1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSectionXCOFF.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
122 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
123 
124 // TODO - Remove this option if soft fp128 has been fully supported .
125 static cl::opt<bool>
126     EnableSoftFP128("enable-soft-fp128",
127                     cl::desc("temp option to enable soft fp128"), cl::Hidden);
128 
129 STATISTIC(NumTailCalls, "Number of tail calls");
130 STATISTIC(NumSiblingCalls, "Number of sibling calls");
131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
133 
134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
135 
136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
137 
138 // FIXME: Remove this once the bug has been fixed!
139 extern cl::opt<bool> ANDIGlueBug;
140 
141 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
142                                      const PPCSubtarget &STI)
143     : TargetLowering(TM), Subtarget(STI) {
144   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
145   // arguments are at least 4/8 bytes aligned.
146   bool isPPC64 = Subtarget.isPPC64();
147   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
148 
149   // Set up the register classes.
150   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
151   if (!useSoftFloat()) {
152     if (hasSPE()) {
153       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
154       // EFPU2 APU only supports f32
155       if (!Subtarget.hasEFPU2())
156         addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
157     } else {
158       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
159       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
160     }
161   }
162 
163   // Match BITREVERSE to customized fast code sequence in the td file.
164   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
165   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
166 
167   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
168   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
169 
170   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
171   for (MVT VT : MVT::integer_valuetypes()) {
172     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
173     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
174   }
175 
176   if (Subtarget.isISA3_0()) {
177     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
178     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
179     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
180     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
181   } else {
182     // No extending loads from f16 or HW conversions back and forth.
183     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
184     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
185     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
186     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
187     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
188     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
189     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
190     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
191   }
192 
193   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
194 
195   // PowerPC has pre-inc load and store's.
196   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
197   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
198   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
199   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
200   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
201   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
202   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
203   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
204   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
205   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
206   if (!Subtarget.hasSPE()) {
207     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
208     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
209     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
210     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
211   }
212 
213   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
214   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
215   for (MVT VT : ScalarIntVTs) {
216     setOperationAction(ISD::ADDC, VT, Legal);
217     setOperationAction(ISD::ADDE, VT, Legal);
218     setOperationAction(ISD::SUBC, VT, Legal);
219     setOperationAction(ISD::SUBE, VT, Legal);
220   }
221 
222   if (Subtarget.useCRBits()) {
223     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
224 
225     if (isPPC64 || Subtarget.hasFPCVT()) {
226       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote);
227       AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1,
228                         isPPC64 ? MVT::i64 : MVT::i32);
229       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote);
230       AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1,
231                         isPPC64 ? MVT::i64 : MVT::i32);
232 
233       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
234       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
235                          isPPC64 ? MVT::i64 : MVT::i32);
236       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
237       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
238                         isPPC64 ? MVT::i64 : MVT::i32);
239 
240       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote);
241       AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1,
242                         isPPC64 ? MVT::i64 : MVT::i32);
243       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote);
244       AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1,
245                         isPPC64 ? MVT::i64 : MVT::i32);
246 
247       setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
248       AddPromotedToType(ISD::FP_TO_SINT, MVT::i1,
249                         isPPC64 ? MVT::i64 : MVT::i32);
250       setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
251       AddPromotedToType(ISD::FP_TO_UINT, MVT::i1,
252                         isPPC64 ? MVT::i64 : MVT::i32);
253     } else {
254       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom);
255       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom);
256       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
257       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
258     }
259 
260     // PowerPC does not support direct load/store of condition registers.
261     setOperationAction(ISD::LOAD, MVT::i1, Custom);
262     setOperationAction(ISD::STORE, MVT::i1, Custom);
263 
264     // FIXME: Remove this once the ANDI glue bug is fixed:
265     if (ANDIGlueBug)
266       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
267 
268     for (MVT VT : MVT::integer_valuetypes()) {
269       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
270       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
271       setTruncStoreAction(VT, MVT::i1, Expand);
272     }
273 
274     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
275   }
276 
277   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
278   // PPC (the libcall is not available).
279   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
280   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
281   setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom);
282   setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom);
283 
284   // We do not currently implement these libm ops for PowerPC.
285   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
286   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
287   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
288   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
289   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
290   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
291 
292   // PowerPC has no SREM/UREM instructions unless we are on P9
293   // On P9 we may use a hardware instruction to compute the remainder.
294   // When the result of both the remainder and the division is required it is
295   // more efficient to compute the remainder from the result of the division
296   // rather than use the remainder instruction. The instructions are legalized
297   // directly because the DivRemPairsPass performs the transformation at the IR
298   // level.
299   if (Subtarget.isISA3_0()) {
300     setOperationAction(ISD::SREM, MVT::i32, Legal);
301     setOperationAction(ISD::UREM, MVT::i32, Legal);
302     setOperationAction(ISD::SREM, MVT::i64, Legal);
303     setOperationAction(ISD::UREM, MVT::i64, Legal);
304   } else {
305     setOperationAction(ISD::SREM, MVT::i32, Expand);
306     setOperationAction(ISD::UREM, MVT::i32, Expand);
307     setOperationAction(ISD::SREM, MVT::i64, Expand);
308     setOperationAction(ISD::UREM, MVT::i64, Expand);
309   }
310 
311   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
312   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
313   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
314   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
315   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
316   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
317   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
318   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
319   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
320 
321   // Handle constrained floating-point operations of scalar.
322   // TODO: Handle SPE specific operation.
323   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
324   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
325   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
326   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
327   setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
328   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
329 
330   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
331   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
332   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
333   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
334   setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
335   if (Subtarget.hasVSX()) {
336     setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal);
337     setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal);
338   }
339 
340   if (Subtarget.hasFSQRT()) {
341     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
342     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
343   }
344 
345   if (Subtarget.hasFPRND()) {
346     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
347     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
348     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
349     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
350 
351     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
352     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
353     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
354     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
355   }
356 
357   // We don't support sin/cos/sqrt/fmod/pow
358   setOperationAction(ISD::FSIN , MVT::f64, Expand);
359   setOperationAction(ISD::FCOS , MVT::f64, Expand);
360   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
361   setOperationAction(ISD::FREM , MVT::f64, Expand);
362   setOperationAction(ISD::FPOW , MVT::f64, Expand);
363   setOperationAction(ISD::FSIN , MVT::f32, Expand);
364   setOperationAction(ISD::FCOS , MVT::f32, Expand);
365   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
366   setOperationAction(ISD::FREM , MVT::f32, Expand);
367   setOperationAction(ISD::FPOW , MVT::f32, Expand);
368   if (Subtarget.hasSPE()) {
369     setOperationAction(ISD::FMA  , MVT::f64, Expand);
370     setOperationAction(ISD::FMA  , MVT::f32, Expand);
371   } else {
372     setOperationAction(ISD::FMA  , MVT::f64, Legal);
373     setOperationAction(ISD::FMA  , MVT::f32, Legal);
374   }
375 
376   if (Subtarget.hasSPE())
377     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
378 
379   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
380 
381   // If we're enabling GP optimizations, use hardware square root
382   if (!Subtarget.hasFSQRT() &&
383       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
384         Subtarget.hasFRE()))
385     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
386 
387   if (!Subtarget.hasFSQRT() &&
388       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
389         Subtarget.hasFRES()))
390     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
391 
392   if (Subtarget.hasFCPSGN()) {
393     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
394     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
395   } else {
396     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
397     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
398   }
399 
400   if (Subtarget.hasFPRND()) {
401     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
402     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
403     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
404     setOperationAction(ISD::FROUND, MVT::f64, Legal);
405 
406     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
407     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
408     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
409     setOperationAction(ISD::FROUND, MVT::f32, Legal);
410   }
411 
412   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
413   // to speed up scalar BSWAP64.
414   // CTPOP or CTTZ were introduced in P8/P9 respectively
415   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
416   if (Subtarget.hasP9Vector())
417     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
418   else
419     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
420   if (Subtarget.isISA3_0()) {
421     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
422     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
423   } else {
424     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
425     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
426   }
427 
428   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
429     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
430     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
431   } else {
432     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
433     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
434   }
435 
436   // PowerPC does not have ROTR
437   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
438   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
439 
440   if (!Subtarget.useCRBits()) {
441     // PowerPC does not have Select
442     setOperationAction(ISD::SELECT, MVT::i32, Expand);
443     setOperationAction(ISD::SELECT, MVT::i64, Expand);
444     setOperationAction(ISD::SELECT, MVT::f32, Expand);
445     setOperationAction(ISD::SELECT, MVT::f64, Expand);
446   }
447 
448   // PowerPC wants to turn select_cc of FP into fsel when possible.
449   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
450   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
451 
452   // PowerPC wants to optimize integer setcc a bit
453   if (!Subtarget.useCRBits())
454     setOperationAction(ISD::SETCC, MVT::i32, Custom);
455 
456   if (Subtarget.hasFPU()) {
457     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
458     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
459     setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal);
460 
461     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
462     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
463     setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal);
464   }
465 
466   // PowerPC does not have BRCOND which requires SetCC
467   if (!Subtarget.useCRBits())
468     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
469 
470   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
471 
472   if (Subtarget.hasSPE()) {
473     // SPE has built-in conversions
474     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
475     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
476     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
477     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
478     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
479     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
480   } else {
481     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
482     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
483     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
484 
485     // PowerPC does not have [U|S]INT_TO_FP
486     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand);
487     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand);
488     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
489     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
490   }
491 
492   if (Subtarget.hasDirectMove() && isPPC64) {
493     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
494     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
495     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
496     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
497     if (TM.Options.UnsafeFPMath) {
498       setOperationAction(ISD::LRINT, MVT::f64, Legal);
499       setOperationAction(ISD::LRINT, MVT::f32, Legal);
500       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
501       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
502       setOperationAction(ISD::LROUND, MVT::f64, Legal);
503       setOperationAction(ISD::LROUND, MVT::f32, Legal);
504       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
505       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
506     }
507   } else {
508     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
509     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
510     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
511     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
512   }
513 
514   // We cannot sextinreg(i1).  Expand to shifts.
515   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
516 
517   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
518   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
519   // support continuation, user-level threading, and etc.. As a result, no
520   // other SjLj exception interfaces are implemented and please don't build
521   // your own exception handling based on them.
522   // LLVM/Clang supports zero-cost DWARF exception handling.
523   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
524   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
525 
526   // We want to legalize GlobalAddress and ConstantPool nodes into the
527   // appropriate instructions to materialize the address.
528   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
529   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
530   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
531   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
532   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
533   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
534   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
535   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
536   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
537   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
538 
539   // TRAP is legal.
540   setOperationAction(ISD::TRAP, MVT::Other, Legal);
541 
542   // TRAMPOLINE is custom lowered.
543   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
544   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
545 
546   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
547   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
548 
549   if (Subtarget.is64BitELFABI()) {
550     // VAARG always uses double-word chunks, so promote anything smaller.
551     setOperationAction(ISD::VAARG, MVT::i1, Promote);
552     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
553     setOperationAction(ISD::VAARG, MVT::i8, Promote);
554     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
555     setOperationAction(ISD::VAARG, MVT::i16, Promote);
556     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
557     setOperationAction(ISD::VAARG, MVT::i32, Promote);
558     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
559     setOperationAction(ISD::VAARG, MVT::Other, Expand);
560   } else if (Subtarget.is32BitELFABI()) {
561     // VAARG is custom lowered with the 32-bit SVR4 ABI.
562     setOperationAction(ISD::VAARG, MVT::Other, Custom);
563     setOperationAction(ISD::VAARG, MVT::i64, Custom);
564   } else
565     setOperationAction(ISD::VAARG, MVT::Other, Expand);
566 
567   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
568   if (Subtarget.is32BitELFABI())
569     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
570   else
571     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
572 
573   // Use the default implementation.
574   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
575   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
576   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
577   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
578   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
579   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
580   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
581   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
582   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
583 
584   // We want to custom lower some of our intrinsics.
585   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
586 
587   // To handle counter-based loop conditions.
588   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
589 
590   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
591   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
592   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
593   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
594 
595   // Comparisons that require checking two conditions.
596   if (Subtarget.hasSPE()) {
597     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
598     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
599     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
600     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
601   }
602   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
603   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
604   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
605   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
606   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
607   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
608   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
609   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
610   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
611   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
612   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
613   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
614 
615   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
616   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
617 
618   if (Subtarget.has64BitSupport()) {
619     // They also have instructions for converting between i64 and fp.
620     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
621     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand);
622     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
623     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
624     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
625     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
626     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
627     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
628     // This is just the low 32 bits of a (signed) fp->i64 conversion.
629     // We cannot do this with Promote because i64 is not a legal type.
630     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
631     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
632 
633     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) {
634       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
635       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
636     }
637   } else {
638     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
639     if (Subtarget.hasSPE()) {
640       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
641       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
642     } else {
643       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand);
644       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
645     }
646   }
647 
648   // With the instructions enabled under FPCVT, we can do everything.
649   if (Subtarget.hasFPCVT()) {
650     if (Subtarget.has64BitSupport()) {
651       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
652       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
653       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
654       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
655       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
656       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
657       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
658       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
659     }
660 
661     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
662     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
663     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
664     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
665     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
666     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
667     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
668     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
669   }
670 
671   if (Subtarget.use64BitRegs()) {
672     // 64-bit PowerPC implementations can support i64 types directly
673     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
674     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
675     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
676     // 64-bit PowerPC wants to expand i128 shifts itself.
677     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
678     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
679     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
680   } else {
681     // 32-bit PowerPC wants to expand i64 shifts itself.
682     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
683     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
684     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
685   }
686 
687   // PowerPC has better expansions for funnel shifts than the generic
688   // TargetLowering::expandFunnelShift.
689   if (Subtarget.has64BitSupport()) {
690     setOperationAction(ISD::FSHL, MVT::i64, Custom);
691     setOperationAction(ISD::FSHR, MVT::i64, Custom);
692   }
693   setOperationAction(ISD::FSHL, MVT::i32, Custom);
694   setOperationAction(ISD::FSHR, MVT::i32, Custom);
695 
696   if (Subtarget.hasVSX()) {
697     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
698     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
699     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
700     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
701   }
702 
703   if (Subtarget.hasAltivec()) {
704     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
705       setOperationAction(ISD::SADDSAT, VT, Legal);
706       setOperationAction(ISD::SSUBSAT, VT, Legal);
707       setOperationAction(ISD::UADDSAT, VT, Legal);
708       setOperationAction(ISD::USUBSAT, VT, Legal);
709     }
710     // First set operation action for all vector types to expand. Then we
711     // will selectively turn on ones that can be effectively codegen'd.
712     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
713       // add/sub are legal for all supported vector VT's.
714       setOperationAction(ISD::ADD, VT, Legal);
715       setOperationAction(ISD::SUB, VT, Legal);
716 
717       // For v2i64, these are only valid with P8Vector. This is corrected after
718       // the loop.
719       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
720         setOperationAction(ISD::SMAX, VT, Legal);
721         setOperationAction(ISD::SMIN, VT, Legal);
722         setOperationAction(ISD::UMAX, VT, Legal);
723         setOperationAction(ISD::UMIN, VT, Legal);
724       }
725       else {
726         setOperationAction(ISD::SMAX, VT, Expand);
727         setOperationAction(ISD::SMIN, VT, Expand);
728         setOperationAction(ISD::UMAX, VT, Expand);
729         setOperationAction(ISD::UMIN, VT, Expand);
730       }
731 
732       if (Subtarget.hasVSX()) {
733         setOperationAction(ISD::FMAXNUM, VT, Legal);
734         setOperationAction(ISD::FMINNUM, VT, Legal);
735       }
736 
737       // Vector instructions introduced in P8
738       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
739         setOperationAction(ISD::CTPOP, VT, Legal);
740         setOperationAction(ISD::CTLZ, VT, Legal);
741       }
742       else {
743         setOperationAction(ISD::CTPOP, VT, Expand);
744         setOperationAction(ISD::CTLZ, VT, Expand);
745       }
746 
747       // Vector instructions introduced in P9
748       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
749         setOperationAction(ISD::CTTZ, VT, Legal);
750       else
751         setOperationAction(ISD::CTTZ, VT, Expand);
752 
753       // We promote all shuffles to v16i8.
754       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
755       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
756 
757       // We promote all non-typed operations to v4i32.
758       setOperationAction(ISD::AND   , VT, Promote);
759       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
760       setOperationAction(ISD::OR    , VT, Promote);
761       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
762       setOperationAction(ISD::XOR   , VT, Promote);
763       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
764       setOperationAction(ISD::LOAD  , VT, Promote);
765       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
766       setOperationAction(ISD::SELECT, VT, Promote);
767       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
768       setOperationAction(ISD::VSELECT, VT, Legal);
769       setOperationAction(ISD::SELECT_CC, VT, Promote);
770       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
771       setOperationAction(ISD::STORE, VT, Promote);
772       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
773 
774       // No other operations are legal.
775       setOperationAction(ISD::MUL , VT, Expand);
776       setOperationAction(ISD::SDIV, VT, Expand);
777       setOperationAction(ISD::SREM, VT, Expand);
778       setOperationAction(ISD::UDIV, VT, Expand);
779       setOperationAction(ISD::UREM, VT, Expand);
780       setOperationAction(ISD::FDIV, VT, Expand);
781       setOperationAction(ISD::FREM, VT, Expand);
782       setOperationAction(ISD::FNEG, VT, Expand);
783       setOperationAction(ISD::FSQRT, VT, Expand);
784       setOperationAction(ISD::FLOG, VT, Expand);
785       setOperationAction(ISD::FLOG10, VT, Expand);
786       setOperationAction(ISD::FLOG2, VT, Expand);
787       setOperationAction(ISD::FEXP, VT, Expand);
788       setOperationAction(ISD::FEXP2, VT, Expand);
789       setOperationAction(ISD::FSIN, VT, Expand);
790       setOperationAction(ISD::FCOS, VT, Expand);
791       setOperationAction(ISD::FABS, VT, Expand);
792       setOperationAction(ISD::FFLOOR, VT, Expand);
793       setOperationAction(ISD::FCEIL,  VT, Expand);
794       setOperationAction(ISD::FTRUNC, VT, Expand);
795       setOperationAction(ISD::FRINT,  VT, Expand);
796       setOperationAction(ISD::FNEARBYINT, VT, Expand);
797       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
798       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
799       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
800       setOperationAction(ISD::MULHU, VT, Expand);
801       setOperationAction(ISD::MULHS, VT, Expand);
802       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
803       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
804       setOperationAction(ISD::UDIVREM, VT, Expand);
805       setOperationAction(ISD::SDIVREM, VT, Expand);
806       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
807       setOperationAction(ISD::FPOW, VT, Expand);
808       setOperationAction(ISD::BSWAP, VT, Expand);
809       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
810       setOperationAction(ISD::ROTL, VT, Expand);
811       setOperationAction(ISD::ROTR, VT, Expand);
812 
813       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
814         setTruncStoreAction(VT, InnerVT, Expand);
815         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
816         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
817         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
818       }
819     }
820     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
821     if (!Subtarget.hasP8Vector()) {
822       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
823       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
824       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
825       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
826     }
827 
828     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
829     // with merges, splats, etc.
830     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
831 
832     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
833     // are cheap, so handle them before they get expanded to scalar.
834     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
835     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
836     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
837     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
838     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
839 
840     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
841     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
842     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
843     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
844     setOperationAction(ISD::SELECT, MVT::v4i32,
845                        Subtarget.useCRBits() ? Legal : Expand);
846     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
847     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
848     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
849     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
850     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
851     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
852     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
853     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
854     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
855     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
856     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
857     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
858     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
859 
860     // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
861     setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
862     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
863     if (Subtarget.hasAltivec())
864       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
865         setOperationAction(ISD::ROTL, VT, Legal);
866     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
867     if (Subtarget.hasP8Altivec())
868       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
869 
870     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
871     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
872     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
873     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
874 
875     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
876     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
877 
878     if (Subtarget.hasVSX()) {
879       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
880       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
881     }
882 
883     if (Subtarget.hasP8Altivec())
884       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
885     else
886       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
887 
888     if (Subtarget.isISA3_1()) {
889       setOperationAction(ISD::MUL, MVT::v2i64, Legal);
890       setOperationAction(ISD::MULHS, MVT::v2i64, Legal);
891       setOperationAction(ISD::MULHU, MVT::v2i64, Legal);
892       setOperationAction(ISD::MULHS, MVT::v4i32, Legal);
893       setOperationAction(ISD::MULHU, MVT::v4i32, Legal);
894       setOperationAction(ISD::UDIV, MVT::v2i64, Legal);
895       setOperationAction(ISD::SDIV, MVT::v2i64, Legal);
896       setOperationAction(ISD::UDIV, MVT::v4i32, Legal);
897       setOperationAction(ISD::SDIV, MVT::v4i32, Legal);
898       setOperationAction(ISD::UREM, MVT::v2i64, Legal);
899       setOperationAction(ISD::SREM, MVT::v2i64, Legal);
900       setOperationAction(ISD::UREM, MVT::v4i32, Legal);
901       setOperationAction(ISD::SREM, MVT::v4i32, Legal);
902       setOperationAction(ISD::UREM, MVT::v1i128, Legal);
903       setOperationAction(ISD::SREM, MVT::v1i128, Legal);
904       setOperationAction(ISD::UDIV, MVT::v1i128, Legal);
905       setOperationAction(ISD::SDIV, MVT::v1i128, Legal);
906       setOperationAction(ISD::ROTL, MVT::v1i128, Legal);
907     }
908 
909     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
910     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
911 
912     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
913     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
914 
915     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
916     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
917     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
918     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
919 
920     // Altivec does not contain unordered floating-point compare instructions
921     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
922     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
923     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
924     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
925 
926     if (Subtarget.hasVSX()) {
927       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
928       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
929       if (Subtarget.hasP8Vector()) {
930         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
931         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
932       }
933       if (Subtarget.hasDirectMove() && isPPC64) {
934         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
935         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
936         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
937         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
938         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
939         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
940         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
941         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
942       }
943       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
944 
945       // The nearbyint variants are not allowed to raise the inexact exception
946       // so we can only code-gen them with unsafe math.
947       if (TM.Options.UnsafeFPMath) {
948         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
949         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
950       }
951 
952       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
953       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
954       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
955       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
956       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
957       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
958       setOperationAction(ISD::FROUND, MVT::f64, Legal);
959       setOperationAction(ISD::FRINT, MVT::f64, Legal);
960 
961       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
962       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
963       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
964       setOperationAction(ISD::FROUND, MVT::f32, Legal);
965       setOperationAction(ISD::FRINT, MVT::f32, Legal);
966 
967       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
968       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
969 
970       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
971       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
972 
973       // Share the Altivec comparison restrictions.
974       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
975       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
976       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
977       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
978 
979       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
980       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
981 
982       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
983 
984       if (Subtarget.hasP8Vector())
985         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
986 
987       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
988 
989       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
990       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
991       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
992 
993       if (Subtarget.hasP8Altivec()) {
994         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
995         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
996         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
997 
998         // 128 bit shifts can be accomplished via 3 instructions for SHL and
999         // SRL, but not for SRA because of the instructions available:
1000         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
1001         // doing
1002         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
1003         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
1004         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1005 
1006         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
1007       }
1008       else {
1009         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
1010         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
1011         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
1012 
1013         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
1014 
1015         // VSX v2i64 only supports non-arithmetic operations.
1016         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
1017         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
1018       }
1019 
1020       if (Subtarget.isISA3_1())
1021         setOperationAction(ISD::SETCC, MVT::v1i128, Legal);
1022       else
1023         setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
1024 
1025       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
1026       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
1027       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
1028       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
1029 
1030       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
1031 
1032       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
1033       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
1034       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
1035       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
1036       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
1037       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
1038       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
1039       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
1040 
1041       // Custom handling for partial vectors of integers converted to
1042       // floating point. We already have optimal handling for v2i32 through
1043       // the DAG combine, so those aren't necessary.
1044       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom);
1045       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom);
1046       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom);
1047       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom);
1048       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom);
1049       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom);
1050       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom);
1051       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom);
1052       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
1053       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
1054       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
1055       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
1056       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
1057       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
1058       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
1059       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
1060 
1061       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
1062       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
1063       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
1064       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
1065       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1066       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
1067 
1068       if (Subtarget.hasDirectMove())
1069         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
1070       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
1071 
1072       // Handle constrained floating-point operations of vector.
1073       // The predictor is `hasVSX` because altivec instruction has
1074       // no exception but VSX vector instruction has.
1075       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
1076       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
1077       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
1078       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
1079       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
1080       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
1081       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
1082       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
1083       setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
1084       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
1085       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
1086       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
1087       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
1088 
1089       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
1090       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
1091       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
1092       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
1093       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
1094       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
1095       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
1096       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
1097       setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
1098       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
1099       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
1100       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
1101       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
1102 
1103       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
1104     }
1105 
1106     if (Subtarget.hasP8Altivec()) {
1107       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
1108       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
1109     }
1110 
1111     if (Subtarget.hasP9Vector()) {
1112       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1113       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1114 
1115       // 128 bit shifts can be accomplished via 3 instructions for SHL and
1116       // SRL, but not for SRA because of the instructions available:
1117       // VS{RL} and VS{RL}O.
1118       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1119       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1120       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1121 
1122       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1123       setOperationAction(ISD::FADD, MVT::f128, Legal);
1124       setOperationAction(ISD::FSUB, MVT::f128, Legal);
1125       setOperationAction(ISD::FDIV, MVT::f128, Legal);
1126       setOperationAction(ISD::FMUL, MVT::f128, Legal);
1127       setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1128       // No extending loads to f128 on PPC.
1129       for (MVT FPT : MVT::fp_valuetypes())
1130         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1131       setOperationAction(ISD::FMA, MVT::f128, Legal);
1132       setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1133       setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1134       setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1135       setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1136       setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1137       setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1138 
1139       setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1140       setOperationAction(ISD::FRINT, MVT::f128, Legal);
1141       setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1142       setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1143       setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1144       setOperationAction(ISD::FROUND, MVT::f128, Legal);
1145 
1146       setOperationAction(ISD::SELECT, MVT::f128, Expand);
1147       setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1148       setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1149       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1150       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1151       setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1152       // No implementation for these ops for PowerPC.
1153       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1154       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1155       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1156       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1157       setOperationAction(ISD::FREM, MVT::f128, Expand);
1158 
1159       // Handle constrained floating-point operations of fp128
1160       setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1161       setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1162       setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1163       setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1164       setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1165       setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1166       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1167       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1168       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1169       setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1170       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1171       setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1172       setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
1173       setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1174       setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1175       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1176       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1177       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1178       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1179       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1180     } else if (Subtarget.hasAltivec() && EnableSoftFP128) {
1181       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1182 
1183       for (MVT FPT : MVT::fp_valuetypes())
1184         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1185 
1186       setOperationAction(ISD::LOAD, MVT::f128, Promote);
1187       setOperationAction(ISD::STORE, MVT::f128, Promote);
1188 
1189       AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32);
1190       AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32);
1191 
1192       // Set FADD/FSUB as libcall to avoid the legalizer to expand the
1193       // fp_to_uint and int_to_fp.
1194       setOperationAction(ISD::FADD, MVT::f128, LibCall);
1195       setOperationAction(ISD::FSUB, MVT::f128, LibCall);
1196 
1197       setOperationAction(ISD::FMUL, MVT::f128, Expand);
1198       setOperationAction(ISD::FDIV, MVT::f128, Expand);
1199       setOperationAction(ISD::FNEG, MVT::f128, Expand);
1200       setOperationAction(ISD::FABS, MVT::f128, Expand);
1201       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1202       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1203       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1204       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1205       setOperationAction(ISD::FREM, MVT::f128, Expand);
1206       setOperationAction(ISD::FSQRT, MVT::f128, Expand);
1207       setOperationAction(ISD::FMA, MVT::f128, Expand);
1208       setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
1209 
1210       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1211       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1212 
1213       // Expand the fp_extend if the target type is fp128.
1214       setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand);
1215       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand);
1216 
1217       // Expand the fp_round if the source type is fp128.
1218       for (MVT VT : {MVT::f32, MVT::f64}) {
1219         setOperationAction(ISD::FP_ROUND, VT, Custom);
1220         setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom);
1221       }
1222     }
1223 
1224     if (Subtarget.hasP9Altivec()) {
1225       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1226       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1227 
1228       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1229       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1230       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1231       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1232       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1233       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1234       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1235     }
1236 
1237     if (Subtarget.isISA3_1()) {
1238       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
1239       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
1240     }
1241   }
1242 
1243   if (Subtarget.pairedVectorMemops()) {
1244     addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass);
1245     setOperationAction(ISD::LOAD, MVT::v256i1, Custom);
1246     setOperationAction(ISD::STORE, MVT::v256i1, Custom);
1247   }
1248   if (Subtarget.hasMMA()) {
1249     addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass);
1250     setOperationAction(ISD::LOAD, MVT::v512i1, Custom);
1251     setOperationAction(ISD::STORE, MVT::v512i1, Custom);
1252     setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom);
1253   }
1254 
1255   if (Subtarget.has64BitSupport())
1256     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1257 
1258   if (Subtarget.isISA3_1())
1259     setOperationAction(ISD::SRA, MVT::v1i128, Legal);
1260 
1261   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1262 
1263   if (!isPPC64) {
1264     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1265     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1266   }
1267 
1268   setBooleanContents(ZeroOrOneBooleanContent);
1269 
1270   if (Subtarget.hasAltivec()) {
1271     // Altivec instructions set fields to all zeros or all ones.
1272     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1273   }
1274 
1275   if (!isPPC64) {
1276     // These libcalls are not available in 32-bit.
1277     setLibcallName(RTLIB::SHL_I128, nullptr);
1278     setLibcallName(RTLIB::SRL_I128, nullptr);
1279     setLibcallName(RTLIB::SRA_I128, nullptr);
1280   }
1281 
1282   if (!isPPC64)
1283     setMaxAtomicSizeInBitsSupported(32);
1284 
1285   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1286 
1287   // We have target-specific dag combine patterns for the following nodes:
1288   setTargetDAGCombine(ISD::ADD);
1289   setTargetDAGCombine(ISD::SHL);
1290   setTargetDAGCombine(ISD::SRA);
1291   setTargetDAGCombine(ISD::SRL);
1292   setTargetDAGCombine(ISD::MUL);
1293   setTargetDAGCombine(ISD::FMA);
1294   setTargetDAGCombine(ISD::SINT_TO_FP);
1295   setTargetDAGCombine(ISD::BUILD_VECTOR);
1296   if (Subtarget.hasFPCVT())
1297     setTargetDAGCombine(ISD::UINT_TO_FP);
1298   setTargetDAGCombine(ISD::LOAD);
1299   setTargetDAGCombine(ISD::STORE);
1300   setTargetDAGCombine(ISD::BR_CC);
1301   if (Subtarget.useCRBits())
1302     setTargetDAGCombine(ISD::BRCOND);
1303   setTargetDAGCombine(ISD::BSWAP);
1304   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1305   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1306   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1307 
1308   setTargetDAGCombine(ISD::SIGN_EXTEND);
1309   setTargetDAGCombine(ISD::ZERO_EXTEND);
1310   setTargetDAGCombine(ISD::ANY_EXTEND);
1311 
1312   setTargetDAGCombine(ISD::TRUNCATE);
1313   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1314 
1315 
1316   if (Subtarget.useCRBits()) {
1317     setTargetDAGCombine(ISD::TRUNCATE);
1318     setTargetDAGCombine(ISD::SETCC);
1319     setTargetDAGCombine(ISD::SELECT_CC);
1320   }
1321 
1322   if (Subtarget.hasP9Altivec()) {
1323     setTargetDAGCombine(ISD::ABS);
1324     setTargetDAGCombine(ISD::VSELECT);
1325   }
1326 
1327   setLibcallName(RTLIB::LOG_F128, "logf128");
1328   setLibcallName(RTLIB::LOG2_F128, "log2f128");
1329   setLibcallName(RTLIB::LOG10_F128, "log10f128");
1330   setLibcallName(RTLIB::EXP_F128, "expf128");
1331   setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1332   setLibcallName(RTLIB::SIN_F128, "sinf128");
1333   setLibcallName(RTLIB::COS_F128, "cosf128");
1334   setLibcallName(RTLIB::POW_F128, "powf128");
1335   setLibcallName(RTLIB::FMIN_F128, "fminf128");
1336   setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1337   setLibcallName(RTLIB::REM_F128, "fmodf128");
1338   setLibcallName(RTLIB::SQRT_F128, "sqrtf128");
1339   setLibcallName(RTLIB::CEIL_F128, "ceilf128");
1340   setLibcallName(RTLIB::FLOOR_F128, "floorf128");
1341   setLibcallName(RTLIB::TRUNC_F128, "truncf128");
1342   setLibcallName(RTLIB::ROUND_F128, "roundf128");
1343   setLibcallName(RTLIB::LROUND_F128, "lroundf128");
1344   setLibcallName(RTLIB::LLROUND_F128, "llroundf128");
1345   setLibcallName(RTLIB::RINT_F128, "rintf128");
1346   setLibcallName(RTLIB::LRINT_F128, "lrintf128");
1347   setLibcallName(RTLIB::LLRINT_F128, "llrintf128");
1348   setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128");
1349   setLibcallName(RTLIB::FMA_F128, "fmaf128");
1350 
1351   // With 32 condition bits, we don't need to sink (and duplicate) compares
1352   // aggressively in CodeGenPrep.
1353   if (Subtarget.useCRBits()) {
1354     setHasMultipleConditionRegisters();
1355     setJumpIsExpensive();
1356   }
1357 
1358   setMinFunctionAlignment(Align(4));
1359 
1360   switch (Subtarget.getCPUDirective()) {
1361   default: break;
1362   case PPC::DIR_970:
1363   case PPC::DIR_A2:
1364   case PPC::DIR_E500:
1365   case PPC::DIR_E500mc:
1366   case PPC::DIR_E5500:
1367   case PPC::DIR_PWR4:
1368   case PPC::DIR_PWR5:
1369   case PPC::DIR_PWR5X:
1370   case PPC::DIR_PWR6:
1371   case PPC::DIR_PWR6X:
1372   case PPC::DIR_PWR7:
1373   case PPC::DIR_PWR8:
1374   case PPC::DIR_PWR9:
1375   case PPC::DIR_PWR10:
1376   case PPC::DIR_PWR_FUTURE:
1377     setPrefLoopAlignment(Align(16));
1378     setPrefFunctionAlignment(Align(16));
1379     break;
1380   }
1381 
1382   if (Subtarget.enableMachineScheduler())
1383     setSchedulingPreference(Sched::Source);
1384   else
1385     setSchedulingPreference(Sched::Hybrid);
1386 
1387   computeRegisterProperties(STI.getRegisterInfo());
1388 
1389   // The Freescale cores do better with aggressive inlining of memcpy and
1390   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1391   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1392       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1393     MaxStoresPerMemset = 32;
1394     MaxStoresPerMemsetOptSize = 16;
1395     MaxStoresPerMemcpy = 32;
1396     MaxStoresPerMemcpyOptSize = 8;
1397     MaxStoresPerMemmove = 32;
1398     MaxStoresPerMemmoveOptSize = 8;
1399   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1400     // The A2 also benefits from (very) aggressive inlining of memcpy and
1401     // friends. The overhead of a the function call, even when warm, can be
1402     // over one hundred cycles.
1403     MaxStoresPerMemset = 128;
1404     MaxStoresPerMemcpy = 128;
1405     MaxStoresPerMemmove = 128;
1406     MaxLoadsPerMemcmp = 128;
1407   } else {
1408     MaxLoadsPerMemcmp = 8;
1409     MaxLoadsPerMemcmpOptSize = 4;
1410   }
1411 
1412   IsStrictFPEnabled = true;
1413 
1414   // Let the subtarget (CPU) decide if a predictable select is more expensive
1415   // than the corresponding branch. This information is used in CGP to decide
1416   // when to convert selects into branches.
1417   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1418 }
1419 
1420 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1421 /// the desired ByVal argument alignment.
1422 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1423   if (MaxAlign == MaxMaxAlign)
1424     return;
1425   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1426     if (MaxMaxAlign >= 32 &&
1427         VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
1428       MaxAlign = Align(32);
1429     else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1430              MaxAlign < 16)
1431       MaxAlign = Align(16);
1432   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1433     Align EltAlign;
1434     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1435     if (EltAlign > MaxAlign)
1436       MaxAlign = EltAlign;
1437   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1438     for (auto *EltTy : STy->elements()) {
1439       Align EltAlign;
1440       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1441       if (EltAlign > MaxAlign)
1442         MaxAlign = EltAlign;
1443       if (MaxAlign == MaxMaxAlign)
1444         break;
1445     }
1446   }
1447 }
1448 
1449 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1450 /// function arguments in the caller parameter area.
1451 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1452                                                   const DataLayout &DL) const {
1453   // 16byte and wider vectors are passed on 16byte boundary.
1454   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1455   Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1456   if (Subtarget.hasAltivec())
1457     getMaxByValAlign(Ty, Alignment, Align(16));
1458   return Alignment.value();
1459 }
1460 
1461 bool PPCTargetLowering::useSoftFloat() const {
1462   return Subtarget.useSoftFloat();
1463 }
1464 
1465 bool PPCTargetLowering::hasSPE() const {
1466   return Subtarget.hasSPE();
1467 }
1468 
1469 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1470   return VT.isScalarInteger();
1471 }
1472 
1473 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1474   switch ((PPCISD::NodeType)Opcode) {
1475   case PPCISD::FIRST_NUMBER:    break;
1476   case PPCISD::FSEL:            return "PPCISD::FSEL";
1477   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1478   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1479   case PPCISD::FCFID:           return "PPCISD::FCFID";
1480   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1481   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1482   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1483   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1484   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1485   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1486   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1487   case PPCISD::FP_TO_UINT_IN_VSR:
1488                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1489   case PPCISD::FP_TO_SINT_IN_VSR:
1490                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1491   case PPCISD::FRE:             return "PPCISD::FRE";
1492   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1493   case PPCISD::FTSQRT:
1494     return "PPCISD::FTSQRT";
1495   case PPCISD::FSQRT:
1496     return "PPCISD::FSQRT";
1497   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1498   case PPCISD::VPERM:           return "PPCISD::VPERM";
1499   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1500   case PPCISD::XXSPLTI_SP_TO_DP:
1501     return "PPCISD::XXSPLTI_SP_TO_DP";
1502   case PPCISD::XXSPLTI32DX:
1503     return "PPCISD::XXSPLTI32DX";
1504   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1505   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1506   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1507   case PPCISD::CMPB:            return "PPCISD::CMPB";
1508   case PPCISD::Hi:              return "PPCISD::Hi";
1509   case PPCISD::Lo:              return "PPCISD::Lo";
1510   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1511   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1512   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1513   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1514   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1515   case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
1516   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1517   case PPCISD::SRL:             return "PPCISD::SRL";
1518   case PPCISD::SRA:             return "PPCISD::SRA";
1519   case PPCISD::SHL:             return "PPCISD::SHL";
1520   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1521   case PPCISD::CALL:            return "PPCISD::CALL";
1522   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1523   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1524   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1525   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1526   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1527   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1528   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1529   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1530   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1531   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1532   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1533   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1534   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1535   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1536   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1537   case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1538     return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1539   case PPCISD::ANDI_rec_1_EQ_BIT:
1540     return "PPCISD::ANDI_rec_1_EQ_BIT";
1541   case PPCISD::ANDI_rec_1_GT_BIT:
1542     return "PPCISD::ANDI_rec_1_GT_BIT";
1543   case PPCISD::VCMP:            return "PPCISD::VCMP";
1544   case PPCISD::VCMP_rec:        return "PPCISD::VCMP_rec";
1545   case PPCISD::LBRX:            return "PPCISD::LBRX";
1546   case PPCISD::STBRX:           return "PPCISD::STBRX";
1547   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1548   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1549   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1550   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1551   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1552   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1553   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1554   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1555   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1556   case PPCISD::ST_VSR_SCAL_INT:
1557                                 return "PPCISD::ST_VSR_SCAL_INT";
1558   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1559   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1560   case PPCISD::BDZ:             return "PPCISD::BDZ";
1561   case PPCISD::MFFS:            return "PPCISD::MFFS";
1562   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1563   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1564   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1565   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1566   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1567   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1568   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1569   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1570   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1571   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1572   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1573   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1574   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1575   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1576   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1577   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1578   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1579   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1580   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1581   case PPCISD::PADDI_DTPREL:
1582     return "PPCISD::PADDI_DTPREL";
1583   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1584   case PPCISD::SC:              return "PPCISD::SC";
1585   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1586   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1587   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1588   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1589   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1590   case PPCISD::VABSD:           return "PPCISD::VABSD";
1591   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1592   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1593   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1594   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1595   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1596   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1597   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1598   case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR:
1599     return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR";
1600   case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR:
1601     return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR";
1602   case PPCISD::ACC_BUILD:       return "PPCISD::ACC_BUILD";
1603   case PPCISD::PAIR_BUILD:      return "PPCISD::PAIR_BUILD";
1604   case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG";
1605   case PPCISD::XXMFACC:         return "PPCISD::XXMFACC";
1606   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1607   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1608   case PPCISD::STRICT_FADDRTZ:
1609     return "PPCISD::STRICT_FADDRTZ";
1610   case PPCISD::STRICT_FCTIDZ:
1611     return "PPCISD::STRICT_FCTIDZ";
1612   case PPCISD::STRICT_FCTIWZ:
1613     return "PPCISD::STRICT_FCTIWZ";
1614   case PPCISD::STRICT_FCTIDUZ:
1615     return "PPCISD::STRICT_FCTIDUZ";
1616   case PPCISD::STRICT_FCTIWUZ:
1617     return "PPCISD::STRICT_FCTIWUZ";
1618   case PPCISD::STRICT_FCFID:
1619     return "PPCISD::STRICT_FCFID";
1620   case PPCISD::STRICT_FCFIDU:
1621     return "PPCISD::STRICT_FCFIDU";
1622   case PPCISD::STRICT_FCFIDS:
1623     return "PPCISD::STRICT_FCFIDS";
1624   case PPCISD::STRICT_FCFIDUS:
1625     return "PPCISD::STRICT_FCFIDUS";
1626   case PPCISD::LXVRZX:          return "PPCISD::LXVRZX";
1627   }
1628   return nullptr;
1629 }
1630 
1631 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1632                                           EVT VT) const {
1633   if (!VT.isVector())
1634     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1635 
1636   return VT.changeVectorElementTypeToInteger();
1637 }
1638 
1639 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1640   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1641   return true;
1642 }
1643 
1644 //===----------------------------------------------------------------------===//
1645 // Node matching predicates, for use by the tblgen matching code.
1646 //===----------------------------------------------------------------------===//
1647 
1648 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1649 static bool isFloatingPointZero(SDValue Op) {
1650   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1651     return CFP->getValueAPF().isZero();
1652   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1653     // Maybe this has already been legalized into the constant pool?
1654     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1655       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1656         return CFP->getValueAPF().isZero();
1657   }
1658   return false;
1659 }
1660 
1661 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1662 /// true if Op is undef or if it matches the specified value.
1663 static bool isConstantOrUndef(int Op, int Val) {
1664   return Op < 0 || Op == Val;
1665 }
1666 
1667 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1668 /// VPKUHUM instruction.
1669 /// The ShuffleKind distinguishes between big-endian operations with
1670 /// two different inputs (0), either-endian operations with two identical
1671 /// inputs (1), and little-endian operations with two different inputs (2).
1672 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1673 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1674                                SelectionDAG &DAG) {
1675   bool IsLE = DAG.getDataLayout().isLittleEndian();
1676   if (ShuffleKind == 0) {
1677     if (IsLE)
1678       return false;
1679     for (unsigned i = 0; i != 16; ++i)
1680       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1681         return false;
1682   } else if (ShuffleKind == 2) {
1683     if (!IsLE)
1684       return false;
1685     for (unsigned i = 0; i != 16; ++i)
1686       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1687         return false;
1688   } else if (ShuffleKind == 1) {
1689     unsigned j = IsLE ? 0 : 1;
1690     for (unsigned i = 0; i != 8; ++i)
1691       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1692           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1693         return false;
1694   }
1695   return true;
1696 }
1697 
1698 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1699 /// VPKUWUM instruction.
1700 /// The ShuffleKind distinguishes between big-endian operations with
1701 /// two different inputs (0), either-endian operations with two identical
1702 /// inputs (1), and little-endian operations with two different inputs (2).
1703 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1704 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1705                                SelectionDAG &DAG) {
1706   bool IsLE = DAG.getDataLayout().isLittleEndian();
1707   if (ShuffleKind == 0) {
1708     if (IsLE)
1709       return false;
1710     for (unsigned i = 0; i != 16; i += 2)
1711       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1712           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1713         return false;
1714   } else if (ShuffleKind == 2) {
1715     if (!IsLE)
1716       return false;
1717     for (unsigned i = 0; i != 16; i += 2)
1718       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1719           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1720         return false;
1721   } else if (ShuffleKind == 1) {
1722     unsigned j = IsLE ? 0 : 2;
1723     for (unsigned i = 0; i != 8; i += 2)
1724       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1725           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1726           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1727           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1728         return false;
1729   }
1730   return true;
1731 }
1732 
1733 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1734 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1735 /// current subtarget.
1736 ///
1737 /// The ShuffleKind distinguishes between big-endian operations with
1738 /// two different inputs (0), either-endian operations with two identical
1739 /// inputs (1), and little-endian operations with two different inputs (2).
1740 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1741 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1742                                SelectionDAG &DAG) {
1743   const PPCSubtarget& Subtarget =
1744       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1745   if (!Subtarget.hasP8Vector())
1746     return false;
1747 
1748   bool IsLE = DAG.getDataLayout().isLittleEndian();
1749   if (ShuffleKind == 0) {
1750     if (IsLE)
1751       return false;
1752     for (unsigned i = 0; i != 16; i += 4)
1753       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1754           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1755           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1756           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1757         return false;
1758   } else if (ShuffleKind == 2) {
1759     if (!IsLE)
1760       return false;
1761     for (unsigned i = 0; i != 16; i += 4)
1762       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1763           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1764           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1765           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1766         return false;
1767   } else if (ShuffleKind == 1) {
1768     unsigned j = IsLE ? 0 : 4;
1769     for (unsigned i = 0; i != 8; i += 4)
1770       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1771           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1772           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1773           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1774           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1775           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1776           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1777           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1778         return false;
1779   }
1780   return true;
1781 }
1782 
1783 /// isVMerge - Common function, used to match vmrg* shuffles.
1784 ///
1785 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1786                      unsigned LHSStart, unsigned RHSStart) {
1787   if (N->getValueType(0) != MVT::v16i8)
1788     return false;
1789   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1790          "Unsupported merge size!");
1791 
1792   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1793     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1794       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1795                              LHSStart+j+i*UnitSize) ||
1796           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1797                              RHSStart+j+i*UnitSize))
1798         return false;
1799     }
1800   return true;
1801 }
1802 
1803 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1804 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1805 /// The ShuffleKind distinguishes between big-endian merges with two
1806 /// different inputs (0), either-endian merges with two identical inputs (1),
1807 /// and little-endian merges with two different inputs (2).  For the latter,
1808 /// the input operands are swapped (see PPCInstrAltivec.td).
1809 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1810                              unsigned ShuffleKind, SelectionDAG &DAG) {
1811   if (DAG.getDataLayout().isLittleEndian()) {
1812     if (ShuffleKind == 1) // unary
1813       return isVMerge(N, UnitSize, 0, 0);
1814     else if (ShuffleKind == 2) // swapped
1815       return isVMerge(N, UnitSize, 0, 16);
1816     else
1817       return false;
1818   } else {
1819     if (ShuffleKind == 1) // unary
1820       return isVMerge(N, UnitSize, 8, 8);
1821     else if (ShuffleKind == 0) // normal
1822       return isVMerge(N, UnitSize, 8, 24);
1823     else
1824       return false;
1825   }
1826 }
1827 
1828 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1829 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1830 /// The ShuffleKind distinguishes between big-endian merges with two
1831 /// different inputs (0), either-endian merges with two identical inputs (1),
1832 /// and little-endian merges with two different inputs (2).  For the latter,
1833 /// the input operands are swapped (see PPCInstrAltivec.td).
1834 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1835                              unsigned ShuffleKind, SelectionDAG &DAG) {
1836   if (DAG.getDataLayout().isLittleEndian()) {
1837     if (ShuffleKind == 1) // unary
1838       return isVMerge(N, UnitSize, 8, 8);
1839     else if (ShuffleKind == 2) // swapped
1840       return isVMerge(N, UnitSize, 8, 24);
1841     else
1842       return false;
1843   } else {
1844     if (ShuffleKind == 1) // unary
1845       return isVMerge(N, UnitSize, 0, 0);
1846     else if (ShuffleKind == 0) // normal
1847       return isVMerge(N, UnitSize, 0, 16);
1848     else
1849       return false;
1850   }
1851 }
1852 
1853 /**
1854  * Common function used to match vmrgew and vmrgow shuffles
1855  *
1856  * The indexOffset determines whether to look for even or odd words in
1857  * the shuffle mask. This is based on the of the endianness of the target
1858  * machine.
1859  *   - Little Endian:
1860  *     - Use offset of 0 to check for odd elements
1861  *     - Use offset of 4 to check for even elements
1862  *   - Big Endian:
1863  *     - Use offset of 0 to check for even elements
1864  *     - Use offset of 4 to check for odd elements
1865  * A detailed description of the vector element ordering for little endian and
1866  * big endian can be found at
1867  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1868  * Targeting your applications - what little endian and big endian IBM XL C/C++
1869  * compiler differences mean to you
1870  *
1871  * The mask to the shuffle vector instruction specifies the indices of the
1872  * elements from the two input vectors to place in the result. The elements are
1873  * numbered in array-access order, starting with the first vector. These vectors
1874  * are always of type v16i8, thus each vector will contain 16 elements of size
1875  * 8. More info on the shuffle vector can be found in the
1876  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1877  * Language Reference.
1878  *
1879  * The RHSStartValue indicates whether the same input vectors are used (unary)
1880  * or two different input vectors are used, based on the following:
1881  *   - If the instruction uses the same vector for both inputs, the range of the
1882  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1883  *     be 0.
1884  *   - If the instruction has two different vectors then the range of the
1885  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1886  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1887  *     to 31 specify elements in the second vector).
1888  *
1889  * \param[in] N The shuffle vector SD Node to analyze
1890  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1891  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1892  * vector to the shuffle_vector instruction
1893  * \return true iff this shuffle vector represents an even or odd word merge
1894  */
1895 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1896                      unsigned RHSStartValue) {
1897   if (N->getValueType(0) != MVT::v16i8)
1898     return false;
1899 
1900   for (unsigned i = 0; i < 2; ++i)
1901     for (unsigned j = 0; j < 4; ++j)
1902       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1903                              i*RHSStartValue+j+IndexOffset) ||
1904           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1905                              i*RHSStartValue+j+IndexOffset+8))
1906         return false;
1907   return true;
1908 }
1909 
1910 /**
1911  * Determine if the specified shuffle mask is suitable for the vmrgew or
1912  * vmrgow instructions.
1913  *
1914  * \param[in] N The shuffle vector SD Node to analyze
1915  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1916  * \param[in] ShuffleKind Identify the type of merge:
1917  *   - 0 = big-endian merge with two different inputs;
1918  *   - 1 = either-endian merge with two identical inputs;
1919  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1920  *     little-endian merges).
1921  * \param[in] DAG The current SelectionDAG
1922  * \return true iff this shuffle mask
1923  */
1924 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1925                               unsigned ShuffleKind, SelectionDAG &DAG) {
1926   if (DAG.getDataLayout().isLittleEndian()) {
1927     unsigned indexOffset = CheckEven ? 4 : 0;
1928     if (ShuffleKind == 1) // Unary
1929       return isVMerge(N, indexOffset, 0);
1930     else if (ShuffleKind == 2) // swapped
1931       return isVMerge(N, indexOffset, 16);
1932     else
1933       return false;
1934   }
1935   else {
1936     unsigned indexOffset = CheckEven ? 0 : 4;
1937     if (ShuffleKind == 1) // Unary
1938       return isVMerge(N, indexOffset, 0);
1939     else if (ShuffleKind == 0) // Normal
1940       return isVMerge(N, indexOffset, 16);
1941     else
1942       return false;
1943   }
1944   return false;
1945 }
1946 
1947 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1948 /// amount, otherwise return -1.
1949 /// The ShuffleKind distinguishes between big-endian operations with two
1950 /// different inputs (0), either-endian operations with two identical inputs
1951 /// (1), and little-endian operations with two different inputs (2).  For the
1952 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1953 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1954                              SelectionDAG &DAG) {
1955   if (N->getValueType(0) != MVT::v16i8)
1956     return -1;
1957 
1958   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1959 
1960   // Find the first non-undef value in the shuffle mask.
1961   unsigned i;
1962   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1963     /*search*/;
1964 
1965   if (i == 16) return -1;  // all undef.
1966 
1967   // Otherwise, check to see if the rest of the elements are consecutively
1968   // numbered from this value.
1969   unsigned ShiftAmt = SVOp->getMaskElt(i);
1970   if (ShiftAmt < i) return -1;
1971 
1972   ShiftAmt -= i;
1973   bool isLE = DAG.getDataLayout().isLittleEndian();
1974 
1975   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1976     // Check the rest of the elements to see if they are consecutive.
1977     for (++i; i != 16; ++i)
1978       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1979         return -1;
1980   } else if (ShuffleKind == 1) {
1981     // Check the rest of the elements to see if they are consecutive.
1982     for (++i; i != 16; ++i)
1983       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1984         return -1;
1985   } else
1986     return -1;
1987 
1988   if (isLE)
1989     ShiftAmt = 16 - ShiftAmt;
1990 
1991   return ShiftAmt;
1992 }
1993 
1994 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1995 /// specifies a splat of a single element that is suitable for input to
1996 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
1997 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1998   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
1999          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
2000 
2001   // The consecutive indices need to specify an element, not part of two
2002   // different elements.  So abandon ship early if this isn't the case.
2003   if (N->getMaskElt(0) % EltSize != 0)
2004     return false;
2005 
2006   // This is a splat operation if each element of the permute is the same, and
2007   // if the value doesn't reference the second vector.
2008   unsigned ElementBase = N->getMaskElt(0);
2009 
2010   // FIXME: Handle UNDEF elements too!
2011   if (ElementBase >= 16)
2012     return false;
2013 
2014   // Check that the indices are consecutive, in the case of a multi-byte element
2015   // splatted with a v16i8 mask.
2016   for (unsigned i = 1; i != EltSize; ++i)
2017     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
2018       return false;
2019 
2020   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
2021     if (N->getMaskElt(i) < 0) continue;
2022     for (unsigned j = 0; j != EltSize; ++j)
2023       if (N->getMaskElt(i+j) != N->getMaskElt(j))
2024         return false;
2025   }
2026   return true;
2027 }
2028 
2029 /// Check that the mask is shuffling N byte elements. Within each N byte
2030 /// element of the mask, the indices could be either in increasing or
2031 /// decreasing order as long as they are consecutive.
2032 /// \param[in] N the shuffle vector SD Node to analyze
2033 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
2034 /// Word/DoubleWord/QuadWord).
2035 /// \param[in] StepLen the delta indices number among the N byte element, if
2036 /// the mask is in increasing/decreasing order then it is 1/-1.
2037 /// \return true iff the mask is shuffling N byte elements.
2038 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
2039                                    int StepLen) {
2040   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
2041          "Unexpected element width.");
2042   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
2043 
2044   unsigned NumOfElem = 16 / Width;
2045   unsigned MaskVal[16]; //  Width is never greater than 16
2046   for (unsigned i = 0; i < NumOfElem; ++i) {
2047     MaskVal[0] = N->getMaskElt(i * Width);
2048     if ((StepLen == 1) && (MaskVal[0] % Width)) {
2049       return false;
2050     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
2051       return false;
2052     }
2053 
2054     for (unsigned int j = 1; j < Width; ++j) {
2055       MaskVal[j] = N->getMaskElt(i * Width + j);
2056       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
2057         return false;
2058       }
2059     }
2060   }
2061 
2062   return true;
2063 }
2064 
2065 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2066                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
2067   if (!isNByteElemShuffleMask(N, 4, 1))
2068     return false;
2069 
2070   // Now we look at mask elements 0,4,8,12
2071   unsigned M0 = N->getMaskElt(0) / 4;
2072   unsigned M1 = N->getMaskElt(4) / 4;
2073   unsigned M2 = N->getMaskElt(8) / 4;
2074   unsigned M3 = N->getMaskElt(12) / 4;
2075   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
2076   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
2077 
2078   // Below, let H and L be arbitrary elements of the shuffle mask
2079   // where H is in the range [4,7] and L is in the range [0,3].
2080   // H, 1, 2, 3 or L, 5, 6, 7
2081   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
2082       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
2083     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
2084     InsertAtByte = IsLE ? 12 : 0;
2085     Swap = M0 < 4;
2086     return true;
2087   }
2088   // 0, H, 2, 3 or 4, L, 6, 7
2089   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
2090       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
2091     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
2092     InsertAtByte = IsLE ? 8 : 4;
2093     Swap = M1 < 4;
2094     return true;
2095   }
2096   // 0, 1, H, 3 or 4, 5, L, 7
2097   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
2098       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
2099     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
2100     InsertAtByte = IsLE ? 4 : 8;
2101     Swap = M2 < 4;
2102     return true;
2103   }
2104   // 0, 1, 2, H or 4, 5, 6, L
2105   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
2106       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
2107     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
2108     InsertAtByte = IsLE ? 0 : 12;
2109     Swap = M3 < 4;
2110     return true;
2111   }
2112 
2113   // If both vector operands for the shuffle are the same vector, the mask will
2114   // contain only elements from the first one and the second one will be undef.
2115   if (N->getOperand(1).isUndef()) {
2116     ShiftElts = 0;
2117     Swap = true;
2118     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2119     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
2120       InsertAtByte = IsLE ? 12 : 0;
2121       return true;
2122     }
2123     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2124       InsertAtByte = IsLE ? 8 : 4;
2125       return true;
2126     }
2127     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2128       InsertAtByte = IsLE ? 4 : 8;
2129       return true;
2130     }
2131     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2132       InsertAtByte = IsLE ? 0 : 12;
2133       return true;
2134     }
2135   }
2136 
2137   return false;
2138 }
2139 
2140 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2141                                bool &Swap, bool IsLE) {
2142   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2143   // Ensure each byte index of the word is consecutive.
2144   if (!isNByteElemShuffleMask(N, 4, 1))
2145     return false;
2146 
2147   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2148   unsigned M0 = N->getMaskElt(0) / 4;
2149   unsigned M1 = N->getMaskElt(4) / 4;
2150   unsigned M2 = N->getMaskElt(8) / 4;
2151   unsigned M3 = N->getMaskElt(12) / 4;
2152 
2153   // If both vector operands for the shuffle are the same vector, the mask will
2154   // contain only elements from the first one and the second one will be undef.
2155   if (N->getOperand(1).isUndef()) {
2156     assert(M0 < 4 && "Indexing into an undef vector?");
2157     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2158       return false;
2159 
2160     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2161     Swap = false;
2162     return true;
2163   }
2164 
2165   // Ensure each word index of the ShuffleVector Mask is consecutive.
2166   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2167     return false;
2168 
2169   if (IsLE) {
2170     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2171       // Input vectors don't need to be swapped if the leading element
2172       // of the result is one of the 3 left elements of the second vector
2173       // (or if there is no shift to be done at all).
2174       Swap = false;
2175       ShiftElts = (8 - M0) % 8;
2176     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2177       // Input vectors need to be swapped if the leading element
2178       // of the result is one of the 3 left elements of the first vector
2179       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2180       Swap = true;
2181       ShiftElts = (4 - M0) % 4;
2182     }
2183 
2184     return true;
2185   } else {                                          // BE
2186     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2187       // Input vectors don't need to be swapped if the leading element
2188       // of the result is one of the 4 elements of the first vector.
2189       Swap = false;
2190       ShiftElts = M0;
2191     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2192       // Input vectors need to be swapped if the leading element
2193       // of the result is one of the 4 elements of the right vector.
2194       Swap = true;
2195       ShiftElts = M0 - 4;
2196     }
2197 
2198     return true;
2199   }
2200 }
2201 
2202 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2203   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2204 
2205   if (!isNByteElemShuffleMask(N, Width, -1))
2206     return false;
2207 
2208   for (int i = 0; i < 16; i += Width)
2209     if (N->getMaskElt(i) != i + Width - 1)
2210       return false;
2211 
2212   return true;
2213 }
2214 
2215 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2216   return isXXBRShuffleMaskHelper(N, 2);
2217 }
2218 
2219 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2220   return isXXBRShuffleMaskHelper(N, 4);
2221 }
2222 
2223 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2224   return isXXBRShuffleMaskHelper(N, 8);
2225 }
2226 
2227 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2228   return isXXBRShuffleMaskHelper(N, 16);
2229 }
2230 
2231 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2232 /// if the inputs to the instruction should be swapped and set \p DM to the
2233 /// value for the immediate.
2234 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2235 /// AND element 0 of the result comes from the first input (LE) or second input
2236 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2237 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2238 /// mask.
2239 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2240                                bool &Swap, bool IsLE) {
2241   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2242 
2243   // Ensure each byte index of the double word is consecutive.
2244   if (!isNByteElemShuffleMask(N, 8, 1))
2245     return false;
2246 
2247   unsigned M0 = N->getMaskElt(0) / 8;
2248   unsigned M1 = N->getMaskElt(8) / 8;
2249   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2250 
2251   // If both vector operands for the shuffle are the same vector, the mask will
2252   // contain only elements from the first one and the second one will be undef.
2253   if (N->getOperand(1).isUndef()) {
2254     if ((M0 | M1) < 2) {
2255       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2256       Swap = false;
2257       return true;
2258     } else
2259       return false;
2260   }
2261 
2262   if (IsLE) {
2263     if (M0 > 1 && M1 < 2) {
2264       Swap = false;
2265     } else if (M0 < 2 && M1 > 1) {
2266       M0 = (M0 + 2) % 4;
2267       M1 = (M1 + 2) % 4;
2268       Swap = true;
2269     } else
2270       return false;
2271 
2272     // Note: if control flow comes here that means Swap is already set above
2273     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2274     return true;
2275   } else { // BE
2276     if (M0 < 2 && M1 > 1) {
2277       Swap = false;
2278     } else if (M0 > 1 && M1 < 2) {
2279       M0 = (M0 + 2) % 4;
2280       M1 = (M1 + 2) % 4;
2281       Swap = true;
2282     } else
2283       return false;
2284 
2285     // Note: if control flow comes here that means Swap is already set above
2286     DM = (M0 << 1) + (M1 & 1);
2287     return true;
2288   }
2289 }
2290 
2291 
2292 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2293 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2294 /// elements are counted from the left of the vector register).
2295 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2296                                          SelectionDAG &DAG) {
2297   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2298   assert(isSplatShuffleMask(SVOp, EltSize));
2299   if (DAG.getDataLayout().isLittleEndian())
2300     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2301   else
2302     return SVOp->getMaskElt(0) / EltSize;
2303 }
2304 
2305 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2306 /// by using a vspltis[bhw] instruction of the specified element size, return
2307 /// the constant being splatted.  The ByteSize field indicates the number of
2308 /// bytes of each element [124] -> [bhw].
2309 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2310   SDValue OpVal(nullptr, 0);
2311 
2312   // If ByteSize of the splat is bigger than the element size of the
2313   // build_vector, then we have a case where we are checking for a splat where
2314   // multiple elements of the buildvector are folded together into a single
2315   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2316   unsigned EltSize = 16/N->getNumOperands();
2317   if (EltSize < ByteSize) {
2318     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2319     SDValue UniquedVals[4];
2320     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2321 
2322     // See if all of the elements in the buildvector agree across.
2323     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2324       if (N->getOperand(i).isUndef()) continue;
2325       // If the element isn't a constant, bail fully out.
2326       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2327 
2328       if (!UniquedVals[i&(Multiple-1)].getNode())
2329         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2330       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2331         return SDValue();  // no match.
2332     }
2333 
2334     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2335     // either constant or undef values that are identical for each chunk.  See
2336     // if these chunks can form into a larger vspltis*.
2337 
2338     // Check to see if all of the leading entries are either 0 or -1.  If
2339     // neither, then this won't fit into the immediate field.
2340     bool LeadingZero = true;
2341     bool LeadingOnes = true;
2342     for (unsigned i = 0; i != Multiple-1; ++i) {
2343       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2344 
2345       LeadingZero &= isNullConstant(UniquedVals[i]);
2346       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2347     }
2348     // Finally, check the least significant entry.
2349     if (LeadingZero) {
2350       if (!UniquedVals[Multiple-1].getNode())
2351         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2352       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2353       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2354         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2355     }
2356     if (LeadingOnes) {
2357       if (!UniquedVals[Multiple-1].getNode())
2358         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2359       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2360       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2361         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2362     }
2363 
2364     return SDValue();
2365   }
2366 
2367   // Check to see if this buildvec has a single non-undef value in its elements.
2368   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2369     if (N->getOperand(i).isUndef()) continue;
2370     if (!OpVal.getNode())
2371       OpVal = N->getOperand(i);
2372     else if (OpVal != N->getOperand(i))
2373       return SDValue();
2374   }
2375 
2376   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2377 
2378   unsigned ValSizeInBytes = EltSize;
2379   uint64_t Value = 0;
2380   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2381     Value = CN->getZExtValue();
2382   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2383     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2384     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2385   }
2386 
2387   // If the splat value is larger than the element value, then we can never do
2388   // this splat.  The only case that we could fit the replicated bits into our
2389   // immediate field for would be zero, and we prefer to use vxor for it.
2390   if (ValSizeInBytes < ByteSize) return SDValue();
2391 
2392   // If the element value is larger than the splat value, check if it consists
2393   // of a repeated bit pattern of size ByteSize.
2394   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2395     return SDValue();
2396 
2397   // Properly sign extend the value.
2398   int MaskVal = SignExtend32(Value, ByteSize * 8);
2399 
2400   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2401   if (MaskVal == 0) return SDValue();
2402 
2403   // Finally, if this value fits in a 5 bit sext field, return it
2404   if (SignExtend32<5>(MaskVal) == MaskVal)
2405     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2406   return SDValue();
2407 }
2408 
2409 //===----------------------------------------------------------------------===//
2410 //  Addressing Mode Selection
2411 //===----------------------------------------------------------------------===//
2412 
2413 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2414 /// or 64-bit immediate, and if the value can be accurately represented as a
2415 /// sign extension from a 16-bit value.  If so, this returns true and the
2416 /// immediate.
2417 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2418   if (!isa<ConstantSDNode>(N))
2419     return false;
2420 
2421   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2422   if (N->getValueType(0) == MVT::i32)
2423     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2424   else
2425     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2426 }
2427 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2428   return isIntS16Immediate(Op.getNode(), Imm);
2429 }
2430 
2431 
2432 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2433 /// be represented as an indexed [r+r] operation.
2434 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2435                                                SDValue &Index,
2436                                                SelectionDAG &DAG) const {
2437   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2438       UI != E; ++UI) {
2439     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2440       if (Memop->getMemoryVT() == MVT::f64) {
2441           Base = N.getOperand(0);
2442           Index = N.getOperand(1);
2443           return true;
2444       }
2445     }
2446   }
2447   return false;
2448 }
2449 
2450 /// isIntS34Immediate - This method tests if value of node given can be
2451 /// accurately represented as a sign extension from a 34-bit value.  If so,
2452 /// this returns true and the immediate.
2453 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) {
2454   if (!isa<ConstantSDNode>(N))
2455     return false;
2456 
2457   Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2458   return isInt<34>(Imm);
2459 }
2460 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) {
2461   return isIntS34Immediate(Op.getNode(), Imm);
2462 }
2463 
2464 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2465 /// can be represented as an indexed [r+r] operation.  Returns false if it
2466 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2467 /// non-zero and N can be represented by a base register plus a signed 16-bit
2468 /// displacement, make a more precise judgement by checking (displacement % \p
2469 /// EncodingAlignment).
2470 bool PPCTargetLowering::SelectAddressRegReg(
2471     SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
2472     MaybeAlign EncodingAlignment) const {
2473   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2474   // a [pc+imm].
2475   if (SelectAddressPCRel(N, Base))
2476     return false;
2477 
2478   int16_t Imm = 0;
2479   if (N.getOpcode() == ISD::ADD) {
2480     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2481     // SPE load/store can only handle 8-bit offsets.
2482     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2483         return true;
2484     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2485         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2486       return false; // r+i
2487     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2488       return false;    // r+i
2489 
2490     Base = N.getOperand(0);
2491     Index = N.getOperand(1);
2492     return true;
2493   } else if (N.getOpcode() == ISD::OR) {
2494     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2495         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2496       return false; // r+i can fold it if we can.
2497 
2498     // If this is an or of disjoint bitfields, we can codegen this as an add
2499     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2500     // disjoint.
2501     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2502 
2503     if (LHSKnown.Zero.getBoolValue()) {
2504       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2505       // If all of the bits are known zero on the LHS or RHS, the add won't
2506       // carry.
2507       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2508         Base = N.getOperand(0);
2509         Index = N.getOperand(1);
2510         return true;
2511       }
2512     }
2513   }
2514 
2515   return false;
2516 }
2517 
2518 // If we happen to be doing an i64 load or store into a stack slot that has
2519 // less than a 4-byte alignment, then the frame-index elimination may need to
2520 // use an indexed load or store instruction (because the offset may not be a
2521 // multiple of 4). The extra register needed to hold the offset comes from the
2522 // register scavenger, and it is possible that the scavenger will need to use
2523 // an emergency spill slot. As a result, we need to make sure that a spill slot
2524 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2525 // stack slot.
2526 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2527   // FIXME: This does not handle the LWA case.
2528   if (VT != MVT::i64)
2529     return;
2530 
2531   // NOTE: We'll exclude negative FIs here, which come from argument
2532   // lowering, because there are no known test cases triggering this problem
2533   // using packed structures (or similar). We can remove this exclusion if
2534   // we find such a test case. The reason why this is so test-case driven is
2535   // because this entire 'fixup' is only to prevent crashes (from the
2536   // register scavenger) on not-really-valid inputs. For example, if we have:
2537   //   %a = alloca i1
2538   //   %b = bitcast i1* %a to i64*
2539   //   store i64* a, i64 b
2540   // then the store should really be marked as 'align 1', but is not. If it
2541   // were marked as 'align 1' then the indexed form would have been
2542   // instruction-selected initially, and the problem this 'fixup' is preventing
2543   // won't happen regardless.
2544   if (FrameIdx < 0)
2545     return;
2546 
2547   MachineFunction &MF = DAG.getMachineFunction();
2548   MachineFrameInfo &MFI = MF.getFrameInfo();
2549 
2550   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2551     return;
2552 
2553   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2554   FuncInfo->setHasNonRISpills();
2555 }
2556 
2557 /// Returns true if the address N can be represented by a base register plus
2558 /// a signed 16-bit displacement [r+imm], and if it is not better
2559 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2560 /// displacements that are multiples of that value.
2561 bool PPCTargetLowering::SelectAddressRegImm(
2562     SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
2563     MaybeAlign EncodingAlignment) const {
2564   // FIXME dl should come from parent load or store, not from address
2565   SDLoc dl(N);
2566 
2567   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2568   // a [pc+imm].
2569   if (SelectAddressPCRel(N, Base))
2570     return false;
2571 
2572   // If this can be more profitably realized as r+r, fail.
2573   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2574     return false;
2575 
2576   if (N.getOpcode() == ISD::ADD) {
2577     int16_t imm = 0;
2578     if (isIntS16Immediate(N.getOperand(1), imm) &&
2579         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2580       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2581       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2582         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2583         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2584       } else {
2585         Base = N.getOperand(0);
2586       }
2587       return true; // [r+i]
2588     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2589       // Match LOAD (ADD (X, Lo(G))).
2590       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2591              && "Cannot handle constant offsets yet!");
2592       Disp = N.getOperand(1).getOperand(0);  // The global address.
2593       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2594              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2595              Disp.getOpcode() == ISD::TargetConstantPool ||
2596              Disp.getOpcode() == ISD::TargetJumpTable);
2597       Base = N.getOperand(0);
2598       return true;  // [&g+r]
2599     }
2600   } else if (N.getOpcode() == ISD::OR) {
2601     int16_t imm = 0;
2602     if (isIntS16Immediate(N.getOperand(1), imm) &&
2603         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2604       // If this is an or of disjoint bitfields, we can codegen this as an add
2605       // (for better address arithmetic) if the LHS and RHS of the OR are
2606       // provably disjoint.
2607       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2608 
2609       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2610         // If all of the bits are known zero on the LHS or RHS, the add won't
2611         // carry.
2612         if (FrameIndexSDNode *FI =
2613               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2614           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2615           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2616         } else {
2617           Base = N.getOperand(0);
2618         }
2619         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2620         return true;
2621       }
2622     }
2623   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2624     // Loading from a constant address.
2625 
2626     // If this address fits entirely in a 16-bit sext immediate field, codegen
2627     // this as "d, 0"
2628     int16_t Imm;
2629     if (isIntS16Immediate(CN, Imm) &&
2630         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
2631       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2632       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2633                              CN->getValueType(0));
2634       return true;
2635     }
2636 
2637     // Handle 32-bit sext immediates with LIS + addr mode.
2638     if ((CN->getValueType(0) == MVT::i32 ||
2639          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2640         (!EncodingAlignment ||
2641          isAligned(*EncodingAlignment, CN->getZExtValue()))) {
2642       int Addr = (int)CN->getZExtValue();
2643 
2644       // Otherwise, break this down into an LIS + disp.
2645       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2646 
2647       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2648                                    MVT::i32);
2649       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2650       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2651       return true;
2652     }
2653   }
2654 
2655   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2656   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2657     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2658     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2659   } else
2660     Base = N;
2661   return true;      // [r+0]
2662 }
2663 
2664 /// Similar to the 16-bit case but for instructions that take a 34-bit
2665 /// displacement field (prefixed loads/stores).
2666 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp,
2667                                               SDValue &Base,
2668                                               SelectionDAG &DAG) const {
2669   // Only on 64-bit targets.
2670   if (N.getValueType() != MVT::i64)
2671     return false;
2672 
2673   SDLoc dl(N);
2674   int64_t Imm = 0;
2675 
2676   if (N.getOpcode() == ISD::ADD) {
2677     if (!isIntS34Immediate(N.getOperand(1), Imm))
2678       return false;
2679     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2680     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2681       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2682     else
2683       Base = N.getOperand(0);
2684     return true;
2685   }
2686 
2687   if (N.getOpcode() == ISD::OR) {
2688     if (!isIntS34Immediate(N.getOperand(1), Imm))
2689       return false;
2690     // If this is an or of disjoint bitfields, we can codegen this as an add
2691     // (for better address arithmetic) if the LHS and RHS of the OR are
2692     // provably disjoint.
2693     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2694     if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL)
2695       return false;
2696     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2697       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2698     else
2699       Base = N.getOperand(0);
2700     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2701     return true;
2702   }
2703 
2704   if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const.
2705     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2706     Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
2707     return true;
2708   }
2709 
2710   return false;
2711 }
2712 
2713 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2714 /// represented as an indexed [r+r] operation.
2715 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2716                                                 SDValue &Index,
2717                                                 SelectionDAG &DAG) const {
2718   // Check to see if we can easily represent this as an [r+r] address.  This
2719   // will fail if it thinks that the address is more profitably represented as
2720   // reg+imm, e.g. where imm = 0.
2721   if (SelectAddressRegReg(N, Base, Index, DAG))
2722     return true;
2723 
2724   // If the address is the result of an add, we will utilize the fact that the
2725   // address calculation includes an implicit add.  However, we can reduce
2726   // register pressure if we do not materialize a constant just for use as the
2727   // index register.  We only get rid of the add if it is not an add of a
2728   // value and a 16-bit signed constant and both have a single use.
2729   int16_t imm = 0;
2730   if (N.getOpcode() == ISD::ADD &&
2731       (!isIntS16Immediate(N.getOperand(1), imm) ||
2732        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2733     Base = N.getOperand(0);
2734     Index = N.getOperand(1);
2735     return true;
2736   }
2737 
2738   // Otherwise, do it the hard way, using R0 as the base register.
2739   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2740                          N.getValueType());
2741   Index = N;
2742   return true;
2743 }
2744 
2745 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2746   Ty *PCRelCand = dyn_cast<Ty>(N);
2747   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2748 }
2749 
2750 /// Returns true if this address is a PC Relative address.
2751 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2752 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2753 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2754   // This is a materialize PC Relative node. Always select this as PC Relative.
2755   Base = N;
2756   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2757     return true;
2758   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2759       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2760       isValidPCRelNode<JumpTableSDNode>(N) ||
2761       isValidPCRelNode<BlockAddressSDNode>(N))
2762     return true;
2763   return false;
2764 }
2765 
2766 /// Returns true if we should use a direct load into vector instruction
2767 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2768 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2769 
2770   // If there are any other uses other than scalar to vector, then we should
2771   // keep it as a scalar load -> direct move pattern to prevent multiple
2772   // loads.
2773   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2774   if (!LD)
2775     return false;
2776 
2777   EVT MemVT = LD->getMemoryVT();
2778   if (!MemVT.isSimple())
2779     return false;
2780   switch(MemVT.getSimpleVT().SimpleTy) {
2781   case MVT::i64:
2782     break;
2783   case MVT::i32:
2784     if (!ST.hasP8Vector())
2785       return false;
2786     break;
2787   case MVT::i16:
2788   case MVT::i8:
2789     if (!ST.hasP9Vector())
2790       return false;
2791     break;
2792   default:
2793     return false;
2794   }
2795 
2796   SDValue LoadedVal(N, 0);
2797   if (!LoadedVal.hasOneUse())
2798     return false;
2799 
2800   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2801        UI != UE; ++UI)
2802     if (UI.getUse().get().getResNo() == 0 &&
2803         UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
2804         UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
2805       return false;
2806 
2807   return true;
2808 }
2809 
2810 /// getPreIndexedAddressParts - returns true by value, base pointer and
2811 /// offset pointer and addressing mode by reference if the node's address
2812 /// can be legally represented as pre-indexed load / store address.
2813 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2814                                                   SDValue &Offset,
2815                                                   ISD::MemIndexedMode &AM,
2816                                                   SelectionDAG &DAG) const {
2817   if (DisablePPCPreinc) return false;
2818 
2819   bool isLoad = true;
2820   SDValue Ptr;
2821   EVT VT;
2822   unsigned Alignment;
2823   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2824     Ptr = LD->getBasePtr();
2825     VT = LD->getMemoryVT();
2826     Alignment = LD->getAlignment();
2827   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2828     Ptr = ST->getBasePtr();
2829     VT  = ST->getMemoryVT();
2830     Alignment = ST->getAlignment();
2831     isLoad = false;
2832   } else
2833     return false;
2834 
2835   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2836   // instructions because we can fold these into a more efficient instruction
2837   // instead, (such as LXSD).
2838   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2839     return false;
2840   }
2841 
2842   // PowerPC doesn't have preinc load/store instructions for vectors
2843   if (VT.isVector())
2844     return false;
2845 
2846   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2847     // Common code will reject creating a pre-inc form if the base pointer
2848     // is a frame index, or if N is a store and the base pointer is either
2849     // the same as or a predecessor of the value being stored.  Check for
2850     // those situations here, and try with swapped Base/Offset instead.
2851     bool Swap = false;
2852 
2853     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2854       Swap = true;
2855     else if (!isLoad) {
2856       SDValue Val = cast<StoreSDNode>(N)->getValue();
2857       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2858         Swap = true;
2859     }
2860 
2861     if (Swap)
2862       std::swap(Base, Offset);
2863 
2864     AM = ISD::PRE_INC;
2865     return true;
2866   }
2867 
2868   // LDU/STU can only handle immediates that are a multiple of 4.
2869   if (VT != MVT::i64) {
2870     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None))
2871       return false;
2872   } else {
2873     // LDU/STU need an address with at least 4-byte alignment.
2874     if (Alignment < 4)
2875       return false;
2876 
2877     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
2878       return false;
2879   }
2880 
2881   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2882     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2883     // sext i32 to i64 when addr mode is r+i.
2884     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2885         LD->getExtensionType() == ISD::SEXTLOAD &&
2886         isa<ConstantSDNode>(Offset))
2887       return false;
2888   }
2889 
2890   AM = ISD::PRE_INC;
2891   return true;
2892 }
2893 
2894 //===----------------------------------------------------------------------===//
2895 //  LowerOperation implementation
2896 //===----------------------------------------------------------------------===//
2897 
2898 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2899 /// and LoOpFlags to the target MO flags.
2900 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2901                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2902                                const GlobalValue *GV = nullptr) {
2903   HiOpFlags = PPCII::MO_HA;
2904   LoOpFlags = PPCII::MO_LO;
2905 
2906   // Don't use the pic base if not in PIC relocation model.
2907   if (IsPIC) {
2908     HiOpFlags |= PPCII::MO_PIC_FLAG;
2909     LoOpFlags |= PPCII::MO_PIC_FLAG;
2910   }
2911 }
2912 
2913 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2914                              SelectionDAG &DAG) {
2915   SDLoc DL(HiPart);
2916   EVT PtrVT = HiPart.getValueType();
2917   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2918 
2919   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2920   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2921 
2922   // With PIC, the first instruction is actually "GR+hi(&G)".
2923   if (isPIC)
2924     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2925                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2926 
2927   // Generate non-pic code that has direct accesses to the constant pool.
2928   // The address of the global is just (hi(&g)+lo(&g)).
2929   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2930 }
2931 
2932 static void setUsesTOCBasePtr(MachineFunction &MF) {
2933   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2934   FuncInfo->setUsesTOCBasePtr();
2935 }
2936 
2937 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2938   setUsesTOCBasePtr(DAG.getMachineFunction());
2939 }
2940 
2941 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
2942                                        SDValue GA) const {
2943   const bool Is64Bit = Subtarget.isPPC64();
2944   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2945   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
2946                         : Subtarget.isAIXABI()
2947                               ? DAG.getRegister(PPC::R2, VT)
2948                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2949   SDValue Ops[] = { GA, Reg };
2950   return DAG.getMemIntrinsicNode(
2951       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2952       MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
2953       MachineMemOperand::MOLoad);
2954 }
2955 
2956 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2957                                              SelectionDAG &DAG) const {
2958   EVT PtrVT = Op.getValueType();
2959   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2960   const Constant *C = CP->getConstVal();
2961 
2962   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2963   // The actual address of the GlobalValue is stored in the TOC.
2964   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2965     if (Subtarget.isUsingPCRelativeCalls()) {
2966       SDLoc DL(CP);
2967       EVT Ty = getPointerTy(DAG.getDataLayout());
2968       SDValue ConstPool = DAG.getTargetConstantPool(
2969           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
2970       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
2971     }
2972     setUsesTOCBasePtr(DAG);
2973     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
2974     return getTOCEntry(DAG, SDLoc(CP), GA);
2975   }
2976 
2977   unsigned MOHiFlag, MOLoFlag;
2978   bool IsPIC = isPositionIndependent();
2979   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2980 
2981   if (IsPIC && Subtarget.isSVR4ABI()) {
2982     SDValue GA =
2983         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
2984     return getTOCEntry(DAG, SDLoc(CP), GA);
2985   }
2986 
2987   SDValue CPIHi =
2988       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
2989   SDValue CPILo =
2990       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
2991   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2992 }
2993 
2994 // For 64-bit PowerPC, prefer the more compact relative encodings.
2995 // This trades 32 bits per jump table entry for one or two instructions
2996 // on the jump site.
2997 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2998   if (isJumpTableRelative())
2999     return MachineJumpTableInfo::EK_LabelDifference32;
3000 
3001   return TargetLowering::getJumpTableEncoding();
3002 }
3003 
3004 bool PPCTargetLowering::isJumpTableRelative() const {
3005   if (UseAbsoluteJumpTables)
3006     return false;
3007   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
3008     return true;
3009   return TargetLowering::isJumpTableRelative();
3010 }
3011 
3012 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
3013                                                     SelectionDAG &DAG) const {
3014   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3015     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3016 
3017   switch (getTargetMachine().getCodeModel()) {
3018   case CodeModel::Small:
3019   case CodeModel::Medium:
3020     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3021   default:
3022     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
3023                        getPointerTy(DAG.getDataLayout()));
3024   }
3025 }
3026 
3027 const MCExpr *
3028 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
3029                                                 unsigned JTI,
3030                                                 MCContext &Ctx) const {
3031   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3032     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3033 
3034   switch (getTargetMachine().getCodeModel()) {
3035   case CodeModel::Small:
3036   case CodeModel::Medium:
3037     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3038   default:
3039     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
3040   }
3041 }
3042 
3043 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
3044   EVT PtrVT = Op.getValueType();
3045   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3046 
3047   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3048   if (Subtarget.isUsingPCRelativeCalls()) {
3049     SDLoc DL(JT);
3050     EVT Ty = getPointerTy(DAG.getDataLayout());
3051     SDValue GA =
3052         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
3053     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3054     return MatAddr;
3055   }
3056 
3057   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3058   // The actual address of the GlobalValue is stored in the TOC.
3059   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3060     setUsesTOCBasePtr(DAG);
3061     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3062     return getTOCEntry(DAG, SDLoc(JT), GA);
3063   }
3064 
3065   unsigned MOHiFlag, MOLoFlag;
3066   bool IsPIC = isPositionIndependent();
3067   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3068 
3069   if (IsPIC && Subtarget.isSVR4ABI()) {
3070     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3071                                         PPCII::MO_PIC_FLAG);
3072     return getTOCEntry(DAG, SDLoc(GA), GA);
3073   }
3074 
3075   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
3076   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
3077   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
3078 }
3079 
3080 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
3081                                              SelectionDAG &DAG) const {
3082   EVT PtrVT = Op.getValueType();
3083   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
3084   const BlockAddress *BA = BASDN->getBlockAddress();
3085 
3086   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3087   if (Subtarget.isUsingPCRelativeCalls()) {
3088     SDLoc DL(BASDN);
3089     EVT Ty = getPointerTy(DAG.getDataLayout());
3090     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
3091                                            PPCII::MO_PCREL_FLAG);
3092     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3093     return MatAddr;
3094   }
3095 
3096   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3097   // The actual BlockAddress is stored in the TOC.
3098   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3099     setUsesTOCBasePtr(DAG);
3100     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
3101     return getTOCEntry(DAG, SDLoc(BASDN), GA);
3102   }
3103 
3104   // 32-bit position-independent ELF stores the BlockAddress in the .got.
3105   if (Subtarget.is32BitELFABI() && isPositionIndependent())
3106     return getTOCEntry(
3107         DAG, SDLoc(BASDN),
3108         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
3109 
3110   unsigned MOHiFlag, MOLoFlag;
3111   bool IsPIC = isPositionIndependent();
3112   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3113   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
3114   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
3115   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
3116 }
3117 
3118 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
3119                                               SelectionDAG &DAG) const {
3120   if (Subtarget.isAIXABI())
3121     report_fatal_error("TLS is not yet supported on AIX.");
3122   // FIXME: TLS addresses currently use medium model code sequences,
3123   // which is the most useful form.  Eventually support for small and
3124   // large models could be added if users need it, at the cost of
3125   // additional complexity.
3126   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3127   if (DAG.getTarget().useEmulatedTLS())
3128     return LowerToTLSEmulatedModel(GA, DAG);
3129 
3130   SDLoc dl(GA);
3131   const GlobalValue *GV = GA->getGlobal();
3132   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3133   bool is64bit = Subtarget.isPPC64();
3134   const Module *M = DAG.getMachineFunction().getFunction().getParent();
3135   PICLevel::Level picLevel = M->getPICLevel();
3136 
3137   const TargetMachine &TM = getTargetMachine();
3138   TLSModel::Model Model = TM.getTLSModel(GV);
3139 
3140   if (Model == TLSModel::LocalExec) {
3141     if (Subtarget.isUsingPCRelativeCalls()) {
3142       SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64);
3143       SDValue TGA = DAG.getTargetGlobalAddress(
3144           GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG));
3145       SDValue MatAddr =
3146           DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA);
3147       return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr);
3148     }
3149 
3150     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3151                                                PPCII::MO_TPREL_HA);
3152     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3153                                                PPCII::MO_TPREL_LO);
3154     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
3155                              : DAG.getRegister(PPC::R2, MVT::i32);
3156 
3157     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3158     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3159   }
3160 
3161   if (Model == TLSModel::InitialExec) {
3162     bool IsPCRel = Subtarget.isUsingPCRelativeCalls();
3163     SDValue TGA = DAG.getTargetGlobalAddress(
3164         GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0);
3165     SDValue TGATLS = DAG.getTargetGlobalAddress(
3166         GV, dl, PtrVT, 0,
3167         IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS);
3168     SDValue TPOffset;
3169     if (IsPCRel) {
3170       SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA);
3171       TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel,
3172                              MachinePointerInfo());
3173     } else {
3174       SDValue GOTPtr;
3175       if (is64bit) {
3176         setUsesTOCBasePtr(DAG);
3177         SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3178         GOTPtr =
3179             DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA);
3180       } else {
3181         if (!TM.isPositionIndependent())
3182           GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3183         else if (picLevel == PICLevel::SmallPIC)
3184           GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3185         else
3186           GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3187       }
3188       TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr);
3189     }
3190     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3191   }
3192 
3193   if (Model == TLSModel::GeneralDynamic) {
3194     if (Subtarget.isUsingPCRelativeCalls()) {
3195       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3196                                                PPCII::MO_GOT_TLSGD_PCREL_FLAG);
3197       return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3198     }
3199 
3200     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3201     SDValue GOTPtr;
3202     if (is64bit) {
3203       setUsesTOCBasePtr(DAG);
3204       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3205       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3206                                    GOTReg, TGA);
3207     } else {
3208       if (picLevel == PICLevel::SmallPIC)
3209         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3210       else
3211         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3212     }
3213     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3214                        GOTPtr, TGA, TGA);
3215   }
3216 
3217   if (Model == TLSModel::LocalDynamic) {
3218     if (Subtarget.isUsingPCRelativeCalls()) {
3219       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3220                                                PPCII::MO_GOT_TLSLD_PCREL_FLAG);
3221       SDValue MatPCRel =
3222           DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3223       return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA);
3224     }
3225 
3226     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3227     SDValue GOTPtr;
3228     if (is64bit) {
3229       setUsesTOCBasePtr(DAG);
3230       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3231       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3232                            GOTReg, TGA);
3233     } else {
3234       if (picLevel == PICLevel::SmallPIC)
3235         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3236       else
3237         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3238     }
3239     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3240                                   PtrVT, GOTPtr, TGA, TGA);
3241     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3242                                       PtrVT, TLSAddr, TGA);
3243     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3244   }
3245 
3246   llvm_unreachable("Unknown TLS model!");
3247 }
3248 
3249 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3250                                               SelectionDAG &DAG) const {
3251   EVT PtrVT = Op.getValueType();
3252   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3253   SDLoc DL(GSDN);
3254   const GlobalValue *GV = GSDN->getGlobal();
3255 
3256   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3257   // The actual address of the GlobalValue is stored in the TOC.
3258   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3259     if (Subtarget.isUsingPCRelativeCalls()) {
3260       EVT Ty = getPointerTy(DAG.getDataLayout());
3261       if (isAccessedAsGotIndirect(Op)) {
3262         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3263                                                 PPCII::MO_PCREL_FLAG |
3264                                                     PPCII::MO_GOT_FLAG);
3265         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3266         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3267                                    MachinePointerInfo());
3268         return Load;
3269       } else {
3270         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3271                                                 PPCII::MO_PCREL_FLAG);
3272         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3273       }
3274     }
3275     setUsesTOCBasePtr(DAG);
3276     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3277     return getTOCEntry(DAG, DL, GA);
3278   }
3279 
3280   unsigned MOHiFlag, MOLoFlag;
3281   bool IsPIC = isPositionIndependent();
3282   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3283 
3284   if (IsPIC && Subtarget.isSVR4ABI()) {
3285     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3286                                             GSDN->getOffset(),
3287                                             PPCII::MO_PIC_FLAG);
3288     return getTOCEntry(DAG, DL, GA);
3289   }
3290 
3291   SDValue GAHi =
3292     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3293   SDValue GALo =
3294     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3295 
3296   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3297 }
3298 
3299 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3300   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3301   SDLoc dl(Op);
3302 
3303   if (Op.getValueType() == MVT::v2i64) {
3304     // When the operands themselves are v2i64 values, we need to do something
3305     // special because VSX has no underlying comparison operations for these.
3306     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
3307       // Equality can be handled by casting to the legal type for Altivec
3308       // comparisons, everything else needs to be expanded.
3309       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3310         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
3311                  DAG.getSetCC(dl, MVT::v4i32,
3312                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
3313                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
3314                    CC));
3315       }
3316 
3317       return SDValue();
3318     }
3319 
3320     // We handle most of these in the usual way.
3321     return Op;
3322   }
3323 
3324   // If we're comparing for equality to zero, expose the fact that this is
3325   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3326   // fold the new nodes.
3327   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3328     return V;
3329 
3330   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3331     // Leave comparisons against 0 and -1 alone for now, since they're usually
3332     // optimized.  FIXME: revisit this when we can custom lower all setcc
3333     // optimizations.
3334     if (C->isAllOnesValue() || C->isNullValue())
3335       return SDValue();
3336   }
3337 
3338   // If we have an integer seteq/setne, turn it into a compare against zero
3339   // by xor'ing the rhs with the lhs, which is faster than setting a
3340   // condition register, reading it back out, and masking the correct bit.  The
3341   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3342   // the result to other bit-twiddling opportunities.
3343   EVT LHSVT = Op.getOperand(0).getValueType();
3344   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3345     EVT VT = Op.getValueType();
3346     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
3347                                 Op.getOperand(1));
3348     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3349   }
3350   return SDValue();
3351 }
3352 
3353 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3354   SDNode *Node = Op.getNode();
3355   EVT VT = Node->getValueType(0);
3356   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3357   SDValue InChain = Node->getOperand(0);
3358   SDValue VAListPtr = Node->getOperand(1);
3359   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3360   SDLoc dl(Node);
3361 
3362   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3363 
3364   // gpr_index
3365   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3366                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3367   InChain = GprIndex.getValue(1);
3368 
3369   if (VT == MVT::i64) {
3370     // Check if GprIndex is even
3371     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3372                                  DAG.getConstant(1, dl, MVT::i32));
3373     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3374                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3375     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3376                                           DAG.getConstant(1, dl, MVT::i32));
3377     // Align GprIndex to be even if it isn't
3378     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3379                            GprIndex);
3380   }
3381 
3382   // fpr index is 1 byte after gpr
3383   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3384                                DAG.getConstant(1, dl, MVT::i32));
3385 
3386   // fpr
3387   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3388                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3389   InChain = FprIndex.getValue(1);
3390 
3391   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3392                                        DAG.getConstant(8, dl, MVT::i32));
3393 
3394   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3395                                         DAG.getConstant(4, dl, MVT::i32));
3396 
3397   // areas
3398   SDValue OverflowArea =
3399       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3400   InChain = OverflowArea.getValue(1);
3401 
3402   SDValue RegSaveArea =
3403       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3404   InChain = RegSaveArea.getValue(1);
3405 
3406   // select overflow_area if index > 8
3407   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3408                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3409 
3410   // adjustment constant gpr_index * 4/8
3411   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3412                                     VT.isInteger() ? GprIndex : FprIndex,
3413                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3414                                                     MVT::i32));
3415 
3416   // OurReg = RegSaveArea + RegConstant
3417   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3418                                RegConstant);
3419 
3420   // Floating types are 32 bytes into RegSaveArea
3421   if (VT.isFloatingPoint())
3422     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3423                          DAG.getConstant(32, dl, MVT::i32));
3424 
3425   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3426   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3427                                    VT.isInteger() ? GprIndex : FprIndex,
3428                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3429                                                    MVT::i32));
3430 
3431   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3432                               VT.isInteger() ? VAListPtr : FprPtr,
3433                               MachinePointerInfo(SV), MVT::i8);
3434 
3435   // determine if we should load from reg_save_area or overflow_area
3436   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3437 
3438   // increase overflow_area by 4/8 if gpr/fpr > 8
3439   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3440                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3441                                           dl, MVT::i32));
3442 
3443   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3444                              OverflowAreaPlusN);
3445 
3446   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3447                               MachinePointerInfo(), MVT::i32);
3448 
3449   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3450 }
3451 
3452 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3453   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3454 
3455   // We have to copy the entire va_list struct:
3456   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3457   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3458                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3459                        false, true, false, MachinePointerInfo(),
3460                        MachinePointerInfo());
3461 }
3462 
3463 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3464                                                   SelectionDAG &DAG) const {
3465   if (Subtarget.isAIXABI())
3466     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3467 
3468   return Op.getOperand(0);
3469 }
3470 
3471 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3472                                                 SelectionDAG &DAG) const {
3473   if (Subtarget.isAIXABI())
3474     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3475 
3476   SDValue Chain = Op.getOperand(0);
3477   SDValue Trmp = Op.getOperand(1); // trampoline
3478   SDValue FPtr = Op.getOperand(2); // nested function
3479   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3480   SDLoc dl(Op);
3481 
3482   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3483   bool isPPC64 = (PtrVT == MVT::i64);
3484   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3485 
3486   TargetLowering::ArgListTy Args;
3487   TargetLowering::ArgListEntry Entry;
3488 
3489   Entry.Ty = IntPtrTy;
3490   Entry.Node = Trmp; Args.push_back(Entry);
3491 
3492   // TrampSize == (isPPC64 ? 48 : 40);
3493   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3494                                isPPC64 ? MVT::i64 : MVT::i32);
3495   Args.push_back(Entry);
3496 
3497   Entry.Node = FPtr; Args.push_back(Entry);
3498   Entry.Node = Nest; Args.push_back(Entry);
3499 
3500   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3501   TargetLowering::CallLoweringInfo CLI(DAG);
3502   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3503       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3504       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3505 
3506   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3507   return CallResult.second;
3508 }
3509 
3510 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3511   MachineFunction &MF = DAG.getMachineFunction();
3512   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3513   EVT PtrVT = getPointerTy(MF.getDataLayout());
3514 
3515   SDLoc dl(Op);
3516 
3517   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3518     // vastart just stores the address of the VarArgsFrameIndex slot into the
3519     // memory location argument.
3520     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3521     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3522     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3523                         MachinePointerInfo(SV));
3524   }
3525 
3526   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3527   // We suppose the given va_list is already allocated.
3528   //
3529   // typedef struct {
3530   //  char gpr;     /* index into the array of 8 GPRs
3531   //                 * stored in the register save area
3532   //                 * gpr=0 corresponds to r3,
3533   //                 * gpr=1 to r4, etc.
3534   //                 */
3535   //  char fpr;     /* index into the array of 8 FPRs
3536   //                 * stored in the register save area
3537   //                 * fpr=0 corresponds to f1,
3538   //                 * fpr=1 to f2, etc.
3539   //                 */
3540   //  char *overflow_arg_area;
3541   //                /* location on stack that holds
3542   //                 * the next overflow argument
3543   //                 */
3544   //  char *reg_save_area;
3545   //               /* where r3:r10 and f1:f8 (if saved)
3546   //                * are stored
3547   //                */
3548   // } va_list[1];
3549 
3550   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3551   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3552   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3553                                             PtrVT);
3554   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3555                                  PtrVT);
3556 
3557   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3558   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3559 
3560   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3561   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3562 
3563   uint64_t FPROffset = 1;
3564   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3565 
3566   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3567 
3568   // Store first byte : number of int regs
3569   SDValue firstStore =
3570       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3571                         MachinePointerInfo(SV), MVT::i8);
3572   uint64_t nextOffset = FPROffset;
3573   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3574                                   ConstFPROffset);
3575 
3576   // Store second byte : number of float regs
3577   SDValue secondStore =
3578       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3579                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3580   nextOffset += StackOffset;
3581   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3582 
3583   // Store second word : arguments given on stack
3584   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3585                                     MachinePointerInfo(SV, nextOffset));
3586   nextOffset += FrameOffset;
3587   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3588 
3589   // Store third word : arguments given in registers
3590   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3591                       MachinePointerInfo(SV, nextOffset));
3592 }
3593 
3594 /// FPR - The set of FP registers that should be allocated for arguments
3595 /// on Darwin and AIX.
3596 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3597                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3598                                 PPC::F11, PPC::F12, PPC::F13};
3599 
3600 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3601 /// the stack.
3602 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3603                                        unsigned PtrByteSize) {
3604   unsigned ArgSize = ArgVT.getStoreSize();
3605   if (Flags.isByVal())
3606     ArgSize = Flags.getByValSize();
3607 
3608   // Round up to multiples of the pointer size, except for array members,
3609   // which are always packed.
3610   if (!Flags.isInConsecutiveRegs())
3611     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3612 
3613   return ArgSize;
3614 }
3615 
3616 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3617 /// on the stack.
3618 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3619                                          ISD::ArgFlagsTy Flags,
3620                                          unsigned PtrByteSize) {
3621   Align Alignment(PtrByteSize);
3622 
3623   // Altivec parameters are padded to a 16 byte boundary.
3624   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3625       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3626       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3627       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3628     Alignment = Align(16);
3629 
3630   // ByVal parameters are aligned as requested.
3631   if (Flags.isByVal()) {
3632     auto BVAlign = Flags.getNonZeroByValAlign();
3633     if (BVAlign > PtrByteSize) {
3634       if (BVAlign.value() % PtrByteSize != 0)
3635         llvm_unreachable(
3636             "ByVal alignment is not a multiple of the pointer size");
3637 
3638       Alignment = BVAlign;
3639     }
3640   }
3641 
3642   // Array members are always packed to their original alignment.
3643   if (Flags.isInConsecutiveRegs()) {
3644     // If the array member was split into multiple registers, the first
3645     // needs to be aligned to the size of the full type.  (Except for
3646     // ppcf128, which is only aligned as its f64 components.)
3647     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3648       Alignment = Align(OrigVT.getStoreSize());
3649     else
3650       Alignment = Align(ArgVT.getStoreSize());
3651   }
3652 
3653   return Alignment;
3654 }
3655 
3656 /// CalculateStackSlotUsed - Return whether this argument will use its
3657 /// stack slot (instead of being passed in registers).  ArgOffset,
3658 /// AvailableFPRs, and AvailableVRs must hold the current argument
3659 /// position, and will be updated to account for this argument.
3660 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags,
3661                                    unsigned PtrByteSize, unsigned LinkageSize,
3662                                    unsigned ParamAreaSize, unsigned &ArgOffset,
3663                                    unsigned &AvailableFPRs,
3664                                    unsigned &AvailableVRs) {
3665   bool UseMemory = false;
3666 
3667   // Respect alignment of argument on the stack.
3668   Align Alignment =
3669       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3670   ArgOffset = alignTo(ArgOffset, Alignment);
3671   // If there's no space left in the argument save area, we must
3672   // use memory (this check also catches zero-sized arguments).
3673   if (ArgOffset >= LinkageSize + ParamAreaSize)
3674     UseMemory = true;
3675 
3676   // Allocate argument on the stack.
3677   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3678   if (Flags.isInConsecutiveRegsLast())
3679     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3680   // If we overran the argument save area, we must use memory
3681   // (this check catches arguments passed partially in memory)
3682   if (ArgOffset > LinkageSize + ParamAreaSize)
3683     UseMemory = true;
3684 
3685   // However, if the argument is actually passed in an FPR or a VR,
3686   // we don't use memory after all.
3687   if (!Flags.isByVal()) {
3688     if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
3689       if (AvailableFPRs > 0) {
3690         --AvailableFPRs;
3691         return false;
3692       }
3693     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3694         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3695         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3696         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3697       if (AvailableVRs > 0) {
3698         --AvailableVRs;
3699         return false;
3700       }
3701   }
3702 
3703   return UseMemory;
3704 }
3705 
3706 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3707 /// ensure minimum alignment required for target.
3708 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3709                                      unsigned NumBytes) {
3710   return alignTo(NumBytes, Lowering->getStackAlign());
3711 }
3712 
3713 SDValue PPCTargetLowering::LowerFormalArguments(
3714     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3715     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3716     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3717   if (Subtarget.isAIXABI())
3718     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3719                                     InVals);
3720   if (Subtarget.is64BitELFABI())
3721     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3722                                        InVals);
3723   assert(Subtarget.is32BitELFABI());
3724   return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3725                                      InVals);
3726 }
3727 
3728 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3729     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3730     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3731     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3732 
3733   // 32-bit SVR4 ABI Stack Frame Layout:
3734   //              +-----------------------------------+
3735   //        +-->  |            Back chain             |
3736   //        |     +-----------------------------------+
3737   //        |     | Floating-point register save area |
3738   //        |     +-----------------------------------+
3739   //        |     |    General register save area     |
3740   //        |     +-----------------------------------+
3741   //        |     |          CR save word             |
3742   //        |     +-----------------------------------+
3743   //        |     |         VRSAVE save word          |
3744   //        |     +-----------------------------------+
3745   //        |     |         Alignment padding         |
3746   //        |     +-----------------------------------+
3747   //        |     |     Vector register save area     |
3748   //        |     +-----------------------------------+
3749   //        |     |       Local variable space        |
3750   //        |     +-----------------------------------+
3751   //        |     |        Parameter list area        |
3752   //        |     +-----------------------------------+
3753   //        |     |           LR save word            |
3754   //        |     +-----------------------------------+
3755   // SP-->  +---  |            Back chain             |
3756   //              +-----------------------------------+
3757   //
3758   // Specifications:
3759   //   System V Application Binary Interface PowerPC Processor Supplement
3760   //   AltiVec Technology Programming Interface Manual
3761 
3762   MachineFunction &MF = DAG.getMachineFunction();
3763   MachineFrameInfo &MFI = MF.getFrameInfo();
3764   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3765 
3766   EVT PtrVT = getPointerTy(MF.getDataLayout());
3767   // Potential tail calls could cause overwriting of argument stack slots.
3768   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3769                        (CallConv == CallingConv::Fast));
3770   const Align PtrAlign(4);
3771 
3772   // Assign locations to all of the incoming arguments.
3773   SmallVector<CCValAssign, 16> ArgLocs;
3774   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3775                  *DAG.getContext());
3776 
3777   // Reserve space for the linkage area on the stack.
3778   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3779   CCInfo.AllocateStack(LinkageSize, PtrAlign);
3780   if (useSoftFloat())
3781     CCInfo.PreAnalyzeFormalArguments(Ins);
3782 
3783   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3784   CCInfo.clearWasPPCF128();
3785 
3786   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3787     CCValAssign &VA = ArgLocs[i];
3788 
3789     // Arguments stored in registers.
3790     if (VA.isRegLoc()) {
3791       const TargetRegisterClass *RC;
3792       EVT ValVT = VA.getValVT();
3793 
3794       switch (ValVT.getSimpleVT().SimpleTy) {
3795         default:
3796           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3797         case MVT::i1:
3798         case MVT::i32:
3799           RC = &PPC::GPRCRegClass;
3800           break;
3801         case MVT::f32:
3802           if (Subtarget.hasP8Vector())
3803             RC = &PPC::VSSRCRegClass;
3804           else if (Subtarget.hasSPE())
3805             RC = &PPC::GPRCRegClass;
3806           else
3807             RC = &PPC::F4RCRegClass;
3808           break;
3809         case MVT::f64:
3810           if (Subtarget.hasVSX())
3811             RC = &PPC::VSFRCRegClass;
3812           else if (Subtarget.hasSPE())
3813             // SPE passes doubles in GPR pairs.
3814             RC = &PPC::GPRCRegClass;
3815           else
3816             RC = &PPC::F8RCRegClass;
3817           break;
3818         case MVT::v16i8:
3819         case MVT::v8i16:
3820         case MVT::v4i32:
3821           RC = &PPC::VRRCRegClass;
3822           break;
3823         case MVT::v4f32:
3824           RC = &PPC::VRRCRegClass;
3825           break;
3826         case MVT::v2f64:
3827         case MVT::v2i64:
3828           RC = &PPC::VRRCRegClass;
3829           break;
3830       }
3831 
3832       SDValue ArgValue;
3833       // Transform the arguments stored in physical registers into
3834       // virtual ones.
3835       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3836         assert(i + 1 < e && "No second half of double precision argument");
3837         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3838         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3839         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3840         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3841         if (!Subtarget.isLittleEndian())
3842           std::swap (ArgValueLo, ArgValueHi);
3843         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3844                                ArgValueHi);
3845       } else {
3846         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3847         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3848                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
3849         if (ValVT == MVT::i1)
3850           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3851       }
3852 
3853       InVals.push_back(ArgValue);
3854     } else {
3855       // Argument stored in memory.
3856       assert(VA.isMemLoc());
3857 
3858       // Get the extended size of the argument type in stack
3859       unsigned ArgSize = VA.getLocVT().getStoreSize();
3860       // Get the actual size of the argument type
3861       unsigned ObjSize = VA.getValVT().getStoreSize();
3862       unsigned ArgOffset = VA.getLocMemOffset();
3863       // Stack objects in PPC32 are right justified.
3864       ArgOffset += ArgSize - ObjSize;
3865       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3866 
3867       // Create load nodes to retrieve arguments from the stack.
3868       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3869       InVals.push_back(
3870           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3871     }
3872   }
3873 
3874   // Assign locations to all of the incoming aggregate by value arguments.
3875   // Aggregates passed by value are stored in the local variable space of the
3876   // caller's stack frame, right above the parameter list area.
3877   SmallVector<CCValAssign, 16> ByValArgLocs;
3878   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3879                       ByValArgLocs, *DAG.getContext());
3880 
3881   // Reserve stack space for the allocations in CCInfo.
3882   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
3883 
3884   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3885 
3886   // Area that is at least reserved in the caller of this function.
3887   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3888   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3889 
3890   // Set the size that is at least reserved in caller of this function.  Tail
3891   // call optimized function's reserved stack space needs to be aligned so that
3892   // taking the difference between two stack areas will result in an aligned
3893   // stack.
3894   MinReservedArea =
3895       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3896   FuncInfo->setMinReservedArea(MinReservedArea);
3897 
3898   SmallVector<SDValue, 8> MemOps;
3899 
3900   // If the function takes variable number of arguments, make a frame index for
3901   // the start of the first vararg value... for expansion of llvm.va_start.
3902   if (isVarArg) {
3903     static const MCPhysReg GPArgRegs[] = {
3904       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3905       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3906     };
3907     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3908 
3909     static const MCPhysReg FPArgRegs[] = {
3910       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3911       PPC::F8
3912     };
3913     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3914 
3915     if (useSoftFloat() || hasSPE())
3916        NumFPArgRegs = 0;
3917 
3918     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3919     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3920 
3921     // Make room for NumGPArgRegs and NumFPArgRegs.
3922     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3923                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3924 
3925     FuncInfo->setVarArgsStackOffset(
3926       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3927                             CCInfo.getNextStackOffset(), true));
3928 
3929     FuncInfo->setVarArgsFrameIndex(
3930         MFI.CreateStackObject(Depth, Align(8), false));
3931     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3932 
3933     // The fixed integer arguments of a variadic function are stored to the
3934     // VarArgsFrameIndex on the stack so that they may be loaded by
3935     // dereferencing the result of va_next.
3936     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3937       // Get an existing live-in vreg, or add a new one.
3938       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3939       if (!VReg)
3940         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3941 
3942       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3943       SDValue Store =
3944           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3945       MemOps.push_back(Store);
3946       // Increment the address by four for the next argument to store
3947       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3948       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3949     }
3950 
3951     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3952     // is set.
3953     // The double arguments are stored to the VarArgsFrameIndex
3954     // on the stack.
3955     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3956       // Get an existing live-in vreg, or add a new one.
3957       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3958       if (!VReg)
3959         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3960 
3961       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3962       SDValue Store =
3963           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3964       MemOps.push_back(Store);
3965       // Increment the address by eight for the next argument to store
3966       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3967                                          PtrVT);
3968       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3969     }
3970   }
3971 
3972   if (!MemOps.empty())
3973     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3974 
3975   return Chain;
3976 }
3977 
3978 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3979 // value to MVT::i64 and then truncate to the correct register size.
3980 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3981                                              EVT ObjectVT, SelectionDAG &DAG,
3982                                              SDValue ArgVal,
3983                                              const SDLoc &dl) const {
3984   if (Flags.isSExt())
3985     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3986                          DAG.getValueType(ObjectVT));
3987   else if (Flags.isZExt())
3988     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3989                          DAG.getValueType(ObjectVT));
3990 
3991   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3992 }
3993 
3994 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3995     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3996     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3997     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3998   // TODO: add description of PPC stack frame format, or at least some docs.
3999   //
4000   bool isELFv2ABI = Subtarget.isELFv2ABI();
4001   bool isLittleEndian = Subtarget.isLittleEndian();
4002   MachineFunction &MF = DAG.getMachineFunction();
4003   MachineFrameInfo &MFI = MF.getFrameInfo();
4004   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4005 
4006   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
4007          "fastcc not supported on varargs functions");
4008 
4009   EVT PtrVT = getPointerTy(MF.getDataLayout());
4010   // Potential tail calls could cause overwriting of argument stack slots.
4011   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4012                        (CallConv == CallingConv::Fast));
4013   unsigned PtrByteSize = 8;
4014   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4015 
4016   static const MCPhysReg GPR[] = {
4017     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4018     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4019   };
4020   static const MCPhysReg VR[] = {
4021     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4022     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4023   };
4024 
4025   const unsigned Num_GPR_Regs = array_lengthof(GPR);
4026   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4027   const unsigned Num_VR_Regs  = array_lengthof(VR);
4028 
4029   // Do a first pass over the arguments to determine whether the ABI
4030   // guarantees that our caller has allocated the parameter save area
4031   // on its stack frame.  In the ELFv1 ABI, this is always the case;
4032   // in the ELFv2 ABI, it is true if this is a vararg function or if
4033   // any parameter is located in a stack slot.
4034 
4035   bool HasParameterArea = !isELFv2ABI || isVarArg;
4036   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
4037   unsigned NumBytes = LinkageSize;
4038   unsigned AvailableFPRs = Num_FPR_Regs;
4039   unsigned AvailableVRs = Num_VR_Regs;
4040   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
4041     if (Ins[i].Flags.isNest())
4042       continue;
4043 
4044     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
4045                                PtrByteSize, LinkageSize, ParamAreaSize,
4046                                NumBytes, AvailableFPRs, AvailableVRs))
4047       HasParameterArea = true;
4048   }
4049 
4050   // Add DAG nodes to load the arguments or copy them out of registers.  On
4051   // entry to a function on PPC, the arguments start after the linkage area,
4052   // although the first ones are often in registers.
4053 
4054   unsigned ArgOffset = LinkageSize;
4055   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4056   SmallVector<SDValue, 8> MemOps;
4057   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4058   unsigned CurArgIdx = 0;
4059   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4060     SDValue ArgVal;
4061     bool needsLoad = false;
4062     EVT ObjectVT = Ins[ArgNo].VT;
4063     EVT OrigVT = Ins[ArgNo].ArgVT;
4064     unsigned ObjSize = ObjectVT.getStoreSize();
4065     unsigned ArgSize = ObjSize;
4066     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4067     if (Ins[ArgNo].isOrigArg()) {
4068       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4069       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4070     }
4071     // We re-align the argument offset for each argument, except when using the
4072     // fast calling convention, when we need to make sure we do that only when
4073     // we'll actually use a stack slot.
4074     unsigned CurArgOffset;
4075     Align Alignment;
4076     auto ComputeArgOffset = [&]() {
4077       /* Respect alignment of argument on the stack.  */
4078       Alignment =
4079           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
4080       ArgOffset = alignTo(ArgOffset, Alignment);
4081       CurArgOffset = ArgOffset;
4082     };
4083 
4084     if (CallConv != CallingConv::Fast) {
4085       ComputeArgOffset();
4086 
4087       /* Compute GPR index associated with argument offset.  */
4088       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4089       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
4090     }
4091 
4092     // FIXME the codegen can be much improved in some cases.
4093     // We do not have to keep everything in memory.
4094     if (Flags.isByVal()) {
4095       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4096 
4097       if (CallConv == CallingConv::Fast)
4098         ComputeArgOffset();
4099 
4100       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4101       ObjSize = Flags.getByValSize();
4102       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4103       // Empty aggregate parameters do not take up registers.  Examples:
4104       //   struct { } a;
4105       //   union  { } b;
4106       //   int c[0];
4107       // etc.  However, we have to provide a place-holder in InVals, so
4108       // pretend we have an 8-byte item at the current address for that
4109       // purpose.
4110       if (!ObjSize) {
4111         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4112         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4113         InVals.push_back(FIN);
4114         continue;
4115       }
4116 
4117       // Create a stack object covering all stack doublewords occupied
4118       // by the argument.  If the argument is (fully or partially) on
4119       // the stack, or if the argument is fully in registers but the
4120       // caller has allocated the parameter save anyway, we can refer
4121       // directly to the caller's stack frame.  Otherwise, create a
4122       // local copy in our own frame.
4123       int FI;
4124       if (HasParameterArea ||
4125           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
4126         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
4127       else
4128         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
4129       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4130 
4131       // Handle aggregates smaller than 8 bytes.
4132       if (ObjSize < PtrByteSize) {
4133         // The value of the object is its address, which differs from the
4134         // address of the enclosing doubleword on big-endian systems.
4135         SDValue Arg = FIN;
4136         if (!isLittleEndian) {
4137           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
4138           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
4139         }
4140         InVals.push_back(Arg);
4141 
4142         if (GPR_idx != Num_GPR_Regs) {
4143           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4144           FuncInfo->addLiveInAttr(VReg, Flags);
4145           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4146           SDValue Store;
4147 
4148           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
4149             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
4150                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
4151             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
4152                                       MachinePointerInfo(&*FuncArg), ObjType);
4153           } else {
4154             // For sizes that don't fit a truncating store (3, 5, 6, 7),
4155             // store the whole register as-is to the parameter save area
4156             // slot.
4157             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4158                                  MachinePointerInfo(&*FuncArg));
4159           }
4160 
4161           MemOps.push_back(Store);
4162         }
4163         // Whether we copied from a register or not, advance the offset
4164         // into the parameter save area by a full doubleword.
4165         ArgOffset += PtrByteSize;
4166         continue;
4167       }
4168 
4169       // The value of the object is its address, which is the address of
4170       // its first stack doubleword.
4171       InVals.push_back(FIN);
4172 
4173       // Store whatever pieces of the object are in registers to memory.
4174       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4175         if (GPR_idx == Num_GPR_Regs)
4176           break;
4177 
4178         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4179         FuncInfo->addLiveInAttr(VReg, Flags);
4180         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4181         SDValue Addr = FIN;
4182         if (j) {
4183           SDValue Off = DAG.getConstant(j, dl, PtrVT);
4184           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4185         }
4186         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
4187                                      MachinePointerInfo(&*FuncArg, j));
4188         MemOps.push_back(Store);
4189         ++GPR_idx;
4190       }
4191       ArgOffset += ArgSize;
4192       continue;
4193     }
4194 
4195     switch (ObjectVT.getSimpleVT().SimpleTy) {
4196     default: llvm_unreachable("Unhandled argument type!");
4197     case MVT::i1:
4198     case MVT::i32:
4199     case MVT::i64:
4200       if (Flags.isNest()) {
4201         // The 'nest' parameter, if any, is passed in R11.
4202         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4203         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4204 
4205         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4206           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4207 
4208         break;
4209       }
4210 
4211       // These can be scalar arguments or elements of an integer array type
4212       // passed directly.  Clang may use those instead of "byval" aggregate
4213       // types to avoid forcing arguments to memory unnecessarily.
4214       if (GPR_idx != Num_GPR_Regs) {
4215         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4216         FuncInfo->addLiveInAttr(VReg, Flags);
4217         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4218 
4219         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4220           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4221           // value to MVT::i64 and then truncate to the correct register size.
4222           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4223       } else {
4224         if (CallConv == CallingConv::Fast)
4225           ComputeArgOffset();
4226 
4227         needsLoad = true;
4228         ArgSize = PtrByteSize;
4229       }
4230       if (CallConv != CallingConv::Fast || needsLoad)
4231         ArgOffset += 8;
4232       break;
4233 
4234     case MVT::f32:
4235     case MVT::f64:
4236       // These can be scalar arguments or elements of a float array type
4237       // passed directly.  The latter are used to implement ELFv2 homogenous
4238       // float aggregates.
4239       if (FPR_idx != Num_FPR_Regs) {
4240         unsigned VReg;
4241 
4242         if (ObjectVT == MVT::f32)
4243           VReg = MF.addLiveIn(FPR[FPR_idx],
4244                               Subtarget.hasP8Vector()
4245                                   ? &PPC::VSSRCRegClass
4246                                   : &PPC::F4RCRegClass);
4247         else
4248           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4249                                                 ? &PPC::VSFRCRegClass
4250                                                 : &PPC::F8RCRegClass);
4251 
4252         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4253         ++FPR_idx;
4254       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4255         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4256         // once we support fp <-> gpr moves.
4257 
4258         // This can only ever happen in the presence of f32 array types,
4259         // since otherwise we never run out of FPRs before running out
4260         // of GPRs.
4261         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4262         FuncInfo->addLiveInAttr(VReg, Flags);
4263         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4264 
4265         if (ObjectVT == MVT::f32) {
4266           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4267             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4268                                  DAG.getConstant(32, dl, MVT::i32));
4269           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4270         }
4271 
4272         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4273       } else {
4274         if (CallConv == CallingConv::Fast)
4275           ComputeArgOffset();
4276 
4277         needsLoad = true;
4278       }
4279 
4280       // When passing an array of floats, the array occupies consecutive
4281       // space in the argument area; only round up to the next doubleword
4282       // at the end of the array.  Otherwise, each float takes 8 bytes.
4283       if (CallConv != CallingConv::Fast || needsLoad) {
4284         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4285         ArgOffset += ArgSize;
4286         if (Flags.isInConsecutiveRegsLast())
4287           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4288       }
4289       break;
4290     case MVT::v4f32:
4291     case MVT::v4i32:
4292     case MVT::v8i16:
4293     case MVT::v16i8:
4294     case MVT::v2f64:
4295     case MVT::v2i64:
4296     case MVT::v1i128:
4297     case MVT::f128:
4298       // These can be scalar arguments or elements of a vector array type
4299       // passed directly.  The latter are used to implement ELFv2 homogenous
4300       // vector aggregates.
4301       if (VR_idx != Num_VR_Regs) {
4302         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4303         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4304         ++VR_idx;
4305       } else {
4306         if (CallConv == CallingConv::Fast)
4307           ComputeArgOffset();
4308         needsLoad = true;
4309       }
4310       if (CallConv != CallingConv::Fast || needsLoad)
4311         ArgOffset += 16;
4312       break;
4313     }
4314 
4315     // We need to load the argument to a virtual register if we determined
4316     // above that we ran out of physical registers of the appropriate type.
4317     if (needsLoad) {
4318       if (ObjSize < ArgSize && !isLittleEndian)
4319         CurArgOffset += ArgSize - ObjSize;
4320       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4321       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4322       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4323     }
4324 
4325     InVals.push_back(ArgVal);
4326   }
4327 
4328   // Area that is at least reserved in the caller of this function.
4329   unsigned MinReservedArea;
4330   if (HasParameterArea)
4331     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4332   else
4333     MinReservedArea = LinkageSize;
4334 
4335   // Set the size that is at least reserved in caller of this function.  Tail
4336   // call optimized functions' reserved stack space needs to be aligned so that
4337   // taking the difference between two stack areas will result in an aligned
4338   // stack.
4339   MinReservedArea =
4340       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4341   FuncInfo->setMinReservedArea(MinReservedArea);
4342 
4343   // If the function takes variable number of arguments, make a frame index for
4344   // the start of the first vararg value... for expansion of llvm.va_start.
4345   // On ELFv2ABI spec, it writes:
4346   // C programs that are intended to be *portable* across different compilers
4347   // and architectures must use the header file <stdarg.h> to deal with variable
4348   // argument lists.
4349   if (isVarArg && MFI.hasVAStart()) {
4350     int Depth = ArgOffset;
4351 
4352     FuncInfo->setVarArgsFrameIndex(
4353       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4354     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4355 
4356     // If this function is vararg, store any remaining integer argument regs
4357     // to their spots on the stack so that they may be loaded by dereferencing
4358     // the result of va_next.
4359     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4360          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4361       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4362       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4363       SDValue Store =
4364           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4365       MemOps.push_back(Store);
4366       // Increment the address by four for the next argument to store
4367       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4368       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4369     }
4370   }
4371 
4372   if (!MemOps.empty())
4373     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4374 
4375   return Chain;
4376 }
4377 
4378 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4379 /// adjusted to accommodate the arguments for the tailcall.
4380 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4381                                    unsigned ParamSize) {
4382 
4383   if (!isTailCall) return 0;
4384 
4385   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4386   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4387   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4388   // Remember only if the new adjustment is bigger.
4389   if (SPDiff < FI->getTailCallSPDelta())
4390     FI->setTailCallSPDelta(SPDiff);
4391 
4392   return SPDiff;
4393 }
4394 
4395 static bool isFunctionGlobalAddress(SDValue Callee);
4396 
4397 static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
4398                               const TargetMachine &TM) {
4399   // It does not make sense to call callsShareTOCBase() with a caller that
4400   // is PC Relative since PC Relative callers do not have a TOC.
4401 #ifndef NDEBUG
4402   const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
4403   assert(!STICaller->isUsingPCRelativeCalls() &&
4404          "PC Relative callers do not have a TOC and cannot share a TOC Base");
4405 #endif
4406 
4407   // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4408   // don't have enough information to determine if the caller and callee share
4409   // the same  TOC base, so we have to pessimistically assume they don't for
4410   // correctness.
4411   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4412   if (!G)
4413     return false;
4414 
4415   const GlobalValue *GV = G->getGlobal();
4416 
4417   // If the callee is preemptable, then the static linker will use a plt-stub
4418   // which saves the toc to the stack, and needs a nop after the call
4419   // instruction to convert to a toc-restore.
4420   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4421     return false;
4422 
4423   // Functions with PC Relative enabled may clobber the TOC in the same DSO.
4424   // We may need a TOC restore in the situation where the caller requires a
4425   // valid TOC but the callee is PC Relative and does not.
4426   const Function *F = dyn_cast<Function>(GV);
4427   const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);
4428 
4429   // If we have an Alias we can try to get the function from there.
4430   if (Alias) {
4431     const GlobalObject *GlobalObj = Alias->getBaseObject();
4432     F = dyn_cast<Function>(GlobalObj);
4433   }
4434 
4435   // If we still have no valid function pointer we do not have enough
4436   // information to determine if the callee uses PC Relative calls so we must
4437   // assume that it does.
4438   if (!F)
4439     return false;
4440 
4441   // If the callee uses PC Relative we cannot guarantee that the callee won't
4442   // clobber the TOC of the caller and so we must assume that the two
4443   // functions do not share a TOC base.
4444   const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
4445   if (STICallee->isUsingPCRelativeCalls())
4446     return false;
4447 
4448   // If the GV is not a strong definition then we need to assume it can be
4449   // replaced by another function at link time. The function that replaces
4450   // it may not share the same TOC as the caller since the callee may be
4451   // replaced by a PC Relative version of the same function.
4452   if (!GV->isStrongDefinitionForLinker())
4453     return false;
4454 
4455   // The medium and large code models are expected to provide a sufficiently
4456   // large TOC to provide all data addressing needs of a module with a
4457   // single TOC.
4458   if (CodeModel::Medium == TM.getCodeModel() ||
4459       CodeModel::Large == TM.getCodeModel())
4460     return true;
4461 
4462   // Any explicitly-specified sections and section prefixes must also match.
4463   // Also, if we're using -ffunction-sections, then each function is always in
4464   // a different section (the same is true for COMDAT functions).
4465   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4466       GV->getSection() != Caller->getSection())
4467     return false;
4468   if (const auto *F = dyn_cast<Function>(GV)) {
4469     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4470       return false;
4471   }
4472 
4473   return true;
4474 }
4475 
4476 static bool
4477 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4478                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4479   assert(Subtarget.is64BitELFABI());
4480 
4481   const unsigned PtrByteSize = 8;
4482   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4483 
4484   static const MCPhysReg GPR[] = {
4485     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4486     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4487   };
4488   static const MCPhysReg VR[] = {
4489     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4490     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4491   };
4492 
4493   const unsigned NumGPRs = array_lengthof(GPR);
4494   const unsigned NumFPRs = 13;
4495   const unsigned NumVRs = array_lengthof(VR);
4496   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4497 
4498   unsigned NumBytes = LinkageSize;
4499   unsigned AvailableFPRs = NumFPRs;
4500   unsigned AvailableVRs = NumVRs;
4501 
4502   for (const ISD::OutputArg& Param : Outs) {
4503     if (Param.Flags.isNest()) continue;
4504 
4505     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize,
4506                                LinkageSize, ParamAreaSize, NumBytes,
4507                                AvailableFPRs, AvailableVRs))
4508       return true;
4509   }
4510   return false;
4511 }
4512 
4513 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4514   if (CB.arg_size() != CallerFn->arg_size())
4515     return false;
4516 
4517   auto CalleeArgIter = CB.arg_begin();
4518   auto CalleeArgEnd = CB.arg_end();
4519   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4520 
4521   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4522     const Value* CalleeArg = *CalleeArgIter;
4523     const Value* CallerArg = &(*CallerArgIter);
4524     if (CalleeArg == CallerArg)
4525       continue;
4526 
4527     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4528     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4529     //      }
4530     // 1st argument of callee is undef and has the same type as caller.
4531     if (CalleeArg->getType() == CallerArg->getType() &&
4532         isa<UndefValue>(CalleeArg))
4533       continue;
4534 
4535     return false;
4536   }
4537 
4538   return true;
4539 }
4540 
4541 // Returns true if TCO is possible between the callers and callees
4542 // calling conventions.
4543 static bool
4544 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4545                                     CallingConv::ID CalleeCC) {
4546   // Tail calls are possible with fastcc and ccc.
4547   auto isTailCallableCC  = [] (CallingConv::ID CC){
4548       return  CC == CallingConv::C || CC == CallingConv::Fast;
4549   };
4550   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4551     return false;
4552 
4553   // We can safely tail call both fastcc and ccc callees from a c calling
4554   // convention caller. If the caller is fastcc, we may have less stack space
4555   // than a non-fastcc caller with the same signature so disable tail-calls in
4556   // that case.
4557   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4558 }
4559 
4560 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4561     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4562     const SmallVectorImpl<ISD::OutputArg> &Outs,
4563     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4564   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4565 
4566   if (DisableSCO && !TailCallOpt) return false;
4567 
4568   // Variadic argument functions are not supported.
4569   if (isVarArg) return false;
4570 
4571   auto &Caller = DAG.getMachineFunction().getFunction();
4572   // Check that the calling conventions are compatible for tco.
4573   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4574     return false;
4575 
4576   // Caller contains any byval parameter is not supported.
4577   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4578     return false;
4579 
4580   // Callee contains any byval parameter is not supported, too.
4581   // Note: This is a quick work around, because in some cases, e.g.
4582   // caller's stack size > callee's stack size, we are still able to apply
4583   // sibling call optimization. For example, gcc is able to do SCO for caller1
4584   // in the following example, but not for caller2.
4585   //   struct test {
4586   //     long int a;
4587   //     char ary[56];
4588   //   } gTest;
4589   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4590   //     b->a = v.a;
4591   //     return 0;
4592   //   }
4593   //   void caller1(struct test a, struct test c, struct test *b) {
4594   //     callee(gTest, b); }
4595   //   void caller2(struct test *b) { callee(gTest, b); }
4596   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4597     return false;
4598 
4599   // If callee and caller use different calling conventions, we cannot pass
4600   // parameters on stack since offsets for the parameter area may be different.
4601   if (Caller.getCallingConv() != CalleeCC &&
4602       needStackSlotPassParameters(Subtarget, Outs))
4603     return false;
4604 
4605   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4606   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4607   // callee potentially have different TOC bases then we cannot tail call since
4608   // we need to restore the TOC pointer after the call.
4609   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4610   // We cannot guarantee this for indirect calls or calls to external functions.
4611   // When PC-Relative addressing is used, the concept of the TOC is no longer
4612   // applicable so this check is not required.
4613   // Check first for indirect calls.
4614   if (!Subtarget.isUsingPCRelativeCalls() &&
4615       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4616     return false;
4617 
4618   // Check if we share the TOC base.
4619   if (!Subtarget.isUsingPCRelativeCalls() &&
4620       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4621     return false;
4622 
4623   // TCO allows altering callee ABI, so we don't have to check further.
4624   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4625     return true;
4626 
4627   if (DisableSCO) return false;
4628 
4629   // If callee use the same argument list that caller is using, then we can
4630   // apply SCO on this case. If it is not, then we need to check if callee needs
4631   // stack for passing arguments.
4632   // PC Relative tail calls may not have a CallBase.
4633   // If there is no CallBase we cannot verify if we have the same argument
4634   // list so assume that we don't have the same argument list.
4635   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4636       needStackSlotPassParameters(Subtarget, Outs))
4637     return false;
4638   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4639     return false;
4640 
4641   return true;
4642 }
4643 
4644 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4645 /// for tail call optimization. Targets which want to do tail call
4646 /// optimization should implement this function.
4647 bool
4648 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4649                                                      CallingConv::ID CalleeCC,
4650                                                      bool isVarArg,
4651                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4652                                                      SelectionDAG& DAG) const {
4653   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4654     return false;
4655 
4656   // Variable argument functions are not supported.
4657   if (isVarArg)
4658     return false;
4659 
4660   MachineFunction &MF = DAG.getMachineFunction();
4661   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4662   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4663     // Functions containing by val parameters are not supported.
4664     for (unsigned i = 0; i != Ins.size(); i++) {
4665        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4666        if (Flags.isByVal()) return false;
4667     }
4668 
4669     // Non-PIC/GOT tail calls are supported.
4670     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4671       return true;
4672 
4673     // At the moment we can only do local tail calls (in same module, hidden
4674     // or protected) if we are generating PIC.
4675     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4676       return G->getGlobal()->hasHiddenVisibility()
4677           || G->getGlobal()->hasProtectedVisibility();
4678   }
4679 
4680   return false;
4681 }
4682 
4683 /// isCallCompatibleAddress - Return the immediate to use if the specified
4684 /// 32-bit value is representable in the immediate field of a BxA instruction.
4685 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4686   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4687   if (!C) return nullptr;
4688 
4689   int Addr = C->getZExtValue();
4690   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4691       SignExtend32<26>(Addr) != Addr)
4692     return nullptr;  // Top 6 bits have to be sext of immediate.
4693 
4694   return DAG
4695       .getConstant(
4696           (int)C->getZExtValue() >> 2, SDLoc(Op),
4697           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4698       .getNode();
4699 }
4700 
4701 namespace {
4702 
4703 struct TailCallArgumentInfo {
4704   SDValue Arg;
4705   SDValue FrameIdxOp;
4706   int FrameIdx = 0;
4707 
4708   TailCallArgumentInfo() = default;
4709 };
4710 
4711 } // end anonymous namespace
4712 
4713 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4714 static void StoreTailCallArgumentsToStackSlot(
4715     SelectionDAG &DAG, SDValue Chain,
4716     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4717     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4718   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4719     SDValue Arg = TailCallArgs[i].Arg;
4720     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4721     int FI = TailCallArgs[i].FrameIdx;
4722     // Store relative to framepointer.
4723     MemOpChains.push_back(DAG.getStore(
4724         Chain, dl, Arg, FIN,
4725         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4726   }
4727 }
4728 
4729 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4730 /// the appropriate stack slot for the tail call optimized function call.
4731 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4732                                              SDValue OldRetAddr, SDValue OldFP,
4733                                              int SPDiff, const SDLoc &dl) {
4734   if (SPDiff) {
4735     // Calculate the new stack slot for the return address.
4736     MachineFunction &MF = DAG.getMachineFunction();
4737     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4738     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4739     bool isPPC64 = Subtarget.isPPC64();
4740     int SlotSize = isPPC64 ? 8 : 4;
4741     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4742     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4743                                                          NewRetAddrLoc, true);
4744     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4745     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4746     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4747                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4748   }
4749   return Chain;
4750 }
4751 
4752 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4753 /// the position of the argument.
4754 static void
4755 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4756                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4757                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4758   int Offset = ArgOffset + SPDiff;
4759   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4760   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4761   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4762   SDValue FIN = DAG.getFrameIndex(FI, VT);
4763   TailCallArgumentInfo Info;
4764   Info.Arg = Arg;
4765   Info.FrameIdxOp = FIN;
4766   Info.FrameIdx = FI;
4767   TailCallArguments.push_back(Info);
4768 }
4769 
4770 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4771 /// stack slot. Returns the chain as result and the loaded frame pointers in
4772 /// LROpOut/FPOpout. Used when tail calling.
4773 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4774     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4775     SDValue &FPOpOut, const SDLoc &dl) const {
4776   if (SPDiff) {
4777     // Load the LR and FP stack slot for later adjusting.
4778     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4779     LROpOut = getReturnAddrFrameIndex(DAG);
4780     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4781     Chain = SDValue(LROpOut.getNode(), 1);
4782   }
4783   return Chain;
4784 }
4785 
4786 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4787 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4788 /// specified by the specific parameter attribute. The copy will be passed as
4789 /// a byval function parameter.
4790 /// Sometimes what we are copying is the end of a larger object, the part that
4791 /// does not fit in registers.
4792 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4793                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4794                                          SelectionDAG &DAG, const SDLoc &dl) {
4795   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4796   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
4797                        Flags.getNonZeroByValAlign(), false, false, false,
4798                        MachinePointerInfo(), MachinePointerInfo());
4799 }
4800 
4801 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4802 /// tail calls.
4803 static void LowerMemOpCallTo(
4804     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4805     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4806     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4807     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4808   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4809   if (!isTailCall) {
4810     if (isVector) {
4811       SDValue StackPtr;
4812       if (isPPC64)
4813         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4814       else
4815         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4816       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4817                            DAG.getConstant(ArgOffset, dl, PtrVT));
4818     }
4819     MemOpChains.push_back(
4820         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4821     // Calculate and remember argument location.
4822   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4823                                   TailCallArguments);
4824 }
4825 
4826 static void
4827 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4828                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4829                 SDValue FPOp,
4830                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4831   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4832   // might overwrite each other in case of tail call optimization.
4833   SmallVector<SDValue, 8> MemOpChains2;
4834   // Do not flag preceding copytoreg stuff together with the following stuff.
4835   InFlag = SDValue();
4836   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4837                                     MemOpChains2, dl);
4838   if (!MemOpChains2.empty())
4839     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4840 
4841   // Store the return address to the appropriate stack slot.
4842   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4843 
4844   // Emit callseq_end just before tailcall node.
4845   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4846                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4847   InFlag = Chain.getValue(1);
4848 }
4849 
4850 // Is this global address that of a function that can be called by name? (as
4851 // opposed to something that must hold a descriptor for an indirect call).
4852 static bool isFunctionGlobalAddress(SDValue Callee) {
4853   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4854     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4855         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4856       return false;
4857 
4858     return G->getGlobal()->getValueType()->isFunctionTy();
4859   }
4860 
4861   return false;
4862 }
4863 
4864 SDValue PPCTargetLowering::LowerCallResult(
4865     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
4866     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4867     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4868   SmallVector<CCValAssign, 16> RVLocs;
4869   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4870                     *DAG.getContext());
4871 
4872   CCRetInfo.AnalyzeCallResult(
4873       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
4874                ? RetCC_PPC_Cold
4875                : RetCC_PPC);
4876 
4877   // Copy all of the result registers out of their specified physreg.
4878   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
4879     CCValAssign &VA = RVLocs[i];
4880     assert(VA.isRegLoc() && "Can only return in registers!");
4881 
4882     SDValue Val;
4883 
4884     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
4885       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
4886                                       InFlag);
4887       Chain = Lo.getValue(1);
4888       InFlag = Lo.getValue(2);
4889       VA = RVLocs[++i]; // skip ahead to next loc
4890       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
4891                                       InFlag);
4892       Chain = Hi.getValue(1);
4893       InFlag = Hi.getValue(2);
4894       if (!Subtarget.isLittleEndian())
4895         std::swap (Lo, Hi);
4896       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
4897     } else {
4898       Val = DAG.getCopyFromReg(Chain, dl,
4899                                VA.getLocReg(), VA.getLocVT(), InFlag);
4900       Chain = Val.getValue(1);
4901       InFlag = Val.getValue(2);
4902     }
4903 
4904     switch (VA.getLocInfo()) {
4905     default: llvm_unreachable("Unknown loc info!");
4906     case CCValAssign::Full: break;
4907     case CCValAssign::AExt:
4908       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4909       break;
4910     case CCValAssign::ZExt:
4911       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
4912                         DAG.getValueType(VA.getValVT()));
4913       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4914       break;
4915     case CCValAssign::SExt:
4916       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
4917                         DAG.getValueType(VA.getValVT()));
4918       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4919       break;
4920     }
4921 
4922     InVals.push_back(Val);
4923   }
4924 
4925   return Chain;
4926 }
4927 
4928 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
4929                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
4930   // PatchPoint calls are not indirect.
4931   if (isPatchPoint)
4932     return false;
4933 
4934   if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee))
4935     return false;
4936 
4937   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
4938   // becuase the immediate function pointer points to a descriptor instead of
4939   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
4940   // pointer immediate points to the global entry point, while the BLA would
4941   // need to jump to the local entry point (see rL211174).
4942   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
4943       isBLACompatibleAddress(Callee, DAG))
4944     return false;
4945 
4946   return true;
4947 }
4948 
4949 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
4950 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
4951   return Subtarget.isAIXABI() ||
4952          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
4953 }
4954 
4955 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
4956                               const Function &Caller,
4957                               const SDValue &Callee,
4958                               const PPCSubtarget &Subtarget,
4959                               const TargetMachine &TM) {
4960   if (CFlags.IsTailCall)
4961     return PPCISD::TC_RETURN;
4962 
4963   // This is a call through a function pointer.
4964   if (CFlags.IsIndirect) {
4965     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
4966     // indirect calls. The save of the caller's TOC pointer to the stack will be
4967     // inserted into the DAG as part of call lowering. The restore of the TOC
4968     // pointer is modeled by using a pseudo instruction for the call opcode that
4969     // represents the 2 instruction sequence of an indirect branch and link,
4970     // immediately followed by a load of the TOC pointer from the the stack save
4971     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
4972     // as it is not saved or used.
4973     return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
4974                                                : PPCISD::BCTRL;
4975   }
4976 
4977   if (Subtarget.isUsingPCRelativeCalls()) {
4978     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
4979     return PPCISD::CALL_NOTOC;
4980   }
4981 
4982   // The ABIs that maintain a TOC pointer accross calls need to have a nop
4983   // immediately following the call instruction if the caller and callee may
4984   // have different TOC bases. At link time if the linker determines the calls
4985   // may not share a TOC base, the call is redirected to a trampoline inserted
4986   // by the linker. The trampoline will (among other things) save the callers
4987   // TOC pointer at an ABI designated offset in the linkage area and the linker
4988   // will rewrite the nop to be a load of the TOC pointer from the linkage area
4989   // into gpr2.
4990   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
4991     return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
4992                                                   : PPCISD::CALL_NOP;
4993 
4994   return PPCISD::CALL;
4995 }
4996 
4997 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
4998                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
4999   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5000     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5001       return SDValue(Dest, 0);
5002 
5003   // Returns true if the callee is local, and false otherwise.
5004   auto isLocalCallee = [&]() {
5005     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5006     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5007     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5008 
5009     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5010            !dyn_cast_or_null<GlobalIFunc>(GV);
5011   };
5012 
5013   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5014   // a static relocation model causes some versions of GNU LD (2.17.50, at
5015   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5016   // built with secure-PLT.
5017   bool UsePlt =
5018       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5019       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5020 
5021   const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) {
5022     const TargetMachine &TM = Subtarget.getTargetMachine();
5023     const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering();
5024     MCSymbolXCOFF *S =
5025         cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM));
5026 
5027     MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5028     return DAG.getMCSymbol(S, PtrVT);
5029   };
5030 
5031   if (isFunctionGlobalAddress(Callee)) {
5032     const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5033 
5034     if (Subtarget.isAIXABI()) {
5035       assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5036       return getAIXFuncEntryPointSymbolSDNode(GV);
5037     }
5038     return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5039                                       UsePlt ? PPCII::MO_PLT : 0);
5040   }
5041 
5042   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5043     const char *SymName = S->getSymbol();
5044     if (Subtarget.isAIXABI()) {
5045       // If there exists a user-declared function whose name is the same as the
5046       // ExternalSymbol's, then we pick up the user-declared version.
5047       const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5048       if (const Function *F =
5049               dyn_cast_or_null<Function>(Mod->getNamedValue(SymName)))
5050         return getAIXFuncEntryPointSymbolSDNode(F);
5051 
5052       // On AIX, direct function calls reference the symbol for the function's
5053       // entry point, which is named by prepending a "." before the function's
5054       // C-linkage name. A Qualname is returned here because an external
5055       // function entry point is a csect with XTY_ER property.
5056       const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) {
5057         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5058         MCSectionXCOFF *Sec = Context.getXCOFFSection(
5059             (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(),
5060             XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER));
5061         return Sec->getQualNameSymbol();
5062       };
5063 
5064       SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data();
5065     }
5066     return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5067                                        UsePlt ? PPCII::MO_PLT : 0);
5068   }
5069 
5070   // No transformation needed.
5071   assert(Callee.getNode() && "What no callee?");
5072   return Callee;
5073 }
5074 
5075 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5076   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5077          "Expected a CALLSEQ_STARTSDNode.");
5078 
5079   // The last operand is the chain, except when the node has glue. If the node
5080   // has glue, then the last operand is the glue, and the chain is the second
5081   // last operand.
5082   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5083   if (LastValue.getValueType() != MVT::Glue)
5084     return LastValue;
5085 
5086   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5087 }
5088 
5089 // Creates the node that moves a functions address into the count register
5090 // to prepare for an indirect call instruction.
5091 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5092                                 SDValue &Glue, SDValue &Chain,
5093                                 const SDLoc &dl) {
5094   SDValue MTCTROps[] = {Chain, Callee, Glue};
5095   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5096   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5097                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5098   // The glue is the second value produced.
5099   Glue = Chain.getValue(1);
5100 }
5101 
5102 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5103                                           SDValue &Glue, SDValue &Chain,
5104                                           SDValue CallSeqStart,
5105                                           const CallBase *CB, const SDLoc &dl,
5106                                           bool hasNest,
5107                                           const PPCSubtarget &Subtarget) {
5108   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5109   // entry point, but to the function descriptor (the function entry point
5110   // address is part of the function descriptor though).
5111   // The function descriptor is a three doubleword structure with the
5112   // following fields: function entry point, TOC base address and
5113   // environment pointer.
5114   // Thus for a call through a function pointer, the following actions need
5115   // to be performed:
5116   //   1. Save the TOC of the caller in the TOC save area of its stack
5117   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5118   //   2. Load the address of the function entry point from the function
5119   //      descriptor.
5120   //   3. Load the TOC of the callee from the function descriptor into r2.
5121   //   4. Load the environment pointer from the function descriptor into
5122   //      r11.
5123   //   5. Branch to the function entry point address.
5124   //   6. On return of the callee, the TOC of the caller needs to be
5125   //      restored (this is done in FinishCall()).
5126   //
5127   // The loads are scheduled at the beginning of the call sequence, and the
5128   // register copies are flagged together to ensure that no other
5129   // operations can be scheduled in between. E.g. without flagging the
5130   // copies together, a TOC access in the caller could be scheduled between
5131   // the assignment of the callee TOC and the branch to the callee, which leads
5132   // to incorrect code.
5133 
5134   // Start by loading the function address from the descriptor.
5135   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5136   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5137                       ? (MachineMemOperand::MODereferenceable |
5138                          MachineMemOperand::MOInvariant)
5139                       : MachineMemOperand::MONone;
5140 
5141   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5142 
5143   // Registers used in building the DAG.
5144   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5145   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5146 
5147   // Offsets of descriptor members.
5148   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5149   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5150 
5151   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5152   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5153 
5154   // One load for the functions entry point address.
5155   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5156                                     Alignment, MMOFlags);
5157 
5158   // One for loading the TOC anchor for the module that contains the called
5159   // function.
5160   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5161   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5162   SDValue TOCPtr =
5163       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5164                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5165 
5166   // One for loading the environment pointer.
5167   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5168   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5169   SDValue LoadEnvPtr =
5170       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5171                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5172 
5173 
5174   // Then copy the newly loaded TOC anchor to the TOC pointer.
5175   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5176   Chain = TOCVal.getValue(0);
5177   Glue = TOCVal.getValue(1);
5178 
5179   // If the function call has an explicit 'nest' parameter, it takes the
5180   // place of the environment pointer.
5181   assert((!hasNest || !Subtarget.isAIXABI()) &&
5182          "Nest parameter is not supported on AIX.");
5183   if (!hasNest) {
5184     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5185     Chain = EnvVal.getValue(0);
5186     Glue = EnvVal.getValue(1);
5187   }
5188 
5189   // The rest of the indirect call sequence is the same as the non-descriptor
5190   // DAG.
5191   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5192 }
5193 
5194 static void
5195 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5196                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5197                   SelectionDAG &DAG,
5198                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5199                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5200                   const PPCSubtarget &Subtarget) {
5201   const bool IsPPC64 = Subtarget.isPPC64();
5202   // MVT for a general purpose register.
5203   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5204 
5205   // First operand is always the chain.
5206   Ops.push_back(Chain);
5207 
5208   // If it's a direct call pass the callee as the second operand.
5209   if (!CFlags.IsIndirect)
5210     Ops.push_back(Callee);
5211   else {
5212     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5213 
5214     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5215     // on the stack (this would have been done in `LowerCall_64SVR4` or
5216     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5217     // represents both the indirect branch and a load that restores the TOC
5218     // pointer from the linkage area. The operand for the TOC restore is an add
5219     // of the TOC save offset to the stack pointer. This must be the second
5220     // operand: after the chain input but before any other variadic arguments.
5221     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5222     // saved or used.
5223     if (isTOCSaveRestoreRequired(Subtarget)) {
5224       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5225 
5226       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5227       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5228       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5229       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5230       Ops.push_back(AddTOC);
5231     }
5232 
5233     // Add the register used for the environment pointer.
5234     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5235       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5236                                     RegVT));
5237 
5238 
5239     // Add CTR register as callee so a bctr can be emitted later.
5240     if (CFlags.IsTailCall)
5241       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5242   }
5243 
5244   // If this is a tail call add stack pointer delta.
5245   if (CFlags.IsTailCall)
5246     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5247 
5248   // Add argument registers to the end of the list so that they are known live
5249   // into the call.
5250   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5251     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5252                                   RegsToPass[i].second.getValueType()));
5253 
5254   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5255   // no way to mark dependencies as implicit here.
5256   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5257   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5258        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5259     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5260 
5261   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5262   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5263     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5264 
5265   // Add a register mask operand representing the call-preserved registers.
5266   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5267   const uint32_t *Mask =
5268       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5269   assert(Mask && "Missing call preserved mask for calling convention");
5270   Ops.push_back(DAG.getRegisterMask(Mask));
5271 
5272   // If the glue is valid, it is the last operand.
5273   if (Glue.getNode())
5274     Ops.push_back(Glue);
5275 }
5276 
5277 SDValue PPCTargetLowering::FinishCall(
5278     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5279     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5280     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5281     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5282     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5283 
5284   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5285       Subtarget.isAIXABI())
5286     setUsesTOCBasePtr(DAG);
5287 
5288   unsigned CallOpc =
5289       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5290                     Subtarget, DAG.getTarget());
5291 
5292   if (!CFlags.IsIndirect)
5293     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5294   else if (Subtarget.usesFunctionDescriptors())
5295     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5296                                   dl, CFlags.HasNest, Subtarget);
5297   else
5298     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5299 
5300   // Build the operand list for the call instruction.
5301   SmallVector<SDValue, 8> Ops;
5302   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5303                     SPDiff, Subtarget);
5304 
5305   // Emit tail call.
5306   if (CFlags.IsTailCall) {
5307     // Indirect tail call when using PC Relative calls do not have the same
5308     // constraints.
5309     assert(((Callee.getOpcode() == ISD::Register &&
5310              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5311             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5312             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5313             isa<ConstantSDNode>(Callee) ||
5314             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5315            "Expecting a global address, external symbol, absolute value, "
5316            "register or an indirect tail call when PC Relative calls are "
5317            "used.");
5318     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5319     assert(CallOpc == PPCISD::TC_RETURN &&
5320            "Unexpected call opcode for a tail call.");
5321     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5322     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5323   }
5324 
5325   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5326   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5327   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5328   Glue = Chain.getValue(1);
5329 
5330   // When performing tail call optimization the callee pops its arguments off
5331   // the stack. Account for this here so these bytes can be pushed back on in
5332   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5333   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5334                          getTargetMachine().Options.GuaranteedTailCallOpt)
5335                             ? NumBytes
5336                             : 0;
5337 
5338   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5339                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5340                              Glue, dl);
5341   Glue = Chain.getValue(1);
5342 
5343   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5344                          DAG, InVals);
5345 }
5346 
5347 SDValue
5348 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5349                              SmallVectorImpl<SDValue> &InVals) const {
5350   SelectionDAG &DAG                     = CLI.DAG;
5351   SDLoc &dl                             = CLI.DL;
5352   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5353   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5354   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5355   SDValue Chain                         = CLI.Chain;
5356   SDValue Callee                        = CLI.Callee;
5357   bool &isTailCall                      = CLI.IsTailCall;
5358   CallingConv::ID CallConv              = CLI.CallConv;
5359   bool isVarArg                         = CLI.IsVarArg;
5360   bool isPatchPoint                     = CLI.IsPatchPoint;
5361   const CallBase *CB                    = CLI.CB;
5362 
5363   if (isTailCall) {
5364     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5365       isTailCall = false;
5366     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5367       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5368           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5369     else
5370       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5371                                                      Ins, DAG);
5372     if (isTailCall) {
5373       ++NumTailCalls;
5374       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5375         ++NumSiblingCalls;
5376 
5377       // PC Relative calls no longer guarantee that the callee is a Global
5378       // Address Node. The callee could be an indirect tail call in which
5379       // case the SDValue for the callee could be a load (to load the address
5380       // of a function pointer) or it may be a register copy (to move the
5381       // address of the callee from a function parameter into a virtual
5382       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5383       assert((Subtarget.isUsingPCRelativeCalls() ||
5384               isa<GlobalAddressSDNode>(Callee)) &&
5385              "Callee should be an llvm::Function object.");
5386 
5387       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5388                         << "\nTCO callee: ");
5389       LLVM_DEBUG(Callee.dump());
5390     }
5391   }
5392 
5393   if (!isTailCall && CB && CB->isMustTailCall())
5394     report_fatal_error("failed to perform tail call elimination on a call "
5395                        "site marked musttail");
5396 
5397   // When long calls (i.e. indirect calls) are always used, calls are always
5398   // made via function pointer. If we have a function name, first translate it
5399   // into a pointer.
5400   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5401       !isTailCall)
5402     Callee = LowerGlobalAddress(Callee, DAG);
5403 
5404   CallFlags CFlags(
5405       CallConv, isTailCall, isVarArg, isPatchPoint,
5406       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5407       // hasNest
5408       Subtarget.is64BitELFABI() &&
5409           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5410       CLI.NoMerge);
5411 
5412   if (Subtarget.isAIXABI())
5413     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5414                          InVals, CB);
5415 
5416   assert(Subtarget.isSVR4ABI());
5417   if (Subtarget.isPPC64())
5418     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5419                             InVals, CB);
5420   return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5421                           InVals, CB);
5422 }
5423 
5424 SDValue PPCTargetLowering::LowerCall_32SVR4(
5425     SDValue Chain, SDValue Callee, CallFlags CFlags,
5426     const SmallVectorImpl<ISD::OutputArg> &Outs,
5427     const SmallVectorImpl<SDValue> &OutVals,
5428     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5429     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5430     const CallBase *CB) const {
5431   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5432   // of the 32-bit SVR4 ABI stack frame layout.
5433 
5434   const CallingConv::ID CallConv = CFlags.CallConv;
5435   const bool IsVarArg = CFlags.IsVarArg;
5436   const bool IsTailCall = CFlags.IsTailCall;
5437 
5438   assert((CallConv == CallingConv::C ||
5439           CallConv == CallingConv::Cold ||
5440           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5441 
5442   const Align PtrAlign(4);
5443 
5444   MachineFunction &MF = DAG.getMachineFunction();
5445 
5446   // Mark this function as potentially containing a function that contains a
5447   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5448   // and restoring the callers stack pointer in this functions epilog. This is
5449   // done because by tail calling the called function might overwrite the value
5450   // in this function's (MF) stack pointer stack slot 0(SP).
5451   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5452       CallConv == CallingConv::Fast)
5453     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5454 
5455   // Count how many bytes are to be pushed on the stack, including the linkage
5456   // area, parameter list area and the part of the local variable space which
5457   // contains copies of aggregates which are passed by value.
5458 
5459   // Assign locations to all of the outgoing arguments.
5460   SmallVector<CCValAssign, 16> ArgLocs;
5461   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5462 
5463   // Reserve space for the linkage area on the stack.
5464   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5465                        PtrAlign);
5466   if (useSoftFloat())
5467     CCInfo.PreAnalyzeCallOperands(Outs);
5468 
5469   if (IsVarArg) {
5470     // Handle fixed and variable vector arguments differently.
5471     // Fixed vector arguments go into registers as long as registers are
5472     // available. Variable vector arguments always go into memory.
5473     unsigned NumArgs = Outs.size();
5474 
5475     for (unsigned i = 0; i != NumArgs; ++i) {
5476       MVT ArgVT = Outs[i].VT;
5477       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5478       bool Result;
5479 
5480       if (Outs[i].IsFixed) {
5481         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5482                                CCInfo);
5483       } else {
5484         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5485                                       ArgFlags, CCInfo);
5486       }
5487 
5488       if (Result) {
5489 #ifndef NDEBUG
5490         errs() << "Call operand #" << i << " has unhandled type "
5491              << EVT(ArgVT).getEVTString() << "\n";
5492 #endif
5493         llvm_unreachable(nullptr);
5494       }
5495     }
5496   } else {
5497     // All arguments are treated the same.
5498     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5499   }
5500   CCInfo.clearWasPPCF128();
5501 
5502   // Assign locations to all of the outgoing aggregate by value arguments.
5503   SmallVector<CCValAssign, 16> ByValArgLocs;
5504   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5505 
5506   // Reserve stack space for the allocations in CCInfo.
5507   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5508 
5509   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5510 
5511   // Size of the linkage area, parameter list area and the part of the local
5512   // space variable where copies of aggregates which are passed by value are
5513   // stored.
5514   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5515 
5516   // Calculate by how many bytes the stack has to be adjusted in case of tail
5517   // call optimization.
5518   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5519 
5520   // Adjust the stack pointer for the new arguments...
5521   // These operations are automatically eliminated by the prolog/epilog pass
5522   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5523   SDValue CallSeqStart = Chain;
5524 
5525   // Load the return address and frame pointer so it can be moved somewhere else
5526   // later.
5527   SDValue LROp, FPOp;
5528   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5529 
5530   // Set up a copy of the stack pointer for use loading and storing any
5531   // arguments that may not fit in the registers available for argument
5532   // passing.
5533   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5534 
5535   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5536   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5537   SmallVector<SDValue, 8> MemOpChains;
5538 
5539   bool seenFloatArg = false;
5540   // Walk the register/memloc assignments, inserting copies/loads.
5541   // i - Tracks the index into the list of registers allocated for the call
5542   // RealArgIdx - Tracks the index into the list of actual function arguments
5543   // j - Tracks the index into the list of byval arguments
5544   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5545        i != e;
5546        ++i, ++RealArgIdx) {
5547     CCValAssign &VA = ArgLocs[i];
5548     SDValue Arg = OutVals[RealArgIdx];
5549     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5550 
5551     if (Flags.isByVal()) {
5552       // Argument is an aggregate which is passed by value, thus we need to
5553       // create a copy of it in the local variable space of the current stack
5554       // frame (which is the stack frame of the caller) and pass the address of
5555       // this copy to the callee.
5556       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5557       CCValAssign &ByValVA = ByValArgLocs[j++];
5558       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5559 
5560       // Memory reserved in the local variable space of the callers stack frame.
5561       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5562 
5563       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5564       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5565                            StackPtr, PtrOff);
5566 
5567       // Create a copy of the argument in the local area of the current
5568       // stack frame.
5569       SDValue MemcpyCall =
5570         CreateCopyOfByValArgument(Arg, PtrOff,
5571                                   CallSeqStart.getNode()->getOperand(0),
5572                                   Flags, DAG, dl);
5573 
5574       // This must go outside the CALLSEQ_START..END.
5575       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5576                                                      SDLoc(MemcpyCall));
5577       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5578                              NewCallSeqStart.getNode());
5579       Chain = CallSeqStart = NewCallSeqStart;
5580 
5581       // Pass the address of the aggregate copy on the stack either in a
5582       // physical register or in the parameter list area of the current stack
5583       // frame to the callee.
5584       Arg = PtrOff;
5585     }
5586 
5587     // When useCRBits() is true, there can be i1 arguments.
5588     // It is because getRegisterType(MVT::i1) => MVT::i1,
5589     // and for other integer types getRegisterType() => MVT::i32.
5590     // Extend i1 and ensure callee will get i32.
5591     if (Arg.getValueType() == MVT::i1)
5592       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5593                         dl, MVT::i32, Arg);
5594 
5595     if (VA.isRegLoc()) {
5596       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5597       // Put argument in a physical register.
5598       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5599         bool IsLE = Subtarget.isLittleEndian();
5600         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5601                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5602         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5603         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5604                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5605         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5606                              SVal.getValue(0)));
5607       } else
5608         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5609     } else {
5610       // Put argument in the parameter list area of the current stack frame.
5611       assert(VA.isMemLoc());
5612       unsigned LocMemOffset = VA.getLocMemOffset();
5613 
5614       if (!IsTailCall) {
5615         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5616         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5617                              StackPtr, PtrOff);
5618 
5619         MemOpChains.push_back(
5620             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5621       } else {
5622         // Calculate and remember argument location.
5623         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5624                                  TailCallArguments);
5625       }
5626     }
5627   }
5628 
5629   if (!MemOpChains.empty())
5630     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5631 
5632   // Build a sequence of copy-to-reg nodes chained together with token chain
5633   // and flag operands which copy the outgoing args into the appropriate regs.
5634   SDValue InFlag;
5635   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5636     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5637                              RegsToPass[i].second, InFlag);
5638     InFlag = Chain.getValue(1);
5639   }
5640 
5641   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5642   // registers.
5643   if (IsVarArg) {
5644     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5645     SDValue Ops[] = { Chain, InFlag };
5646 
5647     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5648                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5649 
5650     InFlag = Chain.getValue(1);
5651   }
5652 
5653   if (IsTailCall)
5654     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5655                     TailCallArguments);
5656 
5657   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5658                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5659 }
5660 
5661 // Copy an argument into memory, being careful to do this outside the
5662 // call sequence for the call to which the argument belongs.
5663 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5664     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5665     SelectionDAG &DAG, const SDLoc &dl) const {
5666   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5667                         CallSeqStart.getNode()->getOperand(0),
5668                         Flags, DAG, dl);
5669   // The MEMCPY must go outside the CALLSEQ_START..END.
5670   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5671   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5672                                                  SDLoc(MemcpyCall));
5673   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5674                          NewCallSeqStart.getNode());
5675   return NewCallSeqStart;
5676 }
5677 
5678 SDValue PPCTargetLowering::LowerCall_64SVR4(
5679     SDValue Chain, SDValue Callee, CallFlags CFlags,
5680     const SmallVectorImpl<ISD::OutputArg> &Outs,
5681     const SmallVectorImpl<SDValue> &OutVals,
5682     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5683     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5684     const CallBase *CB) const {
5685   bool isELFv2ABI = Subtarget.isELFv2ABI();
5686   bool isLittleEndian = Subtarget.isLittleEndian();
5687   unsigned NumOps = Outs.size();
5688   bool IsSibCall = false;
5689   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5690 
5691   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5692   unsigned PtrByteSize = 8;
5693 
5694   MachineFunction &MF = DAG.getMachineFunction();
5695 
5696   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5697     IsSibCall = true;
5698 
5699   // Mark this function as potentially containing a function that contains a
5700   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5701   // and restoring the callers stack pointer in this functions epilog. This is
5702   // done because by tail calling the called function might overwrite the value
5703   // in this function's (MF) stack pointer stack slot 0(SP).
5704   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5705     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5706 
5707   assert(!(IsFastCall && CFlags.IsVarArg) &&
5708          "fastcc not supported on varargs functions");
5709 
5710   // Count how many bytes are to be pushed on the stack, including the linkage
5711   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5712   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5713   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5714   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5715   unsigned NumBytes = LinkageSize;
5716   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5717 
5718   static const MCPhysReg GPR[] = {
5719     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5720     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5721   };
5722   static const MCPhysReg VR[] = {
5723     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5724     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5725   };
5726 
5727   const unsigned NumGPRs = array_lengthof(GPR);
5728   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5729   const unsigned NumVRs  = array_lengthof(VR);
5730 
5731   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5732   // can be passed to the callee in registers.
5733   // For the fast calling convention, there is another check below.
5734   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5735   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
5736   if (!HasParameterArea) {
5737     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5738     unsigned AvailableFPRs = NumFPRs;
5739     unsigned AvailableVRs = NumVRs;
5740     unsigned NumBytesTmp = NumBytes;
5741     for (unsigned i = 0; i != NumOps; ++i) {
5742       if (Outs[i].Flags.isNest()) continue;
5743       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5744                                  PtrByteSize, LinkageSize, ParamAreaSize,
5745                                  NumBytesTmp, AvailableFPRs, AvailableVRs))
5746         HasParameterArea = true;
5747     }
5748   }
5749 
5750   // When using the fast calling convention, we don't provide backing for
5751   // arguments that will be in registers.
5752   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5753 
5754   // Avoid allocating parameter area for fastcc functions if all the arguments
5755   // can be passed in the registers.
5756   if (IsFastCall)
5757     HasParameterArea = false;
5758 
5759   // Add up all the space actually used.
5760   for (unsigned i = 0; i != NumOps; ++i) {
5761     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5762     EVT ArgVT = Outs[i].VT;
5763     EVT OrigVT = Outs[i].ArgVT;
5764 
5765     if (Flags.isNest())
5766       continue;
5767 
5768     if (IsFastCall) {
5769       if (Flags.isByVal()) {
5770         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5771         if (NumGPRsUsed > NumGPRs)
5772           HasParameterArea = true;
5773       } else {
5774         switch (ArgVT.getSimpleVT().SimpleTy) {
5775         default: llvm_unreachable("Unexpected ValueType for argument!");
5776         case MVT::i1:
5777         case MVT::i32:
5778         case MVT::i64:
5779           if (++NumGPRsUsed <= NumGPRs)
5780             continue;
5781           break;
5782         case MVT::v4i32:
5783         case MVT::v8i16:
5784         case MVT::v16i8:
5785         case MVT::v2f64:
5786         case MVT::v2i64:
5787         case MVT::v1i128:
5788         case MVT::f128:
5789           if (++NumVRsUsed <= NumVRs)
5790             continue;
5791           break;
5792         case MVT::v4f32:
5793           if (++NumVRsUsed <= NumVRs)
5794             continue;
5795           break;
5796         case MVT::f32:
5797         case MVT::f64:
5798           if (++NumFPRsUsed <= NumFPRs)
5799             continue;
5800           break;
5801         }
5802         HasParameterArea = true;
5803       }
5804     }
5805 
5806     /* Respect alignment of argument on the stack.  */
5807     auto Alignement =
5808         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5809     NumBytes = alignTo(NumBytes, Alignement);
5810 
5811     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5812     if (Flags.isInConsecutiveRegsLast())
5813       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5814   }
5815 
5816   unsigned NumBytesActuallyUsed = NumBytes;
5817 
5818   // In the old ELFv1 ABI,
5819   // the prolog code of the callee may store up to 8 GPR argument registers to
5820   // the stack, allowing va_start to index over them in memory if its varargs.
5821   // Because we cannot tell if this is needed on the caller side, we have to
5822   // conservatively assume that it is needed.  As such, make sure we have at
5823   // least enough stack space for the caller to store the 8 GPRs.
5824   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5825   // really requires memory operands, e.g. a vararg function.
5826   if (HasParameterArea)
5827     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5828   else
5829     NumBytes = LinkageSize;
5830 
5831   // Tail call needs the stack to be aligned.
5832   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5833     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5834 
5835   int SPDiff = 0;
5836 
5837   // Calculate by how many bytes the stack has to be adjusted in case of tail
5838   // call optimization.
5839   if (!IsSibCall)
5840     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
5841 
5842   // To protect arguments on the stack from being clobbered in a tail call,
5843   // force all the loads to happen before doing any other lowering.
5844   if (CFlags.IsTailCall)
5845     Chain = DAG.getStackArgumentTokenFactor(Chain);
5846 
5847   // Adjust the stack pointer for the new arguments...
5848   // These operations are automatically eliminated by the prolog/epilog pass
5849   if (!IsSibCall)
5850     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5851   SDValue CallSeqStart = Chain;
5852 
5853   // Load the return address and frame pointer so it can be move somewhere else
5854   // later.
5855   SDValue LROp, FPOp;
5856   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5857 
5858   // Set up a copy of the stack pointer for use loading and storing any
5859   // arguments that may not fit in the registers available for argument
5860   // passing.
5861   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5862 
5863   // Figure out which arguments are going to go in registers, and which in
5864   // memory.  Also, if this is a vararg function, floating point operations
5865   // must be stored to our stack, and loaded into integer regs as well, if
5866   // any integer regs are available for argument passing.
5867   unsigned ArgOffset = LinkageSize;
5868 
5869   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5870   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5871 
5872   SmallVector<SDValue, 8> MemOpChains;
5873   for (unsigned i = 0; i != NumOps; ++i) {
5874     SDValue Arg = OutVals[i];
5875     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5876     EVT ArgVT = Outs[i].VT;
5877     EVT OrigVT = Outs[i].ArgVT;
5878 
5879     // PtrOff will be used to store the current argument to the stack if a
5880     // register cannot be found for it.
5881     SDValue PtrOff;
5882 
5883     // We re-align the argument offset for each argument, except when using the
5884     // fast calling convention, when we need to make sure we do that only when
5885     // we'll actually use a stack slot.
5886     auto ComputePtrOff = [&]() {
5887       /* Respect alignment of argument on the stack.  */
5888       auto Alignment =
5889           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5890       ArgOffset = alignTo(ArgOffset, Alignment);
5891 
5892       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5893 
5894       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5895     };
5896 
5897     if (!IsFastCall) {
5898       ComputePtrOff();
5899 
5900       /* Compute GPR index associated with argument offset.  */
5901       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5902       GPR_idx = std::min(GPR_idx, NumGPRs);
5903     }
5904 
5905     // Promote integers to 64-bit values.
5906     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5907       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5908       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5909       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5910     }
5911 
5912     // FIXME memcpy is used way more than necessary.  Correctness first.
5913     // Note: "by value" is code for passing a structure by value, not
5914     // basic types.
5915     if (Flags.isByVal()) {
5916       // Note: Size includes alignment padding, so
5917       //   struct x { short a; char b; }
5918       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
5919       // These are the proper values we need for right-justifying the
5920       // aggregate in a parameter register.
5921       unsigned Size = Flags.getByValSize();
5922 
5923       // An empty aggregate parameter takes up no storage and no
5924       // registers.
5925       if (Size == 0)
5926         continue;
5927 
5928       if (IsFastCall)
5929         ComputePtrOff();
5930 
5931       // All aggregates smaller than 8 bytes must be passed right-justified.
5932       if (Size==1 || Size==2 || Size==4) {
5933         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
5934         if (GPR_idx != NumGPRs) {
5935           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5936                                         MachinePointerInfo(), VT);
5937           MemOpChains.push_back(Load.getValue(1));
5938           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5939 
5940           ArgOffset += PtrByteSize;
5941           continue;
5942         }
5943       }
5944 
5945       if (GPR_idx == NumGPRs && Size < 8) {
5946         SDValue AddPtr = PtrOff;
5947         if (!isLittleEndian) {
5948           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5949                                           PtrOff.getValueType());
5950           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5951         }
5952         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5953                                                           CallSeqStart,
5954                                                           Flags, DAG, dl);
5955         ArgOffset += PtrByteSize;
5956         continue;
5957       }
5958       // Copy entire object into memory.  There are cases where gcc-generated
5959       // code assumes it is there, even if it could be put entirely into
5960       // registers.  (This is not what the doc says.)
5961 
5962       // FIXME: The above statement is likely due to a misunderstanding of the
5963       // documents.  All arguments must be copied into the parameter area BY
5964       // THE CALLEE in the event that the callee takes the address of any
5965       // formal argument.  That has not yet been implemented.  However, it is
5966       // reasonable to use the stack area as a staging area for the register
5967       // load.
5968 
5969       // Skip this for small aggregates, as we will use the same slot for a
5970       // right-justified copy, below.
5971       if (Size >= 8)
5972         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5973                                                           CallSeqStart,
5974                                                           Flags, DAG, dl);
5975 
5976       // When a register is available, pass a small aggregate right-justified.
5977       if (Size < 8 && GPR_idx != NumGPRs) {
5978         // The easiest way to get this right-justified in a register
5979         // is to copy the structure into the rightmost portion of a
5980         // local variable slot, then load the whole slot into the
5981         // register.
5982         // FIXME: The memcpy seems to produce pretty awful code for
5983         // small aggregates, particularly for packed ones.
5984         // FIXME: It would be preferable to use the slot in the
5985         // parameter save area instead of a new local variable.
5986         SDValue AddPtr = PtrOff;
5987         if (!isLittleEndian) {
5988           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5989           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5990         }
5991         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5992                                                           CallSeqStart,
5993                                                           Flags, DAG, dl);
5994 
5995         // Load the slot into the register.
5996         SDValue Load =
5997             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
5998         MemOpChains.push_back(Load.getValue(1));
5999         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6000 
6001         // Done with this argument.
6002         ArgOffset += PtrByteSize;
6003         continue;
6004       }
6005 
6006       // For aggregates larger than PtrByteSize, copy the pieces of the
6007       // object that fit into registers from the parameter save area.
6008       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6009         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6010         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6011         if (GPR_idx != NumGPRs) {
6012           SDValue Load =
6013               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6014           MemOpChains.push_back(Load.getValue(1));
6015           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6016           ArgOffset += PtrByteSize;
6017         } else {
6018           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6019           break;
6020         }
6021       }
6022       continue;
6023     }
6024 
6025     switch (Arg.getSimpleValueType().SimpleTy) {
6026     default: llvm_unreachable("Unexpected ValueType for argument!");
6027     case MVT::i1:
6028     case MVT::i32:
6029     case MVT::i64:
6030       if (Flags.isNest()) {
6031         // The 'nest' parameter, if any, is passed in R11.
6032         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6033         break;
6034       }
6035 
6036       // These can be scalar arguments or elements of an integer array type
6037       // passed directly.  Clang may use those instead of "byval" aggregate
6038       // types to avoid forcing arguments to memory unnecessarily.
6039       if (GPR_idx != NumGPRs) {
6040         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6041       } else {
6042         if (IsFastCall)
6043           ComputePtrOff();
6044 
6045         assert(HasParameterArea &&
6046                "Parameter area must exist to pass an argument in memory.");
6047         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6048                          true, CFlags.IsTailCall, false, MemOpChains,
6049                          TailCallArguments, dl);
6050         if (IsFastCall)
6051           ArgOffset += PtrByteSize;
6052       }
6053       if (!IsFastCall)
6054         ArgOffset += PtrByteSize;
6055       break;
6056     case MVT::f32:
6057     case MVT::f64: {
6058       // These can be scalar arguments or elements of a float array type
6059       // passed directly.  The latter are used to implement ELFv2 homogenous
6060       // float aggregates.
6061 
6062       // Named arguments go into FPRs first, and once they overflow, the
6063       // remaining arguments go into GPRs and then the parameter save area.
6064       // Unnamed arguments for vararg functions always go to GPRs and
6065       // then the parameter save area.  For now, put all arguments to vararg
6066       // routines always in both locations (FPR *and* GPR or stack slot).
6067       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6068       bool NeededLoad = false;
6069 
6070       // First load the argument into the next available FPR.
6071       if (FPR_idx != NumFPRs)
6072         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6073 
6074       // Next, load the argument into GPR or stack slot if needed.
6075       if (!NeedGPROrStack)
6076         ;
6077       else if (GPR_idx != NumGPRs && !IsFastCall) {
6078         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6079         // once we support fp <-> gpr moves.
6080 
6081         // In the non-vararg case, this can only ever happen in the
6082         // presence of f32 array types, since otherwise we never run
6083         // out of FPRs before running out of GPRs.
6084         SDValue ArgVal;
6085 
6086         // Double values are always passed in a single GPR.
6087         if (Arg.getValueType() != MVT::f32) {
6088           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6089 
6090         // Non-array float values are extended and passed in a GPR.
6091         } else if (!Flags.isInConsecutiveRegs()) {
6092           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6093           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6094 
6095         // If we have an array of floats, we collect every odd element
6096         // together with its predecessor into one GPR.
6097         } else if (ArgOffset % PtrByteSize != 0) {
6098           SDValue Lo, Hi;
6099           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6100           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6101           if (!isLittleEndian)
6102             std::swap(Lo, Hi);
6103           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6104 
6105         // The final element, if even, goes into the first half of a GPR.
6106         } else if (Flags.isInConsecutiveRegsLast()) {
6107           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6108           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6109           if (!isLittleEndian)
6110             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6111                                  DAG.getConstant(32, dl, MVT::i32));
6112 
6113         // Non-final even elements are skipped; they will be handled
6114         // together the with subsequent argument on the next go-around.
6115         } else
6116           ArgVal = SDValue();
6117 
6118         if (ArgVal.getNode())
6119           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6120       } else {
6121         if (IsFastCall)
6122           ComputePtrOff();
6123 
6124         // Single-precision floating-point values are mapped to the
6125         // second (rightmost) word of the stack doubleword.
6126         if (Arg.getValueType() == MVT::f32 &&
6127             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6128           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6129           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6130         }
6131 
6132         assert(HasParameterArea &&
6133                "Parameter area must exist to pass an argument in memory.");
6134         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6135                          true, CFlags.IsTailCall, false, MemOpChains,
6136                          TailCallArguments, dl);
6137 
6138         NeededLoad = true;
6139       }
6140       // When passing an array of floats, the array occupies consecutive
6141       // space in the argument area; only round up to the next doubleword
6142       // at the end of the array.  Otherwise, each float takes 8 bytes.
6143       if (!IsFastCall || NeededLoad) {
6144         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6145                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6146         if (Flags.isInConsecutiveRegsLast())
6147           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6148       }
6149       break;
6150     }
6151     case MVT::v4f32:
6152     case MVT::v4i32:
6153     case MVT::v8i16:
6154     case MVT::v16i8:
6155     case MVT::v2f64:
6156     case MVT::v2i64:
6157     case MVT::v1i128:
6158     case MVT::f128:
6159       // These can be scalar arguments or elements of a vector array type
6160       // passed directly.  The latter are used to implement ELFv2 homogenous
6161       // vector aggregates.
6162 
6163       // For a varargs call, named arguments go into VRs or on the stack as
6164       // usual; unnamed arguments always go to the stack or the corresponding
6165       // GPRs when within range.  For now, we always put the value in both
6166       // locations (or even all three).
6167       if (CFlags.IsVarArg) {
6168         assert(HasParameterArea &&
6169                "Parameter area must exist if we have a varargs call.");
6170         // We could elide this store in the case where the object fits
6171         // entirely in R registers.  Maybe later.
6172         SDValue Store =
6173             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6174         MemOpChains.push_back(Store);
6175         if (VR_idx != NumVRs) {
6176           SDValue Load =
6177               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6178           MemOpChains.push_back(Load.getValue(1));
6179           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6180         }
6181         ArgOffset += 16;
6182         for (unsigned i=0; i<16; i+=PtrByteSize) {
6183           if (GPR_idx == NumGPRs)
6184             break;
6185           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6186                                    DAG.getConstant(i, dl, PtrVT));
6187           SDValue Load =
6188               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6189           MemOpChains.push_back(Load.getValue(1));
6190           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6191         }
6192         break;
6193       }
6194 
6195       // Non-varargs Altivec params go into VRs or on the stack.
6196       if (VR_idx != NumVRs) {
6197         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6198       } else {
6199         if (IsFastCall)
6200           ComputePtrOff();
6201 
6202         assert(HasParameterArea &&
6203                "Parameter area must exist to pass an argument in memory.");
6204         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6205                          true, CFlags.IsTailCall, true, MemOpChains,
6206                          TailCallArguments, dl);
6207         if (IsFastCall)
6208           ArgOffset += 16;
6209       }
6210 
6211       if (!IsFastCall)
6212         ArgOffset += 16;
6213       break;
6214     }
6215   }
6216 
6217   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6218          "mismatch in size of parameter area");
6219   (void)NumBytesActuallyUsed;
6220 
6221   if (!MemOpChains.empty())
6222     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6223 
6224   // Check if this is an indirect call (MTCTR/BCTRL).
6225   // See prepareDescriptorIndirectCall and buildCallOperands for more
6226   // information about calls through function pointers in the 64-bit SVR4 ABI.
6227   if (CFlags.IsIndirect) {
6228     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6229     // caller in the TOC save area.
6230     if (isTOCSaveRestoreRequired(Subtarget)) {
6231       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6232       // Load r2 into a virtual register and store it to the TOC save area.
6233       setUsesTOCBasePtr(DAG);
6234       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6235       // TOC save area offset.
6236       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6237       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6238       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6239       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6240                            MachinePointerInfo::getStack(
6241                                DAG.getMachineFunction(), TOCSaveOffset));
6242     }
6243     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6244     // This does not mean the MTCTR instruction must use R12; it's easier
6245     // to model this as an extra parameter, so do that.
6246     if (isELFv2ABI && !CFlags.IsPatchPoint)
6247       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6248   }
6249 
6250   // Build a sequence of copy-to-reg nodes chained together with token chain
6251   // and flag operands which copy the outgoing args into the appropriate regs.
6252   SDValue InFlag;
6253   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6254     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6255                              RegsToPass[i].second, InFlag);
6256     InFlag = Chain.getValue(1);
6257   }
6258 
6259   if (CFlags.IsTailCall && !IsSibCall)
6260     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6261                     TailCallArguments);
6262 
6263   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6264                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6265 }
6266 
6267 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6268                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6269                    CCState &State) {
6270 
6271   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6272       State.getMachineFunction().getSubtarget());
6273   const bool IsPPC64 = Subtarget.isPPC64();
6274   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
6275   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6276 
6277   if (ValVT.isVector() && !State.getMachineFunction()
6278                                .getTarget()
6279                                .Options.EnableAIXExtendedAltivecABI)
6280     report_fatal_error("the default Altivec AIX ABI is not yet supported");
6281 
6282   if (ValVT == MVT::f128)
6283     report_fatal_error("f128 is unimplemented on AIX.");
6284 
6285   if (ArgFlags.isNest())
6286     report_fatal_error("Nest arguments are unimplemented.");
6287 
6288   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6289                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6290                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6291   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6292                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6293                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6294 
6295   static const MCPhysReg VR[] = {// Vector registers.
6296                                  PPC::V2,  PPC::V3,  PPC::V4,  PPC::V5,
6297                                  PPC::V6,  PPC::V7,  PPC::V8,  PPC::V9,
6298                                  PPC::V10, PPC::V11, PPC::V12, PPC::V13};
6299 
6300   if (ArgFlags.isByVal()) {
6301     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
6302       report_fatal_error("Pass-by-value arguments with alignment greater than "
6303                          "register width are not supported.");
6304 
6305     const unsigned ByValSize = ArgFlags.getByValSize();
6306 
6307     // An empty aggregate parameter takes up no storage and no registers,
6308     // but needs a MemLoc for a stack slot for the formal arguments side.
6309     if (ByValSize == 0) {
6310       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6311                                        State.getNextStackOffset(), RegVT,
6312                                        LocInfo));
6313       return false;
6314     }
6315 
6316     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
6317     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
6318     for (const unsigned E = Offset + StackSize; Offset < E;
6319          Offset += PtrAlign.value()) {
6320       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6321         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6322       else {
6323         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6324                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
6325                                          LocInfo));
6326         break;
6327       }
6328     }
6329     return false;
6330   }
6331 
6332   // Arguments always reserve parameter save area.
6333   switch (ValVT.SimpleTy) {
6334   default:
6335     report_fatal_error("Unhandled value type for argument.");
6336   case MVT::i64:
6337     // i64 arguments should have been split to i32 for PPC32.
6338     assert(IsPPC64 && "PPC32 should have split i64 values.");
6339     LLVM_FALLTHROUGH;
6340   case MVT::i1:
6341   case MVT::i32: {
6342     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
6343     // AIX integer arguments are always passed in register width.
6344     if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits())
6345       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6346                                   : CCValAssign::LocInfo::ZExt;
6347     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6348       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6349     else
6350       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
6351 
6352     return false;
6353   }
6354   case MVT::f32:
6355   case MVT::f64: {
6356     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6357     const unsigned StoreSize = LocVT.getStoreSize();
6358     // Floats are always 4-byte aligned in the PSA on AIX.
6359     // This includes f64 in 64-bit mode for ABI compatibility.
6360     const unsigned Offset =
6361         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
6362     unsigned FReg = State.AllocateReg(FPR);
6363     if (FReg)
6364       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
6365 
6366     // Reserve and initialize GPRs or initialize the PSA as required.
6367     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
6368       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6369         assert(FReg && "An FPR should be available when a GPR is reserved.");
6370         if (State.isVarArg()) {
6371           // Successfully reserved GPRs are only initialized for vararg calls.
6372           // Custom handling is required for:
6373           //   f64 in PPC32 needs to be split into 2 GPRs.
6374           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6375           State.addLoc(
6376               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6377         }
6378       } else {
6379         // If there are insufficient GPRs, the PSA needs to be initialized.
6380         // Initialization occurs even if an FPR was initialized for
6381         // compatibility with the AIX XL compiler. The full memory for the
6382         // argument will be initialized even if a prior word is saved in GPR.
6383         // A custom memLoc is used when the argument also passes in FPR so
6384         // that the callee handling can skip over it easily.
6385         State.addLoc(
6386             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
6387                                              LocInfo)
6388                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6389         break;
6390       }
6391     }
6392 
6393     return false;
6394   }
6395   case MVT::v4f32:
6396   case MVT::v4i32:
6397   case MVT::v8i16:
6398   case MVT::v16i8:
6399   case MVT::v2i64:
6400   case MVT::v2f64:
6401   case MVT::v1i128: {
6402     if (State.isVarArg())
6403       report_fatal_error(
6404           "variadic arguments for vector types are unimplemented for AIX");
6405 
6406     if (unsigned VReg = State.AllocateReg(VR)) {
6407       State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6408       return false;
6409     }
6410 
6411     const unsigned VecSize = 16;
6412     const unsigned Offset = State.AllocateStack(VecSize, Align(VecSize));
6413     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6414     return false;
6415   }
6416   }
6417   return true;
6418 }
6419 
6420 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6421                                                     bool IsPPC64) {
6422   assert((IsPPC64 || SVT != MVT::i64) &&
6423          "i64 should have been split for 32-bit codegen.");
6424 
6425   switch (SVT) {
6426   default:
6427     report_fatal_error("Unexpected value type for formal argument");
6428   case MVT::i1:
6429   case MVT::i32:
6430   case MVT::i64:
6431     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6432   case MVT::f32:
6433     return &PPC::F4RCRegClass;
6434   case MVT::f64:
6435     return &PPC::F8RCRegClass;
6436   case MVT::v4f32:
6437   case MVT::v4i32:
6438   case MVT::v8i16:
6439   case MVT::v16i8:
6440   case MVT::v2i64:
6441   case MVT::v2f64:
6442   case MVT::v1i128:
6443     return &PPC::VRRCRegClass;
6444   }
6445 }
6446 
6447 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6448                                         SelectionDAG &DAG, SDValue ArgValue,
6449                                         MVT LocVT, const SDLoc &dl) {
6450   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
6451   assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits());
6452 
6453   if (Flags.isSExt())
6454     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
6455                            DAG.getValueType(ValVT));
6456   else if (Flags.isZExt())
6457     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
6458                            DAG.getValueType(ValVT));
6459 
6460   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
6461 }
6462 
6463 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
6464   const unsigned LASize = FL->getLinkageSize();
6465 
6466   if (PPC::GPRCRegClass.contains(Reg)) {
6467     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
6468            "Reg must be a valid argument register!");
6469     return LASize + 4 * (Reg - PPC::R3);
6470   }
6471 
6472   if (PPC::G8RCRegClass.contains(Reg)) {
6473     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
6474            "Reg must be a valid argument register!");
6475     return LASize + 8 * (Reg - PPC::X3);
6476   }
6477 
6478   llvm_unreachable("Only general purpose registers expected.");
6479 }
6480 
6481 //   AIX ABI Stack Frame Layout:
6482 //
6483 //   Low Memory +--------------------------------------------+
6484 //   SP   +---> | Back chain                                 | ---+
6485 //        |     +--------------------------------------------+    |
6486 //        |     | Saved Condition Register                   |    |
6487 //        |     +--------------------------------------------+    |
6488 //        |     | Saved Linkage Register                     |    |
6489 //        |     +--------------------------------------------+    | Linkage Area
6490 //        |     | Reserved for compilers                     |    |
6491 //        |     +--------------------------------------------+    |
6492 //        |     | Reserved for binders                       |    |
6493 //        |     +--------------------------------------------+    |
6494 //        |     | Saved TOC pointer                          | ---+
6495 //        |     +--------------------------------------------+
6496 //        |     | Parameter save area                        |
6497 //        |     +--------------------------------------------+
6498 //        |     | Alloca space                               |
6499 //        |     +--------------------------------------------+
6500 //        |     | Local variable space                       |
6501 //        |     +--------------------------------------------+
6502 //        |     | Float/int conversion temporary             |
6503 //        |     +--------------------------------------------+
6504 //        |     | Save area for AltiVec registers            |
6505 //        |     +--------------------------------------------+
6506 //        |     | AltiVec alignment padding                  |
6507 //        |     +--------------------------------------------+
6508 //        |     | Save area for VRSAVE register              |
6509 //        |     +--------------------------------------------+
6510 //        |     | Save area for General Purpose registers    |
6511 //        |     +--------------------------------------------+
6512 //        |     | Save area for Floating Point registers     |
6513 //        |     +--------------------------------------------+
6514 //        +---- | Back chain                                 |
6515 // High Memory  +--------------------------------------------+
6516 //
6517 //  Specifications:
6518 //  AIX 7.2 Assembler Language Reference
6519 //  Subroutine linkage convention
6520 
6521 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
6522     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
6523     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6524     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
6525 
6526   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
6527           CallConv == CallingConv::Fast) &&
6528          "Unexpected calling convention!");
6529 
6530   if (getTargetMachine().Options.GuaranteedTailCallOpt)
6531     report_fatal_error("Tail call support is unimplemented on AIX.");
6532 
6533   if (useSoftFloat())
6534     report_fatal_error("Soft float support is unimplemented on AIX.");
6535 
6536   const PPCSubtarget &Subtarget =
6537       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
6538 
6539   const bool IsPPC64 = Subtarget.isPPC64();
6540   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6541 
6542   // Assign locations to all of the incoming arguments.
6543   SmallVector<CCValAssign, 16> ArgLocs;
6544   MachineFunction &MF = DAG.getMachineFunction();
6545   MachineFrameInfo &MFI = MF.getFrameInfo();
6546   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
6547   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
6548 
6549   const EVT PtrVT = getPointerTy(MF.getDataLayout());
6550   // Reserve space for the linkage area on the stack.
6551   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6552   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
6553   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
6554 
6555   SmallVector<SDValue, 8> MemOps;
6556 
6557   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
6558     CCValAssign &VA = ArgLocs[I++];
6559     MVT LocVT = VA.getLocVT();
6560     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
6561     // For compatibility with the AIX XL compiler, the float args in the
6562     // parameter save area are initialized even if the argument is available
6563     // in register.  The caller is required to initialize both the register
6564     // and memory, however, the callee can choose to expect it in either.
6565     // The memloc is dismissed here because the argument is retrieved from
6566     // the register.
6567     if (VA.isMemLoc() && VA.needsCustom())
6568       continue;
6569 
6570     if (VA.isRegLoc()) {
6571       if (VA.getValVT().isScalarInteger())
6572         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
6573       else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector())
6574         FuncInfo->appendParameterType(VA.getValVT().SimpleTy == MVT::f32
6575                                           ? PPCFunctionInfo::ShortFloatPoint
6576                                           : PPCFunctionInfo::LongFloatPoint);
6577     }
6578 
6579     if (Flags.isByVal() && VA.isMemLoc()) {
6580       const unsigned Size =
6581           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
6582                   PtrByteSize);
6583       const int FI = MF.getFrameInfo().CreateFixedObject(
6584           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
6585           /* IsAliased */ true);
6586       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6587       InVals.push_back(FIN);
6588 
6589       continue;
6590     }
6591 
6592     if (Flags.isByVal()) {
6593       assert(VA.isRegLoc() && "MemLocs should already be handled.");
6594 
6595       const MCPhysReg ArgReg = VA.getLocReg();
6596       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
6597 
6598       if (Flags.getNonZeroByValAlign() > PtrByteSize)
6599         report_fatal_error("Over aligned byvals not supported yet.");
6600 
6601       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
6602       const int FI = MF.getFrameInfo().CreateFixedObject(
6603           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
6604           /* IsAliased */ true);
6605       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6606       InVals.push_back(FIN);
6607 
6608       // Add live ins for all the RegLocs for the same ByVal.
6609       const TargetRegisterClass *RegClass =
6610           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6611 
6612       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
6613                                                unsigned Offset) {
6614         const unsigned VReg = MF.addLiveIn(PhysReg, RegClass);
6615         // Since the callers side has left justified the aggregate in the
6616         // register, we can simply store the entire register into the stack
6617         // slot.
6618         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
6619         // The store to the fixedstack object is needed becuase accessing a
6620         // field of the ByVal will use a gep and load. Ideally we will optimize
6621         // to extracting the value from the register directly, and elide the
6622         // stores when the arguments address is not taken, but that will need to
6623         // be future work.
6624         SDValue Store = DAG.getStore(
6625             CopyFrom.getValue(1), dl, CopyFrom,
6626             DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)),
6627             MachinePointerInfo::getFixedStack(MF, FI, Offset));
6628 
6629         MemOps.push_back(Store);
6630       };
6631 
6632       unsigned Offset = 0;
6633       HandleRegLoc(VA.getLocReg(), Offset);
6634       Offset += PtrByteSize;
6635       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
6636            Offset += PtrByteSize) {
6637         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
6638                "RegLocs should be for ByVal argument.");
6639 
6640         const CCValAssign RL = ArgLocs[I++];
6641         HandleRegLoc(RL.getLocReg(), Offset);
6642         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
6643       }
6644 
6645       if (Offset != StackSize) {
6646         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
6647                "Expected MemLoc for remaining bytes.");
6648         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
6649         // Consume the MemLoc.The InVal has already been emitted, so nothing
6650         // more needs to be done.
6651         ++I;
6652       }
6653 
6654       continue;
6655     }
6656 
6657     EVT ValVT = VA.getValVT();
6658     if (VA.isRegLoc() && !VA.needsCustom()) {
6659       MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy;
6660       unsigned VReg =
6661           MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
6662       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
6663       if (ValVT.isScalarInteger() &&
6664           (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) {
6665         ArgValue =
6666             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
6667       }
6668       InVals.push_back(ArgValue);
6669       continue;
6670     }
6671     if (VA.isMemLoc()) {
6672       const unsigned LocSize = LocVT.getStoreSize();
6673       const unsigned ValSize = ValVT.getStoreSize();
6674       assert((ValSize <= LocSize) &&
6675              "Object size is larger than size of MemLoc");
6676       int CurArgOffset = VA.getLocMemOffset();
6677       // Objects are right-justified because AIX is big-endian.
6678       if (LocSize > ValSize)
6679         CurArgOffset += LocSize - ValSize;
6680       // Potential tail calls could cause overwriting of argument stack slots.
6681       const bool IsImmutable =
6682           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
6683             (CallConv == CallingConv::Fast));
6684       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
6685       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6686       SDValue ArgValue =
6687           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
6688       InVals.push_back(ArgValue);
6689       continue;
6690     }
6691   }
6692 
6693   // On AIX a minimum of 8 words is saved to the parameter save area.
6694   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
6695   // Area that is at least reserved in the caller of this function.
6696   unsigned CallerReservedArea =
6697       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
6698 
6699   // Set the size that is at least reserved in caller of this function. Tail
6700   // call optimized function's reserved stack space needs to be aligned so
6701   // that taking the difference between two stack areas will result in an
6702   // aligned stack.
6703   CallerReservedArea =
6704       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
6705   FuncInfo->setMinReservedArea(CallerReservedArea);
6706 
6707   if (isVarArg) {
6708     FuncInfo->setVarArgsFrameIndex(
6709         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
6710     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
6711 
6712     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6713                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6714 
6715     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6716                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6717     const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
6718 
6719     // The fixed integer arguments of a variadic function are stored to the
6720     // VarArgsFrameIndex on the stack so that they may be loaded by
6721     // dereferencing the result of va_next.
6722     for (unsigned GPRIndex =
6723              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
6724          GPRIndex < NumGPArgRegs; ++GPRIndex) {
6725 
6726       const unsigned VReg =
6727           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
6728                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
6729 
6730       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
6731       SDValue Store =
6732           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
6733       MemOps.push_back(Store);
6734       // Increment the address for the next argument to store.
6735       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
6736       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
6737     }
6738   }
6739 
6740   if (!MemOps.empty())
6741     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
6742 
6743   return Chain;
6744 }
6745 
6746 SDValue PPCTargetLowering::LowerCall_AIX(
6747     SDValue Chain, SDValue Callee, CallFlags CFlags,
6748     const SmallVectorImpl<ISD::OutputArg> &Outs,
6749     const SmallVectorImpl<SDValue> &OutVals,
6750     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6751     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6752     const CallBase *CB) const {
6753   // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
6754   // AIX ABI stack frame layout.
6755 
6756   assert((CFlags.CallConv == CallingConv::C ||
6757           CFlags.CallConv == CallingConv::Cold ||
6758           CFlags.CallConv == CallingConv::Fast) &&
6759          "Unexpected calling convention!");
6760 
6761   if (CFlags.IsPatchPoint)
6762     report_fatal_error("This call type is unimplemented on AIX.");
6763 
6764   const PPCSubtarget& Subtarget =
6765       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
6766 
6767   MachineFunction &MF = DAG.getMachineFunction();
6768   SmallVector<CCValAssign, 16> ArgLocs;
6769   CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
6770                  *DAG.getContext());
6771 
6772   // Reserve space for the linkage save area (LSA) on the stack.
6773   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
6774   //   [SP][CR][LR][2 x reserved][TOC].
6775   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
6776   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6777   const bool IsPPC64 = Subtarget.isPPC64();
6778   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
6779   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6780   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
6781   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
6782 
6783   // The prolog code of the callee may store up to 8 GPR argument registers to
6784   // the stack, allowing va_start to index over them in memory if the callee
6785   // is variadic.
6786   // Because we cannot tell if this is needed on the caller side, we have to
6787   // conservatively assume that it is needed.  As such, make sure we have at
6788   // least enough stack space for the caller to store the 8 GPRs.
6789   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
6790   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
6791                                      CCInfo.getNextStackOffset());
6792 
6793   // Adjust the stack pointer for the new arguments...
6794   // These operations are automatically eliminated by the prolog/epilog pass.
6795   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6796   SDValue CallSeqStart = Chain;
6797 
6798   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6799   SmallVector<SDValue, 8> MemOpChains;
6800 
6801   // Set up a copy of the stack pointer for loading and storing any
6802   // arguments that may not fit in the registers available for argument
6803   // passing.
6804   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
6805                                    : DAG.getRegister(PPC::R1, MVT::i32);
6806 
6807   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
6808     const unsigned ValNo = ArgLocs[I].getValNo();
6809     SDValue Arg = OutVals[ValNo];
6810     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
6811 
6812     if (Flags.isByVal()) {
6813       const unsigned ByValSize = Flags.getByValSize();
6814 
6815       // Nothing to do for zero-sized ByVals on the caller side.
6816       if (!ByValSize) {
6817         ++I;
6818         continue;
6819       }
6820 
6821       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
6822         return DAG.getExtLoad(
6823             ISD::ZEXTLOAD, dl, PtrVT, Chain,
6824             (LoadOffset != 0)
6825                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
6826                 : Arg,
6827             MachinePointerInfo(), VT);
6828       };
6829 
6830       unsigned LoadOffset = 0;
6831 
6832       // Initialize registers, which are fully occupied by the by-val argument.
6833       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
6834         SDValue Load = GetLoad(PtrVT, LoadOffset);
6835         MemOpChains.push_back(Load.getValue(1));
6836         LoadOffset += PtrByteSize;
6837         const CCValAssign &ByValVA = ArgLocs[I++];
6838         assert(ByValVA.getValNo() == ValNo &&
6839                "Unexpected location for pass-by-value argument.");
6840         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
6841       }
6842 
6843       if (LoadOffset == ByValSize)
6844         continue;
6845 
6846       // There must be one more loc to handle the remainder.
6847       assert(ArgLocs[I].getValNo() == ValNo &&
6848              "Expected additional location for by-value argument.");
6849 
6850       if (ArgLocs[I].isMemLoc()) {
6851         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
6852         const CCValAssign &ByValVA = ArgLocs[I++];
6853         ISD::ArgFlagsTy MemcpyFlags = Flags;
6854         // Only memcpy the bytes that don't pass in register.
6855         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
6856         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
6857             (LoadOffset != 0)
6858                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
6859                 : Arg,
6860             DAG.getObjectPtrOffset(dl, StackPtr,
6861                                    TypeSize::Fixed(ByValVA.getLocMemOffset())),
6862             CallSeqStart, MemcpyFlags, DAG, dl);
6863         continue;
6864       }
6865 
6866       // Initialize the final register residue.
6867       // Any residue that occupies the final by-val arg register must be
6868       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
6869       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
6870       // 2 and 1 byte loads.
6871       const unsigned ResidueBytes = ByValSize % PtrByteSize;
6872       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
6873              "Unexpected register residue for by-value argument.");
6874       SDValue ResidueVal;
6875       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
6876         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
6877         const MVT VT =
6878             N == 1 ? MVT::i8
6879                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
6880         SDValue Load = GetLoad(VT, LoadOffset);
6881         MemOpChains.push_back(Load.getValue(1));
6882         LoadOffset += N;
6883         Bytes += N;
6884 
6885         // By-val arguments are passed left-justfied in register.
6886         // Every load here needs to be shifted, otherwise a full register load
6887         // should have been used.
6888         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
6889                "Unexpected load emitted during handling of pass-by-value "
6890                "argument.");
6891         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
6892         EVT ShiftAmountTy =
6893             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
6894         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
6895         SDValue ShiftedLoad =
6896             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
6897         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
6898                                               ShiftedLoad)
6899                                 : ShiftedLoad;
6900       }
6901 
6902       const CCValAssign &ByValVA = ArgLocs[I++];
6903       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
6904       continue;
6905     }
6906 
6907     CCValAssign &VA = ArgLocs[I++];
6908     const MVT LocVT = VA.getLocVT();
6909     const MVT ValVT = VA.getValVT();
6910 
6911     switch (VA.getLocInfo()) {
6912     default:
6913       report_fatal_error("Unexpected argument extension type.");
6914     case CCValAssign::Full:
6915       break;
6916     case CCValAssign::ZExt:
6917       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
6918       break;
6919     case CCValAssign::SExt:
6920       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
6921       break;
6922     }
6923 
6924     if (VA.isRegLoc() && !VA.needsCustom()) {
6925       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
6926       continue;
6927     }
6928 
6929     if (VA.isMemLoc()) {
6930       SDValue PtrOff =
6931           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
6932       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6933       MemOpChains.push_back(
6934           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
6935 
6936       continue;
6937     }
6938 
6939     // Custom handling is used for GPR initializations for vararg float
6940     // arguments.
6941     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
6942            ValVT.isFloatingPoint() && LocVT.isInteger() &&
6943            "Unexpected register handling for calling convention.");
6944 
6945     SDValue ArgAsInt =
6946         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
6947 
6948     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
6949       // f32 in 32-bit GPR
6950       // f64 in 64-bit GPR
6951       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
6952     else if (Arg.getValueType().getFixedSizeInBits() <
6953              LocVT.getFixedSizeInBits())
6954       // f32 in 64-bit GPR.
6955       RegsToPass.push_back(std::make_pair(
6956           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
6957     else {
6958       // f64 in two 32-bit GPRs
6959       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
6960       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
6961              "Unexpected custom register for argument!");
6962       CCValAssign &GPR1 = VA;
6963       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
6964                                      DAG.getConstant(32, dl, MVT::i8));
6965       RegsToPass.push_back(std::make_pair(
6966           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
6967 
6968       if (I != E) {
6969         // If only 1 GPR was available, there will only be one custom GPR and
6970         // the argument will also pass in memory.
6971         CCValAssign &PeekArg = ArgLocs[I];
6972         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
6973           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
6974           CCValAssign &GPR2 = ArgLocs[I++];
6975           RegsToPass.push_back(std::make_pair(
6976               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
6977         }
6978       }
6979     }
6980   }
6981 
6982   if (!MemOpChains.empty())
6983     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6984 
6985   // For indirect calls, we need to save the TOC base to the stack for
6986   // restoration after the call.
6987   if (CFlags.IsIndirect) {
6988     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
6989     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
6990     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
6991     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
6992     const unsigned TOCSaveOffset =
6993         Subtarget.getFrameLowering()->getTOCSaveOffset();
6994 
6995     setUsesTOCBasePtr(DAG);
6996     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
6997     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6998     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
6999     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7000     Chain = DAG.getStore(
7001         Val.getValue(1), dl, Val, AddPtr,
7002         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7003   }
7004 
7005   // Build a sequence of copy-to-reg nodes chained together with token chain
7006   // and flag operands which copy the outgoing args into the appropriate regs.
7007   SDValue InFlag;
7008   for (auto Reg : RegsToPass) {
7009     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7010     InFlag = Chain.getValue(1);
7011   }
7012 
7013   const int SPDiff = 0;
7014   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7015                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7016 }
7017 
7018 bool
7019 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7020                                   MachineFunction &MF, bool isVarArg,
7021                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7022                                   LLVMContext &Context) const {
7023   SmallVector<CCValAssign, 16> RVLocs;
7024   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7025   return CCInfo.CheckReturn(
7026       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7027                 ? RetCC_PPC_Cold
7028                 : RetCC_PPC);
7029 }
7030 
7031 SDValue
7032 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7033                                bool isVarArg,
7034                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7035                                const SmallVectorImpl<SDValue> &OutVals,
7036                                const SDLoc &dl, SelectionDAG &DAG) const {
7037   SmallVector<CCValAssign, 16> RVLocs;
7038   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7039                  *DAG.getContext());
7040   CCInfo.AnalyzeReturn(Outs,
7041                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7042                            ? RetCC_PPC_Cold
7043                            : RetCC_PPC);
7044 
7045   SDValue Flag;
7046   SmallVector<SDValue, 4> RetOps(1, Chain);
7047 
7048   // Copy the result values into the output registers.
7049   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7050     CCValAssign &VA = RVLocs[i];
7051     assert(VA.isRegLoc() && "Can only return in registers!");
7052 
7053     SDValue Arg = OutVals[RealResIdx];
7054 
7055     switch (VA.getLocInfo()) {
7056     default: llvm_unreachable("Unknown loc info!");
7057     case CCValAssign::Full: break;
7058     case CCValAssign::AExt:
7059       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7060       break;
7061     case CCValAssign::ZExt:
7062       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7063       break;
7064     case CCValAssign::SExt:
7065       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7066       break;
7067     }
7068     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7069       bool isLittleEndian = Subtarget.isLittleEndian();
7070       // Legalize ret f64 -> ret 2 x i32.
7071       SDValue SVal =
7072           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7073                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7074       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7075       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7076       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7077                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7078       Flag = Chain.getValue(1);
7079       VA = RVLocs[++i]; // skip ahead to next loc
7080       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7081     } else
7082       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7083     Flag = Chain.getValue(1);
7084     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7085   }
7086 
7087   RetOps[0] = Chain;  // Update chain.
7088 
7089   // Add the flag if we have it.
7090   if (Flag.getNode())
7091     RetOps.push_back(Flag);
7092 
7093   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7094 }
7095 
7096 SDValue
7097 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7098                                                 SelectionDAG &DAG) const {
7099   SDLoc dl(Op);
7100 
7101   // Get the correct type for integers.
7102   EVT IntVT = Op.getValueType();
7103 
7104   // Get the inputs.
7105   SDValue Chain = Op.getOperand(0);
7106   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7107   // Build a DYNAREAOFFSET node.
7108   SDValue Ops[2] = {Chain, FPSIdx};
7109   SDVTList VTs = DAG.getVTList(IntVT);
7110   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7111 }
7112 
7113 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7114                                              SelectionDAG &DAG) const {
7115   // When we pop the dynamic allocation we need to restore the SP link.
7116   SDLoc dl(Op);
7117 
7118   // Get the correct type for pointers.
7119   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7120 
7121   // Construct the stack pointer operand.
7122   bool isPPC64 = Subtarget.isPPC64();
7123   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7124   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7125 
7126   // Get the operands for the STACKRESTORE.
7127   SDValue Chain = Op.getOperand(0);
7128   SDValue SaveSP = Op.getOperand(1);
7129 
7130   // Load the old link SP.
7131   SDValue LoadLinkSP =
7132       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7133 
7134   // Restore the stack pointer.
7135   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7136 
7137   // Store the old link SP.
7138   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7139 }
7140 
7141 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7142   MachineFunction &MF = DAG.getMachineFunction();
7143   bool isPPC64 = Subtarget.isPPC64();
7144   EVT PtrVT = getPointerTy(MF.getDataLayout());
7145 
7146   // Get current frame pointer save index.  The users of this index will be
7147   // primarily DYNALLOC instructions.
7148   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7149   int RASI = FI->getReturnAddrSaveIndex();
7150 
7151   // If the frame pointer save index hasn't been defined yet.
7152   if (!RASI) {
7153     // Find out what the fix offset of the frame pointer save area.
7154     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7155     // Allocate the frame index for frame pointer save area.
7156     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7157     // Save the result.
7158     FI->setReturnAddrSaveIndex(RASI);
7159   }
7160   return DAG.getFrameIndex(RASI, PtrVT);
7161 }
7162 
7163 SDValue
7164 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7165   MachineFunction &MF = DAG.getMachineFunction();
7166   bool isPPC64 = Subtarget.isPPC64();
7167   EVT PtrVT = getPointerTy(MF.getDataLayout());
7168 
7169   // Get current frame pointer save index.  The users of this index will be
7170   // primarily DYNALLOC instructions.
7171   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7172   int FPSI = FI->getFramePointerSaveIndex();
7173 
7174   // If the frame pointer save index hasn't been defined yet.
7175   if (!FPSI) {
7176     // Find out what the fix offset of the frame pointer save area.
7177     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7178     // Allocate the frame index for frame pointer save area.
7179     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7180     // Save the result.
7181     FI->setFramePointerSaveIndex(FPSI);
7182   }
7183   return DAG.getFrameIndex(FPSI, PtrVT);
7184 }
7185 
7186 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7187                                                    SelectionDAG &DAG) const {
7188   MachineFunction &MF = DAG.getMachineFunction();
7189   // Get the inputs.
7190   SDValue Chain = Op.getOperand(0);
7191   SDValue Size  = Op.getOperand(1);
7192   SDLoc dl(Op);
7193 
7194   // Get the correct type for pointers.
7195   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7196   // Negate the size.
7197   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7198                                 DAG.getConstant(0, dl, PtrVT), Size);
7199   // Construct a node for the frame pointer save index.
7200   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7201   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7202   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7203   if (hasInlineStackProbe(MF))
7204     return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
7205   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7206 }
7207 
7208 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7209                                                      SelectionDAG &DAG) const {
7210   MachineFunction &MF = DAG.getMachineFunction();
7211 
7212   bool isPPC64 = Subtarget.isPPC64();
7213   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7214 
7215   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7216   return DAG.getFrameIndex(FI, PtrVT);
7217 }
7218 
7219 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7220                                                SelectionDAG &DAG) const {
7221   SDLoc DL(Op);
7222   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7223                      DAG.getVTList(MVT::i32, MVT::Other),
7224                      Op.getOperand(0), Op.getOperand(1));
7225 }
7226 
7227 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7228                                                 SelectionDAG &DAG) const {
7229   SDLoc DL(Op);
7230   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7231                      Op.getOperand(0), Op.getOperand(1));
7232 }
7233 
7234 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7235   if (Op.getValueType().isVector())
7236     return LowerVectorLoad(Op, DAG);
7237 
7238   assert(Op.getValueType() == MVT::i1 &&
7239          "Custom lowering only for i1 loads");
7240 
7241   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7242 
7243   SDLoc dl(Op);
7244   LoadSDNode *LD = cast<LoadSDNode>(Op);
7245 
7246   SDValue Chain = LD->getChain();
7247   SDValue BasePtr = LD->getBasePtr();
7248   MachineMemOperand *MMO = LD->getMemOperand();
7249 
7250   SDValue NewLD =
7251       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7252                      BasePtr, MVT::i8, MMO);
7253   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7254 
7255   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7256   return DAG.getMergeValues(Ops, dl);
7257 }
7258 
7259 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7260   if (Op.getOperand(1).getValueType().isVector())
7261     return LowerVectorStore(Op, DAG);
7262 
7263   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7264          "Custom lowering only for i1 stores");
7265 
7266   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7267 
7268   SDLoc dl(Op);
7269   StoreSDNode *ST = cast<StoreSDNode>(Op);
7270 
7271   SDValue Chain = ST->getChain();
7272   SDValue BasePtr = ST->getBasePtr();
7273   SDValue Value = ST->getValue();
7274   MachineMemOperand *MMO = ST->getMemOperand();
7275 
7276   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7277                       Value);
7278   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7279 }
7280 
7281 // FIXME: Remove this once the ANDI glue bug is fixed:
7282 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7283   assert(Op.getValueType() == MVT::i1 &&
7284          "Custom lowering only for i1 results");
7285 
7286   SDLoc DL(Op);
7287   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7288 }
7289 
7290 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7291                                                SelectionDAG &DAG) const {
7292 
7293   // Implements a vector truncate that fits in a vector register as a shuffle.
7294   // We want to legalize vector truncates down to where the source fits in
7295   // a vector register (and target is therefore smaller than vector register
7296   // size).  At that point legalization will try to custom lower the sub-legal
7297   // result and get here - where we can contain the truncate as a single target
7298   // operation.
7299 
7300   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7301   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7302   //
7303   // We will implement it for big-endian ordering as this (where x denotes
7304   // undefined):
7305   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7306   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7307   //
7308   // The same operation in little-endian ordering will be:
7309   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7310   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7311 
7312   EVT TrgVT = Op.getValueType();
7313   assert(TrgVT.isVector() && "Vector type expected.");
7314   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7315   EVT EltVT = TrgVT.getVectorElementType();
7316   if (!isOperationCustom(Op.getOpcode(), TrgVT) ||
7317       TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) ||
7318       !isPowerOf2_32(EltVT.getSizeInBits()))
7319     return SDValue();
7320 
7321   SDValue N1 = Op.getOperand(0);
7322   EVT SrcVT = N1.getValueType();
7323   unsigned SrcSize = SrcVT.getSizeInBits();
7324   if (SrcSize > 256 ||
7325       !isPowerOf2_32(SrcVT.getVectorNumElements()) ||
7326       !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits()))
7327     return SDValue();
7328   if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2)
7329     return SDValue();
7330 
7331   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7332   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7333 
7334   SDLoc DL(Op);
7335   SDValue Op1, Op2;
7336   if (SrcSize == 256) {
7337     EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout());
7338     EVT SplitVT =
7339         N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
7340     unsigned SplitNumElts = SplitVT.getVectorNumElements();
7341     Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7342                       DAG.getConstant(0, DL, VecIdxTy));
7343     Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7344                       DAG.getConstant(SplitNumElts, DL, VecIdxTy));
7345   }
7346   else {
7347     Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7348     Op2 = DAG.getUNDEF(WideVT);
7349   }
7350 
7351   // First list the elements we want to keep.
7352   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7353   SmallVector<int, 16> ShuffV;
7354   if (Subtarget.isLittleEndian())
7355     for (unsigned i = 0; i < TrgNumElts; ++i)
7356       ShuffV.push_back(i * SizeMult);
7357   else
7358     for (unsigned i = 1; i <= TrgNumElts; ++i)
7359       ShuffV.push_back(i * SizeMult - 1);
7360 
7361   // Populate the remaining elements with undefs.
7362   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7363     // ShuffV.push_back(i + WideNumElts);
7364     ShuffV.push_back(WideNumElts + 1);
7365 
7366   Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1);
7367   Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2);
7368   return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV);
7369 }
7370 
7371 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7372 /// possible.
7373 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7374   // Not FP, or using SPE? Not a fsel.
7375   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
7376       !Op.getOperand(2).getValueType().isFloatingPoint() || Subtarget.hasSPE())
7377     return Op;
7378 
7379   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7380 
7381   EVT ResVT = Op.getValueType();
7382   EVT CmpVT = Op.getOperand(0).getValueType();
7383   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7384   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7385   SDLoc dl(Op);
7386   SDNodeFlags Flags = Op.getNode()->getFlags();
7387 
7388   // We have xsmaxcdp/xsmincdp which are OK to emit even in the
7389   // presence of infinities.
7390   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7391     switch (CC) {
7392     default:
7393       break;
7394     case ISD::SETOGT:
7395     case ISD::SETGT:
7396       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
7397     case ISD::SETOLT:
7398     case ISD::SETLT:
7399       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
7400     }
7401   }
7402 
7403   // We might be able to do better than this under some circumstances, but in
7404   // general, fsel-based lowering of select is a finite-math-only optimization.
7405   // For more information, see section F.3 of the 2.06 ISA specification.
7406   // With ISA 3.0
7407   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
7408       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
7409     return Op;
7410 
7411   // If the RHS of the comparison is a 0.0, we don't need to do the
7412   // subtraction at all.
7413   SDValue Sel1;
7414   if (isFloatingPointZero(RHS))
7415     switch (CC) {
7416     default: break;       // SETUO etc aren't handled by fsel.
7417     case ISD::SETNE:
7418       std::swap(TV, FV);
7419       LLVM_FALLTHROUGH;
7420     case ISD::SETEQ:
7421       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7422         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7423       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7424       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7425         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7426       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7427                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7428     case ISD::SETULT:
7429     case ISD::SETLT:
7430       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7431       LLVM_FALLTHROUGH;
7432     case ISD::SETOGE:
7433     case ISD::SETGE:
7434       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7435         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7436       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7437     case ISD::SETUGT:
7438     case ISD::SETGT:
7439       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7440       LLVM_FALLTHROUGH;
7441     case ISD::SETOLE:
7442     case ISD::SETLE:
7443       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7444         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7445       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7446                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7447     }
7448 
7449   SDValue Cmp;
7450   switch (CC) {
7451   default: break;       // SETUO etc aren't handled by fsel.
7452   case ISD::SETNE:
7453     std::swap(TV, FV);
7454     LLVM_FALLTHROUGH;
7455   case ISD::SETEQ:
7456     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7457     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7458       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7459     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7460     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7461       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7462     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7463                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7464   case ISD::SETULT:
7465   case ISD::SETLT:
7466     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7467     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7468       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7469     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7470   case ISD::SETOGE:
7471   case ISD::SETGE:
7472     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7473     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7474       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7475     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7476   case ISD::SETUGT:
7477   case ISD::SETGT:
7478     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7479     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7480       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7481     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7482   case ISD::SETOLE:
7483   case ISD::SETLE:
7484     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7485     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7486       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7487     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7488   }
7489   return Op;
7490 }
7491 
7492 static unsigned getPPCStrictOpcode(unsigned Opc) {
7493   switch (Opc) {
7494   default:
7495     llvm_unreachable("No strict version of this opcode!");
7496   case PPCISD::FCTIDZ:
7497     return PPCISD::STRICT_FCTIDZ;
7498   case PPCISD::FCTIWZ:
7499     return PPCISD::STRICT_FCTIWZ;
7500   case PPCISD::FCTIDUZ:
7501     return PPCISD::STRICT_FCTIDUZ;
7502   case PPCISD::FCTIWUZ:
7503     return PPCISD::STRICT_FCTIWUZ;
7504   case PPCISD::FCFID:
7505     return PPCISD::STRICT_FCFID;
7506   case PPCISD::FCFIDU:
7507     return PPCISD::STRICT_FCFIDU;
7508   case PPCISD::FCFIDS:
7509     return PPCISD::STRICT_FCFIDS;
7510   case PPCISD::FCFIDUS:
7511     return PPCISD::STRICT_FCFIDUS;
7512   }
7513 }
7514 
7515 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG,
7516                               const PPCSubtarget &Subtarget) {
7517   SDLoc dl(Op);
7518   bool IsStrict = Op->isStrictFPOpcode();
7519   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
7520                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
7521 
7522   // TODO: Any other flags to propagate?
7523   SDNodeFlags Flags;
7524   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
7525 
7526   // For strict nodes, source is the second operand.
7527   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
7528   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
7529   assert(Src.getValueType().isFloatingPoint());
7530   if (Src.getValueType() == MVT::f32) {
7531     if (IsStrict) {
7532       Src =
7533           DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
7534                       DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags);
7535       Chain = Src.getValue(1);
7536     } else
7537       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7538   }
7539   SDValue Conv;
7540   unsigned Opc = ISD::DELETED_NODE;
7541   switch (Op.getSimpleValueType().SimpleTy) {
7542   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7543   case MVT::i32:
7544     Opc = IsSigned ? PPCISD::FCTIWZ
7545                    : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ);
7546     break;
7547   case MVT::i64:
7548     assert((IsSigned || Subtarget.hasFPCVT()) &&
7549            "i64 FP_TO_UINT is supported only with FPCVT");
7550     Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ;
7551   }
7552   if (IsStrict) {
7553     Opc = getPPCStrictOpcode(Opc);
7554     Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other),
7555                        {Chain, Src}, Flags);
7556   } else {
7557     Conv = DAG.getNode(Opc, dl, MVT::f64, Src);
7558   }
7559   return Conv;
7560 }
7561 
7562 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
7563                                                SelectionDAG &DAG,
7564                                                const SDLoc &dl) const {
7565   SDValue Tmp = convertFPToInt(Op, DAG, Subtarget);
7566   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
7567                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
7568   bool IsStrict = Op->isStrictFPOpcode();
7569 
7570   // Convert the FP value to an int value through memory.
7571   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
7572                   (IsSigned || Subtarget.hasFPCVT());
7573   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
7574   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
7575   MachinePointerInfo MPI =
7576       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
7577 
7578   // Emit a store to the stack slot.
7579   SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode();
7580   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
7581   if (i32Stack) {
7582     MachineFunction &MF = DAG.getMachineFunction();
7583     Alignment = Align(4);
7584     MachineMemOperand *MMO =
7585         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
7586     SDValue Ops[] = { Chain, Tmp, FIPtr };
7587     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7588               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
7589   } else
7590     Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment);
7591 
7592   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
7593   // add in a bias on big endian.
7594   if (Op.getValueType() == MVT::i32 && !i32Stack) {
7595     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
7596                         DAG.getConstant(4, dl, FIPtr.getValueType()));
7597     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
7598   }
7599 
7600   RLI.Chain = Chain;
7601   RLI.Ptr = FIPtr;
7602   RLI.MPI = MPI;
7603   RLI.Alignment = Alignment;
7604 }
7605 
7606 /// Custom lowers floating point to integer conversions to use
7607 /// the direct move instructions available in ISA 2.07 to avoid the
7608 /// need for load/store combinations.
7609 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
7610                                                     SelectionDAG &DAG,
7611                                                     const SDLoc &dl) const {
7612   SDValue Conv = convertFPToInt(Op, DAG, Subtarget);
7613   SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv);
7614   if (Op->isStrictFPOpcode())
7615     return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl);
7616   else
7617     return Mov;
7618 }
7619 
7620 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
7621                                           const SDLoc &dl) const {
7622   bool IsStrict = Op->isStrictFPOpcode();
7623   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
7624                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
7625   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
7626   EVT SrcVT = Src.getValueType();
7627   EVT DstVT = Op.getValueType();
7628 
7629   // FP to INT conversions are legal for f128.
7630   if (SrcVT == MVT::f128)
7631     return Subtarget.hasP9Vector() ? Op : SDValue();
7632 
7633   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
7634   // PPC (the libcall is not available).
7635   if (SrcVT == MVT::ppcf128) {
7636     if (DstVT == MVT::i32) {
7637       // TODO: Conservatively pass only nofpexcept flag here. Need to check and
7638       // set other fast-math flags to FP operations in both strict and
7639       // non-strict cases. (FP_TO_SINT, FSUB)
7640       SDNodeFlags Flags;
7641       Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
7642 
7643       if (IsSigned) {
7644         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
7645                                  DAG.getIntPtrConstant(0, dl));
7646         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
7647                                  DAG.getIntPtrConstant(1, dl));
7648 
7649         // Add the two halves of the long double in round-to-zero mode, and use
7650         // a smaller FP_TO_SINT.
7651         if (IsStrict) {
7652           SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl,
7653                                     DAG.getVTList(MVT::f64, MVT::Other),
7654                                     {Op.getOperand(0), Lo, Hi}, Flags);
7655           return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
7656                              DAG.getVTList(MVT::i32, MVT::Other),
7657                              {Res.getValue(1), Res}, Flags);
7658         } else {
7659           SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
7660           return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
7661         }
7662       } else {
7663         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
7664         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
7665         SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
7666         SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT);
7667         if (IsStrict) {
7668           // Sel = Src < 0x80000000
7669           // FltOfs = select Sel, 0.0, 0x80000000
7670           // IntOfs = select Sel, 0, 0x80000000
7671           // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
7672           SDValue Chain = Op.getOperand(0);
7673           EVT SetCCVT =
7674               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7675           EVT DstSetCCVT =
7676               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
7677           SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
7678                                      Chain, true);
7679           Chain = Sel.getValue(1);
7680 
7681           SDValue FltOfs = DAG.getSelect(
7682               dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst);
7683           Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7684 
7685           SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl,
7686                                     DAG.getVTList(SrcVT, MVT::Other),
7687                                     {Chain, Src, FltOfs}, Flags);
7688           Chain = Val.getValue(1);
7689           SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
7690                                      DAG.getVTList(DstVT, MVT::Other),
7691                                      {Chain, Val}, Flags);
7692           Chain = SInt.getValue(1);
7693           SDValue IntOfs = DAG.getSelect(
7694               dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask);
7695           SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
7696           return DAG.getMergeValues({Result, Chain}, dl);
7697         } else {
7698           // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
7699           // FIXME: generated code sucks.
7700           SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst);
7701           True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
7702           True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask);
7703           SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src);
7704           return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE);
7705         }
7706       }
7707     }
7708 
7709     return SDValue();
7710   }
7711 
7712   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
7713     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
7714 
7715   ReuseLoadInfo RLI;
7716   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7717 
7718   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7719                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7720 }
7721 
7722 // We're trying to insert a regular store, S, and then a load, L. If the
7723 // incoming value, O, is a load, we might just be able to have our load use the
7724 // address used by O. However, we don't know if anything else will store to
7725 // that address before we can load from it. To prevent this situation, we need
7726 // to insert our load, L, into the chain as a peer of O. To do this, we give L
7727 // the same chain operand as O, we create a token factor from the chain results
7728 // of O and L, and we replace all uses of O's chain result with that token
7729 // factor (see spliceIntoChain below for this last part).
7730 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
7731                                             ReuseLoadInfo &RLI,
7732                                             SelectionDAG &DAG,
7733                                             ISD::LoadExtType ET) const {
7734   // Conservatively skip reusing for constrained FP nodes.
7735   if (Op->isStrictFPOpcode())
7736     return false;
7737 
7738   SDLoc dl(Op);
7739   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
7740                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
7741   if (ET == ISD::NON_EXTLOAD &&
7742       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
7743       isOperationLegalOrCustom(Op.getOpcode(),
7744                                Op.getOperand(0).getValueType())) {
7745 
7746     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7747     return true;
7748   }
7749 
7750   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
7751   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
7752       LD->isNonTemporal())
7753     return false;
7754   if (LD->getMemoryVT() != MemVT)
7755     return false;
7756 
7757   // If the result of the load is an illegal type, then we can't build a
7758   // valid chain for reuse since the legalised loads and token factor node that
7759   // ties the legalised loads together uses a different output chain then the
7760   // illegal load.
7761   if (!isTypeLegal(LD->getValueType(0)))
7762     return false;
7763 
7764   RLI.Ptr = LD->getBasePtr();
7765   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
7766     assert(LD->getAddressingMode() == ISD::PRE_INC &&
7767            "Non-pre-inc AM on PPC?");
7768     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
7769                           LD->getOffset());
7770   }
7771 
7772   RLI.Chain = LD->getChain();
7773   RLI.MPI = LD->getPointerInfo();
7774   RLI.IsDereferenceable = LD->isDereferenceable();
7775   RLI.IsInvariant = LD->isInvariant();
7776   RLI.Alignment = LD->getAlign();
7777   RLI.AAInfo = LD->getAAInfo();
7778   RLI.Ranges = LD->getRanges();
7779 
7780   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
7781   return true;
7782 }
7783 
7784 // Given the head of the old chain, ResChain, insert a token factor containing
7785 // it and NewResChain, and make users of ResChain now be users of that token
7786 // factor.
7787 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
7788 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
7789                                         SDValue NewResChain,
7790                                         SelectionDAG &DAG) const {
7791   if (!ResChain)
7792     return;
7793 
7794   SDLoc dl(NewResChain);
7795 
7796   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7797                            NewResChain, DAG.getUNDEF(MVT::Other));
7798   assert(TF.getNode() != NewResChain.getNode() &&
7799          "A new TF really is required here");
7800 
7801   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
7802   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
7803 }
7804 
7805 /// Analyze profitability of direct move
7806 /// prefer float load to int load plus direct move
7807 /// when there is no integer use of int load
7808 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
7809   SDNode *Origin = Op.getOperand(0).getNode();
7810   if (Origin->getOpcode() != ISD::LOAD)
7811     return true;
7812 
7813   // If there is no LXSIBZX/LXSIHZX, like Power8,
7814   // prefer direct move if the memory size is 1 or 2 bytes.
7815   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
7816   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
7817     return true;
7818 
7819   for (SDNode::use_iterator UI = Origin->use_begin(),
7820                             UE = Origin->use_end();
7821        UI != UE; ++UI) {
7822 
7823     // Only look at the users of the loaded value.
7824     if (UI.getUse().get().getResNo() != 0)
7825       continue;
7826 
7827     if (UI->getOpcode() != ISD::SINT_TO_FP &&
7828         UI->getOpcode() != ISD::UINT_TO_FP &&
7829         UI->getOpcode() != ISD::STRICT_SINT_TO_FP &&
7830         UI->getOpcode() != ISD::STRICT_UINT_TO_FP)
7831       return true;
7832   }
7833 
7834   return false;
7835 }
7836 
7837 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG,
7838                               const PPCSubtarget &Subtarget,
7839                               SDValue Chain = SDValue()) {
7840   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
7841                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
7842   SDLoc dl(Op);
7843 
7844   // TODO: Any other flags to propagate?
7845   SDNodeFlags Flags;
7846   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
7847 
7848   // If we have FCFIDS, then use it when converting to single-precision.
7849   // Otherwise, convert to double-precision and then round.
7850   bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT();
7851   unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS)
7852                               : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU);
7853   EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64;
7854   if (Op->isStrictFPOpcode()) {
7855     if (!Chain)
7856       Chain = Op.getOperand(0);
7857     return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl,
7858                        DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags);
7859   } else
7860     return DAG.getNode(ConvOpc, dl, ConvTy, Src);
7861 }
7862 
7863 /// Custom lowers integer to floating point conversions to use
7864 /// the direct move instructions available in ISA 2.07 to avoid the
7865 /// need for load/store combinations.
7866 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
7867                                                     SelectionDAG &DAG,
7868                                                     const SDLoc &dl) const {
7869   assert((Op.getValueType() == MVT::f32 ||
7870           Op.getValueType() == MVT::f64) &&
7871          "Invalid floating point type as target of conversion");
7872   assert(Subtarget.hasFPCVT() &&
7873          "Int to FP conversions with direct moves require FPCVT");
7874   SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0);
7875   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
7876   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP ||
7877                 Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
7878   unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA;
7879   SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src);
7880   return convertIntToFP(Op, Mov, DAG, Subtarget);
7881 }
7882 
7883 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
7884 
7885   EVT VecVT = Vec.getValueType();
7886   assert(VecVT.isVector() && "Expected a vector type.");
7887   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
7888 
7889   EVT EltVT = VecVT.getVectorElementType();
7890   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7891   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7892 
7893   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
7894   SmallVector<SDValue, 16> Ops(NumConcat);
7895   Ops[0] = Vec;
7896   SDValue UndefVec = DAG.getUNDEF(VecVT);
7897   for (unsigned i = 1; i < NumConcat; ++i)
7898     Ops[i] = UndefVec;
7899 
7900   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
7901 }
7902 
7903 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
7904                                                 const SDLoc &dl) const {
7905   bool IsStrict = Op->isStrictFPOpcode();
7906   unsigned Opc = Op.getOpcode();
7907   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
7908   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP ||
7909           Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) &&
7910          "Unexpected conversion type");
7911   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
7912          "Supports conversions to v2f64/v4f32 only.");
7913 
7914   // TODO: Any other flags to propagate?
7915   SDNodeFlags Flags;
7916   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
7917 
7918   bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP;
7919   bool FourEltRes = Op.getValueType() == MVT::v4f32;
7920 
7921   SDValue Wide = widenVec(DAG, Src, dl);
7922   EVT WideVT = Wide.getValueType();
7923   unsigned WideNumElts = WideVT.getVectorNumElements();
7924   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
7925 
7926   SmallVector<int, 16> ShuffV;
7927   for (unsigned i = 0; i < WideNumElts; ++i)
7928     ShuffV.push_back(i + WideNumElts);
7929 
7930   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
7931   int SaveElts = FourEltRes ? 4 : 2;
7932   if (Subtarget.isLittleEndian())
7933     for (int i = 0; i < SaveElts; i++)
7934       ShuffV[i * Stride] = i;
7935   else
7936     for (int i = 1; i <= SaveElts; i++)
7937       ShuffV[i * Stride - 1] = i - 1;
7938 
7939   SDValue ShuffleSrc2 =
7940       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
7941   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
7942 
7943   SDValue Extend;
7944   if (SignedConv) {
7945     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
7946     EVT ExtVT = Src.getValueType();
7947     if (Subtarget.hasP9Altivec())
7948       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
7949                                IntermediateVT.getVectorNumElements());
7950 
7951     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
7952                          DAG.getValueType(ExtVT));
7953   } else
7954     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
7955 
7956   if (IsStrict)
7957     return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
7958                        {Op.getOperand(0), Extend}, Flags);
7959 
7960   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
7961 }
7962 
7963 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
7964                                           SelectionDAG &DAG) const {
7965   SDLoc dl(Op);
7966   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
7967                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
7968   bool IsStrict = Op->isStrictFPOpcode();
7969   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
7970   SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
7971 
7972   // TODO: Any other flags to propagate?
7973   SDNodeFlags Flags;
7974   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
7975 
7976   EVT InVT = Src.getValueType();
7977   EVT OutVT = Op.getValueType();
7978   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
7979       isOperationCustom(Op.getOpcode(), InVT))
7980     return LowerINT_TO_FPVector(Op, DAG, dl);
7981 
7982   // Conversions to f128 are legal.
7983   if (Op.getValueType() == MVT::f128)
7984     return Subtarget.hasP9Vector() ? Op : SDValue();
7985 
7986   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
7987   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
7988     return SDValue();
7989 
7990   if (Src.getValueType() == MVT::i1) {
7991     SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src,
7992                               DAG.getConstantFP(1.0, dl, Op.getValueType()),
7993                               DAG.getConstantFP(0.0, dl, Op.getValueType()));
7994     if (IsStrict)
7995       return DAG.getMergeValues({Sel, Chain}, dl);
7996     else
7997       return Sel;
7998   }
7999 
8000   // If we have direct moves, we can do all the conversion, skip the store/load
8001   // however, without FPCVT we can't do most conversions.
8002   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8003       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8004     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8005 
8006   assert((IsSigned || Subtarget.hasFPCVT()) &&
8007          "UINT_TO_FP is supported only with FPCVT");
8008 
8009   if (Src.getValueType() == MVT::i64) {
8010     SDValue SINT = Src;
8011     // When converting to single-precision, we actually need to convert
8012     // to double-precision first and then round to single-precision.
8013     // To avoid double-rounding effects during that operation, we have
8014     // to prepare the input operand.  Bits that might be truncated when
8015     // converting to double-precision are replaced by a bit that won't
8016     // be lost at this stage, but is below the single-precision rounding
8017     // position.
8018     //
8019     // However, if -enable-unsafe-fp-math is in effect, accept double
8020     // rounding to avoid the extra overhead.
8021     if (Op.getValueType() == MVT::f32 &&
8022         !Subtarget.hasFPCVT() &&
8023         !DAG.getTarget().Options.UnsafeFPMath) {
8024 
8025       // Twiddle input to make sure the low 11 bits are zero.  (If this
8026       // is the case, we are guaranteed the value will fit into the 53 bit
8027       // mantissa of an IEEE double-precision value without rounding.)
8028       // If any of those low 11 bits were not zero originally, make sure
8029       // bit 12 (value 2048) is set instead, so that the final rounding
8030       // to single-precision gets the correct result.
8031       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8032                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8033       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8034                           Round, DAG.getConstant(2047, dl, MVT::i64));
8035       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8036       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8037                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8038 
8039       // However, we cannot use that value unconditionally: if the magnitude
8040       // of the input value is small, the bit-twiddling we did above might
8041       // end up visibly changing the output.  Fortunately, in that case, we
8042       // don't need to twiddle bits since the original input will convert
8043       // exactly to double-precision floating-point already.  Therefore,
8044       // construct a conditional to use the original value if the top 11
8045       // bits are all sign-bit copies, and use the rounded value computed
8046       // above otherwise.
8047       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8048                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8049       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8050                          Cond, DAG.getConstant(1, dl, MVT::i64));
8051       Cond = DAG.getSetCC(
8052           dl,
8053           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8054           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8055 
8056       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8057     }
8058 
8059     ReuseLoadInfo RLI;
8060     SDValue Bits;
8061 
8062     MachineFunction &MF = DAG.getMachineFunction();
8063     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8064       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8065                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8066       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8067     } else if (Subtarget.hasLFIWAX() &&
8068                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8069       MachineMemOperand *MMO =
8070         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8071                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8072       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8073       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8074                                      DAG.getVTList(MVT::f64, MVT::Other),
8075                                      Ops, MVT::i32, MMO);
8076       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8077     } else if (Subtarget.hasFPCVT() &&
8078                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8079       MachineMemOperand *MMO =
8080         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8081                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8082       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8083       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8084                                      DAG.getVTList(MVT::f64, MVT::Other),
8085                                      Ops, MVT::i32, MMO);
8086       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8087     } else if (((Subtarget.hasLFIWAX() &&
8088                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8089                 (Subtarget.hasFPCVT() &&
8090                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8091                SINT.getOperand(0).getValueType() == MVT::i32) {
8092       MachineFrameInfo &MFI = MF.getFrameInfo();
8093       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8094 
8095       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8096       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8097 
8098       SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx,
8099                                    MachinePointerInfo::getFixedStack(
8100                                        DAG.getMachineFunction(), FrameIdx));
8101       Chain = Store;
8102 
8103       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8104              "Expected an i32 store");
8105 
8106       RLI.Ptr = FIdx;
8107       RLI.Chain = Chain;
8108       RLI.MPI =
8109           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8110       RLI.Alignment = Align(4);
8111 
8112       MachineMemOperand *MMO =
8113         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8114                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8115       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8116       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8117                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8118                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8119                                      Ops, MVT::i32, MMO);
8120       Chain = Bits.getValue(1);
8121     } else
8122       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8123 
8124     SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain);
8125     if (IsStrict)
8126       Chain = FP.getValue(1);
8127 
8128     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8129       if (IsStrict)
8130         FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8131                          DAG.getVTList(MVT::f32, MVT::Other),
8132                          {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8133       else
8134         FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8135                          DAG.getIntPtrConstant(0, dl));
8136     }
8137     return FP;
8138   }
8139 
8140   assert(Src.getValueType() == MVT::i32 &&
8141          "Unhandled INT_TO_FP type in custom expander!");
8142   // Since we only generate this in 64-bit mode, we can take advantage of
8143   // 64-bit registers.  In particular, sign extend the input value into the
8144   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8145   // then lfd it and fcfid it.
8146   MachineFunction &MF = DAG.getMachineFunction();
8147   MachineFrameInfo &MFI = MF.getFrameInfo();
8148   EVT PtrVT = getPointerTy(MF.getDataLayout());
8149 
8150   SDValue Ld;
8151   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8152     ReuseLoadInfo RLI;
8153     bool ReusingLoad;
8154     if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) {
8155       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8156       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8157 
8158       SDValue Store = DAG.getStore(Chain, dl, Src, FIdx,
8159                                    MachinePointerInfo::getFixedStack(
8160                                        DAG.getMachineFunction(), FrameIdx));
8161       Chain = Store;
8162 
8163       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8164              "Expected an i32 store");
8165 
8166       RLI.Ptr = FIdx;
8167       RLI.Chain = Chain;
8168       RLI.MPI =
8169           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8170       RLI.Alignment = Align(4);
8171     }
8172 
8173     MachineMemOperand *MMO =
8174       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8175                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8176     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8177     Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl,
8178                                  DAG.getVTList(MVT::f64, MVT::Other), Ops,
8179                                  MVT::i32, MMO);
8180     Chain = Ld.getValue(1);
8181     if (ReusingLoad)
8182       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8183   } else {
8184     assert(Subtarget.isPPC64() &&
8185            "i32->FP without LFIWAX supported only on PPC64");
8186 
8187     int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
8188     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8189 
8190     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src);
8191 
8192     // STD the extended value into the stack slot.
8193     SDValue Store = DAG.getStore(
8194         Chain, dl, Ext64, FIdx,
8195         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8196     Chain = Store;
8197 
8198     // Load the value as a double.
8199     Ld = DAG.getLoad(
8200         MVT::f64, dl, Chain, FIdx,
8201         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8202     Chain = Ld.getValue(1);
8203   }
8204 
8205   // FCFID it and return it.
8206   SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain);
8207   if (IsStrict)
8208     Chain = FP.getValue(1);
8209   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8210     if (IsStrict)
8211       FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8212                        DAG.getVTList(MVT::f32, MVT::Other),
8213                        {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8214     else
8215       FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8216                        DAG.getIntPtrConstant(0, dl));
8217   }
8218   return FP;
8219 }
8220 
8221 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8222                                             SelectionDAG &DAG) const {
8223   SDLoc dl(Op);
8224   /*
8225    The rounding mode is in bits 30:31 of FPSR, and has the following
8226    settings:
8227      00 Round to nearest
8228      01 Round to 0
8229      10 Round to +inf
8230      11 Round to -inf
8231 
8232   FLT_ROUNDS, on the other hand, expects the following:
8233     -1 Undefined
8234      0 Round to 0
8235      1 Round to nearest
8236      2 Round to +inf
8237      3 Round to -inf
8238 
8239   To perform the conversion, we do:
8240     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8241   */
8242 
8243   MachineFunction &MF = DAG.getMachineFunction();
8244   EVT VT = Op.getValueType();
8245   EVT PtrVT = getPointerTy(MF.getDataLayout());
8246 
8247   // Save FP Control Word to register
8248   SDValue Chain = Op.getOperand(0);
8249   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8250   Chain = MFFS.getValue(1);
8251 
8252   SDValue CWD;
8253   if (isTypeLegal(MVT::i64)) {
8254     CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
8255                       DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS));
8256   } else {
8257     // Save FP register to stack slot
8258     int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
8259     SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8260     Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8261 
8262     // Load FP Control Word from low 32 bits of stack slot.
8263     assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) &&
8264            "Stack slot adjustment is valid only on big endian subtargets!");
8265     SDValue Four = DAG.getConstant(4, dl, PtrVT);
8266     SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8267     CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8268     Chain = CWD.getValue(1);
8269   }
8270 
8271   // Transform as necessary
8272   SDValue CWD1 =
8273     DAG.getNode(ISD::AND, dl, MVT::i32,
8274                 CWD, DAG.getConstant(3, dl, MVT::i32));
8275   SDValue CWD2 =
8276     DAG.getNode(ISD::SRL, dl, MVT::i32,
8277                 DAG.getNode(ISD::AND, dl, MVT::i32,
8278                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8279                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8280                             DAG.getConstant(3, dl, MVT::i32)),
8281                 DAG.getConstant(1, dl, MVT::i32));
8282 
8283   SDValue RetVal =
8284     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8285 
8286   RetVal =
8287       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8288                   dl, VT, RetVal);
8289 
8290   return DAG.getMergeValues({RetVal, Chain}, dl);
8291 }
8292 
8293 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8294   EVT VT = Op.getValueType();
8295   unsigned BitWidth = VT.getSizeInBits();
8296   SDLoc dl(Op);
8297   assert(Op.getNumOperands() == 3 &&
8298          VT == Op.getOperand(1).getValueType() &&
8299          "Unexpected SHL!");
8300 
8301   // Expand into a bunch of logical ops.  Note that these ops
8302   // depend on the PPC behavior for oversized shift amounts.
8303   SDValue Lo = Op.getOperand(0);
8304   SDValue Hi = Op.getOperand(1);
8305   SDValue Amt = Op.getOperand(2);
8306   EVT AmtVT = Amt.getValueType();
8307 
8308   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8309                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8310   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8311   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8312   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8313   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8314                              DAG.getConstant(-BitWidth, dl, AmtVT));
8315   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8316   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8317   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8318   SDValue OutOps[] = { OutLo, OutHi };
8319   return DAG.getMergeValues(OutOps, dl);
8320 }
8321 
8322 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8323   EVT VT = Op.getValueType();
8324   SDLoc dl(Op);
8325   unsigned BitWidth = VT.getSizeInBits();
8326   assert(Op.getNumOperands() == 3 &&
8327          VT == Op.getOperand(1).getValueType() &&
8328          "Unexpected SRL!");
8329 
8330   // Expand into a bunch of logical ops.  Note that these ops
8331   // depend on the PPC behavior for oversized shift amounts.
8332   SDValue Lo = Op.getOperand(0);
8333   SDValue Hi = Op.getOperand(1);
8334   SDValue Amt = Op.getOperand(2);
8335   EVT AmtVT = Amt.getValueType();
8336 
8337   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8338                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8339   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8340   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8341   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8342   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8343                              DAG.getConstant(-BitWidth, dl, AmtVT));
8344   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8345   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8346   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8347   SDValue OutOps[] = { OutLo, OutHi };
8348   return DAG.getMergeValues(OutOps, dl);
8349 }
8350 
8351 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8352   SDLoc dl(Op);
8353   EVT VT = Op.getValueType();
8354   unsigned BitWidth = VT.getSizeInBits();
8355   assert(Op.getNumOperands() == 3 &&
8356          VT == Op.getOperand(1).getValueType() &&
8357          "Unexpected SRA!");
8358 
8359   // Expand into a bunch of logical ops, followed by a select_cc.
8360   SDValue Lo = Op.getOperand(0);
8361   SDValue Hi = Op.getOperand(1);
8362   SDValue Amt = Op.getOperand(2);
8363   EVT AmtVT = Amt.getValueType();
8364 
8365   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8366                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8367   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8368   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8369   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8370   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8371                              DAG.getConstant(-BitWidth, dl, AmtVT));
8372   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8373   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8374   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8375                                   Tmp4, Tmp6, ISD::SETLE);
8376   SDValue OutOps[] = { OutLo, OutHi };
8377   return DAG.getMergeValues(OutOps, dl);
8378 }
8379 
8380 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op,
8381                                             SelectionDAG &DAG) const {
8382   SDLoc dl(Op);
8383   EVT VT = Op.getValueType();
8384   unsigned BitWidth = VT.getSizeInBits();
8385 
8386   bool IsFSHL = Op.getOpcode() == ISD::FSHL;
8387   SDValue X = Op.getOperand(0);
8388   SDValue Y = Op.getOperand(1);
8389   SDValue Z = Op.getOperand(2);
8390   EVT AmtVT = Z.getValueType();
8391 
8392   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
8393   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
8394   // This is simpler than TargetLowering::expandFunnelShift because we can rely
8395   // on PowerPC shift by BW being well defined.
8396   Z = DAG.getNode(ISD::AND, dl, AmtVT, Z,
8397                   DAG.getConstant(BitWidth - 1, dl, AmtVT));
8398   SDValue SubZ =
8399       DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z);
8400   X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ);
8401   Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z);
8402   return DAG.getNode(ISD::OR, dl, VT, X, Y);
8403 }
8404 
8405 //===----------------------------------------------------------------------===//
8406 // Vector related lowering.
8407 //
8408 
8409 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
8410 /// element size of SplatSize. Cast the result to VT.
8411 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
8412                                       SelectionDAG &DAG, const SDLoc &dl) {
8413   static const MVT VTys[] = { // canonical VT to use for each size.
8414     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8415   };
8416 
8417   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8418 
8419   // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
8420   if (Val == ((1LLU << (SplatSize * 8)) - 1)) {
8421     SplatSize = 1;
8422     Val = 0xFF;
8423   }
8424 
8425   EVT CanonicalVT = VTys[SplatSize-1];
8426 
8427   // Build a canonical splat for this value.
8428   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8429 }
8430 
8431 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8432 /// specified intrinsic ID.
8433 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8434                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8435   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8436   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8437                      DAG.getConstant(IID, dl, MVT::i32), Op);
8438 }
8439 
8440 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8441 /// specified intrinsic ID.
8442 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8443                                 SelectionDAG &DAG, const SDLoc &dl,
8444                                 EVT DestVT = MVT::Other) {
8445   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8446   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8447                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8448 }
8449 
8450 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8451 /// specified intrinsic ID.
8452 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8453                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8454                                 EVT DestVT = MVT::Other) {
8455   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8456   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8457                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8458 }
8459 
8460 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8461 /// amount.  The result has the specified value type.
8462 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8463                            SelectionDAG &DAG, const SDLoc &dl) {
8464   // Force LHS/RHS to be the right type.
8465   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8466   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8467 
8468   int Ops[16];
8469   for (unsigned i = 0; i != 16; ++i)
8470     Ops[i] = i + Amt;
8471   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8472   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8473 }
8474 
8475 /// Do we have an efficient pattern in a .td file for this node?
8476 ///
8477 /// \param V - pointer to the BuildVectorSDNode being matched
8478 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8479 ///
8480 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8481 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8482 /// the opposite is true (expansion is beneficial) are:
8483 /// - The node builds a vector out of integers that are not 32 or 64-bits
8484 /// - The node builds a vector out of constants
8485 /// - The node is a "load-and-splat"
8486 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8487 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8488                                             bool HasDirectMove,
8489                                             bool HasP8Vector) {
8490   EVT VecVT = V->getValueType(0);
8491   bool RightType = VecVT == MVT::v2f64 ||
8492     (HasP8Vector && VecVT == MVT::v4f32) ||
8493     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
8494   if (!RightType)
8495     return false;
8496 
8497   bool IsSplat = true;
8498   bool IsLoad = false;
8499   SDValue Op0 = V->getOperand(0);
8500 
8501   // This function is called in a block that confirms the node is not a constant
8502   // splat. So a constant BUILD_VECTOR here means the vector is built out of
8503   // different constants.
8504   if (V->isConstant())
8505     return false;
8506   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
8507     if (V->getOperand(i).isUndef())
8508       return false;
8509     // We want to expand nodes that represent load-and-splat even if the
8510     // loaded value is a floating point truncation or conversion to int.
8511     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
8512         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
8513          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8514         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
8515          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8516         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
8517          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
8518       IsLoad = true;
8519     // If the operands are different or the input is not a load and has more
8520     // uses than just this BV node, then it isn't a splat.
8521     if (V->getOperand(i) != Op0 ||
8522         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
8523       IsSplat = false;
8524   }
8525   return !(IsSplat && IsLoad);
8526 }
8527 
8528 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
8529 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
8530 
8531   SDLoc dl(Op);
8532   SDValue Op0 = Op->getOperand(0);
8533 
8534   if ((Op.getValueType() != MVT::f128) ||
8535       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
8536       (Op0.getOperand(0).getValueType() != MVT::i64) ||
8537       (Op0.getOperand(1).getValueType() != MVT::i64))
8538     return SDValue();
8539 
8540   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
8541                      Op0.getOperand(1));
8542 }
8543 
8544 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
8545   const SDValue *InputLoad = &Op;
8546   if (InputLoad->getOpcode() == ISD::BITCAST)
8547     InputLoad = &InputLoad->getOperand(0);
8548   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
8549       InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
8550     IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
8551     InputLoad = &InputLoad->getOperand(0);
8552   }
8553   if (InputLoad->getOpcode() != ISD::LOAD)
8554     return nullptr;
8555   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8556   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
8557 }
8558 
8559 // Convert the argument APFloat to a single precision APFloat if there is no
8560 // loss in information during the conversion to single precision APFloat and the
8561 // resulting number is not a denormal number. Return true if successful.
8562 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
8563   APFloat APFloatToConvert = ArgAPFloat;
8564   bool LosesInfo = true;
8565   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
8566                            &LosesInfo);
8567   bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
8568   if (Success)
8569     ArgAPFloat = APFloatToConvert;
8570   return Success;
8571 }
8572 
8573 // Bitcast the argument APInt to a double and convert it to a single precision
8574 // APFloat, bitcast the APFloat to an APInt and assign it to the original
8575 // argument if there is no loss in information during the conversion from
8576 // double to single precision APFloat and the resulting number is not a denormal
8577 // number. Return true if successful.
8578 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
8579   double DpValue = ArgAPInt.bitsToDouble();
8580   APFloat APFloatDp(DpValue);
8581   bool Success = convertToNonDenormSingle(APFloatDp);
8582   if (Success)
8583     ArgAPInt = APFloatDp.bitcastToAPInt();
8584   return Success;
8585 }
8586 
8587 // If this is a case we can't handle, return null and let the default
8588 // expansion code take care of it.  If we CAN select this case, and if it
8589 // selects to a single instruction, return Op.  Otherwise, if we can codegen
8590 // this case more efficiently than a constant pool load, lower it to the
8591 // sequence of ops that should be used.
8592 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
8593                                              SelectionDAG &DAG) const {
8594   SDLoc dl(Op);
8595   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
8596   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
8597 
8598   // Check if this is a splat of a constant value.
8599   APInt APSplatBits, APSplatUndef;
8600   unsigned SplatBitSize;
8601   bool HasAnyUndefs;
8602   bool BVNIsConstantSplat =
8603       BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
8604                            HasAnyUndefs, 0, !Subtarget.isLittleEndian());
8605 
8606   // If it is a splat of a double, check if we can shrink it to a 32 bit
8607   // non-denormal float which when converted back to double gives us the same
8608   // double. This is to exploit the XXSPLTIDP instruction.
8609   // If we lose precision, we use XXSPLTI32DX.
8610   if (BVNIsConstantSplat && (SplatBitSize == 64) &&
8611       Subtarget.hasPrefixInstrs()) {
8612     // Check the type first to short-circuit so we don't modify APSplatBits if
8613     // this block isn't executed.
8614     if ((Op->getValueType(0) == MVT::v2f64) &&
8615         convertToNonDenormSingle(APSplatBits)) {
8616       SDValue SplatNode = DAG.getNode(
8617           PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
8618           DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
8619       return DAG.getBitcast(Op.getValueType(), SplatNode);
8620     } else {
8621       // We may lose precision, so we have to use XXSPLTI32DX.
8622 
8623       uint32_t Hi =
8624           (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32);
8625       uint32_t Lo =
8626           (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF);
8627       SDValue SplatNode = DAG.getUNDEF(MVT::v2i64);
8628 
8629       if (!Hi || !Lo)
8630         // If either load is 0, then we should generate XXLXOR to set to 0.
8631         SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64);
8632 
8633       if (Hi)
8634         SplatNode = DAG.getNode(
8635             PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
8636             DAG.getTargetConstant(0, dl, MVT::i32),
8637             DAG.getTargetConstant(Hi, dl, MVT::i32));
8638 
8639       if (Lo)
8640         SplatNode =
8641             DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
8642                         DAG.getTargetConstant(1, dl, MVT::i32),
8643                         DAG.getTargetConstant(Lo, dl, MVT::i32));
8644 
8645       return DAG.getBitcast(Op.getValueType(), SplatNode);
8646     }
8647   }
8648 
8649   if (!BVNIsConstantSplat || SplatBitSize > 32) {
8650 
8651     bool IsPermutedLoad = false;
8652     const SDValue *InputLoad =
8653         getNormalLoadInput(Op.getOperand(0), IsPermutedLoad);
8654     // Handle load-and-splat patterns as we have instructions that will do this
8655     // in one go.
8656     if (InputLoad && DAG.isSplatValue(Op, true)) {
8657       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8658 
8659       // We have handling for 4 and 8 byte elements.
8660       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
8661 
8662       // Checking for a single use of this load, we have to check for vector
8663       // width (128 bits) / ElementSize uses (since each operand of the
8664       // BUILD_VECTOR is a separate use of the value.
8665       unsigned NumUsesOfInputLD = 128 / ElementSize;
8666       for (SDValue BVInOp : Op->ops())
8667         if (BVInOp.isUndef())
8668           NumUsesOfInputLD--;
8669       assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?");
8670       if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) &&
8671           ((Subtarget.hasVSX() && ElementSize == 64) ||
8672            (Subtarget.hasP9Vector() && ElementSize == 32))) {
8673         SDValue Ops[] = {
8674           LD->getChain(),    // Chain
8675           LD->getBasePtr(),  // Ptr
8676           DAG.getValueType(Op.getValueType()) // VT
8677         };
8678         SDValue LdSplt = DAG.getMemIntrinsicNode(
8679             PPCISD::LD_SPLAT, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
8680             Ops, LD->getMemoryVT(), LD->getMemOperand());
8681         // Replace all uses of the output chain of the original load with the
8682         // output chain of the new load.
8683         DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1),
8684                                       LdSplt.getValue(1));
8685         return LdSplt;
8686       }
8687     }
8688 
8689     // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to
8690     // 32-bits can be lowered to VSX instructions under certain conditions.
8691     // Without VSX, there is no pattern more efficient than expanding the node.
8692     if (Subtarget.hasVSX() && Subtarget.isPPC64() &&
8693         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
8694                                         Subtarget.hasP8Vector()))
8695       return Op;
8696     return SDValue();
8697   }
8698 
8699   uint64_t SplatBits = APSplatBits.getZExtValue();
8700   uint64_t SplatUndef = APSplatUndef.getZExtValue();
8701   unsigned SplatSize = SplatBitSize / 8;
8702 
8703   // First, handle single instruction cases.
8704 
8705   // All zeros?
8706   if (SplatBits == 0) {
8707     // Canonicalize all zero vectors to be v4i32.
8708     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
8709       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
8710       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
8711     }
8712     return Op;
8713   }
8714 
8715   // We have XXSPLTIW for constant splats four bytes wide.
8716   // Given vector length is a multiple of 4, 2-byte splats can be replaced
8717   // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
8718   // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
8719   // turned into a 4-byte splat of 0xABABABAB.
8720   if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
8721     return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2,
8722                                   Op.getValueType(), DAG, dl);
8723 
8724   if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
8725     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
8726                                   dl);
8727 
8728   // We have XXSPLTIB for constant splats one byte wide.
8729   if (Subtarget.hasP9Vector() && SplatSize == 1)
8730     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
8731                                   dl);
8732 
8733   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
8734   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
8735                     (32-SplatBitSize));
8736   if (SextVal >= -16 && SextVal <= 15)
8737     return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
8738                                   dl);
8739 
8740   // Two instruction sequences.
8741 
8742   // If this value is in the range [-32,30] and is even, use:
8743   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
8744   // If this value is in the range [17,31] and is odd, use:
8745   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
8746   // If this value is in the range [-31,-17] and is odd, use:
8747   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
8748   // Note the last two are three-instruction sequences.
8749   if (SextVal >= -32 && SextVal <= 31) {
8750     // To avoid having these optimizations undone by constant folding,
8751     // we convert to a pseudo that will be expanded later into one of
8752     // the above forms.
8753     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
8754     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
8755               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
8756     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
8757     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
8758     if (VT == Op.getValueType())
8759       return RetVal;
8760     else
8761       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
8762   }
8763 
8764   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
8765   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
8766   // for fneg/fabs.
8767   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
8768     // Make -1 and vspltisw -1:
8769     SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
8770 
8771     // Make the VSLW intrinsic, computing 0x8000_0000.
8772     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
8773                                    OnesV, DAG, dl);
8774 
8775     // xor by OnesV to invert it.
8776     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
8777     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8778   }
8779 
8780   // Check to see if this is a wide variety of vsplti*, binop self cases.
8781   static const signed char SplatCsts[] = {
8782     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
8783     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
8784   };
8785 
8786   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
8787     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
8788     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
8789     int i = SplatCsts[idx];
8790 
8791     // Figure out what shift amount will be used by altivec if shifted by i in
8792     // this splat size.
8793     unsigned TypeShiftAmt = i & (SplatBitSize-1);
8794 
8795     // vsplti + shl self.
8796     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
8797       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
8798       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8799         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
8800         Intrinsic::ppc_altivec_vslw
8801       };
8802       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8803       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8804     }
8805 
8806     // vsplti + srl self.
8807     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8808       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
8809       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8810         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
8811         Intrinsic::ppc_altivec_vsrw
8812       };
8813       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8814       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8815     }
8816 
8817     // vsplti + rol self.
8818     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
8819                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
8820       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
8821       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8822         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
8823         Intrinsic::ppc_altivec_vrlw
8824       };
8825       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8826       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8827     }
8828 
8829     // t = vsplti c, result = vsldoi t, t, 1
8830     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
8831       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
8832       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
8833       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8834     }
8835     // t = vsplti c, result = vsldoi t, t, 2
8836     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
8837       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
8838       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
8839       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8840     }
8841     // t = vsplti c, result = vsldoi t, t, 3
8842     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
8843       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
8844       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
8845       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8846     }
8847   }
8848 
8849   return SDValue();
8850 }
8851 
8852 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8853 /// the specified operations to build the shuffle.
8854 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8855                                       SDValue RHS, SelectionDAG &DAG,
8856                                       const SDLoc &dl) {
8857   unsigned OpNum = (PFEntry >> 26) & 0x0F;
8858   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8859   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8860 
8861   enum {
8862     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8863     OP_VMRGHW,
8864     OP_VMRGLW,
8865     OP_VSPLTISW0,
8866     OP_VSPLTISW1,
8867     OP_VSPLTISW2,
8868     OP_VSPLTISW3,
8869     OP_VSLDOI4,
8870     OP_VSLDOI8,
8871     OP_VSLDOI12
8872   };
8873 
8874   if (OpNum == OP_COPY) {
8875     if (LHSID == (1*9+2)*9+3) return LHS;
8876     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8877     return RHS;
8878   }
8879 
8880   SDValue OpLHS, OpRHS;
8881   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8882   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8883 
8884   int ShufIdxs[16];
8885   switch (OpNum) {
8886   default: llvm_unreachable("Unknown i32 permute!");
8887   case OP_VMRGHW:
8888     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
8889     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
8890     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
8891     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
8892     break;
8893   case OP_VMRGLW:
8894     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
8895     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
8896     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
8897     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
8898     break;
8899   case OP_VSPLTISW0:
8900     for (unsigned i = 0; i != 16; ++i)
8901       ShufIdxs[i] = (i&3)+0;
8902     break;
8903   case OP_VSPLTISW1:
8904     for (unsigned i = 0; i != 16; ++i)
8905       ShufIdxs[i] = (i&3)+4;
8906     break;
8907   case OP_VSPLTISW2:
8908     for (unsigned i = 0; i != 16; ++i)
8909       ShufIdxs[i] = (i&3)+8;
8910     break;
8911   case OP_VSPLTISW3:
8912     for (unsigned i = 0; i != 16; ++i)
8913       ShufIdxs[i] = (i&3)+12;
8914     break;
8915   case OP_VSLDOI4:
8916     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
8917   case OP_VSLDOI8:
8918     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
8919   case OP_VSLDOI12:
8920     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
8921   }
8922   EVT VT = OpLHS.getValueType();
8923   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
8924   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
8925   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
8926   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8927 }
8928 
8929 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
8930 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
8931 /// SDValue.
8932 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
8933                                            SelectionDAG &DAG) const {
8934   const unsigned BytesInVector = 16;
8935   bool IsLE = Subtarget.isLittleEndian();
8936   SDLoc dl(N);
8937   SDValue V1 = N->getOperand(0);
8938   SDValue V2 = N->getOperand(1);
8939   unsigned ShiftElts = 0, InsertAtByte = 0;
8940   bool Swap = false;
8941 
8942   // Shifts required to get the byte we want at element 7.
8943   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
8944                                    0, 15, 14, 13, 12, 11, 10, 9};
8945   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
8946                                 1, 2,  3,  4,  5,  6,  7,  8};
8947 
8948   ArrayRef<int> Mask = N->getMask();
8949   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
8950 
8951   // For each mask element, find out if we're just inserting something
8952   // from V2 into V1 or vice versa.
8953   // Possible permutations inserting an element from V2 into V1:
8954   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8955   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8956   //   ...
8957   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
8958   // Inserting from V1 into V2 will be similar, except mask range will be
8959   // [16,31].
8960 
8961   bool FoundCandidate = false;
8962   // If both vector operands for the shuffle are the same vector, the mask
8963   // will contain only elements from the first one and the second one will be
8964   // undef.
8965   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
8966   // Go through the mask of half-words to find an element that's being moved
8967   // from one vector to the other.
8968   for (unsigned i = 0; i < BytesInVector; ++i) {
8969     unsigned CurrentElement = Mask[i];
8970     // If 2nd operand is undefined, we should only look for element 7 in the
8971     // Mask.
8972     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
8973       continue;
8974 
8975     bool OtherElementsInOrder = true;
8976     // Examine the other elements in the Mask to see if they're in original
8977     // order.
8978     for (unsigned j = 0; j < BytesInVector; ++j) {
8979       if (j == i)
8980         continue;
8981       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
8982       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
8983       // in which we always assume we're always picking from the 1st operand.
8984       int MaskOffset =
8985           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
8986       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
8987         OtherElementsInOrder = false;
8988         break;
8989       }
8990     }
8991     // If other elements are in original order, we record the number of shifts
8992     // we need to get the element we want into element 7. Also record which byte
8993     // in the vector we should insert into.
8994     if (OtherElementsInOrder) {
8995       // If 2nd operand is undefined, we assume no shifts and no swapping.
8996       if (V2.isUndef()) {
8997         ShiftElts = 0;
8998         Swap = false;
8999       } else {
9000         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9001         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9002                          : BigEndianShifts[CurrentElement & 0xF];
9003         Swap = CurrentElement < BytesInVector;
9004       }
9005       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9006       FoundCandidate = true;
9007       break;
9008     }
9009   }
9010 
9011   if (!FoundCandidate)
9012     return SDValue();
9013 
9014   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9015   // optionally with VECSHL if shift is required.
9016   if (Swap)
9017     std::swap(V1, V2);
9018   if (V2.isUndef())
9019     V2 = V1;
9020   if (ShiftElts) {
9021     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9022                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9023     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9024                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9025   }
9026   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9027                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9028 }
9029 
9030 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9031 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9032 /// SDValue.
9033 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9034                                            SelectionDAG &DAG) const {
9035   const unsigned NumHalfWords = 8;
9036   const unsigned BytesInVector = NumHalfWords * 2;
9037   // Check that the shuffle is on half-words.
9038   if (!isNByteElemShuffleMask(N, 2, 1))
9039     return SDValue();
9040 
9041   bool IsLE = Subtarget.isLittleEndian();
9042   SDLoc dl(N);
9043   SDValue V1 = N->getOperand(0);
9044   SDValue V2 = N->getOperand(1);
9045   unsigned ShiftElts = 0, InsertAtByte = 0;
9046   bool Swap = false;
9047 
9048   // Shifts required to get the half-word we want at element 3.
9049   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9050   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9051 
9052   uint32_t Mask = 0;
9053   uint32_t OriginalOrderLow = 0x1234567;
9054   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9055   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9056   // 32-bit space, only need 4-bit nibbles per element.
9057   for (unsigned i = 0; i < NumHalfWords; ++i) {
9058     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9059     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9060   }
9061 
9062   // For each mask element, find out if we're just inserting something
9063   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9064   // from V2 into V1:
9065   //   X, 1, 2, 3, 4, 5, 6, 7
9066   //   0, X, 2, 3, 4, 5, 6, 7
9067   //   0, 1, X, 3, 4, 5, 6, 7
9068   //   0, 1, 2, X, 4, 5, 6, 7
9069   //   0, 1, 2, 3, X, 5, 6, 7
9070   //   0, 1, 2, 3, 4, X, 6, 7
9071   //   0, 1, 2, 3, 4, 5, X, 7
9072   //   0, 1, 2, 3, 4, 5, 6, X
9073   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9074 
9075   bool FoundCandidate = false;
9076   // Go through the mask of half-words to find an element that's being moved
9077   // from one vector to the other.
9078   for (unsigned i = 0; i < NumHalfWords; ++i) {
9079     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9080     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9081     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9082     uint32_t TargetOrder = 0x0;
9083 
9084     // If both vector operands for the shuffle are the same vector, the mask
9085     // will contain only elements from the first one and the second one will be
9086     // undef.
9087     if (V2.isUndef()) {
9088       ShiftElts = 0;
9089       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9090       TargetOrder = OriginalOrderLow;
9091       Swap = false;
9092       // Skip if not the correct element or mask of other elements don't equal
9093       // to our expected order.
9094       if (MaskOneElt == VINSERTHSrcElem &&
9095           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9096         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9097         FoundCandidate = true;
9098         break;
9099       }
9100     } else { // If both operands are defined.
9101       // Target order is [8,15] if the current mask is between [0,7].
9102       TargetOrder =
9103           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9104       // Skip if mask of other elements don't equal our expected order.
9105       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9106         // We only need the last 3 bits for the number of shifts.
9107         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9108                          : BigEndianShifts[MaskOneElt & 0x7];
9109         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9110         Swap = MaskOneElt < NumHalfWords;
9111         FoundCandidate = true;
9112         break;
9113       }
9114     }
9115   }
9116 
9117   if (!FoundCandidate)
9118     return SDValue();
9119 
9120   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9121   // optionally with VECSHL if shift is required.
9122   if (Swap)
9123     std::swap(V1, V2);
9124   if (V2.isUndef())
9125     V2 = V1;
9126   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9127   if (ShiftElts) {
9128     // Double ShiftElts because we're left shifting on v16i8 type.
9129     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9130                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9131     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9132     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9133                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9134     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9135   }
9136   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9137   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9138                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9139   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9140 }
9141 
9142 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
9143 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
9144 /// return the default SDValue.
9145 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
9146                                               SelectionDAG &DAG) const {
9147   // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
9148   // to v16i8. Peek through the bitcasts to get the actual operands.
9149   SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
9150   SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
9151 
9152   auto ShuffleMask = SVN->getMask();
9153   SDValue VecShuffle(SVN, 0);
9154   SDLoc DL(SVN);
9155 
9156   // Check that we have a four byte shuffle.
9157   if (!isNByteElemShuffleMask(SVN, 4, 1))
9158     return SDValue();
9159 
9160   // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
9161   if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
9162     std::swap(LHS, RHS);
9163     VecShuffle = DAG.getCommutedVectorShuffle(*SVN);
9164     ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask();
9165   }
9166 
9167   // Ensure that the RHS is a vector of constants.
9168   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
9169   if (!BVN)
9170     return SDValue();
9171 
9172   // Check if RHS is a splat of 4-bytes (or smaller).
9173   APInt APSplatValue, APSplatUndef;
9174   unsigned SplatBitSize;
9175   bool HasAnyUndefs;
9176   if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
9177                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9178       SplatBitSize > 32)
9179     return SDValue();
9180 
9181   // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
9182   // The instruction splats a constant C into two words of the source vector
9183   // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
9184   // Thus we check that the shuffle mask is the equivalent  of
9185   // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
9186   // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
9187   // within each word are consecutive, so we only need to check the first byte.
9188   SDValue Index;
9189   bool IsLE = Subtarget.isLittleEndian();
9190   if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
9191       (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
9192        ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
9193     Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
9194   else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
9195            (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
9196             ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
9197     Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
9198   else
9199     return SDValue();
9200 
9201   // If the splat is narrower than 32-bits, we need to get the 32-bit value
9202   // for XXSPLTI32DX.
9203   unsigned SplatVal = APSplatValue.getZExtValue();
9204   for (; SplatBitSize < 32; SplatBitSize <<= 1)
9205     SplatVal |= (SplatVal << SplatBitSize);
9206 
9207   SDValue SplatNode = DAG.getNode(
9208       PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
9209       Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
9210   return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
9211 }
9212 
9213 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9214 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9215 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9216 /// i.e (or (shl x, C1), (srl x, 128-C1)).
9217 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9218   assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9219   assert(Op.getValueType() == MVT::v1i128 &&
9220          "Only set v1i128 as custom, other type shouldn't reach here!");
9221   SDLoc dl(Op);
9222   SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9223   SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9224   unsigned SHLAmt = N1.getConstantOperandVal(0);
9225   if (SHLAmt % 8 == 0) {
9226     SmallVector<int, 16> Mask(16, 0);
9227     std::iota(Mask.begin(), Mask.end(), 0);
9228     std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9229     if (SDValue Shuffle =
9230             DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9231                                  DAG.getUNDEF(MVT::v16i8), Mask))
9232       return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
9233   }
9234   SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
9235   SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
9236                               DAG.getConstant(SHLAmt, dl, MVT::i32));
9237   SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
9238                               DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
9239   SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
9240   return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
9241 }
9242 
9243 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9244 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9245 /// return the code it can be lowered into.  Worst case, it can always be
9246 /// lowered into a vperm.
9247 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9248                                                SelectionDAG &DAG) const {
9249   SDLoc dl(Op);
9250   SDValue V1 = Op.getOperand(0);
9251   SDValue V2 = Op.getOperand(1);
9252   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9253 
9254   // Any nodes that were combined in the target-independent combiner prior
9255   // to vector legalization will not be sent to the target combine. Try to
9256   // combine it here.
9257   if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
9258     if (!isa<ShuffleVectorSDNode>(NewShuffle))
9259       return NewShuffle;
9260     Op = NewShuffle;
9261     SVOp = cast<ShuffleVectorSDNode>(Op);
9262     V1 = Op.getOperand(0);
9263     V2 = Op.getOperand(1);
9264   }
9265   EVT VT = Op.getValueType();
9266   bool isLittleEndian = Subtarget.isLittleEndian();
9267 
9268   unsigned ShiftElts, InsertAtByte;
9269   bool Swap = false;
9270 
9271   // If this is a load-and-splat, we can do that with a single instruction
9272   // in some cases. However if the load has multiple uses, we don't want to
9273   // combine it because that will just produce multiple loads.
9274   bool IsPermutedLoad = false;
9275   const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
9276   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9277       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9278       InputLoad->hasOneUse()) {
9279     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9280     int SplatIdx =
9281       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9282 
9283     // The splat index for permuted loads will be in the left half of the vector
9284     // which is strictly wider than the loaded value by 8 bytes. So we need to
9285     // adjust the splat index to point to the correct address in memory.
9286     if (IsPermutedLoad) {
9287       assert(isLittleEndian && "Unexpected permuted load on big endian target");
9288       SplatIdx += IsFourByte ? 2 : 1;
9289       assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
9290              "Splat of a value outside of the loaded memory");
9291     }
9292 
9293     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9294     // For 4-byte load-and-splat, we need Power9.
9295     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9296       uint64_t Offset = 0;
9297       if (IsFourByte)
9298         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9299       else
9300         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9301 
9302       SDValue BasePtr = LD->getBasePtr();
9303       if (Offset != 0)
9304         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9305                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9306       SDValue Ops[] = {
9307         LD->getChain(),    // Chain
9308         BasePtr,           // BasePtr
9309         DAG.getValueType(Op.getValueType()) // VT
9310       };
9311       SDVTList VTL =
9312         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9313       SDValue LdSplt =
9314         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9315                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9316       DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1));
9317       if (LdSplt.getValueType() != SVOp->getValueType(0))
9318         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9319       return LdSplt;
9320     }
9321   }
9322   if (Subtarget.hasP9Vector() &&
9323       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9324                            isLittleEndian)) {
9325     if (Swap)
9326       std::swap(V1, V2);
9327     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9328     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9329     if (ShiftElts) {
9330       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9331                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9332       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9333                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9334       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9335     }
9336     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9337                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9338     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9339   }
9340 
9341   if (Subtarget.hasPrefixInstrs()) {
9342     SDValue SplatInsertNode;
9343     if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
9344       return SplatInsertNode;
9345   }
9346 
9347   if (Subtarget.hasP9Altivec()) {
9348     SDValue NewISDNode;
9349     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9350       return NewISDNode;
9351 
9352     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9353       return NewISDNode;
9354   }
9355 
9356   if (Subtarget.hasVSX() &&
9357       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9358     if (Swap)
9359       std::swap(V1, V2);
9360     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9361     SDValue Conv2 =
9362         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9363 
9364     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9365                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9366     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9367   }
9368 
9369   if (Subtarget.hasVSX() &&
9370     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9371     if (Swap)
9372       std::swap(V1, V2);
9373     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9374     SDValue Conv2 =
9375         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9376 
9377     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9378                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9379     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9380   }
9381 
9382   if (Subtarget.hasP9Vector()) {
9383      if (PPC::isXXBRHShuffleMask(SVOp)) {
9384       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9385       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9386       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9387     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9388       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9389       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9390       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9391     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9392       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9393       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9394       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9395     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9396       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9397       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9398       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9399     }
9400   }
9401 
9402   if (Subtarget.hasVSX()) {
9403     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9404       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9405 
9406       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9407       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9408                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9409       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9410     }
9411 
9412     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9413     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9414       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9415       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9416       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9417     }
9418   }
9419 
9420   // Cases that are handled by instructions that take permute immediates
9421   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9422   // selected by the instruction selector.
9423   if (V2.isUndef()) {
9424     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9425         PPC::isSplatShuffleMask(SVOp, 2) ||
9426         PPC::isSplatShuffleMask(SVOp, 4) ||
9427         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9428         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9429         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9430         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9431         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9432         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9433         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9434         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9435         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9436         (Subtarget.hasP8Altivec() && (
9437          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9438          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9439          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9440       return Op;
9441     }
9442   }
9443 
9444   // Altivec has a variety of "shuffle immediates" that take two vector inputs
9445   // and produce a fixed permutation.  If any of these match, do not lower to
9446   // VPERM.
9447   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
9448   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9449       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9450       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
9451       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9452       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9453       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9454       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9455       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9456       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9457       (Subtarget.hasP8Altivec() && (
9458        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9459        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
9460        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
9461     return Op;
9462 
9463   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
9464   // perfect shuffle table to emit an optimal matching sequence.
9465   ArrayRef<int> PermMask = SVOp->getMask();
9466 
9467   unsigned PFIndexes[4];
9468   bool isFourElementShuffle = true;
9469   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
9470     unsigned EltNo = 8;   // Start out undef.
9471     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
9472       if (PermMask[i*4+j] < 0)
9473         continue;   // Undef, ignore it.
9474 
9475       unsigned ByteSource = PermMask[i*4+j];
9476       if ((ByteSource & 3) != j) {
9477         isFourElementShuffle = false;
9478         break;
9479       }
9480 
9481       if (EltNo == 8) {
9482         EltNo = ByteSource/4;
9483       } else if (EltNo != ByteSource/4) {
9484         isFourElementShuffle = false;
9485         break;
9486       }
9487     }
9488     PFIndexes[i] = EltNo;
9489   }
9490 
9491   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
9492   // perfect shuffle vector to determine if it is cost effective to do this as
9493   // discrete instructions, or whether we should use a vperm.
9494   // For now, we skip this for little endian until such time as we have a
9495   // little-endian perfect shuffle table.
9496   if (isFourElementShuffle && !isLittleEndian) {
9497     // Compute the index in the perfect shuffle table.
9498     unsigned PFTableIndex =
9499       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
9500 
9501     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
9502     unsigned Cost  = (PFEntry >> 30);
9503 
9504     // Determining when to avoid vperm is tricky.  Many things affect the cost
9505     // of vperm, particularly how many times the perm mask needs to be computed.
9506     // For example, if the perm mask can be hoisted out of a loop or is already
9507     // used (perhaps because there are multiple permutes with the same shuffle
9508     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
9509     // the loop requires an extra register.
9510     //
9511     // As a compromise, we only emit discrete instructions if the shuffle can be
9512     // generated in 3 or fewer operations.  When we have loop information
9513     // available, if this block is within a loop, we should avoid using vperm
9514     // for 3-operation perms and use a constant pool load instead.
9515     if (Cost < 3)
9516       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
9517   }
9518 
9519   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
9520   // vector that will get spilled to the constant pool.
9521   if (V2.isUndef()) V2 = V1;
9522 
9523   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
9524   // that it is in input element units, not in bytes.  Convert now.
9525 
9526   // For little endian, the order of the input vectors is reversed, and
9527   // the permutation mask is complemented with respect to 31.  This is
9528   // necessary to produce proper semantics with the big-endian-biased vperm
9529   // instruction.
9530   EVT EltVT = V1.getValueType().getVectorElementType();
9531   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
9532 
9533   SmallVector<SDValue, 16> ResultMask;
9534   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
9535     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
9536 
9537     for (unsigned j = 0; j != BytesPerElement; ++j)
9538       if (isLittleEndian)
9539         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
9540                                              dl, MVT::i32));
9541       else
9542         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
9543                                              MVT::i32));
9544   }
9545 
9546   ShufflesHandledWithVPERM++;
9547   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
9548   LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
9549   LLVM_DEBUG(SVOp->dump());
9550   LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
9551   LLVM_DEBUG(VPermMask.dump());
9552 
9553   if (isLittleEndian)
9554     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9555                        V2, V1, VPermMask);
9556   else
9557     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9558                        V1, V2, VPermMask);
9559 }
9560 
9561 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
9562 /// vector comparison.  If it is, return true and fill in Opc/isDot with
9563 /// information about the intrinsic.
9564 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
9565                                  bool &isDot, const PPCSubtarget &Subtarget) {
9566   unsigned IntrinsicID =
9567       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
9568   CompareOpc = -1;
9569   isDot = false;
9570   switch (IntrinsicID) {
9571   default:
9572     return false;
9573   // Comparison predicates.
9574   case Intrinsic::ppc_altivec_vcmpbfp_p:
9575     CompareOpc = 966;
9576     isDot = true;
9577     break;
9578   case Intrinsic::ppc_altivec_vcmpeqfp_p:
9579     CompareOpc = 198;
9580     isDot = true;
9581     break;
9582   case Intrinsic::ppc_altivec_vcmpequb_p:
9583     CompareOpc = 6;
9584     isDot = true;
9585     break;
9586   case Intrinsic::ppc_altivec_vcmpequh_p:
9587     CompareOpc = 70;
9588     isDot = true;
9589     break;
9590   case Intrinsic::ppc_altivec_vcmpequw_p:
9591     CompareOpc = 134;
9592     isDot = true;
9593     break;
9594   case Intrinsic::ppc_altivec_vcmpequd_p:
9595     if (Subtarget.hasP8Altivec()) {
9596       CompareOpc = 199;
9597       isDot = true;
9598     } else
9599       return false;
9600     break;
9601   case Intrinsic::ppc_altivec_vcmpneb_p:
9602   case Intrinsic::ppc_altivec_vcmpneh_p:
9603   case Intrinsic::ppc_altivec_vcmpnew_p:
9604   case Intrinsic::ppc_altivec_vcmpnezb_p:
9605   case Intrinsic::ppc_altivec_vcmpnezh_p:
9606   case Intrinsic::ppc_altivec_vcmpnezw_p:
9607     if (Subtarget.hasP9Altivec()) {
9608       switch (IntrinsicID) {
9609       default:
9610         llvm_unreachable("Unknown comparison intrinsic.");
9611       case Intrinsic::ppc_altivec_vcmpneb_p:
9612         CompareOpc = 7;
9613         break;
9614       case Intrinsic::ppc_altivec_vcmpneh_p:
9615         CompareOpc = 71;
9616         break;
9617       case Intrinsic::ppc_altivec_vcmpnew_p:
9618         CompareOpc = 135;
9619         break;
9620       case Intrinsic::ppc_altivec_vcmpnezb_p:
9621         CompareOpc = 263;
9622         break;
9623       case Intrinsic::ppc_altivec_vcmpnezh_p:
9624         CompareOpc = 327;
9625         break;
9626       case Intrinsic::ppc_altivec_vcmpnezw_p:
9627         CompareOpc = 391;
9628         break;
9629       }
9630       isDot = true;
9631     } else
9632       return false;
9633     break;
9634   case Intrinsic::ppc_altivec_vcmpgefp_p:
9635     CompareOpc = 454;
9636     isDot = true;
9637     break;
9638   case Intrinsic::ppc_altivec_vcmpgtfp_p:
9639     CompareOpc = 710;
9640     isDot = true;
9641     break;
9642   case Intrinsic::ppc_altivec_vcmpgtsb_p:
9643     CompareOpc = 774;
9644     isDot = true;
9645     break;
9646   case Intrinsic::ppc_altivec_vcmpgtsh_p:
9647     CompareOpc = 838;
9648     isDot = true;
9649     break;
9650   case Intrinsic::ppc_altivec_vcmpgtsw_p:
9651     CompareOpc = 902;
9652     isDot = true;
9653     break;
9654   case Intrinsic::ppc_altivec_vcmpgtsd_p:
9655     if (Subtarget.hasP8Altivec()) {
9656       CompareOpc = 967;
9657       isDot = true;
9658     } else
9659       return false;
9660     break;
9661   case Intrinsic::ppc_altivec_vcmpgtub_p:
9662     CompareOpc = 518;
9663     isDot = true;
9664     break;
9665   case Intrinsic::ppc_altivec_vcmpgtuh_p:
9666     CompareOpc = 582;
9667     isDot = true;
9668     break;
9669   case Intrinsic::ppc_altivec_vcmpgtuw_p:
9670     CompareOpc = 646;
9671     isDot = true;
9672     break;
9673   case Intrinsic::ppc_altivec_vcmpgtud_p:
9674     if (Subtarget.hasP8Altivec()) {
9675       CompareOpc = 711;
9676       isDot = true;
9677     } else
9678       return false;
9679     break;
9680 
9681   case Intrinsic::ppc_altivec_vcmpequq:
9682   case Intrinsic::ppc_altivec_vcmpgtsq:
9683   case Intrinsic::ppc_altivec_vcmpgtuq:
9684     if (!Subtarget.isISA3_1())
9685       return false;
9686     switch (IntrinsicID) {
9687     default:
9688       llvm_unreachable("Unknown comparison intrinsic.");
9689     case Intrinsic::ppc_altivec_vcmpequq:
9690       CompareOpc = 455;
9691       break;
9692     case Intrinsic::ppc_altivec_vcmpgtsq:
9693       CompareOpc = 903;
9694       break;
9695     case Intrinsic::ppc_altivec_vcmpgtuq:
9696       CompareOpc = 647;
9697       break;
9698     }
9699     break;
9700 
9701   // VSX predicate comparisons use the same infrastructure
9702   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9703   case Intrinsic::ppc_vsx_xvcmpgedp_p:
9704   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9705   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9706   case Intrinsic::ppc_vsx_xvcmpgesp_p:
9707   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9708     if (Subtarget.hasVSX()) {
9709       switch (IntrinsicID) {
9710       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9711         CompareOpc = 99;
9712         break;
9713       case Intrinsic::ppc_vsx_xvcmpgedp_p:
9714         CompareOpc = 115;
9715         break;
9716       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9717         CompareOpc = 107;
9718         break;
9719       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9720         CompareOpc = 67;
9721         break;
9722       case Intrinsic::ppc_vsx_xvcmpgesp_p:
9723         CompareOpc = 83;
9724         break;
9725       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9726         CompareOpc = 75;
9727         break;
9728       }
9729       isDot = true;
9730     } else
9731       return false;
9732     break;
9733 
9734   // Normal Comparisons.
9735   case Intrinsic::ppc_altivec_vcmpbfp:
9736     CompareOpc = 966;
9737     break;
9738   case Intrinsic::ppc_altivec_vcmpeqfp:
9739     CompareOpc = 198;
9740     break;
9741   case Intrinsic::ppc_altivec_vcmpequb:
9742     CompareOpc = 6;
9743     break;
9744   case Intrinsic::ppc_altivec_vcmpequh:
9745     CompareOpc = 70;
9746     break;
9747   case Intrinsic::ppc_altivec_vcmpequw:
9748     CompareOpc = 134;
9749     break;
9750   case Intrinsic::ppc_altivec_vcmpequd:
9751     if (Subtarget.hasP8Altivec())
9752       CompareOpc = 199;
9753     else
9754       return false;
9755     break;
9756   case Intrinsic::ppc_altivec_vcmpneb:
9757   case Intrinsic::ppc_altivec_vcmpneh:
9758   case Intrinsic::ppc_altivec_vcmpnew:
9759   case Intrinsic::ppc_altivec_vcmpnezb:
9760   case Intrinsic::ppc_altivec_vcmpnezh:
9761   case Intrinsic::ppc_altivec_vcmpnezw:
9762     if (Subtarget.hasP9Altivec())
9763       switch (IntrinsicID) {
9764       default:
9765         llvm_unreachable("Unknown comparison intrinsic.");
9766       case Intrinsic::ppc_altivec_vcmpneb:
9767         CompareOpc = 7;
9768         break;
9769       case Intrinsic::ppc_altivec_vcmpneh:
9770         CompareOpc = 71;
9771         break;
9772       case Intrinsic::ppc_altivec_vcmpnew:
9773         CompareOpc = 135;
9774         break;
9775       case Intrinsic::ppc_altivec_vcmpnezb:
9776         CompareOpc = 263;
9777         break;
9778       case Intrinsic::ppc_altivec_vcmpnezh:
9779         CompareOpc = 327;
9780         break;
9781       case Intrinsic::ppc_altivec_vcmpnezw:
9782         CompareOpc = 391;
9783         break;
9784       }
9785     else
9786       return false;
9787     break;
9788   case Intrinsic::ppc_altivec_vcmpgefp:
9789     CompareOpc = 454;
9790     break;
9791   case Intrinsic::ppc_altivec_vcmpgtfp:
9792     CompareOpc = 710;
9793     break;
9794   case Intrinsic::ppc_altivec_vcmpgtsb:
9795     CompareOpc = 774;
9796     break;
9797   case Intrinsic::ppc_altivec_vcmpgtsh:
9798     CompareOpc = 838;
9799     break;
9800   case Intrinsic::ppc_altivec_vcmpgtsw:
9801     CompareOpc = 902;
9802     break;
9803   case Intrinsic::ppc_altivec_vcmpgtsd:
9804     if (Subtarget.hasP8Altivec())
9805       CompareOpc = 967;
9806     else
9807       return false;
9808     break;
9809   case Intrinsic::ppc_altivec_vcmpgtub:
9810     CompareOpc = 518;
9811     break;
9812   case Intrinsic::ppc_altivec_vcmpgtuh:
9813     CompareOpc = 582;
9814     break;
9815   case Intrinsic::ppc_altivec_vcmpgtuw:
9816     CompareOpc = 646;
9817     break;
9818   case Intrinsic::ppc_altivec_vcmpgtud:
9819     if (Subtarget.hasP8Altivec())
9820       CompareOpc = 711;
9821     else
9822       return false;
9823     break;
9824   case Intrinsic::ppc_altivec_vcmpequq_p:
9825   case Intrinsic::ppc_altivec_vcmpgtsq_p:
9826   case Intrinsic::ppc_altivec_vcmpgtuq_p:
9827     if (!Subtarget.isISA3_1())
9828       return false;
9829     switch (IntrinsicID) {
9830     default:
9831       llvm_unreachable("Unknown comparison intrinsic.");
9832     case Intrinsic::ppc_altivec_vcmpequq_p:
9833       CompareOpc = 455;
9834       break;
9835     case Intrinsic::ppc_altivec_vcmpgtsq_p:
9836       CompareOpc = 903;
9837       break;
9838     case Intrinsic::ppc_altivec_vcmpgtuq_p:
9839       CompareOpc = 647;
9840       break;
9841     }
9842     isDot = true;
9843     break;
9844   }
9845   return true;
9846 }
9847 
9848 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
9849 /// lower, do it, otherwise return null.
9850 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
9851                                                    SelectionDAG &DAG) const {
9852   unsigned IntrinsicID =
9853     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9854 
9855   SDLoc dl(Op);
9856 
9857   switch (IntrinsicID) {
9858   case Intrinsic::thread_pointer:
9859     // Reads the thread pointer register, used for __builtin_thread_pointer.
9860     if (Subtarget.isPPC64())
9861       return DAG.getRegister(PPC::X13, MVT::i64);
9862     return DAG.getRegister(PPC::R2, MVT::i32);
9863 
9864   case Intrinsic::ppc_mma_disassemble_acc:
9865   case Intrinsic::ppc_vsx_disassemble_pair: {
9866     int NumVecs = 2;
9867     SDValue WideVec = Op.getOperand(1);
9868     if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) {
9869       NumVecs = 4;
9870       WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec);
9871     }
9872     SmallVector<SDValue, 4> RetOps;
9873     for (int VecNo = 0; VecNo < NumVecs; VecNo++) {
9874       SDValue Extract = DAG.getNode(
9875           PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec,
9876           DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo
9877                                                      : VecNo,
9878                           dl, MVT::i64));
9879       RetOps.push_back(Extract);
9880     }
9881     return DAG.getMergeValues(RetOps, dl);
9882   }
9883   }
9884 
9885   // If this is a lowered altivec predicate compare, CompareOpc is set to the
9886   // opcode number of the comparison.
9887   int CompareOpc;
9888   bool isDot;
9889   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
9890     return SDValue();    // Don't custom lower most intrinsics.
9891 
9892   // If this is a non-dot comparison, make the VCMP node and we are done.
9893   if (!isDot) {
9894     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
9895                               Op.getOperand(1), Op.getOperand(2),
9896                               DAG.getConstant(CompareOpc, dl, MVT::i32));
9897     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
9898   }
9899 
9900   // Create the PPCISD altivec 'dot' comparison node.
9901   SDValue Ops[] = {
9902     Op.getOperand(2),  // LHS
9903     Op.getOperand(3),  // RHS
9904     DAG.getConstant(CompareOpc, dl, MVT::i32)
9905   };
9906   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
9907   SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
9908 
9909   // Now that we have the comparison, emit a copy from the CR to a GPR.
9910   // This is flagged to the above dot comparison.
9911   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
9912                                 DAG.getRegister(PPC::CR6, MVT::i32),
9913                                 CompNode.getValue(1));
9914 
9915   // Unpack the result based on how the target uses it.
9916   unsigned BitNo;   // Bit # of CR6.
9917   bool InvertBit;   // Invert result?
9918   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
9919   default:  // Can't happen, don't crash on invalid number though.
9920   case 0:   // Return the value of the EQ bit of CR6.
9921     BitNo = 0; InvertBit = false;
9922     break;
9923   case 1:   // Return the inverted value of the EQ bit of CR6.
9924     BitNo = 0; InvertBit = true;
9925     break;
9926   case 2:   // Return the value of the LT bit of CR6.
9927     BitNo = 2; InvertBit = false;
9928     break;
9929   case 3:   // Return the inverted value of the LT bit of CR6.
9930     BitNo = 2; InvertBit = true;
9931     break;
9932   }
9933 
9934   // Shift the bit into the low position.
9935   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
9936                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
9937   // Isolate the bit.
9938   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
9939                       DAG.getConstant(1, dl, MVT::i32));
9940 
9941   // If we are supposed to, toggle the bit.
9942   if (InvertBit)
9943     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
9944                         DAG.getConstant(1, dl, MVT::i32));
9945   return Flags;
9946 }
9947 
9948 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
9949                                                SelectionDAG &DAG) const {
9950   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
9951   // the beginning of the argument list.
9952   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
9953   SDLoc DL(Op);
9954   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
9955   case Intrinsic::ppc_cfence: {
9956     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
9957     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
9958     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
9959                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
9960                                                   Op.getOperand(ArgStart + 1)),
9961                                       Op.getOperand(0)),
9962                    0);
9963   }
9964   default:
9965     break;
9966   }
9967   return SDValue();
9968 }
9969 
9970 // Lower scalar BSWAP64 to xxbrd.
9971 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
9972   SDLoc dl(Op);
9973   // MTVSRDD
9974   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
9975                    Op.getOperand(0));
9976   // XXBRD
9977   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
9978   // MFVSRD
9979   int VectorIndex = 0;
9980   if (Subtarget.isLittleEndian())
9981     VectorIndex = 1;
9982   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
9983                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
9984   return Op;
9985 }
9986 
9987 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
9988 // compared to a value that is atomically loaded (atomic loads zero-extend).
9989 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
9990                                                 SelectionDAG &DAG) const {
9991   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
9992          "Expecting an atomic compare-and-swap here.");
9993   SDLoc dl(Op);
9994   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
9995   EVT MemVT = AtomicNode->getMemoryVT();
9996   if (MemVT.getSizeInBits() >= 32)
9997     return Op;
9998 
9999   SDValue CmpOp = Op.getOperand(2);
10000   // If this is already correctly zero-extended, leave it alone.
10001   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10002   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10003     return Op;
10004 
10005   // Clear the high bits of the compare operand.
10006   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10007   SDValue NewCmpOp =
10008     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10009                 DAG.getConstant(MaskVal, dl, MVT::i32));
10010 
10011   // Replace the existing compare operand with the properly zero-extended one.
10012   SmallVector<SDValue, 4> Ops;
10013   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10014     Ops.push_back(AtomicNode->getOperand(i));
10015   Ops[2] = NewCmpOp;
10016   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10017   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10018   auto NodeTy =
10019     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10020   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10021 }
10022 
10023 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10024                                                  SelectionDAG &DAG) const {
10025   SDLoc dl(Op);
10026   // Create a stack slot that is 16-byte aligned.
10027   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10028   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10029   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10030   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10031 
10032   // Store the input value into Value#0 of the stack slot.
10033   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10034                                MachinePointerInfo());
10035   // Load it out.
10036   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10037 }
10038 
10039 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10040                                                   SelectionDAG &DAG) const {
10041   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10042          "Should only be called for ISD::INSERT_VECTOR_ELT");
10043 
10044   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10045 
10046   EVT VT = Op.getValueType();
10047   SDLoc dl(Op);
10048   SDValue V1 = Op.getOperand(0);
10049   SDValue V2 = Op.getOperand(1);
10050   SDValue V3 = Op.getOperand(2);
10051 
10052   if (Subtarget.isISA3_1()) {
10053     // On P10, we have legal lowering for constant and variable indices for
10054     // integer vectors.
10055     if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
10056         VT == MVT::v2i64)
10057       return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3);
10058     // For f32 and f64 vectors, we have legal lowering for variable indices.
10059     // For f32 we also have legal lowering when the element is loaded from
10060     // memory.
10061     if (VT == MVT::v4f32 || VT == MVT::v2f64) {
10062       if (!C || (VT == MVT::v4f32 && dyn_cast<LoadSDNode>(V2)))
10063         return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3);
10064       return SDValue();
10065     }
10066   }
10067 
10068   // Before P10, we have legal lowering for constant indices but not for
10069   // variable ones.
10070   if (!C)
10071     return SDValue();
10072 
10073   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10074   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10075     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10076     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10077     unsigned InsertAtElement = C->getZExtValue();
10078     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10079     if (Subtarget.isLittleEndian()) {
10080       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10081     }
10082     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10083                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10084   }
10085   return Op;
10086 }
10087 
10088 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
10089                                            SelectionDAG &DAG) const {
10090   SDLoc dl(Op);
10091   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
10092   SDValue LoadChain = LN->getChain();
10093   SDValue BasePtr = LN->getBasePtr();
10094   EVT VT = Op.getValueType();
10095 
10096   if (VT != MVT::v256i1 && VT != MVT::v512i1)
10097     return Op;
10098 
10099   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10100   // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in
10101   // 2 or 4 vsx registers.
10102   assert((VT != MVT::v512i1 || Subtarget.hasMMA()) &&
10103          "Type unsupported without MMA");
10104   assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10105          "Type unsupported without paired vector support");
10106   Align Alignment = LN->getAlign();
10107   SmallVector<SDValue, 4> Loads;
10108   SmallVector<SDValue, 4> LoadChains;
10109   unsigned NumVecs = VT.getSizeInBits() / 128;
10110   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10111     SDValue Load =
10112         DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr,
10113                     LN->getPointerInfo().getWithOffset(Idx * 16),
10114                     commonAlignment(Alignment, Idx * 16),
10115                     LN->getMemOperand()->getFlags(), LN->getAAInfo());
10116     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10117                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10118     Loads.push_back(Load);
10119     LoadChains.push_back(Load.getValue(1));
10120   }
10121   if (Subtarget.isLittleEndian()) {
10122     std::reverse(Loads.begin(), Loads.end());
10123     std::reverse(LoadChains.begin(), LoadChains.end());
10124   }
10125   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10126   SDValue Value =
10127       DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD,
10128                   dl, VT, Loads);
10129   SDValue RetOps[] = {Value, TF};
10130   return DAG.getMergeValues(RetOps, dl);
10131 }
10132 
10133 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10134                                             SelectionDAG &DAG) const {
10135   SDLoc dl(Op);
10136   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10137   SDValue StoreChain = SN->getChain();
10138   SDValue BasePtr = SN->getBasePtr();
10139   SDValue Value = SN->getValue();
10140   EVT StoreVT = Value.getValueType();
10141 
10142   if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1)
10143     return Op;
10144 
10145   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10146   // Here we create 2 or 4 v16i8 stores to store the pair or accumulator
10147   // underlying registers individually.
10148   assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) &&
10149          "Type unsupported without MMA");
10150   assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10151          "Type unsupported without paired vector support");
10152   Align Alignment = SN->getAlign();
10153   SmallVector<SDValue, 4> Stores;
10154   unsigned NumVecs = 2;
10155   if (StoreVT == MVT::v512i1) {
10156     Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value);
10157     NumVecs = 4;
10158   }
10159   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10160     unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx;
10161     SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value,
10162                               DAG.getConstant(VecNum, dl, MVT::i64));
10163     SDValue Store =
10164         DAG.getStore(StoreChain, dl, Elt, BasePtr,
10165                      SN->getPointerInfo().getWithOffset(Idx * 16),
10166                      commonAlignment(Alignment, Idx * 16),
10167                      SN->getMemOperand()->getFlags(), SN->getAAInfo());
10168     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10169                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10170     Stores.push_back(Store);
10171   }
10172   SDValue TF = DAG.getTokenFactor(dl, Stores);
10173   return TF;
10174 }
10175 
10176 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10177   SDLoc dl(Op);
10178   if (Op.getValueType() == MVT::v4i32) {
10179     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10180 
10181     SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
10182     // +16 as shift amt.
10183     SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
10184     SDValue RHSSwap =   // = vrlw RHS, 16
10185       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10186 
10187     // Shrinkify inputs to v8i16.
10188     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10189     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10190     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10191 
10192     // Low parts multiplied together, generating 32-bit results (we ignore the
10193     // top parts).
10194     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10195                                         LHS, RHS, DAG, dl, MVT::v4i32);
10196 
10197     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10198                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10199     // Shift the high parts up 16 bits.
10200     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10201                               Neg16, DAG, dl);
10202     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10203   } else if (Op.getValueType() == MVT::v16i8) {
10204     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10205     bool isLittleEndian = Subtarget.isLittleEndian();
10206 
10207     // Multiply the even 8-bit parts, producing 16-bit sums.
10208     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10209                                            LHS, RHS, DAG, dl, MVT::v8i16);
10210     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10211 
10212     // Multiply the odd 8-bit parts, producing 16-bit sums.
10213     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10214                                           LHS, RHS, DAG, dl, MVT::v8i16);
10215     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10216 
10217     // Merge the results together.  Because vmuleub and vmuloub are
10218     // instructions with a big-endian bias, we must reverse the
10219     // element numbering and reverse the meaning of "odd" and "even"
10220     // when generating little endian code.
10221     int Ops[16];
10222     for (unsigned i = 0; i != 8; ++i) {
10223       if (isLittleEndian) {
10224         Ops[i*2  ] = 2*i;
10225         Ops[i*2+1] = 2*i+16;
10226       } else {
10227         Ops[i*2  ] = 2*i+1;
10228         Ops[i*2+1] = 2*i+1+16;
10229       }
10230     }
10231     if (isLittleEndian)
10232       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10233     else
10234       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10235   } else {
10236     llvm_unreachable("Unknown mul to lower!");
10237   }
10238 }
10239 
10240 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
10241   bool IsStrict = Op->isStrictFPOpcode();
10242   if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 &&
10243       !Subtarget.hasP9Vector())
10244     return SDValue();
10245 
10246   return Op;
10247 }
10248 
10249 // Custom lowering for fpext vf32 to v2f64
10250 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10251 
10252   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10253          "Should only be called for ISD::FP_EXTEND");
10254 
10255   // FIXME: handle extends from half precision float vectors on P9.
10256   // We only want to custom lower an extend from v2f32 to v2f64.
10257   if (Op.getValueType() != MVT::v2f64 ||
10258       Op.getOperand(0).getValueType() != MVT::v2f32)
10259     return SDValue();
10260 
10261   SDLoc dl(Op);
10262   SDValue Op0 = Op.getOperand(0);
10263 
10264   switch (Op0.getOpcode()) {
10265   default:
10266     return SDValue();
10267   case ISD::EXTRACT_SUBVECTOR: {
10268     assert(Op0.getNumOperands() == 2 &&
10269            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10270            "Node should have 2 operands with second one being a constant!");
10271 
10272     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10273       return SDValue();
10274 
10275     // Custom lower is only done for high or low doubleword.
10276     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10277     if (Idx % 2 != 0)
10278       return SDValue();
10279 
10280     // Since input is v4f32, at this point Idx is either 0 or 2.
10281     // Shift to get the doubleword position we want.
10282     int DWord = Idx >> 1;
10283 
10284     // High and low word positions are different on little endian.
10285     if (Subtarget.isLittleEndian())
10286       DWord ^= 0x1;
10287 
10288     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10289                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10290   }
10291   case ISD::FADD:
10292   case ISD::FMUL:
10293   case ISD::FSUB: {
10294     SDValue NewLoad[2];
10295     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10296       // Ensure both input are loads.
10297       SDValue LdOp = Op0.getOperand(i);
10298       if (LdOp.getOpcode() != ISD::LOAD)
10299         return SDValue();
10300       // Generate new load node.
10301       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10302       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10303       NewLoad[i] = DAG.getMemIntrinsicNode(
10304           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10305           LD->getMemoryVT(), LD->getMemOperand());
10306     }
10307     SDValue NewOp =
10308         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10309                     NewLoad[1], Op0.getNode()->getFlags());
10310     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10311                        DAG.getConstant(0, dl, MVT::i32));
10312   }
10313   case ISD::LOAD: {
10314     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10315     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10316     SDValue NewLd = DAG.getMemIntrinsicNode(
10317         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10318         LD->getMemoryVT(), LD->getMemOperand());
10319     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10320                        DAG.getConstant(0, dl, MVT::i32));
10321   }
10322   }
10323   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10324 }
10325 
10326 /// LowerOperation - Provide custom lowering hooks for some operations.
10327 ///
10328 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10329   switch (Op.getOpcode()) {
10330   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10331   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10332   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10333   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10334   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10335   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10336   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10337   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10338   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10339 
10340   // Variable argument lowering.
10341   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10342   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10343   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10344 
10345   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10346   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10347   case ISD::GET_DYNAMIC_AREA_OFFSET:
10348     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10349 
10350   // Exception handling lowering.
10351   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
10352   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
10353   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
10354 
10355   case ISD::LOAD:               return LowerLOAD(Op, DAG);
10356   case ISD::STORE:              return LowerSTORE(Op, DAG);
10357   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
10358   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
10359   case ISD::STRICT_FP_TO_UINT:
10360   case ISD::STRICT_FP_TO_SINT:
10361   case ISD::FP_TO_UINT:
10362   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
10363   case ISD::STRICT_UINT_TO_FP:
10364   case ISD::STRICT_SINT_TO_FP:
10365   case ISD::UINT_TO_FP:
10366   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
10367   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10368 
10369   // Lower 64-bit shifts.
10370   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
10371   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
10372   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
10373 
10374   case ISD::FSHL:               return LowerFunnelShift(Op, DAG);
10375   case ISD::FSHR:               return LowerFunnelShift(Op, DAG);
10376 
10377   // Vector-related lowering.
10378   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10379   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10380   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10381   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10382   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10383   case ISD::MUL:                return LowerMUL(Op, DAG);
10384   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
10385   case ISD::STRICT_FP_ROUND:
10386   case ISD::FP_ROUND:
10387     return LowerFP_ROUND(Op, DAG);
10388   case ISD::ROTL:               return LowerROTL(Op, DAG);
10389 
10390   // For counter-based loop handling.
10391   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
10392 
10393   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10394 
10395   // Frame & Return address.
10396   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10397   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10398 
10399   case ISD::INTRINSIC_VOID:
10400     return LowerINTRINSIC_VOID(Op, DAG);
10401   case ISD::BSWAP:
10402     return LowerBSWAP(Op, DAG);
10403   case ISD::ATOMIC_CMP_SWAP:
10404     return LowerATOMIC_CMP_SWAP(Op, DAG);
10405   }
10406 }
10407 
10408 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10409                                            SmallVectorImpl<SDValue>&Results,
10410                                            SelectionDAG &DAG) const {
10411   SDLoc dl(N);
10412   switch (N->getOpcode()) {
10413   default:
10414     llvm_unreachable("Do not know how to custom type legalize this operation!");
10415   case ISD::READCYCLECOUNTER: {
10416     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10417     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
10418 
10419     Results.push_back(
10420         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
10421     Results.push_back(RTB.getValue(2));
10422     break;
10423   }
10424   case ISD::INTRINSIC_W_CHAIN: {
10425     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
10426         Intrinsic::loop_decrement)
10427       break;
10428 
10429     assert(N->getValueType(0) == MVT::i1 &&
10430            "Unexpected result type for CTR decrement intrinsic");
10431     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
10432                                  N->getValueType(0));
10433     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
10434     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
10435                                  N->getOperand(1));
10436 
10437     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
10438     Results.push_back(NewInt.getValue(1));
10439     break;
10440   }
10441   case ISD::VAARG: {
10442     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
10443       return;
10444 
10445     EVT VT = N->getValueType(0);
10446 
10447     if (VT == MVT::i64) {
10448       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
10449 
10450       Results.push_back(NewNode);
10451       Results.push_back(NewNode.getValue(1));
10452     }
10453     return;
10454   }
10455   case ISD::STRICT_FP_TO_SINT:
10456   case ISD::STRICT_FP_TO_UINT:
10457   case ISD::FP_TO_SINT:
10458   case ISD::FP_TO_UINT:
10459     // LowerFP_TO_INT() can only handle f32 and f64.
10460     if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() ==
10461         MVT::ppcf128)
10462       return;
10463     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
10464     return;
10465   case ISD::TRUNCATE: {
10466     if (!N->getValueType(0).isVector())
10467       return;
10468     SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG);
10469     if (Lowered)
10470       Results.push_back(Lowered);
10471     return;
10472   }
10473   case ISD::FSHL:
10474   case ISD::FSHR:
10475     // Don't handle funnel shifts here.
10476     return;
10477   case ISD::BITCAST:
10478     // Don't handle bitcast here.
10479     return;
10480   case ISD::FP_EXTEND:
10481     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
10482     if (Lowered)
10483       Results.push_back(Lowered);
10484     return;
10485   }
10486 }
10487 
10488 //===----------------------------------------------------------------------===//
10489 //  Other Lowering Code
10490 //===----------------------------------------------------------------------===//
10491 
10492 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
10493   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10494   Function *Func = Intrinsic::getDeclaration(M, Id);
10495   return Builder.CreateCall(Func, {});
10496 }
10497 
10498 // The mappings for emitLeading/TrailingFence is taken from
10499 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
10500 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
10501                                                  Instruction *Inst,
10502                                                  AtomicOrdering Ord) const {
10503   if (Ord == AtomicOrdering::SequentiallyConsistent)
10504     return callIntrinsic(Builder, Intrinsic::ppc_sync);
10505   if (isReleaseOrStronger(Ord))
10506     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10507   return nullptr;
10508 }
10509 
10510 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
10511                                                   Instruction *Inst,
10512                                                   AtomicOrdering Ord) const {
10513   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
10514     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
10515     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
10516     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
10517     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
10518       return Builder.CreateCall(
10519           Intrinsic::getDeclaration(
10520               Builder.GetInsertBlock()->getParent()->getParent(),
10521               Intrinsic::ppc_cfence, {Inst->getType()}),
10522           {Inst});
10523     // FIXME: Can use isync for rmw operation.
10524     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10525   }
10526   return nullptr;
10527 }
10528 
10529 MachineBasicBlock *
10530 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
10531                                     unsigned AtomicSize,
10532                                     unsigned BinOpcode,
10533                                     unsigned CmpOpcode,
10534                                     unsigned CmpPred) const {
10535   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10536   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10537 
10538   auto LoadMnemonic = PPC::LDARX;
10539   auto StoreMnemonic = PPC::STDCX;
10540   switch (AtomicSize) {
10541   default:
10542     llvm_unreachable("Unexpected size of atomic entity");
10543   case 1:
10544     LoadMnemonic = PPC::LBARX;
10545     StoreMnemonic = PPC::STBCX;
10546     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10547     break;
10548   case 2:
10549     LoadMnemonic = PPC::LHARX;
10550     StoreMnemonic = PPC::STHCX;
10551     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10552     break;
10553   case 4:
10554     LoadMnemonic = PPC::LWARX;
10555     StoreMnemonic = PPC::STWCX;
10556     break;
10557   case 8:
10558     LoadMnemonic = PPC::LDARX;
10559     StoreMnemonic = PPC::STDCX;
10560     break;
10561   }
10562 
10563   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10564   MachineFunction *F = BB->getParent();
10565   MachineFunction::iterator It = ++BB->getIterator();
10566 
10567   Register dest = MI.getOperand(0).getReg();
10568   Register ptrA = MI.getOperand(1).getReg();
10569   Register ptrB = MI.getOperand(2).getReg();
10570   Register incr = MI.getOperand(3).getReg();
10571   DebugLoc dl = MI.getDebugLoc();
10572 
10573   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10574   MachineBasicBlock *loop2MBB =
10575     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10576   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10577   F->insert(It, loopMBB);
10578   if (CmpOpcode)
10579     F->insert(It, loop2MBB);
10580   F->insert(It, exitMBB);
10581   exitMBB->splice(exitMBB->begin(), BB,
10582                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10583   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10584 
10585   MachineRegisterInfo &RegInfo = F->getRegInfo();
10586   Register TmpReg = (!BinOpcode) ? incr :
10587     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
10588                                            : &PPC::GPRCRegClass);
10589 
10590   //  thisMBB:
10591   //   ...
10592   //   fallthrough --> loopMBB
10593   BB->addSuccessor(loopMBB);
10594 
10595   //  loopMBB:
10596   //   l[wd]arx dest, ptr
10597   //   add r0, dest, incr
10598   //   st[wd]cx. r0, ptr
10599   //   bne- loopMBB
10600   //   fallthrough --> exitMBB
10601 
10602   // For max/min...
10603   //  loopMBB:
10604   //   l[wd]arx dest, ptr
10605   //   cmpl?[wd] incr, dest
10606   //   bgt exitMBB
10607   //  loop2MBB:
10608   //   st[wd]cx. dest, ptr
10609   //   bne- loopMBB
10610   //   fallthrough --> exitMBB
10611 
10612   BB = loopMBB;
10613   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10614     .addReg(ptrA).addReg(ptrB);
10615   if (BinOpcode)
10616     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
10617   if (CmpOpcode) {
10618     // Signed comparisons of byte or halfword values must be sign-extended.
10619     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
10620       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10621       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
10622               ExtReg).addReg(dest);
10623       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10624         .addReg(incr).addReg(ExtReg);
10625     } else
10626       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10627         .addReg(incr).addReg(dest);
10628 
10629     BuildMI(BB, dl, TII->get(PPC::BCC))
10630       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
10631     BB->addSuccessor(loop2MBB);
10632     BB->addSuccessor(exitMBB);
10633     BB = loop2MBB;
10634   }
10635   BuildMI(BB, dl, TII->get(StoreMnemonic))
10636     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
10637   BuildMI(BB, dl, TII->get(PPC::BCC))
10638     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
10639   BB->addSuccessor(loopMBB);
10640   BB->addSuccessor(exitMBB);
10641 
10642   //  exitMBB:
10643   //   ...
10644   BB = exitMBB;
10645   return BB;
10646 }
10647 
10648 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) {
10649   switch(MI.getOpcode()) {
10650   default:
10651     return false;
10652   case PPC::COPY:
10653     return TII->isSignExtended(MI);
10654   case PPC::LHA:
10655   case PPC::LHA8:
10656   case PPC::LHAU:
10657   case PPC::LHAU8:
10658   case PPC::LHAUX:
10659   case PPC::LHAUX8:
10660   case PPC::LHAX:
10661   case PPC::LHAX8:
10662   case PPC::LWA:
10663   case PPC::LWAUX:
10664   case PPC::LWAX:
10665   case PPC::LWAX_32:
10666   case PPC::LWA_32:
10667   case PPC::PLHA:
10668   case PPC::PLHA8:
10669   case PPC::PLHA8pc:
10670   case PPC::PLHApc:
10671   case PPC::PLWA:
10672   case PPC::PLWA8:
10673   case PPC::PLWA8pc:
10674   case PPC::PLWApc:
10675   case PPC::EXTSB:
10676   case PPC::EXTSB8:
10677   case PPC::EXTSB8_32_64:
10678   case PPC::EXTSB8_rec:
10679   case PPC::EXTSB_rec:
10680   case PPC::EXTSH:
10681   case PPC::EXTSH8:
10682   case PPC::EXTSH8_32_64:
10683   case PPC::EXTSH8_rec:
10684   case PPC::EXTSH_rec:
10685   case PPC::EXTSW:
10686   case PPC::EXTSWSLI:
10687   case PPC::EXTSWSLI_32_64:
10688   case PPC::EXTSWSLI_32_64_rec:
10689   case PPC::EXTSWSLI_rec:
10690   case PPC::EXTSW_32:
10691   case PPC::EXTSW_32_64:
10692   case PPC::EXTSW_32_64_rec:
10693   case PPC::EXTSW_rec:
10694   case PPC::SRAW:
10695   case PPC::SRAWI:
10696   case PPC::SRAWI_rec:
10697   case PPC::SRAW_rec:
10698     return true;
10699   }
10700   return false;
10701 }
10702 
10703 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
10704     MachineInstr &MI, MachineBasicBlock *BB,
10705     bool is8bit, // operation
10706     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
10707   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10708   const PPCInstrInfo *TII = Subtarget.getInstrInfo();
10709 
10710   // If this is a signed comparison and the value being compared is not known
10711   // to be sign extended, sign extend it here.
10712   DebugLoc dl = MI.getDebugLoc();
10713   MachineFunction *F = BB->getParent();
10714   MachineRegisterInfo &RegInfo = F->getRegInfo();
10715   Register incr = MI.getOperand(3).getReg();
10716   bool IsSignExtended = Register::isVirtualRegister(incr) &&
10717     isSignExtended(*RegInfo.getVRegDef(incr), TII);
10718 
10719   if (CmpOpcode == PPC::CMPW && !IsSignExtended) {
10720     Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10721     BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg)
10722         .addReg(MI.getOperand(3).getReg());
10723     MI.getOperand(3).setReg(ValueReg);
10724   }
10725   // If we support part-word atomic mnemonics, just use them
10726   if (Subtarget.hasPartwordAtomics())
10727     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
10728                             CmpPred);
10729 
10730   // In 64 bit mode we have to use 64 bits for addresses, even though the
10731   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
10732   // registers without caring whether they're 32 or 64, but here we're
10733   // doing actual arithmetic on the addresses.
10734   bool is64bit = Subtarget.isPPC64();
10735   bool isLittleEndian = Subtarget.isLittleEndian();
10736   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10737 
10738   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10739   MachineFunction::iterator It = ++BB->getIterator();
10740 
10741   Register dest = MI.getOperand(0).getReg();
10742   Register ptrA = MI.getOperand(1).getReg();
10743   Register ptrB = MI.getOperand(2).getReg();
10744 
10745   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10746   MachineBasicBlock *loop2MBB =
10747       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10748   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10749   F->insert(It, loopMBB);
10750   if (CmpOpcode)
10751     F->insert(It, loop2MBB);
10752   F->insert(It, exitMBB);
10753   exitMBB->splice(exitMBB->begin(), BB,
10754                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10755   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10756 
10757   const TargetRegisterClass *RC =
10758       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10759   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
10760 
10761   Register PtrReg = RegInfo.createVirtualRegister(RC);
10762   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
10763   Register ShiftReg =
10764       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
10765   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
10766   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
10767   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
10768   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
10769   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
10770   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
10771   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
10772   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
10773   Register Ptr1Reg;
10774   Register TmpReg =
10775       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
10776 
10777   //  thisMBB:
10778   //   ...
10779   //   fallthrough --> loopMBB
10780   BB->addSuccessor(loopMBB);
10781 
10782   // The 4-byte load must be aligned, while a char or short may be
10783   // anywhere in the word.  Hence all this nasty bookkeeping code.
10784   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10785   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10786   //   xori shift, shift1, 24 [16]
10787   //   rlwinm ptr, ptr1, 0, 0, 29
10788   //   slw incr2, incr, shift
10789   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10790   //   slw mask, mask2, shift
10791   //  loopMBB:
10792   //   lwarx tmpDest, ptr
10793   //   add tmp, tmpDest, incr2
10794   //   andc tmp2, tmpDest, mask
10795   //   and tmp3, tmp, mask
10796   //   or tmp4, tmp3, tmp2
10797   //   stwcx. tmp4, ptr
10798   //   bne- loopMBB
10799   //   fallthrough --> exitMBB
10800   //   srw dest, tmpDest, shift
10801   if (ptrA != ZeroReg) {
10802     Ptr1Reg = RegInfo.createVirtualRegister(RC);
10803     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10804         .addReg(ptrA)
10805         .addReg(ptrB);
10806   } else {
10807     Ptr1Reg = ptrB;
10808   }
10809   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
10810   // mode.
10811   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
10812       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
10813       .addImm(3)
10814       .addImm(27)
10815       .addImm(is8bit ? 28 : 27);
10816   if (!isLittleEndian)
10817     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
10818         .addReg(Shift1Reg)
10819         .addImm(is8bit ? 24 : 16);
10820   if (is64bit)
10821     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10822         .addReg(Ptr1Reg)
10823         .addImm(0)
10824         .addImm(61);
10825   else
10826     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10827         .addReg(Ptr1Reg)
10828         .addImm(0)
10829         .addImm(0)
10830         .addImm(29);
10831   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
10832   if (is8bit)
10833     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10834   else {
10835     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10836     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10837         .addReg(Mask3Reg)
10838         .addImm(65535);
10839   }
10840   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10841       .addReg(Mask2Reg)
10842       .addReg(ShiftReg);
10843 
10844   BB = loopMBB;
10845   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10846       .addReg(ZeroReg)
10847       .addReg(PtrReg);
10848   if (BinOpcode)
10849     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
10850         .addReg(Incr2Reg)
10851         .addReg(TmpDestReg);
10852   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10853       .addReg(TmpDestReg)
10854       .addReg(MaskReg);
10855   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
10856   if (CmpOpcode) {
10857     // For unsigned comparisons, we can directly compare the shifted values.
10858     // For signed comparisons we shift and sign extend.
10859     Register SReg = RegInfo.createVirtualRegister(GPRC);
10860     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
10861         .addReg(TmpDestReg)
10862         .addReg(MaskReg);
10863     unsigned ValueReg = SReg;
10864     unsigned CmpReg = Incr2Reg;
10865     if (CmpOpcode == PPC::CMPW) {
10866       ValueReg = RegInfo.createVirtualRegister(GPRC);
10867       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
10868           .addReg(SReg)
10869           .addReg(ShiftReg);
10870       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
10871       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
10872           .addReg(ValueReg);
10873       ValueReg = ValueSReg;
10874       CmpReg = incr;
10875     }
10876     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10877         .addReg(CmpReg)
10878         .addReg(ValueReg);
10879     BuildMI(BB, dl, TII->get(PPC::BCC))
10880         .addImm(CmpPred)
10881         .addReg(PPC::CR0)
10882         .addMBB(exitMBB);
10883     BB->addSuccessor(loop2MBB);
10884     BB->addSuccessor(exitMBB);
10885     BB = loop2MBB;
10886   }
10887   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
10888   BuildMI(BB, dl, TII->get(PPC::STWCX))
10889       .addReg(Tmp4Reg)
10890       .addReg(ZeroReg)
10891       .addReg(PtrReg);
10892   BuildMI(BB, dl, TII->get(PPC::BCC))
10893       .addImm(PPC::PRED_NE)
10894       .addReg(PPC::CR0)
10895       .addMBB(loopMBB);
10896   BB->addSuccessor(loopMBB);
10897   BB->addSuccessor(exitMBB);
10898 
10899   //  exitMBB:
10900   //   ...
10901   BB = exitMBB;
10902   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
10903       .addReg(TmpDestReg)
10904       .addReg(ShiftReg);
10905   return BB;
10906 }
10907 
10908 llvm::MachineBasicBlock *
10909 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
10910                                     MachineBasicBlock *MBB) const {
10911   DebugLoc DL = MI.getDebugLoc();
10912   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10913   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
10914 
10915   MachineFunction *MF = MBB->getParent();
10916   MachineRegisterInfo &MRI = MF->getRegInfo();
10917 
10918   const BasicBlock *BB = MBB->getBasicBlock();
10919   MachineFunction::iterator I = ++MBB->getIterator();
10920 
10921   Register DstReg = MI.getOperand(0).getReg();
10922   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
10923   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
10924   Register mainDstReg = MRI.createVirtualRegister(RC);
10925   Register restoreDstReg = MRI.createVirtualRegister(RC);
10926 
10927   MVT PVT = getPointerTy(MF->getDataLayout());
10928   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10929          "Invalid Pointer Size!");
10930   // For v = setjmp(buf), we generate
10931   //
10932   // thisMBB:
10933   //  SjLjSetup mainMBB
10934   //  bl mainMBB
10935   //  v_restore = 1
10936   //  b sinkMBB
10937   //
10938   // mainMBB:
10939   //  buf[LabelOffset] = LR
10940   //  v_main = 0
10941   //
10942   // sinkMBB:
10943   //  v = phi(main, restore)
10944   //
10945 
10946   MachineBasicBlock *thisMBB = MBB;
10947   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
10948   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
10949   MF->insert(I, mainMBB);
10950   MF->insert(I, sinkMBB);
10951 
10952   MachineInstrBuilder MIB;
10953 
10954   // Transfer the remainder of BB and its successor edges to sinkMBB.
10955   sinkMBB->splice(sinkMBB->begin(), MBB,
10956                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
10957   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
10958 
10959   // Note that the structure of the jmp_buf used here is not compatible
10960   // with that used by libc, and is not designed to be. Specifically, it
10961   // stores only those 'reserved' registers that LLVM does not otherwise
10962   // understand how to spill. Also, by convention, by the time this
10963   // intrinsic is called, Clang has already stored the frame address in the
10964   // first slot of the buffer and stack address in the third. Following the
10965   // X86 target code, we'll store the jump address in the second slot. We also
10966   // need to save the TOC pointer (R2) to handle jumps between shared
10967   // libraries, and that will be stored in the fourth slot. The thread
10968   // identifier (R13) is not affected.
10969 
10970   // thisMBB:
10971   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10972   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10973   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10974 
10975   // Prepare IP either in reg.
10976   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
10977   Register LabelReg = MRI.createVirtualRegister(PtrRC);
10978   Register BufReg = MI.getOperand(1).getReg();
10979 
10980   if (Subtarget.is64BitELFABI()) {
10981     setUsesTOCBasePtr(*MBB->getParent());
10982     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
10983               .addReg(PPC::X2)
10984               .addImm(TOCOffset)
10985               .addReg(BufReg)
10986               .cloneMemRefs(MI);
10987   }
10988 
10989   // Naked functions never have a base pointer, and so we use r1. For all
10990   // other functions, this decision must be delayed until during PEI.
10991   unsigned BaseReg;
10992   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
10993     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
10994   else
10995     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
10996 
10997   MIB = BuildMI(*thisMBB, MI, DL,
10998                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
10999             .addReg(BaseReg)
11000             .addImm(BPOffset)
11001             .addReg(BufReg)
11002             .cloneMemRefs(MI);
11003 
11004   // Setup
11005   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11006   MIB.addRegMask(TRI->getNoPreservedMask());
11007 
11008   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11009 
11010   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11011           .addMBB(mainMBB);
11012   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11013 
11014   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11015   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11016 
11017   // mainMBB:
11018   //  mainDstReg = 0
11019   MIB =
11020       BuildMI(mainMBB, DL,
11021               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11022 
11023   // Store IP
11024   if (Subtarget.isPPC64()) {
11025     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11026             .addReg(LabelReg)
11027             .addImm(LabelOffset)
11028             .addReg(BufReg);
11029   } else {
11030     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11031             .addReg(LabelReg)
11032             .addImm(LabelOffset)
11033             .addReg(BufReg);
11034   }
11035   MIB.cloneMemRefs(MI);
11036 
11037   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11038   mainMBB->addSuccessor(sinkMBB);
11039 
11040   // sinkMBB:
11041   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11042           TII->get(PPC::PHI), DstReg)
11043     .addReg(mainDstReg).addMBB(mainMBB)
11044     .addReg(restoreDstReg).addMBB(thisMBB);
11045 
11046   MI.eraseFromParent();
11047   return sinkMBB;
11048 }
11049 
11050 MachineBasicBlock *
11051 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11052                                      MachineBasicBlock *MBB) const {
11053   DebugLoc DL = MI.getDebugLoc();
11054   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11055 
11056   MachineFunction *MF = MBB->getParent();
11057   MachineRegisterInfo &MRI = MF->getRegInfo();
11058 
11059   MVT PVT = getPointerTy(MF->getDataLayout());
11060   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11061          "Invalid Pointer Size!");
11062 
11063   const TargetRegisterClass *RC =
11064     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11065   Register Tmp = MRI.createVirtualRegister(RC);
11066   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11067   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11068   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11069   unsigned BP =
11070       (PVT == MVT::i64)
11071           ? PPC::X30
11072           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11073                                                               : PPC::R30);
11074 
11075   MachineInstrBuilder MIB;
11076 
11077   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11078   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11079   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11080   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11081 
11082   Register BufReg = MI.getOperand(0).getReg();
11083 
11084   // Reload FP (the jumped-to function may not have had a
11085   // frame pointer, and if so, then its r31 will be restored
11086   // as necessary).
11087   if (PVT == MVT::i64) {
11088     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11089             .addImm(0)
11090             .addReg(BufReg);
11091   } else {
11092     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11093             .addImm(0)
11094             .addReg(BufReg);
11095   }
11096   MIB.cloneMemRefs(MI);
11097 
11098   // Reload IP
11099   if (PVT == MVT::i64) {
11100     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11101             .addImm(LabelOffset)
11102             .addReg(BufReg);
11103   } else {
11104     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11105             .addImm(LabelOffset)
11106             .addReg(BufReg);
11107   }
11108   MIB.cloneMemRefs(MI);
11109 
11110   // Reload SP
11111   if (PVT == MVT::i64) {
11112     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11113             .addImm(SPOffset)
11114             .addReg(BufReg);
11115   } else {
11116     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11117             .addImm(SPOffset)
11118             .addReg(BufReg);
11119   }
11120   MIB.cloneMemRefs(MI);
11121 
11122   // Reload BP
11123   if (PVT == MVT::i64) {
11124     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11125             .addImm(BPOffset)
11126             .addReg(BufReg);
11127   } else {
11128     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11129             .addImm(BPOffset)
11130             .addReg(BufReg);
11131   }
11132   MIB.cloneMemRefs(MI);
11133 
11134   // Reload TOC
11135   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11136     setUsesTOCBasePtr(*MBB->getParent());
11137     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11138               .addImm(TOCOffset)
11139               .addReg(BufReg)
11140               .cloneMemRefs(MI);
11141   }
11142 
11143   // Jump
11144   BuildMI(*MBB, MI, DL,
11145           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11146   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11147 
11148   MI.eraseFromParent();
11149   return MBB;
11150 }
11151 
11152 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
11153   // If the function specifically requests inline stack probes, emit them.
11154   if (MF.getFunction().hasFnAttribute("probe-stack"))
11155     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
11156            "inline-asm";
11157   return false;
11158 }
11159 
11160 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const {
11161   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
11162   unsigned StackAlign = TFI->getStackAlignment();
11163   assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
11164          "Unexpected stack alignment");
11165   // The default stack probe size is 4096 if the function has no
11166   // stack-probe-size attribute.
11167   unsigned StackProbeSize = 4096;
11168   const Function &Fn = MF.getFunction();
11169   if (Fn.hasFnAttribute("stack-probe-size"))
11170     Fn.getFnAttribute("stack-probe-size")
11171         .getValueAsString()
11172         .getAsInteger(0, StackProbeSize);
11173   // Round down to the stack alignment.
11174   StackProbeSize &= ~(StackAlign - 1);
11175   return StackProbeSize ? StackProbeSize : StackAlign;
11176 }
11177 
11178 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
11179 // into three phases. In the first phase, it uses pseudo instruction
11180 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
11181 // FinalStackPtr. In the second phase, it generates a loop for probing blocks.
11182 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
11183 // MaxCallFrameSize so that it can calculate correct data area pointer.
11184 MachineBasicBlock *
11185 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
11186                                     MachineBasicBlock *MBB) const {
11187   const bool isPPC64 = Subtarget.isPPC64();
11188   MachineFunction *MF = MBB->getParent();
11189   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11190   DebugLoc DL = MI.getDebugLoc();
11191   const unsigned ProbeSize = getStackProbeSize(*MF);
11192   const BasicBlock *ProbedBB = MBB->getBasicBlock();
11193   MachineRegisterInfo &MRI = MF->getRegInfo();
11194   // The CFG of probing stack looks as
11195   //         +-----+
11196   //         | MBB |
11197   //         +--+--+
11198   //            |
11199   //       +----v----+
11200   //  +--->+ TestMBB +---+
11201   //  |    +----+----+   |
11202   //  |         |        |
11203   //  |   +-----v----+   |
11204   //  +---+ BlockMBB |   |
11205   //      +----------+   |
11206   //                     |
11207   //       +---------+   |
11208   //       | TailMBB +<--+
11209   //       +---------+
11210   // In MBB, calculate previous frame pointer and final stack pointer.
11211   // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
11212   // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
11213   // TailMBB is spliced via \p MI.
11214   MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
11215   MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
11216   MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
11217 
11218   MachineFunction::iterator MBBIter = ++MBB->getIterator();
11219   MF->insert(MBBIter, TestMBB);
11220   MF->insert(MBBIter, BlockMBB);
11221   MF->insert(MBBIter, TailMBB);
11222 
11223   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
11224   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11225 
11226   Register DstReg = MI.getOperand(0).getReg();
11227   Register NegSizeReg = MI.getOperand(1).getReg();
11228   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
11229   Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11230   Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11231   Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11232 
11233   // Since value of NegSizeReg might be realigned in prologepilog, insert a
11234   // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
11235   // NegSize.
11236   unsigned ProbeOpc;
11237   if (!MRI.hasOneNonDBGUse(NegSizeReg))
11238     ProbeOpc =
11239         isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
11240   else
11241     // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
11242     // and NegSizeReg will be allocated in the same phyreg to avoid
11243     // redundant copy when NegSizeReg has only one use which is current MI and
11244     // will be replaced by PREPARE_PROBED_ALLOCA then.
11245     ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
11246                        : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
11247   BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
11248       .addDef(ActualNegSizeReg)
11249       .addReg(NegSizeReg)
11250       .add(MI.getOperand(2))
11251       .add(MI.getOperand(3));
11252 
11253   // Calculate final stack pointer, which equals to SP + ActualNegSize.
11254   BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
11255           FinalStackPtr)
11256       .addReg(SPReg)
11257       .addReg(ActualNegSizeReg);
11258 
11259   // Materialize a scratch register for update.
11260   int64_t NegProbeSize = -(int64_t)ProbeSize;
11261   assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
11262   Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11263   if (!isInt<16>(NegProbeSize)) {
11264     Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11265     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
11266         .addImm(NegProbeSize >> 16);
11267     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
11268             ScratchReg)
11269         .addReg(TempReg)
11270         .addImm(NegProbeSize & 0xFFFF);
11271   } else
11272     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
11273         .addImm(NegProbeSize);
11274 
11275   {
11276     // Probing leading residual part.
11277     Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11278     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
11279         .addReg(ActualNegSizeReg)
11280         .addReg(ScratchReg);
11281     Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11282     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
11283         .addReg(Div)
11284         .addReg(ScratchReg);
11285     Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11286     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
11287         .addReg(Mul)
11288         .addReg(ActualNegSizeReg);
11289     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11290         .addReg(FramePointer)
11291         .addReg(SPReg)
11292         .addReg(NegMod);
11293   }
11294 
11295   {
11296     // Remaining part should be multiple of ProbeSize.
11297     Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
11298     BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
11299         .addReg(SPReg)
11300         .addReg(FinalStackPtr);
11301     BuildMI(TestMBB, DL, TII->get(PPC::BCC))
11302         .addImm(PPC::PRED_EQ)
11303         .addReg(CmpResult)
11304         .addMBB(TailMBB);
11305     TestMBB->addSuccessor(BlockMBB);
11306     TestMBB->addSuccessor(TailMBB);
11307   }
11308 
11309   {
11310     // Touch the block.
11311     // |P...|P...|P...
11312     BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11313         .addReg(FramePointer)
11314         .addReg(SPReg)
11315         .addReg(ScratchReg);
11316     BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
11317     BlockMBB->addSuccessor(TestMBB);
11318   }
11319 
11320   // Calculation of MaxCallFrameSize is deferred to prologepilog, use
11321   // DYNAREAOFFSET pseudo instruction to get the future result.
11322   Register MaxCallFrameSizeReg =
11323       MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11324   BuildMI(TailMBB, DL,
11325           TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
11326           MaxCallFrameSizeReg)
11327       .add(MI.getOperand(2))
11328       .add(MI.getOperand(3));
11329   BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
11330       .addReg(SPReg)
11331       .addReg(MaxCallFrameSizeReg);
11332 
11333   // Splice instructions after MI to TailMBB.
11334   TailMBB->splice(TailMBB->end(), MBB,
11335                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11336   TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
11337   MBB->addSuccessor(TestMBB);
11338 
11339   // Delete the pseudo instruction.
11340   MI.eraseFromParent();
11341 
11342   ++NumDynamicAllocaProbed;
11343   return TailMBB;
11344 }
11345 
11346 MachineBasicBlock *
11347 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11348                                                MachineBasicBlock *BB) const {
11349   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11350       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11351     if (Subtarget.is64BitELFABI() &&
11352         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
11353         !Subtarget.isUsingPCRelativeCalls()) {
11354       // Call lowering should have added an r2 operand to indicate a dependence
11355       // on the TOC base pointer value. It can't however, because there is no
11356       // way to mark the dependence as implicit there, and so the stackmap code
11357       // will confuse it with a regular operand. Instead, add the dependence
11358       // here.
11359       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11360     }
11361 
11362     return emitPatchPoint(MI, BB);
11363   }
11364 
11365   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11366       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11367     return emitEHSjLjSetJmp(MI, BB);
11368   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11369              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11370     return emitEHSjLjLongJmp(MI, BB);
11371   }
11372 
11373   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11374 
11375   // To "insert" these instructions we actually have to insert their
11376   // control-flow patterns.
11377   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11378   MachineFunction::iterator It = ++BB->getIterator();
11379 
11380   MachineFunction *F = BB->getParent();
11381 
11382   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11383       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11384       MI.getOpcode() == PPC::SELECT_I8) {
11385     SmallVector<MachineOperand, 2> Cond;
11386     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11387         MI.getOpcode() == PPC::SELECT_CC_I8)
11388       Cond.push_back(MI.getOperand(4));
11389     else
11390       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11391     Cond.push_back(MI.getOperand(1));
11392 
11393     DebugLoc dl = MI.getDebugLoc();
11394     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11395                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11396   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11397              MI.getOpcode() == PPC::SELECT_CC_F8 ||
11398              MI.getOpcode() == PPC::SELECT_CC_F16 ||
11399              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11400              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11401              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11402              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11403              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11404              MI.getOpcode() == PPC::SELECT_CC_SPE ||
11405              MI.getOpcode() == PPC::SELECT_F4 ||
11406              MI.getOpcode() == PPC::SELECT_F8 ||
11407              MI.getOpcode() == PPC::SELECT_F16 ||
11408              MI.getOpcode() == PPC::SELECT_SPE ||
11409              MI.getOpcode() == PPC::SELECT_SPE4 ||
11410              MI.getOpcode() == PPC::SELECT_VRRC ||
11411              MI.getOpcode() == PPC::SELECT_VSFRC ||
11412              MI.getOpcode() == PPC::SELECT_VSSRC ||
11413              MI.getOpcode() == PPC::SELECT_VSRC) {
11414     // The incoming instruction knows the destination vreg to set, the
11415     // condition code register to branch on, the true/false values to
11416     // select between, and a branch opcode to use.
11417 
11418     //  thisMBB:
11419     //  ...
11420     //   TrueVal = ...
11421     //   cmpTY ccX, r1, r2
11422     //   bCC copy1MBB
11423     //   fallthrough --> copy0MBB
11424     MachineBasicBlock *thisMBB = BB;
11425     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11426     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11427     DebugLoc dl = MI.getDebugLoc();
11428     F->insert(It, copy0MBB);
11429     F->insert(It, sinkMBB);
11430 
11431     // Transfer the remainder of BB and its successor edges to sinkMBB.
11432     sinkMBB->splice(sinkMBB->begin(), BB,
11433                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11434     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11435 
11436     // Next, add the true and fallthrough blocks as its successors.
11437     BB->addSuccessor(copy0MBB);
11438     BB->addSuccessor(sinkMBB);
11439 
11440     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
11441         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
11442         MI.getOpcode() == PPC::SELECT_F16 ||
11443         MI.getOpcode() == PPC::SELECT_SPE4 ||
11444         MI.getOpcode() == PPC::SELECT_SPE ||
11445         MI.getOpcode() == PPC::SELECT_VRRC ||
11446         MI.getOpcode() == PPC::SELECT_VSFRC ||
11447         MI.getOpcode() == PPC::SELECT_VSSRC ||
11448         MI.getOpcode() == PPC::SELECT_VSRC) {
11449       BuildMI(BB, dl, TII->get(PPC::BC))
11450           .addReg(MI.getOperand(1).getReg())
11451           .addMBB(sinkMBB);
11452     } else {
11453       unsigned SelectPred = MI.getOperand(4).getImm();
11454       BuildMI(BB, dl, TII->get(PPC::BCC))
11455           .addImm(SelectPred)
11456           .addReg(MI.getOperand(1).getReg())
11457           .addMBB(sinkMBB);
11458     }
11459 
11460     //  copy0MBB:
11461     //   %FalseValue = ...
11462     //   # fallthrough to sinkMBB
11463     BB = copy0MBB;
11464 
11465     // Update machine-CFG edges
11466     BB->addSuccessor(sinkMBB);
11467 
11468     //  sinkMBB:
11469     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11470     //  ...
11471     BB = sinkMBB;
11472     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
11473         .addReg(MI.getOperand(3).getReg())
11474         .addMBB(copy0MBB)
11475         .addReg(MI.getOperand(2).getReg())
11476         .addMBB(thisMBB);
11477   } else if (MI.getOpcode() == PPC::ReadTB) {
11478     // To read the 64-bit time-base register on a 32-bit target, we read the
11479     // two halves. Should the counter have wrapped while it was being read, we
11480     // need to try again.
11481     // ...
11482     // readLoop:
11483     // mfspr Rx,TBU # load from TBU
11484     // mfspr Ry,TB  # load from TB
11485     // mfspr Rz,TBU # load from TBU
11486     // cmpw crX,Rx,Rz # check if 'old'='new'
11487     // bne readLoop   # branch if they're not equal
11488     // ...
11489 
11490     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
11491     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11492     DebugLoc dl = MI.getDebugLoc();
11493     F->insert(It, readMBB);
11494     F->insert(It, sinkMBB);
11495 
11496     // Transfer the remainder of BB and its successor edges to sinkMBB.
11497     sinkMBB->splice(sinkMBB->begin(), BB,
11498                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11499     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11500 
11501     BB->addSuccessor(readMBB);
11502     BB = readMBB;
11503 
11504     MachineRegisterInfo &RegInfo = F->getRegInfo();
11505     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11506     Register LoReg = MI.getOperand(0).getReg();
11507     Register HiReg = MI.getOperand(1).getReg();
11508 
11509     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
11510     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
11511     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
11512 
11513     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11514 
11515     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
11516         .addReg(HiReg)
11517         .addReg(ReadAgainReg);
11518     BuildMI(BB, dl, TII->get(PPC::BCC))
11519         .addImm(PPC::PRED_NE)
11520         .addReg(CmpReg)
11521         .addMBB(readMBB);
11522 
11523     BB->addSuccessor(readMBB);
11524     BB->addSuccessor(sinkMBB);
11525   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
11526     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
11527   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
11528     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
11529   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
11530     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
11531   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
11532     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
11533 
11534   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
11535     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
11536   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
11537     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
11538   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
11539     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
11540   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
11541     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
11542 
11543   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
11544     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
11545   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
11546     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
11547   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
11548     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
11549   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
11550     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
11551 
11552   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
11553     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
11554   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
11555     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
11556   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
11557     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
11558   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
11559     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
11560 
11561   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
11562     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
11563   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
11564     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
11565   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
11566     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
11567   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
11568     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
11569 
11570   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
11571     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
11572   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
11573     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
11574   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
11575     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
11576   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
11577     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
11578 
11579   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
11580     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
11581   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
11582     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
11583   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
11584     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
11585   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
11586     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
11587 
11588   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
11589     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
11590   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
11591     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
11592   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
11593     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
11594   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
11595     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
11596 
11597   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
11598     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
11599   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
11600     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
11601   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
11602     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
11603   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
11604     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
11605 
11606   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
11607     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
11608   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
11609     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
11610   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
11611     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
11612   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
11613     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
11614 
11615   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
11616     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
11617   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
11618     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
11619   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
11620     BB = EmitAtomicBinary(MI, BB, 4, 0);
11621   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
11622     BB = EmitAtomicBinary(MI, BB, 8, 0);
11623   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
11624            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
11625            (Subtarget.hasPartwordAtomics() &&
11626             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
11627            (Subtarget.hasPartwordAtomics() &&
11628             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
11629     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
11630 
11631     auto LoadMnemonic = PPC::LDARX;
11632     auto StoreMnemonic = PPC::STDCX;
11633     switch (MI.getOpcode()) {
11634     default:
11635       llvm_unreachable("Compare and swap of unknown size");
11636     case PPC::ATOMIC_CMP_SWAP_I8:
11637       LoadMnemonic = PPC::LBARX;
11638       StoreMnemonic = PPC::STBCX;
11639       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11640       break;
11641     case PPC::ATOMIC_CMP_SWAP_I16:
11642       LoadMnemonic = PPC::LHARX;
11643       StoreMnemonic = PPC::STHCX;
11644       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11645       break;
11646     case PPC::ATOMIC_CMP_SWAP_I32:
11647       LoadMnemonic = PPC::LWARX;
11648       StoreMnemonic = PPC::STWCX;
11649       break;
11650     case PPC::ATOMIC_CMP_SWAP_I64:
11651       LoadMnemonic = PPC::LDARX;
11652       StoreMnemonic = PPC::STDCX;
11653       break;
11654     }
11655     Register dest = MI.getOperand(0).getReg();
11656     Register ptrA = MI.getOperand(1).getReg();
11657     Register ptrB = MI.getOperand(2).getReg();
11658     Register oldval = MI.getOperand(3).getReg();
11659     Register newval = MI.getOperand(4).getReg();
11660     DebugLoc dl = MI.getDebugLoc();
11661 
11662     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11663     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11664     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11665     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11666     F->insert(It, loop1MBB);
11667     F->insert(It, loop2MBB);
11668     F->insert(It, midMBB);
11669     F->insert(It, exitMBB);
11670     exitMBB->splice(exitMBB->begin(), BB,
11671                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11672     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11673 
11674     //  thisMBB:
11675     //   ...
11676     //   fallthrough --> loopMBB
11677     BB->addSuccessor(loop1MBB);
11678 
11679     // loop1MBB:
11680     //   l[bhwd]arx dest, ptr
11681     //   cmp[wd] dest, oldval
11682     //   bne- midMBB
11683     // loop2MBB:
11684     //   st[bhwd]cx. newval, ptr
11685     //   bne- loopMBB
11686     //   b exitBB
11687     // midMBB:
11688     //   st[bhwd]cx. dest, ptr
11689     // exitBB:
11690     BB = loop1MBB;
11691     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
11692     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
11693         .addReg(oldval)
11694         .addReg(dest);
11695     BuildMI(BB, dl, TII->get(PPC::BCC))
11696         .addImm(PPC::PRED_NE)
11697         .addReg(PPC::CR0)
11698         .addMBB(midMBB);
11699     BB->addSuccessor(loop2MBB);
11700     BB->addSuccessor(midMBB);
11701 
11702     BB = loop2MBB;
11703     BuildMI(BB, dl, TII->get(StoreMnemonic))
11704         .addReg(newval)
11705         .addReg(ptrA)
11706         .addReg(ptrB);
11707     BuildMI(BB, dl, TII->get(PPC::BCC))
11708         .addImm(PPC::PRED_NE)
11709         .addReg(PPC::CR0)
11710         .addMBB(loop1MBB);
11711     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11712     BB->addSuccessor(loop1MBB);
11713     BB->addSuccessor(exitMBB);
11714 
11715     BB = midMBB;
11716     BuildMI(BB, dl, TII->get(StoreMnemonic))
11717         .addReg(dest)
11718         .addReg(ptrA)
11719         .addReg(ptrB);
11720     BB->addSuccessor(exitMBB);
11721 
11722     //  exitMBB:
11723     //   ...
11724     BB = exitMBB;
11725   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
11726              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
11727     // We must use 64-bit registers for addresses when targeting 64-bit,
11728     // since we're actually doing arithmetic on them.  Other registers
11729     // can be 32-bit.
11730     bool is64bit = Subtarget.isPPC64();
11731     bool isLittleEndian = Subtarget.isLittleEndian();
11732     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
11733 
11734     Register dest = MI.getOperand(0).getReg();
11735     Register ptrA = MI.getOperand(1).getReg();
11736     Register ptrB = MI.getOperand(2).getReg();
11737     Register oldval = MI.getOperand(3).getReg();
11738     Register newval = MI.getOperand(4).getReg();
11739     DebugLoc dl = MI.getDebugLoc();
11740 
11741     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11742     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11743     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11744     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11745     F->insert(It, loop1MBB);
11746     F->insert(It, loop2MBB);
11747     F->insert(It, midMBB);
11748     F->insert(It, exitMBB);
11749     exitMBB->splice(exitMBB->begin(), BB,
11750                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11751     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11752 
11753     MachineRegisterInfo &RegInfo = F->getRegInfo();
11754     const TargetRegisterClass *RC =
11755         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11756     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11757 
11758     Register PtrReg = RegInfo.createVirtualRegister(RC);
11759     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11760     Register ShiftReg =
11761         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11762     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
11763     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
11764     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
11765     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
11766     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11767     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11768     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11769     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11770     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11771     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11772     Register Ptr1Reg;
11773     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
11774     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11775     //  thisMBB:
11776     //   ...
11777     //   fallthrough --> loopMBB
11778     BB->addSuccessor(loop1MBB);
11779 
11780     // The 4-byte load must be aligned, while a char or short may be
11781     // anywhere in the word.  Hence all this nasty bookkeeping code.
11782     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11783     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11784     //   xori shift, shift1, 24 [16]
11785     //   rlwinm ptr, ptr1, 0, 0, 29
11786     //   slw newval2, newval, shift
11787     //   slw oldval2, oldval,shift
11788     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11789     //   slw mask, mask2, shift
11790     //   and newval3, newval2, mask
11791     //   and oldval3, oldval2, mask
11792     // loop1MBB:
11793     //   lwarx tmpDest, ptr
11794     //   and tmp, tmpDest, mask
11795     //   cmpw tmp, oldval3
11796     //   bne- midMBB
11797     // loop2MBB:
11798     //   andc tmp2, tmpDest, mask
11799     //   or tmp4, tmp2, newval3
11800     //   stwcx. tmp4, ptr
11801     //   bne- loop1MBB
11802     //   b exitBB
11803     // midMBB:
11804     //   stwcx. tmpDest, ptr
11805     // exitBB:
11806     //   srw dest, tmpDest, shift
11807     if (ptrA != ZeroReg) {
11808       Ptr1Reg = RegInfo.createVirtualRegister(RC);
11809       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11810           .addReg(ptrA)
11811           .addReg(ptrB);
11812     } else {
11813       Ptr1Reg = ptrB;
11814     }
11815 
11816     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11817     // mode.
11818     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11819         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11820         .addImm(3)
11821         .addImm(27)
11822         .addImm(is8bit ? 28 : 27);
11823     if (!isLittleEndian)
11824       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11825           .addReg(Shift1Reg)
11826           .addImm(is8bit ? 24 : 16);
11827     if (is64bit)
11828       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11829           .addReg(Ptr1Reg)
11830           .addImm(0)
11831           .addImm(61);
11832     else
11833       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11834           .addReg(Ptr1Reg)
11835           .addImm(0)
11836           .addImm(0)
11837           .addImm(29);
11838     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
11839         .addReg(newval)
11840         .addReg(ShiftReg);
11841     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
11842         .addReg(oldval)
11843         .addReg(ShiftReg);
11844     if (is8bit)
11845       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11846     else {
11847       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11848       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11849           .addReg(Mask3Reg)
11850           .addImm(65535);
11851     }
11852     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11853         .addReg(Mask2Reg)
11854         .addReg(ShiftReg);
11855     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
11856         .addReg(NewVal2Reg)
11857         .addReg(MaskReg);
11858     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
11859         .addReg(OldVal2Reg)
11860         .addReg(MaskReg);
11861 
11862     BB = loop1MBB;
11863     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11864         .addReg(ZeroReg)
11865         .addReg(PtrReg);
11866     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
11867         .addReg(TmpDestReg)
11868         .addReg(MaskReg);
11869     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
11870         .addReg(TmpReg)
11871         .addReg(OldVal3Reg);
11872     BuildMI(BB, dl, TII->get(PPC::BCC))
11873         .addImm(PPC::PRED_NE)
11874         .addReg(PPC::CR0)
11875         .addMBB(midMBB);
11876     BB->addSuccessor(loop2MBB);
11877     BB->addSuccessor(midMBB);
11878 
11879     BB = loop2MBB;
11880     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11881         .addReg(TmpDestReg)
11882         .addReg(MaskReg);
11883     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
11884         .addReg(Tmp2Reg)
11885         .addReg(NewVal3Reg);
11886     BuildMI(BB, dl, TII->get(PPC::STWCX))
11887         .addReg(Tmp4Reg)
11888         .addReg(ZeroReg)
11889         .addReg(PtrReg);
11890     BuildMI(BB, dl, TII->get(PPC::BCC))
11891         .addImm(PPC::PRED_NE)
11892         .addReg(PPC::CR0)
11893         .addMBB(loop1MBB);
11894     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11895     BB->addSuccessor(loop1MBB);
11896     BB->addSuccessor(exitMBB);
11897 
11898     BB = midMBB;
11899     BuildMI(BB, dl, TII->get(PPC::STWCX))
11900         .addReg(TmpDestReg)
11901         .addReg(ZeroReg)
11902         .addReg(PtrReg);
11903     BB->addSuccessor(exitMBB);
11904 
11905     //  exitMBB:
11906     //   ...
11907     BB = exitMBB;
11908     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11909         .addReg(TmpReg)
11910         .addReg(ShiftReg);
11911   } else if (MI.getOpcode() == PPC::FADDrtz) {
11912     // This pseudo performs an FADD with rounding mode temporarily forced
11913     // to round-to-zero.  We emit this via custom inserter since the FPSCR
11914     // is not modeled at the SelectionDAG level.
11915     Register Dest = MI.getOperand(0).getReg();
11916     Register Src1 = MI.getOperand(1).getReg();
11917     Register Src2 = MI.getOperand(2).getReg();
11918     DebugLoc dl = MI.getDebugLoc();
11919 
11920     MachineRegisterInfo &RegInfo = F->getRegInfo();
11921     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11922 
11923     // Save FPSCR value.
11924     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
11925 
11926     // Set rounding mode to round-to-zero.
11927     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1))
11928         .addImm(31)
11929         .addReg(PPC::RM, RegState::ImplicitDefine);
11930 
11931     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0))
11932         .addImm(30)
11933         .addReg(PPC::RM, RegState::ImplicitDefine);
11934 
11935     // Perform addition.
11936     auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest)
11937                    .addReg(Src1)
11938                    .addReg(Src2);
11939     if (MI.getFlag(MachineInstr::NoFPExcept))
11940       MIB.setMIFlag(MachineInstr::NoFPExcept);
11941 
11942     // Restore FPSCR value.
11943     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
11944   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
11945              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
11946              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
11947              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
11948     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
11949                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
11950                           ? PPC::ANDI8_rec
11951                           : PPC::ANDI_rec;
11952     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
11953                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
11954 
11955     MachineRegisterInfo &RegInfo = F->getRegInfo();
11956     Register Dest = RegInfo.createVirtualRegister(
11957         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
11958 
11959     DebugLoc Dl = MI.getDebugLoc();
11960     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
11961         .addReg(MI.getOperand(1).getReg())
11962         .addImm(1);
11963     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11964             MI.getOperand(0).getReg())
11965         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
11966   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
11967     DebugLoc Dl = MI.getDebugLoc();
11968     MachineRegisterInfo &RegInfo = F->getRegInfo();
11969     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11970     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
11971     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11972             MI.getOperand(0).getReg())
11973         .addReg(CRReg);
11974   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
11975     DebugLoc Dl = MI.getDebugLoc();
11976     unsigned Imm = MI.getOperand(1).getImm();
11977     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
11978     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11979             MI.getOperand(0).getReg())
11980         .addReg(PPC::CR0EQ);
11981   } else if (MI.getOpcode() == PPC::SETRNDi) {
11982     DebugLoc dl = MI.getDebugLoc();
11983     Register OldFPSCRReg = MI.getOperand(0).getReg();
11984 
11985     // Save FPSCR value.
11986     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11987 
11988     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
11989     // the following settings:
11990     //   00 Round to nearest
11991     //   01 Round to 0
11992     //   10 Round to +inf
11993     //   11 Round to -inf
11994 
11995     // When the operand is immediate, using the two least significant bits of
11996     // the immediate to set the bits 62:63 of FPSCR.
11997     unsigned Mode = MI.getOperand(1).getImm();
11998     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
11999         .addImm(31)
12000         .addReg(PPC::RM, RegState::ImplicitDefine);
12001 
12002     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
12003         .addImm(30)
12004         .addReg(PPC::RM, RegState::ImplicitDefine);
12005   } else if (MI.getOpcode() == PPC::SETRND) {
12006     DebugLoc dl = MI.getDebugLoc();
12007 
12008     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
12009     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
12010     // If the target doesn't have DirectMove, we should use stack to do the
12011     // conversion, because the target doesn't have the instructions like mtvsrd
12012     // or mfvsrd to do this conversion directly.
12013     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
12014       if (Subtarget.hasDirectMove()) {
12015         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
12016           .addReg(SrcReg);
12017       } else {
12018         // Use stack to do the register copy.
12019         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
12020         MachineRegisterInfo &RegInfo = F->getRegInfo();
12021         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
12022         if (RC == &PPC::F8RCRegClass) {
12023           // Copy register from F8RCRegClass to G8RCRegclass.
12024           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
12025                  "Unsupported RegClass.");
12026 
12027           StoreOp = PPC::STFD;
12028           LoadOp = PPC::LD;
12029         } else {
12030           // Copy register from G8RCRegClass to F8RCRegclass.
12031           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
12032                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
12033                  "Unsupported RegClass.");
12034         }
12035 
12036         MachineFrameInfo &MFI = F->getFrameInfo();
12037         int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
12038 
12039         MachineMemOperand *MMOStore = F->getMachineMemOperand(
12040             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12041             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
12042             MFI.getObjectAlign(FrameIdx));
12043 
12044         // Store the SrcReg into the stack.
12045         BuildMI(*BB, MI, dl, TII->get(StoreOp))
12046           .addReg(SrcReg)
12047           .addImm(0)
12048           .addFrameIndex(FrameIdx)
12049           .addMemOperand(MMOStore);
12050 
12051         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
12052             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12053             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
12054             MFI.getObjectAlign(FrameIdx));
12055 
12056         // Load from the stack where SrcReg is stored, and save to DestReg,
12057         // so we have done the RegClass conversion from RegClass::SrcReg to
12058         // RegClass::DestReg.
12059         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
12060           .addImm(0)
12061           .addFrameIndex(FrameIdx)
12062           .addMemOperand(MMOLoad);
12063       }
12064     };
12065 
12066     Register OldFPSCRReg = MI.getOperand(0).getReg();
12067 
12068     // Save FPSCR value.
12069     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12070 
12071     // When the operand is gprc register, use two least significant bits of the
12072     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12073     //
12074     // copy OldFPSCRTmpReg, OldFPSCRReg
12075     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12076     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12077     // copy NewFPSCRReg, NewFPSCRTmpReg
12078     // mtfsf 255, NewFPSCRReg
12079     MachineOperand SrcOp = MI.getOperand(1);
12080     MachineRegisterInfo &RegInfo = F->getRegInfo();
12081     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12082 
12083     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12084 
12085     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12086     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12087 
12088     // The first operand of INSERT_SUBREG should be a register which has
12089     // subregisters, we only care about its RegClass, so we should use an
12090     // IMPLICIT_DEF register.
12091     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12092     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12093       .addReg(ImDefReg)
12094       .add(SrcOp)
12095       .addImm(1);
12096 
12097     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12098     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12099       .addReg(OldFPSCRTmpReg)
12100       .addReg(ExtSrcReg)
12101       .addImm(0)
12102       .addImm(62);
12103 
12104     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12105     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12106 
12107     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12108     // bits of FPSCR.
12109     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12110       .addImm(255)
12111       .addReg(NewFPSCRReg)
12112       .addImm(0)
12113       .addImm(0);
12114   } else if (MI.getOpcode() == PPC::SETFLM) {
12115     DebugLoc Dl = MI.getDebugLoc();
12116 
12117     // Result of setflm is previous FPSCR content, so we need to save it first.
12118     Register OldFPSCRReg = MI.getOperand(0).getReg();
12119     BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg);
12120 
12121     // Put bits in 32:63 to FPSCR.
12122     Register NewFPSCRReg = MI.getOperand(1).getReg();
12123     BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF))
12124         .addImm(255)
12125         .addReg(NewFPSCRReg)
12126         .addImm(0)
12127         .addImm(0);
12128   } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
12129              MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
12130     return emitProbedAlloca(MI, BB);
12131   } else {
12132     llvm_unreachable("Unexpected instr type to insert");
12133   }
12134 
12135   MI.eraseFromParent(); // The pseudo instruction is gone now.
12136   return BB;
12137 }
12138 
12139 //===----------------------------------------------------------------------===//
12140 // Target Optimization Hooks
12141 //===----------------------------------------------------------------------===//
12142 
12143 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
12144   // For the estimates, convergence is quadratic, so we essentially double the
12145   // number of digits correct after every iteration. For both FRE and FRSQRTE,
12146   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
12147   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
12148   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
12149   if (VT.getScalarType() == MVT::f64)
12150     RefinementSteps++;
12151   return RefinementSteps;
12152 }
12153 
12154 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
12155                                             const DenormalMode &Mode) const {
12156   // We only have VSX Vector Test for software Square Root.
12157   EVT VT = Op.getValueType();
12158   if (!isTypeLegal(MVT::i1) ||
12159       (VT != MVT::f64 &&
12160        ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())))
12161     return TargetLowering::getSqrtInputTest(Op, DAG, Mode);
12162 
12163   SDLoc DL(Op);
12164   // The output register of FTSQRT is CR field.
12165   SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op);
12166   // ftsqrt BF,FRB
12167   // Let e_b be the unbiased exponent of the double-precision
12168   // floating-point operand in register FRB.
12169   // fe_flag is set to 1 if either of the following conditions occurs.
12170   //   - The double-precision floating-point operand in register FRB is a zero,
12171   //     a NaN, or an infinity, or a negative value.
12172   //   - e_b is less than or equal to -970.
12173   // Otherwise fe_flag is set to 0.
12174   // Both VSX and non-VSX versions would set EQ bit in the CR if the number is
12175   // not eligible for iteration. (zero/negative/infinity/nan or unbiased
12176   // exponent is less than -970)
12177   SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32);
12178   return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1,
12179                                     FTSQRT, SRIdxVal),
12180                  0);
12181 }
12182 
12183 SDValue
12184 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op,
12185                                                SelectionDAG &DAG) const {
12186   // We only have VSX Vector Square Root.
12187   EVT VT = Op.getValueType();
12188   if (VT != MVT::f64 &&
12189       ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))
12190     return TargetLowering::getSqrtResultForDenormInput(Op, DAG);
12191 
12192   return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op);
12193 }
12194 
12195 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
12196                                            int Enabled, int &RefinementSteps,
12197                                            bool &UseOneConstNR,
12198                                            bool Reciprocal) const {
12199   EVT VT = Operand.getValueType();
12200   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
12201       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
12202       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12203       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12204     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12205       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12206 
12207     // The Newton-Raphson computation with a single constant does not provide
12208     // enough accuracy on some CPUs.
12209     UseOneConstNR = !Subtarget.needsTwoConstNR();
12210     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
12211   }
12212   return SDValue();
12213 }
12214 
12215 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
12216                                             int Enabled,
12217                                             int &RefinementSteps) const {
12218   EVT VT = Operand.getValueType();
12219   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
12220       (VT == MVT::f64 && Subtarget.hasFRE()) ||
12221       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12222       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12223     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12224       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12225     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
12226   }
12227   return SDValue();
12228 }
12229 
12230 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12231   // Note: This functionality is used only when unsafe-fp-math is enabled, and
12232   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
12233   // enabled for division), this functionality is redundant with the default
12234   // combiner logic (once the division -> reciprocal/multiply transformation
12235   // has taken place). As a result, this matters more for older cores than for
12236   // newer ones.
12237 
12238   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12239   // reciprocal if there are two or more FDIVs (for embedded cores with only
12240   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
12241   switch (Subtarget.getCPUDirective()) {
12242   default:
12243     return 3;
12244   case PPC::DIR_440:
12245   case PPC::DIR_A2:
12246   case PPC::DIR_E500:
12247   case PPC::DIR_E500mc:
12248   case PPC::DIR_E5500:
12249     return 2;
12250   }
12251 }
12252 
12253 // isConsecutiveLSLoc needs to work even if all adds have not yet been
12254 // collapsed, and so we need to look through chains of them.
12255 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
12256                                      int64_t& Offset, SelectionDAG &DAG) {
12257   if (DAG.isBaseWithConstantOffset(Loc)) {
12258     Base = Loc.getOperand(0);
12259     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
12260 
12261     // The base might itself be a base plus an offset, and if so, accumulate
12262     // that as well.
12263     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
12264   }
12265 }
12266 
12267 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
12268                             unsigned Bytes, int Dist,
12269                             SelectionDAG &DAG) {
12270   if (VT.getSizeInBits() / 8 != Bytes)
12271     return false;
12272 
12273   SDValue BaseLoc = Base->getBasePtr();
12274   if (Loc.getOpcode() == ISD::FrameIndex) {
12275     if (BaseLoc.getOpcode() != ISD::FrameIndex)
12276       return false;
12277     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
12278     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
12279     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
12280     int FS  = MFI.getObjectSize(FI);
12281     int BFS = MFI.getObjectSize(BFI);
12282     if (FS != BFS || FS != (int)Bytes) return false;
12283     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12284   }
12285 
12286   SDValue Base1 = Loc, Base2 = BaseLoc;
12287   int64_t Offset1 = 0, Offset2 = 0;
12288   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12289   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12290   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12291     return true;
12292 
12293   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12294   const GlobalValue *GV1 = nullptr;
12295   const GlobalValue *GV2 = nullptr;
12296   Offset1 = 0;
12297   Offset2 = 0;
12298   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12299   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12300   if (isGA1 && isGA2 && GV1 == GV2)
12301     return Offset1 == (Offset2 + Dist*Bytes);
12302   return false;
12303 }
12304 
12305 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12306 // not enforce equality of the chain operands.
12307 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12308                             unsigned Bytes, int Dist,
12309                             SelectionDAG &DAG) {
12310   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12311     EVT VT = LS->getMemoryVT();
12312     SDValue Loc = LS->getBasePtr();
12313     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12314   }
12315 
12316   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12317     EVT VT;
12318     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12319     default: return false;
12320     case Intrinsic::ppc_altivec_lvx:
12321     case Intrinsic::ppc_altivec_lvxl:
12322     case Intrinsic::ppc_vsx_lxvw4x:
12323     case Intrinsic::ppc_vsx_lxvw4x_be:
12324       VT = MVT::v4i32;
12325       break;
12326     case Intrinsic::ppc_vsx_lxvd2x:
12327     case Intrinsic::ppc_vsx_lxvd2x_be:
12328       VT = MVT::v2f64;
12329       break;
12330     case Intrinsic::ppc_altivec_lvebx:
12331       VT = MVT::i8;
12332       break;
12333     case Intrinsic::ppc_altivec_lvehx:
12334       VT = MVT::i16;
12335       break;
12336     case Intrinsic::ppc_altivec_lvewx:
12337       VT = MVT::i32;
12338       break;
12339     }
12340 
12341     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12342   }
12343 
12344   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12345     EVT VT;
12346     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12347     default: return false;
12348     case Intrinsic::ppc_altivec_stvx:
12349     case Intrinsic::ppc_altivec_stvxl:
12350     case Intrinsic::ppc_vsx_stxvw4x:
12351       VT = MVT::v4i32;
12352       break;
12353     case Intrinsic::ppc_vsx_stxvd2x:
12354       VT = MVT::v2f64;
12355       break;
12356     case Intrinsic::ppc_vsx_stxvw4x_be:
12357       VT = MVT::v4i32;
12358       break;
12359     case Intrinsic::ppc_vsx_stxvd2x_be:
12360       VT = MVT::v2f64;
12361       break;
12362     case Intrinsic::ppc_altivec_stvebx:
12363       VT = MVT::i8;
12364       break;
12365     case Intrinsic::ppc_altivec_stvehx:
12366       VT = MVT::i16;
12367       break;
12368     case Intrinsic::ppc_altivec_stvewx:
12369       VT = MVT::i32;
12370       break;
12371     }
12372 
12373     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12374   }
12375 
12376   return false;
12377 }
12378 
12379 // Return true is there is a nearyby consecutive load to the one provided
12380 // (regardless of alignment). We search up and down the chain, looking though
12381 // token factors and other loads (but nothing else). As a result, a true result
12382 // indicates that it is safe to create a new consecutive load adjacent to the
12383 // load provided.
12384 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
12385   SDValue Chain = LD->getChain();
12386   EVT VT = LD->getMemoryVT();
12387 
12388   SmallSet<SDNode *, 16> LoadRoots;
12389   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
12390   SmallSet<SDNode *, 16> Visited;
12391 
12392   // First, search up the chain, branching to follow all token-factor operands.
12393   // If we find a consecutive load, then we're done, otherwise, record all
12394   // nodes just above the top-level loads and token factors.
12395   while (!Queue.empty()) {
12396     SDNode *ChainNext = Queue.pop_back_val();
12397     if (!Visited.insert(ChainNext).second)
12398       continue;
12399 
12400     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
12401       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12402         return true;
12403 
12404       if (!Visited.count(ChainLD->getChain().getNode()))
12405         Queue.push_back(ChainLD->getChain().getNode());
12406     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
12407       for (const SDUse &O : ChainNext->ops())
12408         if (!Visited.count(O.getNode()))
12409           Queue.push_back(O.getNode());
12410     } else
12411       LoadRoots.insert(ChainNext);
12412   }
12413 
12414   // Second, search down the chain, starting from the top-level nodes recorded
12415   // in the first phase. These top-level nodes are the nodes just above all
12416   // loads and token factors. Starting with their uses, recursively look though
12417   // all loads (just the chain uses) and token factors to find a consecutive
12418   // load.
12419   Visited.clear();
12420   Queue.clear();
12421 
12422   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
12423        IE = LoadRoots.end(); I != IE; ++I) {
12424     Queue.push_back(*I);
12425 
12426     while (!Queue.empty()) {
12427       SDNode *LoadRoot = Queue.pop_back_val();
12428       if (!Visited.insert(LoadRoot).second)
12429         continue;
12430 
12431       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
12432         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12433           return true;
12434 
12435       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
12436            UE = LoadRoot->use_end(); UI != UE; ++UI)
12437         if (((isa<MemSDNode>(*UI) &&
12438             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
12439             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
12440           Queue.push_back(*UI);
12441     }
12442   }
12443 
12444   return false;
12445 }
12446 
12447 /// This function is called when we have proved that a SETCC node can be replaced
12448 /// by subtraction (and other supporting instructions) so that the result of
12449 /// comparison is kept in a GPR instead of CR. This function is purely for
12450 /// codegen purposes and has some flags to guide the codegen process.
12451 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
12452                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
12453   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12454 
12455   // Zero extend the operands to the largest legal integer. Originally, they
12456   // must be of a strictly smaller size.
12457   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
12458                          DAG.getConstant(Size, DL, MVT::i32));
12459   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
12460                          DAG.getConstant(Size, DL, MVT::i32));
12461 
12462   // Swap if needed. Depends on the condition code.
12463   if (Swap)
12464     std::swap(Op0, Op1);
12465 
12466   // Subtract extended integers.
12467   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
12468 
12469   // Move the sign bit to the least significant position and zero out the rest.
12470   // Now the least significant bit carries the result of original comparison.
12471   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
12472                              DAG.getConstant(Size - 1, DL, MVT::i32));
12473   auto Final = Shifted;
12474 
12475   // Complement the result if needed. Based on the condition code.
12476   if (Complement)
12477     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
12478                         DAG.getConstant(1, DL, MVT::i64));
12479 
12480   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
12481 }
12482 
12483 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
12484                                                   DAGCombinerInfo &DCI) const {
12485   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12486 
12487   SelectionDAG &DAG = DCI.DAG;
12488   SDLoc DL(N);
12489 
12490   // Size of integers being compared has a critical role in the following
12491   // analysis, so we prefer to do this when all types are legal.
12492   if (!DCI.isAfterLegalizeDAG())
12493     return SDValue();
12494 
12495   // If all users of SETCC extend its value to a legal integer type
12496   // then we replace SETCC with a subtraction
12497   for (SDNode::use_iterator UI = N->use_begin(),
12498        UE = N->use_end(); UI != UE; ++UI) {
12499     if (UI->getOpcode() != ISD::ZERO_EXTEND)
12500       return SDValue();
12501   }
12502 
12503   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12504   auto OpSize = N->getOperand(0).getValueSizeInBits();
12505 
12506   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
12507 
12508   if (OpSize < Size) {
12509     switch (CC) {
12510     default: break;
12511     case ISD::SETULT:
12512       return generateEquivalentSub(N, Size, false, false, DL, DAG);
12513     case ISD::SETULE:
12514       return generateEquivalentSub(N, Size, true, true, DL, DAG);
12515     case ISD::SETUGT:
12516       return generateEquivalentSub(N, Size, false, true, DL, DAG);
12517     case ISD::SETUGE:
12518       return generateEquivalentSub(N, Size, true, false, DL, DAG);
12519     }
12520   }
12521 
12522   return SDValue();
12523 }
12524 
12525 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
12526                                                   DAGCombinerInfo &DCI) const {
12527   SelectionDAG &DAG = DCI.DAG;
12528   SDLoc dl(N);
12529 
12530   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
12531   // If we're tracking CR bits, we need to be careful that we don't have:
12532   //   trunc(binary-ops(zext(x), zext(y)))
12533   // or
12534   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
12535   // such that we're unnecessarily moving things into GPRs when it would be
12536   // better to keep them in CR bits.
12537 
12538   // Note that trunc here can be an actual i1 trunc, or can be the effective
12539   // truncation that comes from a setcc or select_cc.
12540   if (N->getOpcode() == ISD::TRUNCATE &&
12541       N->getValueType(0) != MVT::i1)
12542     return SDValue();
12543 
12544   if (N->getOperand(0).getValueType() != MVT::i32 &&
12545       N->getOperand(0).getValueType() != MVT::i64)
12546     return SDValue();
12547 
12548   if (N->getOpcode() == ISD::SETCC ||
12549       N->getOpcode() == ISD::SELECT_CC) {
12550     // If we're looking at a comparison, then we need to make sure that the
12551     // high bits (all except for the first) don't matter the result.
12552     ISD::CondCode CC =
12553       cast<CondCodeSDNode>(N->getOperand(
12554         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
12555     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
12556 
12557     if (ISD::isSignedIntSetCC(CC)) {
12558       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
12559           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
12560         return SDValue();
12561     } else if (ISD::isUnsignedIntSetCC(CC)) {
12562       if (!DAG.MaskedValueIsZero(N->getOperand(0),
12563                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
12564           !DAG.MaskedValueIsZero(N->getOperand(1),
12565                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
12566         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
12567                                              : SDValue());
12568     } else {
12569       // This is neither a signed nor an unsigned comparison, just make sure
12570       // that the high bits are equal.
12571       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
12572       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
12573 
12574       // We don't really care about what is known about the first bit (if
12575       // anything), so pretend that it is known zero for both to ensure they can
12576       // be compared as constants.
12577       Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0);
12578       Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0);
12579 
12580       if (!Op1Known.isConstant() || !Op2Known.isConstant() ||
12581           Op1Known.getConstant() != Op2Known.getConstant())
12582         return SDValue();
12583     }
12584   }
12585 
12586   // We now know that the higher-order bits are irrelevant, we just need to
12587   // make sure that all of the intermediate operations are bit operations, and
12588   // all inputs are extensions.
12589   if (N->getOperand(0).getOpcode() != ISD::AND &&
12590       N->getOperand(0).getOpcode() != ISD::OR  &&
12591       N->getOperand(0).getOpcode() != ISD::XOR &&
12592       N->getOperand(0).getOpcode() != ISD::SELECT &&
12593       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
12594       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
12595       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
12596       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
12597       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
12598     return SDValue();
12599 
12600   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
12601       N->getOperand(1).getOpcode() != ISD::AND &&
12602       N->getOperand(1).getOpcode() != ISD::OR  &&
12603       N->getOperand(1).getOpcode() != ISD::XOR &&
12604       N->getOperand(1).getOpcode() != ISD::SELECT &&
12605       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
12606       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
12607       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
12608       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
12609       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
12610     return SDValue();
12611 
12612   SmallVector<SDValue, 4> Inputs;
12613   SmallVector<SDValue, 8> BinOps, PromOps;
12614   SmallPtrSet<SDNode *, 16> Visited;
12615 
12616   for (unsigned i = 0; i < 2; ++i) {
12617     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12618           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12619           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12620           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12621         isa<ConstantSDNode>(N->getOperand(i)))
12622       Inputs.push_back(N->getOperand(i));
12623     else
12624       BinOps.push_back(N->getOperand(i));
12625 
12626     if (N->getOpcode() == ISD::TRUNCATE)
12627       break;
12628   }
12629 
12630   // Visit all inputs, collect all binary operations (and, or, xor and
12631   // select) that are all fed by extensions.
12632   while (!BinOps.empty()) {
12633     SDValue BinOp = BinOps.pop_back_val();
12634 
12635     if (!Visited.insert(BinOp.getNode()).second)
12636       continue;
12637 
12638     PromOps.push_back(BinOp);
12639 
12640     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12641       // The condition of the select is not promoted.
12642       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12643         continue;
12644       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12645         continue;
12646 
12647       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12648             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12649             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12650            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12651           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12652         Inputs.push_back(BinOp.getOperand(i));
12653       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12654                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12655                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12656                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12657                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
12658                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12659                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12660                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12661                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
12662         BinOps.push_back(BinOp.getOperand(i));
12663       } else {
12664         // We have an input that is not an extension or another binary
12665         // operation; we'll abort this transformation.
12666         return SDValue();
12667       }
12668     }
12669   }
12670 
12671   // Make sure that this is a self-contained cluster of operations (which
12672   // is not quite the same thing as saying that everything has only one
12673   // use).
12674   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12675     if (isa<ConstantSDNode>(Inputs[i]))
12676       continue;
12677 
12678     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12679                               UE = Inputs[i].getNode()->use_end();
12680          UI != UE; ++UI) {
12681       SDNode *User = *UI;
12682       if (User != N && !Visited.count(User))
12683         return SDValue();
12684 
12685       // Make sure that we're not going to promote the non-output-value
12686       // operand(s) or SELECT or SELECT_CC.
12687       // FIXME: Although we could sometimes handle this, and it does occur in
12688       // practice that one of the condition inputs to the select is also one of
12689       // the outputs, we currently can't deal with this.
12690       if (User->getOpcode() == ISD::SELECT) {
12691         if (User->getOperand(0) == Inputs[i])
12692           return SDValue();
12693       } else if (User->getOpcode() == ISD::SELECT_CC) {
12694         if (User->getOperand(0) == Inputs[i] ||
12695             User->getOperand(1) == Inputs[i])
12696           return SDValue();
12697       }
12698     }
12699   }
12700 
12701   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12702     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12703                               UE = PromOps[i].getNode()->use_end();
12704          UI != UE; ++UI) {
12705       SDNode *User = *UI;
12706       if (User != N && !Visited.count(User))
12707         return SDValue();
12708 
12709       // Make sure that we're not going to promote the non-output-value
12710       // operand(s) or SELECT or SELECT_CC.
12711       // FIXME: Although we could sometimes handle this, and it does occur in
12712       // practice that one of the condition inputs to the select is also one of
12713       // the outputs, we currently can't deal with this.
12714       if (User->getOpcode() == ISD::SELECT) {
12715         if (User->getOperand(0) == PromOps[i])
12716           return SDValue();
12717       } else if (User->getOpcode() == ISD::SELECT_CC) {
12718         if (User->getOperand(0) == PromOps[i] ||
12719             User->getOperand(1) == PromOps[i])
12720           return SDValue();
12721       }
12722     }
12723   }
12724 
12725   // Replace all inputs with the extension operand.
12726   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12727     // Constants may have users outside the cluster of to-be-promoted nodes,
12728     // and so we need to replace those as we do the promotions.
12729     if (isa<ConstantSDNode>(Inputs[i]))
12730       continue;
12731     else
12732       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
12733   }
12734 
12735   std::list<HandleSDNode> PromOpHandles;
12736   for (auto &PromOp : PromOps)
12737     PromOpHandles.emplace_back(PromOp);
12738 
12739   // Replace all operations (these are all the same, but have a different
12740   // (i1) return type). DAG.getNode will validate that the types of
12741   // a binary operator match, so go through the list in reverse so that
12742   // we've likely promoted both operands first. Any intermediate truncations or
12743   // extensions disappear.
12744   while (!PromOpHandles.empty()) {
12745     SDValue PromOp = PromOpHandles.back().getValue();
12746     PromOpHandles.pop_back();
12747 
12748     if (PromOp.getOpcode() == ISD::TRUNCATE ||
12749         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
12750         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
12751         PromOp.getOpcode() == ISD::ANY_EXTEND) {
12752       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
12753           PromOp.getOperand(0).getValueType() != MVT::i1) {
12754         // The operand is not yet ready (see comment below).
12755         PromOpHandles.emplace_front(PromOp);
12756         continue;
12757       }
12758 
12759       SDValue RepValue = PromOp.getOperand(0);
12760       if (isa<ConstantSDNode>(RepValue))
12761         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
12762 
12763       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
12764       continue;
12765     }
12766 
12767     unsigned C;
12768     switch (PromOp.getOpcode()) {
12769     default:             C = 0; break;
12770     case ISD::SELECT:    C = 1; break;
12771     case ISD::SELECT_CC: C = 2; break;
12772     }
12773 
12774     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12775          PromOp.getOperand(C).getValueType() != MVT::i1) ||
12776         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12777          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
12778       // The to-be-promoted operands of this node have not yet been
12779       // promoted (this should be rare because we're going through the
12780       // list backward, but if one of the operands has several users in
12781       // this cluster of to-be-promoted nodes, it is possible).
12782       PromOpHandles.emplace_front(PromOp);
12783       continue;
12784     }
12785 
12786     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12787                                 PromOp.getNode()->op_end());
12788 
12789     // If there are any constant inputs, make sure they're replaced now.
12790     for (unsigned i = 0; i < 2; ++i)
12791       if (isa<ConstantSDNode>(Ops[C+i]))
12792         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
12793 
12794     DAG.ReplaceAllUsesOfValueWith(PromOp,
12795       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
12796   }
12797 
12798   // Now we're left with the initial truncation itself.
12799   if (N->getOpcode() == ISD::TRUNCATE)
12800     return N->getOperand(0);
12801 
12802   // Otherwise, this is a comparison. The operands to be compared have just
12803   // changed type (to i1), but everything else is the same.
12804   return SDValue(N, 0);
12805 }
12806 
12807 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
12808                                                   DAGCombinerInfo &DCI) const {
12809   SelectionDAG &DAG = DCI.DAG;
12810   SDLoc dl(N);
12811 
12812   // If we're tracking CR bits, we need to be careful that we don't have:
12813   //   zext(binary-ops(trunc(x), trunc(y)))
12814   // or
12815   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
12816   // such that we're unnecessarily moving things into CR bits that can more
12817   // efficiently stay in GPRs. Note that if we're not certain that the high
12818   // bits are set as required by the final extension, we still may need to do
12819   // some masking to get the proper behavior.
12820 
12821   // This same functionality is important on PPC64 when dealing with
12822   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
12823   // the return values of functions. Because it is so similar, it is handled
12824   // here as well.
12825 
12826   if (N->getValueType(0) != MVT::i32 &&
12827       N->getValueType(0) != MVT::i64)
12828     return SDValue();
12829 
12830   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
12831         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
12832     return SDValue();
12833 
12834   if (N->getOperand(0).getOpcode() != ISD::AND &&
12835       N->getOperand(0).getOpcode() != ISD::OR  &&
12836       N->getOperand(0).getOpcode() != ISD::XOR &&
12837       N->getOperand(0).getOpcode() != ISD::SELECT &&
12838       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
12839     return SDValue();
12840 
12841   SmallVector<SDValue, 4> Inputs;
12842   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
12843   SmallPtrSet<SDNode *, 16> Visited;
12844 
12845   // Visit all inputs, collect all binary operations (and, or, xor and
12846   // select) that are all fed by truncations.
12847   while (!BinOps.empty()) {
12848     SDValue BinOp = BinOps.pop_back_val();
12849 
12850     if (!Visited.insert(BinOp.getNode()).second)
12851       continue;
12852 
12853     PromOps.push_back(BinOp);
12854 
12855     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12856       // The condition of the select is not promoted.
12857       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12858         continue;
12859       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12860         continue;
12861 
12862       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12863           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12864         Inputs.push_back(BinOp.getOperand(i));
12865       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12866                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12867                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12868                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12869                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
12870         BinOps.push_back(BinOp.getOperand(i));
12871       } else {
12872         // We have an input that is not a truncation or another binary
12873         // operation; we'll abort this transformation.
12874         return SDValue();
12875       }
12876     }
12877   }
12878 
12879   // The operands of a select that must be truncated when the select is
12880   // promoted because the operand is actually part of the to-be-promoted set.
12881   DenseMap<SDNode *, EVT> SelectTruncOp[2];
12882 
12883   // Make sure that this is a self-contained cluster of operations (which
12884   // is not quite the same thing as saying that everything has only one
12885   // use).
12886   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12887     if (isa<ConstantSDNode>(Inputs[i]))
12888       continue;
12889 
12890     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12891                               UE = Inputs[i].getNode()->use_end();
12892          UI != UE; ++UI) {
12893       SDNode *User = *UI;
12894       if (User != N && !Visited.count(User))
12895         return SDValue();
12896 
12897       // If we're going to promote the non-output-value operand(s) or SELECT or
12898       // SELECT_CC, record them for truncation.
12899       if (User->getOpcode() == ISD::SELECT) {
12900         if (User->getOperand(0) == Inputs[i])
12901           SelectTruncOp[0].insert(std::make_pair(User,
12902                                     User->getOperand(0).getValueType()));
12903       } else if (User->getOpcode() == ISD::SELECT_CC) {
12904         if (User->getOperand(0) == Inputs[i])
12905           SelectTruncOp[0].insert(std::make_pair(User,
12906                                     User->getOperand(0).getValueType()));
12907         if (User->getOperand(1) == Inputs[i])
12908           SelectTruncOp[1].insert(std::make_pair(User,
12909                                     User->getOperand(1).getValueType()));
12910       }
12911     }
12912   }
12913 
12914   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12915     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12916                               UE = PromOps[i].getNode()->use_end();
12917          UI != UE; ++UI) {
12918       SDNode *User = *UI;
12919       if (User != N && !Visited.count(User))
12920         return SDValue();
12921 
12922       // If we're going to promote the non-output-value operand(s) or SELECT or
12923       // SELECT_CC, record them for truncation.
12924       if (User->getOpcode() == ISD::SELECT) {
12925         if (User->getOperand(0) == PromOps[i])
12926           SelectTruncOp[0].insert(std::make_pair(User,
12927                                     User->getOperand(0).getValueType()));
12928       } else if (User->getOpcode() == ISD::SELECT_CC) {
12929         if (User->getOperand(0) == PromOps[i])
12930           SelectTruncOp[0].insert(std::make_pair(User,
12931                                     User->getOperand(0).getValueType()));
12932         if (User->getOperand(1) == PromOps[i])
12933           SelectTruncOp[1].insert(std::make_pair(User,
12934                                     User->getOperand(1).getValueType()));
12935       }
12936     }
12937   }
12938 
12939   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
12940   bool ReallyNeedsExt = false;
12941   if (N->getOpcode() != ISD::ANY_EXTEND) {
12942     // If all of the inputs are not already sign/zero extended, then
12943     // we'll still need to do that at the end.
12944     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12945       if (isa<ConstantSDNode>(Inputs[i]))
12946         continue;
12947 
12948       unsigned OpBits =
12949         Inputs[i].getOperand(0).getValueSizeInBits();
12950       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
12951 
12952       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
12953            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
12954                                   APInt::getHighBitsSet(OpBits,
12955                                                         OpBits-PromBits))) ||
12956           (N->getOpcode() == ISD::SIGN_EXTEND &&
12957            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
12958              (OpBits-(PromBits-1)))) {
12959         ReallyNeedsExt = true;
12960         break;
12961       }
12962     }
12963   }
12964 
12965   // Replace all inputs, either with the truncation operand, or a
12966   // truncation or extension to the final output type.
12967   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12968     // Constant inputs need to be replaced with the to-be-promoted nodes that
12969     // use them because they might have users outside of the cluster of
12970     // promoted nodes.
12971     if (isa<ConstantSDNode>(Inputs[i]))
12972       continue;
12973 
12974     SDValue InSrc = Inputs[i].getOperand(0);
12975     if (Inputs[i].getValueType() == N->getValueType(0))
12976       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
12977     else if (N->getOpcode() == ISD::SIGN_EXTEND)
12978       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12979         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
12980     else if (N->getOpcode() == ISD::ZERO_EXTEND)
12981       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12982         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
12983     else
12984       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12985         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
12986   }
12987 
12988   std::list<HandleSDNode> PromOpHandles;
12989   for (auto &PromOp : PromOps)
12990     PromOpHandles.emplace_back(PromOp);
12991 
12992   // Replace all operations (these are all the same, but have a different
12993   // (promoted) return type). DAG.getNode will validate that the types of
12994   // a binary operator match, so go through the list in reverse so that
12995   // we've likely promoted both operands first.
12996   while (!PromOpHandles.empty()) {
12997     SDValue PromOp = PromOpHandles.back().getValue();
12998     PromOpHandles.pop_back();
12999 
13000     unsigned C;
13001     switch (PromOp.getOpcode()) {
13002     default:             C = 0; break;
13003     case ISD::SELECT:    C = 1; break;
13004     case ISD::SELECT_CC: C = 2; break;
13005     }
13006 
13007     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13008          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
13009         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13010          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
13011       // The to-be-promoted operands of this node have not yet been
13012       // promoted (this should be rare because we're going through the
13013       // list backward, but if one of the operands has several users in
13014       // this cluster of to-be-promoted nodes, it is possible).
13015       PromOpHandles.emplace_front(PromOp);
13016       continue;
13017     }
13018 
13019     // For SELECT and SELECT_CC nodes, we do a similar check for any
13020     // to-be-promoted comparison inputs.
13021     if (PromOp.getOpcode() == ISD::SELECT ||
13022         PromOp.getOpcode() == ISD::SELECT_CC) {
13023       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
13024            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
13025           (SelectTruncOp[1].count(PromOp.getNode()) &&
13026            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
13027         PromOpHandles.emplace_front(PromOp);
13028         continue;
13029       }
13030     }
13031 
13032     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13033                                 PromOp.getNode()->op_end());
13034 
13035     // If this node has constant inputs, then they'll need to be promoted here.
13036     for (unsigned i = 0; i < 2; ++i) {
13037       if (!isa<ConstantSDNode>(Ops[C+i]))
13038         continue;
13039       if (Ops[C+i].getValueType() == N->getValueType(0))
13040         continue;
13041 
13042       if (N->getOpcode() == ISD::SIGN_EXTEND)
13043         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13044       else if (N->getOpcode() == ISD::ZERO_EXTEND)
13045         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13046       else
13047         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13048     }
13049 
13050     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
13051     // truncate them again to the original value type.
13052     if (PromOp.getOpcode() == ISD::SELECT ||
13053         PromOp.getOpcode() == ISD::SELECT_CC) {
13054       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
13055       if (SI0 != SelectTruncOp[0].end())
13056         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
13057       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
13058       if (SI1 != SelectTruncOp[1].end())
13059         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
13060     }
13061 
13062     DAG.ReplaceAllUsesOfValueWith(PromOp,
13063       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
13064   }
13065 
13066   // Now we're left with the initial extension itself.
13067   if (!ReallyNeedsExt)
13068     return N->getOperand(0);
13069 
13070   // To zero extend, just mask off everything except for the first bit (in the
13071   // i1 case).
13072   if (N->getOpcode() == ISD::ZERO_EXTEND)
13073     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
13074                        DAG.getConstant(APInt::getLowBitsSet(
13075                                          N->getValueSizeInBits(0), PromBits),
13076                                        dl, N->getValueType(0)));
13077 
13078   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
13079          "Invalid extension type");
13080   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
13081   SDValue ShiftCst =
13082       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
13083   return DAG.getNode(
13084       ISD::SRA, dl, N->getValueType(0),
13085       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
13086       ShiftCst);
13087 }
13088 
13089 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
13090                                         DAGCombinerInfo &DCI) const {
13091   assert(N->getOpcode() == ISD::SETCC &&
13092          "Should be called with a SETCC node");
13093 
13094   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13095   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13096     SDValue LHS = N->getOperand(0);
13097     SDValue RHS = N->getOperand(1);
13098 
13099     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13100     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13101         LHS.hasOneUse())
13102       std::swap(LHS, RHS);
13103 
13104     // x == 0-y --> x+y == 0
13105     // x != 0-y --> x+y != 0
13106     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13107         RHS.hasOneUse()) {
13108       SDLoc DL(N);
13109       SelectionDAG &DAG = DCI.DAG;
13110       EVT VT = N->getValueType(0);
13111       EVT OpVT = LHS.getValueType();
13112       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13113       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13114     }
13115   }
13116 
13117   return DAGCombineTruncBoolExt(N, DCI);
13118 }
13119 
13120 // Is this an extending load from an f32 to an f64?
13121 static bool isFPExtLoad(SDValue Op) {
13122   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13123     return LD->getExtensionType() == ISD::EXTLOAD &&
13124       Op.getValueType() == MVT::f64;
13125   return false;
13126 }
13127 
13128 /// Reduces the number of fp-to-int conversion when building a vector.
13129 ///
13130 /// If this vector is built out of floating to integer conversions,
13131 /// transform it to a vector built out of floating point values followed by a
13132 /// single floating to integer conversion of the vector.
13133 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
13134 /// becomes (fptosi (build_vector ($A, $B, ...)))
13135 SDValue PPCTargetLowering::
13136 combineElementTruncationToVectorTruncation(SDNode *N,
13137                                            DAGCombinerInfo &DCI) const {
13138   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13139          "Should be called with a BUILD_VECTOR node");
13140 
13141   SelectionDAG &DAG = DCI.DAG;
13142   SDLoc dl(N);
13143 
13144   SDValue FirstInput = N->getOperand(0);
13145   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
13146          "The input operand must be an fp-to-int conversion.");
13147 
13148   // This combine happens after legalization so the fp_to_[su]i nodes are
13149   // already converted to PPCSISD nodes.
13150   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
13151   if (FirstConversion == PPCISD::FCTIDZ ||
13152       FirstConversion == PPCISD::FCTIDUZ ||
13153       FirstConversion == PPCISD::FCTIWZ ||
13154       FirstConversion == PPCISD::FCTIWUZ) {
13155     bool IsSplat = true;
13156     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
13157       FirstConversion == PPCISD::FCTIWUZ;
13158     EVT SrcVT = FirstInput.getOperand(0).getValueType();
13159     SmallVector<SDValue, 4> Ops;
13160     EVT TargetVT = N->getValueType(0);
13161     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13162       SDValue NextOp = N->getOperand(i);
13163       if (NextOp.getOpcode() != PPCISD::MFVSR)
13164         return SDValue();
13165       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
13166       if (NextConversion != FirstConversion)
13167         return SDValue();
13168       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13169       // This is not valid if the input was originally double precision. It is
13170       // also not profitable to do unless this is an extending load in which
13171       // case doing this combine will allow us to combine consecutive loads.
13172       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
13173         return SDValue();
13174       if (N->getOperand(i) != FirstInput)
13175         IsSplat = false;
13176     }
13177 
13178     // If this is a splat, we leave it as-is since there will be only a single
13179     // fp-to-int conversion followed by a splat of the integer. This is better
13180     // for 32-bit and smaller ints and neutral for 64-bit ints.
13181     if (IsSplat)
13182       return SDValue();
13183 
13184     // Now that we know we have the right type of node, get its operands
13185     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13186       SDValue In = N->getOperand(i).getOperand(0);
13187       if (Is32Bit) {
13188         // For 32-bit values, we need to add an FP_ROUND node (if we made it
13189         // here, we know that all inputs are extending loads so this is safe).
13190         if (In.isUndef())
13191           Ops.push_back(DAG.getUNDEF(SrcVT));
13192         else {
13193           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13194                                       MVT::f32, In.getOperand(0),
13195                                       DAG.getIntPtrConstant(1, dl));
13196           Ops.push_back(Trunc);
13197         }
13198       } else
13199         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13200     }
13201 
13202     unsigned Opcode;
13203     if (FirstConversion == PPCISD::FCTIDZ ||
13204         FirstConversion == PPCISD::FCTIWZ)
13205       Opcode = ISD::FP_TO_SINT;
13206     else
13207       Opcode = ISD::FP_TO_UINT;
13208 
13209     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13210     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13211     return DAG.getNode(Opcode, dl, TargetVT, BV);
13212   }
13213   return SDValue();
13214 }
13215 
13216 /// Reduce the number of loads when building a vector.
13217 ///
13218 /// Building a vector out of multiple loads can be converted to a load
13219 /// of the vector type if the loads are consecutive. If the loads are
13220 /// consecutive but in descending order, a shuffle is added at the end
13221 /// to reorder the vector.
13222 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13223   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13224          "Should be called with a BUILD_VECTOR node");
13225 
13226   SDLoc dl(N);
13227 
13228   // Return early for non byte-sized type, as they can't be consecutive.
13229   if (!N->getValueType(0).getVectorElementType().isByteSized())
13230     return SDValue();
13231 
13232   bool InputsAreConsecutiveLoads = true;
13233   bool InputsAreReverseConsecutive = true;
13234   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13235   SDValue FirstInput = N->getOperand(0);
13236   bool IsRoundOfExtLoad = false;
13237 
13238   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13239       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13240     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13241     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13242   }
13243   // Not a build vector of (possibly fp_rounded) loads.
13244   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13245       N->getNumOperands() == 1)
13246     return SDValue();
13247 
13248   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13249     // If any inputs are fp_round(extload), they all must be.
13250     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13251       return SDValue();
13252 
13253     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13254       N->getOperand(i);
13255     if (NextInput.getOpcode() != ISD::LOAD)
13256       return SDValue();
13257 
13258     SDValue PreviousInput =
13259       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13260     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13261     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13262 
13263     // If any inputs are fp_round(extload), they all must be.
13264     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13265       return SDValue();
13266 
13267     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13268       InputsAreConsecutiveLoads = false;
13269     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13270       InputsAreReverseConsecutive = false;
13271 
13272     // Exit early if the loads are neither consecutive nor reverse consecutive.
13273     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13274       return SDValue();
13275   }
13276 
13277   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13278          "The loads cannot be both consecutive and reverse consecutive.");
13279 
13280   SDValue FirstLoadOp =
13281     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13282   SDValue LastLoadOp =
13283     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13284                        N->getOperand(N->getNumOperands()-1);
13285 
13286   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
13287   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
13288   if (InputsAreConsecutiveLoads) {
13289     assert(LD1 && "Input needs to be a LoadSDNode.");
13290     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
13291                        LD1->getBasePtr(), LD1->getPointerInfo(),
13292                        LD1->getAlignment());
13293   }
13294   if (InputsAreReverseConsecutive) {
13295     assert(LDL && "Input needs to be a LoadSDNode.");
13296     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
13297                                LDL->getBasePtr(), LDL->getPointerInfo(),
13298                                LDL->getAlignment());
13299     SmallVector<int, 16> Ops;
13300     for (int i = N->getNumOperands() - 1; i >= 0; i--)
13301       Ops.push_back(i);
13302 
13303     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
13304                                 DAG.getUNDEF(N->getValueType(0)), Ops);
13305   }
13306   return SDValue();
13307 }
13308 
13309 // This function adds the required vector_shuffle needed to get
13310 // the elements of the vector extract in the correct position
13311 // as specified by the CorrectElems encoding.
13312 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
13313                                       SDValue Input, uint64_t Elems,
13314                                       uint64_t CorrectElems) {
13315   SDLoc dl(N);
13316 
13317   unsigned NumElems = Input.getValueType().getVectorNumElements();
13318   SmallVector<int, 16> ShuffleMask(NumElems, -1);
13319 
13320   // Knowing the element indices being extracted from the original
13321   // vector and the order in which they're being inserted, just put
13322   // them at element indices required for the instruction.
13323   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13324     if (DAG.getDataLayout().isLittleEndian())
13325       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13326     else
13327       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13328     CorrectElems = CorrectElems >> 8;
13329     Elems = Elems >> 8;
13330   }
13331 
13332   SDValue Shuffle =
13333       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13334                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13335 
13336   EVT VT = N->getValueType(0);
13337   SDValue Conv = DAG.getBitcast(VT, Shuffle);
13338 
13339   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
13340                                Input.getValueType().getVectorElementType(),
13341                                VT.getVectorNumElements());
13342   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
13343                      DAG.getValueType(ExtVT));
13344 }
13345 
13346 // Look for build vector patterns where input operands come from sign
13347 // extended vector_extract elements of specific indices. If the correct indices
13348 // aren't used, add a vector shuffle to fix up the indices and create
13349 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
13350 // during instruction selection.
13351 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13352   // This array encodes the indices that the vector sign extend instructions
13353   // extract from when extending from one type to another for both BE and LE.
13354   // The right nibble of each byte corresponds to the LE incides.
13355   // and the left nibble of each byte corresponds to the BE incides.
13356   // For example: 0x3074B8FC  byte->word
13357   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13358   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13359   // For example: 0x000070F8  byte->double word
13360   // For LE: the allowed indices are: 0x0,0x8
13361   // For BE: the allowed indices are: 0x7,0xF
13362   uint64_t TargetElems[] = {
13363       0x3074B8FC, // b->w
13364       0x000070F8, // b->d
13365       0x10325476, // h->w
13366       0x00003074, // h->d
13367       0x00001032, // w->d
13368   };
13369 
13370   uint64_t Elems = 0;
13371   int Index;
13372   SDValue Input;
13373 
13374   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13375     if (!Op)
13376       return false;
13377     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13378         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13379       return false;
13380 
13381     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13382     // of the right width.
13383     SDValue Extract = Op.getOperand(0);
13384     if (Extract.getOpcode() == ISD::ANY_EXTEND)
13385       Extract = Extract.getOperand(0);
13386     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13387       return false;
13388 
13389     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
13390     if (!ExtOp)
13391       return false;
13392 
13393     Index = ExtOp->getZExtValue();
13394     if (Input && Input != Extract.getOperand(0))
13395       return false;
13396 
13397     if (!Input)
13398       Input = Extract.getOperand(0);
13399 
13400     Elems = Elems << 8;
13401     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
13402     Elems |= Index;
13403 
13404     return true;
13405   };
13406 
13407   // If the build vector operands aren't sign extended vector extracts,
13408   // of the same input vector, then return.
13409   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13410     if (!isSExtOfVecExtract(N->getOperand(i))) {
13411       return SDValue();
13412     }
13413   }
13414 
13415   // If the vector extract indicies are not correct, add the appropriate
13416   // vector_shuffle.
13417   int TgtElemArrayIdx;
13418   int InputSize = Input.getValueType().getScalarSizeInBits();
13419   int OutputSize = N->getValueType(0).getScalarSizeInBits();
13420   if (InputSize + OutputSize == 40)
13421     TgtElemArrayIdx = 0;
13422   else if (InputSize + OutputSize == 72)
13423     TgtElemArrayIdx = 1;
13424   else if (InputSize + OutputSize == 48)
13425     TgtElemArrayIdx = 2;
13426   else if (InputSize + OutputSize == 80)
13427     TgtElemArrayIdx = 3;
13428   else if (InputSize + OutputSize == 96)
13429     TgtElemArrayIdx = 4;
13430   else
13431     return SDValue();
13432 
13433   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
13434   CorrectElems = DAG.getDataLayout().isLittleEndian()
13435                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
13436                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
13437   if (Elems != CorrectElems) {
13438     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
13439   }
13440 
13441   // Regular lowering will catch cases where a shuffle is not needed.
13442   return SDValue();
13443 }
13444 
13445 // Look for the pattern of a load from a narrow width to i128, feeding
13446 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node
13447 // (LXVRZX). This node represents a zero extending load that will be matched
13448 // to the Load VSX Vector Rightmost instructions.
13449 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) {
13450   SDLoc DL(N);
13451 
13452   // This combine is only eligible for a BUILD_VECTOR of v1i128.
13453   if (N->getValueType(0) != MVT::v1i128)
13454     return SDValue();
13455 
13456   SDValue Operand = N->getOperand(0);
13457   // Proceed with the transformation if the operand to the BUILD_VECTOR
13458   // is a load instruction.
13459   if (Operand.getOpcode() != ISD::LOAD)
13460     return SDValue();
13461 
13462   LoadSDNode *LD = dyn_cast<LoadSDNode>(Operand);
13463   EVT MemoryType = LD->getMemoryVT();
13464 
13465   // This transformation is only valid if the we are loading either a byte,
13466   // halfword, word, or doubleword.
13467   bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 ||
13468                      MemoryType == MVT::i32 || MemoryType == MVT::i64;
13469 
13470   // Ensure that the load from the narrow width is being zero extended to i128.
13471   if (!ValidLDType ||
13472       (LD->getExtensionType() != ISD::ZEXTLOAD &&
13473        LD->getExtensionType() != ISD::EXTLOAD))
13474     return SDValue();
13475 
13476   SDValue LoadOps[] = {
13477       LD->getChain(), LD->getBasePtr(),
13478       DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)};
13479 
13480   return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL,
13481                                  DAG.getVTList(MVT::v1i128, MVT::Other),
13482                                  LoadOps, MemoryType, LD->getMemOperand());
13483 }
13484 
13485 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
13486                                                  DAGCombinerInfo &DCI) const {
13487   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13488          "Should be called with a BUILD_VECTOR node");
13489 
13490   SelectionDAG &DAG = DCI.DAG;
13491   SDLoc dl(N);
13492 
13493   if (!Subtarget.hasVSX())
13494     return SDValue();
13495 
13496   // The target independent DAG combiner will leave a build_vector of
13497   // float-to-int conversions intact. We can generate MUCH better code for
13498   // a float-to-int conversion of a vector of floats.
13499   SDValue FirstInput = N->getOperand(0);
13500   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
13501     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
13502     if (Reduced)
13503       return Reduced;
13504   }
13505 
13506   // If we're building a vector out of consecutive loads, just load that
13507   // vector type.
13508   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
13509   if (Reduced)
13510     return Reduced;
13511 
13512   // If we're building a vector out of extended elements from another vector
13513   // we have P9 vector integer extend instructions. The code assumes legal
13514   // input types (i.e. it can't handle things like v4i16) so do not run before
13515   // legalization.
13516   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
13517     Reduced = combineBVOfVecSExt(N, DAG);
13518     if (Reduced)
13519       return Reduced;
13520   }
13521 
13522   // On Power10, the Load VSX Vector Rightmost instructions can be utilized
13523   // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR
13524   // is a load from <valid narrow width> to i128.
13525   if (Subtarget.isISA3_1()) {
13526     SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG);
13527     if (BVOfZLoad)
13528       return BVOfZLoad;
13529   }
13530 
13531   if (N->getValueType(0) != MVT::v2f64)
13532     return SDValue();
13533 
13534   // Looking for:
13535   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
13536   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
13537       FirstInput.getOpcode() != ISD::UINT_TO_FP)
13538     return SDValue();
13539   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
13540       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
13541     return SDValue();
13542   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
13543     return SDValue();
13544 
13545   SDValue Ext1 = FirstInput.getOperand(0);
13546   SDValue Ext2 = N->getOperand(1).getOperand(0);
13547   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13548      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13549     return SDValue();
13550 
13551   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
13552   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
13553   if (!Ext1Op || !Ext2Op)
13554     return SDValue();
13555   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
13556       Ext1.getOperand(0) != Ext2.getOperand(0))
13557     return SDValue();
13558 
13559   int FirstElem = Ext1Op->getZExtValue();
13560   int SecondElem = Ext2Op->getZExtValue();
13561   int SubvecIdx;
13562   if (FirstElem == 0 && SecondElem == 1)
13563     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
13564   else if (FirstElem == 2 && SecondElem == 3)
13565     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
13566   else
13567     return SDValue();
13568 
13569   SDValue SrcVec = Ext1.getOperand(0);
13570   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
13571     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
13572   return DAG.getNode(NodeType, dl, MVT::v2f64,
13573                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
13574 }
13575 
13576 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
13577                                               DAGCombinerInfo &DCI) const {
13578   assert((N->getOpcode() == ISD::SINT_TO_FP ||
13579           N->getOpcode() == ISD::UINT_TO_FP) &&
13580          "Need an int -> FP conversion node here");
13581 
13582   if (useSoftFloat() || !Subtarget.has64BitSupport())
13583     return SDValue();
13584 
13585   SelectionDAG &DAG = DCI.DAG;
13586   SDLoc dl(N);
13587   SDValue Op(N, 0);
13588 
13589   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
13590   // from the hardware.
13591   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
13592     return SDValue();
13593   if (!Op.getOperand(0).getValueType().isSimple())
13594     return SDValue();
13595   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
13596       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
13597     return SDValue();
13598 
13599   SDValue FirstOperand(Op.getOperand(0));
13600   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
13601     (FirstOperand.getValueType() == MVT::i8 ||
13602      FirstOperand.getValueType() == MVT::i16);
13603   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
13604     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
13605     bool DstDouble = Op.getValueType() == MVT::f64;
13606     unsigned ConvOp = Signed ?
13607       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
13608       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
13609     SDValue WidthConst =
13610       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
13611                             dl, false);
13612     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
13613     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
13614     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
13615                                          DAG.getVTList(MVT::f64, MVT::Other),
13616                                          Ops, MVT::i8, LDN->getMemOperand());
13617 
13618     // For signed conversion, we need to sign-extend the value in the VSR
13619     if (Signed) {
13620       SDValue ExtOps[] = { Ld, WidthConst };
13621       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
13622       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
13623     } else
13624       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
13625   }
13626 
13627 
13628   // For i32 intermediate values, unfortunately, the conversion functions
13629   // leave the upper 32 bits of the value are undefined. Within the set of
13630   // scalar instructions, we have no method for zero- or sign-extending the
13631   // value. Thus, we cannot handle i32 intermediate values here.
13632   if (Op.getOperand(0).getValueType() == MVT::i32)
13633     return SDValue();
13634 
13635   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
13636          "UINT_TO_FP is supported only with FPCVT");
13637 
13638   // If we have FCFIDS, then use it when converting to single-precision.
13639   // Otherwise, convert to double-precision and then round.
13640   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13641                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
13642                                                             : PPCISD::FCFIDS)
13643                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
13644                                                             : PPCISD::FCFID);
13645   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13646                   ? MVT::f32
13647                   : MVT::f64;
13648 
13649   // If we're converting from a float, to an int, and back to a float again,
13650   // then we don't need the store/load pair at all.
13651   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
13652        Subtarget.hasFPCVT()) ||
13653       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
13654     SDValue Src = Op.getOperand(0).getOperand(0);
13655     if (Src.getValueType() == MVT::f32) {
13656       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
13657       DCI.AddToWorklist(Src.getNode());
13658     } else if (Src.getValueType() != MVT::f64) {
13659       // Make sure that we don't pick up a ppc_fp128 source value.
13660       return SDValue();
13661     }
13662 
13663     unsigned FCTOp =
13664       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
13665                                                         PPCISD::FCTIDUZ;
13666 
13667     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
13668     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
13669 
13670     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
13671       FP = DAG.getNode(ISD::FP_ROUND, dl,
13672                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
13673       DCI.AddToWorklist(FP.getNode());
13674     }
13675 
13676     return FP;
13677   }
13678 
13679   return SDValue();
13680 }
13681 
13682 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
13683 // builtins) into loads with swaps.
13684 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
13685                                               DAGCombinerInfo &DCI) const {
13686   SelectionDAG &DAG = DCI.DAG;
13687   SDLoc dl(N);
13688   SDValue Chain;
13689   SDValue Base;
13690   MachineMemOperand *MMO;
13691 
13692   switch (N->getOpcode()) {
13693   default:
13694     llvm_unreachable("Unexpected opcode for little endian VSX load");
13695   case ISD::LOAD: {
13696     LoadSDNode *LD = cast<LoadSDNode>(N);
13697     Chain = LD->getChain();
13698     Base = LD->getBasePtr();
13699     MMO = LD->getMemOperand();
13700     // If the MMO suggests this isn't a load of a full vector, leave
13701     // things alone.  For a built-in, we have to make the change for
13702     // correctness, so if there is a size problem that will be a bug.
13703     if (MMO->getSize() < 16)
13704       return SDValue();
13705     break;
13706   }
13707   case ISD::INTRINSIC_W_CHAIN: {
13708     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13709     Chain = Intrin->getChain();
13710     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
13711     // us what we want. Get operand 2 instead.
13712     Base = Intrin->getOperand(2);
13713     MMO = Intrin->getMemOperand();
13714     break;
13715   }
13716   }
13717 
13718   MVT VecTy = N->getValueType(0).getSimpleVT();
13719 
13720   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
13721   // aligned and the type is a vector with elements up to 4 bytes
13722   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
13723       VecTy.getScalarSizeInBits() <= 32) {
13724     return SDValue();
13725   }
13726 
13727   SDValue LoadOps[] = { Chain, Base };
13728   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
13729                                          DAG.getVTList(MVT::v2f64, MVT::Other),
13730                                          LoadOps, MVT::v2f64, MMO);
13731 
13732   DCI.AddToWorklist(Load.getNode());
13733   Chain = Load.getValue(1);
13734   SDValue Swap = DAG.getNode(
13735       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
13736   DCI.AddToWorklist(Swap.getNode());
13737 
13738   // Add a bitcast if the resulting load type doesn't match v2f64.
13739   if (VecTy != MVT::v2f64) {
13740     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
13741     DCI.AddToWorklist(N.getNode());
13742     // Package {bitcast value, swap's chain} to match Load's shape.
13743     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
13744                        N, Swap.getValue(1));
13745   }
13746 
13747   return Swap;
13748 }
13749 
13750 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
13751 // builtins) into stores with swaps.
13752 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
13753                                                DAGCombinerInfo &DCI) const {
13754   SelectionDAG &DAG = DCI.DAG;
13755   SDLoc dl(N);
13756   SDValue Chain;
13757   SDValue Base;
13758   unsigned SrcOpnd;
13759   MachineMemOperand *MMO;
13760 
13761   switch (N->getOpcode()) {
13762   default:
13763     llvm_unreachable("Unexpected opcode for little endian VSX store");
13764   case ISD::STORE: {
13765     StoreSDNode *ST = cast<StoreSDNode>(N);
13766     Chain = ST->getChain();
13767     Base = ST->getBasePtr();
13768     MMO = ST->getMemOperand();
13769     SrcOpnd = 1;
13770     // If the MMO suggests this isn't a store of a full vector, leave
13771     // things alone.  For a built-in, we have to make the change for
13772     // correctness, so if there is a size problem that will be a bug.
13773     if (MMO->getSize() < 16)
13774       return SDValue();
13775     break;
13776   }
13777   case ISD::INTRINSIC_VOID: {
13778     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13779     Chain = Intrin->getChain();
13780     // Intrin->getBasePtr() oddly does not get what we want.
13781     Base = Intrin->getOperand(3);
13782     MMO = Intrin->getMemOperand();
13783     SrcOpnd = 2;
13784     break;
13785   }
13786   }
13787 
13788   SDValue Src = N->getOperand(SrcOpnd);
13789   MVT VecTy = Src.getValueType().getSimpleVT();
13790 
13791   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
13792   // aligned and the type is a vector with elements up to 4 bytes
13793   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
13794       VecTy.getScalarSizeInBits() <= 32) {
13795     return SDValue();
13796   }
13797 
13798   // All stores are done as v2f64 and possible bit cast.
13799   if (VecTy != MVT::v2f64) {
13800     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
13801     DCI.AddToWorklist(Src.getNode());
13802   }
13803 
13804   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
13805                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
13806   DCI.AddToWorklist(Swap.getNode());
13807   Chain = Swap.getValue(1);
13808   SDValue StoreOps[] = { Chain, Swap, Base };
13809   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
13810                                           DAG.getVTList(MVT::Other),
13811                                           StoreOps, VecTy, MMO);
13812   DCI.AddToWorklist(Store.getNode());
13813   return Store;
13814 }
13815 
13816 // Handle DAG combine for STORE (FP_TO_INT F).
13817 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
13818                                                DAGCombinerInfo &DCI) const {
13819 
13820   SelectionDAG &DAG = DCI.DAG;
13821   SDLoc dl(N);
13822   unsigned Opcode = N->getOperand(1).getOpcode();
13823 
13824   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
13825          && "Not a FP_TO_INT Instruction!");
13826 
13827   SDValue Val = N->getOperand(1).getOperand(0);
13828   EVT Op1VT = N->getOperand(1).getValueType();
13829   EVT ResVT = Val.getValueType();
13830 
13831   if (!isTypeLegal(ResVT))
13832     return SDValue();
13833 
13834   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
13835   bool ValidTypeForStoreFltAsInt =
13836         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
13837          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
13838 
13839   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
13840       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
13841     return SDValue();
13842 
13843   // Extend f32 values to f64
13844   if (ResVT.getScalarSizeInBits() == 32) {
13845     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
13846     DCI.AddToWorklist(Val.getNode());
13847   }
13848 
13849   // Set signed or unsigned conversion opcode.
13850   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
13851                           PPCISD::FP_TO_SINT_IN_VSR :
13852                           PPCISD::FP_TO_UINT_IN_VSR;
13853 
13854   Val = DAG.getNode(ConvOpcode,
13855                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
13856   DCI.AddToWorklist(Val.getNode());
13857 
13858   // Set number of bytes being converted.
13859   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
13860   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
13861                     DAG.getIntPtrConstant(ByteSize, dl, false),
13862                     DAG.getValueType(Op1VT) };
13863 
13864   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
13865           DAG.getVTList(MVT::Other), Ops,
13866           cast<StoreSDNode>(N)->getMemoryVT(),
13867           cast<StoreSDNode>(N)->getMemOperand());
13868 
13869   DCI.AddToWorklist(Val.getNode());
13870   return Val;
13871 }
13872 
13873 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
13874   // Check that the source of the element keeps flipping
13875   // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
13876   bool PrevElemFromFirstVec = Mask[0] < NumElts;
13877   for (int i = 1, e = Mask.size(); i < e; i++) {
13878     if (PrevElemFromFirstVec && Mask[i] < NumElts)
13879       return false;
13880     if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
13881       return false;
13882     PrevElemFromFirstVec = !PrevElemFromFirstVec;
13883   }
13884   return true;
13885 }
13886 
13887 static bool isSplatBV(SDValue Op) {
13888   if (Op.getOpcode() != ISD::BUILD_VECTOR)
13889     return false;
13890   SDValue FirstOp;
13891 
13892   // Find first non-undef input.
13893   for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
13894     FirstOp = Op.getOperand(i);
13895     if (!FirstOp.isUndef())
13896       break;
13897   }
13898 
13899   // All inputs are undef or the same as the first non-undef input.
13900   for (int i = 1, e = Op.getNumOperands(); i < e; i++)
13901     if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
13902       return false;
13903   return true;
13904 }
13905 
13906 static SDValue isScalarToVec(SDValue Op) {
13907   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
13908     return Op;
13909   if (Op.getOpcode() != ISD::BITCAST)
13910     return SDValue();
13911   Op = Op.getOperand(0);
13912   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
13913     return Op;
13914   return SDValue();
13915 }
13916 
13917 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
13918                                             int LHSMaxIdx, int RHSMinIdx,
13919                                             int RHSMaxIdx, int HalfVec) {
13920   for (int i = 0, e = ShuffV.size(); i < e; i++) {
13921     int Idx = ShuffV[i];
13922     if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
13923       ShuffV[i] += HalfVec;
13924   }
13925 }
13926 
13927 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
13928 // the original is:
13929 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
13930 // In such a case, just change the shuffle mask to extract the element
13931 // from the permuted index.
13932 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) {
13933   SDLoc dl(OrigSToV);
13934   EVT VT = OrigSToV.getValueType();
13935   assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
13936          "Expecting a SCALAR_TO_VECTOR here");
13937   SDValue Input = OrigSToV.getOperand(0);
13938 
13939   if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
13940     ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
13941     SDValue OrigVector = Input.getOperand(0);
13942 
13943     // Can't handle non-const element indices or different vector types
13944     // for the input to the extract and the output of the scalar_to_vector.
13945     if (Idx && VT == OrigVector.getValueType()) {
13946       SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1);
13947       NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue();
13948       return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
13949     }
13950   }
13951   return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
13952                      OrigSToV.getOperand(0));
13953 }
13954 
13955 // On little endian subtargets, combine shuffles such as:
13956 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
13957 // into:
13958 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
13959 // because the latter can be matched to a single instruction merge.
13960 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
13961 // to put the value into element zero. Adjust the shuffle mask so that the
13962 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
13963 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
13964                                                 SelectionDAG &DAG) const {
13965   SDValue LHS = SVN->getOperand(0);
13966   SDValue RHS = SVN->getOperand(1);
13967   auto Mask = SVN->getMask();
13968   int NumElts = LHS.getValueType().getVectorNumElements();
13969   SDValue Res(SVN, 0);
13970   SDLoc dl(SVN);
13971 
13972   // None of these combines are useful on big endian systems since the ISA
13973   // already has a big endian bias.
13974   if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX())
13975     return Res;
13976 
13977   // If this is not a shuffle of a shuffle and the first element comes from
13978   // the second vector, canonicalize to the commuted form. This will make it
13979   // more likely to match one of the single instruction patterns.
13980   if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
13981       RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
13982     std::swap(LHS, RHS);
13983     Res = DAG.getCommutedVectorShuffle(*SVN);
13984     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
13985   }
13986 
13987   // Adjust the shuffle mask if either input vector comes from a
13988   // SCALAR_TO_VECTOR and keep the respective input vector in permuted
13989   // form (to prevent the need for a swap).
13990   SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
13991   SDValue SToVLHS = isScalarToVec(LHS);
13992   SDValue SToVRHS = isScalarToVec(RHS);
13993   if (SToVLHS || SToVRHS) {
13994     int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
13995                             : SToVRHS.getValueType().getVectorNumElements();
13996     int NumEltsOut = ShuffV.size();
13997 
13998     // Initially assume that neither input is permuted. These will be adjusted
13999     // accordingly if either input is.
14000     int LHSMaxIdx = -1;
14001     int RHSMinIdx = -1;
14002     int RHSMaxIdx = -1;
14003     int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
14004 
14005     // Get the permuted scalar to vector nodes for the source(s) that come from
14006     // ISD::SCALAR_TO_VECTOR.
14007     if (SToVLHS) {
14008       // Set up the values for the shuffle vector fixup.
14009       LHSMaxIdx = NumEltsOut / NumEltsIn;
14010       SToVLHS = getSToVPermuted(SToVLHS, DAG);
14011       if (SToVLHS.getValueType() != LHS.getValueType())
14012         SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
14013       LHS = SToVLHS;
14014     }
14015     if (SToVRHS) {
14016       RHSMinIdx = NumEltsOut;
14017       RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
14018       SToVRHS = getSToVPermuted(SToVRHS, DAG);
14019       if (SToVRHS.getValueType() != RHS.getValueType())
14020         SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
14021       RHS = SToVRHS;
14022     }
14023 
14024     // Fix up the shuffle mask to reflect where the desired element actually is.
14025     // The minimum and maximum indices that correspond to element zero for both
14026     // the LHS and RHS are computed and will control which shuffle mask entries
14027     // are to be changed. For example, if the RHS is permuted, any shuffle mask
14028     // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by
14029     // HalfVec to refer to the corresponding element in the permuted vector.
14030     fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
14031                                     HalfVec);
14032     Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14033 
14034     // We may have simplified away the shuffle. We won't be able to do anything
14035     // further with it here.
14036     if (!isa<ShuffleVectorSDNode>(Res))
14037       return Res;
14038     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14039   }
14040 
14041   // The common case after we commuted the shuffle is that the RHS is a splat
14042   // and we have elements coming in from the splat at indices that are not
14043   // conducive to using a merge.
14044   // Example:
14045   // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
14046   if (!isSplatBV(RHS))
14047     return Res;
14048 
14049   // We are looking for a mask such that all even elements are from
14050   // one vector and all odd elements from the other.
14051   if (!isAlternatingShuffMask(Mask, NumElts))
14052     return Res;
14053 
14054   // Adjust the mask so we are pulling in the same index from the splat
14055   // as the index from the interesting vector in consecutive elements.
14056   // Example (even elements from first vector):
14057   // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
14058   if (Mask[0] < NumElts)
14059     for (int i = 1, e = Mask.size(); i < e; i += 2)
14060       ShuffV[i] = (ShuffV[i - 1] + NumElts);
14061   // Example (odd elements from first vector):
14062   // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
14063   else
14064     for (int i = 0, e = Mask.size(); i < e; i += 2)
14065       ShuffV[i] = (ShuffV[i + 1] + NumElts);
14066 
14067   // If the RHS has undefs, we need to remove them since we may have created
14068   // a shuffle that adds those instead of the splat value.
14069   SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue();
14070   RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal);
14071 
14072   Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14073   return Res;
14074 }
14075 
14076 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
14077                                                 LSBaseSDNode *LSBase,
14078                                                 DAGCombinerInfo &DCI) const {
14079   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
14080         "Not a reverse memop pattern!");
14081 
14082   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
14083     auto Mask = SVN->getMask();
14084     int i = 0;
14085     auto I = Mask.rbegin();
14086     auto E = Mask.rend();
14087 
14088     for (; I != E; ++I) {
14089       if (*I != i)
14090         return false;
14091       i++;
14092     }
14093     return true;
14094   };
14095 
14096   SelectionDAG &DAG = DCI.DAG;
14097   EVT VT = SVN->getValueType(0);
14098 
14099   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14100     return SDValue();
14101 
14102   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
14103   // See comment in PPCVSXSwapRemoval.cpp.
14104   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
14105   if (!Subtarget.hasP9Vector())
14106     return SDValue();
14107 
14108   if(!IsElementReverse(SVN))
14109     return SDValue();
14110 
14111   if (LSBase->getOpcode() == ISD::LOAD) {
14112     SDLoc dl(SVN);
14113     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
14114     return DAG.getMemIntrinsicNode(
14115         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
14116         LSBase->getMemoryVT(), LSBase->getMemOperand());
14117   }
14118 
14119   if (LSBase->getOpcode() == ISD::STORE) {
14120     SDLoc dl(LSBase);
14121     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
14122                           LSBase->getBasePtr()};
14123     return DAG.getMemIntrinsicNode(
14124         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
14125         LSBase->getMemoryVT(), LSBase->getMemOperand());
14126   }
14127 
14128   llvm_unreachable("Expected a load or store node here");
14129 }
14130 
14131 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
14132                                              DAGCombinerInfo &DCI) const {
14133   SelectionDAG &DAG = DCI.DAG;
14134   SDLoc dl(N);
14135   switch (N->getOpcode()) {
14136   default: break;
14137   case ISD::ADD:
14138     return combineADD(N, DCI);
14139   case ISD::SHL:
14140     return combineSHL(N, DCI);
14141   case ISD::SRA:
14142     return combineSRA(N, DCI);
14143   case ISD::SRL:
14144     return combineSRL(N, DCI);
14145   case ISD::MUL:
14146     return combineMUL(N, DCI);
14147   case ISD::FMA:
14148   case PPCISD::FNMSUB:
14149     return combineFMALike(N, DCI);
14150   case PPCISD::SHL:
14151     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
14152         return N->getOperand(0);
14153     break;
14154   case PPCISD::SRL:
14155     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
14156         return N->getOperand(0);
14157     break;
14158   case PPCISD::SRA:
14159     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
14160       if (C->isNullValue() ||   //  0 >>s V -> 0.
14161           C->isAllOnesValue())    // -1 >>s V -> -1.
14162         return N->getOperand(0);
14163     }
14164     break;
14165   case ISD::SIGN_EXTEND:
14166   case ISD::ZERO_EXTEND:
14167   case ISD::ANY_EXTEND:
14168     return DAGCombineExtBoolTrunc(N, DCI);
14169   case ISD::TRUNCATE:
14170     return combineTRUNCATE(N, DCI);
14171   case ISD::SETCC:
14172     if (SDValue CSCC = combineSetCC(N, DCI))
14173       return CSCC;
14174     LLVM_FALLTHROUGH;
14175   case ISD::SELECT_CC:
14176     return DAGCombineTruncBoolExt(N, DCI);
14177   case ISD::SINT_TO_FP:
14178   case ISD::UINT_TO_FP:
14179     return combineFPToIntToFP(N, DCI);
14180   case ISD::VECTOR_SHUFFLE:
14181     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
14182       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
14183       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
14184     }
14185     return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
14186   case ISD::STORE: {
14187 
14188     EVT Op1VT = N->getOperand(1).getValueType();
14189     unsigned Opcode = N->getOperand(1).getOpcode();
14190 
14191     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
14192       SDValue Val= combineStoreFPToInt(N, DCI);
14193       if (Val)
14194         return Val;
14195     }
14196 
14197     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
14198       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
14199       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
14200       if (Val)
14201         return Val;
14202     }
14203 
14204     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
14205     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
14206         N->getOperand(1).getNode()->hasOneUse() &&
14207         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
14208          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
14209 
14210       // STBRX can only handle simple types and it makes no sense to store less
14211       // two bytes in byte-reversed order.
14212       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
14213       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
14214         break;
14215 
14216       SDValue BSwapOp = N->getOperand(1).getOperand(0);
14217       // Do an any-extend to 32-bits if this is a half-word input.
14218       if (BSwapOp.getValueType() == MVT::i16)
14219         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
14220 
14221       // If the type of BSWAP operand is wider than stored memory width
14222       // it need to be shifted to the right side before STBRX.
14223       if (Op1VT.bitsGT(mVT)) {
14224         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
14225         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
14226                               DAG.getConstant(Shift, dl, MVT::i32));
14227         // Need to truncate if this is a bswap of i64 stored as i32/i16.
14228         if (Op1VT == MVT::i64)
14229           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
14230       }
14231 
14232       SDValue Ops[] = {
14233         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
14234       };
14235       return
14236         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
14237                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
14238                                 cast<StoreSDNode>(N)->getMemOperand());
14239     }
14240 
14241     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
14242     // So it can increase the chance of CSE constant construction.
14243     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
14244         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
14245       // Need to sign-extended to 64-bits to handle negative values.
14246       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
14247       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
14248                                     MemVT.getSizeInBits());
14249       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
14250 
14251       // DAG.getTruncStore() can't be used here because it doesn't accept
14252       // the general (base + offset) addressing mode.
14253       // So we use UpdateNodeOperands and setTruncatingStore instead.
14254       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
14255                              N->getOperand(3));
14256       cast<StoreSDNode>(N)->setTruncatingStore(true);
14257       return SDValue(N, 0);
14258     }
14259 
14260     // For little endian, VSX stores require generating xxswapd/lxvd2x.
14261     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14262     if (Op1VT.isSimple()) {
14263       MVT StoreVT = Op1VT.getSimpleVT();
14264       if (Subtarget.needsSwapsForVSXMemOps() &&
14265           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
14266            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
14267         return expandVSXStoreForLE(N, DCI);
14268     }
14269     break;
14270   }
14271   case ISD::LOAD: {
14272     LoadSDNode *LD = cast<LoadSDNode>(N);
14273     EVT VT = LD->getValueType(0);
14274 
14275     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14276     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14277     if (VT.isSimple()) {
14278       MVT LoadVT = VT.getSimpleVT();
14279       if (Subtarget.needsSwapsForVSXMemOps() &&
14280           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
14281            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
14282         return expandVSXLoadForLE(N, DCI);
14283     }
14284 
14285     // We sometimes end up with a 64-bit integer load, from which we extract
14286     // two single-precision floating-point numbers. This happens with
14287     // std::complex<float>, and other similar structures, because of the way we
14288     // canonicalize structure copies. However, if we lack direct moves,
14289     // then the final bitcasts from the extracted integer values to the
14290     // floating-point numbers turn into store/load pairs. Even with direct moves,
14291     // just loading the two floating-point numbers is likely better.
14292     auto ReplaceTwoFloatLoad = [&]() {
14293       if (VT != MVT::i64)
14294         return false;
14295 
14296       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
14297           LD->isVolatile())
14298         return false;
14299 
14300       //  We're looking for a sequence like this:
14301       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
14302       //      t16: i64 = srl t13, Constant:i32<32>
14303       //    t17: i32 = truncate t16
14304       //  t18: f32 = bitcast t17
14305       //    t19: i32 = truncate t13
14306       //  t20: f32 = bitcast t19
14307 
14308       if (!LD->hasNUsesOfValue(2, 0))
14309         return false;
14310 
14311       auto UI = LD->use_begin();
14312       while (UI.getUse().getResNo() != 0) ++UI;
14313       SDNode *Trunc = *UI++;
14314       while (UI.getUse().getResNo() != 0) ++UI;
14315       SDNode *RightShift = *UI;
14316       if (Trunc->getOpcode() != ISD::TRUNCATE)
14317         std::swap(Trunc, RightShift);
14318 
14319       if (Trunc->getOpcode() != ISD::TRUNCATE ||
14320           Trunc->getValueType(0) != MVT::i32 ||
14321           !Trunc->hasOneUse())
14322         return false;
14323       if (RightShift->getOpcode() != ISD::SRL ||
14324           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
14325           RightShift->getConstantOperandVal(1) != 32 ||
14326           !RightShift->hasOneUse())
14327         return false;
14328 
14329       SDNode *Trunc2 = *RightShift->use_begin();
14330       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
14331           Trunc2->getValueType(0) != MVT::i32 ||
14332           !Trunc2->hasOneUse())
14333         return false;
14334 
14335       SDNode *Bitcast = *Trunc->use_begin();
14336       SDNode *Bitcast2 = *Trunc2->use_begin();
14337 
14338       if (Bitcast->getOpcode() != ISD::BITCAST ||
14339           Bitcast->getValueType(0) != MVT::f32)
14340         return false;
14341       if (Bitcast2->getOpcode() != ISD::BITCAST ||
14342           Bitcast2->getValueType(0) != MVT::f32)
14343         return false;
14344 
14345       if (Subtarget.isLittleEndian())
14346         std::swap(Bitcast, Bitcast2);
14347 
14348       // Bitcast has the second float (in memory-layout order) and Bitcast2
14349       // has the first one.
14350 
14351       SDValue BasePtr = LD->getBasePtr();
14352       if (LD->isIndexed()) {
14353         assert(LD->getAddressingMode() == ISD::PRE_INC &&
14354                "Non-pre-inc AM on PPC?");
14355         BasePtr =
14356           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
14357                       LD->getOffset());
14358       }
14359 
14360       auto MMOFlags =
14361           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
14362       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
14363                                       LD->getPointerInfo(), LD->getAlignment(),
14364                                       MMOFlags, LD->getAAInfo());
14365       SDValue AddPtr =
14366         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
14367                     BasePtr, DAG.getIntPtrConstant(4, dl));
14368       SDValue FloatLoad2 = DAG.getLoad(
14369           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
14370           LD->getPointerInfo().getWithOffset(4),
14371           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
14372 
14373       if (LD->isIndexed()) {
14374         // Note that DAGCombine should re-form any pre-increment load(s) from
14375         // what is produced here if that makes sense.
14376         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
14377       }
14378 
14379       DCI.CombineTo(Bitcast2, FloatLoad);
14380       DCI.CombineTo(Bitcast, FloatLoad2);
14381 
14382       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
14383                                     SDValue(FloatLoad2.getNode(), 1));
14384       return true;
14385     };
14386 
14387     if (ReplaceTwoFloatLoad())
14388       return SDValue(N, 0);
14389 
14390     EVT MemVT = LD->getMemoryVT();
14391     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
14392     Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
14393     if (LD->isUnindexed() && VT.isVector() &&
14394         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
14395           // P8 and later hardware should just use LOAD.
14396           !Subtarget.hasP8Vector() &&
14397           (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
14398            VT == MVT::v4f32))) &&
14399         LD->getAlign() < ABIAlignment) {
14400       // This is a type-legal unaligned Altivec load.
14401       SDValue Chain = LD->getChain();
14402       SDValue Ptr = LD->getBasePtr();
14403       bool isLittleEndian = Subtarget.isLittleEndian();
14404 
14405       // This implements the loading of unaligned vectors as described in
14406       // the venerable Apple Velocity Engine overview. Specifically:
14407       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
14408       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
14409       //
14410       // The general idea is to expand a sequence of one or more unaligned
14411       // loads into an alignment-based permutation-control instruction (lvsl
14412       // or lvsr), a series of regular vector loads (which always truncate
14413       // their input address to an aligned address), and a series of
14414       // permutations.  The results of these permutations are the requested
14415       // loaded values.  The trick is that the last "extra" load is not taken
14416       // from the address you might suspect (sizeof(vector) bytes after the
14417       // last requested load), but rather sizeof(vector) - 1 bytes after the
14418       // last requested vector. The point of this is to avoid a page fault if
14419       // the base address happened to be aligned. This works because if the
14420       // base address is aligned, then adding less than a full vector length
14421       // will cause the last vector in the sequence to be (re)loaded.
14422       // Otherwise, the next vector will be fetched as you might suspect was
14423       // necessary.
14424 
14425       // We might be able to reuse the permutation generation from
14426       // a different base address offset from this one by an aligned amount.
14427       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
14428       // optimization later.
14429       Intrinsic::ID Intr, IntrLD, IntrPerm;
14430       MVT PermCntlTy, PermTy, LDTy;
14431       Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14432                             : Intrinsic::ppc_altivec_lvsl;
14433       IntrLD = Intrinsic::ppc_altivec_lvx;
14434       IntrPerm = Intrinsic::ppc_altivec_vperm;
14435       PermCntlTy = MVT::v16i8;
14436       PermTy = MVT::v4i32;
14437       LDTy = MVT::v4i32;
14438 
14439       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
14440 
14441       // Create the new MMO for the new base load. It is like the original MMO,
14442       // but represents an area in memory almost twice the vector size centered
14443       // on the original address. If the address is unaligned, we might start
14444       // reading up to (sizeof(vector)-1) bytes below the address of the
14445       // original unaligned load.
14446       MachineFunction &MF = DAG.getMachineFunction();
14447       MachineMemOperand *BaseMMO =
14448         MF.getMachineMemOperand(LD->getMemOperand(),
14449                                 -(long)MemVT.getStoreSize()+1,
14450                                 2*MemVT.getStoreSize()-1);
14451 
14452       // Create the new base load.
14453       SDValue LDXIntID =
14454           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
14455       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
14456       SDValue BaseLoad =
14457         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14458                                 DAG.getVTList(PermTy, MVT::Other),
14459                                 BaseLoadOps, LDTy, BaseMMO);
14460 
14461       // Note that the value of IncOffset (which is provided to the next
14462       // load's pointer info offset value, and thus used to calculate the
14463       // alignment), and the value of IncValue (which is actually used to
14464       // increment the pointer value) are different! This is because we
14465       // require the next load to appear to be aligned, even though it
14466       // is actually offset from the base pointer by a lesser amount.
14467       int IncOffset = VT.getSizeInBits() / 8;
14468       int IncValue = IncOffset;
14469 
14470       // Walk (both up and down) the chain looking for another load at the real
14471       // (aligned) offset (the alignment of the other load does not matter in
14472       // this case). If found, then do not use the offset reduction trick, as
14473       // that will prevent the loads from being later combined (as they would
14474       // otherwise be duplicates).
14475       if (!findConsecutiveLoad(LD, DAG))
14476         --IncValue;
14477 
14478       SDValue Increment =
14479           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
14480       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14481 
14482       MachineMemOperand *ExtraMMO =
14483         MF.getMachineMemOperand(LD->getMemOperand(),
14484                                 1, 2*MemVT.getStoreSize()-1);
14485       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
14486       SDValue ExtraLoad =
14487         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14488                                 DAG.getVTList(PermTy, MVT::Other),
14489                                 ExtraLoadOps, LDTy, ExtraMMO);
14490 
14491       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14492         BaseLoad.getValue(1), ExtraLoad.getValue(1));
14493 
14494       // Because vperm has a big-endian bias, we must reverse the order
14495       // of the input vectors and complement the permute control vector
14496       // when generating little endian code.  We have already handled the
14497       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
14498       // and ExtraLoad here.
14499       SDValue Perm;
14500       if (isLittleEndian)
14501         Perm = BuildIntrinsicOp(IntrPerm,
14502                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
14503       else
14504         Perm = BuildIntrinsicOp(IntrPerm,
14505                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
14506 
14507       if (VT != PermTy)
14508         Perm = Subtarget.hasAltivec()
14509                    ? DAG.getNode(ISD::BITCAST, dl, VT, Perm)
14510                    : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm,
14511                                  DAG.getTargetConstant(1, dl, MVT::i64));
14512                                // second argument is 1 because this rounding
14513                                // is always exact.
14514 
14515       // The output of the permutation is our loaded result, the TokenFactor is
14516       // our new chain.
14517       DCI.CombineTo(N, Perm, TF);
14518       return SDValue(N, 0);
14519     }
14520     }
14521     break;
14522     case ISD::INTRINSIC_WO_CHAIN: {
14523       bool isLittleEndian = Subtarget.isLittleEndian();
14524       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
14525       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14526                                            : Intrinsic::ppc_altivec_lvsl);
14527       if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) {
14528         SDValue Add = N->getOperand(1);
14529 
14530         int Bits = 4 /* 16 byte alignment */;
14531 
14532         if (DAG.MaskedValueIsZero(Add->getOperand(1),
14533                                   APInt::getAllOnesValue(Bits /* alignment */)
14534                                       .zext(Add.getScalarValueSizeInBits()))) {
14535           SDNode *BasePtr = Add->getOperand(0).getNode();
14536           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14537                                     UE = BasePtr->use_end();
14538                UI != UE; ++UI) {
14539             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14540                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
14541                     IID) {
14542               // We've found another LVSL/LVSR, and this address is an aligned
14543               // multiple of that one. The results will be the same, so use the
14544               // one we've just found instead.
14545 
14546               return SDValue(*UI, 0);
14547             }
14548           }
14549         }
14550 
14551         if (isa<ConstantSDNode>(Add->getOperand(1))) {
14552           SDNode *BasePtr = Add->getOperand(0).getNode();
14553           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14554                UE = BasePtr->use_end(); UI != UE; ++UI) {
14555             if (UI->getOpcode() == ISD::ADD &&
14556                 isa<ConstantSDNode>(UI->getOperand(1)) &&
14557                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
14558                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
14559                 (1ULL << Bits) == 0) {
14560               SDNode *OtherAdd = *UI;
14561               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
14562                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
14563                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14564                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
14565                   return SDValue(*VI, 0);
14566                 }
14567               }
14568             }
14569           }
14570         }
14571       }
14572 
14573       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
14574       // Expose the vabsduw/h/b opportunity for down stream
14575       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
14576           (IID == Intrinsic::ppc_altivec_vmaxsw ||
14577            IID == Intrinsic::ppc_altivec_vmaxsh ||
14578            IID == Intrinsic::ppc_altivec_vmaxsb)) {
14579         SDValue V1 = N->getOperand(1);
14580         SDValue V2 = N->getOperand(2);
14581         if ((V1.getSimpleValueType() == MVT::v4i32 ||
14582              V1.getSimpleValueType() == MVT::v8i16 ||
14583              V1.getSimpleValueType() == MVT::v16i8) &&
14584             V1.getSimpleValueType() == V2.getSimpleValueType()) {
14585           // (0-a, a)
14586           if (V1.getOpcode() == ISD::SUB &&
14587               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
14588               V1.getOperand(1) == V2) {
14589             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
14590           }
14591           // (a, 0-a)
14592           if (V2.getOpcode() == ISD::SUB &&
14593               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
14594               V2.getOperand(1) == V1) {
14595             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14596           }
14597           // (x-y, y-x)
14598           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
14599               V1.getOperand(0) == V2.getOperand(1) &&
14600               V1.getOperand(1) == V2.getOperand(0)) {
14601             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14602           }
14603         }
14604       }
14605     }
14606 
14607     break;
14608   case ISD::INTRINSIC_W_CHAIN:
14609     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14610     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14611     if (Subtarget.needsSwapsForVSXMemOps()) {
14612       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14613       default:
14614         break;
14615       case Intrinsic::ppc_vsx_lxvw4x:
14616       case Intrinsic::ppc_vsx_lxvd2x:
14617         return expandVSXLoadForLE(N, DCI);
14618       }
14619     }
14620     break;
14621   case ISD::INTRINSIC_VOID:
14622     // For little endian, VSX stores require generating xxswapd/stxvd2x.
14623     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14624     if (Subtarget.needsSwapsForVSXMemOps()) {
14625       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14626       default:
14627         break;
14628       case Intrinsic::ppc_vsx_stxvw4x:
14629       case Intrinsic::ppc_vsx_stxvd2x:
14630         return expandVSXStoreForLE(N, DCI);
14631       }
14632     }
14633     break;
14634   case ISD::BSWAP:
14635     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
14636     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
14637         N->getOperand(0).hasOneUse() &&
14638         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
14639          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
14640           N->getValueType(0) == MVT::i64))) {
14641       SDValue Load = N->getOperand(0);
14642       LoadSDNode *LD = cast<LoadSDNode>(Load);
14643       // Create the byte-swapping load.
14644       SDValue Ops[] = {
14645         LD->getChain(),    // Chain
14646         LD->getBasePtr(),  // Ptr
14647         DAG.getValueType(N->getValueType(0)) // VT
14648       };
14649       SDValue BSLoad =
14650         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
14651                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
14652                                               MVT::i64 : MVT::i32, MVT::Other),
14653                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
14654 
14655       // If this is an i16 load, insert the truncate.
14656       SDValue ResVal = BSLoad;
14657       if (N->getValueType(0) == MVT::i16)
14658         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
14659 
14660       // First, combine the bswap away.  This makes the value produced by the
14661       // load dead.
14662       DCI.CombineTo(N, ResVal);
14663 
14664       // Next, combine the load away, we give it a bogus result value but a real
14665       // chain result.  The result value is dead because the bswap is dead.
14666       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
14667 
14668       // Return N so it doesn't get rechecked!
14669       return SDValue(N, 0);
14670     }
14671     break;
14672   case PPCISD::VCMP:
14673     // If a VCMP_rec node already exists with exactly the same operands as this
14674     // node, use its result instead of this node (VCMP_rec computes both a CR6
14675     // and a normal output).
14676     //
14677     if (!N->getOperand(0).hasOneUse() &&
14678         !N->getOperand(1).hasOneUse() &&
14679         !N->getOperand(2).hasOneUse()) {
14680 
14681       // Scan all of the users of the LHS, looking for VCMP_rec's that match.
14682       SDNode *VCMPrecNode = nullptr;
14683 
14684       SDNode *LHSN = N->getOperand(0).getNode();
14685       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
14686            UI != E; ++UI)
14687         if (UI->getOpcode() == PPCISD::VCMP_rec &&
14688             UI->getOperand(1) == N->getOperand(1) &&
14689             UI->getOperand(2) == N->getOperand(2) &&
14690             UI->getOperand(0) == N->getOperand(0)) {
14691           VCMPrecNode = *UI;
14692           break;
14693         }
14694 
14695       // If there is no VCMP_rec node, or if the flag value has a single use,
14696       // don't transform this.
14697       if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1))
14698         break;
14699 
14700       // Look at the (necessarily single) use of the flag value.  If it has a
14701       // chain, this transformation is more complex.  Note that multiple things
14702       // could use the value result, which we should ignore.
14703       SDNode *FlagUser = nullptr;
14704       for (SDNode::use_iterator UI = VCMPrecNode->use_begin();
14705            FlagUser == nullptr; ++UI) {
14706         assert(UI != VCMPrecNode->use_end() && "Didn't find user!");
14707         SDNode *User = *UI;
14708         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
14709           if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) {
14710             FlagUser = User;
14711             break;
14712           }
14713         }
14714       }
14715 
14716       // If the user is a MFOCRF instruction, we know this is safe.
14717       // Otherwise we give up for right now.
14718       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
14719         return SDValue(VCMPrecNode, 0);
14720     }
14721     break;
14722   case ISD::BRCOND: {
14723     SDValue Cond = N->getOperand(1);
14724     SDValue Target = N->getOperand(2);
14725 
14726     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14727         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
14728           Intrinsic::loop_decrement) {
14729 
14730       // We now need to make the intrinsic dead (it cannot be instruction
14731       // selected).
14732       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
14733       assert(Cond.getNode()->hasOneUse() &&
14734              "Counter decrement has more than one use");
14735 
14736       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
14737                          N->getOperand(0), Target);
14738     }
14739   }
14740   break;
14741   case ISD::BR_CC: {
14742     // If this is a branch on an altivec predicate comparison, lower this so
14743     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
14744     // lowering is done pre-legalize, because the legalizer lowers the predicate
14745     // compare down to code that is difficult to reassemble.
14746     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
14747     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
14748 
14749     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
14750     // value. If so, pass-through the AND to get to the intrinsic.
14751     if (LHS.getOpcode() == ISD::AND &&
14752         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14753         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
14754           Intrinsic::loop_decrement &&
14755         isa<ConstantSDNode>(LHS.getOperand(1)) &&
14756         !isNullConstant(LHS.getOperand(1)))
14757       LHS = LHS.getOperand(0);
14758 
14759     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14760         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
14761           Intrinsic::loop_decrement &&
14762         isa<ConstantSDNode>(RHS)) {
14763       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
14764              "Counter decrement comparison is not EQ or NE");
14765 
14766       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14767       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
14768                     (CC == ISD::SETNE && !Val);
14769 
14770       // We now need to make the intrinsic dead (it cannot be instruction
14771       // selected).
14772       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
14773       assert(LHS.getNode()->hasOneUse() &&
14774              "Counter decrement has more than one use");
14775 
14776       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
14777                          N->getOperand(0), N->getOperand(4));
14778     }
14779 
14780     int CompareOpc;
14781     bool isDot;
14782 
14783     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14784         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
14785         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
14786       assert(isDot && "Can't compare against a vector result!");
14787 
14788       // If this is a comparison against something other than 0/1, then we know
14789       // that the condition is never/always true.
14790       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14791       if (Val != 0 && Val != 1) {
14792         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
14793           return N->getOperand(0);
14794         // Always !=, turn it into an unconditional branch.
14795         return DAG.getNode(ISD::BR, dl, MVT::Other,
14796                            N->getOperand(0), N->getOperand(4));
14797       }
14798 
14799       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
14800 
14801       // Create the PPCISD altivec 'dot' comparison node.
14802       SDValue Ops[] = {
14803         LHS.getOperand(2),  // LHS of compare
14804         LHS.getOperand(3),  // RHS of compare
14805         DAG.getConstant(CompareOpc, dl, MVT::i32)
14806       };
14807       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
14808       SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
14809 
14810       // Unpack the result based on how the target uses it.
14811       PPC::Predicate CompOpc;
14812       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
14813       default:  // Can't happen, don't crash on invalid number though.
14814       case 0:   // Branch on the value of the EQ bit of CR6.
14815         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
14816         break;
14817       case 1:   // Branch on the inverted value of the EQ bit of CR6.
14818         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
14819         break;
14820       case 2:   // Branch on the value of the LT bit of CR6.
14821         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
14822         break;
14823       case 3:   // Branch on the inverted value of the LT bit of CR6.
14824         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
14825         break;
14826       }
14827 
14828       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
14829                          DAG.getConstant(CompOpc, dl, MVT::i32),
14830                          DAG.getRegister(PPC::CR6, MVT::i32),
14831                          N->getOperand(4), CompNode.getValue(1));
14832     }
14833     break;
14834   }
14835   case ISD::BUILD_VECTOR:
14836     return DAGCombineBuildVector(N, DCI);
14837   case ISD::ABS:
14838     return combineABS(N, DCI);
14839   case ISD::VSELECT:
14840     return combineVSelect(N, DCI);
14841   }
14842 
14843   return SDValue();
14844 }
14845 
14846 SDValue
14847 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
14848                                  SelectionDAG &DAG,
14849                                  SmallVectorImpl<SDNode *> &Created) const {
14850   // fold (sdiv X, pow2)
14851   EVT VT = N->getValueType(0);
14852   if (VT == MVT::i64 && !Subtarget.isPPC64())
14853     return SDValue();
14854   if ((VT != MVT::i32 && VT != MVT::i64) ||
14855       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
14856     return SDValue();
14857 
14858   SDLoc DL(N);
14859   SDValue N0 = N->getOperand(0);
14860 
14861   bool IsNegPow2 = (-Divisor).isPowerOf2();
14862   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
14863   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
14864 
14865   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
14866   Created.push_back(Op.getNode());
14867 
14868   if (IsNegPow2) {
14869     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
14870     Created.push_back(Op.getNode());
14871   }
14872 
14873   return Op;
14874 }
14875 
14876 //===----------------------------------------------------------------------===//
14877 // Inline Assembly Support
14878 //===----------------------------------------------------------------------===//
14879 
14880 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
14881                                                       KnownBits &Known,
14882                                                       const APInt &DemandedElts,
14883                                                       const SelectionDAG &DAG,
14884                                                       unsigned Depth) const {
14885   Known.resetAll();
14886   switch (Op.getOpcode()) {
14887   default: break;
14888   case PPCISD::LBRX: {
14889     // lhbrx is known to have the top bits cleared out.
14890     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
14891       Known.Zero = 0xFFFF0000;
14892     break;
14893   }
14894   case ISD::INTRINSIC_WO_CHAIN: {
14895     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
14896     default: break;
14897     case Intrinsic::ppc_altivec_vcmpbfp_p:
14898     case Intrinsic::ppc_altivec_vcmpeqfp_p:
14899     case Intrinsic::ppc_altivec_vcmpequb_p:
14900     case Intrinsic::ppc_altivec_vcmpequh_p:
14901     case Intrinsic::ppc_altivec_vcmpequw_p:
14902     case Intrinsic::ppc_altivec_vcmpequd_p:
14903     case Intrinsic::ppc_altivec_vcmpequq_p:
14904     case Intrinsic::ppc_altivec_vcmpgefp_p:
14905     case Intrinsic::ppc_altivec_vcmpgtfp_p:
14906     case Intrinsic::ppc_altivec_vcmpgtsb_p:
14907     case Intrinsic::ppc_altivec_vcmpgtsh_p:
14908     case Intrinsic::ppc_altivec_vcmpgtsw_p:
14909     case Intrinsic::ppc_altivec_vcmpgtsd_p:
14910     case Intrinsic::ppc_altivec_vcmpgtsq_p:
14911     case Intrinsic::ppc_altivec_vcmpgtub_p:
14912     case Intrinsic::ppc_altivec_vcmpgtuh_p:
14913     case Intrinsic::ppc_altivec_vcmpgtuw_p:
14914     case Intrinsic::ppc_altivec_vcmpgtud_p:
14915     case Intrinsic::ppc_altivec_vcmpgtuq_p:
14916       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
14917       break;
14918     }
14919   }
14920   }
14921 }
14922 
14923 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
14924   switch (Subtarget.getCPUDirective()) {
14925   default: break;
14926   case PPC::DIR_970:
14927   case PPC::DIR_PWR4:
14928   case PPC::DIR_PWR5:
14929   case PPC::DIR_PWR5X:
14930   case PPC::DIR_PWR6:
14931   case PPC::DIR_PWR6X:
14932   case PPC::DIR_PWR7:
14933   case PPC::DIR_PWR8:
14934   case PPC::DIR_PWR9:
14935   case PPC::DIR_PWR10:
14936   case PPC::DIR_PWR_FUTURE: {
14937     if (!ML)
14938       break;
14939 
14940     if (!DisableInnermostLoopAlign32) {
14941       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
14942       // so that we can decrease cache misses and branch-prediction misses.
14943       // Actual alignment of the loop will depend on the hotness check and other
14944       // logic in alignBlocks.
14945       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
14946         return Align(32);
14947     }
14948 
14949     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
14950 
14951     // For small loops (between 5 and 8 instructions), align to a 32-byte
14952     // boundary so that the entire loop fits in one instruction-cache line.
14953     uint64_t LoopSize = 0;
14954     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
14955       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
14956         LoopSize += TII->getInstSizeInBytes(*J);
14957         if (LoopSize > 32)
14958           break;
14959       }
14960 
14961     if (LoopSize > 16 && LoopSize <= 32)
14962       return Align(32);
14963 
14964     break;
14965   }
14966   }
14967 
14968   return TargetLowering::getPrefLoopAlignment(ML);
14969 }
14970 
14971 /// getConstraintType - Given a constraint, return the type of
14972 /// constraint it is for this target.
14973 PPCTargetLowering::ConstraintType
14974 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
14975   if (Constraint.size() == 1) {
14976     switch (Constraint[0]) {
14977     default: break;
14978     case 'b':
14979     case 'r':
14980     case 'f':
14981     case 'd':
14982     case 'v':
14983     case 'y':
14984       return C_RegisterClass;
14985     case 'Z':
14986       // FIXME: While Z does indicate a memory constraint, it specifically
14987       // indicates an r+r address (used in conjunction with the 'y' modifier
14988       // in the replacement string). Currently, we're forcing the base
14989       // register to be r0 in the asm printer (which is interpreted as zero)
14990       // and forming the complete address in the second register. This is
14991       // suboptimal.
14992       return C_Memory;
14993     }
14994   } else if (Constraint == "wc") { // individual CR bits.
14995     return C_RegisterClass;
14996   } else if (Constraint == "wa" || Constraint == "wd" ||
14997              Constraint == "wf" || Constraint == "ws" ||
14998              Constraint == "wi" || Constraint == "ww") {
14999     return C_RegisterClass; // VSX registers.
15000   }
15001   return TargetLowering::getConstraintType(Constraint);
15002 }
15003 
15004 /// Examine constraint type and operand type and determine a weight value.
15005 /// This object must already have been set up with the operand type
15006 /// and the current alternative constraint selected.
15007 TargetLowering::ConstraintWeight
15008 PPCTargetLowering::getSingleConstraintMatchWeight(
15009     AsmOperandInfo &info, const char *constraint) const {
15010   ConstraintWeight weight = CW_Invalid;
15011   Value *CallOperandVal = info.CallOperandVal;
15012     // If we don't have a value, we can't do a match,
15013     // but allow it at the lowest weight.
15014   if (!CallOperandVal)
15015     return CW_Default;
15016   Type *type = CallOperandVal->getType();
15017 
15018   // Look at the constraint type.
15019   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
15020     return CW_Register; // an individual CR bit.
15021   else if ((StringRef(constraint) == "wa" ||
15022             StringRef(constraint) == "wd" ||
15023             StringRef(constraint) == "wf") &&
15024            type->isVectorTy())
15025     return CW_Register;
15026   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
15027     return CW_Register; // just hold 64-bit integers data.
15028   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
15029     return CW_Register;
15030   else if (StringRef(constraint) == "ww" && type->isFloatTy())
15031     return CW_Register;
15032 
15033   switch (*constraint) {
15034   default:
15035     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15036     break;
15037   case 'b':
15038     if (type->isIntegerTy())
15039       weight = CW_Register;
15040     break;
15041   case 'f':
15042     if (type->isFloatTy())
15043       weight = CW_Register;
15044     break;
15045   case 'd':
15046     if (type->isDoubleTy())
15047       weight = CW_Register;
15048     break;
15049   case 'v':
15050     if (type->isVectorTy())
15051       weight = CW_Register;
15052     break;
15053   case 'y':
15054     weight = CW_Register;
15055     break;
15056   case 'Z':
15057     weight = CW_Memory;
15058     break;
15059   }
15060   return weight;
15061 }
15062 
15063 std::pair<unsigned, const TargetRegisterClass *>
15064 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
15065                                                 StringRef Constraint,
15066                                                 MVT VT) const {
15067   if (Constraint.size() == 1) {
15068     // GCC RS6000 Constraint Letters
15069     switch (Constraint[0]) {
15070     case 'b':   // R1-R31
15071       if (VT == MVT::i64 && Subtarget.isPPC64())
15072         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
15073       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
15074     case 'r':   // R0-R31
15075       if (VT == MVT::i64 && Subtarget.isPPC64())
15076         return std::make_pair(0U, &PPC::G8RCRegClass);
15077       return std::make_pair(0U, &PPC::GPRCRegClass);
15078     // 'd' and 'f' constraints are both defined to be "the floating point
15079     // registers", where one is for 32-bit and the other for 64-bit. We don't
15080     // really care overly much here so just give them all the same reg classes.
15081     case 'd':
15082     case 'f':
15083       if (Subtarget.hasSPE()) {
15084         if (VT == MVT::f32 || VT == MVT::i32)
15085           return std::make_pair(0U, &PPC::GPRCRegClass);
15086         if (VT == MVT::f64 || VT == MVT::i64)
15087           return std::make_pair(0U, &PPC::SPERCRegClass);
15088       } else {
15089         if (VT == MVT::f32 || VT == MVT::i32)
15090           return std::make_pair(0U, &PPC::F4RCRegClass);
15091         if (VT == MVT::f64 || VT == MVT::i64)
15092           return std::make_pair(0U, &PPC::F8RCRegClass);
15093       }
15094       break;
15095     case 'v':
15096       if (Subtarget.hasAltivec())
15097         return std::make_pair(0U, &PPC::VRRCRegClass);
15098       break;
15099     case 'y':   // crrc
15100       return std::make_pair(0U, &PPC::CRRCRegClass);
15101     }
15102   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
15103     // An individual CR bit.
15104     return std::make_pair(0U, &PPC::CRBITRCRegClass);
15105   } else if ((Constraint == "wa" || Constraint == "wd" ||
15106              Constraint == "wf" || Constraint == "wi") &&
15107              Subtarget.hasVSX()) {
15108     return std::make_pair(0U, &PPC::VSRCRegClass);
15109   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
15110     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15111       return std::make_pair(0U, &PPC::VSSRCRegClass);
15112     else
15113       return std::make_pair(0U, &PPC::VSFRCRegClass);
15114   }
15115 
15116   // Handle special cases of physical registers that are not properly handled
15117   // by the base class.
15118   if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') {
15119     // If we name a VSX register, we can't defer to the base class because it
15120     // will not recognize the correct register (their names will be VSL{0-31}
15121     // and V{0-31} so they won't match). So we match them here.
15122     if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
15123       int VSNum = atoi(Constraint.data() + 3);
15124       assert(VSNum >= 0 && VSNum <= 63 &&
15125              "Attempted to access a vsr out of range");
15126       if (VSNum < 32)
15127         return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
15128       return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
15129     }
15130 
15131     // For float registers, we can't defer to the base class as it will match
15132     // the SPILLTOVSRRC class.
15133     if (Constraint.size() > 3 && Constraint[1] == 'f') {
15134       int RegNum = atoi(Constraint.data() + 2);
15135       if (RegNum > 31 || RegNum < 0)
15136         report_fatal_error("Invalid floating point register number");
15137       if (VT == MVT::f32 || VT == MVT::i32)
15138         return Subtarget.hasSPE()
15139                    ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass)
15140                    : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass);
15141       if (VT == MVT::f64 || VT == MVT::i64)
15142         return Subtarget.hasSPE()
15143                    ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass)
15144                    : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass);
15145     }
15146   }
15147 
15148   std::pair<unsigned, const TargetRegisterClass *> R =
15149       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
15150 
15151   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
15152   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
15153   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
15154   // register.
15155   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
15156   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
15157   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
15158       PPC::GPRCRegClass.contains(R.first))
15159     return std::make_pair(TRI->getMatchingSuperReg(R.first,
15160                             PPC::sub_32, &PPC::G8RCRegClass),
15161                           &PPC::G8RCRegClass);
15162 
15163   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
15164   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
15165     R.first = PPC::CR0;
15166     R.second = &PPC::CRRCRegClass;
15167   }
15168 
15169   return R;
15170 }
15171 
15172 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15173 /// vector.  If it is invalid, don't add anything to Ops.
15174 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15175                                                      std::string &Constraint,
15176                                                      std::vector<SDValue>&Ops,
15177                                                      SelectionDAG &DAG) const {
15178   SDValue Result;
15179 
15180   // Only support length 1 constraints.
15181   if (Constraint.length() > 1) return;
15182 
15183   char Letter = Constraint[0];
15184   switch (Letter) {
15185   default: break;
15186   case 'I':
15187   case 'J':
15188   case 'K':
15189   case 'L':
15190   case 'M':
15191   case 'N':
15192   case 'O':
15193   case 'P': {
15194     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
15195     if (!CST) return; // Must be an immediate to match.
15196     SDLoc dl(Op);
15197     int64_t Value = CST->getSExtValue();
15198     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
15199                          // numbers are printed as such.
15200     switch (Letter) {
15201     default: llvm_unreachable("Unknown constraint letter!");
15202     case 'I':  // "I" is a signed 16-bit constant.
15203       if (isInt<16>(Value))
15204         Result = DAG.getTargetConstant(Value, dl, TCVT);
15205       break;
15206     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
15207       if (isShiftedUInt<16, 16>(Value))
15208         Result = DAG.getTargetConstant(Value, dl, TCVT);
15209       break;
15210     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
15211       if (isShiftedInt<16, 16>(Value))
15212         Result = DAG.getTargetConstant(Value, dl, TCVT);
15213       break;
15214     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
15215       if (isUInt<16>(Value))
15216         Result = DAG.getTargetConstant(Value, dl, TCVT);
15217       break;
15218     case 'M':  // "M" is a constant that is greater than 31.
15219       if (Value > 31)
15220         Result = DAG.getTargetConstant(Value, dl, TCVT);
15221       break;
15222     case 'N':  // "N" is a positive constant that is an exact power of two.
15223       if (Value > 0 && isPowerOf2_64(Value))
15224         Result = DAG.getTargetConstant(Value, dl, TCVT);
15225       break;
15226     case 'O':  // "O" is the constant zero.
15227       if (Value == 0)
15228         Result = DAG.getTargetConstant(Value, dl, TCVT);
15229       break;
15230     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
15231       if (isInt<16>(-Value))
15232         Result = DAG.getTargetConstant(Value, dl, TCVT);
15233       break;
15234     }
15235     break;
15236   }
15237   }
15238 
15239   if (Result.getNode()) {
15240     Ops.push_back(Result);
15241     return;
15242   }
15243 
15244   // Handle standard constraint letters.
15245   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15246 }
15247 
15248 // isLegalAddressingMode - Return true if the addressing mode represented
15249 // by AM is legal for this target, for a load/store of the specified type.
15250 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
15251                                               const AddrMode &AM, Type *Ty,
15252                                               unsigned AS,
15253                                               Instruction *I) const {
15254   // Vector type r+i form is supported since power9 as DQ form. We don't check
15255   // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC,
15256   // imm form is preferred and the offset can be adjusted to use imm form later
15257   // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and
15258   // max offset to check legal addressing mode, we should be a little aggressive
15259   // to contain other offsets for that LSRUse.
15260   if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector())
15261     return false;
15262 
15263   // PPC allows a sign-extended 16-bit immediate field.
15264   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
15265     return false;
15266 
15267   // No global is ever allowed as a base.
15268   if (AM.BaseGV)
15269     return false;
15270 
15271   // PPC only support r+r,
15272   switch (AM.Scale) {
15273   case 0:  // "r+i" or just "i", depending on HasBaseReg.
15274     break;
15275   case 1:
15276     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
15277       return false;
15278     // Otherwise we have r+r or r+i.
15279     break;
15280   case 2:
15281     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
15282       return false;
15283     // Allow 2*r as r+r.
15284     break;
15285   default:
15286     // No other scales are supported.
15287     return false;
15288   }
15289 
15290   return true;
15291 }
15292 
15293 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
15294                                            SelectionDAG &DAG) const {
15295   MachineFunction &MF = DAG.getMachineFunction();
15296   MachineFrameInfo &MFI = MF.getFrameInfo();
15297   MFI.setReturnAddressIsTaken(true);
15298 
15299   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
15300     return SDValue();
15301 
15302   SDLoc dl(Op);
15303   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15304 
15305   // Make sure the function does not optimize away the store of the RA to
15306   // the stack.
15307   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
15308   FuncInfo->setLRStoreRequired();
15309   bool isPPC64 = Subtarget.isPPC64();
15310   auto PtrVT = getPointerTy(MF.getDataLayout());
15311 
15312   if (Depth > 0) {
15313     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
15314     SDValue Offset =
15315         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
15316                         isPPC64 ? MVT::i64 : MVT::i32);
15317     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
15318                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
15319                        MachinePointerInfo());
15320   }
15321 
15322   // Just load the return address off the stack.
15323   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
15324   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
15325                      MachinePointerInfo());
15326 }
15327 
15328 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
15329                                           SelectionDAG &DAG) const {
15330   SDLoc dl(Op);
15331   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15332 
15333   MachineFunction &MF = DAG.getMachineFunction();
15334   MachineFrameInfo &MFI = MF.getFrameInfo();
15335   MFI.setFrameAddressIsTaken(true);
15336 
15337   EVT PtrVT = getPointerTy(MF.getDataLayout());
15338   bool isPPC64 = PtrVT == MVT::i64;
15339 
15340   // Naked functions never have a frame pointer, and so we use r1. For all
15341   // other functions, this decision must be delayed until during PEI.
15342   unsigned FrameReg;
15343   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
15344     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
15345   else
15346     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
15347 
15348   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
15349                                          PtrVT);
15350   while (Depth--)
15351     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
15352                             FrameAddr, MachinePointerInfo());
15353   return FrameAddr;
15354 }
15355 
15356 // FIXME? Maybe this could be a TableGen attribute on some registers and
15357 // this table could be generated automatically from RegInfo.
15358 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
15359                                               const MachineFunction &MF) const {
15360   bool isPPC64 = Subtarget.isPPC64();
15361 
15362   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
15363   if (!is64Bit && VT != LLT::scalar(32))
15364     report_fatal_error("Invalid register global variable type");
15365 
15366   Register Reg = StringSwitch<Register>(RegName)
15367                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
15368                      .Case("r2", isPPC64 ? Register() : PPC::R2)
15369                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
15370                      .Default(Register());
15371 
15372   if (Reg)
15373     return Reg;
15374   report_fatal_error("Invalid register name global variable");
15375 }
15376 
15377 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
15378   // 32-bit SVR4 ABI access everything as got-indirect.
15379   if (Subtarget.is32BitELFABI())
15380     return true;
15381 
15382   // AIX accesses everything indirectly through the TOC, which is similar to
15383   // the GOT.
15384   if (Subtarget.isAIXABI())
15385     return true;
15386 
15387   CodeModel::Model CModel = getTargetMachine().getCodeModel();
15388   // If it is small or large code model, module locals are accessed
15389   // indirectly by loading their address from .toc/.got.
15390   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
15391     return true;
15392 
15393   // JumpTable and BlockAddress are accessed as got-indirect.
15394   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
15395     return true;
15396 
15397   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
15398     return Subtarget.isGVIndirectSymbol(G->getGlobal());
15399 
15400   return false;
15401 }
15402 
15403 bool
15404 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
15405   // The PowerPC target isn't yet aware of offsets.
15406   return false;
15407 }
15408 
15409 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
15410                                            const CallInst &I,
15411                                            MachineFunction &MF,
15412                                            unsigned Intrinsic) const {
15413   switch (Intrinsic) {
15414   case Intrinsic::ppc_altivec_lvx:
15415   case Intrinsic::ppc_altivec_lvxl:
15416   case Intrinsic::ppc_altivec_lvebx:
15417   case Intrinsic::ppc_altivec_lvehx:
15418   case Intrinsic::ppc_altivec_lvewx:
15419   case Intrinsic::ppc_vsx_lxvd2x:
15420   case Intrinsic::ppc_vsx_lxvw4x:
15421   case Intrinsic::ppc_vsx_lxvd2x_be:
15422   case Intrinsic::ppc_vsx_lxvw4x_be:
15423   case Intrinsic::ppc_vsx_lxvl:
15424   case Intrinsic::ppc_vsx_lxvll: {
15425     EVT VT;
15426     switch (Intrinsic) {
15427     case Intrinsic::ppc_altivec_lvebx:
15428       VT = MVT::i8;
15429       break;
15430     case Intrinsic::ppc_altivec_lvehx:
15431       VT = MVT::i16;
15432       break;
15433     case Intrinsic::ppc_altivec_lvewx:
15434       VT = MVT::i32;
15435       break;
15436     case Intrinsic::ppc_vsx_lxvd2x:
15437     case Intrinsic::ppc_vsx_lxvd2x_be:
15438       VT = MVT::v2f64;
15439       break;
15440     default:
15441       VT = MVT::v4i32;
15442       break;
15443     }
15444 
15445     Info.opc = ISD::INTRINSIC_W_CHAIN;
15446     Info.memVT = VT;
15447     Info.ptrVal = I.getArgOperand(0);
15448     Info.offset = -VT.getStoreSize()+1;
15449     Info.size = 2*VT.getStoreSize()-1;
15450     Info.align = Align(1);
15451     Info.flags = MachineMemOperand::MOLoad;
15452     return true;
15453   }
15454   case Intrinsic::ppc_altivec_stvx:
15455   case Intrinsic::ppc_altivec_stvxl:
15456   case Intrinsic::ppc_altivec_stvebx:
15457   case Intrinsic::ppc_altivec_stvehx:
15458   case Intrinsic::ppc_altivec_stvewx:
15459   case Intrinsic::ppc_vsx_stxvd2x:
15460   case Intrinsic::ppc_vsx_stxvw4x:
15461   case Intrinsic::ppc_vsx_stxvd2x_be:
15462   case Intrinsic::ppc_vsx_stxvw4x_be:
15463   case Intrinsic::ppc_vsx_stxvl:
15464   case Intrinsic::ppc_vsx_stxvll: {
15465     EVT VT;
15466     switch (Intrinsic) {
15467     case Intrinsic::ppc_altivec_stvebx:
15468       VT = MVT::i8;
15469       break;
15470     case Intrinsic::ppc_altivec_stvehx:
15471       VT = MVT::i16;
15472       break;
15473     case Intrinsic::ppc_altivec_stvewx:
15474       VT = MVT::i32;
15475       break;
15476     case Intrinsic::ppc_vsx_stxvd2x:
15477     case Intrinsic::ppc_vsx_stxvd2x_be:
15478       VT = MVT::v2f64;
15479       break;
15480     default:
15481       VT = MVT::v4i32;
15482       break;
15483     }
15484 
15485     Info.opc = ISD::INTRINSIC_VOID;
15486     Info.memVT = VT;
15487     Info.ptrVal = I.getArgOperand(1);
15488     Info.offset = -VT.getStoreSize()+1;
15489     Info.size = 2*VT.getStoreSize()-1;
15490     Info.align = Align(1);
15491     Info.flags = MachineMemOperand::MOStore;
15492     return true;
15493   }
15494   default:
15495     break;
15496   }
15497 
15498   return false;
15499 }
15500 
15501 /// It returns EVT::Other if the type should be determined using generic
15502 /// target-independent logic.
15503 EVT PPCTargetLowering::getOptimalMemOpType(
15504     const MemOp &Op, const AttributeList &FuncAttributes) const {
15505   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
15506     // We should use Altivec/VSX loads and stores when available. For unaligned
15507     // addresses, unaligned VSX loads are only fast starting with the P8.
15508     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
15509         (Op.isAligned(Align(16)) ||
15510          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
15511       return MVT::v4i32;
15512   }
15513 
15514   if (Subtarget.isPPC64()) {
15515     return MVT::i64;
15516   }
15517 
15518   return MVT::i32;
15519 }
15520 
15521 /// Returns true if it is beneficial to convert a load of a constant
15522 /// to just the constant itself.
15523 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
15524                                                           Type *Ty) const {
15525   assert(Ty->isIntegerTy());
15526 
15527   unsigned BitSize = Ty->getPrimitiveSizeInBits();
15528   return !(BitSize == 0 || BitSize > 64);
15529 }
15530 
15531 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
15532   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15533     return false;
15534   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
15535   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
15536   return NumBits1 == 64 && NumBits2 == 32;
15537 }
15538 
15539 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
15540   if (!VT1.isInteger() || !VT2.isInteger())
15541     return false;
15542   unsigned NumBits1 = VT1.getSizeInBits();
15543   unsigned NumBits2 = VT2.getSizeInBits();
15544   return NumBits1 == 64 && NumBits2 == 32;
15545 }
15546 
15547 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
15548   // Generally speaking, zexts are not free, but they are free when they can be
15549   // folded with other operations.
15550   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
15551     EVT MemVT = LD->getMemoryVT();
15552     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
15553          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
15554         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
15555          LD->getExtensionType() == ISD::ZEXTLOAD))
15556       return true;
15557   }
15558 
15559   // FIXME: Add other cases...
15560   //  - 32-bit shifts with a zext to i64
15561   //  - zext after ctlz, bswap, etc.
15562   //  - zext after and by a constant mask
15563 
15564   return TargetLowering::isZExtFree(Val, VT2);
15565 }
15566 
15567 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
15568   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
15569          "invalid fpext types");
15570   // Extending to float128 is not free.
15571   if (DestVT == MVT::f128)
15572     return false;
15573   return true;
15574 }
15575 
15576 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
15577   return isInt<16>(Imm) || isUInt<16>(Imm);
15578 }
15579 
15580 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
15581   return isInt<16>(Imm) || isUInt<16>(Imm);
15582 }
15583 
15584 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align,
15585                                                        MachineMemOperand::Flags,
15586                                                        bool *Fast) const {
15587   if (DisablePPCUnaligned)
15588     return false;
15589 
15590   // PowerPC supports unaligned memory access for simple non-vector types.
15591   // Although accessing unaligned addresses is not as efficient as accessing
15592   // aligned addresses, it is generally more efficient than manual expansion,
15593   // and generally only traps for software emulation when crossing page
15594   // boundaries.
15595 
15596   if (!VT.isSimple())
15597     return false;
15598 
15599   if (VT.isFloatingPoint() && !VT.isVector() &&
15600       !Subtarget.allowsUnalignedFPAccess())
15601     return false;
15602 
15603   if (VT.getSimpleVT().isVector()) {
15604     if (Subtarget.hasVSX()) {
15605       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
15606           VT != MVT::v4f32 && VT != MVT::v4i32)
15607         return false;
15608     } else {
15609       return false;
15610     }
15611   }
15612 
15613   if (VT == MVT::ppcf128)
15614     return false;
15615 
15616   if (Fast)
15617     *Fast = true;
15618 
15619   return true;
15620 }
15621 
15622 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
15623                                                SDValue C) const {
15624   // Check integral scalar types.
15625   if (!VT.isScalarInteger())
15626     return false;
15627   if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
15628     if (!ConstNode->getAPIntValue().isSignedIntN(64))
15629       return false;
15630     // This transformation will generate >= 2 operations. But the following
15631     // cases will generate <= 2 instructions during ISEL. So exclude them.
15632     // 1. If the constant multiplier fits 16 bits, it can be handled by one
15633     // HW instruction, ie. MULLI
15634     // 2. If the multiplier after shifted fits 16 bits, an extra shift
15635     // instruction is needed than case 1, ie. MULLI and RLDICR
15636     int64_t Imm = ConstNode->getSExtValue();
15637     unsigned Shift = countTrailingZeros<uint64_t>(Imm);
15638     Imm >>= Shift;
15639     if (isInt<16>(Imm))
15640       return false;
15641     uint64_t UImm = static_cast<uint64_t>(Imm);
15642     if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) ||
15643         isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm))
15644       return true;
15645   }
15646   return false;
15647 }
15648 
15649 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
15650                                                    EVT VT) const {
15651   return isFMAFasterThanFMulAndFAdd(
15652       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
15653 }
15654 
15655 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
15656                                                    Type *Ty) const {
15657   switch (Ty->getScalarType()->getTypeID()) {
15658   case Type::FloatTyID:
15659   case Type::DoubleTyID:
15660     return true;
15661   case Type::FP128TyID:
15662     return Subtarget.hasP9Vector();
15663   default:
15664     return false;
15665   }
15666 }
15667 
15668 // FIXME: add more patterns which are not profitable to hoist.
15669 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
15670   if (!I->hasOneUse())
15671     return true;
15672 
15673   Instruction *User = I->user_back();
15674   assert(User && "A single use instruction with no uses.");
15675 
15676   switch (I->getOpcode()) {
15677   case Instruction::FMul: {
15678     // Don't break FMA, PowerPC prefers FMA.
15679     if (User->getOpcode() != Instruction::FSub &&
15680         User->getOpcode() != Instruction::FAdd)
15681       return true;
15682 
15683     const TargetOptions &Options = getTargetMachine().Options;
15684     const Function *F = I->getFunction();
15685     const DataLayout &DL = F->getParent()->getDataLayout();
15686     Type *Ty = User->getOperand(0)->getType();
15687 
15688     return !(
15689         isFMAFasterThanFMulAndFAdd(*F, Ty) &&
15690         isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
15691         (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
15692   }
15693   case Instruction::Load: {
15694     // Don't break "store (load float*)" pattern, this pattern will be combined
15695     // to "store (load int32)" in later InstCombine pass. See function
15696     // combineLoadToOperationType. On PowerPC, loading a float point takes more
15697     // cycles than loading a 32 bit integer.
15698     LoadInst *LI = cast<LoadInst>(I);
15699     // For the loads that combineLoadToOperationType does nothing, like
15700     // ordered load, it should be profitable to hoist them.
15701     // For swifterror load, it can only be used for pointer to pointer type, so
15702     // later type check should get rid of this case.
15703     if (!LI->isUnordered())
15704       return true;
15705 
15706     if (User->getOpcode() != Instruction::Store)
15707       return true;
15708 
15709     if (I->getType()->getTypeID() != Type::FloatTyID)
15710       return true;
15711 
15712     return false;
15713   }
15714   default:
15715     return true;
15716   }
15717   return true;
15718 }
15719 
15720 const MCPhysReg *
15721 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
15722   // LR is a callee-save register, but we must treat it as clobbered by any call
15723   // site. Hence we include LR in the scratch registers, which are in turn added
15724   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
15725   // to CTR, which is used by any indirect call.
15726   static const MCPhysReg ScratchRegs[] = {
15727     PPC::X12, PPC::LR8, PPC::CTR8, 0
15728   };
15729 
15730   return ScratchRegs;
15731 }
15732 
15733 Register PPCTargetLowering::getExceptionPointerRegister(
15734     const Constant *PersonalityFn) const {
15735   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
15736 }
15737 
15738 Register PPCTargetLowering::getExceptionSelectorRegister(
15739     const Constant *PersonalityFn) const {
15740   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
15741 }
15742 
15743 bool
15744 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
15745                      EVT VT , unsigned DefinedValues) const {
15746   if (VT == MVT::v2i64)
15747     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
15748 
15749   if (Subtarget.hasVSX())
15750     return true;
15751 
15752   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
15753 }
15754 
15755 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
15756   if (DisableILPPref || Subtarget.enableMachineScheduler())
15757     return TargetLowering::getSchedulingPreference(N);
15758 
15759   return Sched::ILP;
15760 }
15761 
15762 // Create a fast isel object.
15763 FastISel *
15764 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
15765                                   const TargetLibraryInfo *LibInfo) const {
15766   return PPC::createFastISel(FuncInfo, LibInfo);
15767 }
15768 
15769 // 'Inverted' means the FMA opcode after negating one multiplicand.
15770 // For example, (fma -a b c) = (fnmsub a b c)
15771 static unsigned invertFMAOpcode(unsigned Opc) {
15772   switch (Opc) {
15773   default:
15774     llvm_unreachable("Invalid FMA opcode for PowerPC!");
15775   case ISD::FMA:
15776     return PPCISD::FNMSUB;
15777   case PPCISD::FNMSUB:
15778     return ISD::FMA;
15779   }
15780 }
15781 
15782 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
15783                                                 bool LegalOps, bool OptForSize,
15784                                                 NegatibleCost &Cost,
15785                                                 unsigned Depth) const {
15786   if (Depth > SelectionDAG::MaxRecursionDepth)
15787     return SDValue();
15788 
15789   unsigned Opc = Op.getOpcode();
15790   EVT VT = Op.getValueType();
15791   SDNodeFlags Flags = Op.getNode()->getFlags();
15792 
15793   switch (Opc) {
15794   case PPCISD::FNMSUB:
15795     if (!Op.hasOneUse() || !isTypeLegal(VT))
15796       break;
15797 
15798     const TargetOptions &Options = getTargetMachine().Options;
15799     SDValue N0 = Op.getOperand(0);
15800     SDValue N1 = Op.getOperand(1);
15801     SDValue N2 = Op.getOperand(2);
15802     SDLoc Loc(Op);
15803 
15804     NegatibleCost N2Cost = NegatibleCost::Expensive;
15805     SDValue NegN2 =
15806         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
15807 
15808     if (!NegN2)
15809       return SDValue();
15810 
15811     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
15812     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
15813     // These transformations may change sign of zeroes. For example,
15814     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
15815     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
15816       // Try and choose the cheaper one to negate.
15817       NegatibleCost N0Cost = NegatibleCost::Expensive;
15818       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
15819                                            N0Cost, Depth + 1);
15820 
15821       NegatibleCost N1Cost = NegatibleCost::Expensive;
15822       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
15823                                            N1Cost, Depth + 1);
15824 
15825       if (NegN0 && N0Cost <= N1Cost) {
15826         Cost = std::min(N0Cost, N2Cost);
15827         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
15828       } else if (NegN1) {
15829         Cost = std::min(N1Cost, N2Cost);
15830         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
15831       }
15832     }
15833 
15834     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
15835     if (isOperationLegal(ISD::FMA, VT)) {
15836       Cost = N2Cost;
15837       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
15838     }
15839 
15840     break;
15841   }
15842 
15843   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
15844                                               Cost, Depth);
15845 }
15846 
15847 // Override to enable LOAD_STACK_GUARD lowering on Linux.
15848 bool PPCTargetLowering::useLoadStackGuardNode() const {
15849   if (!Subtarget.isTargetLinux())
15850     return TargetLowering::useLoadStackGuardNode();
15851   return true;
15852 }
15853 
15854 // Override to disable global variable loading on Linux.
15855 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
15856   if (!Subtarget.isTargetLinux())
15857     return TargetLowering::insertSSPDeclarations(M);
15858 }
15859 
15860 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
15861                                      bool ForCodeSize) const {
15862   if (!VT.isSimple() || !Subtarget.hasVSX())
15863     return false;
15864 
15865   switch(VT.getSimpleVT().SimpleTy) {
15866   default:
15867     // For FP types that are currently not supported by PPC backend, return
15868     // false. Examples: f16, f80.
15869     return false;
15870   case MVT::f32:
15871   case MVT::f64:
15872     if (Subtarget.hasPrefixInstrs()) {
15873       // With prefixed instructions, we can materialize anything that can be
15874       // represented with a 32-bit immediate, not just positive zero.
15875       APFloat APFloatOfImm = Imm;
15876       return convertToNonDenormSingle(APFloatOfImm);
15877     }
15878     LLVM_FALLTHROUGH;
15879   case MVT::ppcf128:
15880     return Imm.isPosZero();
15881   }
15882 }
15883 
15884 // For vector shift operation op, fold
15885 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
15886 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
15887                                   SelectionDAG &DAG) {
15888   SDValue N0 = N->getOperand(0);
15889   SDValue N1 = N->getOperand(1);
15890   EVT VT = N0.getValueType();
15891   unsigned OpSizeInBits = VT.getScalarSizeInBits();
15892   unsigned Opcode = N->getOpcode();
15893   unsigned TargetOpcode;
15894 
15895   switch (Opcode) {
15896   default:
15897     llvm_unreachable("Unexpected shift operation");
15898   case ISD::SHL:
15899     TargetOpcode = PPCISD::SHL;
15900     break;
15901   case ISD::SRL:
15902     TargetOpcode = PPCISD::SRL;
15903     break;
15904   case ISD::SRA:
15905     TargetOpcode = PPCISD::SRA;
15906     break;
15907   }
15908 
15909   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
15910       N1->getOpcode() == ISD::AND)
15911     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
15912       if (Mask->getZExtValue() == OpSizeInBits - 1)
15913         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
15914 
15915   return SDValue();
15916 }
15917 
15918 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
15919   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15920     return Value;
15921 
15922   SDValue N0 = N->getOperand(0);
15923   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
15924   if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() ||
15925       N0.getOpcode() != ISD::SIGN_EXTEND ||
15926       N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr ||
15927       N->getValueType(0) != MVT::i64)
15928     return SDValue();
15929 
15930   // We can't save an operation here if the value is already extended, and
15931   // the existing shift is easier to combine.
15932   SDValue ExtsSrc = N0.getOperand(0);
15933   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
15934       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
15935     return SDValue();
15936 
15937   SDLoc DL(N0);
15938   SDValue ShiftBy = SDValue(CN1, 0);
15939   // We want the shift amount to be i32 on the extswli, but the shift could
15940   // have an i64.
15941   if (ShiftBy.getValueType() == MVT::i64)
15942     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
15943 
15944   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
15945                          ShiftBy);
15946 }
15947 
15948 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
15949   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15950     return Value;
15951 
15952   return SDValue();
15953 }
15954 
15955 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
15956   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15957     return Value;
15958 
15959   return SDValue();
15960 }
15961 
15962 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
15963 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
15964 // When C is zero, the equation (addi Z, -C) can be simplified to Z
15965 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
15966 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
15967                                  const PPCSubtarget &Subtarget) {
15968   if (!Subtarget.isPPC64())
15969     return SDValue();
15970 
15971   SDValue LHS = N->getOperand(0);
15972   SDValue RHS = N->getOperand(1);
15973 
15974   auto isZextOfCompareWithConstant = [](SDValue Op) {
15975     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
15976         Op.getValueType() != MVT::i64)
15977       return false;
15978 
15979     SDValue Cmp = Op.getOperand(0);
15980     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
15981         Cmp.getOperand(0).getValueType() != MVT::i64)
15982       return false;
15983 
15984     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
15985       int64_t NegConstant = 0 - Constant->getSExtValue();
15986       // Due to the limitations of the addi instruction,
15987       // -C is required to be [-32768, 32767].
15988       return isInt<16>(NegConstant);
15989     }
15990 
15991     return false;
15992   };
15993 
15994   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
15995   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
15996 
15997   // If there is a pattern, canonicalize a zext operand to the RHS.
15998   if (LHSHasPattern && !RHSHasPattern)
15999     std::swap(LHS, RHS);
16000   else if (!LHSHasPattern && !RHSHasPattern)
16001     return SDValue();
16002 
16003   SDLoc DL(N);
16004   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
16005   SDValue Cmp = RHS.getOperand(0);
16006   SDValue Z = Cmp.getOperand(0);
16007   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
16008 
16009   assert(Constant && "Constant Should not be a null pointer.");
16010   int64_t NegConstant = 0 - Constant->getSExtValue();
16011 
16012   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
16013   default: break;
16014   case ISD::SETNE: {
16015     //                                 when C == 0
16016     //                             --> addze X, (addic Z, -1).carry
16017     //                            /
16018     // add X, (zext(setne Z, C))--
16019     //                            \    when -32768 <= -C <= 32767 && C != 0
16020     //                             --> addze X, (addic (addi Z, -C), -1).carry
16021     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16022                               DAG.getConstant(NegConstant, DL, MVT::i64));
16023     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16024     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16025                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
16026     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16027                        SDValue(Addc.getNode(), 1));
16028     }
16029   case ISD::SETEQ: {
16030     //                                 when C == 0
16031     //                             --> addze X, (subfic Z, 0).carry
16032     //                            /
16033     // add X, (zext(sete  Z, C))--
16034     //                            \    when -32768 <= -C <= 32767 && C != 0
16035     //                             --> addze X, (subfic (addi Z, -C), 0).carry
16036     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16037                               DAG.getConstant(NegConstant, DL, MVT::i64));
16038     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16039     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16040                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
16041     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16042                        SDValue(Subc.getNode(), 1));
16043     }
16044   }
16045 
16046   return SDValue();
16047 }
16048 
16049 // Transform
16050 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
16051 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
16052 // In this case both C1 and C2 must be known constants.
16053 // C1+C2 must fit into a 34 bit signed integer.
16054 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
16055                                           const PPCSubtarget &Subtarget) {
16056   if (!Subtarget.isUsingPCRelativeCalls())
16057     return SDValue();
16058 
16059   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
16060   // If we find that node try to cast the Global Address and the Constant.
16061   SDValue LHS = N->getOperand(0);
16062   SDValue RHS = N->getOperand(1);
16063 
16064   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16065     std::swap(LHS, RHS);
16066 
16067   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16068     return SDValue();
16069 
16070   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
16071   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
16072   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
16073 
16074   // Check that both casts succeeded.
16075   if (!GSDN || !ConstNode)
16076     return SDValue();
16077 
16078   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
16079   SDLoc DL(GSDN);
16080 
16081   // The signed int offset needs to fit in 34 bits.
16082   if (!isInt<34>(NewOffset))
16083     return SDValue();
16084 
16085   // The new global address is a copy of the old global address except
16086   // that it has the updated Offset.
16087   SDValue GA =
16088       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
16089                                  NewOffset, GSDN->getTargetFlags());
16090   SDValue MatPCRel =
16091       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
16092   return MatPCRel;
16093 }
16094 
16095 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
16096   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
16097     return Value;
16098 
16099   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
16100     return Value;
16101 
16102   return SDValue();
16103 }
16104 
16105 // Detect TRUNCATE operations on bitcasts of float128 values.
16106 // What we are looking for here is the situtation where we extract a subset
16107 // of bits from a 128 bit float.
16108 // This can be of two forms:
16109 // 1) BITCAST of f128 feeding TRUNCATE
16110 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
16111 // The reason this is required is because we do not have a legal i128 type
16112 // and so we want to prevent having to store the f128 and then reload part
16113 // of it.
16114 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
16115                                            DAGCombinerInfo &DCI) const {
16116   // If we are using CRBits then try that first.
16117   if (Subtarget.useCRBits()) {
16118     // Check if CRBits did anything and return that if it did.
16119     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
16120       return CRTruncValue;
16121   }
16122 
16123   SDLoc dl(N);
16124   SDValue Op0 = N->getOperand(0);
16125 
16126   // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
16127   if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
16128     EVT VT = N->getValueType(0);
16129     if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16130       return SDValue();
16131     SDValue Sub = Op0.getOperand(0);
16132     if (Sub.getOpcode() == ISD::SUB) {
16133       SDValue SubOp0 = Sub.getOperand(0);
16134       SDValue SubOp1 = Sub.getOperand(1);
16135       if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
16136           (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
16137         return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
16138                                SubOp1.getOperand(0),
16139                                DCI.DAG.getTargetConstant(0, dl, MVT::i32));
16140       }
16141     }
16142   }
16143 
16144   // Looking for a truncate of i128 to i64.
16145   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
16146     return SDValue();
16147 
16148   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
16149 
16150   // SRL feeding TRUNCATE.
16151   if (Op0.getOpcode() == ISD::SRL) {
16152     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
16153     // The right shift has to be by 64 bits.
16154     if (!ConstNode || ConstNode->getZExtValue() != 64)
16155       return SDValue();
16156 
16157     // Switch the element number to extract.
16158     EltToExtract = EltToExtract ? 0 : 1;
16159     // Update Op0 past the SRL.
16160     Op0 = Op0.getOperand(0);
16161   }
16162 
16163   // BITCAST feeding a TRUNCATE possibly via SRL.
16164   if (Op0.getOpcode() == ISD::BITCAST &&
16165       Op0.getValueType() == MVT::i128 &&
16166       Op0.getOperand(0).getValueType() == MVT::f128) {
16167     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
16168     return DCI.DAG.getNode(
16169         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
16170         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
16171   }
16172   return SDValue();
16173 }
16174 
16175 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
16176   SelectionDAG &DAG = DCI.DAG;
16177 
16178   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
16179   if (!ConstOpOrElement)
16180     return SDValue();
16181 
16182   // An imul is usually smaller than the alternative sequence for legal type.
16183   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
16184       isOperationLegal(ISD::MUL, N->getValueType(0)))
16185     return SDValue();
16186 
16187   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
16188     switch (this->Subtarget.getCPUDirective()) {
16189     default:
16190       // TODO: enhance the condition for subtarget before pwr8
16191       return false;
16192     case PPC::DIR_PWR8:
16193       //  type        mul     add    shl
16194       // scalar        4       1      1
16195       // vector        7       2      2
16196       return true;
16197     case PPC::DIR_PWR9:
16198     case PPC::DIR_PWR10:
16199     case PPC::DIR_PWR_FUTURE:
16200       //  type        mul     add    shl
16201       // scalar        5       2      2
16202       // vector        7       2      2
16203 
16204       // The cycle RATIO of related operations are showed as a table above.
16205       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
16206       // scalar and vector type. For 2 instrs patterns, add/sub + shl
16207       // are 4, it is always profitable; but for 3 instrs patterns
16208       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
16209       // So we should only do it for vector type.
16210       return IsAddOne && IsNeg ? VT.isVector() : true;
16211     }
16212   };
16213 
16214   EVT VT = N->getValueType(0);
16215   SDLoc DL(N);
16216 
16217   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
16218   bool IsNeg = MulAmt.isNegative();
16219   APInt MulAmtAbs = MulAmt.abs();
16220 
16221   if ((MulAmtAbs - 1).isPowerOf2()) {
16222     // (mul x, 2^N + 1) => (add (shl x, N), x)
16223     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
16224 
16225     if (!IsProfitable(IsNeg, true, VT))
16226       return SDValue();
16227 
16228     SDValue Op0 = N->getOperand(0);
16229     SDValue Op1 =
16230         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16231                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
16232     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
16233 
16234     if (!IsNeg)
16235       return Res;
16236 
16237     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
16238   } else if ((MulAmtAbs + 1).isPowerOf2()) {
16239     // (mul x, 2^N - 1) => (sub (shl x, N), x)
16240     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
16241 
16242     if (!IsProfitable(IsNeg, false, VT))
16243       return SDValue();
16244 
16245     SDValue Op0 = N->getOperand(0);
16246     SDValue Op1 =
16247         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16248                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
16249 
16250     if (!IsNeg)
16251       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
16252     else
16253       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
16254 
16255   } else {
16256     return SDValue();
16257   }
16258 }
16259 
16260 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
16261 // in combiner since we need to check SD flags and other subtarget features.
16262 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
16263                                           DAGCombinerInfo &DCI) const {
16264   SDValue N0 = N->getOperand(0);
16265   SDValue N1 = N->getOperand(1);
16266   SDValue N2 = N->getOperand(2);
16267   SDNodeFlags Flags = N->getFlags();
16268   EVT VT = N->getValueType(0);
16269   SelectionDAG &DAG = DCI.DAG;
16270   const TargetOptions &Options = getTargetMachine().Options;
16271   unsigned Opc = N->getOpcode();
16272   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
16273   bool LegalOps = !DCI.isBeforeLegalizeOps();
16274   SDLoc Loc(N);
16275 
16276   if (!isOperationLegal(ISD::FMA, VT))
16277     return SDValue();
16278 
16279   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
16280   // since (fnmsub a b c)=-0 while c-ab=+0.
16281   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
16282     return SDValue();
16283 
16284   // (fma (fneg a) b c) => (fnmsub a b c)
16285   // (fnmsub (fneg a) b c) => (fma a b c)
16286   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
16287     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
16288 
16289   // (fma a (fneg b) c) => (fnmsub a b c)
16290   // (fnmsub a (fneg b) c) => (fma a b c)
16291   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
16292     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
16293 
16294   return SDValue();
16295 }
16296 
16297 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
16298   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
16299   if (!Subtarget.is64BitELFABI())
16300     return false;
16301 
16302   // If not a tail call then no need to proceed.
16303   if (!CI->isTailCall())
16304     return false;
16305 
16306   // If sibling calls have been disabled and tail-calls aren't guaranteed
16307   // there is no reason to duplicate.
16308   auto &TM = getTargetMachine();
16309   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
16310     return false;
16311 
16312   // Can't tail call a function called indirectly, or if it has variadic args.
16313   const Function *Callee = CI->getCalledFunction();
16314   if (!Callee || Callee->isVarArg())
16315     return false;
16316 
16317   // Make sure the callee and caller calling conventions are eligible for tco.
16318   const Function *Caller = CI->getParent()->getParent();
16319   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
16320                                            CI->getCallingConv()))
16321       return false;
16322 
16323   // If the function is local then we have a good chance at tail-calling it
16324   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
16325 }
16326 
16327 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
16328   if (!Subtarget.hasVSX())
16329     return false;
16330   if (Subtarget.hasP9Vector() && VT == MVT::f128)
16331     return true;
16332   return VT == MVT::f32 || VT == MVT::f64 ||
16333     VT == MVT::v4f32 || VT == MVT::v2f64;
16334 }
16335 
16336 bool PPCTargetLowering::
16337 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
16338   const Value *Mask = AndI.getOperand(1);
16339   // If the mask is suitable for andi. or andis. we should sink the and.
16340   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
16341     // Can't handle constants wider than 64-bits.
16342     if (CI->getBitWidth() > 64)
16343       return false;
16344     int64_t ConstVal = CI->getZExtValue();
16345     return isUInt<16>(ConstVal) ||
16346       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
16347   }
16348 
16349   // For non-constant masks, we can always use the record-form and.
16350   return true;
16351 }
16352 
16353 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
16354 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
16355 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
16356 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
16357 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
16358 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
16359   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
16360   assert(Subtarget.hasP9Altivec() &&
16361          "Only combine this when P9 altivec supported!");
16362   EVT VT = N->getValueType(0);
16363   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16364     return SDValue();
16365 
16366   SelectionDAG &DAG = DCI.DAG;
16367   SDLoc dl(N);
16368   if (N->getOperand(0).getOpcode() == ISD::SUB) {
16369     // Even for signed integers, if it's known to be positive (as signed
16370     // integer) due to zero-extended inputs.
16371     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
16372     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
16373     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
16374          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
16375         (SubOpcd1 == ISD::ZERO_EXTEND ||
16376          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
16377       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16378                          N->getOperand(0)->getOperand(0),
16379                          N->getOperand(0)->getOperand(1),
16380                          DAG.getTargetConstant(0, dl, MVT::i32));
16381     }
16382 
16383     // For type v4i32, it can be optimized with xvnegsp + vabsduw
16384     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
16385         N->getOperand(0).hasOneUse()) {
16386       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16387                          N->getOperand(0)->getOperand(0),
16388                          N->getOperand(0)->getOperand(1),
16389                          DAG.getTargetConstant(1, dl, MVT::i32));
16390     }
16391   }
16392 
16393   return SDValue();
16394 }
16395 
16396 // For type v4i32/v8ii16/v16i8, transform
16397 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
16398 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
16399 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
16400 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
16401 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
16402                                           DAGCombinerInfo &DCI) const {
16403   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
16404   assert(Subtarget.hasP9Altivec() &&
16405          "Only combine this when P9 altivec supported!");
16406 
16407   SelectionDAG &DAG = DCI.DAG;
16408   SDLoc dl(N);
16409   SDValue Cond = N->getOperand(0);
16410   SDValue TrueOpnd = N->getOperand(1);
16411   SDValue FalseOpnd = N->getOperand(2);
16412   EVT VT = N->getOperand(1).getValueType();
16413 
16414   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
16415       FalseOpnd.getOpcode() != ISD::SUB)
16416     return SDValue();
16417 
16418   // ABSD only available for type v4i32/v8i16/v16i8
16419   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16420     return SDValue();
16421 
16422   // At least to save one more dependent computation
16423   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
16424     return SDValue();
16425 
16426   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16427 
16428   // Can only handle unsigned comparison here
16429   switch (CC) {
16430   default:
16431     return SDValue();
16432   case ISD::SETUGT:
16433   case ISD::SETUGE:
16434     break;
16435   case ISD::SETULT:
16436   case ISD::SETULE:
16437     std::swap(TrueOpnd, FalseOpnd);
16438     break;
16439   }
16440 
16441   SDValue CmpOpnd1 = Cond.getOperand(0);
16442   SDValue CmpOpnd2 = Cond.getOperand(1);
16443 
16444   // SETCC CmpOpnd1 CmpOpnd2 cond
16445   // TrueOpnd = CmpOpnd1 - CmpOpnd2
16446   // FalseOpnd = CmpOpnd2 - CmpOpnd1
16447   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
16448       TrueOpnd.getOperand(1) == CmpOpnd2 &&
16449       FalseOpnd.getOperand(0) == CmpOpnd2 &&
16450       FalseOpnd.getOperand(1) == CmpOpnd1) {
16451     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
16452                        CmpOpnd1, CmpOpnd2,
16453                        DAG.getTargetConstant(0, dl, MVT::i32));
16454   }
16455 
16456   return SDValue();
16457 }
16458