParameterArea = false; 5758 5759 // Add up all the space actually used. 5760 for (unsigned i = 0; i != NumOps; ++i) { 5761 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5762 EVT ArgVT = Outs[i].VT; 5763 EVT OrigVT = Outs[i].ArgVT; 5764 5765 if (Flags.isNest()) 5766 continue; 5767 5768 if (IsFastCall) { 5769 if (Flags.isByVal()) { 5770 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5771 if (NumGPRsUsed > NumGPRs) 5772 HasParameterArea = true; 5773 } else { 5774 switch (ArgVT.getSimpleVT().SimpleTy) { 5775 default: llvm_unreachable("Unexpected ValueType for argument!"); 5776 case MVT::i1: 5777 case MVT::i32: 5778 case MVT::i64: 5779 if (++NumGPRsUsed <= NumGPRs) 5780 continue; 5781 break; 5782 case MVT::v4i32: 5783 case MVT::v8i16: 5784 case MVT::v16i8: 5785 case MVT::v2f64: 5786 case MVT::v2i64: 5787 case MVT::v1i128: 5788 case MVT::f128: 5789 if (++NumVRsUsed <= NumVRs) 5790 continue; 5791 break; 5792 case MVT::v4f32: 5793 if (++NumVRsUsed <= NumVRs) 5794 continue; 5795 break; 5796 case MVT::f32: 5797 case MVT::f64: 5798 if (++NumFPRsUsed <= NumFPRs) 5799 continue; 5800 break; 5801 } 5802 HasParameterArea = true; 5803 } 5804 } 5805 5806 /* Respect alignment of argument on the stack. */ 5807 auto Alignement = 5808 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5809 NumBytes = alignTo(NumBytes, Alignement); 5810 5811 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5812 if (Flags.isInConsecutiveRegsLast()) 5813 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5814 } 5815 5816 unsigned NumBytesActuallyUsed = NumBytes; 5817 5818 // In the old ELFv1 ABI, 5819 // the prolog code of the callee may store up to 8 GPR argument registers to 5820 // the stack, allowing va_start to index over them in memory if its varargs. 5821 // Because we cannot tell if this is needed on the caller side, we have to 5822 // conservatively assume that it is needed. As such, make sure we have at 5823 // least enough stack space for the caller to store the 8 GPRs. 5824 // In the ELFv2 ABI, we allocate the parameter area iff a callee 5825 // really requires memory operands, e.g. a vararg function. 5826 if (HasParameterArea) 5827 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5828 else 5829 NumBytes = LinkageSize; 5830 5831 // Tail call needs the stack to be aligned. 5832 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5833 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5834 5835 int SPDiff = 0; 5836 5837 // Calculate by how many bytes the stack has to be adjusted in case of tail 5838 // call optimization. 5839 if (!IsSibCall) 5840 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 5841 5842 // To protect arguments on the stack from being clobbered in a tail call, 5843 // force all the loads to happen before doing any other lowering. 5844 if (CFlags.IsTailCall) 5845 Chain = DAG.getStackArgumentTokenFactor(Chain); 5846 5847 // Adjust the stack pointer for the new arguments... 5848 // These operations are automatically eliminated by the prolog/epilog pass 5849 if (!IsSibCall) 5850 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5851 SDValue CallSeqStart = Chain; 5852 5853 // Load the return address and frame pointer so it can be move somewhere else 5854 // later. 5855 SDValue LROp, FPOp; 5856 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5857 5858 // Set up a copy of the stack pointer for use loading and storing any 5859 // arguments that may not fit in the registers available for argument 5860 // passing. 5861 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5862 5863 // Figure out which arguments are going to go in registers, and which in 5864 // memory. Also, if this is a vararg function, floating point operations 5865 // must be stored to our stack, and loaded into integer regs as well, if 5866 // any integer regs are available for argument passing. 5867 unsigned ArgOffset = LinkageSize; 5868 5869 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5870 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5871 5872 SmallVector<SDValue, 8> MemOpChains; 5873 for (unsigned i = 0; i != NumOps; ++i) { 5874 SDValue Arg = OutVals[i]; 5875 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5876 EVT ArgVT = Outs[i].VT; 5877 EVT OrigVT = Outs[i].ArgVT; 5878 5879 // PtrOff will be used to store the current argument to the stack if a 5880 // register cannot be found for it. 5881 SDValue PtrOff; 5882 5883 // We re-align the argument offset for each argument, except when using the 5884 // fast calling convention, when we need to make sure we do that only when 5885 // we'll actually use a stack slot. 5886 auto ComputePtrOff = [&]() { 5887 /* Respect alignment of argument on the stack. */ 5888 auto Alignment = 5889 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5890 ArgOffset = alignTo(ArgOffset, Alignment); 5891 5892 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5893 5894 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5895 }; 5896 5897 if (!IsFastCall) { 5898 ComputePtrOff(); 5899 5900 /* Compute GPR index associated with argument offset. */ 5901 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 5902 GPR_idx = std::min(GPR_idx, NumGPRs); 5903 } 5904 5905 // Promote integers to 64-bit values. 5906 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 5907 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5908 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5909 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5910 } 5911 5912 // FIXME memcpy is used way more than necessary. Correctness first. 5913 // Note: "by value" is code for passing a structure by value, not 5914 // basic types. 5915 if (Flags.isByVal()) { 5916 // Note: Size includes alignment padding, so 5917 // struct x { short a; char b; } 5918 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 5919 // These are the proper values we need for right-justifying the 5920 // aggregate in a parameter register. 5921 unsigned Size = Flags.getByValSize(); 5922 5923 // An empty aggregate parameter takes up no storage and no 5924 // registers. 5925 if (Size == 0) 5926 continue; 5927 5928 if (IsFastCall) 5929 ComputePtrOff(); 5930 5931 // All aggregates smaller than 8 bytes must be passed right-justified. 5932 if (Size==1 || Size==2 || Size==4) { 5933 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 5934 if (GPR_idx != NumGPRs) { 5935 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5936 MachinePointerInfo(), VT); 5937 MemOpChains.push_back(Load.getValue(1)); 5938 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5939 5940 ArgOffset += PtrByteSize; 5941 continue; 5942 } 5943 } 5944 5945 if (GPR_idx == NumGPRs && Size < 8) { 5946 SDValue AddPtr = PtrOff; 5947 if (!isLittleEndian) { 5948 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5949 PtrOff.getValueType()); 5950 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5951 } 5952 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5953 CallSeqStart, 5954 Flags, DAG, dl); 5955 ArgOffset += PtrByteSize; 5956 continue; 5957 } 5958 // Copy entire object into memory. There are cases where gcc-generated 5959 // code assumes it is there, even if it could be put entirely into 5960 // registers. (This is not what the doc says.) 5961 5962 // FIXME: The above statement is likely due to a misunderstanding of the 5963 // documents. All arguments must be copied into the parameter area BY 5964 // THE CALLEE in the event that the callee takes the address of any 5965 // formal argument. That has not yet been implemented. However, it is 5966 // reasonable to use the stack area as a staging area for the register 5967 // load. 5968 5969 // Skip this for small aggregates, as we will use the same slot for a 5970 // right-justified copy, below. 5971 if (Size >= 8) 5972 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5973 CallSeqStart, 5974 Flags, DAG, dl); 5975 5976 // When a register is available, pass a small aggregate right-justified. 5977 if (Size < 8 && GPR_idx != NumGPRs) { 5978 // The easiest way to get this right-justified in a register 5979 // is to copy the structure into the rightmost portion of a 5980 // local variable slot, then load the whole slot into the 5981 // register. 5982 // FIXME: The memcpy seems to produce pretty awful code for 5983 // small aggregates, particularly for packed ones. 5984 // FIXME: It would be preferable to use the slot in the 5985 // parameter save area instead of a new local variable. 5986 SDValue AddPtr = PtrOff; 5987 if (!isLittleEndian) { 5988 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5989 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5990 } 5991 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5992 CallSeqStart, 5993 Flags, DAG, dl); 5994 5995 // Load the slot into the register. 5996 SDValue Load = 5997 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 5998 MemOpChains.push_back(Load.getValue(1)); 5999 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6000 6001 // Done with this argument. 6002 ArgOffset += PtrByteSize; 6003 continue; 6004 } 6005 6006 // For aggregates larger than PtrByteSize, copy the pieces of the 6007 // object that fit into registers from the parameter save area. 6008 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6009 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6010 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6011 if (GPR_idx != NumGPRs) { 6012 SDValue Load = 6013 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6014 MemOpChains.push_back(Load.getValue(1)); 6015 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6016 ArgOffset += PtrByteSize; 6017 } else { 6018 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6019 break; 6020 } 6021 } 6022 continue; 6023 } 6024 6025 switch (Arg.getSimpleValueType().SimpleTy) { 6026 default: llvm_unreachable("Unexpected ValueType for argument!"); 6027 case MVT::i1: 6028 case MVT::i32: 6029 case MVT::i64: 6030 if (Flags.isNest()) { 6031 // The 'nest' parameter, if any, is passed in R11. 6032 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6033 break; 6034 } 6035 6036 // These can be scalar arguments or elements of an integer array type 6037 // passed directly. Clang may use those instead of "byval" aggregate 6038 // types to avoid forcing arguments to memory unnecessarily. 6039 if (GPR_idx != NumGPRs) { 6040 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6041 } else { 6042 if (IsFastCall) 6043 ComputePtrOff(); 6044 6045 assert(HasParameterArea && 6046 "Parameter area must exist to pass an argument in memory."); 6047 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6048 true, CFlags.IsTailCall, false, MemOpChains, 6049 TailCallArguments, dl); 6050 if (IsFastCall) 6051 ArgOffset += PtrByteSize; 6052 } 6053 if (!IsFastCall) 6054 ArgOffset += PtrByteSize; 6055 break; 6056 case MVT::f32: 6057 case MVT::f64: { 6058 // These can be scalar arguments or elements of a float array type 6059 // passed directly. The latter are used to implement ELFv2 homogenous 6060 // float aggregates. 6061 6062 // Named arguments go into FPRs first, and once they overflow, the 6063 // remaining arguments go into GPRs and then the parameter save area. 6064 // Unnamed arguments for vararg functions always go to GPRs and 6065 // then the parameter save area. For now, put all arguments to vararg 6066 // routines always in both locations (FPR *and* GPR or stack slot). 6067 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6068 bool NeededLoad = false; 6069 6070 // First load the argument into the next available FPR. 6071 if (FPR_idx != NumFPRs) 6072 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6073 6074 // Next, load the argument into GPR or stack slot if needed. 6075 if (!NeedGPROrStack) 6076 ; 6077 else if (GPR_idx != NumGPRs && !IsFastCall) { 6078 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6079 // once we support fp <-> gpr moves. 6080 6081 // In the non-vararg case, this can only ever happen in the 6082 // presence of f32 array types, since otherwise we never run 6083 // out of FPRs before running out of GPRs. 6084 SDValue ArgVal; 6085 6086 // Double values are always passed in a single GPR. 6087 if (Arg.getValueType() != MVT::f32) { 6088 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6089 6090 // Non-array float values are extended and passed in a GPR. 6091 } else if (!Flags.isInConsecutiveRegs()) { 6092 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6093 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6094 6095 // If we have an array of floats, we collect every odd element 6096 // together with its predecessor into one GPR. 6097 } else if (ArgOffset % PtrByteSize != 0) { 6098 SDValue Lo, Hi; 6099 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6100 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6101 if (!isLittleEndian) 6102 std::swap(Lo, Hi); 6103 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6104 6105 // The final element, if even, goes into the first half of a GPR. 6106 } else if (Flags.isInConsecutiveRegsLast()) { 6107 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6108 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6109 if (!isLittleEndian) 6110 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6111 DAG.getConstant(32, dl, MVT::i32)); 6112 6113 // Non-final even elements are skipped; they will be handled 6114 // together the with subsequent argument on the next go-around. 6115 } else 6116 ArgVal = SDValue(); 6117 6118 if (ArgVal.getNode()) 6119 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6120 } else { 6121 if (IsFastCall) 6122 ComputePtrOff(); 6123 6124 // Single-precision floating-point values are mapped to the 6125 // second (rightmost) word of the stack doubleword. 6126 if (Arg.getValueType() == MVT::f32 && 6127 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6128 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6129 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6130 } 6131 6132 assert(HasParameterArea && 6133 "Parameter area must exist to pass an argument in memory."); 6134 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6135 true, CFlags.IsTailCall, false, MemOpChains, 6136 TailCallArguments, dl); 6137 6138 NeededLoad = true; 6139 } 6140 // When passing an array of floats, the array occupies consecutive 6141 // space in the argument area; only round up to the next doubleword 6142 // at the end of the array. Otherwise, each float takes 8 bytes. 6143 if (!IsFastCall || NeededLoad) { 6144 ArgOffset += (Arg.getValueType() == MVT::f32 && 6145 Flags.isInConsecutiveRegs()) ? 4 : 8; 6146 if (Flags.isInConsecutiveRegsLast()) 6147 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6148 } 6149 break; 6150 } 6151 case MVT::v4f32: 6152 case MVT::v4i32: 6153 case MVT::v8i16: 6154 case MVT::v16i8: 6155 case MVT::v2f64: 6156 case MVT::v2i64: 6157 case MVT::v1i128: 6158 case MVT::f128: 6159 // These can be scalar arguments or elements of a vector array type 6160 // passed directly. The latter are used to implement ELFv2 homogenous 6161 // vector aggregates. 6162 6163 // For a varargs call, named arguments go into VRs or on the stack as 6164 // usual; unnamed arguments always go to the stack or the corresponding 6165 // GPRs when within range. For now, we always put the value in both 6166 // locations (or even all three). 6167 if (CFlags.IsVarArg) { 6168 assert(HasParameterArea && 6169 "Parameter area must exist if we have a varargs call."); 6170 // We could elide this store in the case where the object fits 6171 // entirely in R registers. Maybe later. 6172 SDValue Store = 6173 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6174 MemOpChains.push_back(Store); 6175 if (VR_idx != NumVRs) { 6176 SDValue Load = 6177 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6178 MemOpChains.push_back(Load.getValue(1)); 6179 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6180 } 6181 ArgOffset += 16; 6182 for (unsigned i=0; i<16; i+=PtrByteSize) { 6183 if (GPR_idx == NumGPRs) 6184 break; 6185 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6186 DAG.getConstant(i, dl, PtrVT)); 6187 SDValue Load = 6188 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6189 MemOpChains.push_back(Load.getValue(1)); 6190 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6191 } 6192 break; 6193 } 6194 6195 // Non-varargs Altivec params go into VRs or on the stack. 6196 if (VR_idx != NumVRs) { 6197 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6198 } else { 6199 if (IsFastCall) 6200 ComputePtrOff(); 6201 6202 assert(HasParameterArea && 6203 "Parameter area must exist to pass an argument in memory."); 6204 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6205 true, CFlags.IsTailCall, true, MemOpChains, 6206 TailCallArguments, dl); 6207 if (IsFastCall) 6208 ArgOffset += 16; 6209 } 6210 6211 if (!IsFastCall) 6212 ArgOffset += 16; 6213 break; 6214 } 6215 } 6216 6217 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6218 "mismatch in size of parameter area"); 6219 (void)NumBytesActuallyUsed; 6220 6221 if (!MemOpChains.empty()) 6222 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6223 6224 // Check if this is an indirect call (MTCTR/BCTRL). 6225 // See prepareDescriptorIndirectCall and buildCallOperands for more 6226 // information about calls through function pointers in the 64-bit SVR4 ABI. 6227 if (CFlags.IsIndirect) { 6228 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6229 // caller in the TOC save area. 6230 if (isTOCSaveRestoreRequired(Subtarget)) { 6231 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6232 // Load r2 into a virtual register and store it to the TOC save area. 6233 setUsesTOCBasePtr(DAG); 6234 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6235 // TOC save area offset. 6236 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6237 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6238 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6239 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6240 MachinePointerInfo::getStack( 6241 DAG.getMachineFunction(), TOCSaveOffset)); 6242 } 6243 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6244 // This does not mean the MTCTR instruction must use R12; it's easier 6245 // to model this as an extra parameter, so do that. 6246 if (isELFv2ABI && !CFlags.IsPatchPoint) 6247 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6248 } 6249 6250 // Build a sequence of copy-to-reg nodes chained together with token chain 6251 // and flag operands which copy the outgoing args into the appropriate regs. 6252 SDValue InFlag; 6253 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6254 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6255 RegsToPass[i].second, InFlag); 6256 InFlag = Chain.getValue(1); 6257 } 6258 6259 if (CFlags.IsTailCall && !IsSibCall) 6260 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6261 TailCallArguments); 6262 6263 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6264 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6265 } 6266 6267 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6268 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6269 CCState &State) { 6270 6271 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6272 State.getMachineFunction().getSubtarget()); 6273 const bool IsPPC64 = Subtarget.isPPC64(); 6274 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6275 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6276 6277 if (ValVT.isVector() && !State.getMachineFunction() 6278 .getTarget() 6279 .Options.EnableAIXExtendedAltivecABI) 6280 report_fatal_error("the default Altivec AIX ABI is not yet supported"); 6281 6282 if (ValVT == MVT::f128) 6283 report_fatal_error("f128 is unimplemented on AIX."); 6284 6285 if (ArgFlags.isNest()) 6286 report_fatal_error("Nest arguments are unimplemented."); 6287 6288 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6289 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6290 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6291 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6292 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6293 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6294 6295 static const MCPhysReg VR[] = {// Vector registers. 6296 PPC::V2, PPC::V3, PPC::V4, PPC::V5, 6297 PPC::V6, PPC::V7, PPC::V8, PPC::V9, 6298 PPC::V10, PPC::V11, PPC::V12, PPC::V13}; 6299 6300 if (ArgFlags.isByVal()) { 6301 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 6302 report_fatal_error("Pass-by-value arguments with alignment greater than " 6303 "register width are not supported."); 6304 6305 const unsigned ByValSize = ArgFlags.getByValSize(); 6306 6307 // An empty aggregate parameter takes up no storage and no registers, 6308 // but needs a MemLoc for a stack slot for the formal arguments side. 6309 if (ByValSize == 0) { 6310 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6311 State.getNextStackOffset(), RegVT, 6312 LocInfo)); 6313 return false; 6314 } 6315 6316 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 6317 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 6318 for (const unsigned E = Offset + StackSize; Offset < E; 6319 Offset += PtrAlign.value()) { 6320 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6321 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6322 else { 6323 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6324 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 6325 LocInfo)); 6326 break; 6327 } 6328 } 6329 return false; 6330 } 6331 6332 // Arguments always reserve parameter save area. 6333 switch (ValVT.SimpleTy) { 6334 default: 6335 report_fatal_error("Unhandled value type for argument."); 6336 case MVT::i64: 6337 // i64 arguments should have been split to i32 for PPC32. 6338 assert(IsPPC64 && "PPC32 should have split i64 values."); 6339 LLVM_FALLTHROUGH; 6340 case MVT::i1: 6341 case MVT::i32: { 6342 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 6343 // AIX integer arguments are always passed in register width. 6344 if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) 6345 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6346 : CCValAssign::LocInfo::ZExt; 6347 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6348 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6349 else 6350 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6351 6352 return false; 6353 } 6354 case MVT::f32: 6355 case MVT::f64: { 6356 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6357 const unsigned StoreSize = LocVT.getStoreSize(); 6358 // Floats are always 4-byte aligned in the PSA on AIX. 6359 // This includes f64 in 64-bit mode for ABI compatibility. 6360 const unsigned Offset = 6361 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 6362 unsigned FReg = State.AllocateReg(FPR); 6363 if (FReg) 6364 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6365 6366 // Reserve and initialize GPRs or initialize the PSA as required. 6367 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 6368 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6369 assert(FReg && "An FPR should be available when a GPR is reserved."); 6370 if (State.isVarArg()) { 6371 // Successfully reserved GPRs are only initialized for vararg calls. 6372 // Custom handling is required for: 6373 // f64 in PPC32 needs to be split into 2 GPRs. 6374 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6375 State.addLoc( 6376 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6377 } 6378 } else { 6379 // If there are insufficient GPRs, the PSA needs to be initialized. 6380 // Initialization occurs even if an FPR was initialized for 6381 // compatibility with the AIX XL compiler. The full memory for the 6382 // argument will be initialized even if a prior word is saved in GPR. 6383 // A custom memLoc is used when the argument also passes in FPR so 6384 // that the callee handling can skip over it easily. 6385 State.addLoc( 6386 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 6387 LocInfo) 6388 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6389 break; 6390 } 6391 } 6392 6393 return false; 6394 } 6395 case MVT::v4f32: 6396 case MVT::v4i32: 6397 case MVT::v8i16: 6398 case MVT::v16i8: 6399 case MVT::v2i64: 6400 case MVT::v2f64: 6401 case MVT::v1i128: { 6402 if (State.isVarArg()) 6403 report_fatal_error( 6404 "variadic arguments for vector types are unimplemented for AIX"); 6405 6406 if (unsigned VReg = State.AllocateReg(VR)) { 6407 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6408 return false; 6409 } 6410 6411 const unsigned VecSize = 16; 6412 const unsigned Offset = State.AllocateStack(VecSize, Align(VecSize)); 6413 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6414 return false; 6415 } 6416 } 6417 return true; 6418 } 6419 6420 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6421 bool IsPPC64) { 6422 assert((IsPPC64 || SVT != MVT::i64) && 6423 "i64 should have been split for 32-bit codegen."); 6424 6425 switch (SVT) { 6426 default: 6427 report_fatal_error("Unexpected value type for formal argument"); 6428 case MVT::i1: 6429 case MVT::i32: 6430 case MVT::i64: 6431 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6432 case MVT::f32: 6433 return &PPC::F4RCRegClass; 6434 case MVT::f64: 6435 return &PPC::F8RCRegClass; 6436 case MVT::v4f32: 6437 case MVT::v4i32: 6438 case MVT::v8i16: 6439 case MVT::v16i8: 6440 case MVT::v2i64: 6441 case MVT::v2f64: 6442 case MVT::v1i128: 6443 return &PPC::VRRCRegClass; 6444 } 6445 } 6446 6447 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6448 SelectionDAG &DAG, SDValue ArgValue, 6449 MVT LocVT, const SDLoc &dl) { 6450 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6451 assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); 6452 6453 if (Flags.isSExt()) 6454 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6455 DAG.getValueType(ValVT)); 6456 else if (Flags.isZExt()) 6457 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6458 DAG.getValueType(ValVT)); 6459 6460 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6461 } 6462 6463 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 6464 const unsigned LASize = FL->getLinkageSize(); 6465 6466 if (PPC::GPRCRegClass.contains(Reg)) { 6467 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 6468 "Reg must be a valid argument register!"); 6469 return LASize + 4 * (Reg - PPC::R3); 6470 } 6471 6472 if (PPC::G8RCRegClass.contains(Reg)) { 6473 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 6474 "Reg must be a valid argument register!"); 6475 return LASize + 8 * (Reg - PPC::X3); 6476 } 6477 6478 llvm_unreachable("Only general purpose registers expected."); 6479 } 6480 6481 // AIX ABI Stack Frame Layout: 6482 // 6483 // Low Memory +--------------------------------------------+ 6484 // SP +---> | Back chain | ---+ 6485 // | +--------------------------------------------+ | 6486 // | | Saved Condition Register | | 6487 // | +--------------------------------------------+ | 6488 // | | Saved Linkage Register | | 6489 // | +--------------------------------------------+ | Linkage Area 6490 // | | Reserved for compilers | | 6491 // | +--------------------------------------------+ | 6492 // | | Reserved for binders | | 6493 // | +--------------------------------------------+ | 6494 // | | Saved TOC pointer | ---+ 6495 // | +--------------------------------------------+ 6496 // | | Parameter save area | 6497 // | +--------------------------------------------+ 6498 // | | Alloca space | 6499 // | +--------------------------------------------+ 6500 // | | Local variable space | 6501 // | +--------------------------------------------+ 6502 // | | Float/int conversion temporary | 6503 // | +--------------------------------------------+ 6504 // | | Save area for AltiVec registers | 6505 // | +--------------------------------------------+ 6506 // | | AltiVec alignment padding | 6507 // | +--------------------------------------------+ 6508 // | | Save area for VRSAVE register | 6509 // | +--------------------------------------------+ 6510 // | | Save area for General Purpose registers | 6511 // | +--------------------------------------------+ 6512 // | | Save area for Floating Point registers | 6513 // | +--------------------------------------------+ 6514 // +---- | Back chain | 6515 // High Memory +--------------------------------------------+ 6516 // 6517 // Specifications: 6518 // AIX 7.2 Assembler Language Reference 6519 // Subroutine linkage convention 6520 6521 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 6522 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 6523 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6524 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 6525 6526 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 6527 CallConv == CallingConv::Fast) && 6528 "Unexpected calling convention!"); 6529 6530 if (getTargetMachine().Options.GuaranteedTailCallOpt) 6531 report_fatal_error("Tail call support is unimplemented on AIX."); 6532 6533 if (useSoftFloat()) 6534 report_fatal_error("Soft float support is unimplemented on AIX."); 6535 6536 const PPCSubtarget &Subtarget = 6537 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 6538 6539 const bool IsPPC64 = Subtarget.isPPC64(); 6540 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6541 6542 // Assign locations to all of the incoming arguments. 6543 SmallVector<CCValAssign, 16> ArgLocs; 6544 MachineFunction &MF = DAG.getMachineFunction(); 6545 MachineFrameInfo &MFI = MF.getFrameInfo(); 6546 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 6547 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 6548 6549 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 6550 // Reserve space for the linkage area on the stack. 6551 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6552 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 6553 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 6554 6555 SmallVector<SDValue, 8> MemOps; 6556 6557 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 6558 CCValAssign &VA = ArgLocs[I++]; 6559 MVT LocVT = VA.getLocVT(); 6560 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 6561 // For compatibility with the AIX XL compiler, the float args in the 6562 // parameter save area are initialized even if the argument is available 6563 // in register. The caller is required to initialize both the register 6564 // and memory, however, the callee can choose to expect it in either. 6565 // The memloc is dismissed here because the argument is retrieved from 6566 // the register. 6567 if (VA.isMemLoc() && VA.needsCustom()) 6568 continue; 6569 6570 if (VA.isRegLoc()) { 6571 if (VA.getValVT().isScalarInteger()) 6572 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 6573 else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) 6574 FuncInfo->appendParameterType(VA.getValVT().SimpleTy == MVT::f32 6575 ? PPCFunctionInfo::ShortFloatPoint 6576 : PPCFunctionInfo::LongFloatPoint); 6577 } 6578 6579 if (Flags.isByVal() && VA.isMemLoc()) { 6580 const unsigned Size = 6581 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 6582 PtrByteSize); 6583 const int FI = MF.getFrameInfo().CreateFixedObject( 6584 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 6585 /* IsAliased */ true); 6586 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6587 InVals.push_back(FIN); 6588 6589 continue; 6590 } 6591 6592 if (Flags.isByVal()) { 6593 assert(VA.isRegLoc() && "MemLocs should already be handled."); 6594 6595 const MCPhysReg ArgReg = VA.getLocReg(); 6596 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 6597 6598 if (Flags.getNonZeroByValAlign() > PtrByteSize) 6599 report_fatal_error("Over aligned byvals not supported yet."); 6600 6601 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 6602 const int FI = MF.getFrameInfo().CreateFixedObject( 6603 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 6604 /* IsAliased */ true); 6605 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6606 InVals.push_back(FIN); 6607 6608 // Add live ins for all the RegLocs for the same ByVal. 6609 const TargetRegisterClass *RegClass = 6610 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6611 6612 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 6613 unsigned Offset) { 6614 const unsigned VReg = MF.addLiveIn(PhysReg, RegClass); 6615 // Since the callers side has left justified the aggregate in the 6616 // register, we can simply store the entire register into the stack 6617 // slot. 6618 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 6619 // The store to the fixedstack object is needed becuase accessing a 6620 // field of the ByVal will use a gep and load. Ideally we will optimize 6621 // to extracting the value from the register directly, and elide the 6622 // stores when the arguments address is not taken, but that will need to 6623 // be future work. 6624 SDValue Store = DAG.getStore( 6625 CopyFrom.getValue(1), dl, CopyFrom, 6626 DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), 6627 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 6628 6629 MemOps.push_back(Store); 6630 }; 6631 6632 unsigned Offset = 0; 6633 HandleRegLoc(VA.getLocReg(), Offset); 6634 Offset += PtrByteSize; 6635 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 6636 Offset += PtrByteSize) { 6637 assert(ArgLocs[I].getValNo() == VA.getValNo() && 6638 "RegLocs should be for ByVal argument."); 6639 6640 const CCValAssign RL = ArgLocs[I++]; 6641 HandleRegLoc(RL.getLocReg(), Offset); 6642 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 6643 } 6644 6645 if (Offset != StackSize) { 6646 assert(ArgLocs[I].getValNo() == VA.getValNo() && 6647 "Expected MemLoc for remaining bytes."); 6648 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 6649 // Consume the MemLoc.The InVal has already been emitted, so nothing 6650 // more needs to be done. 6651 ++I; 6652 } 6653 6654 continue; 6655 } 6656 6657 EVT ValVT = VA.getValVT(); 6658 if (VA.isRegLoc() && !VA.needsCustom()) { 6659 MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy; 6660 unsigned VReg = 6661 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 6662 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 6663 if (ValVT.isScalarInteger() && 6664 (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { 6665 ArgValue = 6666 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 6667 } 6668 InVals.push_back(ArgValue); 6669 continue; 6670 } 6671 if (VA.isMemLoc()) { 6672 const unsigned LocSize = LocVT.getStoreSize(); 6673 const unsigned ValSize = ValVT.getStoreSize(); 6674 assert((ValSize <= LocSize) && 6675 "Object size is larger than size of MemLoc"); 6676 int CurArgOffset = VA.getLocMemOffset(); 6677 // Objects are right-justified because AIX is big-endian. 6678 if (LocSize > ValSize) 6679 CurArgOffset += LocSize - ValSize; 6680 // Potential tail calls could cause overwriting of argument stack slots. 6681 const bool IsImmutable = 6682 !(getTargetMachine().Options.GuaranteedTailCallOpt && 6683 (CallConv == CallingConv::Fast)); 6684 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 6685 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6686 SDValue ArgValue = 6687 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 6688 InVals.push_back(ArgValue); 6689 continue; 6690 } 6691 } 6692 6693 // On AIX a minimum of 8 words is saved to the parameter save area. 6694 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 6695 // Area that is at least reserved in the caller of this function. 6696 unsigned CallerReservedArea = 6697 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 6698 6699 // Set the size that is at least reserved in caller of this function. Tail 6700 // call optimized function's reserved stack space needs to be aligned so 6701 // that taking the difference between two stack areas will result in an 6702 // aligned stack. 6703 CallerReservedArea = 6704 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 6705 FuncInfo->setMinReservedArea(CallerReservedArea); 6706 6707 if (isVarArg) { 6708 FuncInfo->setVarArgsFrameIndex( 6709 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 6710 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 6711 6712 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6713 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6714 6715 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6716 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6717 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 6718 6719 // The fixed integer arguments of a variadic function are stored to the 6720 // VarArgsFrameIndex on the stack so that they may be loaded by 6721 // dereferencing the result of va_next. 6722 for (unsigned GPRIndex = 6723 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 6724 GPRIndex < NumGPArgRegs; ++GPRIndex) { 6725 6726 const unsigned VReg = 6727 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 6728 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 6729 6730 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 6731 SDValue Store = 6732 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 6733 MemOps.push_back(Store); 6734 // Increment the address for the next argument to store. 6735 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 6736 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 6737 } 6738 } 6739 6740 if (!MemOps.empty()) 6741 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 6742 6743 return Chain; 6744 } 6745 6746 SDValue PPCTargetLowering::LowerCall_AIX( 6747 SDValue Chain, SDValue Callee, CallFlags CFlags, 6748 const SmallVectorImpl<ISD::OutputArg> &Outs, 6749 const SmallVectorImpl<SDValue> &OutVals, 6750 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6751 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6752 const CallBase *CB) const { 6753 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 6754 // AIX ABI stack frame layout. 6755 6756 assert((CFlags.CallConv == CallingConv::C || 6757 CFlags.CallConv == CallingConv::Cold || 6758 CFlags.CallConv == CallingConv::Fast) && 6759 "Unexpected calling convention!"); 6760 6761 if (CFlags.IsPatchPoint) 6762 report_fatal_error("This call type is unimplemented on AIX."); 6763 6764 const PPCSubtarget& Subtarget = 6765 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 6766 6767 MachineFunction &MF = DAG.getMachineFunction(); 6768 SmallVector<CCValAssign, 16> ArgLocs; 6769 CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 6770 *DAG.getContext()); 6771 6772 // Reserve space for the linkage save area (LSA) on the stack. 6773 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 6774 // [SP][CR][LR][2 x reserved][TOC]. 6775 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 6776 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6777 const bool IsPPC64 = Subtarget.isPPC64(); 6778 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6779 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6780 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 6781 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 6782 6783 // The prolog code of the callee may store up to 8 GPR argument registers to 6784 // the stack, allowing va_start to index over them in memory if the callee 6785 // is variadic. 6786 // Because we cannot tell if this is needed on the caller side, we have to 6787 // conservatively assume that it is needed. As such, make sure we have at 6788 // least enough stack space for the caller to store the 8 GPRs. 6789 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 6790 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 6791 CCInfo.getNextStackOffset()); 6792 6793 // Adjust the stack pointer for the new arguments... 6794 // These operations are automatically eliminated by the prolog/epilog pass. 6795 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6796 SDValue CallSeqStart = Chain; 6797 6798 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6799 SmallVector<SDValue, 8> MemOpChains; 6800 6801 // Set up a copy of the stack pointer for loading and storing any 6802 // arguments that may not fit in the registers available for argument 6803 // passing. 6804 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 6805 : DAG.getRegister(PPC::R1, MVT::i32); 6806 6807 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 6808 const unsigned ValNo = ArgLocs[I].getValNo(); 6809 SDValue Arg = OutVals[ValNo]; 6810 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 6811 6812 if (Flags.isByVal()) { 6813 const unsigned ByValSize = Flags.getByValSize(); 6814 6815 // Nothing to do for zero-sized ByVals on the caller side. 6816 if (!ByValSize) { 6817 ++I; 6818 continue; 6819 } 6820 6821 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 6822 return DAG.getExtLoad( 6823 ISD::ZEXTLOAD, dl, PtrVT, Chain, 6824 (LoadOffset != 0) 6825 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 6826 : Arg, 6827 MachinePointerInfo(), VT); 6828 }; 6829 6830 unsigned LoadOffset = 0; 6831 6832 // Initialize registers, which are fully occupied by the by-val argument. 6833 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 6834 SDValue Load = GetLoad(PtrVT, LoadOffset); 6835 MemOpChains.push_back(Load.getValue(1)); 6836 LoadOffset += PtrByteSize; 6837 const CCValAssign &ByValVA = ArgLocs[I++]; 6838 assert(ByValVA.getValNo() == ValNo && 6839 "Unexpected location for pass-by-value argument."); 6840 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 6841 } 6842 6843 if (LoadOffset == ByValSize) 6844 continue; 6845 6846 // There must be one more loc to handle the remainder. 6847 assert(ArgLocs[I].getValNo() == ValNo && 6848 "Expected additional location for by-value argument."); 6849 6850 if (ArgLocs[I].isMemLoc()) { 6851 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 6852 const CCValAssign &ByValVA = ArgLocs[I++]; 6853 ISD::ArgFlagsTy MemcpyFlags = Flags; 6854 // Only memcpy the bytes that don't pass in register. 6855 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 6856 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 6857 (LoadOffset != 0) 6858 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 6859 : Arg, 6860 DAG.getObjectPtrOffset(dl, StackPtr, 6861 TypeSize::Fixed(ByValVA.getLocMemOffset())), 6862 CallSeqStart, MemcpyFlags, DAG, dl); 6863 continue; 6864 } 6865 6866 // Initialize the final register residue. 6867 // Any residue that occupies the final by-val arg register must be 6868 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 6869 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 6870 // 2 and 1 byte loads. 6871 const unsigned ResidueBytes = ByValSize % PtrByteSize; 6872 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 6873 "Unexpected register residue for by-value argument."); 6874 SDValue ResidueVal; 6875 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 6876 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 6877 const MVT VT = 6878 N == 1 ? MVT::i8 6879 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 6880 SDValue Load = GetLoad(VT, LoadOffset); 6881 MemOpChains.push_back(Load.getValue(1)); 6882 LoadOffset += N; 6883 Bytes += N; 6884 6885 // By-val arguments are passed left-justfied in register. 6886 // Every load here needs to be shifted, otherwise a full register load 6887 // should have been used. 6888 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 6889 "Unexpected load emitted during handling of pass-by-value " 6890 "argument."); 6891 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 6892 EVT ShiftAmountTy = 6893 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 6894 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 6895 SDValue ShiftedLoad = 6896 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 6897 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 6898 ShiftedLoad) 6899 : ShiftedLoad; 6900 } 6901 6902 const CCValAssign &ByValVA = ArgLocs[I++]; 6903 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 6904 continue; 6905 } 6906 6907 CCValAssign &VA = ArgLocs[I++]; 6908 const MVT LocVT = VA.getLocVT(); 6909 const MVT ValVT = VA.getValVT(); 6910 6911 switch (VA.getLocInfo()) { 6912 default: 6913 report_fatal_error("Unexpected argument extension type."); 6914 case CCValAssign::Full: 6915 break; 6916 case CCValAssign::ZExt: 6917 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 6918 break; 6919 case CCValAssign::SExt: 6920 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 6921 break; 6922 } 6923 6924 if (VA.isRegLoc() && !VA.needsCustom()) { 6925 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 6926 continue; 6927 } 6928 6929 if (VA.isMemLoc()) { 6930 SDValue PtrOff = 6931 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 6932 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6933 MemOpChains.push_back( 6934 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 6935 6936 continue; 6937 } 6938 6939 // Custom handling is used for GPR initializations for vararg float 6940 // arguments. 6941 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 6942 ValVT.isFloatingPoint() && LocVT.isInteger() && 6943 "Unexpected register handling for calling convention."); 6944 6945 SDValue ArgAsInt = 6946 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 6947 6948 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 6949 // f32 in 32-bit GPR 6950 // f64 in 64-bit GPR 6951 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 6952 else if (Arg.getValueType().getFixedSizeInBits() < 6953 LocVT.getFixedSizeInBits()) 6954 // f32 in 64-bit GPR. 6955 RegsToPass.push_back(std::make_pair( 6956 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 6957 else { 6958 // f64 in two 32-bit GPRs 6959 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 6960 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 6961 "Unexpected custom register for argument!"); 6962 CCValAssign &GPR1 = VA; 6963 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 6964 DAG.getConstant(32, dl, MVT::i8)); 6965 RegsToPass.push_back(std::make_pair( 6966 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 6967 6968 if (I != E) { 6969 // If only 1 GPR was available, there will only be one custom GPR and 6970 // the argument will also pass in memory. 6971 CCValAssign &PeekArg = ArgLocs[I]; 6972 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 6973 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 6974 CCValAssign &GPR2 = ArgLocs[I++]; 6975 RegsToPass.push_back(std::make_pair( 6976 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 6977 } 6978 } 6979 } 6980 } 6981 6982 if (!MemOpChains.empty()) 6983 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6984 6985 // For indirect calls, we need to save the TOC base to the stack for 6986 // restoration after the call. 6987 if (CFlags.IsIndirect) { 6988 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 6989 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 6990 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 6991 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 6992 const unsigned TOCSaveOffset = 6993 Subtarget.getFrameLowering()->getTOCSaveOffset(); 6994 6995 setUsesTOCBasePtr(DAG); 6996 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 6997 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6998 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 6999 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7000 Chain = DAG.getStore( 7001 Val.getValue(1), dl, Val, AddPtr, 7002 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7003 } 7004 7005 // Build a sequence of copy-to-reg nodes chained together with token chain 7006 // and flag operands which copy the outgoing args into the appropriate regs. 7007 SDValue InFlag; 7008 for (auto Reg : RegsToPass) { 7009 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7010 InFlag = Chain.getValue(1); 7011 } 7012 7013 const int SPDiff = 0; 7014 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7015 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7016 } 7017 7018 bool 7019 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7020 MachineFunction &MF, bool isVarArg, 7021 const SmallVectorImpl<ISD::OutputArg> &Outs, 7022 LLVMContext &Context) const { 7023 SmallVector<CCValAssign, 16> RVLocs; 7024 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7025 return CCInfo.CheckReturn( 7026 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7027 ? RetCC_PPC_Cold 7028 : RetCC_PPC); 7029 } 7030 7031 SDValue 7032 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7033 bool isVarArg, 7034 const SmallVectorImpl<ISD::OutputArg> &Outs, 7035 const SmallVectorImpl<SDValue> &OutVals, 7036 const SDLoc &dl, SelectionDAG &DAG) const { 7037 SmallVector<CCValAssign, 16> RVLocs; 7038 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7039 *DAG.getContext()); 7040 CCInfo.AnalyzeReturn(Outs, 7041 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7042 ? RetCC_PPC_Cold 7043 : RetCC_PPC); 7044 7045 SDValue Flag; 7046 SmallVector<SDValue, 4> RetOps(1, Chain); 7047 7048 // Copy the result values into the output registers. 7049 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7050 CCValAssign &VA = RVLocs[i]; 7051 assert(VA.isRegLoc() && "Can only return in registers!"); 7052 7053 SDValue Arg = OutVals[RealResIdx]; 7054 7055 switch (VA.getLocInfo()) { 7056 default: llvm_unreachable("Unknown loc info!"); 7057 case CCValAssign::Full: break; 7058 case CCValAssign::AExt: 7059 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7060 break; 7061 case CCValAssign::ZExt: 7062 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7063 break; 7064 case CCValAssign::SExt: 7065 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7066 break; 7067 } 7068 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7069 bool isLittleEndian = Subtarget.isLittleEndian(); 7070 // Legalize ret f64 -> ret 2 x i32. 7071 SDValue SVal = 7072 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7073 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7074 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7075 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7076 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7077 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7078 Flag = Chain.getValue(1); 7079 VA = RVLocs[++i]; // skip ahead to next loc 7080 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7081 } else 7082 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7083 Flag = Chain.getValue(1); 7084 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7085 } 7086 7087 RetOps[0] = Chain; // Update chain. 7088 7089 // Add the flag if we have it. 7090 if (Flag.getNode()) 7091 RetOps.push_back(Flag); 7092 7093 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7094 } 7095 7096 SDValue 7097 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7098 SelectionDAG &DAG) const { 7099 SDLoc dl(Op); 7100 7101 // Get the correct type for integers. 7102 EVT IntVT = Op.getValueType(); 7103 7104 // Get the inputs. 7105 SDValue Chain = Op.getOperand(0); 7106 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7107 // Build a DYNAREAOFFSET node. 7108 SDValue Ops[2] = {Chain, FPSIdx}; 7109 SDVTList VTs = DAG.getVTList(IntVT); 7110 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7111 } 7112 7113 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7114 SelectionDAG &DAG) const { 7115 // When we pop the dynamic allocation we need to restore the SP link. 7116 SDLoc dl(Op); 7117 7118 // Get the correct type for pointers. 7119 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7120 7121 // Construct the stack pointer operand. 7122 bool isPPC64 = Subtarget.isPPC64(); 7123 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7124 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7125 7126 // Get the operands for the STACKRESTORE. 7127 SDValue Chain = Op.getOperand(0); 7128 SDValue SaveSP = Op.getOperand(1); 7129 7130 // Load the old link SP. 7131 SDValue LoadLinkSP = 7132 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7133 7134 // Restore the stack pointer. 7135 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7136 7137 // Store the old link SP. 7138 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7139 } 7140 7141 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7142 MachineFunction &MF = DAG.getMachineFunction(); 7143 bool isPPC64 = Subtarget.isPPC64(); 7144 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7145 7146 // Get current frame pointer save index. The users of this index will be 7147 // primarily DYNALLOC instructions. 7148 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7149 int RASI = FI->getReturnAddrSaveIndex(); 7150 7151 // If the frame pointer save index hasn't been defined yet. 7152 if (!RASI) { 7153 // Find out what the fix offset of the frame pointer save area. 7154 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7155 // Allocate the frame index for frame pointer save area. 7156 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7157 // Save the result. 7158 FI->setReturnAddrSaveIndex(RASI); 7159 } 7160 return DAG.getFrameIndex(RASI, PtrVT); 7161 } 7162 7163 SDValue 7164 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7165 MachineFunction &MF = DAG.getMachineFunction(); 7166 bool isPPC64 = Subtarget.isPPC64(); 7167 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7168 7169 // Get current frame pointer save index. The users of this index will be 7170 // primarily DYNALLOC instructions. 7171 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7172 int FPSI = FI->getFramePointerSaveIndex(); 7173 7174 // If the frame pointer save index hasn't been defined yet. 7175 if (!FPSI) { 7176 // Find out what the fix offset of the frame pointer save area. 7177 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7178 // Allocate the frame index for frame pointer save area. 7179 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7180 // Save the result. 7181 FI->setFramePointerSaveIndex(FPSI); 7182 } 7183 return DAG.getFrameIndex(FPSI, PtrVT); 7184 } 7185 7186 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7187 SelectionDAG &DAG) const { 7188 MachineFunction &MF = DAG.getMachineFunction(); 7189 // Get the inputs. 7190 SDValue Chain = Op.getOperand(0); 7191 SDValue Size = Op.getOperand(1); 7192 SDLoc dl(Op); 7193 7194 // Get the correct type for pointers. 7195 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7196 // Negate the size. 7197 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7198 DAG.getConstant(0, dl, PtrVT), Size); 7199 // Construct a node for the frame pointer save index. 7200 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7201 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7202 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7203 if (hasInlineStackProbe(MF)) 7204 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7205 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7206 } 7207 7208 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7209 SelectionDAG &DAG) const { 7210 MachineFunction &MF = DAG.getMachineFunction(); 7211 7212 bool isPPC64 = Subtarget.isPPC64(); 7213 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7214 7215 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7216 return DAG.getFrameIndex(FI, PtrVT); 7217 } 7218 7219 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7220 SelectionDAG &DAG) const { 7221 SDLoc DL(Op); 7222 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7223 DAG.getVTList(MVT::i32, MVT::Other), 7224 Op.getOperand(0), Op.getOperand(1)); 7225 } 7226 7227 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7228 SelectionDAG &DAG) const { 7229 SDLoc DL(Op); 7230 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7231 Op.getOperand(0), Op.getOperand(1)); 7232 } 7233 7234 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7235 if (Op.getValueType().isVector()) 7236 return LowerVectorLoad(Op, DAG); 7237 7238 assert(Op.getValueType() == MVT::i1 && 7239 "Custom lowering only for i1 loads"); 7240 7241 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7242 7243 SDLoc dl(Op); 7244 LoadSDNode *LD = cast<LoadSDNode>(Op); 7245 7246 SDValue Chain = LD->getChain(); 7247 SDValue BasePtr = LD->getBasePtr(); 7248 MachineMemOperand *MMO = LD->getMemOperand(); 7249 7250 SDValue NewLD = 7251 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7252 BasePtr, MVT::i8, MMO); 7253 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7254 7255 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7256 return DAG.getMergeValues(Ops, dl); 7257 } 7258 7259 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7260 if (Op.getOperand(1).getValueType().isVector()) 7261 return LowerVectorStore(Op, DAG); 7262 7263 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7264 "Custom lowering only for i1 stores"); 7265 7266 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7267 7268 SDLoc dl(Op); 7269 StoreSDNode *ST = cast<StoreSDNode>(Op); 7270 7271 SDValue Chain = ST->getChain(); 7272 SDValue BasePtr = ST->getBasePtr(); 7273 SDValue Value = ST->getValue(); 7274 MachineMemOperand *MMO = ST->getMemOperand(); 7275 7276 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7277 Value); 7278 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7279 } 7280 7281 // FIXME: Remove this once the ANDI glue bug is fixed: 7282 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7283 assert(Op.getValueType() == MVT::i1 && 7284 "Custom lowering only for i1 results"); 7285 7286 SDLoc DL(Op); 7287 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7288 } 7289 7290 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7291 SelectionDAG &DAG) const { 7292 7293 // Implements a vector truncate that fits in a vector register as a shuffle. 7294 // We want to legalize vector truncates down to where the source fits in 7295 // a vector register (and target is therefore smaller than vector register 7296 // size). At that point legalization will try to custom lower the sub-legal 7297 // result and get here - where we can contain the truncate as a single target 7298 // operation. 7299 7300 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7301 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7302 // 7303 // We will implement it for big-endian ordering as this (where x denotes 7304 // undefined): 7305 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7306 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7307 // 7308 // The same operation in little-endian ordering will be: 7309 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7310 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7311 7312 EVT TrgVT = Op.getValueType(); 7313 assert(TrgVT.isVector() && "Vector type expected."); 7314 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7315 EVT EltVT = TrgVT.getVectorElementType(); 7316 if (!isOperationCustom(Op.getOpcode(), TrgVT) || 7317 TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || 7318 !isPowerOf2_32(EltVT.getSizeInBits())) 7319 return SDValue(); 7320 7321 SDValue N1 = Op.getOperand(0); 7322 EVT SrcVT = N1.getValueType(); 7323 unsigned SrcSize = SrcVT.getSizeInBits(); 7324 if (SrcSize > 256 || 7325 !isPowerOf2_32(SrcVT.getVectorNumElements()) || 7326 !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits())) 7327 return SDValue(); 7328 if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) 7329 return SDValue(); 7330 7331 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7332 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7333 7334 SDLoc DL(Op); 7335 SDValue Op1, Op2; 7336 if (SrcSize == 256) { 7337 EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); 7338 EVT SplitVT = 7339 N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 7340 unsigned SplitNumElts = SplitVT.getVectorNumElements(); 7341 Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7342 DAG.getConstant(0, DL, VecIdxTy)); 7343 Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7344 DAG.getConstant(SplitNumElts, DL, VecIdxTy)); 7345 } 7346 else { 7347 Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7348 Op2 = DAG.getUNDEF(WideVT); 7349 } 7350 7351 // First list the elements we want to keep. 7352 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7353 SmallVector<int, 16> ShuffV; 7354 if (Subtarget.isLittleEndian()) 7355 for (unsigned i = 0; i < TrgNumElts; ++i) 7356 ShuffV.push_back(i * SizeMult); 7357 else 7358 for (unsigned i = 1; i <= TrgNumElts; ++i) 7359 ShuffV.push_back(i * SizeMult - 1); 7360 7361 // Populate the remaining elements with undefs. 7362 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7363 // ShuffV.push_back(i + WideNumElts); 7364 ShuffV.push_back(WideNumElts + 1); 7365 7366 Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); 7367 Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); 7368 return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); 7369 } 7370 7371 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7372 /// possible. 7373 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7374 // Not FP, or using SPE? Not a fsel. 7375 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 7376 !Op.getOperand(2).getValueType().isFloatingPoint() || Subtarget.hasSPE()) 7377 return Op; 7378 7379 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7380 7381 EVT ResVT = Op.getValueType(); 7382 EVT CmpVT = Op.getOperand(0).getValueType(); 7383 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7384 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7385 SDLoc dl(Op); 7386 SDNodeFlags Flags = Op.getNode()->getFlags(); 7387 7388 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 7389 // presence of infinities. 7390 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7391 switch (CC) { 7392 default: 7393 break; 7394 case ISD::SETOGT: 7395 case ISD::SETGT: 7396 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 7397 case ISD::SETOLT: 7398 case ISD::SETLT: 7399 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 7400 } 7401 } 7402 7403 // We might be able to do better than this under some circumstances, but in 7404 // general, fsel-based lowering of select is a finite-math-only optimization. 7405 // For more information, see section F.3 of the 2.06 ISA specification. 7406 // With ISA 3.0 7407 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 7408 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 7409 return Op; 7410 7411 // If the RHS of the comparison is a 0.0, we don't need to do the 7412 // subtraction at all. 7413 SDValue Sel1; 7414 if (isFloatingPointZero(RHS)) 7415 switch (CC) { 7416 default: break; // SETUO etc aren't handled by fsel. 7417 case ISD::SETNE: 7418 std::swap(TV, FV); 7419 LLVM_FALLTHROUGH; 7420 case ISD::SETEQ: 7421 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7422 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7423 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7424 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7425 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7426 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7427 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7428 case ISD::SETULT: 7429 case ISD::SETLT: 7430 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7431 LLVM_FALLTHROUGH; 7432 case ISD::SETOGE: 7433 case ISD::SETGE: 7434 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7435 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7436 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7437 case ISD::SETUGT: 7438 case ISD::SETGT: 7439 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7440 LLVM_FALLTHROUGH; 7441 case ISD::SETOLE: 7442 case ISD::SETLE: 7443 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7444 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7445 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7446 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7447 } 7448 7449 SDValue Cmp; 7450 switch (CC) { 7451 default: break; // SETUO etc aren't handled by fsel. 7452 case ISD::SETNE: 7453 std::swap(TV, FV); 7454 LLVM_FALLTHROUGH; 7455 case ISD::SETEQ: 7456 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7457 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7458 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7459 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7460 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7461 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7462 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7463 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7464 case ISD::SETULT: 7465 case ISD::SETLT: 7466 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7467 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7468 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7469 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7470 case ISD::SETOGE: 7471 case ISD::SETGE: 7472 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7473 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7474 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7475 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7476 case ISD::SETUGT: 7477 case ISD::SETGT: 7478 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7479 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7480 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7481 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7482 case ISD::SETOLE: 7483 case ISD::SETLE: 7484 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7485 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7486 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7487 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7488 } 7489 return Op; 7490 } 7491 7492 static unsigned getPPCStrictOpcode(unsigned Opc) { 7493 switch (Opc) { 7494 default: 7495 llvm_unreachable("No strict version of this opcode!"); 7496 case PPCISD::FCTIDZ: 7497 return PPCISD::STRICT_FCTIDZ; 7498 case PPCISD::FCTIWZ: 7499 return PPCISD::STRICT_FCTIWZ; 7500 case PPCISD::FCTIDUZ: 7501 return PPCISD::STRICT_FCTIDUZ; 7502 case PPCISD::FCTIWUZ: 7503 return PPCISD::STRICT_FCTIWUZ; 7504 case PPCISD::FCFID: 7505 return PPCISD::STRICT_FCFID; 7506 case PPCISD::FCFIDU: 7507 return PPCISD::STRICT_FCFIDU; 7508 case PPCISD::FCFIDS: 7509 return PPCISD::STRICT_FCFIDS; 7510 case PPCISD::FCFIDUS: 7511 return PPCISD::STRICT_FCFIDUS; 7512 } 7513 } 7514 7515 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 7516 const PPCSubtarget &Subtarget) { 7517 SDLoc dl(Op); 7518 bool IsStrict = Op->isStrictFPOpcode(); 7519 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 7520 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 7521 7522 // TODO: Any other flags to propagate? 7523 SDNodeFlags Flags; 7524 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 7525 7526 // For strict nodes, source is the second operand. 7527 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 7528 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 7529 assert(Src.getValueType().isFloatingPoint()); 7530 if (Src.getValueType() == MVT::f32) { 7531 if (IsStrict) { 7532 Src = 7533 DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 7534 DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); 7535 Chain = Src.getValue(1); 7536 } else 7537 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7538 } 7539 SDValue Conv; 7540 unsigned Opc = ISD::DELETED_NODE; 7541 switch (Op.getSimpleValueType().SimpleTy) { 7542 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7543 case MVT::i32: 7544 Opc = IsSigned ? PPCISD::FCTIWZ 7545 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); 7546 break; 7547 case MVT::i64: 7548 assert((IsSigned || Subtarget.hasFPCVT()) && 7549 "i64 FP_TO_UINT is supported only with FPCVT"); 7550 Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; 7551 } 7552 if (IsStrict) { 7553 Opc = getPPCStrictOpcode(Opc); 7554 Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other), 7555 {Chain, Src}, Flags); 7556 } else { 7557 Conv = DAG.getNode(Opc, dl, MVT::f64, Src); 7558 } 7559 return Conv; 7560 } 7561 7562 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 7563 SelectionDAG &DAG, 7564 const SDLoc &dl) const { 7565 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 7566 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 7567 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 7568 bool IsStrict = Op->isStrictFPOpcode(); 7569 7570 // Convert the FP value to an int value through memory. 7571 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 7572 (IsSigned || Subtarget.hasFPCVT()); 7573 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 7574 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 7575 MachinePointerInfo MPI = 7576 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 7577 7578 // Emit a store to the stack slot. 7579 SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); 7580 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 7581 if (i32Stack) { 7582 MachineFunction &MF = DAG.getMachineFunction(); 7583 Alignment = Align(4); 7584 MachineMemOperand *MMO = 7585 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 7586 SDValue Ops[] = { Chain, Tmp, FIPtr }; 7587 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 7588 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 7589 } else 7590 Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); 7591 7592 // Result is a load from the stack slot. If loading 4 bytes, make sure to 7593 // add in a bias on big endian. 7594 if (Op.getValueType() == MVT::i32 && !i32Stack) { 7595 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 7596 DAG.getConstant(4, dl, FIPtr.getValueType())); 7597 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 7598 } 7599 7600 RLI.Chain = Chain; 7601 RLI.Ptr = FIPtr; 7602 RLI.MPI = MPI; 7603 RLI.Alignment = Alignment; 7604 } 7605 7606 /// Custom lowers floating point to integer conversions to use 7607 /// the direct move instructions available in ISA 2.07 to avoid the 7608 /// need for load/store combinations. 7609 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 7610 SelectionDAG &DAG, 7611 const SDLoc &dl) const { 7612 SDValue Conv = convertFPToInt(Op, DAG, Subtarget); 7613 SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); 7614 if (Op->isStrictFPOpcode()) 7615 return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); 7616 else 7617 return Mov; 7618 } 7619 7620 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 7621 const SDLoc &dl) const { 7622 bool IsStrict = Op->isStrictFPOpcode(); 7623 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 7624 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 7625 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 7626 EVT SrcVT = Src.getValueType(); 7627 EVT DstVT = Op.getValueType(); 7628 7629 // FP to INT conversions are legal for f128. 7630 if (SrcVT == MVT::f128) 7631 return Subtarget.hasP9Vector() ? Op : SDValue(); 7632 7633 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 7634 // PPC (the libcall is not available). 7635 if (SrcVT == MVT::ppcf128) { 7636 if (DstVT == MVT::i32) { 7637 // TODO: Conservatively pass only nofpexcept flag here. Need to check and 7638 // set other fast-math flags to FP operations in both strict and 7639 // non-strict cases. (FP_TO_SINT, FSUB) 7640 SDNodeFlags Flags; 7641 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 7642 7643 if (IsSigned) { 7644 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 7645 DAG.getIntPtrConstant(0, dl)); 7646 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 7647 DAG.getIntPtrConstant(1, dl)); 7648 7649 // Add the two halves of the long double in round-to-zero mode, and use 7650 // a smaller FP_TO_SINT. 7651 if (IsStrict) { 7652 SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, 7653 DAG.getVTList(MVT::f64, MVT::Other), 7654 {Op.getOperand(0), Lo, Hi}, Flags); 7655 return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 7656 DAG.getVTList(MVT::i32, MVT::Other), 7657 {Res.getValue(1), Res}, Flags); 7658 } else { 7659 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 7660 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 7661 } 7662 } else { 7663 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 7664 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 7665 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 7666 SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); 7667 if (IsStrict) { 7668 // Sel = Src < 0x80000000 7669 // FltOfs = select Sel, 0.0, 0x80000000 7670 // IntOfs = select Sel, 0, 0x80000000 7671 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 7672 SDValue Chain = Op.getOperand(0); 7673 EVT SetCCVT = 7674 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 7675 EVT DstSetCCVT = 7676 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 7677 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 7678 Chain, true); 7679 Chain = Sel.getValue(1); 7680 7681 SDValue FltOfs = DAG.getSelect( 7682 dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); 7683 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7684 7685 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, 7686 DAG.getVTList(SrcVT, MVT::Other), 7687 {Chain, Src, FltOfs}, Flags); 7688 Chain = Val.getValue(1); 7689 SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 7690 DAG.getVTList(DstVT, MVT::Other), 7691 {Chain, Val}, Flags); 7692 Chain = SInt.getValue(1); 7693 SDValue IntOfs = DAG.getSelect( 7694 dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); 7695 SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 7696 return DAG.getMergeValues({Result, Chain}, dl); 7697 } else { 7698 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 7699 // FIXME: generated code sucks. 7700 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); 7701 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 7702 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); 7703 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 7704 return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); 7705 } 7706 } 7707 } 7708 7709 return SDValue(); 7710 } 7711 7712 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 7713 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 7714 7715 ReuseLoadInfo RLI; 7716 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7717 7718 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7719 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7720 } 7721 7722 // We're trying to insert a regular store, S, and then a load, L. If the 7723 // incoming value, O, is a load, we might just be able to have our load use the 7724 // address used by O. However, we don't know if anything else will store to 7725 // that address before we can load from it. To prevent this situation, we need 7726 // to insert our load, L, into the chain as a peer of O. To do this, we give L 7727 // the same chain operand as O, we create a token factor from the chain results 7728 // of O and L, and we replace all uses of O's chain result with that token 7729 // factor (see spliceIntoChain below for this last part). 7730 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 7731 ReuseLoadInfo &RLI, 7732 SelectionDAG &DAG, 7733 ISD::LoadExtType ET) const { 7734 // Conservatively skip reusing for constrained FP nodes. 7735 if (Op->isStrictFPOpcode()) 7736 return false; 7737 7738 SDLoc dl(Op); 7739 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 7740 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 7741 if (ET == ISD::NON_EXTLOAD && 7742 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 7743 isOperationLegalOrCustom(Op.getOpcode(), 7744 Op.getOperand(0).getValueType())) { 7745 7746 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7747 return true; 7748 } 7749 7750 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 7751 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 7752 LD->isNonTemporal()) 7753 return false; 7754 if (LD->getMemoryVT() != MemVT) 7755 return false; 7756 7757 // If the result of the load is an illegal type, then we can't build a 7758 // valid chain for reuse since the legalised loads and token factor node that 7759 // ties the legalised loads together uses a different output chain then the 7760 // illegal load. 7761 if (!isTypeLegal(LD->getValueType(0))) 7762 return false; 7763 7764 RLI.Ptr = LD->getBasePtr(); 7765 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 7766 assert(LD->getAddressingMode() == ISD::PRE_INC && 7767 "Non-pre-inc AM on PPC?"); 7768 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 7769 LD->getOffset()); 7770 } 7771 7772 RLI.Chain = LD->getChain(); 7773 RLI.MPI = LD->getPointerInfo(); 7774 RLI.IsDereferenceable = LD->isDereferenceable(); 7775 RLI.IsInvariant = LD->isInvariant(); 7776 RLI.Alignment = LD->getAlign(); 7777 RLI.AAInfo = LD->getAAInfo(); 7778 RLI.Ranges = LD->getRanges(); 7779 7780 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 7781 return true; 7782 } 7783 7784 // Given the head of the old chain, ResChain, insert a token factor containing 7785 // it and NewResChain, and make users of ResChain now be users of that token 7786 // factor. 7787 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 7788 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 7789 SDValue NewResChain, 7790 SelectionDAG &DAG) const { 7791 if (!ResChain) 7792 return; 7793 7794 SDLoc dl(NewResChain); 7795 7796 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 7797 NewResChain, DAG.getUNDEF(MVT::Other)); 7798 assert(TF.getNode() != NewResChain.getNode() && 7799 "A new TF really is required here"); 7800 7801 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 7802 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 7803 } 7804 7805 /// Analyze profitability of direct move 7806 /// prefer float load to int load plus direct move 7807 /// when there is no integer use of int load 7808 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 7809 SDNode *Origin = Op.getOperand(0).getNode(); 7810 if (Origin->getOpcode() != ISD::LOAD) 7811 return true; 7812 7813 // If there is no LXSIBZX/LXSIHZX, like Power8, 7814 // prefer direct move if the memory size is 1 or 2 bytes. 7815 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 7816 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 7817 return true; 7818 7819 for (SDNode::use_iterator UI = Origin->use_begin(), 7820 UE = Origin->use_end(); 7821 UI != UE; ++UI) { 7822 7823 // Only look at the users of the loaded value. 7824 if (UI.getUse().get().getResNo() != 0) 7825 continue; 7826 7827 if (UI->getOpcode() != ISD::SINT_TO_FP && 7828 UI->getOpcode() != ISD::UINT_TO_FP && 7829 UI->getOpcode() != ISD::STRICT_SINT_TO_FP && 7830 UI->getOpcode() != ISD::STRICT_UINT_TO_FP) 7831 return true; 7832 } 7833 7834 return false; 7835 } 7836 7837 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 7838 const PPCSubtarget &Subtarget, 7839 SDValue Chain = SDValue()) { 7840 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 7841 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 7842 SDLoc dl(Op); 7843 7844 // TODO: Any other flags to propagate? 7845 SDNodeFlags Flags; 7846 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 7847 7848 // If we have FCFIDS, then use it when converting to single-precision. 7849 // Otherwise, convert to double-precision and then round. 7850 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 7851 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 7852 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 7853 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 7854 if (Op->isStrictFPOpcode()) { 7855 if (!Chain) 7856 Chain = Op.getOperand(0); 7857 return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, 7858 DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); 7859 } else 7860 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 7861 } 7862 7863 /// Custom lowers integer to floating point conversions to use 7864 /// the direct move instructions available in ISA 2.07 to avoid the 7865 /// need for load/store combinations. 7866 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 7867 SelectionDAG &DAG, 7868 const SDLoc &dl) const { 7869 assert((Op.getValueType() == MVT::f32 || 7870 Op.getValueType() == MVT::f64) && 7871 "Invalid floating point type as target of conversion"); 7872 assert(Subtarget.hasFPCVT() && 7873 "Int to FP conversions with direct moves require FPCVT"); 7874 SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); 7875 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 7876 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || 7877 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 7878 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 7879 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 7880 return convertIntToFP(Op, Mov, DAG, Subtarget); 7881 } 7882 7883 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 7884 7885 EVT VecVT = Vec.getValueType(); 7886 assert(VecVT.isVector() && "Expected a vector type."); 7887 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 7888 7889 EVT EltVT = VecVT.getVectorElementType(); 7890 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7891 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7892 7893 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 7894 SmallVector<SDValue, 16> Ops(NumConcat); 7895 Ops[0] = Vec; 7896 SDValue UndefVec = DAG.getUNDEF(VecVT); 7897 for (unsigned i = 1; i < NumConcat; ++i) 7898 Ops[i] = UndefVec; 7899 7900 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 7901 } 7902 7903 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 7904 const SDLoc &dl) const { 7905 bool IsStrict = Op->isStrictFPOpcode(); 7906 unsigned Opc = Op.getOpcode(); 7907 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 7908 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || 7909 Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && 7910 "Unexpected conversion type"); 7911 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 7912 "Supports conversions to v2f64/v4f32 only."); 7913 7914 // TODO: Any other flags to propagate? 7915 SDNodeFlags Flags; 7916 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 7917 7918 bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; 7919 bool FourEltRes = Op.getValueType() == MVT::v4f32; 7920 7921 SDValue Wide = widenVec(DAG, Src, dl); 7922 EVT WideVT = Wide.getValueType(); 7923 unsigned WideNumElts = WideVT.getVectorNumElements(); 7924 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 7925 7926 SmallVector<int, 16> ShuffV; 7927 for (unsigned i = 0; i < WideNumElts; ++i) 7928 ShuffV.push_back(i + WideNumElts); 7929 7930 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 7931 int SaveElts = FourEltRes ? 4 : 2; 7932 if (Subtarget.isLittleEndian()) 7933 for (int i = 0; i < SaveElts; i++) 7934 ShuffV[i * Stride] = i; 7935 else 7936 for (int i = 1; i <= SaveElts; i++) 7937 ShuffV[i * Stride - 1] = i - 1; 7938 7939 SDValue ShuffleSrc2 = 7940 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 7941 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 7942 7943 SDValue Extend; 7944 if (SignedConv) { 7945 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 7946 EVT ExtVT = Src.getValueType(); 7947 if (Subtarget.hasP9Altivec()) 7948 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 7949 IntermediateVT.getVectorNumElements()); 7950 7951 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 7952 DAG.getValueType(ExtVT)); 7953 } else 7954 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 7955 7956 if (IsStrict) 7957 return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 7958 {Op.getOperand(0), Extend}, Flags); 7959 7960 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 7961 } 7962 7963 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 7964 SelectionDAG &DAG) const { 7965 SDLoc dl(Op); 7966 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 7967 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 7968 bool IsStrict = Op->isStrictFPOpcode(); 7969 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 7970 SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); 7971 7972 // TODO: Any other flags to propagate? 7973 SDNodeFlags Flags; 7974 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 7975 7976 EVT InVT = Src.getValueType(); 7977 EVT OutVT = Op.getValueType(); 7978 if (OutVT.isVector() && OutVT.isFloatingPoint() && 7979 isOperationCustom(Op.getOpcode(), InVT)) 7980 return LowerINT_TO_FPVector(Op, DAG, dl); 7981 7982 // Conversions to f128 are legal. 7983 if (Op.getValueType() == MVT::f128) 7984 return Subtarget.hasP9Vector() ? Op : SDValue(); 7985 7986 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 7987 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 7988 return SDValue(); 7989 7990 if (Src.getValueType() == MVT::i1) { 7991 SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 7992 DAG.getConstantFP(1.0, dl, Op.getValueType()), 7993 DAG.getConstantFP(0.0, dl, Op.getValueType())); 7994 if (IsStrict) 7995 return DAG.getMergeValues({Sel, Chain}, dl); 7996 else 7997 return Sel; 7998 } 7999 8000 // If we have direct moves, we can do all the conversion, skip the store/load 8001 // however, without FPCVT we can't do most conversions. 8002 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8003 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8004 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8005 8006 assert((IsSigned || Subtarget.hasFPCVT()) && 8007 "UINT_TO_FP is supported only with FPCVT"); 8008 8009 if (Src.getValueType() == MVT::i64) { 8010 SDValue SINT = Src; 8011 // When converting to single-precision, we actually need to convert 8012 // to double-precision first and then round to single-precision. 8013 // To avoid double-rounding effects during that operation, we have 8014 // to prepare the input operand. Bits that might be truncated when 8015 // converting to double-precision are replaced by a bit that won't 8016 // be lost at this stage, but is below the single-precision rounding 8017 // position. 8018 // 8019 // However, if -enable-unsafe-fp-math is in effect, accept double 8020 // rounding to avoid the extra overhead. 8021 if (Op.getValueType() == MVT::f32 && 8022 !Subtarget.hasFPCVT() && 8023 !DAG.getTarget().Options.UnsafeFPMath) { 8024 8025 // Twiddle input to make sure the low 11 bits are zero. (If this 8026 // is the case, we are guaranteed the value will fit into the 53 bit 8027 // mantissa of an IEEE double-precision value without rounding.) 8028 // If any of those low 11 bits were not zero originally, make sure 8029 // bit 12 (value 2048) is set instead, so that the final rounding 8030 // to single-precision gets the correct result. 8031 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8032 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8033 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8034 Round, DAG.getConstant(2047, dl, MVT::i64)); 8035 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8036 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8037 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8038 8039 // However, we cannot use that value unconditionally: if the magnitude 8040 // of the input value is small, the bit-twiddling we did above might 8041 // end up visibly changing the output. Fortunately, in that case, we 8042 // don't need to twiddle bits since the original input will convert 8043 // exactly to double-precision floating-point already. Therefore, 8044 // construct a conditional to use the original value if the top 11 8045 // bits are all sign-bit copies, and use the rounded value computed 8046 // above otherwise. 8047 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8048 SINT, DAG.getConstant(53, dl, MVT::i32)); 8049 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8050 Cond, DAG.getConstant(1, dl, MVT::i64)); 8051 Cond = DAG.getSetCC( 8052 dl, 8053 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8054 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8055 8056 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8057 } 8058 8059 ReuseLoadInfo RLI; 8060 SDValue Bits; 8061 8062 MachineFunction &MF = DAG.getMachineFunction(); 8063 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8064 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8065 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8066 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8067 } else if (Subtarget.hasLFIWAX() && 8068 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8069 MachineMemOperand *MMO = 8070 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8071 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8072 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8073 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8074 DAG.getVTList(MVT::f64, MVT::Other), 8075 Ops, MVT::i32, MMO); 8076 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8077 } else if (Subtarget.hasFPCVT() && 8078 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8079 MachineMemOperand *MMO = 8080 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8081 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8082 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8083 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8084 DAG.getVTList(MVT::f64, MVT::Other), 8085 Ops, MVT::i32, MMO); 8086 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8087 } else if (((Subtarget.hasLFIWAX() && 8088 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8089 (Subtarget.hasFPCVT() && 8090 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8091 SINT.getOperand(0).getValueType() == MVT::i32) { 8092 MachineFrameInfo &MFI = MF.getFrameInfo(); 8093 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8094 8095 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8096 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8097 8098 SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, 8099 MachinePointerInfo::getFixedStack( 8100 DAG.getMachineFunction(), FrameIdx)); 8101 Chain = Store; 8102 8103 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8104 "Expected an i32 store"); 8105 8106 RLI.Ptr = FIdx; 8107 RLI.Chain = Chain; 8108 RLI.MPI = 8109 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8110 RLI.Alignment = Align(4); 8111 8112 MachineMemOperand *MMO = 8113 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8114 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8115 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8116 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8117 PPCISD::LFIWZX : PPCISD::LFIWAX, 8118 dl, DAG.getVTList(MVT::f64, MVT::Other), 8119 Ops, MVT::i32, MMO); 8120 Chain = Bits.getValue(1); 8121 } else 8122 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8123 8124 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); 8125 if (IsStrict) 8126 Chain = FP.getValue(1); 8127 8128 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8129 if (IsStrict) 8130 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8131 DAG.getVTList(MVT::f32, MVT::Other), 8132 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8133 else 8134 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8135 DAG.getIntPtrConstant(0, dl)); 8136 } 8137 return FP; 8138 } 8139 8140 assert(Src.getValueType() == MVT::i32 && 8141 "Unhandled INT_TO_FP type in custom expander!"); 8142 // Since we only generate this in 64-bit mode, we can take advantage of 8143 // 64-bit registers. In particular, sign extend the input value into the 8144 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8145 // then lfd it and fcfid it. 8146 MachineFunction &MF = DAG.getMachineFunction(); 8147 MachineFrameInfo &MFI = MF.getFrameInfo(); 8148 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8149 8150 SDValue Ld; 8151 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8152 ReuseLoadInfo RLI; 8153 bool ReusingLoad; 8154 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8155 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8156 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8157 8158 SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, 8159 MachinePointerInfo::getFixedStack( 8160 DAG.getMachineFunction(), FrameIdx)); 8161 Chain = Store; 8162 8163 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8164 "Expected an i32 store"); 8165 8166 RLI.Ptr = FIdx; 8167 RLI.Chain = Chain; 8168 RLI.MPI = 8169 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8170 RLI.Alignment = Align(4); 8171 } 8172 8173 MachineMemOperand *MMO = 8174 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8175 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8176 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8177 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8178 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8179 MVT::i32, MMO); 8180 Chain = Ld.getValue(1); 8181 if (ReusingLoad) 8182 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8183 } else { 8184 assert(Subtarget.isPPC64() && 8185 "i32->FP without LFIWAX supported only on PPC64"); 8186 8187 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8188 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8189 8190 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8191 8192 // STD the extended value into the stack slot. 8193 SDValue Store = DAG.getStore( 8194 Chain, dl, Ext64, FIdx, 8195 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8196 Chain = Store; 8197 8198 // Load the value as a double. 8199 Ld = DAG.getLoad( 8200 MVT::f64, dl, Chain, FIdx, 8201 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8202 Chain = Ld.getValue(1); 8203 } 8204 8205 // FCFID it and return it. 8206 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); 8207 if (IsStrict) 8208 Chain = FP.getValue(1); 8209 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8210 if (IsStrict) 8211 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8212 DAG.getVTList(MVT::f32, MVT::Other), 8213 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8214 else 8215 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8216 DAG.getIntPtrConstant(0, dl)); 8217 } 8218 return FP; 8219 } 8220 8221 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8222 SelectionDAG &DAG) const { 8223 SDLoc dl(Op); 8224 /* 8225 The rounding mode is in bits 30:31 of FPSR, and has the following 8226 settings: 8227 00 Round to nearest 8228 01 Round to 0 8229 10 Round to +inf 8230 11 Round to -inf 8231 8232 FLT_ROUNDS, on the other hand, expects the following: 8233 -1 Undefined 8234 0 Round to 0 8235 1 Round to nearest 8236 2 Round to +inf 8237 3 Round to -inf 8238 8239 To perform the conversion, we do: 8240 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8241 */ 8242 8243 MachineFunction &MF = DAG.getMachineFunction(); 8244 EVT VT = Op.getValueType(); 8245 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8246 8247 // Save FP Control Word to register 8248 SDValue Chain = Op.getOperand(0); 8249 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8250 Chain = MFFS.getValue(1); 8251 8252 SDValue CWD; 8253 if (isTypeLegal(MVT::i64)) { 8254 CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, 8255 DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS)); 8256 } else { 8257 // Save FP register to stack slot 8258 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8259 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8260 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8261 8262 // Load FP Control Word from low 32 bits of stack slot. 8263 assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) && 8264 "Stack slot adjustment is valid only on big endian subtargets!"); 8265 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8266 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8267 CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8268 Chain = CWD.getValue(1); 8269 } 8270 8271 // Transform as necessary 8272 SDValue CWD1 = 8273 DAG.getNode(ISD::AND, dl, MVT::i32, 8274 CWD, DAG.getConstant(3, dl, MVT::i32)); 8275 SDValue CWD2 = 8276 DAG.getNode(ISD::SRL, dl, MVT::i32, 8277 DAG.getNode(ISD::AND, dl, MVT::i32, 8278 DAG.getNode(ISD::XOR, dl, MVT::i32, 8279 CWD, DAG.getConstant(3, dl, MVT::i32)), 8280 DAG.getConstant(3, dl, MVT::i32)), 8281 DAG.getConstant(1, dl, MVT::i32)); 8282 8283 SDValue RetVal = 8284 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8285 8286 RetVal = 8287 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8288 dl, VT, RetVal); 8289 8290 return DAG.getMergeValues({RetVal, Chain}, dl); 8291 } 8292 8293 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8294 EVT VT = Op.getValueType(); 8295 unsigned BitWidth = VT.getSizeInBits(); 8296 SDLoc dl(Op); 8297 assert(Op.getNumOperands() == 3 && 8298 VT == Op.getOperand(1).getValueType() && 8299 "Unexpected SHL!"); 8300 8301 // Expand into a bunch of logical ops. Note that these ops 8302 // depend on the PPC behavior for oversized shift amounts. 8303 SDValue Lo = Op.getOperand(0); 8304 SDValue Hi = Op.getOperand(1); 8305 SDValue Amt = Op.getOperand(2); 8306 EVT AmtVT = Amt.getValueType(); 8307 8308 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8309 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8310 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8311 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8312 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8313 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8314 DAG.getConstant(-BitWidth, dl, AmtVT)); 8315 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8316 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8317 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8318 SDValue OutOps[] = { OutLo, OutHi }; 8319 return DAG.getMergeValues(OutOps, dl); 8320 } 8321 8322 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8323 EVT VT = Op.getValueType(); 8324 SDLoc dl(Op); 8325 unsigned BitWidth = VT.getSizeInBits(); 8326 assert(Op.getNumOperands() == 3 && 8327 VT == Op.getOperand(1).getValueType() && 8328 "Unexpected SRL!"); 8329 8330 // Expand into a bunch of logical ops. Note that these ops 8331 // depend on the PPC behavior for oversized shift amounts. 8332 SDValue Lo = Op.getOperand(0); 8333 SDValue Hi = Op.getOperand(1); 8334 SDValue Amt = Op.getOperand(2); 8335 EVT AmtVT = Amt.getValueType(); 8336 8337 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8338 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8339 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8340 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8341 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8342 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8343 DAG.getConstant(-BitWidth, dl, AmtVT)); 8344 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8345 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8346 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8347 SDValue OutOps[] = { OutLo, OutHi }; 8348 return DAG.getMergeValues(OutOps, dl); 8349 } 8350 8351 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8352 SDLoc dl(Op); 8353 EVT VT = Op.getValueType(); 8354 unsigned BitWidth = VT.getSizeInBits(); 8355 assert(Op.getNumOperands() == 3 && 8356 VT == Op.getOperand(1).getValueType() && 8357 "Unexpected SRA!"); 8358 8359 // Expand into a bunch of logical ops, followed by a select_cc. 8360 SDValue Lo = Op.getOperand(0); 8361 SDValue Hi = Op.getOperand(1); 8362 SDValue Amt = Op.getOperand(2); 8363 EVT AmtVT = Amt.getValueType(); 8364 8365 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8366 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8367 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8368 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8369 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8370 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8371 DAG.getConstant(-BitWidth, dl, AmtVT)); 8372 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8373 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8374 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8375 Tmp4, Tmp6, ISD::SETLE); 8376 SDValue OutOps[] = { OutLo, OutHi }; 8377 return DAG.getMergeValues(OutOps, dl); 8378 } 8379 8380 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 8381 SelectionDAG &DAG) const { 8382 SDLoc dl(Op); 8383 EVT VT = Op.getValueType(); 8384 unsigned BitWidth = VT.getSizeInBits(); 8385 8386 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 8387 SDValue X = Op.getOperand(0); 8388 SDValue Y = Op.getOperand(1); 8389 SDValue Z = Op.getOperand(2); 8390 EVT AmtVT = Z.getValueType(); 8391 8392 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 8393 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 8394 // This is simpler than TargetLowering::expandFunnelShift because we can rely 8395 // on PowerPC shift by BW being well defined. 8396 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 8397 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 8398 SDValue SubZ = 8399 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 8400 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 8401 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 8402 return DAG.getNode(ISD::OR, dl, VT, X, Y); 8403 } 8404 8405 //===----------------------------------------------------------------------===// 8406 // Vector related lowering. 8407 // 8408 8409 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 8410 /// element size of SplatSize. Cast the result to VT. 8411 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 8412 SelectionDAG &DAG, const SDLoc &dl) { 8413 static const MVT VTys[] = { // canonical VT to use for each size. 8414 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8415 }; 8416 8417 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8418 8419 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 8420 if (Val == ((1LLU << (SplatSize * 8)) - 1)) { 8421 SplatSize = 1; 8422 Val = 0xFF; 8423 } 8424 8425 EVT CanonicalVT = VTys[SplatSize-1]; 8426 8427 // Build a canonical splat for this value. 8428 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8429 } 8430 8431 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8432 /// specified intrinsic ID. 8433 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8434 const SDLoc &dl, EVT DestVT = MVT::Other) { 8435 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8436 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8437 DAG.getConstant(IID, dl, MVT::i32), Op); 8438 } 8439 8440 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8441 /// specified intrinsic ID. 8442 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8443 SelectionDAG &DAG, const SDLoc &dl, 8444 EVT DestVT = MVT::Other) { 8445 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8446 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8447 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8448 } 8449 8450 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8451 /// specified intrinsic ID. 8452 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8453 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8454 EVT DestVT = MVT::Other) { 8455 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8456 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8457 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8458 } 8459 8460 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8461 /// amount. The result has the specified value type. 8462 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8463 SelectionDAG &DAG, const SDLoc &dl) { 8464 // Force LHS/RHS to be the right type. 8465 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8466 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8467 8468 int Ops[16]; 8469 for (unsigned i = 0; i != 16; ++i) 8470 Ops[i] = i + Amt; 8471 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8472 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8473 } 8474 8475 /// Do we have an efficient pattern in a .td file for this node? 8476 /// 8477 /// \param V - pointer to the BuildVectorSDNode being matched 8478 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8479 /// 8480 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8481 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8482 /// the opposite is true (expansion is beneficial) are: 8483 /// - The node builds a vector out of integers that are not 32 or 64-bits 8484 /// - The node builds a vector out of constants 8485 /// - The node is a "load-and-splat" 8486 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8487 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8488 bool HasDirectMove, 8489 bool HasP8Vector) { 8490 EVT VecVT = V->getValueType(0); 8491 bool RightType = VecVT == MVT::v2f64 || 8492 (HasP8Vector && VecVT == MVT::v4f32) || 8493 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8494 if (!RightType) 8495 return false; 8496 8497 bool IsSplat = true; 8498 bool IsLoad = false; 8499 SDValue Op0 = V->getOperand(0); 8500 8501 // This function is called in a block that confirms the node is not a constant 8502 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8503 // different constants. 8504 if (V->isConstant()) 8505 return false; 8506 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8507 if (V->getOperand(i).isUndef()) 8508 return false; 8509 // We want to expand nodes that represent load-and-splat even if the 8510 // loaded value is a floating point truncation or conversion to int. 8511 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8512 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8513 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8514 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8515 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8516 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8517 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8518 IsLoad = true; 8519 // If the operands are different or the input is not a load and has more 8520 // uses than just this BV node, then it isn't a splat. 8521 if (V->getOperand(i) != Op0 || 8522 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8523 IsSplat = false; 8524 } 8525 return !(IsSplat && IsLoad); 8526 } 8527 8528 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 8529 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 8530 8531 SDLoc dl(Op); 8532 SDValue Op0 = Op->getOperand(0); 8533 8534 if ((Op.getValueType() != MVT::f128) || 8535 (Op0.getOpcode() != ISD::BUILD_PAIR) || 8536 (Op0.getOperand(0).getValueType() != MVT::i64) || 8537 (Op0.getOperand(1).getValueType() != MVT::i64)) 8538 return SDValue(); 8539 8540 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 8541 Op0.getOperand(1)); 8542 } 8543 8544 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 8545 const SDValue *InputLoad = &Op; 8546 if (InputLoad->getOpcode() == ISD::BITCAST) 8547 InputLoad = &InputLoad->getOperand(0); 8548 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 8549 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 8550 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 8551 InputLoad = &InputLoad->getOperand(0); 8552 } 8553 if (InputLoad->getOpcode() != ISD::LOAD) 8554 return nullptr; 8555 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8556 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 8557 } 8558 8559 // Convert the argument APFloat to a single precision APFloat if there is no 8560 // loss in information during the conversion to single precision APFloat and the 8561 // resulting number is not a denormal number. Return true if successful. 8562 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 8563 APFloat APFloatToConvert = ArgAPFloat; 8564 bool LosesInfo = true; 8565 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 8566 &LosesInfo); 8567 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 8568 if (Success) 8569 ArgAPFloat = APFloatToConvert; 8570 return Success; 8571 } 8572 8573 // Bitcast the argument APInt to a double and convert it to a single precision 8574 // APFloat, bitcast the APFloat to an APInt and assign it to the original 8575 // argument if there is no loss in information during the conversion from 8576 // double to single precision APFloat and the resulting number is not a denormal 8577 // number. Return true if successful. 8578 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 8579 double DpValue = ArgAPInt.bitsToDouble(); 8580 APFloat APFloatDp(DpValue); 8581 bool Success = convertToNonDenormSingle(APFloatDp); 8582 if (Success) 8583 ArgAPInt = APFloatDp.bitcastToAPInt(); 8584 return Success; 8585 } 8586 8587 // If this is a case we can't handle, return null and let the default 8588 // expansion code take care of it. If we CAN select this case, and if it 8589 // selects to a single instruction, return Op. Otherwise, if we can codegen 8590 // this case more efficiently than a constant pool load, lower it to the 8591 // sequence of ops that should be used. 8592 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 8593 SelectionDAG &DAG) const { 8594 SDLoc dl(Op); 8595 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 8596 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 8597 8598 // Check if this is a splat of a constant value. 8599 APInt APSplatBits, APSplatUndef; 8600 unsigned SplatBitSize; 8601 bool HasAnyUndefs; 8602 bool BVNIsConstantSplat = 8603 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 8604 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 8605 8606 // If it is a splat of a double, check if we can shrink it to a 32 bit 8607 // non-denormal float which when converted back to double gives us the same 8608 // double. This is to exploit the XXSPLTIDP instruction. 8609 // If we lose precision, we use XXSPLTI32DX. 8610 if (BVNIsConstantSplat && (SplatBitSize == 64) && 8611 Subtarget.hasPrefixInstrs()) { 8612 // Check the type first to short-circuit so we don't modify APSplatBits if 8613 // this block isn't executed. 8614 if ((Op->getValueType(0) == MVT::v2f64) && 8615 convertToNonDenormSingle(APSplatBits)) { 8616 SDValue SplatNode = DAG.getNode( 8617 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 8618 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 8619 return DAG.getBitcast(Op.getValueType(), SplatNode); 8620 } else { 8621 // We may lose precision, so we have to use XXSPLTI32DX. 8622 8623 uint32_t Hi = 8624 (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32); 8625 uint32_t Lo = 8626 (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF); 8627 SDValue SplatNode = DAG.getUNDEF(MVT::v2i64); 8628 8629 if (!Hi || !Lo) 8630 // If either load is 0, then we should generate XXLXOR to set to 0. 8631 SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64); 8632 8633 if (Hi) 8634 SplatNode = DAG.getNode( 8635 PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 8636 DAG.getTargetConstant(0, dl, MVT::i32), 8637 DAG.getTargetConstant(Hi, dl, MVT::i32)); 8638 8639 if (Lo) 8640 SplatNode = 8641 DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 8642 DAG.getTargetConstant(1, dl, MVT::i32), 8643 DAG.getTargetConstant(Lo, dl, MVT::i32)); 8644 8645 return DAG.getBitcast(Op.getValueType(), SplatNode); 8646 } 8647 } 8648 8649 if (!BVNIsConstantSplat || SplatBitSize > 32) { 8650 8651 bool IsPermutedLoad = false; 8652 const SDValue *InputLoad = 8653 getNormalLoadInput(Op.getOperand(0), IsPermutedLoad); 8654 // Handle load-and-splat patterns as we have instructions that will do this 8655 // in one go. 8656 if (InputLoad && DAG.isSplatValue(Op, true)) { 8657 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8658 8659 // We have handling for 4 and 8 byte elements. 8660 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 8661 8662 // Checking for a single use of this load, we have to check for vector 8663 // width (128 bits) / ElementSize uses (since each operand of the 8664 // BUILD_VECTOR is a separate use of the value. 8665 unsigned NumUsesOfInputLD = 128 / ElementSize; 8666 for (SDValue BVInOp : Op->ops()) 8667 if (BVInOp.isUndef()) 8668 NumUsesOfInputLD--; 8669 assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?"); 8670 if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && 8671 ((Subtarget.hasVSX() && ElementSize == 64) || 8672 (Subtarget.hasP9Vector() && ElementSize == 32))) { 8673 SDValue Ops[] = { 8674 LD->getChain(), // Chain 8675 LD->getBasePtr(), // Ptr 8676 DAG.getValueType(Op.getValueType()) // VT 8677 }; 8678 SDValue LdSplt = DAG.getMemIntrinsicNode( 8679 PPCISD::LD_SPLAT, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8680 Ops, LD->getMemoryVT(), LD->getMemOperand()); 8681 // Replace all uses of the output chain of the original load with the 8682 // output chain of the new load. 8683 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), 8684 LdSplt.getValue(1)); 8685 return LdSplt; 8686 } 8687 } 8688 8689 // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to 8690 // 32-bits can be lowered to VSX instructions under certain conditions. 8691 // Without VSX, there is no pattern more efficient than expanding the node. 8692 if (Subtarget.hasVSX() && Subtarget.isPPC64() && 8693 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 8694 Subtarget.hasP8Vector())) 8695 return Op; 8696 return SDValue(); 8697 } 8698 8699 uint64_t SplatBits = APSplatBits.getZExtValue(); 8700 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 8701 unsigned SplatSize = SplatBitSize / 8; 8702 8703 // First, handle single instruction cases. 8704 8705 // All zeros? 8706 if (SplatBits == 0) { 8707 // Canonicalize all zero vectors to be v4i32. 8708 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 8709 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 8710 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 8711 } 8712 return Op; 8713 } 8714 8715 // We have XXSPLTIW for constant splats four bytes wide. 8716 // Given vector length is a multiple of 4, 2-byte splats can be replaced 8717 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 8718 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 8719 // turned into a 4-byte splat of 0xABABABAB. 8720 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 8721 return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2, 8722 Op.getValueType(), DAG, dl); 8723 8724 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 8725 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 8726 dl); 8727 8728 // We have XXSPLTIB for constant splats one byte wide. 8729 if (Subtarget.hasP9Vector() && SplatSize == 1) 8730 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 8731 dl); 8732 8733 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 8734 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 8735 (32-SplatBitSize)); 8736 if (SextVal >= -16 && SextVal <= 15) 8737 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 8738 dl); 8739 8740 // Two instruction sequences. 8741 8742 // If this value is in the range [-32,30] and is even, use: 8743 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 8744 // If this value is in the range [17,31] and is odd, use: 8745 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 8746 // If this value is in the range [-31,-17] and is odd, use: 8747 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 8748 // Note the last two are three-instruction sequences. 8749 if (SextVal >= -32 && SextVal <= 31) { 8750 // To avoid having these optimizations undone by constant folding, 8751 // we convert to a pseudo that will be expanded later into one of 8752 // the above forms. 8753 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 8754 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 8755 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 8756 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 8757 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 8758 if (VT == Op.getValueType()) 8759 return RetVal; 8760 else 8761 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 8762 } 8763 8764 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 8765 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 8766 // for fneg/fabs. 8767 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 8768 // Make -1 and vspltisw -1: 8769 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 8770 8771 // Make the VSLW intrinsic, computing 0x8000_0000. 8772 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 8773 OnesV, DAG, dl); 8774 8775 // xor by OnesV to invert it. 8776 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 8777 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8778 } 8779 8780 // Check to see if this is a wide variety of vsplti*, binop self cases. 8781 static const signed char SplatCsts[] = { 8782 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 8783 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 8784 }; 8785 8786 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 8787 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 8788 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 8789 int i = SplatCsts[idx]; 8790 8791 // Figure out what shift amount will be used by altivec if shifted by i in 8792 // this splat size. 8793 unsigned TypeShiftAmt = i & (SplatBitSize-1); 8794 8795 // vsplti + shl self. 8796 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 8797 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 8798 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8799 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 8800 Intrinsic::ppc_altivec_vslw 8801 }; 8802 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8803 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8804 } 8805 8806 // vsplti + srl self. 8807 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8808 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 8809 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8810 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 8811 Intrinsic::ppc_altivec_vsrw 8812 }; 8813 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8814 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8815 } 8816 8817 // vsplti + rol self. 8818 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 8819 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 8820 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 8821 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8822 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 8823 Intrinsic::ppc_altivec_vrlw 8824 }; 8825 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8826 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8827 } 8828 8829 // t = vsplti c, result = vsldoi t, t, 1 8830 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 8831 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 8832 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 8833 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8834 } 8835 // t = vsplti c, result = vsldoi t, t, 2 8836 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 8837 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 8838 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 8839 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8840 } 8841 // t = vsplti c, result = vsldoi t, t, 3 8842 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 8843 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 8844 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 8845 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8846 } 8847 } 8848 8849 return SDValue(); 8850 } 8851 8852 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 8853 /// the specified operations to build the shuffle. 8854 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 8855 SDValue RHS, SelectionDAG &DAG, 8856 const SDLoc &dl) { 8857 unsigned OpNum = (PFEntry >> 26) & 0x0F; 8858 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 8859 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 8860 8861 enum { 8862 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 8863 OP_VMRGHW, 8864 OP_VMRGLW, 8865 OP_VSPLTISW0, 8866 OP_VSPLTISW1, 8867 OP_VSPLTISW2, 8868 OP_VSPLTISW3, 8869 OP_VSLDOI4, 8870 OP_VSLDOI8, 8871 OP_VSLDOI12 8872 }; 8873 8874 if (OpNum == OP_COPY) { 8875 if (LHSID == (1*9+2)*9+3) return LHS; 8876 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 8877 return RHS; 8878 } 8879 8880 SDValue OpLHS, OpRHS; 8881 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 8882 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 8883 8884 int ShufIdxs[16]; 8885 switch (OpNum) { 8886 default: llvm_unreachable("Unknown i32 permute!"); 8887 case OP_VMRGHW: 8888 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 8889 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 8890 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 8891 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 8892 break; 8893 case OP_VMRGLW: 8894 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 8895 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 8896 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 8897 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 8898 break; 8899 case OP_VSPLTISW0: 8900 for (unsigned i = 0; i != 16; ++i) 8901 ShufIdxs[i] = (i&3)+0; 8902 break; 8903 case OP_VSPLTISW1: 8904 for (unsigned i = 0; i != 16; ++i) 8905 ShufIdxs[i] = (i&3)+4; 8906 break; 8907 case OP_VSPLTISW2: 8908 for (unsigned i = 0; i != 16; ++i) 8909 ShufIdxs[i] = (i&3)+8; 8910 break; 8911 case OP_VSPLTISW3: 8912 for (unsigned i = 0; i != 16; ++i) 8913 ShufIdxs[i] = (i&3)+12; 8914 break; 8915 case OP_VSLDOI4: 8916 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 8917 case OP_VSLDOI8: 8918 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 8919 case OP_VSLDOI12: 8920 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 8921 } 8922 EVT VT = OpLHS.getValueType(); 8923 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 8924 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 8925 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 8926 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8927 } 8928 8929 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 8930 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 8931 /// SDValue. 8932 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 8933 SelectionDAG &DAG) const { 8934 const unsigned BytesInVector = 16; 8935 bool IsLE = Subtarget.isLittleEndian(); 8936 SDLoc dl(N); 8937 SDValue V1 = N->getOperand(0); 8938 SDValue V2 = N->getOperand(1); 8939 unsigned ShiftElts = 0, InsertAtByte = 0; 8940 bool Swap = false; 8941 8942 // Shifts required to get the byte we want at element 7. 8943 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 8944 0, 15, 14, 13, 12, 11, 10, 9}; 8945 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 8946 1, 2, 3, 4, 5, 6, 7, 8}; 8947 8948 ArrayRef<int> Mask = N->getMask(); 8949 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 8950 8951 // For each mask element, find out if we're just inserting something 8952 // from V2 into V1 or vice versa. 8953 // Possible permutations inserting an element from V2 into V1: 8954 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8955 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8956 // ... 8957 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 8958 // Inserting from V1 into V2 will be similar, except mask range will be 8959 // [16,31]. 8960 8961 bool FoundCandidate = false; 8962 // If both vector operands for the shuffle are the same vector, the mask 8963 // will contain only elements from the first one and the second one will be 8964 // undef. 8965 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 8966 // Go through the mask of half-words to find an element that's being moved 8967 // from one vector to the other. 8968 for (unsigned i = 0; i < BytesInVector; ++i) { 8969 unsigned CurrentElement = Mask[i]; 8970 // If 2nd operand is undefined, we should only look for element 7 in the 8971 // Mask. 8972 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 8973 continue; 8974 8975 bool OtherElementsInOrder = true; 8976 // Examine the other elements in the Mask to see if they're in original 8977 // order. 8978 for (unsigned j = 0; j < BytesInVector; ++j) { 8979 if (j == i) 8980 continue; 8981 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 8982 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 8983 // in which we always assume we're always picking from the 1st operand. 8984 int MaskOffset = 8985 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 8986 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 8987 OtherElementsInOrder = false; 8988 break; 8989 } 8990 } 8991 // If other elements are in original order, we record the number of shifts 8992 // we need to get the element we want into element 7. Also record which byte 8993 // in the vector we should insert into. 8994 if (OtherElementsInOrder) { 8995 // If 2nd operand is undefined, we assume no shifts and no swapping. 8996 if (V2.isUndef()) { 8997 ShiftElts = 0; 8998 Swap = false; 8999 } else { 9000 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9001 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9002 : BigEndianShifts[CurrentElement & 0xF]; 9003 Swap = CurrentElement < BytesInVector; 9004 } 9005 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9006 FoundCandidate = true; 9007 break; 9008 } 9009 } 9010 9011 if (!FoundCandidate) 9012 return SDValue(); 9013 9014 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9015 // optionally with VECSHL if shift is required. 9016 if (Swap) 9017 std::swap(V1, V2); 9018 if (V2.isUndef()) 9019 V2 = V1; 9020 if (ShiftElts) { 9021 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9022 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9023 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9024 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9025 } 9026 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9027 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9028 } 9029 9030 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9031 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9032 /// SDValue. 9033 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9034 SelectionDAG &DAG) const { 9035 const unsigned NumHalfWords = 8; 9036 const unsigned BytesInVector = NumHalfWords * 2; 9037 // Check that the shuffle is on half-words. 9038 if (!isNByteElemShuffleMask(N, 2, 1)) 9039 return SDValue(); 9040 9041 bool IsLE = Subtarget.isLittleEndian(); 9042 SDLoc dl(N); 9043 SDValue V1 = N->getOperand(0); 9044 SDValue V2 = N->getOperand(1); 9045 unsigned ShiftElts = 0, InsertAtByte = 0; 9046 bool Swap = false; 9047 9048 // Shifts required to get the half-word we want at element 3. 9049 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9050 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9051 9052 uint32_t Mask = 0; 9053 uint32_t OriginalOrderLow = 0x1234567; 9054 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9055 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9056 // 32-bit space, only need 4-bit nibbles per element. 9057 for (unsigned i = 0; i < NumHalfWords; ++i) { 9058 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9059 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9060 } 9061 9062 // For each mask element, find out if we're just inserting something 9063 // from V2 into V1 or vice versa. Possible permutations inserting an element 9064 // from V2 into V1: 9065 // X, 1, 2, 3, 4, 5, 6, 7 9066 // 0, X, 2, 3, 4, 5, 6, 7 9067 // 0, 1, X, 3, 4, 5, 6, 7 9068 // 0, 1, 2, X, 4, 5, 6, 7 9069 // 0, 1, 2, 3, X, 5, 6, 7 9070 // 0, 1, 2, 3, 4, X, 6, 7 9071 // 0, 1, 2, 3, 4, 5, X, 7 9072 // 0, 1, 2, 3, 4, 5, 6, X 9073 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9074 9075 bool FoundCandidate = false; 9076 // Go through the mask of half-words to find an element that's being moved 9077 // from one vector to the other. 9078 for (unsigned i = 0; i < NumHalfWords; ++i) { 9079 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9080 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9081 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9082 uint32_t TargetOrder = 0x0; 9083 9084 // If both vector operands for the shuffle are the same vector, the mask 9085 // will contain only elements from the first one and the second one will be 9086 // undef. 9087 if (V2.isUndef()) { 9088 ShiftElts = 0; 9089 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9090 TargetOrder = OriginalOrderLow; 9091 Swap = false; 9092 // Skip if not the correct element or mask of other elements don't equal 9093 // to our expected order. 9094 if (MaskOneElt == VINSERTHSrcElem && 9095 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9096 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9097 FoundCandidate = true; 9098 break; 9099 } 9100 } else { // If both operands are defined. 9101 // Target order is [8,15] if the current mask is between [0,7]. 9102 TargetOrder = 9103 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9104 // Skip if mask of other elements don't equal our expected order. 9105 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9106 // We only need the last 3 bits for the number of shifts. 9107 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9108 : BigEndianShifts[MaskOneElt & 0x7]; 9109 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9110 Swap = MaskOneElt < NumHalfWords; 9111 FoundCandidate = true; 9112 break; 9113 } 9114 } 9115 } 9116 9117 if (!FoundCandidate) 9118 return SDValue(); 9119 9120 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9121 // optionally with VECSHL if shift is required. 9122 if (Swap) 9123 std::swap(V1, V2); 9124 if (V2.isUndef()) 9125 V2 = V1; 9126 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9127 if (ShiftElts) { 9128 // Double ShiftElts because we're left shifting on v16i8 type. 9129 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9130 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9131 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9132 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9133 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9134 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9135 } 9136 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9137 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9138 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9139 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9140 } 9141 9142 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9143 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9144 /// return the default SDValue. 9145 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9146 SelectionDAG &DAG) const { 9147 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9148 // to v16i8. Peek through the bitcasts to get the actual operands. 9149 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9150 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9151 9152 auto ShuffleMask = SVN->getMask(); 9153 SDValue VecShuffle(SVN, 0); 9154 SDLoc DL(SVN); 9155 9156 // Check that we have a four byte shuffle. 9157 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9158 return SDValue(); 9159 9160 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9161 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9162 std::swap(LHS, RHS); 9163 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9164 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9165 } 9166 9167 // Ensure that the RHS is a vector of constants. 9168 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9169 if (!BVN) 9170 return SDValue(); 9171 9172 // Check if RHS is a splat of 4-bytes (or smaller). 9173 APInt APSplatValue, APSplatUndef; 9174 unsigned SplatBitSize; 9175 bool HasAnyUndefs; 9176 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9177 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9178 SplatBitSize > 32) 9179 return SDValue(); 9180 9181 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9182 // The instruction splats a constant C into two words of the source vector 9183 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9184 // Thus we check that the shuffle mask is the equivalent of 9185 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9186 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9187 // within each word are consecutive, so we only need to check the first byte. 9188 SDValue Index; 9189 bool IsLE = Subtarget.isLittleEndian(); 9190 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9191 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9192 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9193 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9194 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9195 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9196 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9197 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9198 else 9199 return SDValue(); 9200 9201 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9202 // for XXSPLTI32DX. 9203 unsigned SplatVal = APSplatValue.getZExtValue(); 9204 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9205 SplatVal |= (SplatVal << SplatBitSize); 9206 9207 SDValue SplatNode = DAG.getNode( 9208 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9209 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9210 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9211 } 9212 9213 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9214 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9215 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9216 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9217 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9218 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9219 assert(Op.getValueType() == MVT::v1i128 && 9220 "Only set v1i128 as custom, other type shouldn't reach here!"); 9221 SDLoc dl(Op); 9222 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9223 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9224 unsigned SHLAmt = N1.getConstantOperandVal(0); 9225 if (SHLAmt % 8 == 0) { 9226 SmallVector<int, 16> Mask(16, 0); 9227 std::iota(Mask.begin(), Mask.end(), 0); 9228 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9229 if (SDValue Shuffle = 9230 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9231 DAG.getUNDEF(MVT::v16i8), Mask)) 9232 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9233 } 9234 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9235 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9236 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9237 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9238 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9239 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9240 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9241 } 9242 9243 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9244 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9245 /// return the code it can be lowered into. Worst case, it can always be 9246 /// lowered into a vperm. 9247 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9248 SelectionDAG &DAG) const { 9249 SDLoc dl(Op); 9250 SDValue V1 = Op.getOperand(0); 9251 SDValue V2 = Op.getOperand(1); 9252 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9253 9254 // Any nodes that were combined in the target-independent combiner prior 9255 // to vector legalization will not be sent to the target combine. Try to 9256 // combine it here. 9257 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9258 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9259 return NewShuffle; 9260 Op = NewShuffle; 9261 SVOp = cast<ShuffleVectorSDNode>(Op); 9262 V1 = Op.getOperand(0); 9263 V2 = Op.getOperand(1); 9264 } 9265 EVT VT = Op.getValueType(); 9266 bool isLittleEndian = Subtarget.isLittleEndian(); 9267 9268 unsigned ShiftElts, InsertAtByte; 9269 bool Swap = false; 9270 9271 // If this is a load-and-splat, we can do that with a single instruction 9272 // in some cases. However if the load has multiple uses, we don't want to 9273 // combine it because that will just produce multiple loads. 9274 bool IsPermutedLoad = false; 9275 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9276 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9277 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9278 InputLoad->hasOneUse()) { 9279 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9280 int SplatIdx = 9281 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9282 9283 // The splat index for permuted loads will be in the left half of the vector 9284 // which is strictly wider than the loaded value by 8 bytes. So we need to 9285 // adjust the splat index to point to the correct address in memory. 9286 if (IsPermutedLoad) { 9287 assert(isLittleEndian && "Unexpected permuted load on big endian target"); 9288 SplatIdx += IsFourByte ? 2 : 1; 9289 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9290 "Splat of a value outside of the loaded memory"); 9291 } 9292 9293 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9294 // For 4-byte load-and-splat, we need Power9. 9295 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9296 uint64_t Offset = 0; 9297 if (IsFourByte) 9298 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9299 else 9300 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9301 9302 SDValue BasePtr = LD->getBasePtr(); 9303 if (Offset != 0) 9304 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9305 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9306 SDValue Ops[] = { 9307 LD->getChain(), // Chain 9308 BasePtr, // BasePtr 9309 DAG.getValueType(Op.getValueType()) // VT 9310 }; 9311 SDVTList VTL = 9312 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9313 SDValue LdSplt = 9314 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9315 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9316 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); 9317 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9318 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9319 return LdSplt; 9320 } 9321 } 9322 if (Subtarget.hasP9Vector() && 9323 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9324 isLittleEndian)) { 9325 if (Swap) 9326 std::swap(V1, V2); 9327 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9328 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9329 if (ShiftElts) { 9330 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9331 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9332 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9333 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9334 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9335 } 9336 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9337 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9338 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9339 } 9340 9341 if (Subtarget.hasPrefixInstrs()) { 9342 SDValue SplatInsertNode; 9343 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 9344 return SplatInsertNode; 9345 } 9346 9347 if (Subtarget.hasP9Altivec()) { 9348 SDValue NewISDNode; 9349 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9350 return NewISDNode; 9351 9352 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9353 return NewISDNode; 9354 } 9355 9356 if (Subtarget.hasVSX() && 9357 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9358 if (Swap) 9359 std::swap(V1, V2); 9360 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9361 SDValue Conv2 = 9362 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9363 9364 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9365 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9366 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9367 } 9368 9369 if (Subtarget.hasVSX() && 9370 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9371 if (Swap) 9372 std::swap(V1, V2); 9373 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9374 SDValue Conv2 = 9375 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9376 9377 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9378 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9379 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9380 } 9381 9382 if (Subtarget.hasP9Vector()) { 9383 if (PPC::isXXBRHShuffleMask(SVOp)) { 9384 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9385 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9386 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9387 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9388 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9389 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9390 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9391 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9392 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9393 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9394 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9395 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9396 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9397 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9398 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9399 } 9400 } 9401 9402 if (Subtarget.hasVSX()) { 9403 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9404 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9405 9406 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9407 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9408 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9409 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9410 } 9411 9412 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9413 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9414 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9415 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9416 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9417 } 9418 } 9419 9420 // Cases that are handled by instructions that take permute immediates 9421 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9422 // selected by the instruction selector. 9423 if (V2.isUndef()) { 9424 if (PPC::isSplatShuffleMask(SVOp, 1) || 9425 PPC::isSplatShuffleMask(SVOp, 2) || 9426 PPC::isSplatShuffleMask(SVOp, 4) || 9427 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9428 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9429 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9430 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9431 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9432 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9433 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9434 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9435 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9436 (Subtarget.hasP8Altivec() && ( 9437 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9438 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9439 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9440 return Op; 9441 } 9442 } 9443 9444 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9445 // and produce a fixed permutation. If any of these match, do not lower to 9446 // VPERM. 9447 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9448 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9449 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9450 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9451 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9452 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9453 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9454 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9455 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9456 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9457 (Subtarget.hasP8Altivec() && ( 9458 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9459 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9460 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9461 return Op; 9462 9463 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9464 // perfect shuffle table to emit an optimal matching sequence. 9465 ArrayRef<int> PermMask = SVOp->getMask(); 9466 9467 unsigned PFIndexes[4]; 9468 bool isFourElementShuffle = true; 9469 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9470 unsigned EltNo = 8; // Start out undef. 9471 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9472 if (PermMask[i*4+j] < 0) 9473 continue; // Undef, ignore it. 9474 9475 unsigned ByteSource = PermMask[i*4+j]; 9476 if ((ByteSource & 3) != j) { 9477 isFourElementShuffle = false; 9478 break; 9479 } 9480 9481 if (EltNo == 8) { 9482 EltNo = ByteSource/4; 9483 } else if (EltNo != ByteSource/4) { 9484 isFourElementShuffle = false; 9485 break; 9486 } 9487 } 9488 PFIndexes[i] = EltNo; 9489 } 9490 9491 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 9492 // perfect shuffle vector to determine if it is cost effective to do this as 9493 // discrete instructions, or whether we should use a vperm. 9494 // For now, we skip this for little endian until such time as we have a 9495 // little-endian perfect shuffle table. 9496 if (isFourElementShuffle && !isLittleEndian) { 9497 // Compute the index in the perfect shuffle table. 9498 unsigned PFTableIndex = 9499 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 9500 9501 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 9502 unsigned Cost = (PFEntry >> 30); 9503 9504 // Determining when to avoid vperm is tricky. Many things affect the cost 9505 // of vperm, particularly how many times the perm mask needs to be computed. 9506 // For example, if the perm mask can be hoisted out of a loop or is already 9507 // used (perhaps because there are multiple permutes with the same shuffle 9508 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 9509 // the loop requires an extra register. 9510 // 9511 // As a compromise, we only emit discrete instructions if the shuffle can be 9512 // generated in 3 or fewer operations. When we have loop information 9513 // available, if this block is within a loop, we should avoid using vperm 9514 // for 3-operation perms and use a constant pool load instead. 9515 if (Cost < 3) 9516 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 9517 } 9518 9519 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 9520 // vector that will get spilled to the constant pool. 9521 if (V2.isUndef()) V2 = V1; 9522 9523 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 9524 // that it is in input element units, not in bytes. Convert now. 9525 9526 // For little endian, the order of the input vectors is reversed, and 9527 // the permutation mask is complemented with respect to 31. This is 9528 // necessary to produce proper semantics with the big-endian-biased vperm 9529 // instruction. 9530 EVT EltVT = V1.getValueType().getVectorElementType(); 9531 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 9532 9533 SmallVector<SDValue, 16> ResultMask; 9534 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 9535 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 9536 9537 for (unsigned j = 0; j != BytesPerElement; ++j) 9538 if (isLittleEndian) 9539 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 9540 dl, MVT::i32)); 9541 else 9542 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 9543 MVT::i32)); 9544 } 9545 9546 ShufflesHandledWithVPERM++; 9547 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 9548 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 9549 LLVM_DEBUG(SVOp->dump()); 9550 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 9551 LLVM_DEBUG(VPermMask.dump()); 9552 9553 if (isLittleEndian) 9554 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9555 V2, V1, VPermMask); 9556 else 9557 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9558 V1, V2, VPermMask); 9559 } 9560 9561 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 9562 /// vector comparison. If it is, return true and fill in Opc/isDot with 9563 /// information about the intrinsic. 9564 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 9565 bool &isDot, const PPCSubtarget &Subtarget) { 9566 unsigned IntrinsicID = 9567 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 9568 CompareOpc = -1; 9569 isDot = false; 9570 switch (IntrinsicID) { 9571 default: 9572 return false; 9573 // Comparison predicates. 9574 case Intrinsic::ppc_altivec_vcmpbfp_p: 9575 CompareOpc = 966; 9576 isDot = true; 9577 break; 9578 case Intrinsic::ppc_altivec_vcmpeqfp_p: 9579 CompareOpc = 198; 9580 isDot = true; 9581 break; 9582 case Intrinsic::ppc_altivec_vcmpequb_p: 9583 CompareOpc = 6; 9584 isDot = true; 9585 break; 9586 case Intrinsic::ppc_altivec_vcmpequh_p: 9587 CompareOpc = 70; 9588 isDot = true; 9589 break; 9590 case Intrinsic::ppc_altivec_vcmpequw_p: 9591 CompareOpc = 134; 9592 isDot = true; 9593 break; 9594 case Intrinsic::ppc_altivec_vcmpequd_p: 9595 if (Subtarget.hasP8Altivec()) { 9596 CompareOpc = 199; 9597 isDot = true; 9598 } else 9599 return false; 9600 break; 9601 case Intrinsic::ppc_altivec_vcmpneb_p: 9602 case Intrinsic::ppc_altivec_vcmpneh_p: 9603 case Intrinsic::ppc_altivec_vcmpnew_p: 9604 case Intrinsic::ppc_altivec_vcmpnezb_p: 9605 case Intrinsic::ppc_altivec_vcmpnezh_p: 9606 case Intrinsic::ppc_altivec_vcmpnezw_p: 9607 if (Subtarget.hasP9Altivec()) { 9608 switch (IntrinsicID) { 9609 default: 9610 llvm_unreachable("Unknown comparison intrinsic."); 9611 case Intrinsic::ppc_altivec_vcmpneb_p: 9612 CompareOpc = 7; 9613 break; 9614 case Intrinsic::ppc_altivec_vcmpneh_p: 9615 CompareOpc = 71; 9616 break; 9617 case Intrinsic::ppc_altivec_vcmpnew_p: 9618 CompareOpc = 135; 9619 break; 9620 case Intrinsic::ppc_altivec_vcmpnezb_p: 9621 CompareOpc = 263; 9622 break; 9623 case Intrinsic::ppc_altivec_vcmpnezh_p: 9624 CompareOpc = 327; 9625 break; 9626 case Intrinsic::ppc_altivec_vcmpnezw_p: 9627 CompareOpc = 391; 9628 break; 9629 } 9630 isDot = true; 9631 } else 9632 return false; 9633 break; 9634 case Intrinsic::ppc_altivec_vcmpgefp_p: 9635 CompareOpc = 454; 9636 isDot = true; 9637 break; 9638 case Intrinsic::ppc_altivec_vcmpgtfp_p: 9639 CompareOpc = 710; 9640 isDot = true; 9641 break; 9642 case Intrinsic::ppc_altivec_vcmpgtsb_p: 9643 CompareOpc = 774; 9644 isDot = true; 9645 break; 9646 case Intrinsic::ppc_altivec_vcmpgtsh_p: 9647 CompareOpc = 838; 9648 isDot = true; 9649 break; 9650 case Intrinsic::ppc_altivec_vcmpgtsw_p: 9651 CompareOpc = 902; 9652 isDot = true; 9653 break; 9654 case Intrinsic::ppc_altivec_vcmpgtsd_p: 9655 if (Subtarget.hasP8Altivec()) { 9656 CompareOpc = 967; 9657 isDot = true; 9658 } else 9659 return false; 9660 break; 9661 case Intrinsic::ppc_altivec_vcmpgtub_p: 9662 CompareOpc = 518; 9663 isDot = true; 9664 break; 9665 case Intrinsic::ppc_altivec_vcmpgtuh_p: 9666 CompareOpc = 582; 9667 isDot = true; 9668 break; 9669 case Intrinsic::ppc_altivec_vcmpgtuw_p: 9670 CompareOpc = 646; 9671 isDot = true; 9672 break; 9673 case Intrinsic::ppc_altivec_vcmpgtud_p: 9674 if (Subtarget.hasP8Altivec()) { 9675 CompareOpc = 711; 9676 isDot = true; 9677 } else 9678 return false; 9679 break; 9680 9681 case Intrinsic::ppc_altivec_vcmpequq: 9682 case Intrinsic::ppc_altivec_vcmpgtsq: 9683 case Intrinsic::ppc_altivec_vcmpgtuq: 9684 if (!Subtarget.isISA3_1()) 9685 return false; 9686 switch (IntrinsicID) { 9687 default: 9688 llvm_unreachable("Unknown comparison intrinsic."); 9689 case Intrinsic::ppc_altivec_vcmpequq: 9690 CompareOpc = 455; 9691 break; 9692 case Intrinsic::ppc_altivec_vcmpgtsq: 9693 CompareOpc = 903; 9694 break; 9695 case Intrinsic::ppc_altivec_vcmpgtuq: 9696 CompareOpc = 647; 9697 break; 9698 } 9699 break; 9700 9701 // VSX predicate comparisons use the same infrastructure 9702 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9703 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9704 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9705 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9706 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9707 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9708 if (Subtarget.hasVSX()) { 9709 switch (IntrinsicID) { 9710 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9711 CompareOpc = 99; 9712 break; 9713 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9714 CompareOpc = 115; 9715 break; 9716 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9717 CompareOpc = 107; 9718 break; 9719 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9720 CompareOpc = 67; 9721 break; 9722 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9723 CompareOpc = 83; 9724 break; 9725 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9726 CompareOpc = 75; 9727 break; 9728 } 9729 isDot = true; 9730 } else 9731 return false; 9732 break; 9733 9734 // Normal Comparisons. 9735 case Intrinsic::ppc_altivec_vcmpbfp: 9736 CompareOpc = 966; 9737 break; 9738 case Intrinsic::ppc_altivec_vcmpeqfp: 9739 CompareOpc = 198; 9740 break; 9741 case Intrinsic::ppc_altivec_vcmpequb: 9742 CompareOpc = 6; 9743 break; 9744 case Intrinsic::ppc_altivec_vcmpequh: 9745 CompareOpc = 70; 9746 break; 9747 case Intrinsic::ppc_altivec_vcmpequw: 9748 CompareOpc = 134; 9749 break; 9750 case Intrinsic::ppc_altivec_vcmpequd: 9751 if (Subtarget.hasP8Altivec()) 9752 CompareOpc = 199; 9753 else 9754 return false; 9755 break; 9756 case Intrinsic::ppc_altivec_vcmpneb: 9757 case Intrinsic::ppc_altivec_vcmpneh: 9758 case Intrinsic::ppc_altivec_vcmpnew: 9759 case Intrinsic::ppc_altivec_vcmpnezb: 9760 case Intrinsic::ppc_altivec_vcmpnezh: 9761 case Intrinsic::ppc_altivec_vcmpnezw: 9762 if (Subtarget.hasP9Altivec()) 9763 switch (IntrinsicID) { 9764 default: 9765 llvm_unreachable("Unknown comparison intrinsic."); 9766 case Intrinsic::ppc_altivec_vcmpneb: 9767 CompareOpc = 7; 9768 break; 9769 case Intrinsic::ppc_altivec_vcmpneh: 9770 CompareOpc = 71; 9771 break; 9772 case Intrinsic::ppc_altivec_vcmpnew: 9773 CompareOpc = 135; 9774 break; 9775 case Intrinsic::ppc_altivec_vcmpnezb: 9776 CompareOpc = 263; 9777 break; 9778 case Intrinsic::ppc_altivec_vcmpnezh: 9779 CompareOpc = 327; 9780 break; 9781 case Intrinsic::ppc_altivec_vcmpnezw: 9782 CompareOpc = 391; 9783 break; 9784 } 9785 else 9786 return false; 9787 break; 9788 case Intrinsic::ppc_altivec_vcmpgefp: 9789 CompareOpc = 454; 9790 break; 9791 case Intrinsic::ppc_altivec_vcmpgtfp: 9792 CompareOpc = 710; 9793 break; 9794 case Intrinsic::ppc_altivec_vcmpgtsb: 9795 CompareOpc = 774; 9796 break; 9797 case Intrinsic::ppc_altivec_vcmpgtsh: 9798 CompareOpc = 838; 9799 break; 9800 case Intrinsic::ppc_altivec_vcmpgtsw: 9801 CompareOpc = 902; 9802 break; 9803 case Intrinsic::ppc_altivec_vcmpgtsd: 9804 if (Subtarget.hasP8Altivec()) 9805 CompareOpc = 967; 9806 else 9807 return false; 9808 break; 9809 case Intrinsic::ppc_altivec_vcmpgtub: 9810 CompareOpc = 518; 9811 break; 9812 case Intrinsic::ppc_altivec_vcmpgtuh: 9813 CompareOpc = 582; 9814 break; 9815 case Intrinsic::ppc_altivec_vcmpgtuw: 9816 CompareOpc = 646; 9817 break; 9818 case Intrinsic::ppc_altivec_vcmpgtud: 9819 if (Subtarget.hasP8Altivec()) 9820 CompareOpc = 711; 9821 else 9822 return false; 9823 break; 9824 case Intrinsic::ppc_altivec_vcmpequq_p: 9825 case Intrinsic::ppc_altivec_vcmpgtsq_p: 9826 case Intrinsic::ppc_altivec_vcmpgtuq_p: 9827 if (!Subtarget.isISA3_1()) 9828 return false; 9829 switch (IntrinsicID) { 9830 default: 9831 llvm_unreachable("Unknown comparison intrinsic."); 9832 case Intrinsic::ppc_altivec_vcmpequq_p: 9833 CompareOpc = 455; 9834 break; 9835 case Intrinsic::ppc_altivec_vcmpgtsq_p: 9836 CompareOpc = 903; 9837 break; 9838 case Intrinsic::ppc_altivec_vcmpgtuq_p: 9839 CompareOpc = 647; 9840 break; 9841 } 9842 isDot = true; 9843 break; 9844 } 9845 return true; 9846 } 9847 9848 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 9849 /// lower, do it, otherwise return null. 9850 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 9851 SelectionDAG &DAG) const { 9852 unsigned IntrinsicID = 9853 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9854 9855 SDLoc dl(Op); 9856 9857 switch (IntrinsicID) { 9858 case Intrinsic::thread_pointer: 9859 // Reads the thread pointer register, used for __builtin_thread_pointer. 9860 if (Subtarget.isPPC64()) 9861 return DAG.getRegister(PPC::X13, MVT::i64); 9862 return DAG.getRegister(PPC::R2, MVT::i32); 9863 9864 case Intrinsic::ppc_mma_disassemble_acc: 9865 case Intrinsic::ppc_vsx_disassemble_pair: { 9866 int NumVecs = 2; 9867 SDValue WideVec = Op.getOperand(1); 9868 if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { 9869 NumVecs = 4; 9870 WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); 9871 } 9872 SmallVector<SDValue, 4> RetOps; 9873 for (int VecNo = 0; VecNo < NumVecs; VecNo++) { 9874 SDValue Extract = DAG.getNode( 9875 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, 9876 DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo 9877 : VecNo, 9878 dl, MVT::i64)); 9879 RetOps.push_back(Extract); 9880 } 9881 return DAG.getMergeValues(RetOps, dl); 9882 } 9883 } 9884 9885 // If this is a lowered altivec predicate compare, CompareOpc is set to the 9886 // opcode number of the comparison. 9887 int CompareOpc; 9888 bool isDot; 9889 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 9890 return SDValue(); // Don't custom lower most intrinsics. 9891 9892 // If this is a non-dot comparison, make the VCMP node and we are done. 9893 if (!isDot) { 9894 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 9895 Op.getOperand(1), Op.getOperand(2), 9896 DAG.getConstant(CompareOpc, dl, MVT::i32)); 9897 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 9898 } 9899 9900 // Create the PPCISD altivec 'dot' comparison node. 9901 SDValue Ops[] = { 9902 Op.getOperand(2), // LHS 9903 Op.getOperand(3), // RHS 9904 DAG.getConstant(CompareOpc, dl, MVT::i32) 9905 }; 9906 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 9907 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 9908 9909 // Now that we have the comparison, emit a copy from the CR to a GPR. 9910 // This is flagged to the above dot comparison. 9911 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 9912 DAG.getRegister(PPC::CR6, MVT::i32), 9913 CompNode.getValue(1)); 9914 9915 // Unpack the result based on how the target uses it. 9916 unsigned BitNo; // Bit # of CR6. 9917 bool InvertBit; // Invert result? 9918 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 9919 default: // Can't happen, don't crash on invalid number though. 9920 case 0: // Return the value of the EQ bit of CR6. 9921 BitNo = 0; InvertBit = false; 9922 break; 9923 case 1: // Return the inverted value of the EQ bit of CR6. 9924 BitNo = 0; InvertBit = true; 9925 break; 9926 case 2: // Return the value of the LT bit of CR6. 9927 BitNo = 2; InvertBit = false; 9928 break; 9929 case 3: // Return the inverted value of the LT bit of CR6. 9930 BitNo = 2; InvertBit = true; 9931 break; 9932 } 9933 9934 // Shift the bit into the low position. 9935 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 9936 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 9937 // Isolate the bit. 9938 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 9939 DAG.getConstant(1, dl, MVT::i32)); 9940 9941 // If we are supposed to, toggle the bit. 9942 if (InvertBit) 9943 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 9944 DAG.getConstant(1, dl, MVT::i32)); 9945 return Flags; 9946 } 9947 9948 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 9949 SelectionDAG &DAG) const { 9950 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 9951 // the beginning of the argument list. 9952 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 9953 SDLoc DL(Op); 9954 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 9955 case Intrinsic::ppc_cfence: { 9956 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 9957 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 9958 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 9959 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 9960 Op.getOperand(ArgStart + 1)), 9961 Op.getOperand(0)), 9962 0); 9963 } 9964 default: 9965 break; 9966 } 9967 return SDValue(); 9968 } 9969 9970 // Lower scalar BSWAP64 to xxbrd. 9971 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 9972 SDLoc dl(Op); 9973 // MTVSRDD 9974 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 9975 Op.getOperand(0)); 9976 // XXBRD 9977 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 9978 // MFVSRD 9979 int VectorIndex = 0; 9980 if (Subtarget.isLittleEndian()) 9981 VectorIndex = 1; 9982 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 9983 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 9984 return Op; 9985 } 9986 9987 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 9988 // compared to a value that is atomically loaded (atomic loads zero-extend). 9989 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 9990 SelectionDAG &DAG) const { 9991 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 9992 "Expecting an atomic compare-and-swap here."); 9993 SDLoc dl(Op); 9994 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 9995 EVT MemVT = AtomicNode->getMemoryVT(); 9996 if (MemVT.getSizeInBits() >= 32) 9997 return Op; 9998 9999 SDValue CmpOp = Op.getOperand(2); 10000 // If this is already correctly zero-extended, leave it alone. 10001 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10002 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10003 return Op; 10004 10005 // Clear the high bits of the compare operand. 10006 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10007 SDValue NewCmpOp = 10008 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10009 DAG.getConstant(MaskVal, dl, MVT::i32)); 10010 10011 // Replace the existing compare operand with the properly zero-extended one. 10012 SmallVector<SDValue, 4> Ops; 10013 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10014 Ops.push_back(AtomicNode->getOperand(i)); 10015 Ops[2] = NewCmpOp; 10016 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10017 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10018 auto NodeTy = 10019 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10020 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10021 } 10022 10023 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10024 SelectionDAG &DAG) const { 10025 SDLoc dl(Op); 10026 // Create a stack slot that is 16-byte aligned. 10027 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10028 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10029 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10030 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10031 10032 // Store the input value into Value#0 of the stack slot. 10033 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10034 MachinePointerInfo()); 10035 // Load it out. 10036 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10037 } 10038 10039 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10040 SelectionDAG &DAG) const { 10041 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10042 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10043 10044 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10045 10046 EVT VT = Op.getValueType(); 10047 SDLoc dl(Op); 10048 SDValue V1 = Op.getOperand(0); 10049 SDValue V2 = Op.getOperand(1); 10050 SDValue V3 = Op.getOperand(2); 10051 10052 if (Subtarget.isISA3_1()) { 10053 // On P10, we have legal lowering for constant and variable indices for 10054 // integer vectors. 10055 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 10056 VT == MVT::v2i64) 10057 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3); 10058 // For f32 and f64 vectors, we have legal lowering for variable indices. 10059 // For f32 we also have legal lowering when the element is loaded from 10060 // memory. 10061 if (VT == MVT::v4f32 || VT == MVT::v2f64) { 10062 if (!C || (VT == MVT::v4f32 && dyn_cast<LoadSDNode>(V2))) 10063 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3); 10064 return SDValue(); 10065 } 10066 } 10067 10068 // Before P10, we have legal lowering for constant indices but not for 10069 // variable ones. 10070 if (!C) 10071 return SDValue(); 10072 10073 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10074 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10075 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10076 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10077 unsigned InsertAtElement = C->getZExtValue(); 10078 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10079 if (Subtarget.isLittleEndian()) { 10080 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10081 } 10082 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10083 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10084 } 10085 return Op; 10086 } 10087 10088 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10089 SelectionDAG &DAG) const { 10090 SDLoc dl(Op); 10091 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10092 SDValue LoadChain = LN->getChain(); 10093 SDValue BasePtr = LN->getBasePtr(); 10094 EVT VT = Op.getValueType(); 10095 10096 if (VT != MVT::v256i1 && VT != MVT::v512i1) 10097 return Op; 10098 10099 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10100 // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in 10101 // 2 or 4 vsx registers. 10102 assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && 10103 "Type unsupported without MMA"); 10104 assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10105 "Type unsupported without paired vector support"); 10106 Align Alignment = LN->getAlign(); 10107 SmallVector<SDValue, 4> Loads; 10108 SmallVector<SDValue, 4> LoadChains; 10109 unsigned NumVecs = VT.getSizeInBits() / 128; 10110 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10111 SDValue Load = 10112 DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, 10113 LN->getPointerInfo().getWithOffset(Idx * 16), 10114 commonAlignment(Alignment, Idx * 16), 10115 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10116 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10117 DAG.getConstant(16, dl, BasePtr.getValueType())); 10118 Loads.push_back(Load); 10119 LoadChains.push_back(Load.getValue(1)); 10120 } 10121 if (Subtarget.isLittleEndian()) { 10122 std::reverse(Loads.begin(), Loads.end()); 10123 std::reverse(LoadChains.begin(), LoadChains.end()); 10124 } 10125 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10126 SDValue Value = 10127 DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, 10128 dl, VT, Loads); 10129 SDValue RetOps[] = {Value, TF}; 10130 return DAG.getMergeValues(RetOps, dl); 10131 } 10132 10133 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10134 SelectionDAG &DAG) const { 10135 SDLoc dl(Op); 10136 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10137 SDValue StoreChain = SN->getChain(); 10138 SDValue BasePtr = SN->getBasePtr(); 10139 SDValue Value = SN->getValue(); 10140 EVT StoreVT = Value.getValueType(); 10141 10142 if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) 10143 return Op; 10144 10145 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10146 // Here we create 2 or 4 v16i8 stores to store the pair or accumulator 10147 // underlying registers individually. 10148 assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && 10149 "Type unsupported without MMA"); 10150 assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10151 "Type unsupported without paired vector support"); 10152 Align Alignment = SN->getAlign(); 10153 SmallVector<SDValue, 4> Stores; 10154 unsigned NumVecs = 2; 10155 if (StoreVT == MVT::v512i1) { 10156 Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); 10157 NumVecs = 4; 10158 } 10159 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10160 unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; 10161 SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, 10162 DAG.getConstant(VecNum, dl, MVT::i64)); 10163 SDValue Store = 10164 DAG.getStore(StoreChain, dl, Elt, BasePtr, 10165 SN->getPointerInfo().getWithOffset(Idx * 16), 10166 commonAlignment(Alignment, Idx * 16), 10167 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10168 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10169 DAG.getConstant(16, dl, BasePtr.getValueType())); 10170 Stores.push_back(Store); 10171 } 10172 SDValue TF = DAG.getTokenFactor(dl, Stores); 10173 return TF; 10174 } 10175 10176 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10177 SDLoc dl(Op); 10178 if (Op.getValueType() == MVT::v4i32) { 10179 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10180 10181 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10182 // +16 as shift amt. 10183 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10184 SDValue RHSSwap = // = vrlw RHS, 16 10185 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10186 10187 // Shrinkify inputs to v8i16. 10188 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10189 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10190 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10191 10192 // Low parts multiplied together, generating 32-bit results (we ignore the 10193 // top parts). 10194 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10195 LHS, RHS, DAG, dl, MVT::v4i32); 10196 10197 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10198 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10199 // Shift the high parts up 16 bits. 10200 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10201 Neg16, DAG, dl); 10202 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10203 } else if (Op.getValueType() == MVT::v16i8) { 10204 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10205 bool isLittleEndian = Subtarget.isLittleEndian(); 10206 10207 // Multiply the even 8-bit parts, producing 16-bit sums. 10208 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10209 LHS, RHS, DAG, dl, MVT::v8i16); 10210 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10211 10212 // Multiply the odd 8-bit parts, producing 16-bit sums. 10213 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10214 LHS, RHS, DAG, dl, MVT::v8i16); 10215 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10216 10217 // Merge the results together. Because vmuleub and vmuloub are 10218 // instructions with a big-endian bias, we must reverse the 10219 // element numbering and reverse the meaning of "odd" and "even" 10220 // when generating little endian code. 10221 int Ops[16]; 10222 for (unsigned i = 0; i != 8; ++i) { 10223 if (isLittleEndian) { 10224 Ops[i*2 ] = 2*i; 10225 Ops[i*2+1] = 2*i+16; 10226 } else { 10227 Ops[i*2 ] = 2*i+1; 10228 Ops[i*2+1] = 2*i+1+16; 10229 } 10230 } 10231 if (isLittleEndian) 10232 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10233 else 10234 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10235 } else { 10236 llvm_unreachable("Unknown mul to lower!"); 10237 } 10238 } 10239 10240 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 10241 bool IsStrict = Op->isStrictFPOpcode(); 10242 if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 && 10243 !Subtarget.hasP9Vector()) 10244 return SDValue(); 10245 10246 return Op; 10247 } 10248 10249 // Custom lowering for fpext vf32 to v2f64 10250 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10251 10252 assert(Op.getOpcode() == ISD::FP_EXTEND && 10253 "Should only be called for ISD::FP_EXTEND"); 10254 10255 // FIXME: handle extends from half precision float vectors on P9. 10256 // We only want to custom lower an extend from v2f32 to v2f64. 10257 if (Op.getValueType() != MVT::v2f64 || 10258 Op.getOperand(0).getValueType() != MVT::v2f32) 10259 return SDValue(); 10260 10261 SDLoc dl(Op); 10262 SDValue Op0 = Op.getOperand(0); 10263 10264 switch (Op0.getOpcode()) { 10265 default: 10266 return SDValue(); 10267 case ISD::EXTRACT_SUBVECTOR: { 10268 assert(Op0.getNumOperands() == 2 && 10269 isa<ConstantSDNode>(Op0->getOperand(1)) && 10270 "Node should have 2 operands with second one being a constant!"); 10271 10272 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10273 return SDValue(); 10274 10275 // Custom lower is only done for high or low doubleword. 10276 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10277 if (Idx % 2 != 0) 10278 return SDValue(); 10279 10280 // Since input is v4f32, at this point Idx is either 0 or 2. 10281 // Shift to get the doubleword position we want. 10282 int DWord = Idx >> 1; 10283 10284 // High and low word positions are different on little endian. 10285 if (Subtarget.isLittleEndian()) 10286 DWord ^= 0x1; 10287 10288 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10289 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10290 } 10291 case ISD::FADD: 10292 case ISD::FMUL: 10293 case ISD::FSUB: { 10294 SDValue NewLoad[2]; 10295 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10296 // Ensure both input are loads. 10297 SDValue LdOp = Op0.getOperand(i); 10298 if (LdOp.getOpcode() != ISD::LOAD) 10299 return SDValue(); 10300 // Generate new load node. 10301 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10302 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10303 NewLoad[i] = DAG.getMemIntrinsicNode( 10304 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10305 LD->getMemoryVT(), LD->getMemOperand()); 10306 } 10307 SDValue NewOp = 10308 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10309 NewLoad[1], Op0.getNode()->getFlags()); 10310 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10311 DAG.getConstant(0, dl, MVT::i32)); 10312 } 10313 case ISD::LOAD: { 10314 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10315 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10316 SDValue NewLd = DAG.getMemIntrinsicNode( 10317 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10318 LD->getMemoryVT(), LD->getMemOperand()); 10319 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10320 DAG.getConstant(0, dl, MVT::i32)); 10321 } 10322 } 10323 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10324 } 10325 10326 /// LowerOperation - Provide custom lowering hooks for some operations. 10327 /// 10328 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10329 switch (Op.getOpcode()) { 10330 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10331 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10332 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10333 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10334 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10335 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10336 case ISD::SETCC: return LowerSETCC(Op, DAG); 10337 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10338 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10339 10340 // Variable argument lowering. 10341 case ISD::VASTART: return LowerVASTART(Op, DAG); 10342 case ISD::VAARG: return LowerVAARG(Op, DAG); 10343 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10344 10345 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10346 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10347 case ISD::GET_DYNAMIC_AREA_OFFSET: 10348 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10349 10350 // Exception handling lowering. 10351 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10352 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10353 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10354 10355 case ISD::LOAD: return LowerLOAD(Op, DAG); 10356 case ISD::STORE: return LowerSTORE(Op, DAG); 10357 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10358 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10359 case ISD::STRICT_FP_TO_UINT: 10360 case ISD::STRICT_FP_TO_SINT: 10361 case ISD::FP_TO_UINT: 10362 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10363 case ISD::STRICT_UINT_TO_FP: 10364 case ISD::STRICT_SINT_TO_FP: 10365 case ISD::UINT_TO_FP: 10366 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10367 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10368 10369 // Lower 64-bit shifts. 10370 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10371 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10372 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10373 10374 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 10375 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 10376 10377 // Vector-related lowering. 10378 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10379 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10380 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10381 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10382 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10383 case ISD::MUL: return LowerMUL(Op, DAG); 10384 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10385 case ISD::STRICT_FP_ROUND: 10386 case ISD::FP_ROUND: 10387 return LowerFP_ROUND(Op, DAG); 10388 case ISD::ROTL: return LowerROTL(Op, DAG); 10389 10390 // For counter-based loop handling. 10391 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10392 10393 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10394 10395 // Frame & Return address. 10396 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10397 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10398 10399 case ISD::INTRINSIC_VOID: 10400 return LowerINTRINSIC_VOID(Op, DAG); 10401 case ISD::BSWAP: 10402 return LowerBSWAP(Op, DAG); 10403 case ISD::ATOMIC_CMP_SWAP: 10404 return LowerATOMIC_CMP_SWAP(Op, DAG); 10405 } 10406 } 10407 10408 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 10409 SmallVectorImpl<SDValue>&Results, 10410 SelectionDAG &DAG) const { 10411 SDLoc dl(N); 10412 switch (N->getOpcode()) { 10413 default: 10414 llvm_unreachable("Do not know how to custom type legalize this operation!"); 10415 case ISD::READCYCLECOUNTER: { 10416 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 10417 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 10418 10419 Results.push_back( 10420 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 10421 Results.push_back(RTB.getValue(2)); 10422 break; 10423 } 10424 case ISD::INTRINSIC_W_CHAIN: { 10425 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 10426 Intrinsic::loop_decrement) 10427 break; 10428 10429 assert(N->getValueType(0) == MVT::i1 && 10430 "Unexpected result type for CTR decrement intrinsic"); 10431 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 10432 N->getValueType(0)); 10433 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 10434 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 10435 N->getOperand(1)); 10436 10437 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 10438 Results.push_back(NewInt.getValue(1)); 10439 break; 10440 } 10441 case ISD::VAARG: { 10442 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 10443 return; 10444 10445 EVT VT = N->getValueType(0); 10446 10447 if (VT == MVT::i64) { 10448 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 10449 10450 Results.push_back(NewNode); 10451 Results.push_back(NewNode.getValue(1)); 10452 } 10453 return; 10454 } 10455 case ISD::STRICT_FP_TO_SINT: 10456 case ISD::STRICT_FP_TO_UINT: 10457 case ISD::FP_TO_SINT: 10458 case ISD::FP_TO_UINT: 10459 // LowerFP_TO_INT() can only handle f32 and f64. 10460 if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == 10461 MVT::ppcf128) 10462 return; 10463 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 10464 return; 10465 case ISD::TRUNCATE: { 10466 if (!N->getValueType(0).isVector()) 10467 return; 10468 SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); 10469 if (Lowered) 10470 Results.push_back(Lowered); 10471 return; 10472 } 10473 case ISD::FSHL: 10474 case ISD::FSHR: 10475 // Don't handle funnel shifts here. 10476 return; 10477 case ISD::BITCAST: 10478 // Don't handle bitcast here. 10479 return; 10480 case ISD::FP_EXTEND: 10481 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 10482 if (Lowered) 10483 Results.push_back(Lowered); 10484 return; 10485 } 10486 } 10487 10488 //===----------------------------------------------------------------------===// 10489 // Other Lowering Code 10490 //===----------------------------------------------------------------------===// 10491 10492 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 10493 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 10494 Function *Func = Intrinsic::getDeclaration(M, Id); 10495 return Builder.CreateCall(Func, {}); 10496 } 10497 10498 // The mappings for emitLeading/TrailingFence is taken from 10499 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 10500 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 10501 Instruction *Inst, 10502 AtomicOrdering Ord) const { 10503 if (Ord == AtomicOrdering::SequentiallyConsistent) 10504 return callIntrinsic(Builder, Intrinsic::ppc_sync); 10505 if (isReleaseOrStronger(Ord)) 10506 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10507 return nullptr; 10508 } 10509 10510 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 10511 Instruction *Inst, 10512 AtomicOrdering Ord) const { 10513 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 10514 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 10515 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 10516 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 10517 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 10518 return Builder.CreateCall( 10519 Intrinsic::getDeclaration( 10520 Builder.GetInsertBlock()->getParent()->getParent(), 10521 Intrinsic::ppc_cfence, {Inst->getType()}), 10522 {Inst}); 10523 // FIXME: Can use isync for rmw operation. 10524 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10525 } 10526 return nullptr; 10527 } 10528 10529 MachineBasicBlock * 10530 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 10531 unsigned AtomicSize, 10532 unsigned BinOpcode, 10533 unsigned CmpOpcode, 10534 unsigned CmpPred) const { 10535 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10536 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10537 10538 auto LoadMnemonic = PPC::LDARX; 10539 auto StoreMnemonic = PPC::STDCX; 10540 switch (AtomicSize) { 10541 default: 10542 llvm_unreachable("Unexpected size of atomic entity"); 10543 case 1: 10544 LoadMnemonic = PPC::LBARX; 10545 StoreMnemonic = PPC::STBCX; 10546 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10547 break; 10548 case 2: 10549 LoadMnemonic = PPC::LHARX; 10550 StoreMnemonic = PPC::STHCX; 10551 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10552 break; 10553 case 4: 10554 LoadMnemonic = PPC::LWARX; 10555 StoreMnemonic = PPC::STWCX; 10556 break; 10557 case 8: 10558 LoadMnemonic = PPC::LDARX; 10559 StoreMnemonic = PPC::STDCX; 10560 break; 10561 } 10562 10563 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10564 MachineFunction *F = BB->getParent(); 10565 MachineFunction::iterator It = ++BB->getIterator(); 10566 10567 Register dest = MI.getOperand(0).getReg(); 10568 Register ptrA = MI.getOperand(1).getReg(); 10569 Register ptrB = MI.getOperand(2).getReg(); 10570 Register incr = MI.getOperand(3).getReg(); 10571 DebugLoc dl = MI.getDebugLoc(); 10572 10573 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10574 MachineBasicBlock *loop2MBB = 10575 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10576 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10577 F->insert(It, loopMBB); 10578 if (CmpOpcode) 10579 F->insert(It, loop2MBB); 10580 F->insert(It, exitMBB); 10581 exitMBB->splice(exitMBB->begin(), BB, 10582 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10583 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10584 10585 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10586 Register TmpReg = (!BinOpcode) ? incr : 10587 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 10588 : &PPC::GPRCRegClass); 10589 10590 // thisMBB: 10591 // ... 10592 // fallthrough --> loopMBB 10593 BB->addSuccessor(loopMBB); 10594 10595 // loopMBB: 10596 // l[wd]arx dest, ptr 10597 // add r0, dest, incr 10598 // st[wd]cx. r0, ptr 10599 // bne- loopMBB 10600 // fallthrough --> exitMBB 10601 10602 // For max/min... 10603 // loopMBB: 10604 // l[wd]arx dest, ptr 10605 // cmpl?[wd] incr, dest 10606 // bgt exitMBB 10607 // loop2MBB: 10608 // st[wd]cx. dest, ptr 10609 // bne- loopMBB 10610 // fallthrough --> exitMBB 10611 10612 BB = loopMBB; 10613 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 10614 .addReg(ptrA).addReg(ptrB); 10615 if (BinOpcode) 10616 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 10617 if (CmpOpcode) { 10618 // Signed comparisons of byte or halfword values must be sign-extended. 10619 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 10620 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10621 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 10622 ExtReg).addReg(dest); 10623 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10624 .addReg(incr).addReg(ExtReg); 10625 } else 10626 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10627 .addReg(incr).addReg(dest); 10628 10629 BuildMI(BB, dl, TII->get(PPC::BCC)) 10630 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 10631 BB->addSuccessor(loop2MBB); 10632 BB->addSuccessor(exitMBB); 10633 BB = loop2MBB; 10634 } 10635 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10636 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 10637 BuildMI(BB, dl, TII->get(PPC::BCC)) 10638 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 10639 BB->addSuccessor(loopMBB); 10640 BB->addSuccessor(exitMBB); 10641 10642 // exitMBB: 10643 // ... 10644 BB = exitMBB; 10645 return BB; 10646 } 10647 10648 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) { 10649 switch(MI.getOpcode()) { 10650 default: 10651 return false; 10652 case PPC::COPY: 10653 return TII->isSignExtended(MI); 10654 case PPC::LHA: 10655 case PPC::LHA8: 10656 case PPC::LHAU: 10657 case PPC::LHAU8: 10658 case PPC::LHAUX: 10659 case PPC::LHAUX8: 10660 case PPC::LHAX: 10661 case PPC::LHAX8: 10662 case PPC::LWA: 10663 case PPC::LWAUX: 10664 case PPC::LWAX: 10665 case PPC::LWAX_32: 10666 case PPC::LWA_32: 10667 case PPC::PLHA: 10668 case PPC::PLHA8: 10669 case PPC::PLHA8pc: 10670 case PPC::PLHApc: 10671 case PPC::PLWA: 10672 case PPC::PLWA8: 10673 case PPC::PLWA8pc: 10674 case PPC::PLWApc: 10675 case PPC::EXTSB: 10676 case PPC::EXTSB8: 10677 case PPC::EXTSB8_32_64: 10678 case PPC::EXTSB8_rec: 10679 case PPC::EXTSB_rec: 10680 case PPC::EXTSH: 10681 case PPC::EXTSH8: 10682 case PPC::EXTSH8_32_64: 10683 case PPC::EXTSH8_rec: 10684 case PPC::EXTSH_rec: 10685 case PPC::EXTSW: 10686 case PPC::EXTSWSLI: 10687 case PPC::EXTSWSLI_32_64: 10688 case PPC::EXTSWSLI_32_64_rec: 10689 case PPC::EXTSWSLI_rec: 10690 case PPC::EXTSW_32: 10691 case PPC::EXTSW_32_64: 10692 case PPC::EXTSW_32_64_rec: 10693 case PPC::EXTSW_rec: 10694 case PPC::SRAW: 10695 case PPC::SRAWI: 10696 case PPC::SRAWI_rec: 10697 case PPC::SRAW_rec: 10698 return true; 10699 } 10700 return false; 10701 } 10702 10703 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 10704 MachineInstr &MI, MachineBasicBlock *BB, 10705 bool is8bit, // operation 10706 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 10707 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10708 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 10709 10710 // If this is a signed comparison and the value being compared is not known 10711 // to be sign extended, sign extend it here. 10712 DebugLoc dl = MI.getDebugLoc(); 10713 MachineFunction *F = BB->getParent(); 10714 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10715 Register incr = MI.getOperand(3).getReg(); 10716 bool IsSignExtended = Register::isVirtualRegister(incr) && 10717 isSignExtended(*RegInfo.getVRegDef(incr), TII); 10718 10719 if (CmpOpcode == PPC::CMPW && !IsSignExtended) { 10720 Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10721 BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg) 10722 .addReg(MI.getOperand(3).getReg()); 10723 MI.getOperand(3).setReg(ValueReg); 10724 } 10725 // If we support part-word atomic mnemonics, just use them 10726 if (Subtarget.hasPartwordAtomics()) 10727 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 10728 CmpPred); 10729 10730 // In 64 bit mode we have to use 64 bits for addresses, even though the 10731 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 10732 // registers without caring whether they're 32 or 64, but here we're 10733 // doing actual arithmetic on the addresses. 10734 bool is64bit = Subtarget.isPPC64(); 10735 bool isLittleEndian = Subtarget.isLittleEndian(); 10736 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 10737 10738 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10739 MachineFunction::iterator It = ++BB->getIterator(); 10740 10741 Register dest = MI.getOperand(0).getReg(); 10742 Register ptrA = MI.getOperand(1).getReg(); 10743 Register ptrB = MI.getOperand(2).getReg(); 10744 10745 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10746 MachineBasicBlock *loop2MBB = 10747 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10748 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10749 F->insert(It, loopMBB); 10750 if (CmpOpcode) 10751 F->insert(It, loop2MBB); 10752 F->insert(It, exitMBB); 10753 exitMBB->splice(exitMBB->begin(), BB, 10754 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10755 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10756 10757 const TargetRegisterClass *RC = 10758 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10759 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 10760 10761 Register PtrReg = RegInfo.createVirtualRegister(RC); 10762 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 10763 Register ShiftReg = 10764 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 10765 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 10766 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 10767 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 10768 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 10769 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 10770 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 10771 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 10772 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 10773 Register Ptr1Reg; 10774 Register TmpReg = 10775 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 10776 10777 // thisMBB: 10778 // ... 10779 // fallthrough --> loopMBB 10780 BB->addSuccessor(loopMBB); 10781 10782 // The 4-byte load must be aligned, while a char or short may be 10783 // anywhere in the word. Hence all this nasty bookkeeping code. 10784 // add ptr1, ptrA, ptrB [copy if ptrA==0] 10785 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 10786 // xori shift, shift1, 24 [16] 10787 // rlwinm ptr, ptr1, 0, 0, 29 10788 // slw incr2, incr, shift 10789 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 10790 // slw mask, mask2, shift 10791 // loopMBB: 10792 // lwarx tmpDest, ptr 10793 // add tmp, tmpDest, incr2 10794 // andc tmp2, tmpDest, mask 10795 // and tmp3, tmp, mask 10796 // or tmp4, tmp3, tmp2 10797 // stwcx. tmp4, ptr 10798 // bne- loopMBB 10799 // fallthrough --> exitMBB 10800 // srw dest, tmpDest, shift 10801 if (ptrA != ZeroReg) { 10802 Ptr1Reg = RegInfo.createVirtualRegister(RC); 10803 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 10804 .addReg(ptrA) 10805 .addReg(ptrB); 10806 } else { 10807 Ptr1Reg = ptrB; 10808 } 10809 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 10810 // mode. 10811 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 10812 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 10813 .addImm(3) 10814 .addImm(27) 10815 .addImm(is8bit ? 28 : 27); 10816 if (!isLittleEndian) 10817 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 10818 .addReg(Shift1Reg) 10819 .addImm(is8bit ? 24 : 16); 10820 if (is64bit) 10821 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 10822 .addReg(Ptr1Reg) 10823 .addImm(0) 10824 .addImm(61); 10825 else 10826 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 10827 .addReg(Ptr1Reg) 10828 .addImm(0) 10829 .addImm(0) 10830 .addImm(29); 10831 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 10832 if (is8bit) 10833 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 10834 else { 10835 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 10836 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 10837 .addReg(Mask3Reg) 10838 .addImm(65535); 10839 } 10840 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 10841 .addReg(Mask2Reg) 10842 .addReg(ShiftReg); 10843 10844 BB = loopMBB; 10845 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 10846 .addReg(ZeroReg) 10847 .addReg(PtrReg); 10848 if (BinOpcode) 10849 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 10850 .addReg(Incr2Reg) 10851 .addReg(TmpDestReg); 10852 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 10853 .addReg(TmpDestReg) 10854 .addReg(MaskReg); 10855 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 10856 if (CmpOpcode) { 10857 // For unsigned comparisons, we can directly compare the shifted values. 10858 // For signed comparisons we shift and sign extend. 10859 Register SReg = RegInfo.createVirtualRegister(GPRC); 10860 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 10861 .addReg(TmpDestReg) 10862 .addReg(MaskReg); 10863 unsigned ValueReg = SReg; 10864 unsigned CmpReg = Incr2Reg; 10865 if (CmpOpcode == PPC::CMPW) { 10866 ValueReg = RegInfo.createVirtualRegister(GPRC); 10867 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 10868 .addReg(SReg) 10869 .addReg(ShiftReg); 10870 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 10871 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 10872 .addReg(ValueReg); 10873 ValueReg = ValueSReg; 10874 CmpReg = incr; 10875 } 10876 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10877 .addReg(CmpReg) 10878 .addReg(ValueReg); 10879 BuildMI(BB, dl, TII->get(PPC::BCC)) 10880 .addImm(CmpPred) 10881 .addReg(PPC::CR0) 10882 .addMBB(exitMBB); 10883 BB->addSuccessor(loop2MBB); 10884 BB->addSuccessor(exitMBB); 10885 BB = loop2MBB; 10886 } 10887 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 10888 BuildMI(BB, dl, TII->get(PPC::STWCX)) 10889 .addReg(Tmp4Reg) 10890 .addReg(ZeroReg) 10891 .addReg(PtrReg); 10892 BuildMI(BB, dl, TII->get(PPC::BCC)) 10893 .addImm(PPC::PRED_NE) 10894 .addReg(PPC::CR0) 10895 .addMBB(loopMBB); 10896 BB->addSuccessor(loopMBB); 10897 BB->addSuccessor(exitMBB); 10898 10899 // exitMBB: 10900 // ... 10901 BB = exitMBB; 10902 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 10903 .addReg(TmpDestReg) 10904 .addReg(ShiftReg); 10905 return BB; 10906 } 10907 10908 llvm::MachineBasicBlock * 10909 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 10910 MachineBasicBlock *MBB) const { 10911 DebugLoc DL = MI.getDebugLoc(); 10912 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10913 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10914 10915 MachineFunction *MF = MBB->getParent(); 10916 MachineRegisterInfo &MRI = MF->getRegInfo(); 10917 10918 const BasicBlock *BB = MBB->getBasicBlock(); 10919 MachineFunction::iterator I = ++MBB->getIterator(); 10920 10921 Register DstReg = MI.getOperand(0).getReg(); 10922 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 10923 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 10924 Register mainDstReg = MRI.createVirtualRegister(RC); 10925 Register restoreDstReg = MRI.createVirtualRegister(RC); 10926 10927 MVT PVT = getPointerTy(MF->getDataLayout()); 10928 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10929 "Invalid Pointer Size!"); 10930 // For v = setjmp(buf), we generate 10931 // 10932 // thisMBB: 10933 // SjLjSetup mainMBB 10934 // bl mainMBB 10935 // v_restore = 1 10936 // b sinkMBB 10937 // 10938 // mainMBB: 10939 // buf[LabelOffset] = LR 10940 // v_main = 0 10941 // 10942 // sinkMBB: 10943 // v = phi(main, restore) 10944 // 10945 10946 MachineBasicBlock *thisMBB = MBB; 10947 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 10948 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 10949 MF->insert(I, mainMBB); 10950 MF->insert(I, sinkMBB); 10951 10952 MachineInstrBuilder MIB; 10953 10954 // Transfer the remainder of BB and its successor edges to sinkMBB. 10955 sinkMBB->splice(sinkMBB->begin(), MBB, 10956 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 10957 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 10958 10959 // Note that the structure of the jmp_buf used here is not compatible 10960 // with that used by libc, and is not designed to be. Specifically, it 10961 // stores only those 'reserved' registers that LLVM does not otherwise 10962 // understand how to spill. Also, by convention, by the time this 10963 // intrinsic is called, Clang has already stored the frame address in the 10964 // first slot of the buffer and stack address in the third. Following the 10965 // X86 target code, we'll store the jump address in the second slot. We also 10966 // need to save the TOC pointer (R2) to handle jumps between shared 10967 // libraries, and that will be stored in the fourth slot. The thread 10968 // identifier (R13) is not affected. 10969 10970 // thisMBB: 10971 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10972 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10973 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10974 10975 // Prepare IP either in reg. 10976 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 10977 Register LabelReg = MRI.createVirtualRegister(PtrRC); 10978 Register BufReg = MI.getOperand(1).getReg(); 10979 10980 if (Subtarget.is64BitELFABI()) { 10981 setUsesTOCBasePtr(*MBB->getParent()); 10982 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 10983 .addReg(PPC::X2) 10984 .addImm(TOCOffset) 10985 .addReg(BufReg) 10986 .cloneMemRefs(MI); 10987 } 10988 10989 // Naked functions never have a base pointer, and so we use r1. For all 10990 // other functions, this decision must be delayed until during PEI. 10991 unsigned BaseReg; 10992 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 10993 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 10994 else 10995 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 10996 10997 MIB = BuildMI(*thisMBB, MI, DL, 10998 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 10999 .addReg(BaseReg) 11000 .addImm(BPOffset) 11001 .addReg(BufReg) 11002 .cloneMemRefs(MI); 11003 11004 // Setup 11005 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11006 MIB.addRegMask(TRI->getNoPreservedMask()); 11007 11008 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11009 11010 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11011 .addMBB(mainMBB); 11012 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11013 11014 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11015 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11016 11017 // mainMBB: 11018 // mainDstReg = 0 11019 MIB = 11020 BuildMI(mainMBB, DL, 11021 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11022 11023 // Store IP 11024 if (Subtarget.isPPC64()) { 11025 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11026 .addReg(LabelReg) 11027 .addImm(LabelOffset) 11028 .addReg(BufReg); 11029 } else { 11030 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11031 .addReg(LabelReg) 11032 .addImm(LabelOffset) 11033 .addReg(BufReg); 11034 } 11035 MIB.cloneMemRefs(MI); 11036 11037 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11038 mainMBB->addSuccessor(sinkMBB); 11039 11040 // sinkMBB: 11041 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11042 TII->get(PPC::PHI), DstReg) 11043 .addReg(mainDstReg).addMBB(mainMBB) 11044 .addReg(restoreDstReg).addMBB(thisMBB); 11045 11046 MI.eraseFromParent(); 11047 return sinkMBB; 11048 } 11049 11050 MachineBasicBlock * 11051 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11052 MachineBasicBlock *MBB) const { 11053 DebugLoc DL = MI.getDebugLoc(); 11054 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11055 11056 MachineFunction *MF = MBB->getParent(); 11057 MachineRegisterInfo &MRI = MF->getRegInfo(); 11058 11059 MVT PVT = getPointerTy(MF->getDataLayout()); 11060 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11061 "Invalid Pointer Size!"); 11062 11063 const TargetRegisterClass *RC = 11064 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11065 Register Tmp = MRI.createVirtualRegister(RC); 11066 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11067 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11068 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11069 unsigned BP = 11070 (PVT == MVT::i64) 11071 ? PPC::X30 11072 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11073 : PPC::R30); 11074 11075 MachineInstrBuilder MIB; 11076 11077 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11078 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11079 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11080 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11081 11082 Register BufReg = MI.getOperand(0).getReg(); 11083 11084 // Reload FP (the jumped-to function may not have had a 11085 // frame pointer, and if so, then its r31 will be restored 11086 // as necessary). 11087 if (PVT == MVT::i64) { 11088 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11089 .addImm(0) 11090 .addReg(BufReg); 11091 } else { 11092 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11093 .addImm(0) 11094 .addReg(BufReg); 11095 } 11096 MIB.cloneMemRefs(MI); 11097 11098 // Reload IP 11099 if (PVT == MVT::i64) { 11100 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11101 .addImm(LabelOffset) 11102 .addReg(BufReg); 11103 } else { 11104 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11105 .addImm(LabelOffset) 11106 .addReg(BufReg); 11107 } 11108 MIB.cloneMemRefs(MI); 11109 11110 // Reload SP 11111 if (PVT == MVT::i64) { 11112 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11113 .addImm(SPOffset) 11114 .addReg(BufReg); 11115 } else { 11116 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11117 .addImm(SPOffset) 11118 .addReg(BufReg); 11119 } 11120 MIB.cloneMemRefs(MI); 11121 11122 // Reload BP 11123 if (PVT == MVT::i64) { 11124 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11125 .addImm(BPOffset) 11126 .addReg(BufReg); 11127 } else { 11128 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11129 .addImm(BPOffset) 11130 .addReg(BufReg); 11131 } 11132 MIB.cloneMemRefs(MI); 11133 11134 // Reload TOC 11135 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11136 setUsesTOCBasePtr(*MBB->getParent()); 11137 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11138 .addImm(TOCOffset) 11139 .addReg(BufReg) 11140 .cloneMemRefs(MI); 11141 } 11142 11143 // Jump 11144 BuildMI(*MBB, MI, DL, 11145 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11146 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11147 11148 MI.eraseFromParent(); 11149 return MBB; 11150 } 11151 11152 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11153 // If the function specifically requests inline stack probes, emit them. 11154 if (MF.getFunction().hasFnAttribute("probe-stack")) 11155 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11156 "inline-asm"; 11157 return false; 11158 } 11159 11160 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11161 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11162 unsigned StackAlign = TFI->getStackAlignment(); 11163 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11164 "Unexpected stack alignment"); 11165 // The default stack probe size is 4096 if the function has no 11166 // stack-probe-size attribute. 11167 unsigned StackProbeSize = 4096; 11168 const Function &Fn = MF.getFunction(); 11169 if (Fn.hasFnAttribute("stack-probe-size")) 11170 Fn.getFnAttribute("stack-probe-size") 11171 .getValueAsString() 11172 .getAsInteger(0, StackProbeSize); 11173 // Round down to the stack alignment. 11174 StackProbeSize &= ~(StackAlign - 1); 11175 return StackProbeSize ? StackProbeSize : StackAlign; 11176 } 11177 11178 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 11179 // into three phases. In the first phase, it uses pseudo instruction 11180 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 11181 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 11182 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 11183 // MaxCallFrameSize so that it can calculate correct data area pointer. 11184 MachineBasicBlock * 11185 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 11186 MachineBasicBlock *MBB) const { 11187 const bool isPPC64 = Subtarget.isPPC64(); 11188 MachineFunction *MF = MBB->getParent(); 11189 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11190 DebugLoc DL = MI.getDebugLoc(); 11191 const unsigned ProbeSize = getStackProbeSize(*MF); 11192 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 11193 MachineRegisterInfo &MRI = MF->getRegInfo(); 11194 // The CFG of probing stack looks as 11195 // +-----+ 11196 // | MBB | 11197 // +--+--+ 11198 // | 11199 // +----v----+ 11200 // +--->+ TestMBB +---+ 11201 // | +----+----+ | 11202 // | | | 11203 // | +-----v----+ | 11204 // +---+ BlockMBB | | 11205 // +----------+ | 11206 // | 11207 // +---------+ | 11208 // | TailMBB +<--+ 11209 // +---------+ 11210 // In MBB, calculate previous frame pointer and final stack pointer. 11211 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 11212 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 11213 // TailMBB is spliced via \p MI. 11214 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 11215 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 11216 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 11217 11218 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 11219 MF->insert(MBBIter, TestMBB); 11220 MF->insert(MBBIter, BlockMBB); 11221 MF->insert(MBBIter, TailMBB); 11222 11223 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 11224 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11225 11226 Register DstReg = MI.getOperand(0).getReg(); 11227 Register NegSizeReg = MI.getOperand(1).getReg(); 11228 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 11229 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11230 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11231 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11232 11233 // Since value of NegSizeReg might be realigned in prologepilog, insert a 11234 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 11235 // NegSize. 11236 unsigned ProbeOpc; 11237 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 11238 ProbeOpc = 11239 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 11240 else 11241 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 11242 // and NegSizeReg will be allocated in the same phyreg to avoid 11243 // redundant copy when NegSizeReg has only one use which is current MI and 11244 // will be replaced by PREPARE_PROBED_ALLOCA then. 11245 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 11246 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 11247 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 11248 .addDef(ActualNegSizeReg) 11249 .addReg(NegSizeReg) 11250 .add(MI.getOperand(2)) 11251 .add(MI.getOperand(3)); 11252 11253 // Calculate final stack pointer, which equals to SP + ActualNegSize. 11254 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 11255 FinalStackPtr) 11256 .addReg(SPReg) 11257 .addReg(ActualNegSizeReg); 11258 11259 // Materialize a scratch register for update. 11260 int64_t NegProbeSize = -(int64_t)ProbeSize; 11261 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 11262 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11263 if (!isInt<16>(NegProbeSize)) { 11264 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11265 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 11266 .addImm(NegProbeSize >> 16); 11267 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 11268 ScratchReg) 11269 .addReg(TempReg) 11270 .addImm(NegProbeSize & 0xFFFF); 11271 } else 11272 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 11273 .addImm(NegProbeSize); 11274 11275 { 11276 // Probing leading residual part. 11277 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11278 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 11279 .addReg(ActualNegSizeReg) 11280 .addReg(ScratchReg); 11281 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11282 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 11283 .addReg(Div) 11284 .addReg(ScratchReg); 11285 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11286 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 11287 .addReg(Mul) 11288 .addReg(ActualNegSizeReg); 11289 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11290 .addReg(FramePointer) 11291 .addReg(SPReg) 11292 .addReg(NegMod); 11293 } 11294 11295 { 11296 // Remaining part should be multiple of ProbeSize. 11297 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 11298 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 11299 .addReg(SPReg) 11300 .addReg(FinalStackPtr); 11301 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 11302 .addImm(PPC::PRED_EQ) 11303 .addReg(CmpResult) 11304 .addMBB(TailMBB); 11305 TestMBB->addSuccessor(BlockMBB); 11306 TestMBB->addSuccessor(TailMBB); 11307 } 11308 11309 { 11310 // Touch the block. 11311 // |P...|P...|P... 11312 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11313 .addReg(FramePointer) 11314 .addReg(SPReg) 11315 .addReg(ScratchReg); 11316 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 11317 BlockMBB->addSuccessor(TestMBB); 11318 } 11319 11320 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 11321 // DYNAREAOFFSET pseudo instruction to get the future result. 11322 Register MaxCallFrameSizeReg = 11323 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11324 BuildMI(TailMBB, DL, 11325 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 11326 MaxCallFrameSizeReg) 11327 .add(MI.getOperand(2)) 11328 .add(MI.getOperand(3)); 11329 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 11330 .addReg(SPReg) 11331 .addReg(MaxCallFrameSizeReg); 11332 11333 // Splice instructions after MI to TailMBB. 11334 TailMBB->splice(TailMBB->end(), MBB, 11335 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11336 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 11337 MBB->addSuccessor(TestMBB); 11338 11339 // Delete the pseudo instruction. 11340 MI.eraseFromParent(); 11341 11342 ++NumDynamicAllocaProbed; 11343 return TailMBB; 11344 } 11345 11346 MachineBasicBlock * 11347 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11348 MachineBasicBlock *BB) const { 11349 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11350 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11351 if (Subtarget.is64BitELFABI() && 11352 MI.getOpcode() == TargetOpcode::PATCHPOINT && 11353 !Subtarget.isUsingPCRelativeCalls()) { 11354 // Call lowering should have added an r2 operand to indicate a dependence 11355 // on the TOC base pointer value. It can't however, because there is no 11356 // way to mark the dependence as implicit there, and so the stackmap code 11357 // will confuse it with a regular operand. Instead, add the dependence 11358 // here. 11359 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11360 } 11361 11362 return emitPatchPoint(MI, BB); 11363 } 11364 11365 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11366 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11367 return emitEHSjLjSetJmp(MI, BB); 11368 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11369 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11370 return emitEHSjLjLongJmp(MI, BB); 11371 } 11372 11373 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11374 11375 // To "insert" these instructions we actually have to insert their 11376 // control-flow patterns. 11377 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11378 MachineFunction::iterator It = ++BB->getIterator(); 11379 11380 MachineFunction *F = BB->getParent(); 11381 11382 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11383 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11384 MI.getOpcode() == PPC::SELECT_I8) { 11385 SmallVector<MachineOperand, 2> Cond; 11386 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11387 MI.getOpcode() == PPC::SELECT_CC_I8) 11388 Cond.push_back(MI.getOperand(4)); 11389 else 11390 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11391 Cond.push_back(MI.getOperand(1)); 11392 11393 DebugLoc dl = MI.getDebugLoc(); 11394 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11395 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11396 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 11397 MI.getOpcode() == PPC::SELECT_CC_F8 || 11398 MI.getOpcode() == PPC::SELECT_CC_F16 || 11399 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11400 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11401 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11402 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11403 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11404 MI.getOpcode() == PPC::SELECT_CC_SPE || 11405 MI.getOpcode() == PPC::SELECT_F4 || 11406 MI.getOpcode() == PPC::SELECT_F8 || 11407 MI.getOpcode() == PPC::SELECT_F16 || 11408 MI.getOpcode() == PPC::SELECT_SPE || 11409 MI.getOpcode() == PPC::SELECT_SPE4 || 11410 MI.getOpcode() == PPC::SELECT_VRRC || 11411 MI.getOpcode() == PPC::SELECT_VSFRC || 11412 MI.getOpcode() == PPC::SELECT_VSSRC || 11413 MI.getOpcode() == PPC::SELECT_VSRC) { 11414 // The incoming instruction knows the destination vreg to set, the 11415 // condition code register to branch on, the true/false values to 11416 // select between, and a branch opcode to use. 11417 11418 // thisMBB: 11419 // ... 11420 // TrueVal = ... 11421 // cmpTY ccX, r1, r2 11422 // bCC copy1MBB 11423 // fallthrough --> copy0MBB 11424 MachineBasicBlock *thisMBB = BB; 11425 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 11426 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11427 DebugLoc dl = MI.getDebugLoc(); 11428 F->insert(It, copy0MBB); 11429 F->insert(It, sinkMBB); 11430 11431 // Transfer the remainder of BB and its successor edges to sinkMBB. 11432 sinkMBB->splice(sinkMBB->begin(), BB, 11433 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11434 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11435 11436 // Next, add the true and fallthrough blocks as its successors. 11437 BB->addSuccessor(copy0MBB); 11438 BB->addSuccessor(sinkMBB); 11439 11440 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 11441 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 11442 MI.getOpcode() == PPC::SELECT_F16 || 11443 MI.getOpcode() == PPC::SELECT_SPE4 || 11444 MI.getOpcode() == PPC::SELECT_SPE || 11445 MI.getOpcode() == PPC::SELECT_VRRC || 11446 MI.getOpcode() == PPC::SELECT_VSFRC || 11447 MI.getOpcode() == PPC::SELECT_VSSRC || 11448 MI.getOpcode() == PPC::SELECT_VSRC) { 11449 BuildMI(BB, dl, TII->get(PPC::BC)) 11450 .addReg(MI.getOperand(1).getReg()) 11451 .addMBB(sinkMBB); 11452 } else { 11453 unsigned SelectPred = MI.getOperand(4).getImm(); 11454 BuildMI(BB, dl, TII->get(PPC::BCC)) 11455 .addImm(SelectPred) 11456 .addReg(MI.getOperand(1).getReg()) 11457 .addMBB(sinkMBB); 11458 } 11459 11460 // copy0MBB: 11461 // %FalseValue = ... 11462 // # fallthrough to sinkMBB 11463 BB = copy0MBB; 11464 11465 // Update machine-CFG edges 11466 BB->addSuccessor(sinkMBB); 11467 11468 // sinkMBB: 11469 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 11470 // ... 11471 BB = sinkMBB; 11472 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 11473 .addReg(MI.getOperand(3).getReg()) 11474 .addMBB(copy0MBB) 11475 .addReg(MI.getOperand(2).getReg()) 11476 .addMBB(thisMBB); 11477 } else if (MI.getOpcode() == PPC::ReadTB) { 11478 // To read the 64-bit time-base register on a 32-bit target, we read the 11479 // two halves. Should the counter have wrapped while it was being read, we 11480 // need to try again. 11481 // ... 11482 // readLoop: 11483 // mfspr Rx,TBU # load from TBU 11484 // mfspr Ry,TB # load from TB 11485 // mfspr Rz,TBU # load from TBU 11486 // cmpw crX,Rx,Rz # check if 'old'='new' 11487 // bne readLoop # branch if they're not equal 11488 // ... 11489 11490 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 11491 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11492 DebugLoc dl = MI.getDebugLoc(); 11493 F->insert(It, readMBB); 11494 F->insert(It, sinkMBB); 11495 11496 // Transfer the remainder of BB and its successor edges to sinkMBB. 11497 sinkMBB->splice(sinkMBB->begin(), BB, 11498 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11499 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11500 11501 BB->addSuccessor(readMBB); 11502 BB = readMBB; 11503 11504 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11505 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11506 Register LoReg = MI.getOperand(0).getReg(); 11507 Register HiReg = MI.getOperand(1).getReg(); 11508 11509 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 11510 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 11511 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 11512 11513 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11514 11515 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 11516 .addReg(HiReg) 11517 .addReg(ReadAgainReg); 11518 BuildMI(BB, dl, TII->get(PPC::BCC)) 11519 .addImm(PPC::PRED_NE) 11520 .addReg(CmpReg) 11521 .addMBB(readMBB); 11522 11523 BB->addSuccessor(readMBB); 11524 BB->addSuccessor(sinkMBB); 11525 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 11526 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 11527 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 11528 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 11529 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 11530 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 11531 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 11532 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 11533 11534 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 11535 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 11536 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 11537 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 11538 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 11539 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 11540 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 11541 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 11542 11543 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 11544 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 11545 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 11546 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 11547 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 11548 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 11549 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 11550 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 11551 11552 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 11553 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 11554 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 11555 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 11556 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 11557 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 11558 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 11559 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 11560 11561 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 11562 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 11563 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 11564 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 11565 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 11566 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 11567 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 11568 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 11569 11570 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 11571 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 11572 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 11573 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 11574 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 11575 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 11576 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 11577 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 11578 11579 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 11580 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 11581 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 11582 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 11583 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 11584 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 11585 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 11586 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 11587 11588 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 11589 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 11590 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 11591 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 11592 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 11593 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 11594 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 11595 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 11596 11597 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 11598 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 11599 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 11600 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 11601 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 11602 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 11603 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 11604 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 11605 11606 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 11607 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 11608 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 11609 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 11610 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 11611 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 11612 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 11613 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 11614 11615 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 11616 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 11617 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 11618 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 11619 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 11620 BB = EmitAtomicBinary(MI, BB, 4, 0); 11621 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 11622 BB = EmitAtomicBinary(MI, BB, 8, 0); 11623 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 11624 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 11625 (Subtarget.hasPartwordAtomics() && 11626 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 11627 (Subtarget.hasPartwordAtomics() && 11628 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 11629 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 11630 11631 auto LoadMnemonic = PPC::LDARX; 11632 auto StoreMnemonic = PPC::STDCX; 11633 switch (MI.getOpcode()) { 11634 default: 11635 llvm_unreachable("Compare and swap of unknown size"); 11636 case PPC::ATOMIC_CMP_SWAP_I8: 11637 LoadMnemonic = PPC::LBARX; 11638 StoreMnemonic = PPC::STBCX; 11639 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11640 break; 11641 case PPC::ATOMIC_CMP_SWAP_I16: 11642 LoadMnemonic = PPC::LHARX; 11643 StoreMnemonic = PPC::STHCX; 11644 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11645 break; 11646 case PPC::ATOMIC_CMP_SWAP_I32: 11647 LoadMnemonic = PPC::LWARX; 11648 StoreMnemonic = PPC::STWCX; 11649 break; 11650 case PPC::ATOMIC_CMP_SWAP_I64: 11651 LoadMnemonic = PPC::LDARX; 11652 StoreMnemonic = PPC::STDCX; 11653 break; 11654 } 11655 Register dest = MI.getOperand(0).getReg(); 11656 Register ptrA = MI.getOperand(1).getReg(); 11657 Register ptrB = MI.getOperand(2).getReg(); 11658 Register oldval = MI.getOperand(3).getReg(); 11659 Register newval = MI.getOperand(4).getReg(); 11660 DebugLoc dl = MI.getDebugLoc(); 11661 11662 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11663 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11664 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11665 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11666 F->insert(It, loop1MBB); 11667 F->insert(It, loop2MBB); 11668 F->insert(It, midMBB); 11669 F->insert(It, exitMBB); 11670 exitMBB->splice(exitMBB->begin(), BB, 11671 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11672 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11673 11674 // thisMBB: 11675 // ... 11676 // fallthrough --> loopMBB 11677 BB->addSuccessor(loop1MBB); 11678 11679 // loop1MBB: 11680 // l[bhwd]arx dest, ptr 11681 // cmp[wd] dest, oldval 11682 // bne- midMBB 11683 // loop2MBB: 11684 // st[bhwd]cx. newval, ptr 11685 // bne- loopMBB 11686 // b exitBB 11687 // midMBB: 11688 // st[bhwd]cx. dest, ptr 11689 // exitBB: 11690 BB = loop1MBB; 11691 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 11692 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 11693 .addReg(oldval) 11694 .addReg(dest); 11695 BuildMI(BB, dl, TII->get(PPC::BCC)) 11696 .addImm(PPC::PRED_NE) 11697 .addReg(PPC::CR0) 11698 .addMBB(midMBB); 11699 BB->addSuccessor(loop2MBB); 11700 BB->addSuccessor(midMBB); 11701 11702 BB = loop2MBB; 11703 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11704 .addReg(newval) 11705 .addReg(ptrA) 11706 .addReg(ptrB); 11707 BuildMI(BB, dl, TII->get(PPC::BCC)) 11708 .addImm(PPC::PRED_NE) 11709 .addReg(PPC::CR0) 11710 .addMBB(loop1MBB); 11711 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11712 BB->addSuccessor(loop1MBB); 11713 BB->addSuccessor(exitMBB); 11714 11715 BB = midMBB; 11716 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11717 .addReg(dest) 11718 .addReg(ptrA) 11719 .addReg(ptrB); 11720 BB->addSuccessor(exitMBB); 11721 11722 // exitMBB: 11723 // ... 11724 BB = exitMBB; 11725 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 11726 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 11727 // We must use 64-bit registers for addresses when targeting 64-bit, 11728 // since we're actually doing arithmetic on them. Other registers 11729 // can be 32-bit. 11730 bool is64bit = Subtarget.isPPC64(); 11731 bool isLittleEndian = Subtarget.isLittleEndian(); 11732 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 11733 11734 Register dest = MI.getOperand(0).getReg(); 11735 Register ptrA = MI.getOperand(1).getReg(); 11736 Register ptrB = MI.getOperand(2).getReg(); 11737 Register oldval = MI.getOperand(3).getReg(); 11738 Register newval = MI.getOperand(4).getReg(); 11739 DebugLoc dl = MI.getDebugLoc(); 11740 11741 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11742 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11743 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11744 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11745 F->insert(It, loop1MBB); 11746 F->insert(It, loop2MBB); 11747 F->insert(It, midMBB); 11748 F->insert(It, exitMBB); 11749 exitMBB->splice(exitMBB->begin(), BB, 11750 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11751 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11752 11753 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11754 const TargetRegisterClass *RC = 11755 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11756 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11757 11758 Register PtrReg = RegInfo.createVirtualRegister(RC); 11759 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11760 Register ShiftReg = 11761 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11762 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 11763 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 11764 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 11765 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 11766 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11767 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11768 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11769 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11770 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11771 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11772 Register Ptr1Reg; 11773 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 11774 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11775 // thisMBB: 11776 // ... 11777 // fallthrough --> loopMBB 11778 BB->addSuccessor(loop1MBB); 11779 11780 // The 4-byte load must be aligned, while a char or short may be 11781 // anywhere in the word. Hence all this nasty bookkeeping code. 11782 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11783 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11784 // xori shift, shift1, 24 [16] 11785 // rlwinm ptr, ptr1, 0, 0, 29 11786 // slw newval2, newval, shift 11787 // slw oldval2, oldval,shift 11788 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11789 // slw mask, mask2, shift 11790 // and newval3, newval2, mask 11791 // and oldval3, oldval2, mask 11792 // loop1MBB: 11793 // lwarx tmpDest, ptr 11794 // and tmp, tmpDest, mask 11795 // cmpw tmp, oldval3 11796 // bne- midMBB 11797 // loop2MBB: 11798 // andc tmp2, tmpDest, mask 11799 // or tmp4, tmp2, newval3 11800 // stwcx. tmp4, ptr 11801 // bne- loop1MBB 11802 // b exitBB 11803 // midMBB: 11804 // stwcx. tmpDest, ptr 11805 // exitBB: 11806 // srw dest, tmpDest, shift 11807 if (ptrA != ZeroReg) { 11808 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11809 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11810 .addReg(ptrA) 11811 .addReg(ptrB); 11812 } else { 11813 Ptr1Reg = ptrB; 11814 } 11815 11816 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11817 // mode. 11818 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11819 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11820 .addImm(3) 11821 .addImm(27) 11822 .addImm(is8bit ? 28 : 27); 11823 if (!isLittleEndian) 11824 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11825 .addReg(Shift1Reg) 11826 .addImm(is8bit ? 24 : 16); 11827 if (is64bit) 11828 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11829 .addReg(Ptr1Reg) 11830 .addImm(0) 11831 .addImm(61); 11832 else 11833 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11834 .addReg(Ptr1Reg) 11835 .addImm(0) 11836 .addImm(0) 11837 .addImm(29); 11838 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 11839 .addReg(newval) 11840 .addReg(ShiftReg); 11841 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 11842 .addReg(oldval) 11843 .addReg(ShiftReg); 11844 if (is8bit) 11845 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11846 else { 11847 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11848 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11849 .addReg(Mask3Reg) 11850 .addImm(65535); 11851 } 11852 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11853 .addReg(Mask2Reg) 11854 .addReg(ShiftReg); 11855 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 11856 .addReg(NewVal2Reg) 11857 .addReg(MaskReg); 11858 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 11859 .addReg(OldVal2Reg) 11860 .addReg(MaskReg); 11861 11862 BB = loop1MBB; 11863 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11864 .addReg(ZeroReg) 11865 .addReg(PtrReg); 11866 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 11867 .addReg(TmpDestReg) 11868 .addReg(MaskReg); 11869 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 11870 .addReg(TmpReg) 11871 .addReg(OldVal3Reg); 11872 BuildMI(BB, dl, TII->get(PPC::BCC)) 11873 .addImm(PPC::PRED_NE) 11874 .addReg(PPC::CR0) 11875 .addMBB(midMBB); 11876 BB->addSuccessor(loop2MBB); 11877 BB->addSuccessor(midMBB); 11878 11879 BB = loop2MBB; 11880 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11881 .addReg(TmpDestReg) 11882 .addReg(MaskReg); 11883 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 11884 .addReg(Tmp2Reg) 11885 .addReg(NewVal3Reg); 11886 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11887 .addReg(Tmp4Reg) 11888 .addReg(ZeroReg) 11889 .addReg(PtrReg); 11890 BuildMI(BB, dl, TII->get(PPC::BCC)) 11891 .addImm(PPC::PRED_NE) 11892 .addReg(PPC::CR0) 11893 .addMBB(loop1MBB); 11894 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11895 BB->addSuccessor(loop1MBB); 11896 BB->addSuccessor(exitMBB); 11897 11898 BB = midMBB; 11899 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11900 .addReg(TmpDestReg) 11901 .addReg(ZeroReg) 11902 .addReg(PtrReg); 11903 BB->addSuccessor(exitMBB); 11904 11905 // exitMBB: 11906 // ... 11907 BB = exitMBB; 11908 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11909 .addReg(TmpReg) 11910 .addReg(ShiftReg); 11911 } else if (MI.getOpcode() == PPC::FADDrtz) { 11912 // This pseudo performs an FADD with rounding mode temporarily forced 11913 // to round-to-zero. We emit this via custom inserter since the FPSCR 11914 // is not modeled at the SelectionDAG level. 11915 Register Dest = MI.getOperand(0).getReg(); 11916 Register Src1 = MI.getOperand(1).getReg(); 11917 Register Src2 = MI.getOperand(2).getReg(); 11918 DebugLoc dl = MI.getDebugLoc(); 11919 11920 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11921 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11922 11923 // Save FPSCR value. 11924 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 11925 11926 // Set rounding mode to round-to-zero. 11927 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 11928 .addImm(31) 11929 .addReg(PPC::RM, RegState::ImplicitDefine); 11930 11931 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 11932 .addImm(30) 11933 .addReg(PPC::RM, RegState::ImplicitDefine); 11934 11935 // Perform addition. 11936 auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) 11937 .addReg(Src1) 11938 .addReg(Src2); 11939 if (MI.getFlag(MachineInstr::NoFPExcept)) 11940 MIB.setMIFlag(MachineInstr::NoFPExcept); 11941 11942 // Restore FPSCR value. 11943 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 11944 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 11945 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 11946 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 11947 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 11948 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 11949 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 11950 ? PPC::ANDI8_rec 11951 : PPC::ANDI_rec; 11952 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 11953 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 11954 11955 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11956 Register Dest = RegInfo.createVirtualRegister( 11957 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 11958 11959 DebugLoc Dl = MI.getDebugLoc(); 11960 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 11961 .addReg(MI.getOperand(1).getReg()) 11962 .addImm(1); 11963 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11964 MI.getOperand(0).getReg()) 11965 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 11966 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 11967 DebugLoc Dl = MI.getDebugLoc(); 11968 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11969 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11970 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 11971 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11972 MI.getOperand(0).getReg()) 11973 .addReg(CRReg); 11974 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 11975 DebugLoc Dl = MI.getDebugLoc(); 11976 unsigned Imm = MI.getOperand(1).getImm(); 11977 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 11978 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11979 MI.getOperand(0).getReg()) 11980 .addReg(PPC::CR0EQ); 11981 } else if (MI.getOpcode() == PPC::SETRNDi) { 11982 DebugLoc dl = MI.getDebugLoc(); 11983 Register OldFPSCRReg = MI.getOperand(0).getReg(); 11984 11985 // Save FPSCR value. 11986 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11987 11988 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 11989 // the following settings: 11990 // 00 Round to nearest 11991 // 01 Round to 0 11992 // 10 Round to +inf 11993 // 11 Round to -inf 11994 11995 // When the operand is immediate, using the two least significant bits of 11996 // the immediate to set the bits 62:63 of FPSCR. 11997 unsigned Mode = MI.getOperand(1).getImm(); 11998 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 11999 .addImm(31) 12000 .addReg(PPC::RM, RegState::ImplicitDefine); 12001 12002 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12003 .addImm(30) 12004 .addReg(PPC::RM, RegState::ImplicitDefine); 12005 } else if (MI.getOpcode() == PPC::SETRND) { 12006 DebugLoc dl = MI.getDebugLoc(); 12007 12008 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12009 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12010 // If the target doesn't have DirectMove, we should use stack to do the 12011 // conversion, because the target doesn't have the instructions like mtvsrd 12012 // or mfvsrd to do this conversion directly. 12013 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12014 if (Subtarget.hasDirectMove()) { 12015 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12016 .addReg(SrcReg); 12017 } else { 12018 // Use stack to do the register copy. 12019 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12020 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12021 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12022 if (RC == &PPC::F8RCRegClass) { 12023 // Copy register from F8RCRegClass to G8RCRegclass. 12024 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12025 "Unsupported RegClass."); 12026 12027 StoreOp = PPC::STFD; 12028 LoadOp = PPC::LD; 12029 } else { 12030 // Copy register from G8RCRegClass to F8RCRegclass. 12031 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12032 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12033 "Unsupported RegClass."); 12034 } 12035 12036 MachineFrameInfo &MFI = F->getFrameInfo(); 12037 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12038 12039 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12040 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12041 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12042 MFI.getObjectAlign(FrameIdx)); 12043 12044 // Store the SrcReg into the stack. 12045 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12046 .addReg(SrcReg) 12047 .addImm(0) 12048 .addFrameIndex(FrameIdx) 12049 .addMemOperand(MMOStore); 12050 12051 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12052 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12053 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12054 MFI.getObjectAlign(FrameIdx)); 12055 12056 // Load from the stack where SrcReg is stored, and save to DestReg, 12057 // so we have done the RegClass conversion from RegClass::SrcReg to 12058 // RegClass::DestReg. 12059 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12060 .addImm(0) 12061 .addFrameIndex(FrameIdx) 12062 .addMemOperand(MMOLoad); 12063 } 12064 }; 12065 12066 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12067 12068 // Save FPSCR value. 12069 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12070 12071 // When the operand is gprc register, use two least significant bits of the 12072 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12073 // 12074 // copy OldFPSCRTmpReg, OldFPSCRReg 12075 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12076 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12077 // copy NewFPSCRReg, NewFPSCRTmpReg 12078 // mtfsf 255, NewFPSCRReg 12079 MachineOperand SrcOp = MI.getOperand(1); 12080 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12081 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12082 12083 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12084 12085 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12086 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12087 12088 // The first operand of INSERT_SUBREG should be a register which has 12089 // subregisters, we only care about its RegClass, so we should use an 12090 // IMPLICIT_DEF register. 12091 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12092 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12093 .addReg(ImDefReg) 12094 .add(SrcOp) 12095 .addImm(1); 12096 12097 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12098 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12099 .addReg(OldFPSCRTmpReg) 12100 .addReg(ExtSrcReg) 12101 .addImm(0) 12102 .addImm(62); 12103 12104 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12105 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12106 12107 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12108 // bits of FPSCR. 12109 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12110 .addImm(255) 12111 .addReg(NewFPSCRReg) 12112 .addImm(0) 12113 .addImm(0); 12114 } else if (MI.getOpcode() == PPC::SETFLM) { 12115 DebugLoc Dl = MI.getDebugLoc(); 12116 12117 // Result of setflm is previous FPSCR content, so we need to save it first. 12118 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12119 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 12120 12121 // Put bits in 32:63 to FPSCR. 12122 Register NewFPSCRReg = MI.getOperand(1).getReg(); 12123 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 12124 .addImm(255) 12125 .addReg(NewFPSCRReg) 12126 .addImm(0) 12127 .addImm(0); 12128 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12129 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12130 return emitProbedAlloca(MI, BB); 12131 } else { 12132 llvm_unreachable("Unexpected instr type to insert"); 12133 } 12134 12135 MI.eraseFromParent(); // The pseudo instruction is gone now. 12136 return BB; 12137 } 12138 12139 //===----------------------------------------------------------------------===// 12140 // Target Optimization Hooks 12141 //===----------------------------------------------------------------------===// 12142 12143 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12144 // For the estimates, convergence is quadratic, so we essentially double the 12145 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12146 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12147 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12148 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12149 if (VT.getScalarType() == MVT::f64) 12150 RefinementSteps++; 12151 return RefinementSteps; 12152 } 12153 12154 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 12155 const DenormalMode &Mode) const { 12156 // We only have VSX Vector Test for software Square Root. 12157 EVT VT = Op.getValueType(); 12158 if (!isTypeLegal(MVT::i1) || 12159 (VT != MVT::f64 && 12160 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))) 12161 return TargetLowering::getSqrtInputTest(Op, DAG, Mode); 12162 12163 SDLoc DL(Op); 12164 // The output register of FTSQRT is CR field. 12165 SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op); 12166 // ftsqrt BF,FRB 12167 // Let e_b be the unbiased exponent of the double-precision 12168 // floating-point operand in register FRB. 12169 // fe_flag is set to 1 if either of the following conditions occurs. 12170 // - The double-precision floating-point operand in register FRB is a zero, 12171 // a NaN, or an infinity, or a negative value. 12172 // - e_b is less than or equal to -970. 12173 // Otherwise fe_flag is set to 0. 12174 // Both VSX and non-VSX versions would set EQ bit in the CR if the number is 12175 // not eligible for iteration. (zero/negative/infinity/nan or unbiased 12176 // exponent is less than -970) 12177 SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32); 12178 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1, 12179 FTSQRT, SRIdxVal), 12180 0); 12181 } 12182 12183 SDValue 12184 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op, 12185 SelectionDAG &DAG) const { 12186 // We only have VSX Vector Square Root. 12187 EVT VT = Op.getValueType(); 12188 if (VT != MVT::f64 && 12189 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())) 12190 return TargetLowering::getSqrtResultForDenormInput(Op, DAG); 12191 12192 return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op); 12193 } 12194 12195 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12196 int Enabled, int &RefinementSteps, 12197 bool &UseOneConstNR, 12198 bool Reciprocal) const { 12199 EVT VT = Operand.getValueType(); 12200 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12201 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12202 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12203 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12204 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12205 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12206 12207 // The Newton-Raphson computation with a single constant does not provide 12208 // enough accuracy on some CPUs. 12209 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12210 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12211 } 12212 return SDValue(); 12213 } 12214 12215 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12216 int Enabled, 12217 int &RefinementSteps) const { 12218 EVT VT = Operand.getValueType(); 12219 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12220 (VT == MVT::f64 && Subtarget.hasFRE()) || 12221 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12222 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12223 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12224 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12225 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12226 } 12227 return SDValue(); 12228 } 12229 12230 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12231 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12232 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12233 // enabled for division), this functionality is redundant with the default 12234 // combiner logic (once the division -> reciprocal/multiply transformation 12235 // has taken place). As a result, this matters more for older cores than for 12236 // newer ones. 12237 12238 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12239 // reciprocal if there are two or more FDIVs (for embedded cores with only 12240 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12241 switch (Subtarget.getCPUDirective()) { 12242 default: 12243 return 3; 12244 case PPC::DIR_440: 12245 case PPC::DIR_A2: 12246 case PPC::DIR_E500: 12247 case PPC::DIR_E500mc: 12248 case PPC::DIR_E5500: 12249 return 2; 12250 } 12251 } 12252 12253 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12254 // collapsed, and so we need to look through chains of them. 12255 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12256 int64_t& Offset, SelectionDAG &DAG) { 12257 if (DAG.isBaseWithConstantOffset(Loc)) { 12258 Base = Loc.getOperand(0); 12259 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12260 12261 // The base might itself be a base plus an offset, and if so, accumulate 12262 // that as well. 12263 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12264 } 12265 } 12266 12267 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12268 unsigned Bytes, int Dist, 12269 SelectionDAG &DAG) { 12270 if (VT.getSizeInBits() / 8 != Bytes) 12271 return false; 12272 12273 SDValue BaseLoc = Base->getBasePtr(); 12274 if (Loc.getOpcode() == ISD::FrameIndex) { 12275 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12276 return false; 12277 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12278 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12279 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12280 int FS = MFI.getObjectSize(FI); 12281 int BFS = MFI.getObjectSize(BFI); 12282 if (FS != BFS || FS != (int)Bytes) return false; 12283 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12284 } 12285 12286 SDValue Base1 = Loc, Base2 = BaseLoc; 12287 int64_t Offset1 = 0, Offset2 = 0; 12288 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12289 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12290 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12291 return true; 12292 12293 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12294 const GlobalValue *GV1 = nullptr; 12295 const GlobalValue *GV2 = nullptr; 12296 Offset1 = 0; 12297 Offset2 = 0; 12298 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12299 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12300 if (isGA1 && isGA2 && GV1 == GV2) 12301 return Offset1 == (Offset2 + Dist*Bytes); 12302 return false; 12303 } 12304 12305 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12306 // not enforce equality of the chain operands. 12307 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12308 unsigned Bytes, int Dist, 12309 SelectionDAG &DAG) { 12310 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12311 EVT VT = LS->getMemoryVT(); 12312 SDValue Loc = LS->getBasePtr(); 12313 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12314 } 12315 12316 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12317 EVT VT; 12318 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12319 default: return false; 12320 case Intrinsic::ppc_altivec_lvx: 12321 case Intrinsic::ppc_altivec_lvxl: 12322 case Intrinsic::ppc_vsx_lxvw4x: 12323 case Intrinsic::ppc_vsx_lxvw4x_be: 12324 VT = MVT::v4i32; 12325 break; 12326 case Intrinsic::ppc_vsx_lxvd2x: 12327 case Intrinsic::ppc_vsx_lxvd2x_be: 12328 VT = MVT::v2f64; 12329 break; 12330 case Intrinsic::ppc_altivec_lvebx: 12331 VT = MVT::i8; 12332 break; 12333 case Intrinsic::ppc_altivec_lvehx: 12334 VT = MVT::i16; 12335 break; 12336 case Intrinsic::ppc_altivec_lvewx: 12337 VT = MVT::i32; 12338 break; 12339 } 12340 12341 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12342 } 12343 12344 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12345 EVT VT; 12346 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12347 default: return false; 12348 case Intrinsic::ppc_altivec_stvx: 12349 case Intrinsic::ppc_altivec_stvxl: 12350 case Intrinsic::ppc_vsx_stxvw4x: 12351 VT = MVT::v4i32; 12352 break; 12353 case Intrinsic::ppc_vsx_stxvd2x: 12354 VT = MVT::v2f64; 12355 break; 12356 case Intrinsic::ppc_vsx_stxvw4x_be: 12357 VT = MVT::v4i32; 12358 break; 12359 case Intrinsic::ppc_vsx_stxvd2x_be: 12360 VT = MVT::v2f64; 12361 break; 12362 case Intrinsic::ppc_altivec_stvebx: 12363 VT = MVT::i8; 12364 break; 12365 case Intrinsic::ppc_altivec_stvehx: 12366 VT = MVT::i16; 12367 break; 12368 case Intrinsic::ppc_altivec_stvewx: 12369 VT = MVT::i32; 12370 break; 12371 } 12372 12373 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12374 } 12375 12376 return false; 12377 } 12378 12379 // Return true is there is a nearyby consecutive load to the one provided 12380 // (regardless of alignment). We search up and down the chain, looking though 12381 // token factors and other loads (but nothing else). As a result, a true result 12382 // indicates that it is safe to create a new consecutive load adjacent to the 12383 // load provided. 12384 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12385 SDValue Chain = LD->getChain(); 12386 EVT VT = LD->getMemoryVT(); 12387 12388 SmallSet<SDNode *, 16> LoadRoots; 12389 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12390 SmallSet<SDNode *, 16> Visited; 12391 12392 // First, search up the chain, branching to follow all token-factor operands. 12393 // If we find a consecutive load, then we're done, otherwise, record all 12394 // nodes just above the top-level loads and token factors. 12395 while (!Queue.empty()) { 12396 SDNode *ChainNext = Queue.pop_back_val(); 12397 if (!Visited.insert(ChainNext).second) 12398 continue; 12399 12400 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12401 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12402 return true; 12403 12404 if (!Visited.count(ChainLD->getChain().getNode())) 12405 Queue.push_back(ChainLD->getChain().getNode()); 12406 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 12407 for (const SDUse &O : ChainNext->ops()) 12408 if (!Visited.count(O.getNode())) 12409 Queue.push_back(O.getNode()); 12410 } else 12411 LoadRoots.insert(ChainNext); 12412 } 12413 12414 // Second, search down the chain, starting from the top-level nodes recorded 12415 // in the first phase. These top-level nodes are the nodes just above all 12416 // loads and token factors. Starting with their uses, recursively look though 12417 // all loads (just the chain uses) and token factors to find a consecutive 12418 // load. 12419 Visited.clear(); 12420 Queue.clear(); 12421 12422 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 12423 IE = LoadRoots.end(); I != IE; ++I) { 12424 Queue.push_back(*I); 12425 12426 while (!Queue.empty()) { 12427 SDNode *LoadRoot = Queue.pop_back_val(); 12428 if (!Visited.insert(LoadRoot).second) 12429 continue; 12430 12431 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 12432 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12433 return true; 12434 12435 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 12436 UE = LoadRoot->use_end(); UI != UE; ++UI) 12437 if (((isa<MemSDNode>(*UI) && 12438 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 12439 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 12440 Queue.push_back(*UI); 12441 } 12442 } 12443 12444 return false; 12445 } 12446 12447 /// This function is called when we have proved that a SETCC node can be replaced 12448 /// by subtraction (and other supporting instructions) so that the result of 12449 /// comparison is kept in a GPR instead of CR. This function is purely for 12450 /// codegen purposes and has some flags to guide the codegen process. 12451 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 12452 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 12453 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12454 12455 // Zero extend the operands to the largest legal integer. Originally, they 12456 // must be of a strictly smaller size. 12457 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 12458 DAG.getConstant(Size, DL, MVT::i32)); 12459 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 12460 DAG.getConstant(Size, DL, MVT::i32)); 12461 12462 // Swap if needed. Depends on the condition code. 12463 if (Swap) 12464 std::swap(Op0, Op1); 12465 12466 // Subtract extended integers. 12467 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 12468 12469 // Move the sign bit to the least significant position and zero out the rest. 12470 // Now the least significant bit carries the result of original comparison. 12471 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 12472 DAG.getConstant(Size - 1, DL, MVT::i32)); 12473 auto Final = Shifted; 12474 12475 // Complement the result if needed. Based on the condition code. 12476 if (Complement) 12477 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 12478 DAG.getConstant(1, DL, MVT::i64)); 12479 12480 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 12481 } 12482 12483 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 12484 DAGCombinerInfo &DCI) const { 12485 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12486 12487 SelectionDAG &DAG = DCI.DAG; 12488 SDLoc DL(N); 12489 12490 // Size of integers being compared has a critical role in the following 12491 // analysis, so we prefer to do this when all types are legal. 12492 if (!DCI.isAfterLegalizeDAG()) 12493 return SDValue(); 12494 12495 // If all users of SETCC extend its value to a legal integer type 12496 // then we replace SETCC with a subtraction 12497 for (SDNode::use_iterator UI = N->use_begin(), 12498 UE = N->use_end(); UI != UE; ++UI) { 12499 if (UI->getOpcode() != ISD::ZERO_EXTEND) 12500 return SDValue(); 12501 } 12502 12503 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12504 auto OpSize = N->getOperand(0).getValueSizeInBits(); 12505 12506 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 12507 12508 if (OpSize < Size) { 12509 switch (CC) { 12510 default: break; 12511 case ISD::SETULT: 12512 return generateEquivalentSub(N, Size, false, false, DL, DAG); 12513 case ISD::SETULE: 12514 return generateEquivalentSub(N, Size, true, true, DL, DAG); 12515 case ISD::SETUGT: 12516 return generateEquivalentSub(N, Size, false, true, DL, DAG); 12517 case ISD::SETUGE: 12518 return generateEquivalentSub(N, Size, true, false, DL, DAG); 12519 } 12520 } 12521 12522 return SDValue(); 12523 } 12524 12525 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 12526 DAGCombinerInfo &DCI) const { 12527 SelectionDAG &DAG = DCI.DAG; 12528 SDLoc dl(N); 12529 12530 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 12531 // If we're tracking CR bits, we need to be careful that we don't have: 12532 // trunc(binary-ops(zext(x), zext(y))) 12533 // or 12534 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 12535 // such that we're unnecessarily moving things into GPRs when it would be 12536 // better to keep them in CR bits. 12537 12538 // Note that trunc here can be an actual i1 trunc, or can be the effective 12539 // truncation that comes from a setcc or select_cc. 12540 if (N->getOpcode() == ISD::TRUNCATE && 12541 N->getValueType(0) != MVT::i1) 12542 return SDValue(); 12543 12544 if (N->getOperand(0).getValueType() != MVT::i32 && 12545 N->getOperand(0).getValueType() != MVT::i64) 12546 return SDValue(); 12547 12548 if (N->getOpcode() == ISD::SETCC || 12549 N->getOpcode() == ISD::SELECT_CC) { 12550 // If we're looking at a comparison, then we need to make sure that the 12551 // high bits (all except for the first) don't matter the result. 12552 ISD::CondCode CC = 12553 cast<CondCodeSDNode>(N->getOperand( 12554 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 12555 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 12556 12557 if (ISD::isSignedIntSetCC(CC)) { 12558 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 12559 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 12560 return SDValue(); 12561 } else if (ISD::isUnsignedIntSetCC(CC)) { 12562 if (!DAG.MaskedValueIsZero(N->getOperand(0), 12563 APInt::getHighBitsSet(OpBits, OpBits-1)) || 12564 !DAG.MaskedValueIsZero(N->getOperand(1), 12565 APInt::getHighBitsSet(OpBits, OpBits-1))) 12566 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 12567 : SDValue()); 12568 } else { 12569 // This is neither a signed nor an unsigned comparison, just make sure 12570 // that the high bits are equal. 12571 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 12572 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 12573 12574 // We don't really care about what is known about the first bit (if 12575 // anything), so pretend that it is known zero for both to ensure they can 12576 // be compared as constants. 12577 Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0); 12578 Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0); 12579 12580 if (!Op1Known.isConstant() || !Op2Known.isConstant() || 12581 Op1Known.getConstant() != Op2Known.getConstant()) 12582 return SDValue(); 12583 } 12584 } 12585 12586 // We now know that the higher-order bits are irrelevant, we just need to 12587 // make sure that all of the intermediate operations are bit operations, and 12588 // all inputs are extensions. 12589 if (N->getOperand(0).getOpcode() != ISD::AND && 12590 N->getOperand(0).getOpcode() != ISD::OR && 12591 N->getOperand(0).getOpcode() != ISD::XOR && 12592 N->getOperand(0).getOpcode() != ISD::SELECT && 12593 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 12594 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 12595 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 12596 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 12597 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 12598 return SDValue(); 12599 12600 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 12601 N->getOperand(1).getOpcode() != ISD::AND && 12602 N->getOperand(1).getOpcode() != ISD::OR && 12603 N->getOperand(1).getOpcode() != ISD::XOR && 12604 N->getOperand(1).getOpcode() != ISD::SELECT && 12605 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 12606 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 12607 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 12608 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 12609 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 12610 return SDValue(); 12611 12612 SmallVector<SDValue, 4> Inputs; 12613 SmallVector<SDValue, 8> BinOps, PromOps; 12614 SmallPtrSet<SDNode *, 16> Visited; 12615 12616 for (unsigned i = 0; i < 2; ++i) { 12617 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12618 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12619 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12620 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12621 isa<ConstantSDNode>(N->getOperand(i))) 12622 Inputs.push_back(N->getOperand(i)); 12623 else 12624 BinOps.push_back(N->getOperand(i)); 12625 12626 if (N->getOpcode() == ISD::TRUNCATE) 12627 break; 12628 } 12629 12630 // Visit all inputs, collect all binary operations (and, or, xor and 12631 // select) that are all fed by extensions. 12632 while (!BinOps.empty()) { 12633 SDValue BinOp = BinOps.pop_back_val(); 12634 12635 if (!Visited.insert(BinOp.getNode()).second) 12636 continue; 12637 12638 PromOps.push_back(BinOp); 12639 12640 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12641 // The condition of the select is not promoted. 12642 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12643 continue; 12644 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12645 continue; 12646 12647 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12648 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12649 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12650 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12651 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12652 Inputs.push_back(BinOp.getOperand(i)); 12653 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12654 BinOp.getOperand(i).getOpcode() == ISD::OR || 12655 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12656 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12657 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 12658 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12659 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12660 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12661 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 12662 BinOps.push_back(BinOp.getOperand(i)); 12663 } else { 12664 // We have an input that is not an extension or another binary 12665 // operation; we'll abort this transformation. 12666 return SDValue(); 12667 } 12668 } 12669 } 12670 12671 // Make sure that this is a self-contained cluster of operations (which 12672 // is not quite the same thing as saying that everything has only one 12673 // use). 12674 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12675 if (isa<ConstantSDNode>(Inputs[i])) 12676 continue; 12677 12678 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12679 UE = Inputs[i].getNode()->use_end(); 12680 UI != UE; ++UI) { 12681 SDNode *User = *UI; 12682 if (User != N && !Visited.count(User)) 12683 return SDValue(); 12684 12685 // Make sure that we're not going to promote the non-output-value 12686 // operand(s) or SELECT or SELECT_CC. 12687 // FIXME: Although we could sometimes handle this, and it does occur in 12688 // practice that one of the condition inputs to the select is also one of 12689 // the outputs, we currently can't deal with this. 12690 if (User->getOpcode() == ISD::SELECT) { 12691 if (User->getOperand(0) == Inputs[i]) 12692 return SDValue(); 12693 } else if (User->getOpcode() == ISD::SELECT_CC) { 12694 if (User->getOperand(0) == Inputs[i] || 12695 User->getOperand(1) == Inputs[i]) 12696 return SDValue(); 12697 } 12698 } 12699 } 12700 12701 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12702 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12703 UE = PromOps[i].getNode()->use_end(); 12704 UI != UE; ++UI) { 12705 SDNode *User = *UI; 12706 if (User != N && !Visited.count(User)) 12707 return SDValue(); 12708 12709 // Make sure that we're not going to promote the non-output-value 12710 // operand(s) or SELECT or SELECT_CC. 12711 // FIXME: Although we could sometimes handle this, and it does occur in 12712 // practice that one of the condition inputs to the select is also one of 12713 // the outputs, we currently can't deal with this. 12714 if (User->getOpcode() == ISD::SELECT) { 12715 if (User->getOperand(0) == PromOps[i]) 12716 return SDValue(); 12717 } else if (User->getOpcode() == ISD::SELECT_CC) { 12718 if (User->getOperand(0) == PromOps[i] || 12719 User->getOperand(1) == PromOps[i]) 12720 return SDValue(); 12721 } 12722 } 12723 } 12724 12725 // Replace all inputs with the extension operand. 12726 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12727 // Constants may have users outside the cluster of to-be-promoted nodes, 12728 // and so we need to replace those as we do the promotions. 12729 if (isa<ConstantSDNode>(Inputs[i])) 12730 continue; 12731 else 12732 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 12733 } 12734 12735 std::list<HandleSDNode> PromOpHandles; 12736 for (auto &PromOp : PromOps) 12737 PromOpHandles.emplace_back(PromOp); 12738 12739 // Replace all operations (these are all the same, but have a different 12740 // (i1) return type). DAG.getNode will validate that the types of 12741 // a binary operator match, so go through the list in reverse so that 12742 // we've likely promoted both operands first. Any intermediate truncations or 12743 // extensions disappear. 12744 while (!PromOpHandles.empty()) { 12745 SDValue PromOp = PromOpHandles.back().getValue(); 12746 PromOpHandles.pop_back(); 12747 12748 if (PromOp.getOpcode() == ISD::TRUNCATE || 12749 PromOp.getOpcode() == ISD::SIGN_EXTEND || 12750 PromOp.getOpcode() == ISD::ZERO_EXTEND || 12751 PromOp.getOpcode() == ISD::ANY_EXTEND) { 12752 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 12753 PromOp.getOperand(0).getValueType() != MVT::i1) { 12754 // The operand is not yet ready (see comment below). 12755 PromOpHandles.emplace_front(PromOp); 12756 continue; 12757 } 12758 12759 SDValue RepValue = PromOp.getOperand(0); 12760 if (isa<ConstantSDNode>(RepValue)) 12761 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 12762 12763 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 12764 continue; 12765 } 12766 12767 unsigned C; 12768 switch (PromOp.getOpcode()) { 12769 default: C = 0; break; 12770 case ISD::SELECT: C = 1; break; 12771 case ISD::SELECT_CC: C = 2; break; 12772 } 12773 12774 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12775 PromOp.getOperand(C).getValueType() != MVT::i1) || 12776 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12777 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 12778 // The to-be-promoted operands of this node have not yet been 12779 // promoted (this should be rare because we're going through the 12780 // list backward, but if one of the operands has several users in 12781 // this cluster of to-be-promoted nodes, it is possible). 12782 PromOpHandles.emplace_front(PromOp); 12783 continue; 12784 } 12785 12786 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12787 PromOp.getNode()->op_end()); 12788 12789 // If there are any constant inputs, make sure they're replaced now. 12790 for (unsigned i = 0; i < 2; ++i) 12791 if (isa<ConstantSDNode>(Ops[C+i])) 12792 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 12793 12794 DAG.ReplaceAllUsesOfValueWith(PromOp, 12795 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 12796 } 12797 12798 // Now we're left with the initial truncation itself. 12799 if (N->getOpcode() == ISD::TRUNCATE) 12800 return N->getOperand(0); 12801 12802 // Otherwise, this is a comparison. The operands to be compared have just 12803 // changed type (to i1), but everything else is the same. 12804 return SDValue(N, 0); 12805 } 12806 12807 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 12808 DAGCombinerInfo &DCI) const { 12809 SelectionDAG &DAG = DCI.DAG; 12810 SDLoc dl(N); 12811 12812 // If we're tracking CR bits, we need to be careful that we don't have: 12813 // zext(binary-ops(trunc(x), trunc(y))) 12814 // or 12815 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 12816 // such that we're unnecessarily moving things into CR bits that can more 12817 // efficiently stay in GPRs. Note that if we're not certain that the high 12818 // bits are set as required by the final extension, we still may need to do 12819 // some masking to get the proper behavior. 12820 12821 // This same functionality is important on PPC64 when dealing with 12822 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 12823 // the return values of functions. Because it is so similar, it is handled 12824 // here as well. 12825 12826 if (N->getValueType(0) != MVT::i32 && 12827 N->getValueType(0) != MVT::i64) 12828 return SDValue(); 12829 12830 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 12831 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 12832 return SDValue(); 12833 12834 if (N->getOperand(0).getOpcode() != ISD::AND && 12835 N->getOperand(0).getOpcode() != ISD::OR && 12836 N->getOperand(0).getOpcode() != ISD::XOR && 12837 N->getOperand(0).getOpcode() != ISD::SELECT && 12838 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 12839 return SDValue(); 12840 12841 SmallVector<SDValue, 4> Inputs; 12842 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 12843 SmallPtrSet<SDNode *, 16> Visited; 12844 12845 // Visit all inputs, collect all binary operations (and, or, xor and 12846 // select) that are all fed by truncations. 12847 while (!BinOps.empty()) { 12848 SDValue BinOp = BinOps.pop_back_val(); 12849 12850 if (!Visited.insert(BinOp.getNode()).second) 12851 continue; 12852 12853 PromOps.push_back(BinOp); 12854 12855 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12856 // The condition of the select is not promoted. 12857 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12858 continue; 12859 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12860 continue; 12861 12862 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12863 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12864 Inputs.push_back(BinOp.getOperand(i)); 12865 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12866 BinOp.getOperand(i).getOpcode() == ISD::OR || 12867 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12868 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12869 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 12870 BinOps.push_back(BinOp.getOperand(i)); 12871 } else { 12872 // We have an input that is not a truncation or another binary 12873 // operation; we'll abort this transformation. 12874 return SDValue(); 12875 } 12876 } 12877 } 12878 12879 // The operands of a select that must be truncated when the select is 12880 // promoted because the operand is actually part of the to-be-promoted set. 12881 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 12882 12883 // Make sure that this is a self-contained cluster of operations (which 12884 // is not quite the same thing as saying that everything has only one 12885 // use). 12886 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12887 if (isa<ConstantSDNode>(Inputs[i])) 12888 continue; 12889 12890 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12891 UE = Inputs[i].getNode()->use_end(); 12892 UI != UE; ++UI) { 12893 SDNode *User = *UI; 12894 if (User != N && !Visited.count(User)) 12895 return SDValue(); 12896 12897 // If we're going to promote the non-output-value operand(s) or SELECT or 12898 // SELECT_CC, record them for truncation. 12899 if (User->getOpcode() == ISD::SELECT) { 12900 if (User->getOperand(0) == Inputs[i]) 12901 SelectTruncOp[0].insert(std::make_pair(User, 12902 User->getOperand(0).getValueType())); 12903 } else if (User->getOpcode() == ISD::SELECT_CC) { 12904 if (User->getOperand(0) == Inputs[i]) 12905 SelectTruncOp[0].insert(std::make_pair(User, 12906 User->getOperand(0).getValueType())); 12907 if (User->getOperand(1) == Inputs[i]) 12908 SelectTruncOp[1].insert(std::make_pair(User, 12909 User->getOperand(1).getValueType())); 12910 } 12911 } 12912 } 12913 12914 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12915 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12916 UE = PromOps[i].getNode()->use_end(); 12917 UI != UE; ++UI) { 12918 SDNode *User = *UI; 12919 if (User != N && !Visited.count(User)) 12920 return SDValue(); 12921 12922 // If we're going to promote the non-output-value operand(s) or SELECT or 12923 // SELECT_CC, record them for truncation. 12924 if (User->getOpcode() == ISD::SELECT) { 12925 if (User->getOperand(0) == PromOps[i]) 12926 SelectTruncOp[0].insert(std::make_pair(User, 12927 User->getOperand(0).getValueType())); 12928 } else if (User->getOpcode() == ISD::SELECT_CC) { 12929 if (User->getOperand(0) == PromOps[i]) 12930 SelectTruncOp[0].insert(std::make_pair(User, 12931 User->getOperand(0).getValueType())); 12932 if (User->getOperand(1) == PromOps[i]) 12933 SelectTruncOp[1].insert(std::make_pair(User, 12934 User->getOperand(1).getValueType())); 12935 } 12936 } 12937 } 12938 12939 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 12940 bool ReallyNeedsExt = false; 12941 if (N->getOpcode() != ISD::ANY_EXTEND) { 12942 // If all of the inputs are not already sign/zero extended, then 12943 // we'll still need to do that at the end. 12944 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12945 if (isa<ConstantSDNode>(Inputs[i])) 12946 continue; 12947 12948 unsigned OpBits = 12949 Inputs[i].getOperand(0).getValueSizeInBits(); 12950 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 12951 12952 if ((N->getOpcode() == ISD::ZERO_EXTEND && 12953 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 12954 APInt::getHighBitsSet(OpBits, 12955 OpBits-PromBits))) || 12956 (N->getOpcode() == ISD::SIGN_EXTEND && 12957 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 12958 (OpBits-(PromBits-1)))) { 12959 ReallyNeedsExt = true; 12960 break; 12961 } 12962 } 12963 } 12964 12965 // Replace all inputs, either with the truncation operand, or a 12966 // truncation or extension to the final output type. 12967 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12968 // Constant inputs need to be replaced with the to-be-promoted nodes that 12969 // use them because they might have users outside of the cluster of 12970 // promoted nodes. 12971 if (isa<ConstantSDNode>(Inputs[i])) 12972 continue; 12973 12974 SDValue InSrc = Inputs[i].getOperand(0); 12975 if (Inputs[i].getValueType() == N->getValueType(0)) 12976 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 12977 else if (N->getOpcode() == ISD::SIGN_EXTEND) 12978 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12979 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 12980 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12981 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12982 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 12983 else 12984 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12985 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 12986 } 12987 12988 std::list<HandleSDNode> PromOpHandles; 12989 for (auto &PromOp : PromOps) 12990 PromOpHandles.emplace_back(PromOp); 12991 12992 // Replace all operations (these are all the same, but have a different 12993 // (promoted) return type). DAG.getNode will validate that the types of 12994 // a binary operator match, so go through the list in reverse so that 12995 // we've likely promoted both operands first. 12996 while (!PromOpHandles.empty()) { 12997 SDValue PromOp = PromOpHandles.back().getValue(); 12998 PromOpHandles.pop_back(); 12999 13000 unsigned C; 13001 switch (PromOp.getOpcode()) { 13002 default: C = 0; break; 13003 case ISD::SELECT: C = 1; break; 13004 case ISD::SELECT_CC: C = 2; break; 13005 } 13006 13007 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13008 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13009 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13010 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13011 // The to-be-promoted operands of this node have not yet been 13012 // promoted (this should be rare because we're going through the 13013 // list backward, but if one of the operands has several users in 13014 // this cluster of to-be-promoted nodes, it is possible). 13015 PromOpHandles.emplace_front(PromOp); 13016 continue; 13017 } 13018 13019 // For SELECT and SELECT_CC nodes, we do a similar check for any 13020 // to-be-promoted comparison inputs. 13021 if (PromOp.getOpcode() == ISD::SELECT || 13022 PromOp.getOpcode() == ISD::SELECT_CC) { 13023 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13024 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13025 (SelectTruncOp[1].count(PromOp.getNode()) && 13026 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13027 PromOpHandles.emplace_front(PromOp); 13028 continue; 13029 } 13030 } 13031 13032 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13033 PromOp.getNode()->op_end()); 13034 13035 // If this node has constant inputs, then they'll need to be promoted here. 13036 for (unsigned i = 0; i < 2; ++i) { 13037 if (!isa<ConstantSDNode>(Ops[C+i])) 13038 continue; 13039 if (Ops[C+i].getValueType() == N->getValueType(0)) 13040 continue; 13041 13042 if (N->getOpcode() == ISD::SIGN_EXTEND) 13043 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13044 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13045 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13046 else 13047 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13048 } 13049 13050 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13051 // truncate them again to the original value type. 13052 if (PromOp.getOpcode() == ISD::SELECT || 13053 PromOp.getOpcode() == ISD::SELECT_CC) { 13054 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13055 if (SI0 != SelectTruncOp[0].end()) 13056 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13057 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13058 if (SI1 != SelectTruncOp[1].end()) 13059 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13060 } 13061 13062 DAG.ReplaceAllUsesOfValueWith(PromOp, 13063 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13064 } 13065 13066 // Now we're left with the initial extension itself. 13067 if (!ReallyNeedsExt) 13068 return N->getOperand(0); 13069 13070 // To zero extend, just mask off everything except for the first bit (in the 13071 // i1 case). 13072 if (N->getOpcode() == ISD::ZERO_EXTEND) 13073 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13074 DAG.getConstant(APInt::getLowBitsSet( 13075 N->getValueSizeInBits(0), PromBits), 13076 dl, N->getValueType(0))); 13077 13078 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13079 "Invalid extension type"); 13080 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13081 SDValue ShiftCst = 13082 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13083 return DAG.getNode( 13084 ISD::SRA, dl, N->getValueType(0), 13085 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13086 ShiftCst); 13087 } 13088 13089 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13090 DAGCombinerInfo &DCI) const { 13091 assert(N->getOpcode() == ISD::SETCC && 13092 "Should be called with a SETCC node"); 13093 13094 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13095 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13096 SDValue LHS = N->getOperand(0); 13097 SDValue RHS = N->getOperand(1); 13098 13099 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13100 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13101 LHS.hasOneUse()) 13102 std::swap(LHS, RHS); 13103 13104 // x == 0-y --> x+y == 0 13105 // x != 0-y --> x+y != 0 13106 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13107 RHS.hasOneUse()) { 13108 SDLoc DL(N); 13109 SelectionDAG &DAG = DCI.DAG; 13110 EVT VT = N->getValueType(0); 13111 EVT OpVT = LHS.getValueType(); 13112 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13113 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13114 } 13115 } 13116 13117 return DAGCombineTruncBoolExt(N, DCI); 13118 } 13119 13120 // Is this an extending load from an f32 to an f64? 13121 static bool isFPExtLoad(SDValue Op) { 13122 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13123 return LD->getExtensionType() == ISD::EXTLOAD && 13124 Op.getValueType() == MVT::f64; 13125 return false; 13126 } 13127 13128 /// Reduces the number of fp-to-int conversion when building a vector. 13129 /// 13130 /// If this vector is built out of floating to integer conversions, 13131 /// transform it to a vector built out of floating point values followed by a 13132 /// single floating to integer conversion of the vector. 13133 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13134 /// becomes (fptosi (build_vector ($A, $B, ...))) 13135 SDValue PPCTargetLowering:: 13136 combineElementTruncationToVectorTruncation(SDNode *N, 13137 DAGCombinerInfo &DCI) const { 13138 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13139 "Should be called with a BUILD_VECTOR node"); 13140 13141 SelectionDAG &DAG = DCI.DAG; 13142 SDLoc dl(N); 13143 13144 SDValue FirstInput = N->getOperand(0); 13145 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13146 "The input operand must be an fp-to-int conversion."); 13147 13148 // This combine happens after legalization so the fp_to_[su]i nodes are 13149 // already converted to PPCSISD nodes. 13150 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13151 if (FirstConversion == PPCISD::FCTIDZ || 13152 FirstConversion == PPCISD::FCTIDUZ || 13153 FirstConversion == PPCISD::FCTIWZ || 13154 FirstConversion == PPCISD::FCTIWUZ) { 13155 bool IsSplat = true; 13156 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13157 FirstConversion == PPCISD::FCTIWUZ; 13158 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13159 SmallVector<SDValue, 4> Ops; 13160 EVT TargetVT = N->getValueType(0); 13161 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13162 SDValue NextOp = N->getOperand(i); 13163 if (NextOp.getOpcode() != PPCISD::MFVSR) 13164 return SDValue(); 13165 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13166 if (NextConversion != FirstConversion) 13167 return SDValue(); 13168 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13169 // This is not valid if the input was originally double precision. It is 13170 // also not profitable to do unless this is an extending load in which 13171 // case doing this combine will allow us to combine consecutive loads. 13172 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13173 return SDValue(); 13174 if (N->getOperand(i) != FirstInput) 13175 IsSplat = false; 13176 } 13177 13178 // If this is a splat, we leave it as-is since there will be only a single 13179 // fp-to-int conversion followed by a splat of the integer. This is better 13180 // for 32-bit and smaller ints and neutral for 64-bit ints. 13181 if (IsSplat) 13182 return SDValue(); 13183 13184 // Now that we know we have the right type of node, get its operands 13185 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13186 SDValue In = N->getOperand(i).getOperand(0); 13187 if (Is32Bit) { 13188 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13189 // here, we know that all inputs are extending loads so this is safe). 13190 if (In.isUndef()) 13191 Ops.push_back(DAG.getUNDEF(SrcVT)); 13192 else { 13193 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13194 MVT::f32, In.getOperand(0), 13195 DAG.getIntPtrConstant(1, dl)); 13196 Ops.push_back(Trunc); 13197 } 13198 } else 13199 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13200 } 13201 13202 unsigned Opcode; 13203 if (FirstConversion == PPCISD::FCTIDZ || 13204 FirstConversion == PPCISD::FCTIWZ) 13205 Opcode = ISD::FP_TO_SINT; 13206 else 13207 Opcode = ISD::FP_TO_UINT; 13208 13209 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13210 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13211 return DAG.getNode(Opcode, dl, TargetVT, BV); 13212 } 13213 return SDValue(); 13214 } 13215 13216 /// Reduce the number of loads when building a vector. 13217 /// 13218 /// Building a vector out of multiple loads can be converted to a load 13219 /// of the vector type if the loads are consecutive. If the loads are 13220 /// consecutive but in descending order, a shuffle is added at the end 13221 /// to reorder the vector. 13222 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13223 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13224 "Should be called with a BUILD_VECTOR node"); 13225 13226 SDLoc dl(N); 13227 13228 // Return early for non byte-sized type, as they can't be consecutive. 13229 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13230 return SDValue(); 13231 13232 bool InputsAreConsecutiveLoads = true; 13233 bool InputsAreReverseConsecutive = true; 13234 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13235 SDValue FirstInput = N->getOperand(0); 13236 bool IsRoundOfExtLoad = false; 13237 13238 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13239 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13240 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13241 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13242 } 13243 // Not a build vector of (possibly fp_rounded) loads. 13244 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13245 N->getNumOperands() == 1) 13246 return SDValue(); 13247 13248 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13249 // If any inputs are fp_round(extload), they all must be. 13250 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13251 return SDValue(); 13252 13253 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13254 N->getOperand(i); 13255 if (NextInput.getOpcode() != ISD::LOAD) 13256 return SDValue(); 13257 13258 SDValue PreviousInput = 13259 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13260 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13261 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13262 13263 // If any inputs are fp_round(extload), they all must be. 13264 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13265 return SDValue(); 13266 13267 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13268 InputsAreConsecutiveLoads = false; 13269 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13270 InputsAreReverseConsecutive = false; 13271 13272 // Exit early if the loads are neither consecutive nor reverse consecutive. 13273 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13274 return SDValue(); 13275 } 13276 13277 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13278 "The loads cannot be both consecutive and reverse consecutive."); 13279 13280 SDValue FirstLoadOp = 13281 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13282 SDValue LastLoadOp = 13283 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13284 N->getOperand(N->getNumOperands()-1); 13285 13286 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13287 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13288 if (InputsAreConsecutiveLoads) { 13289 assert(LD1 && "Input needs to be a LoadSDNode."); 13290 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13291 LD1->getBasePtr(), LD1->getPointerInfo(), 13292 LD1->getAlignment()); 13293 } 13294 if (InputsAreReverseConsecutive) { 13295 assert(LDL && "Input needs to be a LoadSDNode."); 13296 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13297 LDL->getBasePtr(), LDL->getPointerInfo(), 13298 LDL->getAlignment()); 13299 SmallVector<int, 16> Ops; 13300 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13301 Ops.push_back(i); 13302 13303 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13304 DAG.getUNDEF(N->getValueType(0)), Ops); 13305 } 13306 return SDValue(); 13307 } 13308 13309 // This function adds the required vector_shuffle needed to get 13310 // the elements of the vector extract in the correct position 13311 // as specified by the CorrectElems encoding. 13312 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13313 SDValue Input, uint64_t Elems, 13314 uint64_t CorrectElems) { 13315 SDLoc dl(N); 13316 13317 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13318 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13319 13320 // Knowing the element indices being extracted from the original 13321 // vector and the order in which they're being inserted, just put 13322 // them at element indices required for the instruction. 13323 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13324 if (DAG.getDataLayout().isLittleEndian()) 13325 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13326 else 13327 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13328 CorrectElems = CorrectElems >> 8; 13329 Elems = Elems >> 8; 13330 } 13331 13332 SDValue Shuffle = 13333 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13334 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13335 13336 EVT VT = N->getValueType(0); 13337 SDValue Conv = DAG.getBitcast(VT, Shuffle); 13338 13339 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13340 Input.getValueType().getVectorElementType(), 13341 VT.getVectorNumElements()); 13342 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 13343 DAG.getValueType(ExtVT)); 13344 } 13345 13346 // Look for build vector patterns where input operands come from sign 13347 // extended vector_extract elements of specific indices. If the correct indices 13348 // aren't used, add a vector shuffle to fix up the indices and create 13349 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 13350 // during instruction selection. 13351 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13352 // This array encodes the indices that the vector sign extend instructions 13353 // extract from when extending from one type to another for both BE and LE. 13354 // The right nibble of each byte corresponds to the LE incides. 13355 // and the left nibble of each byte corresponds to the BE incides. 13356 // For example: 0x3074B8FC byte->word 13357 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13358 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13359 // For example: 0x000070F8 byte->double word 13360 // For LE: the allowed indices are: 0x0,0x8 13361 // For BE: the allowed indices are: 0x7,0xF 13362 uint64_t TargetElems[] = { 13363 0x3074B8FC, // b->w 13364 0x000070F8, // b->d 13365 0x10325476, // h->w 13366 0x00003074, // h->d 13367 0x00001032, // w->d 13368 }; 13369 13370 uint64_t Elems = 0; 13371 int Index; 13372 SDValue Input; 13373 13374 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13375 if (!Op) 13376 return false; 13377 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13378 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13379 return false; 13380 13381 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13382 // of the right width. 13383 SDValue Extract = Op.getOperand(0); 13384 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13385 Extract = Extract.getOperand(0); 13386 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13387 return false; 13388 13389 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13390 if (!ExtOp) 13391 return false; 13392 13393 Index = ExtOp->getZExtValue(); 13394 if (Input && Input != Extract.getOperand(0)) 13395 return false; 13396 13397 if (!Input) 13398 Input = Extract.getOperand(0); 13399 13400 Elems = Elems << 8; 13401 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13402 Elems |= Index; 13403 13404 return true; 13405 }; 13406 13407 // If the build vector operands aren't sign extended vector extracts, 13408 // of the same input vector, then return. 13409 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13410 if (!isSExtOfVecExtract(N->getOperand(i))) { 13411 return SDValue(); 13412 } 13413 } 13414 13415 // If the vector extract indicies are not correct, add the appropriate 13416 // vector_shuffle. 13417 int TgtElemArrayIdx; 13418 int InputSize = Input.getValueType().getScalarSizeInBits(); 13419 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 13420 if (InputSize + OutputSize == 40) 13421 TgtElemArrayIdx = 0; 13422 else if (InputSize + OutputSize == 72) 13423 TgtElemArrayIdx = 1; 13424 else if (InputSize + OutputSize == 48) 13425 TgtElemArrayIdx = 2; 13426 else if (InputSize + OutputSize == 80) 13427 TgtElemArrayIdx = 3; 13428 else if (InputSize + OutputSize == 96) 13429 TgtElemArrayIdx = 4; 13430 else 13431 return SDValue(); 13432 13433 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 13434 CorrectElems = DAG.getDataLayout().isLittleEndian() 13435 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 13436 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 13437 if (Elems != CorrectElems) { 13438 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 13439 } 13440 13441 // Regular lowering will catch cases where a shuffle is not needed. 13442 return SDValue(); 13443 } 13444 13445 // Look for the pattern of a load from a narrow width to i128, feeding 13446 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node 13447 // (LXVRZX). This node represents a zero extending load that will be matched 13448 // to the Load VSX Vector Rightmost instructions. 13449 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { 13450 SDLoc DL(N); 13451 13452 // This combine is only eligible for a BUILD_VECTOR of v1i128. 13453 if (N->getValueType(0) != MVT::v1i128) 13454 return SDValue(); 13455 13456 SDValue Operand = N->getOperand(0); 13457 // Proceed with the transformation if the operand to the BUILD_VECTOR 13458 // is a load instruction. 13459 if (Operand.getOpcode() != ISD::LOAD) 13460 return SDValue(); 13461 13462 LoadSDNode *LD = dyn_cast<LoadSDNode>(Operand); 13463 EVT MemoryType = LD->getMemoryVT(); 13464 13465 // This transformation is only valid if the we are loading either a byte, 13466 // halfword, word, or doubleword. 13467 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || 13468 MemoryType == MVT::i32 || MemoryType == MVT::i64; 13469 13470 // Ensure that the load from the narrow width is being zero extended to i128. 13471 if (!ValidLDType || 13472 (LD->getExtensionType() != ISD::ZEXTLOAD && 13473 LD->getExtensionType() != ISD::EXTLOAD)) 13474 return SDValue(); 13475 13476 SDValue LoadOps[] = { 13477 LD->getChain(), LD->getBasePtr(), 13478 DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; 13479 13480 return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, 13481 DAG.getVTList(MVT::v1i128, MVT::Other), 13482 LoadOps, MemoryType, LD->getMemOperand()); 13483 } 13484 13485 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 13486 DAGCombinerInfo &DCI) const { 13487 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13488 "Should be called with a BUILD_VECTOR node"); 13489 13490 SelectionDAG &DAG = DCI.DAG; 13491 SDLoc dl(N); 13492 13493 if (!Subtarget.hasVSX()) 13494 return SDValue(); 13495 13496 // The target independent DAG combiner will leave a build_vector of 13497 // float-to-int conversions intact. We can generate MUCH better code for 13498 // a float-to-int conversion of a vector of floats. 13499 SDValue FirstInput = N->getOperand(0); 13500 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 13501 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 13502 if (Reduced) 13503 return Reduced; 13504 } 13505 13506 // If we're building a vector out of consecutive loads, just load that 13507 // vector type. 13508 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 13509 if (Reduced) 13510 return Reduced; 13511 13512 // If we're building a vector out of extended elements from another vector 13513 // we have P9 vector integer extend instructions. The code assumes legal 13514 // input types (i.e. it can't handle things like v4i16) so do not run before 13515 // legalization. 13516 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 13517 Reduced = combineBVOfVecSExt(N, DAG); 13518 if (Reduced) 13519 return Reduced; 13520 } 13521 13522 // On Power10, the Load VSX Vector Rightmost instructions can be utilized 13523 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR 13524 // is a load from <valid narrow width> to i128. 13525 if (Subtarget.isISA3_1()) { 13526 SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); 13527 if (BVOfZLoad) 13528 return BVOfZLoad; 13529 } 13530 13531 if (N->getValueType(0) != MVT::v2f64) 13532 return SDValue(); 13533 13534 // Looking for: 13535 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 13536 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 13537 FirstInput.getOpcode() != ISD::UINT_TO_FP) 13538 return SDValue(); 13539 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 13540 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 13541 return SDValue(); 13542 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 13543 return SDValue(); 13544 13545 SDValue Ext1 = FirstInput.getOperand(0); 13546 SDValue Ext2 = N->getOperand(1).getOperand(0); 13547 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 13548 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13549 return SDValue(); 13550 13551 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 13552 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 13553 if (!Ext1Op || !Ext2Op) 13554 return SDValue(); 13555 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 13556 Ext1.getOperand(0) != Ext2.getOperand(0)) 13557 return SDValue(); 13558 13559 int FirstElem = Ext1Op->getZExtValue(); 13560 int SecondElem = Ext2Op->getZExtValue(); 13561 int SubvecIdx; 13562 if (FirstElem == 0 && SecondElem == 1) 13563 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 13564 else if (FirstElem == 2 && SecondElem == 3) 13565 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 13566 else 13567 return SDValue(); 13568 13569 SDValue SrcVec = Ext1.getOperand(0); 13570 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 13571 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 13572 return DAG.getNode(NodeType, dl, MVT::v2f64, 13573 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 13574 } 13575 13576 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 13577 DAGCombinerInfo &DCI) const { 13578 assert((N->getOpcode() == ISD::SINT_TO_FP || 13579 N->getOpcode() == ISD::UINT_TO_FP) && 13580 "Need an int -> FP conversion node here"); 13581 13582 if (useSoftFloat() || !Subtarget.has64BitSupport()) 13583 return SDValue(); 13584 13585 SelectionDAG &DAG = DCI.DAG; 13586 SDLoc dl(N); 13587 SDValue Op(N, 0); 13588 13589 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 13590 // from the hardware. 13591 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 13592 return SDValue(); 13593 if (!Op.getOperand(0).getValueType().isSimple()) 13594 return SDValue(); 13595 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 13596 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 13597 return SDValue(); 13598 13599 SDValue FirstOperand(Op.getOperand(0)); 13600 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 13601 (FirstOperand.getValueType() == MVT::i8 || 13602 FirstOperand.getValueType() == MVT::i16); 13603 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 13604 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 13605 bool DstDouble = Op.getValueType() == MVT::f64; 13606 unsigned ConvOp = Signed ? 13607 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 13608 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 13609 SDValue WidthConst = 13610 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 13611 dl, false); 13612 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 13613 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 13614 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 13615 DAG.getVTList(MVT::f64, MVT::Other), 13616 Ops, MVT::i8, LDN->getMemOperand()); 13617 13618 // For signed conversion, we need to sign-extend the value in the VSR 13619 if (Signed) { 13620 SDValue ExtOps[] = { Ld, WidthConst }; 13621 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 13622 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 13623 } else 13624 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 13625 } 13626 13627 13628 // For i32 intermediate values, unfortunately, the conversion functions 13629 // leave the upper 32 bits of the value are undefined. Within the set of 13630 // scalar instructions, we have no method for zero- or sign-extending the 13631 // value. Thus, we cannot handle i32 intermediate values here. 13632 if (Op.getOperand(0).getValueType() == MVT::i32) 13633 return SDValue(); 13634 13635 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 13636 "UINT_TO_FP is supported only with FPCVT"); 13637 13638 // If we have FCFIDS, then use it when converting to single-precision. 13639 // Otherwise, convert to double-precision and then round. 13640 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13641 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 13642 : PPCISD::FCFIDS) 13643 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 13644 : PPCISD::FCFID); 13645 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13646 ? MVT::f32 13647 : MVT::f64; 13648 13649 // If we're converting from a float, to an int, and back to a float again, 13650 // then we don't need the store/load pair at all. 13651 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 13652 Subtarget.hasFPCVT()) || 13653 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 13654 SDValue Src = Op.getOperand(0).getOperand(0); 13655 if (Src.getValueType() == MVT::f32) { 13656 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 13657 DCI.AddToWorklist(Src.getNode()); 13658 } else if (Src.getValueType() != MVT::f64) { 13659 // Make sure that we don't pick up a ppc_fp128 source value. 13660 return SDValue(); 13661 } 13662 13663 unsigned FCTOp = 13664 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 13665 PPCISD::FCTIDUZ; 13666 13667 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 13668 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 13669 13670 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 13671 FP = DAG.getNode(ISD::FP_ROUND, dl, 13672 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 13673 DCI.AddToWorklist(FP.getNode()); 13674 } 13675 13676 return FP; 13677 } 13678 13679 return SDValue(); 13680 } 13681 13682 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 13683 // builtins) into loads with swaps. 13684 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 13685 DAGCombinerInfo &DCI) const { 13686 SelectionDAG &DAG = DCI.DAG; 13687 SDLoc dl(N); 13688 SDValue Chain; 13689 SDValue Base; 13690 MachineMemOperand *MMO; 13691 13692 switch (N->getOpcode()) { 13693 default: 13694 llvm_unreachable("Unexpected opcode for little endian VSX load"); 13695 case ISD::LOAD: { 13696 LoadSDNode *LD = cast<LoadSDNode>(N); 13697 Chain = LD->getChain(); 13698 Base = LD->getBasePtr(); 13699 MMO = LD->getMemOperand(); 13700 // If the MMO suggests this isn't a load of a full vector, leave 13701 // things alone. For a built-in, we have to make the change for 13702 // correctness, so if there is a size problem that will be a bug. 13703 if (MMO->getSize() < 16) 13704 return SDValue(); 13705 break; 13706 } 13707 case ISD::INTRINSIC_W_CHAIN: { 13708 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13709 Chain = Intrin->getChain(); 13710 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 13711 // us what we want. Get operand 2 instead. 13712 Base = Intrin->getOperand(2); 13713 MMO = Intrin->getMemOperand(); 13714 break; 13715 } 13716 } 13717 13718 MVT VecTy = N->getValueType(0).getSimpleVT(); 13719 13720 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 13721 // aligned and the type is a vector with elements up to 4 bytes 13722 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 13723 VecTy.getScalarSizeInBits() <= 32) { 13724 return SDValue(); 13725 } 13726 13727 SDValue LoadOps[] = { Chain, Base }; 13728 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 13729 DAG.getVTList(MVT::v2f64, MVT::Other), 13730 LoadOps, MVT::v2f64, MMO); 13731 13732 DCI.AddToWorklist(Load.getNode()); 13733 Chain = Load.getValue(1); 13734 SDValue Swap = DAG.getNode( 13735 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 13736 DCI.AddToWorklist(Swap.getNode()); 13737 13738 // Add a bitcast if the resulting load type doesn't match v2f64. 13739 if (VecTy != MVT::v2f64) { 13740 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 13741 DCI.AddToWorklist(N.getNode()); 13742 // Package {bitcast value, swap's chain} to match Load's shape. 13743 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 13744 N, Swap.getValue(1)); 13745 } 13746 13747 return Swap; 13748 } 13749 13750 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 13751 // builtins) into stores with swaps. 13752 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 13753 DAGCombinerInfo &DCI) const { 13754 SelectionDAG &DAG = DCI.DAG; 13755 SDLoc dl(N); 13756 SDValue Chain; 13757 SDValue Base; 13758 unsigned SrcOpnd; 13759 MachineMemOperand *MMO; 13760 13761 switch (N->getOpcode()) { 13762 default: 13763 llvm_unreachable("Unexpected opcode for little endian VSX store"); 13764 case ISD::STORE: { 13765 StoreSDNode *ST = cast<StoreSDNode>(N); 13766 Chain = ST->getChain(); 13767 Base = ST->getBasePtr(); 13768 MMO = ST->getMemOperand(); 13769 SrcOpnd = 1; 13770 // If the MMO suggests this isn't a store of a full vector, leave 13771 // things alone. For a built-in, we have to make the change for 13772 // correctness, so if there is a size problem that will be a bug. 13773 if (MMO->getSize() < 16) 13774 return SDValue(); 13775 break; 13776 } 13777 case ISD::INTRINSIC_VOID: { 13778 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13779 Chain = Intrin->getChain(); 13780 // Intrin->getBasePtr() oddly does not get what we want. 13781 Base = Intrin->getOperand(3); 13782 MMO = Intrin->getMemOperand(); 13783 SrcOpnd = 2; 13784 break; 13785 } 13786 } 13787 13788 SDValue Src = N->getOperand(SrcOpnd); 13789 MVT VecTy = Src.getValueType().getSimpleVT(); 13790 13791 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 13792 // aligned and the type is a vector with elements up to 4 bytes 13793 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 13794 VecTy.getScalarSizeInBits() <= 32) { 13795 return SDValue(); 13796 } 13797 13798 // All stores are done as v2f64 and possible bit cast. 13799 if (VecTy != MVT::v2f64) { 13800 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 13801 DCI.AddToWorklist(Src.getNode()); 13802 } 13803 13804 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 13805 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 13806 DCI.AddToWorklist(Swap.getNode()); 13807 Chain = Swap.getValue(1); 13808 SDValue StoreOps[] = { Chain, Swap, Base }; 13809 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 13810 DAG.getVTList(MVT::Other), 13811 StoreOps, VecTy, MMO); 13812 DCI.AddToWorklist(Store.getNode()); 13813 return Store; 13814 } 13815 13816 // Handle DAG combine for STORE (FP_TO_INT F). 13817 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 13818 DAGCombinerInfo &DCI) const { 13819 13820 SelectionDAG &DAG = DCI.DAG; 13821 SDLoc dl(N); 13822 unsigned Opcode = N->getOperand(1).getOpcode(); 13823 13824 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 13825 && "Not a FP_TO_INT Instruction!"); 13826 13827 SDValue Val = N->getOperand(1).getOperand(0); 13828 EVT Op1VT = N->getOperand(1).getValueType(); 13829 EVT ResVT = Val.getValueType(); 13830 13831 if (!isTypeLegal(ResVT)) 13832 return SDValue(); 13833 13834 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 13835 bool ValidTypeForStoreFltAsInt = 13836 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 13837 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 13838 13839 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 13840 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 13841 return SDValue(); 13842 13843 // Extend f32 values to f64 13844 if (ResVT.getScalarSizeInBits() == 32) { 13845 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 13846 DCI.AddToWorklist(Val.getNode()); 13847 } 13848 13849 // Set signed or unsigned conversion opcode. 13850 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 13851 PPCISD::FP_TO_SINT_IN_VSR : 13852 PPCISD::FP_TO_UINT_IN_VSR; 13853 13854 Val = DAG.getNode(ConvOpcode, 13855 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 13856 DCI.AddToWorklist(Val.getNode()); 13857 13858 // Set number of bytes being converted. 13859 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 13860 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 13861 DAG.getIntPtrConstant(ByteSize, dl, false), 13862 DAG.getValueType(Op1VT) }; 13863 13864 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 13865 DAG.getVTList(MVT::Other), Ops, 13866 cast<StoreSDNode>(N)->getMemoryVT(), 13867 cast<StoreSDNode>(N)->getMemOperand()); 13868 13869 DCI.AddToWorklist(Val.getNode()); 13870 return Val; 13871 } 13872 13873 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 13874 // Check that the source of the element keeps flipping 13875 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 13876 bool PrevElemFromFirstVec = Mask[0] < NumElts; 13877 for (int i = 1, e = Mask.size(); i < e; i++) { 13878 if (PrevElemFromFirstVec && Mask[i] < NumElts) 13879 return false; 13880 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 13881 return false; 13882 PrevElemFromFirstVec = !PrevElemFromFirstVec; 13883 } 13884 return true; 13885 } 13886 13887 static bool isSplatBV(SDValue Op) { 13888 if (Op.getOpcode() != ISD::BUILD_VECTOR) 13889 return false; 13890 SDValue FirstOp; 13891 13892 // Find first non-undef input. 13893 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 13894 FirstOp = Op.getOperand(i); 13895 if (!FirstOp.isUndef()) 13896 break; 13897 } 13898 13899 // All inputs are undef or the same as the first non-undef input. 13900 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 13901 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 13902 return false; 13903 return true; 13904 } 13905 13906 static SDValue isScalarToVec(SDValue Op) { 13907 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 13908 return Op; 13909 if (Op.getOpcode() != ISD::BITCAST) 13910 return SDValue(); 13911 Op = Op.getOperand(0); 13912 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 13913 return Op; 13914 return SDValue(); 13915 } 13916 13917 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 13918 int LHSMaxIdx, int RHSMinIdx, 13919 int RHSMaxIdx, int HalfVec) { 13920 for (int i = 0, e = ShuffV.size(); i < e; i++) { 13921 int Idx = ShuffV[i]; 13922 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 13923 ShuffV[i] += HalfVec; 13924 } 13925 } 13926 13927 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 13928 // the original is: 13929 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 13930 // In such a case, just change the shuffle mask to extract the element 13931 // from the permuted index. 13932 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) { 13933 SDLoc dl(OrigSToV); 13934 EVT VT = OrigSToV.getValueType(); 13935 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 13936 "Expecting a SCALAR_TO_VECTOR here"); 13937 SDValue Input = OrigSToV.getOperand(0); 13938 13939 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 13940 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 13941 SDValue OrigVector = Input.getOperand(0); 13942 13943 // Can't handle non-const element indices or different vector types 13944 // for the input to the extract and the output of the scalar_to_vector. 13945 if (Idx && VT == OrigVector.getValueType()) { 13946 SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1); 13947 NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue(); 13948 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 13949 } 13950 } 13951 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 13952 OrigSToV.getOperand(0)); 13953 } 13954 13955 // On little endian subtargets, combine shuffles such as: 13956 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 13957 // into: 13958 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 13959 // because the latter can be matched to a single instruction merge. 13960 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 13961 // to put the value into element zero. Adjust the shuffle mask so that the 13962 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 13963 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 13964 SelectionDAG &DAG) const { 13965 SDValue LHS = SVN->getOperand(0); 13966 SDValue RHS = SVN->getOperand(1); 13967 auto Mask = SVN->getMask(); 13968 int NumElts = LHS.getValueType().getVectorNumElements(); 13969 SDValue Res(SVN, 0); 13970 SDLoc dl(SVN); 13971 13972 // None of these combines are useful on big endian systems since the ISA 13973 // already has a big endian bias. 13974 if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 13975 return Res; 13976 13977 // If this is not a shuffle of a shuffle and the first element comes from 13978 // the second vector, canonicalize to the commuted form. This will make it 13979 // more likely to match one of the single instruction patterns. 13980 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 13981 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 13982 std::swap(LHS, RHS); 13983 Res = DAG.getCommutedVectorShuffle(*SVN); 13984 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 13985 } 13986 13987 // Adjust the shuffle mask if either input vector comes from a 13988 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 13989 // form (to prevent the need for a swap). 13990 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 13991 SDValue SToVLHS = isScalarToVec(LHS); 13992 SDValue SToVRHS = isScalarToVec(RHS); 13993 if (SToVLHS || SToVRHS) { 13994 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 13995 : SToVRHS.getValueType().getVectorNumElements(); 13996 int NumEltsOut = ShuffV.size(); 13997 13998 // Initially assume that neither input is permuted. These will be adjusted 13999 // accordingly if either input is. 14000 int LHSMaxIdx = -1; 14001 int RHSMinIdx = -1; 14002 int RHSMaxIdx = -1; 14003 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14004 14005 // Get the permuted scalar to vector nodes for the source(s) that come from 14006 // ISD::SCALAR_TO_VECTOR. 14007 if (SToVLHS) { 14008 // Set up the values for the shuffle vector fixup. 14009 LHSMaxIdx = NumEltsOut / NumEltsIn; 14010 SToVLHS = getSToVPermuted(SToVLHS, DAG); 14011 if (SToVLHS.getValueType() != LHS.getValueType()) 14012 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14013 LHS = SToVLHS; 14014 } 14015 if (SToVRHS) { 14016 RHSMinIdx = NumEltsOut; 14017 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14018 SToVRHS = getSToVPermuted(SToVRHS, DAG); 14019 if (SToVRHS.getValueType() != RHS.getValueType()) 14020 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14021 RHS = SToVRHS; 14022 } 14023 14024 // Fix up the shuffle mask to reflect where the desired element actually is. 14025 // The minimum and maximum indices that correspond to element zero for both 14026 // the LHS and RHS are computed and will control which shuffle mask entries 14027 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14028 // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by 14029 // HalfVec to refer to the corresponding element in the permuted vector. 14030 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14031 HalfVec); 14032 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14033 14034 // We may have simplified away the shuffle. We won't be able to do anything 14035 // further with it here. 14036 if (!isa<ShuffleVectorSDNode>(Res)) 14037 return Res; 14038 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14039 } 14040 14041 // The common case after we commuted the shuffle is that the RHS is a splat 14042 // and we have elements coming in from the splat at indices that are not 14043 // conducive to using a merge. 14044 // Example: 14045 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14046 if (!isSplatBV(RHS)) 14047 return Res; 14048 14049 // We are looking for a mask such that all even elements are from 14050 // one vector and all odd elements from the other. 14051 if (!isAlternatingShuffMask(Mask, NumElts)) 14052 return Res; 14053 14054 // Adjust the mask so we are pulling in the same index from the splat 14055 // as the index from the interesting vector in consecutive elements. 14056 // Example (even elements from first vector): 14057 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14058 if (Mask[0] < NumElts) 14059 for (int i = 1, e = Mask.size(); i < e; i += 2) 14060 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14061 // Example (odd elements from first vector): 14062 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14063 else 14064 for (int i = 0, e = Mask.size(); i < e; i += 2) 14065 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14066 14067 // If the RHS has undefs, we need to remove them since we may have created 14068 // a shuffle that adds those instead of the splat value. 14069 SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue(); 14070 RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal); 14071 14072 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14073 return Res; 14074 } 14075 14076 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14077 LSBaseSDNode *LSBase, 14078 DAGCombinerInfo &DCI) const { 14079 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14080 "Not a reverse memop pattern!"); 14081 14082 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14083 auto Mask = SVN->getMask(); 14084 int i = 0; 14085 auto I = Mask.rbegin(); 14086 auto E = Mask.rend(); 14087 14088 for (; I != E; ++I) { 14089 if (*I != i) 14090 return false; 14091 i++; 14092 } 14093 return true; 14094 }; 14095 14096 SelectionDAG &DAG = DCI.DAG; 14097 EVT VT = SVN->getValueType(0); 14098 14099 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14100 return SDValue(); 14101 14102 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14103 // See comment in PPCVSXSwapRemoval.cpp. 14104 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14105 if (!Subtarget.hasP9Vector()) 14106 return SDValue(); 14107 14108 if(!IsElementReverse(SVN)) 14109 return SDValue(); 14110 14111 if (LSBase->getOpcode() == ISD::LOAD) { 14112 SDLoc dl(SVN); 14113 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14114 return DAG.getMemIntrinsicNode( 14115 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14116 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14117 } 14118 14119 if (LSBase->getOpcode() == ISD::STORE) { 14120 SDLoc dl(LSBase); 14121 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14122 LSBase->getBasePtr()}; 14123 return DAG.getMemIntrinsicNode( 14124 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14125 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14126 } 14127 14128 llvm_unreachable("Expected a load or store node here"); 14129 } 14130 14131 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14132 DAGCombinerInfo &DCI) const { 14133 SelectionDAG &DAG = DCI.DAG; 14134 SDLoc dl(N); 14135 switch (N->getOpcode()) { 14136 default: break; 14137 case ISD::ADD: 14138 return combineADD(N, DCI); 14139 case ISD::SHL: 14140 return combineSHL(N, DCI); 14141 case ISD::SRA: 14142 return combineSRA(N, DCI); 14143 case ISD::SRL: 14144 return combineSRL(N, DCI); 14145 case ISD::MUL: 14146 return combineMUL(N, DCI); 14147 case ISD::FMA: 14148 case PPCISD::FNMSUB: 14149 return combineFMALike(N, DCI); 14150 case PPCISD::SHL: 14151 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14152 return N->getOperand(0); 14153 break; 14154 case PPCISD::SRL: 14155 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14156 return N->getOperand(0); 14157 break; 14158 case PPCISD::SRA: 14159 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14160 if (C->isNullValue() || // 0 >>s V -> 0. 14161 C->isAllOnesValue()) // -1 >>s V -> -1. 14162 return N->getOperand(0); 14163 } 14164 break; 14165 case ISD::SIGN_EXTEND: 14166 case ISD::ZERO_EXTEND: 14167 case ISD::ANY_EXTEND: 14168 return DAGCombineExtBoolTrunc(N, DCI); 14169 case ISD::TRUNCATE: 14170 return combineTRUNCATE(N, DCI); 14171 case ISD::SETCC: 14172 if (SDValue CSCC = combineSetCC(N, DCI)) 14173 return CSCC; 14174 LLVM_FALLTHROUGH; 14175 case ISD::SELECT_CC: 14176 return DAGCombineTruncBoolExt(N, DCI); 14177 case ISD::SINT_TO_FP: 14178 case ISD::UINT_TO_FP: 14179 return combineFPToIntToFP(N, DCI); 14180 case ISD::VECTOR_SHUFFLE: 14181 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 14182 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 14183 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 14184 } 14185 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 14186 case ISD::STORE: { 14187 14188 EVT Op1VT = N->getOperand(1).getValueType(); 14189 unsigned Opcode = N->getOperand(1).getOpcode(); 14190 14191 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 14192 SDValue Val= combineStoreFPToInt(N, DCI); 14193 if (Val) 14194 return Val; 14195 } 14196 14197 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 14198 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 14199 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 14200 if (Val) 14201 return Val; 14202 } 14203 14204 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 14205 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 14206 N->getOperand(1).getNode()->hasOneUse() && 14207 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 14208 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 14209 14210 // STBRX can only handle simple types and it makes no sense to store less 14211 // two bytes in byte-reversed order. 14212 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 14213 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 14214 break; 14215 14216 SDValue BSwapOp = N->getOperand(1).getOperand(0); 14217 // Do an any-extend to 32-bits if this is a half-word input. 14218 if (BSwapOp.getValueType() == MVT::i16) 14219 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 14220 14221 // If the type of BSWAP operand is wider than stored memory width 14222 // it need to be shifted to the right side before STBRX. 14223 if (Op1VT.bitsGT(mVT)) { 14224 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 14225 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 14226 DAG.getConstant(Shift, dl, MVT::i32)); 14227 // Need to truncate if this is a bswap of i64 stored as i32/i16. 14228 if (Op1VT == MVT::i64) 14229 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 14230 } 14231 14232 SDValue Ops[] = { 14233 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 14234 }; 14235 return 14236 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 14237 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 14238 cast<StoreSDNode>(N)->getMemOperand()); 14239 } 14240 14241 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 14242 // So it can increase the chance of CSE constant construction. 14243 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 14244 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 14245 // Need to sign-extended to 64-bits to handle negative values. 14246 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 14247 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 14248 MemVT.getSizeInBits()); 14249 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 14250 14251 // DAG.getTruncStore() can't be used here because it doesn't accept 14252 // the general (base + offset) addressing mode. 14253 // So we use UpdateNodeOperands and setTruncatingStore instead. 14254 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 14255 N->getOperand(3)); 14256 cast<StoreSDNode>(N)->setTruncatingStore(true); 14257 return SDValue(N, 0); 14258 } 14259 14260 // For little endian, VSX stores require generating xxswapd/lxvd2x. 14261 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14262 if (Op1VT.isSimple()) { 14263 MVT StoreVT = Op1VT.getSimpleVT(); 14264 if (Subtarget.needsSwapsForVSXMemOps() && 14265 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14266 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14267 return expandVSXStoreForLE(N, DCI); 14268 } 14269 break; 14270 } 14271 case ISD::LOAD: { 14272 LoadSDNode *LD = cast<LoadSDNode>(N); 14273 EVT VT = LD->getValueType(0); 14274 14275 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14276 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14277 if (VT.isSimple()) { 14278 MVT LoadVT = VT.getSimpleVT(); 14279 if (Subtarget.needsSwapsForVSXMemOps() && 14280 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 14281 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 14282 return expandVSXLoadForLE(N, DCI); 14283 } 14284 14285 // We sometimes end up with a 64-bit integer load, from which we extract 14286 // two single-precision floating-point numbers. This happens with 14287 // std::complex<float>, and other similar structures, because of the way we 14288 // canonicalize structure copies. However, if we lack direct moves, 14289 // then the final bitcasts from the extracted integer values to the 14290 // floating-point numbers turn into store/load pairs. Even with direct moves, 14291 // just loading the two floating-point numbers is likely better. 14292 auto ReplaceTwoFloatLoad = [&]() { 14293 if (VT != MVT::i64) 14294 return false; 14295 14296 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 14297 LD->isVolatile()) 14298 return false; 14299 14300 // We're looking for a sequence like this: 14301 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 14302 // t16: i64 = srl t13, Constant:i32<32> 14303 // t17: i32 = truncate t16 14304 // t18: f32 = bitcast t17 14305 // t19: i32 = truncate t13 14306 // t20: f32 = bitcast t19 14307 14308 if (!LD->hasNUsesOfValue(2, 0)) 14309 return false; 14310 14311 auto UI = LD->use_begin(); 14312 while (UI.getUse().getResNo() != 0) ++UI; 14313 SDNode *Trunc = *UI++; 14314 while (UI.getUse().getResNo() != 0) ++UI; 14315 SDNode *RightShift = *UI; 14316 if (Trunc->getOpcode() != ISD::TRUNCATE) 14317 std::swap(Trunc, RightShift); 14318 14319 if (Trunc->getOpcode() != ISD::TRUNCATE || 14320 Trunc->getValueType(0) != MVT::i32 || 14321 !Trunc->hasOneUse()) 14322 return false; 14323 if (RightShift->getOpcode() != ISD::SRL || 14324 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 14325 RightShift->getConstantOperandVal(1) != 32 || 14326 !RightShift->hasOneUse()) 14327 return false; 14328 14329 SDNode *Trunc2 = *RightShift->use_begin(); 14330 if (Trunc2->getOpcode() != ISD::TRUNCATE || 14331 Trunc2->getValueType(0) != MVT::i32 || 14332 !Trunc2->hasOneUse()) 14333 return false; 14334 14335 SDNode *Bitcast = *Trunc->use_begin(); 14336 SDNode *Bitcast2 = *Trunc2->use_begin(); 14337 14338 if (Bitcast->getOpcode() != ISD::BITCAST || 14339 Bitcast->getValueType(0) != MVT::f32) 14340 return false; 14341 if (Bitcast2->getOpcode() != ISD::BITCAST || 14342 Bitcast2->getValueType(0) != MVT::f32) 14343 return false; 14344 14345 if (Subtarget.isLittleEndian()) 14346 std::swap(Bitcast, Bitcast2); 14347 14348 // Bitcast has the second float (in memory-layout order) and Bitcast2 14349 // has the first one. 14350 14351 SDValue BasePtr = LD->getBasePtr(); 14352 if (LD->isIndexed()) { 14353 assert(LD->getAddressingMode() == ISD::PRE_INC && 14354 "Non-pre-inc AM on PPC?"); 14355 BasePtr = 14356 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 14357 LD->getOffset()); 14358 } 14359 14360 auto MMOFlags = 14361 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 14362 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 14363 LD->getPointerInfo(), LD->getAlignment(), 14364 MMOFlags, LD->getAAInfo()); 14365 SDValue AddPtr = 14366 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 14367 BasePtr, DAG.getIntPtrConstant(4, dl)); 14368 SDValue FloatLoad2 = DAG.getLoad( 14369 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 14370 LD->getPointerInfo().getWithOffset(4), 14371 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 14372 14373 if (LD->isIndexed()) { 14374 // Note that DAGCombine should re-form any pre-increment load(s) from 14375 // what is produced here if that makes sense. 14376 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 14377 } 14378 14379 DCI.CombineTo(Bitcast2, FloatLoad); 14380 DCI.CombineTo(Bitcast, FloatLoad2); 14381 14382 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 14383 SDValue(FloatLoad2.getNode(), 1)); 14384 return true; 14385 }; 14386 14387 if (ReplaceTwoFloatLoad()) 14388 return SDValue(N, 0); 14389 14390 EVT MemVT = LD->getMemoryVT(); 14391 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 14392 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 14393 if (LD->isUnindexed() && VT.isVector() && 14394 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 14395 // P8 and later hardware should just use LOAD. 14396 !Subtarget.hasP8Vector() && 14397 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 14398 VT == MVT::v4f32))) && 14399 LD->getAlign() < ABIAlignment) { 14400 // This is a type-legal unaligned Altivec load. 14401 SDValue Chain = LD->getChain(); 14402 SDValue Ptr = LD->getBasePtr(); 14403 bool isLittleEndian = Subtarget.isLittleEndian(); 14404 14405 // This implements the loading of unaligned vectors as described in 14406 // the venerable Apple Velocity Engine overview. Specifically: 14407 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 14408 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 14409 // 14410 // The general idea is to expand a sequence of one or more unaligned 14411 // loads into an alignment-based permutation-control instruction (lvsl 14412 // or lvsr), a series of regular vector loads (which always truncate 14413 // their input address to an aligned address), and a series of 14414 // permutations. The results of these permutations are the requested 14415 // loaded values. The trick is that the last "extra" load is not taken 14416 // from the address you might suspect (sizeof(vector) bytes after the 14417 // last requested load), but rather sizeof(vector) - 1 bytes after the 14418 // last requested vector. The point of this is to avoid a page fault if 14419 // the base address happened to be aligned. This works because if the 14420 // base address is aligned, then adding less than a full vector length 14421 // will cause the last vector in the sequence to be (re)loaded. 14422 // Otherwise, the next vector will be fetched as you might suspect was 14423 // necessary. 14424 14425 // We might be able to reuse the permutation generation from 14426 // a different base address offset from this one by an aligned amount. 14427 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 14428 // optimization later. 14429 Intrinsic::ID Intr, IntrLD, IntrPerm; 14430 MVT PermCntlTy, PermTy, LDTy; 14431 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14432 : Intrinsic::ppc_altivec_lvsl; 14433 IntrLD = Intrinsic::ppc_altivec_lvx; 14434 IntrPerm = Intrinsic::ppc_altivec_vperm; 14435 PermCntlTy = MVT::v16i8; 14436 PermTy = MVT::v4i32; 14437 LDTy = MVT::v4i32; 14438 14439 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 14440 14441 // Create the new MMO for the new base load. It is like the original MMO, 14442 // but represents an area in memory almost twice the vector size centered 14443 // on the original address. If the address is unaligned, we might start 14444 // reading up to (sizeof(vector)-1) bytes below the address of the 14445 // original unaligned load. 14446 MachineFunction &MF = DAG.getMachineFunction(); 14447 MachineMemOperand *BaseMMO = 14448 MF.getMachineMemOperand(LD->getMemOperand(), 14449 -(long)MemVT.getStoreSize()+1, 14450 2*MemVT.getStoreSize()-1); 14451 14452 // Create the new base load. 14453 SDValue LDXIntID = 14454 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 14455 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 14456 SDValue BaseLoad = 14457 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14458 DAG.getVTList(PermTy, MVT::Other), 14459 BaseLoadOps, LDTy, BaseMMO); 14460 14461 // Note that the value of IncOffset (which is provided to the next 14462 // load's pointer info offset value, and thus used to calculate the 14463 // alignment), and the value of IncValue (which is actually used to 14464 // increment the pointer value) are different! This is because we 14465 // require the next load to appear to be aligned, even though it 14466 // is actually offset from the base pointer by a lesser amount. 14467 int IncOffset = VT.getSizeInBits() / 8; 14468 int IncValue = IncOffset; 14469 14470 // Walk (both up and down) the chain looking for another load at the real 14471 // (aligned) offset (the alignment of the other load does not matter in 14472 // this case). If found, then do not use the offset reduction trick, as 14473 // that will prevent the loads from being later combined (as they would 14474 // otherwise be duplicates). 14475 if (!findConsecutiveLoad(LD, DAG)) 14476 --IncValue; 14477 14478 SDValue Increment = 14479 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 14480 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 14481 14482 MachineMemOperand *ExtraMMO = 14483 MF.getMachineMemOperand(LD->getMemOperand(), 14484 1, 2*MemVT.getStoreSize()-1); 14485 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 14486 SDValue ExtraLoad = 14487 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14488 DAG.getVTList(PermTy, MVT::Other), 14489 ExtraLoadOps, LDTy, ExtraMMO); 14490 14491 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 14492 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 14493 14494 // Because vperm has a big-endian bias, we must reverse the order 14495 // of the input vectors and complement the permute control vector 14496 // when generating little endian code. We have already handled the 14497 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 14498 // and ExtraLoad here. 14499 SDValue Perm; 14500 if (isLittleEndian) 14501 Perm = BuildIntrinsicOp(IntrPerm, 14502 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 14503 else 14504 Perm = BuildIntrinsicOp(IntrPerm, 14505 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 14506 14507 if (VT != PermTy) 14508 Perm = Subtarget.hasAltivec() 14509 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 14510 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 14511 DAG.getTargetConstant(1, dl, MVT::i64)); 14512 // second argument is 1 because this rounding 14513 // is always exact. 14514 14515 // The output of the permutation is our loaded result, the TokenFactor is 14516 // our new chain. 14517 DCI.CombineTo(N, Perm, TF); 14518 return SDValue(N, 0); 14519 } 14520 } 14521 break; 14522 case ISD::INTRINSIC_WO_CHAIN: { 14523 bool isLittleEndian = Subtarget.isLittleEndian(); 14524 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 14525 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14526 : Intrinsic::ppc_altivec_lvsl); 14527 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 14528 SDValue Add = N->getOperand(1); 14529 14530 int Bits = 4 /* 16 byte alignment */; 14531 14532 if (DAG.MaskedValueIsZero(Add->getOperand(1), 14533 APInt::getAllOnesValue(Bits /* alignment */) 14534 .zext(Add.getScalarValueSizeInBits()))) { 14535 SDNode *BasePtr = Add->getOperand(0).getNode(); 14536 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14537 UE = BasePtr->use_end(); 14538 UI != UE; ++UI) { 14539 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14540 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == 14541 IID) { 14542 // We've found another LVSL/LVSR, and this address is an aligned 14543 // multiple of that one. The results will be the same, so use the 14544 // one we've just found instead. 14545 14546 return SDValue(*UI, 0); 14547 } 14548 } 14549 } 14550 14551 if (isa<ConstantSDNode>(Add->getOperand(1))) { 14552 SDNode *BasePtr = Add->getOperand(0).getNode(); 14553 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14554 UE = BasePtr->use_end(); UI != UE; ++UI) { 14555 if (UI->getOpcode() == ISD::ADD && 14556 isa<ConstantSDNode>(UI->getOperand(1)) && 14557 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 14558 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 14559 (1ULL << Bits) == 0) { 14560 SDNode *OtherAdd = *UI; 14561 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 14562 VE = OtherAdd->use_end(); VI != VE; ++VI) { 14563 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14564 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 14565 return SDValue(*VI, 0); 14566 } 14567 } 14568 } 14569 } 14570 } 14571 } 14572 14573 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 14574 // Expose the vabsduw/h/b opportunity for down stream 14575 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 14576 (IID == Intrinsic::ppc_altivec_vmaxsw || 14577 IID == Intrinsic::ppc_altivec_vmaxsh || 14578 IID == Intrinsic::ppc_altivec_vmaxsb)) { 14579 SDValue V1 = N->getOperand(1); 14580 SDValue V2 = N->getOperand(2); 14581 if ((V1.getSimpleValueType() == MVT::v4i32 || 14582 V1.getSimpleValueType() == MVT::v8i16 || 14583 V1.getSimpleValueType() == MVT::v16i8) && 14584 V1.getSimpleValueType() == V2.getSimpleValueType()) { 14585 // (0-a, a) 14586 if (V1.getOpcode() == ISD::SUB && 14587 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 14588 V1.getOperand(1) == V2) { 14589 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 14590 } 14591 // (a, 0-a) 14592 if (V2.getOpcode() == ISD::SUB && 14593 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 14594 V2.getOperand(1) == V1) { 14595 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14596 } 14597 // (x-y, y-x) 14598 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 14599 V1.getOperand(0) == V2.getOperand(1) && 14600 V1.getOperand(1) == V2.getOperand(0)) { 14601 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14602 } 14603 } 14604 } 14605 } 14606 14607 break; 14608 case ISD::INTRINSIC_W_CHAIN: 14609 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14610 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14611 if (Subtarget.needsSwapsForVSXMemOps()) { 14612 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14613 default: 14614 break; 14615 case Intrinsic::ppc_vsx_lxvw4x: 14616 case Intrinsic::ppc_vsx_lxvd2x: 14617 return expandVSXLoadForLE(N, DCI); 14618 } 14619 } 14620 break; 14621 case ISD::INTRINSIC_VOID: 14622 // For little endian, VSX stores require generating xxswapd/stxvd2x. 14623 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14624 if (Subtarget.needsSwapsForVSXMemOps()) { 14625 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14626 default: 14627 break; 14628 case Intrinsic::ppc_vsx_stxvw4x: 14629 case Intrinsic::ppc_vsx_stxvd2x: 14630 return expandVSXStoreForLE(N, DCI); 14631 } 14632 } 14633 break; 14634 case ISD::BSWAP: 14635 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 14636 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 14637 N->getOperand(0).hasOneUse() && 14638 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 14639 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 14640 N->getValueType(0) == MVT::i64))) { 14641 SDValue Load = N->getOperand(0); 14642 LoadSDNode *LD = cast<LoadSDNode>(Load); 14643 // Create the byte-swapping load. 14644 SDValue Ops[] = { 14645 LD->getChain(), // Chain 14646 LD->getBasePtr(), // Ptr 14647 DAG.getValueType(N->getValueType(0)) // VT 14648 }; 14649 SDValue BSLoad = 14650 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 14651 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 14652 MVT::i64 : MVT::i32, MVT::Other), 14653 Ops, LD->getMemoryVT(), LD->getMemOperand()); 14654 14655 // If this is an i16 load, insert the truncate. 14656 SDValue ResVal = BSLoad; 14657 if (N->getValueType(0) == MVT::i16) 14658 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 14659 14660 // First, combine the bswap away. This makes the value produced by the 14661 // load dead. 14662 DCI.CombineTo(N, ResVal); 14663 14664 // Next, combine the load away, we give it a bogus result value but a real 14665 // chain result. The result value is dead because the bswap is dead. 14666 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 14667 14668 // Return N so it doesn't get rechecked! 14669 return SDValue(N, 0); 14670 } 14671 break; 14672 case PPCISD::VCMP: 14673 // If a VCMP_rec node already exists with exactly the same operands as this 14674 // node, use its result instead of this node (VCMP_rec computes both a CR6 14675 // and a normal output). 14676 // 14677 if (!N->getOperand(0).hasOneUse() && 14678 !N->getOperand(1).hasOneUse() && 14679 !N->getOperand(2).hasOneUse()) { 14680 14681 // Scan all of the users of the LHS, looking for VCMP_rec's that match. 14682 SDNode *VCMPrecNode = nullptr; 14683 14684 SDNode *LHSN = N->getOperand(0).getNode(); 14685 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 14686 UI != E; ++UI) 14687 if (UI->getOpcode() == PPCISD::VCMP_rec && 14688 UI->getOperand(1) == N->getOperand(1) && 14689 UI->getOperand(2) == N->getOperand(2) && 14690 UI->getOperand(0) == N->getOperand(0)) { 14691 VCMPrecNode = *UI; 14692 break; 14693 } 14694 14695 // If there is no VCMP_rec node, or if the flag value has a single use, 14696 // don't transform this. 14697 if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) 14698 break; 14699 14700 // Look at the (necessarily single) use of the flag value. If it has a 14701 // chain, this transformation is more complex. Note that multiple things 14702 // could use the value result, which we should ignore. 14703 SDNode *FlagUser = nullptr; 14704 for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); 14705 FlagUser == nullptr; ++UI) { 14706 assert(UI != VCMPrecNode->use_end() && "Didn't find user!"); 14707 SDNode *User = *UI; 14708 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 14709 if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { 14710 FlagUser = User; 14711 break; 14712 } 14713 } 14714 } 14715 14716 // If the user is a MFOCRF instruction, we know this is safe. 14717 // Otherwise we give up for right now. 14718 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 14719 return SDValue(VCMPrecNode, 0); 14720 } 14721 break; 14722 case ISD::BRCOND: { 14723 SDValue Cond = N->getOperand(1); 14724 SDValue Target = N->getOperand(2); 14725 14726 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14727 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 14728 Intrinsic::loop_decrement) { 14729 14730 // We now need to make the intrinsic dead (it cannot be instruction 14731 // selected). 14732 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 14733 assert(Cond.getNode()->hasOneUse() && 14734 "Counter decrement has more than one use"); 14735 14736 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 14737 N->getOperand(0), Target); 14738 } 14739 } 14740 break; 14741 case ISD::BR_CC: { 14742 // If this is a branch on an altivec predicate comparison, lower this so 14743 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 14744 // lowering is done pre-legalize, because the legalizer lowers the predicate 14745 // compare down to code that is difficult to reassemble. 14746 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 14747 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 14748 14749 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 14750 // value. If so, pass-through the AND to get to the intrinsic. 14751 if (LHS.getOpcode() == ISD::AND && 14752 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 14753 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 14754 Intrinsic::loop_decrement && 14755 isa<ConstantSDNode>(LHS.getOperand(1)) && 14756 !isNullConstant(LHS.getOperand(1))) 14757 LHS = LHS.getOperand(0); 14758 14759 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14760 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 14761 Intrinsic::loop_decrement && 14762 isa<ConstantSDNode>(RHS)) { 14763 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 14764 "Counter decrement comparison is not EQ or NE"); 14765 14766 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14767 bool isBDNZ = (CC == ISD::SETEQ && Val) || 14768 (CC == ISD::SETNE && !Val); 14769 14770 // We now need to make the intrinsic dead (it cannot be instruction 14771 // selected). 14772 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 14773 assert(LHS.getNode()->hasOneUse() && 14774 "Counter decrement has more than one use"); 14775 14776 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 14777 N->getOperand(0), N->getOperand(4)); 14778 } 14779 14780 int CompareOpc; 14781 bool isDot; 14782 14783 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14784 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 14785 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 14786 assert(isDot && "Can't compare against a vector result!"); 14787 14788 // If this is a comparison against something other than 0/1, then we know 14789 // that the condition is never/always true. 14790 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14791 if (Val != 0 && Val != 1) { 14792 if (CC == ISD::SETEQ) // Cond never true, remove branch. 14793 return N->getOperand(0); 14794 // Always !=, turn it into an unconditional branch. 14795 return DAG.getNode(ISD::BR, dl, MVT::Other, 14796 N->getOperand(0), N->getOperand(4)); 14797 } 14798 14799 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 14800 14801 // Create the PPCISD altivec 'dot' comparison node. 14802 SDValue Ops[] = { 14803 LHS.getOperand(2), // LHS of compare 14804 LHS.getOperand(3), // RHS of compare 14805 DAG.getConstant(CompareOpc, dl, MVT::i32) 14806 }; 14807 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 14808 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 14809 14810 // Unpack the result based on how the target uses it. 14811 PPC::Predicate CompOpc; 14812 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 14813 default: // Can't happen, don't crash on invalid number though. 14814 case 0: // Branch on the value of the EQ bit of CR6. 14815 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 14816 break; 14817 case 1: // Branch on the inverted value of the EQ bit of CR6. 14818 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 14819 break; 14820 case 2: // Branch on the value of the LT bit of CR6. 14821 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 14822 break; 14823 case 3: // Branch on the inverted value of the LT bit of CR6. 14824 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 14825 break; 14826 } 14827 14828 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 14829 DAG.getConstant(CompOpc, dl, MVT::i32), 14830 DAG.getRegister(PPC::CR6, MVT::i32), 14831 N->getOperand(4), CompNode.getValue(1)); 14832 } 14833 break; 14834 } 14835 case ISD::BUILD_VECTOR: 14836 return DAGCombineBuildVector(N, DCI); 14837 case ISD::ABS: 14838 return combineABS(N, DCI); 14839 case ISD::VSELECT: 14840 return combineVSelect(N, DCI); 14841 } 14842 14843 return SDValue(); 14844 } 14845 14846 SDValue 14847 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 14848 SelectionDAG &DAG, 14849 SmallVectorImpl<SDNode *> &Created) const { 14850 // fold (sdiv X, pow2) 14851 EVT VT = N->getValueType(0); 14852 if (VT == MVT::i64 && !Subtarget.isPPC64()) 14853 return SDValue(); 14854 if ((VT != MVT::i32 && VT != MVT::i64) || 14855 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 14856 return SDValue(); 14857 14858 SDLoc DL(N); 14859 SDValue N0 = N->getOperand(0); 14860 14861 bool IsNegPow2 = (-Divisor).isPowerOf2(); 14862 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 14863 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 14864 14865 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 14866 Created.push_back(Op.getNode()); 14867 14868 if (IsNegPow2) { 14869 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 14870 Created.push_back(Op.getNode()); 14871 } 14872 14873 return Op; 14874 } 14875 14876 //===----------------------------------------------------------------------===// 14877 // Inline Assembly Support 14878 //===----------------------------------------------------------------------===// 14879 14880 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 14881 KnownBits &Known, 14882 const APInt &DemandedElts, 14883 const SelectionDAG &DAG, 14884 unsigned Depth) const { 14885 Known.resetAll(); 14886 switch (Op.getOpcode()) { 14887 default: break; 14888 case PPCISD::LBRX: { 14889 // lhbrx is known to have the top bits cleared out. 14890 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 14891 Known.Zero = 0xFFFF0000; 14892 break; 14893 } 14894 case ISD::INTRINSIC_WO_CHAIN: { 14895 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 14896 default: break; 14897 case Intrinsic::ppc_altivec_vcmpbfp_p: 14898 case Intrinsic::ppc_altivec_vcmpeqfp_p: 14899 case Intrinsic::ppc_altivec_vcmpequb_p: 14900 case Intrinsic::ppc_altivec_vcmpequh_p: 14901 case Intrinsic::ppc_altivec_vcmpequw_p: 14902 case Intrinsic::ppc_altivec_vcmpequd_p: 14903 case Intrinsic::ppc_altivec_vcmpequq_p: 14904 case Intrinsic::ppc_altivec_vcmpgefp_p: 14905 case Intrinsic::ppc_altivec_vcmpgtfp_p: 14906 case Intrinsic::ppc_altivec_vcmpgtsb_p: 14907 case Intrinsic::ppc_altivec_vcmpgtsh_p: 14908 case Intrinsic::ppc_altivec_vcmpgtsw_p: 14909 case Intrinsic::ppc_altivec_vcmpgtsd_p: 14910 case Intrinsic::ppc_altivec_vcmpgtsq_p: 14911 case Intrinsic::ppc_altivec_vcmpgtub_p: 14912 case Intrinsic::ppc_altivec_vcmpgtuh_p: 14913 case Intrinsic::ppc_altivec_vcmpgtuw_p: 14914 case Intrinsic::ppc_altivec_vcmpgtud_p: 14915 case Intrinsic::ppc_altivec_vcmpgtuq_p: 14916 Known.Zero = ~1U; // All bits but the low one are known to be zero. 14917 break; 14918 } 14919 } 14920 } 14921 } 14922 14923 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 14924 switch (Subtarget.getCPUDirective()) { 14925 default: break; 14926 case PPC::DIR_970: 14927 case PPC::DIR_PWR4: 14928 case PPC::DIR_PWR5: 14929 case PPC::DIR_PWR5X: 14930 case PPC::DIR_PWR6: 14931 case PPC::DIR_PWR6X: 14932 case PPC::DIR_PWR7: 14933 case PPC::DIR_PWR8: 14934 case PPC::DIR_PWR9: 14935 case PPC::DIR_PWR10: 14936 case PPC::DIR_PWR_FUTURE: { 14937 if (!ML) 14938 break; 14939 14940 if (!DisableInnermostLoopAlign32) { 14941 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 14942 // so that we can decrease cache misses and branch-prediction misses. 14943 // Actual alignment of the loop will depend on the hotness check and other 14944 // logic in alignBlocks. 14945 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 14946 return Align(32); 14947 } 14948 14949 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 14950 14951 // For small loops (between 5 and 8 instructions), align to a 32-byte 14952 // boundary so that the entire loop fits in one instruction-cache line. 14953 uint64_t LoopSize = 0; 14954 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 14955 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 14956 LoopSize += TII->getInstSizeInBytes(*J); 14957 if (LoopSize > 32) 14958 break; 14959 } 14960 14961 if (LoopSize > 16 && LoopSize <= 32) 14962 return Align(32); 14963 14964 break; 14965 } 14966 } 14967 14968 return TargetLowering::getPrefLoopAlignment(ML); 14969 } 14970 14971 /// getConstraintType - Given a constraint, return the type of 14972 /// constraint it is for this target. 14973 PPCTargetLowering::ConstraintType 14974 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 14975 if (Constraint.size() == 1) { 14976 switch (Constraint[0]) { 14977 default: break; 14978 case 'b': 14979 case 'r': 14980 case 'f': 14981 case 'd': 14982 case 'v': 14983 case 'y': 14984 return C_RegisterClass; 14985 case 'Z': 14986 // FIXME: While Z does indicate a memory constraint, it specifically 14987 // indicates an r+r address (used in conjunction with the 'y' modifier 14988 // in the replacement string). Currently, we're forcing the base 14989 // register to be r0 in the asm printer (which is interpreted as zero) 14990 // and forming the complete address in the second register. This is 14991 // suboptimal. 14992 return C_Memory; 14993 } 14994 } else if (Constraint == "wc") { // individual CR bits. 14995 return C_RegisterClass; 14996 } else if (Constraint == "wa" || Constraint == "wd" || 14997 Constraint == "wf" || Constraint == "ws" || 14998 Constraint == "wi" || Constraint == "ww") { 14999 return C_RegisterClass; // VSX registers. 15000 } 15001 return TargetLowering::getConstraintType(Constraint); 15002 } 15003 15004 /// Examine constraint type and operand type and determine a weight value. 15005 /// This object must already have been set up with the operand type 15006 /// and the current alternative constraint selected. 15007 TargetLowering::ConstraintWeight 15008 PPCTargetLowering::getSingleConstraintMatchWeight( 15009 AsmOperandInfo &info, const char *constraint) const { 15010 ConstraintWeight weight = CW_Invalid; 15011 Value *CallOperandVal = info.CallOperandVal; 15012 // If we don't have a value, we can't do a match, 15013 // but allow it at the lowest weight. 15014 if (!CallOperandVal) 15015 return CW_Default; 15016 Type *type = CallOperandVal->getType(); 15017 15018 // Look at the constraint type. 15019 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15020 return CW_Register; // an individual CR bit. 15021 else if ((StringRef(constraint) == "wa" || 15022 StringRef(constraint) == "wd" || 15023 StringRef(constraint) == "wf") && 15024 type->isVectorTy()) 15025 return CW_Register; 15026 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15027 return CW_Register; // just hold 64-bit integers data. 15028 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15029 return CW_Register; 15030 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15031 return CW_Register; 15032 15033 switch (*constraint) { 15034 default: 15035 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15036 break; 15037 case 'b': 15038 if (type->isIntegerTy()) 15039 weight = CW_Register; 15040 break; 15041 case 'f': 15042 if (type->isFloatTy()) 15043 weight = CW_Register; 15044 break; 15045 case 'd': 15046 if (type->isDoubleTy()) 15047 weight = CW_Register; 15048 break; 15049 case 'v': 15050 if (type->isVectorTy()) 15051 weight = CW_Register; 15052 break; 15053 case 'y': 15054 weight = CW_Register; 15055 break; 15056 case 'Z': 15057 weight = CW_Memory; 15058 break; 15059 } 15060 return weight; 15061 } 15062 15063 std::pair<unsigned, const TargetRegisterClass *> 15064 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 15065 StringRef Constraint, 15066 MVT VT) const { 15067 if (Constraint.size() == 1) { 15068 // GCC RS6000 Constraint Letters 15069 switch (Constraint[0]) { 15070 case 'b': // R1-R31 15071 if (VT == MVT::i64 && Subtarget.isPPC64()) 15072 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 15073 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 15074 case 'r': // R0-R31 15075 if (VT == MVT::i64 && Subtarget.isPPC64()) 15076 return std::make_pair(0U, &PPC::G8RCRegClass); 15077 return std::make_pair(0U, &PPC::GPRCRegClass); 15078 // 'd' and 'f' constraints are both defined to be "the floating point 15079 // registers", where one is for 32-bit and the other for 64-bit. We don't 15080 // really care overly much here so just give them all the same reg classes. 15081 case 'd': 15082 case 'f': 15083 if (Subtarget.hasSPE()) { 15084 if (VT == MVT::f32 || VT == MVT::i32) 15085 return std::make_pair(0U, &PPC::GPRCRegClass); 15086 if (VT == MVT::f64 || VT == MVT::i64) 15087 return std::make_pair(0U, &PPC::SPERCRegClass); 15088 } else { 15089 if (VT == MVT::f32 || VT == MVT::i32) 15090 return std::make_pair(0U, &PPC::F4RCRegClass); 15091 if (VT == MVT::f64 || VT == MVT::i64) 15092 return std::make_pair(0U, &PPC::F8RCRegClass); 15093 } 15094 break; 15095 case 'v': 15096 if (Subtarget.hasAltivec()) 15097 return std::make_pair(0U, &PPC::VRRCRegClass); 15098 break; 15099 case 'y': // crrc 15100 return std::make_pair(0U, &PPC::CRRCRegClass); 15101 } 15102 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15103 // An individual CR bit. 15104 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15105 } else if ((Constraint == "wa" || Constraint == "wd" || 15106 Constraint == "wf" || Constraint == "wi") && 15107 Subtarget.hasVSX()) { 15108 return std::make_pair(0U, &PPC::VSRCRegClass); 15109 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15110 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15111 return std::make_pair(0U, &PPC::VSSRCRegClass); 15112 else 15113 return std::make_pair(0U, &PPC::VSFRCRegClass); 15114 } 15115 15116 // Handle special cases of physical registers that are not properly handled 15117 // by the base class. 15118 if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') { 15119 // If we name a VSX register, we can't defer to the base class because it 15120 // will not recognize the correct register (their names will be VSL{0-31} 15121 // and V{0-31} so they won't match). So we match them here. 15122 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 15123 int VSNum = atoi(Constraint.data() + 3); 15124 assert(VSNum >= 0 && VSNum <= 63 && 15125 "Attempted to access a vsr out of range"); 15126 if (VSNum < 32) 15127 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 15128 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 15129 } 15130 15131 // For float registers, we can't defer to the base class as it will match 15132 // the SPILLTOVSRRC class. 15133 if (Constraint.size() > 3 && Constraint[1] == 'f') { 15134 int RegNum = atoi(Constraint.data() + 2); 15135 if (RegNum > 31 || RegNum < 0) 15136 report_fatal_error("Invalid floating point register number"); 15137 if (VT == MVT::f32 || VT == MVT::i32) 15138 return Subtarget.hasSPE() 15139 ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass) 15140 : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass); 15141 if (VT == MVT::f64 || VT == MVT::i64) 15142 return Subtarget.hasSPE() 15143 ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass) 15144 : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass); 15145 } 15146 } 15147 15148 std::pair<unsigned, const TargetRegisterClass *> R = 15149 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15150 15151 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 15152 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 15153 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 15154 // register. 15155 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 15156 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 15157 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 15158 PPC::GPRCRegClass.contains(R.first)) 15159 return std::make_pair(TRI->getMatchingSuperReg(R.first, 15160 PPC::sub_32, &PPC::G8RCRegClass), 15161 &PPC::G8RCRegClass); 15162 15163 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 15164 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 15165 R.first = PPC::CR0; 15166 R.second = &PPC::CRRCRegClass; 15167 } 15168 15169 return R; 15170 } 15171 15172 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 15173 /// vector. If it is invalid, don't add anything to Ops. 15174 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15175 std::string &Constraint, 15176 std::vector<SDValue>&Ops, 15177 SelectionDAG &DAG) const { 15178 SDValue Result; 15179 15180 // Only support length 1 constraints. 15181 if (Constraint.length() > 1) return; 15182 15183 char Letter = Constraint[0]; 15184 switch (Letter) { 15185 default: break; 15186 case 'I': 15187 case 'J': 15188 case 'K': 15189 case 'L': 15190 case 'M': 15191 case 'N': 15192 case 'O': 15193 case 'P': { 15194 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 15195 if (!CST) return; // Must be an immediate to match. 15196 SDLoc dl(Op); 15197 int64_t Value = CST->getSExtValue(); 15198 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 15199 // numbers are printed as such. 15200 switch (Letter) { 15201 default: llvm_unreachable("Unknown constraint letter!"); 15202 case 'I': // "I" is a signed 16-bit constant. 15203 if (isInt<16>(Value)) 15204 Result = DAG.getTargetConstant(Value, dl, TCVT); 15205 break; 15206 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 15207 if (isShiftedUInt<16, 16>(Value)) 15208 Result = DAG.getTargetConstant(Value, dl, TCVT); 15209 break; 15210 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 15211 if (isShiftedInt<16, 16>(Value)) 15212 Result = DAG.getTargetConstant(Value, dl, TCVT); 15213 break; 15214 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 15215 if (isUInt<16>(Value)) 15216 Result = DAG.getTargetConstant(Value, dl, TCVT); 15217 break; 15218 case 'M': // "M" is a constant that is greater than 31. 15219 if (Value > 31) 15220 Result = DAG.getTargetConstant(Value, dl, TCVT); 15221 break; 15222 case 'N': // "N" is a positive constant that is an exact power of two. 15223 if (Value > 0 && isPowerOf2_64(Value)) 15224 Result = DAG.getTargetConstant(Value, dl, TCVT); 15225 break; 15226 case 'O': // "O" is the constant zero. 15227 if (Value == 0) 15228 Result = DAG.getTargetConstant(Value, dl, TCVT); 15229 break; 15230 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 15231 if (isInt<16>(-Value)) 15232 Result = DAG.getTargetConstant(Value, dl, TCVT); 15233 break; 15234 } 15235 break; 15236 } 15237 } 15238 15239 if (Result.getNode()) { 15240 Ops.push_back(Result); 15241 return; 15242 } 15243 15244 // Handle standard constraint letters. 15245 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 15246 } 15247 15248 // isLegalAddressingMode - Return true if the addressing mode represented 15249 // by AM is legal for this target, for a load/store of the specified type. 15250 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 15251 const AddrMode &AM, Type *Ty, 15252 unsigned AS, 15253 Instruction *I) const { 15254 // Vector type r+i form is supported since power9 as DQ form. We don't check 15255 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 15256 // imm form is preferred and the offset can be adjusted to use imm form later 15257 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 15258 // max offset to check legal addressing mode, we should be a little aggressive 15259 // to contain other offsets for that LSRUse. 15260 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 15261 return false; 15262 15263 // PPC allows a sign-extended 16-bit immediate field. 15264 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 15265 return false; 15266 15267 // No global is ever allowed as a base. 15268 if (AM.BaseGV) 15269 return false; 15270 15271 // PPC only support r+r, 15272 switch (AM.Scale) { 15273 case 0: // "r+i" or just "i", depending on HasBaseReg. 15274 break; 15275 case 1: 15276 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 15277 return false; 15278 // Otherwise we have r+r or r+i. 15279 break; 15280 case 2: 15281 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 15282 return false; 15283 // Allow 2*r as r+r. 15284 break; 15285 default: 15286 // No other scales are supported. 15287 return false; 15288 } 15289 15290 return true; 15291 } 15292 15293 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 15294 SelectionDAG &DAG) const { 15295 MachineFunction &MF = DAG.getMachineFunction(); 15296 MachineFrameInfo &MFI = MF.getFrameInfo(); 15297 MFI.setReturnAddressIsTaken(true); 15298 15299 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 15300 return SDValue(); 15301 15302 SDLoc dl(Op); 15303 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15304 15305 // Make sure the function does not optimize away the store of the RA to 15306 // the stack. 15307 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 15308 FuncInfo->setLRStoreRequired(); 15309 bool isPPC64 = Subtarget.isPPC64(); 15310 auto PtrVT = getPointerTy(MF.getDataLayout()); 15311 15312 if (Depth > 0) { 15313 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 15314 SDValue Offset = 15315 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 15316 isPPC64 ? MVT::i64 : MVT::i32); 15317 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 15318 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 15319 MachinePointerInfo()); 15320 } 15321 15322 // Just load the return address off the stack. 15323 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 15324 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 15325 MachinePointerInfo()); 15326 } 15327 15328 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 15329 SelectionDAG &DAG) const { 15330 SDLoc dl(Op); 15331 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15332 15333 MachineFunction &MF = DAG.getMachineFunction(); 15334 MachineFrameInfo &MFI = MF.getFrameInfo(); 15335 MFI.setFrameAddressIsTaken(true); 15336 15337 EVT PtrVT = getPointerTy(MF.getDataLayout()); 15338 bool isPPC64 = PtrVT == MVT::i64; 15339 15340 // Naked functions never have a frame pointer, and so we use r1. For all 15341 // other functions, this decision must be delayed until during PEI. 15342 unsigned FrameReg; 15343 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 15344 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 15345 else 15346 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 15347 15348 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 15349 PtrVT); 15350 while (Depth--) 15351 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 15352 FrameAddr, MachinePointerInfo()); 15353 return FrameAddr; 15354 } 15355 15356 // FIXME? Maybe this could be a TableGen attribute on some registers and 15357 // this table could be generated automatically from RegInfo. 15358 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 15359 const MachineFunction &MF) const { 15360 bool isPPC64 = Subtarget.isPPC64(); 15361 15362 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 15363 if (!is64Bit && VT != LLT::scalar(32)) 15364 report_fatal_error("Invalid register global variable type"); 15365 15366 Register Reg = StringSwitch<Register>(RegName) 15367 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 15368 .Case("r2", isPPC64 ? Register() : PPC::R2) 15369 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 15370 .Default(Register()); 15371 15372 if (Reg) 15373 return Reg; 15374 report_fatal_error("Invalid register name global variable"); 15375 } 15376 15377 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 15378 // 32-bit SVR4 ABI access everything as got-indirect. 15379 if (Subtarget.is32BitELFABI()) 15380 return true; 15381 15382 // AIX accesses everything indirectly through the TOC, which is similar to 15383 // the GOT. 15384 if (Subtarget.isAIXABI()) 15385 return true; 15386 15387 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 15388 // If it is small or large code model, module locals are accessed 15389 // indirectly by loading their address from .toc/.got. 15390 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 15391 return true; 15392 15393 // JumpTable and BlockAddress are accessed as got-indirect. 15394 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 15395 return true; 15396 15397 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 15398 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 15399 15400 return false; 15401 } 15402 15403 bool 15404 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 15405 // The PowerPC target isn't yet aware of offsets. 15406 return false; 15407 } 15408 15409 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 15410 const CallInst &I, 15411 MachineFunction &MF, 15412 unsigned Intrinsic) const { 15413 switch (Intrinsic) { 15414 case Intrinsic::ppc_altivec_lvx: 15415 case Intrinsic::ppc_altivec_lvxl: 15416 case Intrinsic::ppc_altivec_lvebx: 15417 case Intrinsic::ppc_altivec_lvehx: 15418 case Intrinsic::ppc_altivec_lvewx: 15419 case Intrinsic::ppc_vsx_lxvd2x: 15420 case Intrinsic::ppc_vsx_lxvw4x: 15421 case Intrinsic::ppc_vsx_lxvd2x_be: 15422 case Intrinsic::ppc_vsx_lxvw4x_be: 15423 case Intrinsic::ppc_vsx_lxvl: 15424 case Intrinsic::ppc_vsx_lxvll: { 15425 EVT VT; 15426 switch (Intrinsic) { 15427 case Intrinsic::ppc_altivec_lvebx: 15428 VT = MVT::i8; 15429 break; 15430 case Intrinsic::ppc_altivec_lvehx: 15431 VT = MVT::i16; 15432 break; 15433 case Intrinsic::ppc_altivec_lvewx: 15434 VT = MVT::i32; 15435 break; 15436 case Intrinsic::ppc_vsx_lxvd2x: 15437 case Intrinsic::ppc_vsx_lxvd2x_be: 15438 VT = MVT::v2f64; 15439 break; 15440 default: 15441 VT = MVT::v4i32; 15442 break; 15443 } 15444 15445 Info.opc = ISD::INTRINSIC_W_CHAIN; 15446 Info.memVT = VT; 15447 Info.ptrVal = I.getArgOperand(0); 15448 Info.offset = -VT.getStoreSize()+1; 15449 Info.size = 2*VT.getStoreSize()-1; 15450 Info.align = Align(1); 15451 Info.flags = MachineMemOperand::MOLoad; 15452 return true; 15453 } 15454 case Intrinsic::ppc_altivec_stvx: 15455 case Intrinsic::ppc_altivec_stvxl: 15456 case Intrinsic::ppc_altivec_stvebx: 15457 case Intrinsic::ppc_altivec_stvehx: 15458 case Intrinsic::ppc_altivec_stvewx: 15459 case Intrinsic::ppc_vsx_stxvd2x: 15460 case Intrinsic::ppc_vsx_stxvw4x: 15461 case Intrinsic::ppc_vsx_stxvd2x_be: 15462 case Intrinsic::ppc_vsx_stxvw4x_be: 15463 case Intrinsic::ppc_vsx_stxvl: 15464 case Intrinsic::ppc_vsx_stxvll: { 15465 EVT VT; 15466 switch (Intrinsic) { 15467 case Intrinsic::ppc_altivec_stvebx: 15468 VT = MVT::i8; 15469 break; 15470 case Intrinsic::ppc_altivec_stvehx: 15471 VT = MVT::i16; 15472 break; 15473 case Intrinsic::ppc_altivec_stvewx: 15474 VT = MVT::i32; 15475 break; 15476 case Intrinsic::ppc_vsx_stxvd2x: 15477 case Intrinsic::ppc_vsx_stxvd2x_be: 15478 VT = MVT::v2f64; 15479 break; 15480 default: 15481 VT = MVT::v4i32; 15482 break; 15483 } 15484 15485 Info.opc = ISD::INTRINSIC_VOID; 15486 Info.memVT = VT; 15487 Info.ptrVal = I.getArgOperand(1); 15488 Info.offset = -VT.getStoreSize()+1; 15489 Info.size = 2*VT.getStoreSize()-1; 15490 Info.align = Align(1); 15491 Info.flags = MachineMemOperand::MOStore; 15492 return true; 15493 } 15494 default: 15495 break; 15496 } 15497 15498 return false; 15499 } 15500 15501 /// It returns EVT::Other if the type should be determined using generic 15502 /// target-independent logic. 15503 EVT PPCTargetLowering::getOptimalMemOpType( 15504 const MemOp &Op, const AttributeList &FuncAttributes) const { 15505 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 15506 // We should use Altivec/VSX loads and stores when available. For unaligned 15507 // addresses, unaligned VSX loads are only fast starting with the P8. 15508 if (Subtarget.hasAltivec() && Op.size() >= 16 && 15509 (Op.isAligned(Align(16)) || 15510 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 15511 return MVT::v4i32; 15512 } 15513 15514 if (Subtarget.isPPC64()) { 15515 return MVT::i64; 15516 } 15517 15518 return MVT::i32; 15519 } 15520 15521 /// Returns true if it is beneficial to convert a load of a constant 15522 /// to just the constant itself. 15523 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 15524 Type *Ty) const { 15525 assert(Ty->isIntegerTy()); 15526 15527 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 15528 return !(BitSize == 0 || BitSize > 64); 15529 } 15530 15531 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 15532 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 15533 return false; 15534 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 15535 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 15536 return NumBits1 == 64 && NumBits2 == 32; 15537 } 15538 15539 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 15540 if (!VT1.isInteger() || !VT2.isInteger()) 15541 return false; 15542 unsigned NumBits1 = VT1.getSizeInBits(); 15543 unsigned NumBits2 = VT2.getSizeInBits(); 15544 return NumBits1 == 64 && NumBits2 == 32; 15545 } 15546 15547 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 15548 // Generally speaking, zexts are not free, but they are free when they can be 15549 // folded with other operations. 15550 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 15551 EVT MemVT = LD->getMemoryVT(); 15552 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 15553 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 15554 (LD->getExtensionType() == ISD::NON_EXTLOAD || 15555 LD->getExtensionType() == ISD::ZEXTLOAD)) 15556 return true; 15557 } 15558 15559 // FIXME: Add other cases... 15560 // - 32-bit shifts with a zext to i64 15561 // - zext after ctlz, bswap, etc. 15562 // - zext after and by a constant mask 15563 15564 return TargetLowering::isZExtFree(Val, VT2); 15565 } 15566 15567 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 15568 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 15569 "invalid fpext types"); 15570 // Extending to float128 is not free. 15571 if (DestVT == MVT::f128) 15572 return false; 15573 return true; 15574 } 15575 15576 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 15577 return isInt<16>(Imm) || isUInt<16>(Imm); 15578 } 15579 15580 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 15581 return isInt<16>(Imm) || isUInt<16>(Imm); 15582 } 15583 15584 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align, 15585 MachineMemOperand::Flags, 15586 bool *Fast) const { 15587 if (DisablePPCUnaligned) 15588 return false; 15589 15590 // PowerPC supports unaligned memory access for simple non-vector types. 15591 // Although accessing unaligned addresses is not as efficient as accessing 15592 // aligned addresses, it is generally more efficient than manual expansion, 15593 // and generally only traps for software emulation when crossing page 15594 // boundaries. 15595 15596 if (!VT.isSimple()) 15597 return false; 15598 15599 if (VT.isFloatingPoint() && !VT.isVector() && 15600 !Subtarget.allowsUnalignedFPAccess()) 15601 return false; 15602 15603 if (VT.getSimpleVT().isVector()) { 15604 if (Subtarget.hasVSX()) { 15605 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 15606 VT != MVT::v4f32 && VT != MVT::v4i32) 15607 return false; 15608 } else { 15609 return false; 15610 } 15611 } 15612 15613 if (VT == MVT::ppcf128) 15614 return false; 15615 15616 if (Fast) 15617 *Fast = true; 15618 15619 return true; 15620 } 15621 15622 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 15623 SDValue C) const { 15624 // Check integral scalar types. 15625 if (!VT.isScalarInteger()) 15626 return false; 15627 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 15628 if (!ConstNode->getAPIntValue().isSignedIntN(64)) 15629 return false; 15630 // This transformation will generate >= 2 operations. But the following 15631 // cases will generate <= 2 instructions during ISEL. So exclude them. 15632 // 1. If the constant multiplier fits 16 bits, it can be handled by one 15633 // HW instruction, ie. MULLI 15634 // 2. If the multiplier after shifted fits 16 bits, an extra shift 15635 // instruction is needed than case 1, ie. MULLI and RLDICR 15636 int64_t Imm = ConstNode->getSExtValue(); 15637 unsigned Shift = countTrailingZeros<uint64_t>(Imm); 15638 Imm >>= Shift; 15639 if (isInt<16>(Imm)) 15640 return false; 15641 uint64_t UImm = static_cast<uint64_t>(Imm); 15642 if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || 15643 isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) 15644 return true; 15645 } 15646 return false; 15647 } 15648 15649 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 15650 EVT VT) const { 15651 return isFMAFasterThanFMulAndFAdd( 15652 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 15653 } 15654 15655 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 15656 Type *Ty) const { 15657 switch (Ty->getScalarType()->getTypeID()) { 15658 case Type::FloatTyID: 15659 case Type::DoubleTyID: 15660 return true; 15661 case Type::FP128TyID: 15662 return Subtarget.hasP9Vector(); 15663 default: 15664 return false; 15665 } 15666 } 15667 15668 // FIXME: add more patterns which are not profitable to hoist. 15669 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 15670 if (!I->hasOneUse()) 15671 return true; 15672 15673 Instruction *User = I->user_back(); 15674 assert(User && "A single use instruction with no uses."); 15675 15676 switch (I->getOpcode()) { 15677 case Instruction::FMul: { 15678 // Don't break FMA, PowerPC prefers FMA. 15679 if (User->getOpcode() != Instruction::FSub && 15680 User->getOpcode() != Instruction::FAdd) 15681 return true; 15682 15683 const TargetOptions &Options = getTargetMachine().Options; 15684 const Function *F = I->getFunction(); 15685 const DataLayout &DL = F->getParent()->getDataLayout(); 15686 Type *Ty = User->getOperand(0)->getType(); 15687 15688 return !( 15689 isFMAFasterThanFMulAndFAdd(*F, Ty) && 15690 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 15691 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 15692 } 15693 case Instruction::Load: { 15694 // Don't break "store (load float*)" pattern, this pattern will be combined 15695 // to "store (load int32)" in later InstCombine pass. See function 15696 // combineLoadToOperationType. On PowerPC, loading a float point takes more 15697 // cycles than loading a 32 bit integer. 15698 LoadInst *LI = cast<LoadInst>(I); 15699 // For the loads that combineLoadToOperationType does nothing, like 15700 // ordered load, it should be profitable to hoist them. 15701 // For swifterror load, it can only be used for pointer to pointer type, so 15702 // later type check should get rid of this case. 15703 if (!LI->isUnordered()) 15704 return true; 15705 15706 if (User->getOpcode() != Instruction::Store) 15707 return true; 15708 15709 if (I->getType()->getTypeID() != Type::FloatTyID) 15710 return true; 15711 15712 return false; 15713 } 15714 default: 15715 return true; 15716 } 15717 return true; 15718 } 15719 15720 const MCPhysReg * 15721 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 15722 // LR is a callee-save register, but we must treat it as clobbered by any call 15723 // site. Hence we include LR in the scratch registers, which are in turn added 15724 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 15725 // to CTR, which is used by any indirect call. 15726 static const MCPhysReg ScratchRegs[] = { 15727 PPC::X12, PPC::LR8, PPC::CTR8, 0 15728 }; 15729 15730 return ScratchRegs; 15731 } 15732 15733 Register PPCTargetLowering::getExceptionPointerRegister( 15734 const Constant *PersonalityFn) const { 15735 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 15736 } 15737 15738 Register PPCTargetLowering::getExceptionSelectorRegister( 15739 const Constant *PersonalityFn) const { 15740 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 15741 } 15742 15743 bool 15744 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 15745 EVT VT , unsigned DefinedValues) const { 15746 if (VT == MVT::v2i64) 15747 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 15748 15749 if (Subtarget.hasVSX()) 15750 return true; 15751 15752 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 15753 } 15754 15755 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 15756 if (DisableILPPref || Subtarget.enableMachineScheduler()) 15757 return TargetLowering::getSchedulingPreference(N); 15758 15759 return Sched::ILP; 15760 } 15761 15762 // Create a fast isel object. 15763 FastISel * 15764 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 15765 const TargetLibraryInfo *LibInfo) const { 15766 return PPC::createFastISel(FuncInfo, LibInfo); 15767 } 15768 15769 // 'Inverted' means the FMA opcode after negating one multiplicand. 15770 // For example, (fma -a b c) = (fnmsub a b c) 15771 static unsigned invertFMAOpcode(unsigned Opc) { 15772 switch (Opc) { 15773 default: 15774 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 15775 case ISD::FMA: 15776 return PPCISD::FNMSUB; 15777 case PPCISD::FNMSUB: 15778 return ISD::FMA; 15779 } 15780 } 15781 15782 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 15783 bool LegalOps, bool OptForSize, 15784 NegatibleCost &Cost, 15785 unsigned Depth) const { 15786 if (Depth > SelectionDAG::MaxRecursionDepth) 15787 return SDValue(); 15788 15789 unsigned Opc = Op.getOpcode(); 15790 EVT VT = Op.getValueType(); 15791 SDNodeFlags Flags = Op.getNode()->getFlags(); 15792 15793 switch (Opc) { 15794 case PPCISD::FNMSUB: 15795 if (!Op.hasOneUse() || !isTypeLegal(VT)) 15796 break; 15797 15798 const TargetOptions &Options = getTargetMachine().Options; 15799 SDValue N0 = Op.getOperand(0); 15800 SDValue N1 = Op.getOperand(1); 15801 SDValue N2 = Op.getOperand(2); 15802 SDLoc Loc(Op); 15803 15804 NegatibleCost N2Cost = NegatibleCost::Expensive; 15805 SDValue NegN2 = 15806 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 15807 15808 if (!NegN2) 15809 return SDValue(); 15810 15811 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 15812 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 15813 // These transformations may change sign of zeroes. For example, 15814 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 15815 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 15816 // Try and choose the cheaper one to negate. 15817 NegatibleCost N0Cost = NegatibleCost::Expensive; 15818 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 15819 N0Cost, Depth + 1); 15820 15821 NegatibleCost N1Cost = NegatibleCost::Expensive; 15822 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 15823 N1Cost, Depth + 1); 15824 15825 if (NegN0 && N0Cost <= N1Cost) { 15826 Cost = std::min(N0Cost, N2Cost); 15827 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 15828 } else if (NegN1) { 15829 Cost = std::min(N1Cost, N2Cost); 15830 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 15831 } 15832 } 15833 15834 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 15835 if (isOperationLegal(ISD::FMA, VT)) { 15836 Cost = N2Cost; 15837 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 15838 } 15839 15840 break; 15841 } 15842 15843 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 15844 Cost, Depth); 15845 } 15846 15847 // Override to enable LOAD_STACK_GUARD lowering on Linux. 15848 bool PPCTargetLowering::useLoadStackGuardNode() const { 15849 if (!Subtarget.isTargetLinux()) 15850 return TargetLowering::useLoadStackGuardNode(); 15851 return true; 15852 } 15853 15854 // Override to disable global variable loading on Linux. 15855 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 15856 if (!Subtarget.isTargetLinux()) 15857 return TargetLowering::insertSSPDeclarations(M); 15858 } 15859 15860 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 15861 bool ForCodeSize) const { 15862 if (!VT.isSimple() || !Subtarget.hasVSX()) 15863 return false; 15864 15865 switch(VT.getSimpleVT().SimpleTy) { 15866 default: 15867 // For FP types that are currently not supported by PPC backend, return 15868 // false. Examples: f16, f80. 15869 return false; 15870 case MVT::f32: 15871 case MVT::f64: 15872 if (Subtarget.hasPrefixInstrs()) { 15873 // With prefixed instructions, we can materialize anything that can be 15874 // represented with a 32-bit immediate, not just positive zero. 15875 APFloat APFloatOfImm = Imm; 15876 return convertToNonDenormSingle(APFloatOfImm); 15877 } 15878 LLVM_FALLTHROUGH; 15879 case MVT::ppcf128: 15880 return Imm.isPosZero(); 15881 } 15882 } 15883 15884 // For vector shift operation op, fold 15885 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 15886 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 15887 SelectionDAG &DAG) { 15888 SDValue N0 = N->getOperand(0); 15889 SDValue N1 = N->getOperand(1); 15890 EVT VT = N0.getValueType(); 15891 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 15892 unsigned Opcode = N->getOpcode(); 15893 unsigned TargetOpcode; 15894 15895 switch (Opcode) { 15896 default: 15897 llvm_unreachable("Unexpected shift operation"); 15898 case ISD::SHL: 15899 TargetOpcode = PPCISD::SHL; 15900 break; 15901 case ISD::SRL: 15902 TargetOpcode = PPCISD::SRL; 15903 break; 15904 case ISD::SRA: 15905 TargetOpcode = PPCISD::SRA; 15906 break; 15907 } 15908 15909 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 15910 N1->getOpcode() == ISD::AND) 15911 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 15912 if (Mask->getZExtValue() == OpSizeInBits - 1) 15913 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 15914 15915 return SDValue(); 15916 } 15917 15918 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 15919 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15920 return Value; 15921 15922 SDValue N0 = N->getOperand(0); 15923 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 15924 if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || 15925 N0.getOpcode() != ISD::SIGN_EXTEND || 15926 N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || 15927 N->getValueType(0) != MVT::i64) 15928 return SDValue(); 15929 15930 // We can't save an operation here if the value is already extended, and 15931 // the existing shift is easier to combine. 15932 SDValue ExtsSrc = N0.getOperand(0); 15933 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 15934 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 15935 return SDValue(); 15936 15937 SDLoc DL(N0); 15938 SDValue ShiftBy = SDValue(CN1, 0); 15939 // We want the shift amount to be i32 on the extswli, but the shift could 15940 // have an i64. 15941 if (ShiftBy.getValueType() == MVT::i64) 15942 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 15943 15944 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 15945 ShiftBy); 15946 } 15947 15948 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 15949 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15950 return Value; 15951 15952 return SDValue(); 15953 } 15954 15955 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 15956 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15957 return Value; 15958 15959 return SDValue(); 15960 } 15961 15962 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 15963 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 15964 // When C is zero, the equation (addi Z, -C) can be simplified to Z 15965 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 15966 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 15967 const PPCSubtarget &Subtarget) { 15968 if (!Subtarget.isPPC64()) 15969 return SDValue(); 15970 15971 SDValue LHS = N->getOperand(0); 15972 SDValue RHS = N->getOperand(1); 15973 15974 auto isZextOfCompareWithConstant = [](SDValue Op) { 15975 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 15976 Op.getValueType() != MVT::i64) 15977 return false; 15978 15979 SDValue Cmp = Op.getOperand(0); 15980 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 15981 Cmp.getOperand(0).getValueType() != MVT::i64) 15982 return false; 15983 15984 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 15985 int64_t NegConstant = 0 - Constant->getSExtValue(); 15986 // Due to the limitations of the addi instruction, 15987 // -C is required to be [-32768, 32767]. 15988 return isInt<16>(NegConstant); 15989 } 15990 15991 return false; 15992 }; 15993 15994 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 15995 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 15996 15997 // If there is a pattern, canonicalize a zext operand to the RHS. 15998 if (LHSHasPattern && !RHSHasPattern) 15999 std::swap(LHS, RHS); 16000 else if (!LHSHasPattern && !RHSHasPattern) 16001 return SDValue(); 16002 16003 SDLoc DL(N); 16004 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 16005 SDValue Cmp = RHS.getOperand(0); 16006 SDValue Z = Cmp.getOperand(0); 16007 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 16008 16009 assert(Constant && "Constant Should not be a null pointer."); 16010 int64_t NegConstant = 0 - Constant->getSExtValue(); 16011 16012 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 16013 default: break; 16014 case ISD::SETNE: { 16015 // when C == 0 16016 // --> addze X, (addic Z, -1).carry 16017 // / 16018 // add X, (zext(setne Z, C))-- 16019 // \ when -32768 <= -C <= 32767 && C != 0 16020 // --> addze X, (addic (addi Z, -C), -1).carry 16021 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16022 DAG.getConstant(NegConstant, DL, MVT::i64)); 16023 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16024 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16025 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 16026 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16027 SDValue(Addc.getNode(), 1)); 16028 } 16029 case ISD::SETEQ: { 16030 // when C == 0 16031 // --> addze X, (subfic Z, 0).carry 16032 // / 16033 // add X, (zext(sete Z, C))-- 16034 // \ when -32768 <= -C <= 32767 && C != 0 16035 // --> addze X, (subfic (addi Z, -C), 0).carry 16036 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16037 DAG.getConstant(NegConstant, DL, MVT::i64)); 16038 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16039 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16040 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 16041 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16042 SDValue(Subc.getNode(), 1)); 16043 } 16044 } 16045 16046 return SDValue(); 16047 } 16048 16049 // Transform 16050 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 16051 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 16052 // In this case both C1 and C2 must be known constants. 16053 // C1+C2 must fit into a 34 bit signed integer. 16054 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 16055 const PPCSubtarget &Subtarget) { 16056 if (!Subtarget.isUsingPCRelativeCalls()) 16057 return SDValue(); 16058 16059 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 16060 // If we find that node try to cast the Global Address and the Constant. 16061 SDValue LHS = N->getOperand(0); 16062 SDValue RHS = N->getOperand(1); 16063 16064 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16065 std::swap(LHS, RHS); 16066 16067 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16068 return SDValue(); 16069 16070 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 16071 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 16072 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 16073 16074 // Check that both casts succeeded. 16075 if (!GSDN || !ConstNode) 16076 return SDValue(); 16077 16078 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 16079 SDLoc DL(GSDN); 16080 16081 // The signed int offset needs to fit in 34 bits. 16082 if (!isInt<34>(NewOffset)) 16083 return SDValue(); 16084 16085 // The new global address is a copy of the old global address except 16086 // that it has the updated Offset. 16087 SDValue GA = 16088 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 16089 NewOffset, GSDN->getTargetFlags()); 16090 SDValue MatPCRel = 16091 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 16092 return MatPCRel; 16093 } 16094 16095 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 16096 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 16097 return Value; 16098 16099 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 16100 return Value; 16101 16102 return SDValue(); 16103 } 16104 16105 // Detect TRUNCATE operations on bitcasts of float128 values. 16106 // What we are looking for here is the situtation where we extract a subset 16107 // of bits from a 128 bit float. 16108 // This can be of two forms: 16109 // 1) BITCAST of f128 feeding TRUNCATE 16110 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 16111 // The reason this is required is because we do not have a legal i128 type 16112 // and so we want to prevent having to store the f128 and then reload part 16113 // of it. 16114 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 16115 DAGCombinerInfo &DCI) const { 16116 // If we are using CRBits then try that first. 16117 if (Subtarget.useCRBits()) { 16118 // Check if CRBits did anything and return that if it did. 16119 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 16120 return CRTruncValue; 16121 } 16122 16123 SDLoc dl(N); 16124 SDValue Op0 = N->getOperand(0); 16125 16126 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 16127 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 16128 EVT VT = N->getValueType(0); 16129 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16130 return SDValue(); 16131 SDValue Sub = Op0.getOperand(0); 16132 if (Sub.getOpcode() == ISD::SUB) { 16133 SDValue SubOp0 = Sub.getOperand(0); 16134 SDValue SubOp1 = Sub.getOperand(1); 16135 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 16136 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 16137 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 16138 SubOp1.getOperand(0), 16139 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 16140 } 16141 } 16142 } 16143 16144 // Looking for a truncate of i128 to i64. 16145 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 16146 return SDValue(); 16147 16148 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 16149 16150 // SRL feeding TRUNCATE. 16151 if (Op0.getOpcode() == ISD::SRL) { 16152 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 16153 // The right shift has to be by 64 bits. 16154 if (!ConstNode || ConstNode->getZExtValue() != 64) 16155 return SDValue(); 16156 16157 // Switch the element number to extract. 16158 EltToExtract = EltToExtract ? 0 : 1; 16159 // Update Op0 past the SRL. 16160 Op0 = Op0.getOperand(0); 16161 } 16162 16163 // BITCAST feeding a TRUNCATE possibly via SRL. 16164 if (Op0.getOpcode() == ISD::BITCAST && 16165 Op0.getValueType() == MVT::i128 && 16166 Op0.getOperand(0).getValueType() == MVT::f128) { 16167 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 16168 return DCI.DAG.getNode( 16169 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 16170 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 16171 } 16172 return SDValue(); 16173 } 16174 16175 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 16176 SelectionDAG &DAG = DCI.DAG; 16177 16178 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 16179 if (!ConstOpOrElement) 16180 return SDValue(); 16181 16182 // An imul is usually smaller than the alternative sequence for legal type. 16183 if (DAG.getMachineFunction().getFunction().hasMinSize() && 16184 isOperationLegal(ISD::MUL, N->getValueType(0))) 16185 return SDValue(); 16186 16187 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 16188 switch (this->Subtarget.getCPUDirective()) { 16189 default: 16190 // TODO: enhance the condition for subtarget before pwr8 16191 return false; 16192 case PPC::DIR_PWR8: 16193 // type mul add shl 16194 // scalar 4 1 1 16195 // vector 7 2 2 16196 return true; 16197 case PPC::DIR_PWR9: 16198 case PPC::DIR_PWR10: 16199 case PPC::DIR_PWR_FUTURE: 16200 // type mul add shl 16201 // scalar 5 2 2 16202 // vector 7 2 2 16203 16204 // The cycle RATIO of related operations are showed as a table above. 16205 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 16206 // scalar and vector type. For 2 instrs patterns, add/sub + shl 16207 // are 4, it is always profitable; but for 3 instrs patterns 16208 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 16209 // So we should only do it for vector type. 16210 return IsAddOne && IsNeg ? VT.isVector() : true; 16211 } 16212 }; 16213 16214 EVT VT = N->getValueType(0); 16215 SDLoc DL(N); 16216 16217 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 16218 bool IsNeg = MulAmt.isNegative(); 16219 APInt MulAmtAbs = MulAmt.abs(); 16220 16221 if ((MulAmtAbs - 1).isPowerOf2()) { 16222 // (mul x, 2^N + 1) => (add (shl x, N), x) 16223 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 16224 16225 if (!IsProfitable(IsNeg, true, VT)) 16226 return SDValue(); 16227 16228 SDValue Op0 = N->getOperand(0); 16229 SDValue Op1 = 16230 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16231 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 16232 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 16233 16234 if (!IsNeg) 16235 return Res; 16236 16237 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 16238 } else if ((MulAmtAbs + 1).isPowerOf2()) { 16239 // (mul x, 2^N - 1) => (sub (shl x, N), x) 16240 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 16241 16242 if (!IsProfitable(IsNeg, false, VT)) 16243 return SDValue(); 16244 16245 SDValue Op0 = N->getOperand(0); 16246 SDValue Op1 = 16247 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16248 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 16249 16250 if (!IsNeg) 16251 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 16252 else 16253 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 16254 16255 } else { 16256 return SDValue(); 16257 } 16258 } 16259 16260 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 16261 // in combiner since we need to check SD flags and other subtarget features. 16262 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 16263 DAGCombinerInfo &DCI) const { 16264 SDValue N0 = N->getOperand(0); 16265 SDValue N1 = N->getOperand(1); 16266 SDValue N2 = N->getOperand(2); 16267 SDNodeFlags Flags = N->getFlags(); 16268 EVT VT = N->getValueType(0); 16269 SelectionDAG &DAG = DCI.DAG; 16270 const TargetOptions &Options = getTargetMachine().Options; 16271 unsigned Opc = N->getOpcode(); 16272 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 16273 bool LegalOps = !DCI.isBeforeLegalizeOps(); 16274 SDLoc Loc(N); 16275 16276 if (!isOperationLegal(ISD::FMA, VT)) 16277 return SDValue(); 16278 16279 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 16280 // since (fnmsub a b c)=-0 while c-ab=+0. 16281 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 16282 return SDValue(); 16283 16284 // (fma (fneg a) b c) => (fnmsub a b c) 16285 // (fnmsub (fneg a) b c) => (fma a b c) 16286 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 16287 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 16288 16289 // (fma a (fneg b) c) => (fnmsub a b c) 16290 // (fnmsub a (fneg b) c) => (fma a b c) 16291 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 16292 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 16293 16294 return SDValue(); 16295 } 16296 16297 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 16298 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 16299 if (!Subtarget.is64BitELFABI()) 16300 return false; 16301 16302 // If not a tail call then no need to proceed. 16303 if (!CI->isTailCall()) 16304 return false; 16305 16306 // If sibling calls have been disabled and tail-calls aren't guaranteed 16307 // there is no reason to duplicate. 16308 auto &TM = getTargetMachine(); 16309 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 16310 return false; 16311 16312 // Can't tail call a function called indirectly, or if it has variadic args. 16313 const Function *Callee = CI->getCalledFunction(); 16314 if (!Callee || Callee->isVarArg()) 16315 return false; 16316 16317 // Make sure the callee and caller calling conventions are eligible for tco. 16318 const Function *Caller = CI->getParent()->getParent(); 16319 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 16320 CI->getCallingConv())) 16321 return false; 16322 16323 // If the function is local then we have a good chance at tail-calling it 16324 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 16325 } 16326 16327 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 16328 if (!Subtarget.hasVSX()) 16329 return false; 16330 if (Subtarget.hasP9Vector() && VT == MVT::f128) 16331 return true; 16332 return VT == MVT::f32 || VT == MVT::f64 || 16333 VT == MVT::v4f32 || VT == MVT::v2f64; 16334 } 16335 16336 bool PPCTargetLowering:: 16337 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 16338 const Value *Mask = AndI.getOperand(1); 16339 // If the mask is suitable for andi. or andis. we should sink the and. 16340 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 16341 // Can't handle constants wider than 64-bits. 16342 if (CI->getBitWidth() > 64) 16343 return false; 16344 int64_t ConstVal = CI->getZExtValue(); 16345 return isUInt<16>(ConstVal) || 16346 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 16347 } 16348 16349 // For non-constant masks, we can always use the record-form and. 16350 return true; 16351 } 16352 16353 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 16354 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 16355 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 16356 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 16357 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 16358 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 16359 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 16360 assert(Subtarget.hasP9Altivec() && 16361 "Only combine this when P9 altivec supported!"); 16362 EVT VT = N->getValueType(0); 16363 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16364 return SDValue(); 16365 16366 SelectionDAG &DAG = DCI.DAG; 16367 SDLoc dl(N); 16368 if (N->getOperand(0).getOpcode() == ISD::SUB) { 16369 // Even for signed integers, if it's known to be positive (as signed 16370 // integer) due to zero-extended inputs. 16371 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 16372 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 16373 if ((SubOpcd0 == ISD::ZERO_EXTEND || 16374 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 16375 (SubOpcd1 == ISD::ZERO_EXTEND || 16376 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 16377 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16378 N->getOperand(0)->getOperand(0), 16379 N->getOperand(0)->getOperand(1), 16380 DAG.getTargetConstant(0, dl, MVT::i32)); 16381 } 16382 16383 // For type v4i32, it can be optimized with xvnegsp + vabsduw 16384 if (N->getOperand(0).getValueType() == MVT::v4i32 && 16385 N->getOperand(0).hasOneUse()) { 16386 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16387 N->getOperand(0)->getOperand(0), 16388 N->getOperand(0)->getOperand(1), 16389 DAG.getTargetConstant(1, dl, MVT::i32)); 16390 } 16391 } 16392 16393 return SDValue(); 16394 } 16395 16396 // For type v4i32/v8ii16/v16i8, transform 16397 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 16398 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 16399 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 16400 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 16401 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 16402 DAGCombinerInfo &DCI) const { 16403 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 16404 assert(Subtarget.hasP9Altivec() && 16405 "Only combine this when P9 altivec supported!"); 16406 16407 SelectionDAG &DAG = DCI.DAG; 16408 SDLoc dl(N); 16409 SDValue Cond = N->getOperand(0); 16410 SDValue TrueOpnd = N->getOperand(1); 16411 SDValue FalseOpnd = N->getOperand(2); 16412 EVT VT = N->getOperand(1).getValueType(); 16413 16414 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 16415 FalseOpnd.getOpcode() != ISD::SUB) 16416 return SDValue(); 16417 16418 // ABSD only available for type v4i32/v8i16/v16i8 16419 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16420 return SDValue(); 16421 16422 // At least to save one more dependent computation 16423 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 16424 return SDValue(); 16425 16426 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 16427 16428 // Can only handle unsigned comparison here 16429 switch (CC) { 16430 default: 16431 return SDValue(); 16432 case ISD::SETUGT: 16433 case ISD::SETUGE: 16434 break; 16435 case ISD::SETULT: 16436 case ISD::SETULE: 16437 std::swap(TrueOpnd, FalseOpnd); 16438 break; 16439 } 16440 16441 SDValue CmpOpnd1 = Cond.getOperand(0); 16442 SDValue CmpOpnd2 = Cond.getOperand(1); 16443 16444 // SETCC CmpOpnd1 CmpOpnd2 cond 16445 // TrueOpnd = CmpOpnd1 - CmpOpnd2 16446 // FalseOpnd = CmpOpnd2 - CmpOpnd1 16447 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 16448 TrueOpnd.getOperand(1) == CmpOpnd2 && 16449 FalseOpnd.getOperand(0) == CmpOpnd2 && 16450 FalseOpnd.getOperand(1) == CmpOpnd1) { 16451 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 16452 CmpOpnd1, CmpOpnd2, 16453 DAG.getTargetConstant(0, dl, MVT::i32)); 16454 } 16455 16456 return SDValue(); 16457 } 16458