1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallSite.h"
59 #include "llvm/IR/CallingConv.h"
60 #include "llvm/IR/Constant.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/DataLayout.h"
63 #include "llvm/IR/DebugLoc.h"
64 #include "llvm/IR/DerivedTypes.h"
65 #include "llvm/IR/Function.h"
66 #include "llvm/IR/GlobalValue.h"
67 #include "llvm/IR/IRBuilder.h"
68 #include "llvm/IR/Instructions.h"
69 #include "llvm/IR/Intrinsics.h"
70 #include "llvm/IR/IntrinsicsPowerPC.h"
71 #include "llvm/IR/Module.h"
72 #include "llvm/IR/Type.h"
73 #include "llvm/IR/Use.h"
74 #include "llvm/IR/Value.h"
75 #include "llvm/MC/MCContext.h"
76 #include "llvm/MC/MCExpr.h"
77 #include "llvm/MC/MCRegisterInfo.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
122 cl::desc("enable quad precision float support on ppc"), cl::Hidden);
123 
124 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
125 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
126 
127 STATISTIC(NumTailCalls, "Number of tail calls");
128 STATISTIC(NumSiblingCalls, "Number of sibling calls");
129 
130 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
131 
132 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
133 
134 // FIXME: Remove this once the bug has been fixed!
135 extern cl::opt<bool> ANDIGlueBug;
136 
137 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
138                                      const PPCSubtarget &STI)
139     : TargetLowering(TM), Subtarget(STI) {
140   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
141   // arguments are at least 4/8 bytes aligned.
142   bool isPPC64 = Subtarget.isPPC64();
143   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
144 
145   // Set up the register classes.
146   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
147   if (!useSoftFloat()) {
148     if (hasSPE()) {
149       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
150       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
151     } else {
152       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
153       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
154     }
155   }
156 
157   // Match BITREVERSE to customized fast code sequence in the td file.
158   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
159   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
160 
161   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
162   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
163 
164   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
165   for (MVT VT : MVT::integer_valuetypes()) {
166     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
167     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
168   }
169 
170   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
171 
172   // PowerPC has pre-inc load and store's.
173   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
174   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
175   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
176   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
177   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
178   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
179   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
180   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
181   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
182   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
183   if (!Subtarget.hasSPE()) {
184     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
185     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
186     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
187     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
188   }
189 
190   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
191   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
192   for (MVT VT : ScalarIntVTs) {
193     setOperationAction(ISD::ADDC, VT, Legal);
194     setOperationAction(ISD::ADDE, VT, Legal);
195     setOperationAction(ISD::SUBC, VT, Legal);
196     setOperationAction(ISD::SUBE, VT, Legal);
197   }
198 
199   if (Subtarget.useCRBits()) {
200     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
201 
202     if (isPPC64 || Subtarget.hasFPCVT()) {
203       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
204       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
205                          isPPC64 ? MVT::i64 : MVT::i32);
206       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
207       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
208                         isPPC64 ? MVT::i64 : MVT::i32);
209     } else {
210       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
211       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
212     }
213 
214     // PowerPC does not support direct load/store of condition registers.
215     setOperationAction(ISD::LOAD, MVT::i1, Custom);
216     setOperationAction(ISD::STORE, MVT::i1, Custom);
217 
218     // FIXME: Remove this once the ANDI glue bug is fixed:
219     if (ANDIGlueBug)
220       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
221 
222     for (MVT VT : MVT::integer_valuetypes()) {
223       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
224       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
225       setTruncStoreAction(VT, MVT::i1, Expand);
226     }
227 
228     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
229   }
230 
231   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
232   // PPC (the libcall is not available).
233   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
234   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
235 
236   // We do not currently implement these libm ops for PowerPC.
237   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
238   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
239   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
240   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
241   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
242   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
243 
244   // PowerPC has no SREM/UREM instructions unless we are on P9
245   // On P9 we may use a hardware instruction to compute the remainder.
246   // The instructions are not legalized directly because in the cases where the
247   // result of both the remainder and the division is required it is more
248   // efficient to compute the remainder from the result of the division rather
249   // than use the remainder instruction.
250   if (Subtarget.isISA3_0()) {
251     setOperationAction(ISD::SREM, MVT::i32, Custom);
252     setOperationAction(ISD::UREM, MVT::i32, Custom);
253     setOperationAction(ISD::SREM, MVT::i64, Custom);
254     setOperationAction(ISD::UREM, MVT::i64, Custom);
255   } else {
256     setOperationAction(ISD::SREM, MVT::i32, Expand);
257     setOperationAction(ISD::UREM, MVT::i32, Expand);
258     setOperationAction(ISD::SREM, MVT::i64, Expand);
259     setOperationAction(ISD::UREM, MVT::i64, Expand);
260   }
261 
262   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
263   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
264   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
265   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
266   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
267   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
268   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
269   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
270   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
271 
272   // We don't support sin/cos/sqrt/fmod/pow
273   setOperationAction(ISD::FSIN , MVT::f64, Expand);
274   setOperationAction(ISD::FCOS , MVT::f64, Expand);
275   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
276   setOperationAction(ISD::FREM , MVT::f64, Expand);
277   setOperationAction(ISD::FPOW , MVT::f64, Expand);
278   setOperationAction(ISD::FSIN , MVT::f32, Expand);
279   setOperationAction(ISD::FCOS , MVT::f32, Expand);
280   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
281   setOperationAction(ISD::FREM , MVT::f32, Expand);
282   setOperationAction(ISD::FPOW , MVT::f32, Expand);
283   if (Subtarget.hasSPE()) {
284     setOperationAction(ISD::FMA  , MVT::f64, Expand);
285     setOperationAction(ISD::FMA  , MVT::f32, Expand);
286   } else {
287     setOperationAction(ISD::FMA  , MVT::f64, Legal);
288     setOperationAction(ISD::FMA  , MVT::f32, Legal);
289   }
290 
291   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
292 
293   // If we're enabling GP optimizations, use hardware square root
294   if (!Subtarget.hasFSQRT() &&
295       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
296         Subtarget.hasFRE()))
297     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
298 
299   if (!Subtarget.hasFSQRT() &&
300       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
301         Subtarget.hasFRES()))
302     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
303 
304   if (Subtarget.hasFCPSGN()) {
305     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
306     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
307   } else {
308     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
309     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
310   }
311 
312   if (Subtarget.hasFPRND()) {
313     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
314     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
315     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
316     setOperationAction(ISD::FROUND, MVT::f64, Legal);
317 
318     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
319     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
320     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
321     setOperationAction(ISD::FROUND, MVT::f32, Legal);
322   }
323 
324   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
325   // to speed up scalar BSWAP64.
326   // CTPOP or CTTZ were introduced in P8/P9 respectively
327   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
328   if (Subtarget.hasP9Vector())
329     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
330   else
331     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
332   if (Subtarget.isISA3_0()) {
333     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
334     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
335   } else {
336     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
337     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
338   }
339 
340   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
341     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
342     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
343   } else {
344     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
345     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
346   }
347 
348   // PowerPC does not have ROTR
349   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
350   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
351 
352   if (!Subtarget.useCRBits()) {
353     // PowerPC does not have Select
354     setOperationAction(ISD::SELECT, MVT::i32, Expand);
355     setOperationAction(ISD::SELECT, MVT::i64, Expand);
356     setOperationAction(ISD::SELECT, MVT::f32, Expand);
357     setOperationAction(ISD::SELECT, MVT::f64, Expand);
358   }
359 
360   // PowerPC wants to turn select_cc of FP into fsel when possible.
361   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
362   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
363 
364   // PowerPC wants to optimize integer setcc a bit
365   if (!Subtarget.useCRBits())
366     setOperationAction(ISD::SETCC, MVT::i32, Custom);
367 
368   // PowerPC does not have BRCOND which requires SetCC
369   if (!Subtarget.useCRBits())
370     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
371 
372   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
373 
374   if (Subtarget.hasSPE()) {
375     // SPE has built-in conversions
376     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
377     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
378     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
379   } else {
380     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
381     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
382 
383     // PowerPC does not have [U|S]INT_TO_FP
384     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
385     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
386   }
387 
388   if (Subtarget.hasDirectMove() && isPPC64) {
389     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
390     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
391     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
392     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
393     if (TM.Options.UnsafeFPMath) {
394       setOperationAction(ISD::LRINT, MVT::f64, Legal);
395       setOperationAction(ISD::LRINT, MVT::f32, Legal);
396       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
397       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
398       setOperationAction(ISD::LROUND, MVT::f64, Legal);
399       setOperationAction(ISD::LROUND, MVT::f32, Legal);
400       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
401       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
402     }
403   } else {
404     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
405     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
406     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
407     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
408   }
409 
410   // We cannot sextinreg(i1).  Expand to shifts.
411   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
412 
413   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
414   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
415   // support continuation, user-level threading, and etc.. As a result, no
416   // other SjLj exception interfaces are implemented and please don't build
417   // your own exception handling based on them.
418   // LLVM/Clang supports zero-cost DWARF exception handling.
419   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
420   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
421 
422   // We want to legalize GlobalAddress and ConstantPool nodes into the
423   // appropriate instructions to materialize the address.
424   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
425   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
426   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
427   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
428   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
429   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
430   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
431   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
432   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
433   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
434 
435   // TRAP is legal.
436   setOperationAction(ISD::TRAP, MVT::Other, Legal);
437 
438   // TRAMPOLINE is custom lowered.
439   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
440   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
441 
442   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
443   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
444 
445   if (Subtarget.is64BitELFABI()) {
446     // VAARG always uses double-word chunks, so promote anything smaller.
447     setOperationAction(ISD::VAARG, MVT::i1, Promote);
448     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
449     setOperationAction(ISD::VAARG, MVT::i8, Promote);
450     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
451     setOperationAction(ISD::VAARG, MVT::i16, Promote);
452     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
453     setOperationAction(ISD::VAARG, MVT::i32, Promote);
454     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
455     setOperationAction(ISD::VAARG, MVT::Other, Expand);
456   } else if (Subtarget.is32BitELFABI()) {
457     // VAARG is custom lowered with the 32-bit SVR4 ABI.
458     setOperationAction(ISD::VAARG, MVT::Other, Custom);
459     setOperationAction(ISD::VAARG, MVT::i64, Custom);
460   } else
461     setOperationAction(ISD::VAARG, MVT::Other, Expand);
462 
463   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
464   if (Subtarget.is32BitELFABI())
465     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
466   else
467     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
468 
469   // Use the default implementation.
470   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
471   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
472   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
473   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
474   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
475   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
476   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
477   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
478   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
479 
480   // We want to custom lower some of our intrinsics.
481   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
482 
483   // To handle counter-based loop conditions.
484   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
485 
486   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
487   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
488   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
489   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
490 
491   // Comparisons that require checking two conditions.
492   if (Subtarget.hasSPE()) {
493     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
494     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
495     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
496     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
497   }
498   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
499   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
500   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
501   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
502   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
503   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
504   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
505   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
506   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
507   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
508   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
509   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
510 
511   if (Subtarget.has64BitSupport()) {
512     // They also have instructions for converting between i64 and fp.
513     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
514     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
515     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
516     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
517     // This is just the low 32 bits of a (signed) fp->i64 conversion.
518     // We cannot do this with Promote because i64 is not a legal type.
519     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
520 
521     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
522       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
523   } else {
524     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
525     if (Subtarget.hasSPE())
526       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
527     else
528       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
529   }
530 
531   // With the instructions enabled under FPCVT, we can do everything.
532   if (Subtarget.hasFPCVT()) {
533     if (Subtarget.has64BitSupport()) {
534       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
535       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
536       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
537       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
538     }
539 
540     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
541     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
542     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
543     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
544   }
545 
546   if (Subtarget.use64BitRegs()) {
547     // 64-bit PowerPC implementations can support i64 types directly
548     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
549     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
550     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
551     // 64-bit PowerPC wants to expand i128 shifts itself.
552     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
553     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
554     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
555   } else {
556     // 32-bit PowerPC wants to expand i64 shifts itself.
557     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
558     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
559     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
560   }
561 
562   if (Subtarget.hasVSX()) {
563     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
564     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
565     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
566     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
567   }
568 
569   if (Subtarget.hasAltivec()) {
570     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
571       setOperationAction(ISD::SADDSAT, VT, Legal);
572       setOperationAction(ISD::SSUBSAT, VT, Legal);
573       setOperationAction(ISD::UADDSAT, VT, Legal);
574       setOperationAction(ISD::USUBSAT, VT, Legal);
575     }
576     // First set operation action for all vector types to expand. Then we
577     // will selectively turn on ones that can be effectively codegen'd.
578     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
579       // add/sub are legal for all supported vector VT's.
580       setOperationAction(ISD::ADD, VT, Legal);
581       setOperationAction(ISD::SUB, VT, Legal);
582 
583       // For v2i64, these are only valid with P8Vector. This is corrected after
584       // the loop.
585       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
586         setOperationAction(ISD::SMAX, VT, Legal);
587         setOperationAction(ISD::SMIN, VT, Legal);
588         setOperationAction(ISD::UMAX, VT, Legal);
589         setOperationAction(ISD::UMIN, VT, Legal);
590       }
591       else {
592         setOperationAction(ISD::SMAX, VT, Expand);
593         setOperationAction(ISD::SMIN, VT, Expand);
594         setOperationAction(ISD::UMAX, VT, Expand);
595         setOperationAction(ISD::UMIN, VT, Expand);
596       }
597 
598       if (Subtarget.hasVSX()) {
599         setOperationAction(ISD::FMAXNUM, VT, Legal);
600         setOperationAction(ISD::FMINNUM, VT, Legal);
601       }
602 
603       // Vector instructions introduced in P8
604       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
605         setOperationAction(ISD::CTPOP, VT, Legal);
606         setOperationAction(ISD::CTLZ, VT, Legal);
607       }
608       else {
609         setOperationAction(ISD::CTPOP, VT, Expand);
610         setOperationAction(ISD::CTLZ, VT, Expand);
611       }
612 
613       // Vector instructions introduced in P9
614       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
615         setOperationAction(ISD::CTTZ, VT, Legal);
616       else
617         setOperationAction(ISD::CTTZ, VT, Expand);
618 
619       // We promote all shuffles to v16i8.
620       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
621       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
622 
623       // We promote all non-typed operations to v4i32.
624       setOperationAction(ISD::AND   , VT, Promote);
625       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
626       setOperationAction(ISD::OR    , VT, Promote);
627       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
628       setOperationAction(ISD::XOR   , VT, Promote);
629       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
630       setOperationAction(ISD::LOAD  , VT, Promote);
631       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
632       setOperationAction(ISD::SELECT, VT, Promote);
633       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
634       setOperationAction(ISD::VSELECT, VT, Legal);
635       setOperationAction(ISD::SELECT_CC, VT, Promote);
636       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
637       setOperationAction(ISD::STORE, VT, Promote);
638       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
639 
640       // No other operations are legal.
641       setOperationAction(ISD::MUL , VT, Expand);
642       setOperationAction(ISD::SDIV, VT, Expand);
643       setOperationAction(ISD::SREM, VT, Expand);
644       setOperationAction(ISD::UDIV, VT, Expand);
645       setOperationAction(ISD::UREM, VT, Expand);
646       setOperationAction(ISD::FDIV, VT, Expand);
647       setOperationAction(ISD::FREM, VT, Expand);
648       setOperationAction(ISD::FNEG, VT, Expand);
649       setOperationAction(ISD::FSQRT, VT, Expand);
650       setOperationAction(ISD::FLOG, VT, Expand);
651       setOperationAction(ISD::FLOG10, VT, Expand);
652       setOperationAction(ISD::FLOG2, VT, Expand);
653       setOperationAction(ISD::FEXP, VT, Expand);
654       setOperationAction(ISD::FEXP2, VT, Expand);
655       setOperationAction(ISD::FSIN, VT, Expand);
656       setOperationAction(ISD::FCOS, VT, Expand);
657       setOperationAction(ISD::FABS, VT, Expand);
658       setOperationAction(ISD::FFLOOR, VT, Expand);
659       setOperationAction(ISD::FCEIL,  VT, Expand);
660       setOperationAction(ISD::FTRUNC, VT, Expand);
661       setOperationAction(ISD::FRINT,  VT, Expand);
662       setOperationAction(ISD::FNEARBYINT, VT, Expand);
663       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
664       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
665       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
666       setOperationAction(ISD::MULHU, VT, Expand);
667       setOperationAction(ISD::MULHS, VT, Expand);
668       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
669       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
670       setOperationAction(ISD::UDIVREM, VT, Expand);
671       setOperationAction(ISD::SDIVREM, VT, Expand);
672       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
673       setOperationAction(ISD::FPOW, VT, Expand);
674       setOperationAction(ISD::BSWAP, VT, Expand);
675       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
676       setOperationAction(ISD::ROTL, VT, Expand);
677       setOperationAction(ISD::ROTR, VT, Expand);
678 
679       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
680         setTruncStoreAction(VT, InnerVT, Expand);
681         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
682         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
683         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
684       }
685     }
686     if (!Subtarget.hasP8Vector()) {
687       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
688       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
689       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
690       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
691     }
692 
693     for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
694       setOperationAction(ISD::ABS, VT, Custom);
695 
696     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
697     // with merges, splats, etc.
698     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
699 
700     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
701     // are cheap, so handle them before they get expanded to scalar.
702     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
703     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
704     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
705     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
706     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
707 
708     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
709     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
710     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
711     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
712     setOperationAction(ISD::SELECT, MVT::v4i32,
713                        Subtarget.useCRBits() ? Legal : Expand);
714     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
715     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
716     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
717     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
718     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
719     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
720     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
721     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
722     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
723 
724     // Without hasP8Altivec set, v2i64 SMAX isn't available.
725     // But ABS custom lowering requires SMAX support.
726     if (!Subtarget.hasP8Altivec())
727       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
728 
729     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
730     if (Subtarget.hasAltivec())
731       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
732         setOperationAction(ISD::ROTL, VT, Legal);
733     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
734     if (Subtarget.hasP8Altivec())
735       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
736 
737     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
738     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
739     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
740     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
741 
742     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
743     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
744 
745     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
746       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
747       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
748     }
749 
750     if (Subtarget.hasP8Altivec())
751       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
752     else
753       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
754 
755     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
756     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
757 
758     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
759     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
760 
761     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
762     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
763     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
764     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
765 
766     // Altivec does not contain unordered floating-point compare instructions
767     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
768     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
769     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
770     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
771 
772     if (Subtarget.hasVSX()) {
773       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
774       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
775       if (Subtarget.hasP8Vector()) {
776         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
777         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
778       }
779       if (Subtarget.hasDirectMove() && isPPC64) {
780         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
781         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
782         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
783         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
784         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
785         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
786         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
787         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
788       }
789       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
790 
791       // The nearbyint variants are not allowed to raise the inexact exception
792       // so we can only code-gen them with unsafe math.
793       if (TM.Options.UnsafeFPMath) {
794         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
795         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
796       }
797 
798       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
799       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
800       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
801       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
802       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
803       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
804       setOperationAction(ISD::FROUND, MVT::f64, Legal);
805       setOperationAction(ISD::FRINT, MVT::f64, Legal);
806 
807       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
808       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
809       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
810       setOperationAction(ISD::FROUND, MVT::f32, Legal);
811       setOperationAction(ISD::FRINT, MVT::f32, Legal);
812 
813       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
814       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
815 
816       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
817       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
818 
819       // Share the Altivec comparison restrictions.
820       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
821       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
822       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
823       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
824 
825       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
826       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
827 
828       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
829 
830       if (Subtarget.hasP8Vector())
831         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
832 
833       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
834 
835       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
836       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
837       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
838 
839       if (Subtarget.hasP8Altivec()) {
840         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
841         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
842         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
843 
844         // 128 bit shifts can be accomplished via 3 instructions for SHL and
845         // SRL, but not for SRA because of the instructions available:
846         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
847         // doing
848         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
849         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
850         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
851 
852         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
853       }
854       else {
855         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
856         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
857         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
858 
859         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
860 
861         // VSX v2i64 only supports non-arithmetic operations.
862         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
863         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
864       }
865 
866       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
867       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
868       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
869       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
870 
871       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
872 
873       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
874       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
875       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
876       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
877 
878       // Custom handling for partial vectors of integers converted to
879       // floating point. We already have optimal handling for v2i32 through
880       // the DAG combine, so those aren't necessary.
881       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
882       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
883       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
884       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
885       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
886       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
887       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
888       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
889 
890       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
891       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
892       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
893       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
894       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
895       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
896 
897       if (Subtarget.hasDirectMove())
898         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
899       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
900 
901       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
902     }
903 
904     if (Subtarget.hasP8Altivec()) {
905       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
906       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
907     }
908 
909     if (Subtarget.hasP9Vector()) {
910       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
911       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
912 
913       // 128 bit shifts can be accomplished via 3 instructions for SHL and
914       // SRL, but not for SRA because of the instructions available:
915       // VS{RL} and VS{RL}O.
916       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
917       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
918       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
919 
920       if (EnableQuadPrecision) {
921         addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
922         setOperationAction(ISD::FADD, MVT::f128, Legal);
923         setOperationAction(ISD::FSUB, MVT::f128, Legal);
924         setOperationAction(ISD::FDIV, MVT::f128, Legal);
925         setOperationAction(ISD::FMUL, MVT::f128, Legal);
926         setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
927         // No extending loads to f128 on PPC.
928         for (MVT FPT : MVT::fp_valuetypes())
929           setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
930         setOperationAction(ISD::FMA, MVT::f128, Legal);
931         setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
932         setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
933         setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
934         setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
935         setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
936         setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
937 
938         setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
939         setOperationAction(ISD::FRINT, MVT::f128, Legal);
940         setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
941         setOperationAction(ISD::FCEIL, MVT::f128, Legal);
942         setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
943         setOperationAction(ISD::FROUND, MVT::f128, Legal);
944 
945         setOperationAction(ISD::SELECT, MVT::f128, Expand);
946         setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
947         setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
948         setTruncStoreAction(MVT::f128, MVT::f64, Expand);
949         setTruncStoreAction(MVT::f128, MVT::f32, Expand);
950         setOperationAction(ISD::BITCAST, MVT::i128, Custom);
951         // No implementation for these ops for PowerPC.
952         setOperationAction(ISD::FSIN , MVT::f128, Expand);
953         setOperationAction(ISD::FCOS , MVT::f128, Expand);
954         setOperationAction(ISD::FPOW, MVT::f128, Expand);
955         setOperationAction(ISD::FPOWI, MVT::f128, Expand);
956         setOperationAction(ISD::FREM, MVT::f128, Expand);
957       }
958       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
959       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
960       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
961       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
962       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
963     }
964 
965     if (Subtarget.hasP9Altivec()) {
966       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
967       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
968 
969       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
970       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
971       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
972       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
973       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
974       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
975       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
976     }
977   }
978 
979   if (Subtarget.hasQPX()) {
980     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
981     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
982     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
983     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
984 
985     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
986     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
987 
988     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
989     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
990 
991     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
992     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
993 
994     if (!Subtarget.useCRBits())
995       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
996     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
997 
998     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
999     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
1000     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
1001     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
1002     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
1003     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
1004     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
1005 
1006     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
1007     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
1008 
1009     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
1010     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
1011 
1012     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
1013     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
1014     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
1015     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
1016     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
1017     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
1018     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
1019     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
1020     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
1021     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
1022 
1023     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
1024     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
1025 
1026     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
1027     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
1028 
1029     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
1030 
1031     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
1032     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
1033     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
1034     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
1035 
1036     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1037     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
1038 
1039     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
1040     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
1041 
1042     if (!Subtarget.useCRBits())
1043       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
1044     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
1045 
1046     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
1047     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
1048     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
1049     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
1050     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
1051     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
1052     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
1053 
1054     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
1055     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
1056 
1057     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
1058     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
1059     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
1060     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
1061     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
1062     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
1063     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
1064     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
1065     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
1066     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
1067 
1068     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1069     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1070 
1071     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
1072     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
1073 
1074     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
1075 
1076     setOperationAction(ISD::AND , MVT::v4i1, Legal);
1077     setOperationAction(ISD::OR , MVT::v4i1, Legal);
1078     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
1079 
1080     if (!Subtarget.useCRBits())
1081       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
1082     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
1083 
1084     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
1085     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
1086 
1087     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
1088     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
1089     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
1090     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
1091     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
1092     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
1093     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
1094 
1095     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
1096     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
1097 
1098     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
1099 
1100     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
1101     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
1102     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
1103     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
1104 
1105     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
1106     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
1107     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
1108     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1109 
1110     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
1111     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
1112 
1113     // These need to set FE_INEXACT, and so cannot be vectorized here.
1114     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
1115     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
1116 
1117     if (TM.Options.UnsafeFPMath) {
1118       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1119       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1120 
1121       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
1122       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
1123     } else {
1124       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
1125       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
1126 
1127       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
1128       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
1129     }
1130   }
1131 
1132   if (Subtarget.has64BitSupport())
1133     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1134 
1135   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1136 
1137   if (!isPPC64) {
1138     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1139     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1140   }
1141 
1142   setBooleanContents(ZeroOrOneBooleanContent);
1143 
1144   if (Subtarget.hasAltivec()) {
1145     // Altivec instructions set fields to all zeros or all ones.
1146     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1147   }
1148 
1149   if (!isPPC64) {
1150     // These libcalls are not available in 32-bit.
1151     setLibcallName(RTLIB::SHL_I128, nullptr);
1152     setLibcallName(RTLIB::SRL_I128, nullptr);
1153     setLibcallName(RTLIB::SRA_I128, nullptr);
1154   }
1155 
1156   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1157 
1158   // We have target-specific dag combine patterns for the following nodes:
1159   setTargetDAGCombine(ISD::ADD);
1160   setTargetDAGCombine(ISD::SHL);
1161   setTargetDAGCombine(ISD::SRA);
1162   setTargetDAGCombine(ISD::SRL);
1163   setTargetDAGCombine(ISD::MUL);
1164   setTargetDAGCombine(ISD::SINT_TO_FP);
1165   setTargetDAGCombine(ISD::BUILD_VECTOR);
1166   if (Subtarget.hasFPCVT())
1167     setTargetDAGCombine(ISD::UINT_TO_FP);
1168   setTargetDAGCombine(ISD::LOAD);
1169   setTargetDAGCombine(ISD::STORE);
1170   setTargetDAGCombine(ISD::BR_CC);
1171   if (Subtarget.useCRBits())
1172     setTargetDAGCombine(ISD::BRCOND);
1173   setTargetDAGCombine(ISD::BSWAP);
1174   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1175   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1176   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1177 
1178   setTargetDAGCombine(ISD::SIGN_EXTEND);
1179   setTargetDAGCombine(ISD::ZERO_EXTEND);
1180   setTargetDAGCombine(ISD::ANY_EXTEND);
1181 
1182   setTargetDAGCombine(ISD::TRUNCATE);
1183   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1184 
1185 
1186   if (Subtarget.useCRBits()) {
1187     setTargetDAGCombine(ISD::TRUNCATE);
1188     setTargetDAGCombine(ISD::SETCC);
1189     setTargetDAGCombine(ISD::SELECT_CC);
1190   }
1191 
1192   // Use reciprocal estimates.
1193   if (TM.Options.UnsafeFPMath) {
1194     setTargetDAGCombine(ISD::FDIV);
1195     setTargetDAGCombine(ISD::FSQRT);
1196   }
1197 
1198   if (Subtarget.hasP9Altivec()) {
1199     setTargetDAGCombine(ISD::ABS);
1200     setTargetDAGCombine(ISD::VSELECT);
1201   }
1202 
1203   if (EnableQuadPrecision) {
1204     setLibcallName(RTLIB::LOG_F128, "logf128");
1205     setLibcallName(RTLIB::LOG2_F128, "log2f128");
1206     setLibcallName(RTLIB::LOG10_F128, "log10f128");
1207     setLibcallName(RTLIB::EXP_F128, "expf128");
1208     setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1209     setLibcallName(RTLIB::SIN_F128, "sinf128");
1210     setLibcallName(RTLIB::COS_F128, "cosf128");
1211     setLibcallName(RTLIB::POW_F128, "powf128");
1212     setLibcallName(RTLIB::FMIN_F128, "fminf128");
1213     setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1214     setLibcallName(RTLIB::POWI_F128, "__powikf2");
1215     setLibcallName(RTLIB::REM_F128, "fmodf128");
1216   }
1217 
1218   // With 32 condition bits, we don't need to sink (and duplicate) compares
1219   // aggressively in CodeGenPrep.
1220   if (Subtarget.useCRBits()) {
1221     setHasMultipleConditionRegisters();
1222     setJumpIsExpensive();
1223   }
1224 
1225   setMinFunctionAlignment(Align(4));
1226 
1227   switch (Subtarget.getCPUDirective()) {
1228   default: break;
1229   case PPC::DIR_970:
1230   case PPC::DIR_A2:
1231   case PPC::DIR_E500:
1232   case PPC::DIR_E500mc:
1233   case PPC::DIR_E5500:
1234   case PPC::DIR_PWR4:
1235   case PPC::DIR_PWR5:
1236   case PPC::DIR_PWR5X:
1237   case PPC::DIR_PWR6:
1238   case PPC::DIR_PWR6X:
1239   case PPC::DIR_PWR7:
1240   case PPC::DIR_PWR8:
1241   case PPC::DIR_PWR9:
1242   case PPC::DIR_PWR_FUTURE:
1243     setPrefLoopAlignment(Align(16));
1244     setPrefFunctionAlignment(Align(16));
1245     break;
1246   }
1247 
1248   if (Subtarget.enableMachineScheduler())
1249     setSchedulingPreference(Sched::Source);
1250   else
1251     setSchedulingPreference(Sched::Hybrid);
1252 
1253   computeRegisterProperties(STI.getRegisterInfo());
1254 
1255   // The Freescale cores do better with aggressive inlining of memcpy and
1256   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1257   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1258       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1259     MaxStoresPerMemset = 32;
1260     MaxStoresPerMemsetOptSize = 16;
1261     MaxStoresPerMemcpy = 32;
1262     MaxStoresPerMemcpyOptSize = 8;
1263     MaxStoresPerMemmove = 32;
1264     MaxStoresPerMemmoveOptSize = 8;
1265   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1266     // The A2 also benefits from (very) aggressive inlining of memcpy and
1267     // friends. The overhead of a the function call, even when warm, can be
1268     // over one hundred cycles.
1269     MaxStoresPerMemset = 128;
1270     MaxStoresPerMemcpy = 128;
1271     MaxStoresPerMemmove = 128;
1272     MaxLoadsPerMemcmp = 128;
1273   } else {
1274     MaxLoadsPerMemcmp = 8;
1275     MaxLoadsPerMemcmpOptSize = 4;
1276   }
1277 }
1278 
1279 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1280 /// the desired ByVal argument alignment.
1281 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1282                              unsigned MaxMaxAlign) {
1283   if (MaxAlign == MaxMaxAlign)
1284     return;
1285   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1286     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
1287       MaxAlign = 32;
1288     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
1289       MaxAlign = 16;
1290   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1291     unsigned EltAlign = 0;
1292     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1293     if (EltAlign > MaxAlign)
1294       MaxAlign = EltAlign;
1295   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1296     for (auto *EltTy : STy->elements()) {
1297       unsigned EltAlign = 0;
1298       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1299       if (EltAlign > MaxAlign)
1300         MaxAlign = EltAlign;
1301       if (MaxAlign == MaxMaxAlign)
1302         break;
1303     }
1304   }
1305 }
1306 
1307 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1308 /// function arguments in the caller parameter area.
1309 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1310                                                   const DataLayout &DL) const {
1311   // 16byte and wider vectors are passed on 16byte boundary.
1312   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1313   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1314   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1315     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1316   return Align;
1317 }
1318 
1319 bool PPCTargetLowering::useSoftFloat() const {
1320   return Subtarget.useSoftFloat();
1321 }
1322 
1323 bool PPCTargetLowering::hasSPE() const {
1324   return Subtarget.hasSPE();
1325 }
1326 
1327 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1328   return VT.isScalarInteger();
1329 }
1330 
1331 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1332   switch ((PPCISD::NodeType)Opcode) {
1333   case PPCISD::FIRST_NUMBER:    break;
1334   case PPCISD::FSEL:            return "PPCISD::FSEL";
1335   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1336   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1337   case PPCISD::FCFID:           return "PPCISD::FCFID";
1338   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1339   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1340   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1341   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1342   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1343   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1344   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1345   case PPCISD::FP_TO_UINT_IN_VSR:
1346                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1347   case PPCISD::FP_TO_SINT_IN_VSR:
1348                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1349   case PPCISD::FRE:             return "PPCISD::FRE";
1350   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1351   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1352   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1353   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1354   case PPCISD::VPERM:           return "PPCISD::VPERM";
1355   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1356   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1357   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1358   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1359   case PPCISD::CMPB:            return "PPCISD::CMPB";
1360   case PPCISD::Hi:              return "PPCISD::Hi";
1361   case PPCISD::Lo:              return "PPCISD::Lo";
1362   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1363   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1364   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1365   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1366   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1367   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1368   case PPCISD::SRL:             return "PPCISD::SRL";
1369   case PPCISD::SRA:             return "PPCISD::SRA";
1370   case PPCISD::SHL:             return "PPCISD::SHL";
1371   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1372   case PPCISD::CALL:            return "PPCISD::CALL";
1373   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1374   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1375   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1376   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1377   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1378   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1379   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1380   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1381   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1382   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1383   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1384   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1385   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1386   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1387   case PPCISD::ANDI_rec_1_EQ_BIT:
1388     return "PPCISD::ANDI_rec_1_EQ_BIT";
1389   case PPCISD::ANDI_rec_1_GT_BIT:
1390     return "PPCISD::ANDI_rec_1_GT_BIT";
1391   case PPCISD::VCMP:            return "PPCISD::VCMP";
1392   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1393   case PPCISD::LBRX:            return "PPCISD::LBRX";
1394   case PPCISD::STBRX:           return "PPCISD::STBRX";
1395   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1396   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1397   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1398   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1399   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1400   case PPCISD::SExtVElems:      return "PPCISD::SExtVElems";
1401   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1402   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1403   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1404   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1405   case PPCISD::ST_VSR_SCAL_INT:
1406                                 return "PPCISD::ST_VSR_SCAL_INT";
1407   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1408   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1409   case PPCISD::BDZ:             return "PPCISD::BDZ";
1410   case PPCISD::MFFS:            return "PPCISD::MFFS";
1411   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1412   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1413   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1414   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1415   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1416   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1417   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1418   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1419   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1420   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1421   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1422   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1423   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1424   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1425   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1426   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1427   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1428   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1429   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1430   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1431   case PPCISD::SC:              return "PPCISD::SC";
1432   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1433   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1434   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1435   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1436   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1437   case PPCISD::VABSD:           return "PPCISD::VABSD";
1438   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1439   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1440   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1441   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1442   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1443   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1444   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1445   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1446   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1447   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1448   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1449   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1450   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1451   }
1452   return nullptr;
1453 }
1454 
1455 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1456                                           EVT VT) const {
1457   if (!VT.isVector())
1458     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1459 
1460   if (Subtarget.hasQPX())
1461     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1462 
1463   return VT.changeVectorElementTypeToInteger();
1464 }
1465 
1466 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1467   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1468   return true;
1469 }
1470 
1471 //===----------------------------------------------------------------------===//
1472 // Node matching predicates, for use by the tblgen matching code.
1473 //===----------------------------------------------------------------------===//
1474 
1475 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1476 static bool isFloatingPointZero(SDValue Op) {
1477   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1478     return CFP->getValueAPF().isZero();
1479   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1480     // Maybe this has already been legalized into the constant pool?
1481     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1482       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1483         return CFP->getValueAPF().isZero();
1484   }
1485   return false;
1486 }
1487 
1488 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1489 /// true if Op is undef or if it matches the specified value.
1490 static bool isConstantOrUndef(int Op, int Val) {
1491   return Op < 0 || Op == Val;
1492 }
1493 
1494 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1495 /// VPKUHUM instruction.
1496 /// The ShuffleKind distinguishes between big-endian operations with
1497 /// two different inputs (0), either-endian operations with two identical
1498 /// inputs (1), and little-endian operations with two different inputs (2).
1499 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1500 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1501                                SelectionDAG &DAG) {
1502   bool IsLE = DAG.getDataLayout().isLittleEndian();
1503   if (ShuffleKind == 0) {
1504     if (IsLE)
1505       return false;
1506     for (unsigned i = 0; i != 16; ++i)
1507       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1508         return false;
1509   } else if (ShuffleKind == 2) {
1510     if (!IsLE)
1511       return false;
1512     for (unsigned i = 0; i != 16; ++i)
1513       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1514         return false;
1515   } else if (ShuffleKind == 1) {
1516     unsigned j = IsLE ? 0 : 1;
1517     for (unsigned i = 0; i != 8; ++i)
1518       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1519           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1520         return false;
1521   }
1522   return true;
1523 }
1524 
1525 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1526 /// VPKUWUM instruction.
1527 /// The ShuffleKind distinguishes between big-endian operations with
1528 /// two different inputs (0), either-endian operations with two identical
1529 /// inputs (1), and little-endian operations with two different inputs (2).
1530 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1531 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1532                                SelectionDAG &DAG) {
1533   bool IsLE = DAG.getDataLayout().isLittleEndian();
1534   if (ShuffleKind == 0) {
1535     if (IsLE)
1536       return false;
1537     for (unsigned i = 0; i != 16; i += 2)
1538       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1539           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1540         return false;
1541   } else if (ShuffleKind == 2) {
1542     if (!IsLE)
1543       return false;
1544     for (unsigned i = 0; i != 16; i += 2)
1545       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1546           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1547         return false;
1548   } else if (ShuffleKind == 1) {
1549     unsigned j = IsLE ? 0 : 2;
1550     for (unsigned i = 0; i != 8; i += 2)
1551       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1552           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1553           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1554           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1555         return false;
1556   }
1557   return true;
1558 }
1559 
1560 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1561 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1562 /// current subtarget.
1563 ///
1564 /// The ShuffleKind distinguishes between big-endian operations with
1565 /// two different inputs (0), either-endian operations with two identical
1566 /// inputs (1), and little-endian operations with two different inputs (2).
1567 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1568 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1569                                SelectionDAG &DAG) {
1570   const PPCSubtarget& Subtarget =
1571       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1572   if (!Subtarget.hasP8Vector())
1573     return false;
1574 
1575   bool IsLE = DAG.getDataLayout().isLittleEndian();
1576   if (ShuffleKind == 0) {
1577     if (IsLE)
1578       return false;
1579     for (unsigned i = 0; i != 16; i += 4)
1580       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1581           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1582           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1583           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1584         return false;
1585   } else if (ShuffleKind == 2) {
1586     if (!IsLE)
1587       return false;
1588     for (unsigned i = 0; i != 16; i += 4)
1589       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1590           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1591           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1592           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1593         return false;
1594   } else if (ShuffleKind == 1) {
1595     unsigned j = IsLE ? 0 : 4;
1596     for (unsigned i = 0; i != 8; i += 4)
1597       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1598           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1599           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1600           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1601           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1602           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1603           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1604           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1605         return false;
1606   }
1607   return true;
1608 }
1609 
1610 /// isVMerge - Common function, used to match vmrg* shuffles.
1611 ///
1612 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1613                      unsigned LHSStart, unsigned RHSStart) {
1614   if (N->getValueType(0) != MVT::v16i8)
1615     return false;
1616   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1617          "Unsupported merge size!");
1618 
1619   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1620     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1621       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1622                              LHSStart+j+i*UnitSize) ||
1623           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1624                              RHSStart+j+i*UnitSize))
1625         return false;
1626     }
1627   return true;
1628 }
1629 
1630 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1631 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1632 /// The ShuffleKind distinguishes between big-endian merges with two
1633 /// different inputs (0), either-endian merges with two identical inputs (1),
1634 /// and little-endian merges with two different inputs (2).  For the latter,
1635 /// the input operands are swapped (see PPCInstrAltivec.td).
1636 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1637                              unsigned ShuffleKind, SelectionDAG &DAG) {
1638   if (DAG.getDataLayout().isLittleEndian()) {
1639     if (ShuffleKind == 1) // unary
1640       return isVMerge(N, UnitSize, 0, 0);
1641     else if (ShuffleKind == 2) // swapped
1642       return isVMerge(N, UnitSize, 0, 16);
1643     else
1644       return false;
1645   } else {
1646     if (ShuffleKind == 1) // unary
1647       return isVMerge(N, UnitSize, 8, 8);
1648     else if (ShuffleKind == 0) // normal
1649       return isVMerge(N, UnitSize, 8, 24);
1650     else
1651       return false;
1652   }
1653 }
1654 
1655 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1656 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1657 /// The ShuffleKind distinguishes between big-endian merges with two
1658 /// different inputs (0), either-endian merges with two identical inputs (1),
1659 /// and little-endian merges with two different inputs (2).  For the latter,
1660 /// the input operands are swapped (see PPCInstrAltivec.td).
1661 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1662                              unsigned ShuffleKind, SelectionDAG &DAG) {
1663   if (DAG.getDataLayout().isLittleEndian()) {
1664     if (ShuffleKind == 1) // unary
1665       return isVMerge(N, UnitSize, 8, 8);
1666     else if (ShuffleKind == 2) // swapped
1667       return isVMerge(N, UnitSize, 8, 24);
1668     else
1669       return false;
1670   } else {
1671     if (ShuffleKind == 1) // unary
1672       return isVMerge(N, UnitSize, 0, 0);
1673     else if (ShuffleKind == 0) // normal
1674       return isVMerge(N, UnitSize, 0, 16);
1675     else
1676       return false;
1677   }
1678 }
1679 
1680 /**
1681  * Common function used to match vmrgew and vmrgow shuffles
1682  *
1683  * The indexOffset determines whether to look for even or odd words in
1684  * the shuffle mask. This is based on the of the endianness of the target
1685  * machine.
1686  *   - Little Endian:
1687  *     - Use offset of 0 to check for odd elements
1688  *     - Use offset of 4 to check for even elements
1689  *   - Big Endian:
1690  *     - Use offset of 0 to check for even elements
1691  *     - Use offset of 4 to check for odd elements
1692  * A detailed description of the vector element ordering for little endian and
1693  * big endian can be found at
1694  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1695  * Targeting your applications - what little endian and big endian IBM XL C/C++
1696  * compiler differences mean to you
1697  *
1698  * The mask to the shuffle vector instruction specifies the indices of the
1699  * elements from the two input vectors to place in the result. The elements are
1700  * numbered in array-access order, starting with the first vector. These vectors
1701  * are always of type v16i8, thus each vector will contain 16 elements of size
1702  * 8. More info on the shuffle vector can be found in the
1703  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1704  * Language Reference.
1705  *
1706  * The RHSStartValue indicates whether the same input vectors are used (unary)
1707  * or two different input vectors are used, based on the following:
1708  *   - If the instruction uses the same vector for both inputs, the range of the
1709  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1710  *     be 0.
1711  *   - If the instruction has two different vectors then the range of the
1712  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1713  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1714  *     to 31 specify elements in the second vector).
1715  *
1716  * \param[in] N The shuffle vector SD Node to analyze
1717  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1718  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1719  * vector to the shuffle_vector instruction
1720  * \return true iff this shuffle vector represents an even or odd word merge
1721  */
1722 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1723                      unsigned RHSStartValue) {
1724   if (N->getValueType(0) != MVT::v16i8)
1725     return false;
1726 
1727   for (unsigned i = 0; i < 2; ++i)
1728     for (unsigned j = 0; j < 4; ++j)
1729       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1730                              i*RHSStartValue+j+IndexOffset) ||
1731           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1732                              i*RHSStartValue+j+IndexOffset+8))
1733         return false;
1734   return true;
1735 }
1736 
1737 /**
1738  * Determine if the specified shuffle mask is suitable for the vmrgew or
1739  * vmrgow instructions.
1740  *
1741  * \param[in] N The shuffle vector SD Node to analyze
1742  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1743  * \param[in] ShuffleKind Identify the type of merge:
1744  *   - 0 = big-endian merge with two different inputs;
1745  *   - 1 = either-endian merge with two identical inputs;
1746  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1747  *     little-endian merges).
1748  * \param[in] DAG The current SelectionDAG
1749  * \return true iff this shuffle mask
1750  */
1751 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1752                               unsigned ShuffleKind, SelectionDAG &DAG) {
1753   if (DAG.getDataLayout().isLittleEndian()) {
1754     unsigned indexOffset = CheckEven ? 4 : 0;
1755     if (ShuffleKind == 1) // Unary
1756       return isVMerge(N, indexOffset, 0);
1757     else if (ShuffleKind == 2) // swapped
1758       return isVMerge(N, indexOffset, 16);
1759     else
1760       return false;
1761   }
1762   else {
1763     unsigned indexOffset = CheckEven ? 0 : 4;
1764     if (ShuffleKind == 1) // Unary
1765       return isVMerge(N, indexOffset, 0);
1766     else if (ShuffleKind == 0) // Normal
1767       return isVMerge(N, indexOffset, 16);
1768     else
1769       return false;
1770   }
1771   return false;
1772 }
1773 
1774 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1775 /// amount, otherwise return -1.
1776 /// The ShuffleKind distinguishes between big-endian operations with two
1777 /// different inputs (0), either-endian operations with two identical inputs
1778 /// (1), and little-endian operations with two different inputs (2).  For the
1779 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1780 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1781                              SelectionDAG &DAG) {
1782   if (N->getValueType(0) != MVT::v16i8)
1783     return -1;
1784 
1785   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1786 
1787   // Find the first non-undef value in the shuffle mask.
1788   unsigned i;
1789   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1790     /*search*/;
1791 
1792   if (i == 16) return -1;  // all undef.
1793 
1794   // Otherwise, check to see if the rest of the elements are consecutively
1795   // numbered from this value.
1796   unsigned ShiftAmt = SVOp->getMaskElt(i);
1797   if (ShiftAmt < i) return -1;
1798 
1799   ShiftAmt -= i;
1800   bool isLE = DAG.getDataLayout().isLittleEndian();
1801 
1802   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1803     // Check the rest of the elements to see if they are consecutive.
1804     for (++i; i != 16; ++i)
1805       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1806         return -1;
1807   } else if (ShuffleKind == 1) {
1808     // Check the rest of the elements to see if they are consecutive.
1809     for (++i; i != 16; ++i)
1810       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1811         return -1;
1812   } else
1813     return -1;
1814 
1815   if (isLE)
1816     ShiftAmt = 16 - ShiftAmt;
1817 
1818   return ShiftAmt;
1819 }
1820 
1821 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1822 /// specifies a splat of a single element that is suitable for input to
1823 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
1824 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1825   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
1826          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
1827 
1828   // The consecutive indices need to specify an element, not part of two
1829   // different elements.  So abandon ship early if this isn't the case.
1830   if (N->getMaskElt(0) % EltSize != 0)
1831     return false;
1832 
1833   // This is a splat operation if each element of the permute is the same, and
1834   // if the value doesn't reference the second vector.
1835   unsigned ElementBase = N->getMaskElt(0);
1836 
1837   // FIXME: Handle UNDEF elements too!
1838   if (ElementBase >= 16)
1839     return false;
1840 
1841   // Check that the indices are consecutive, in the case of a multi-byte element
1842   // splatted with a v16i8 mask.
1843   for (unsigned i = 1; i != EltSize; ++i)
1844     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1845       return false;
1846 
1847   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1848     if (N->getMaskElt(i) < 0) continue;
1849     for (unsigned j = 0; j != EltSize; ++j)
1850       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1851         return false;
1852   }
1853   return true;
1854 }
1855 
1856 /// Check that the mask is shuffling N byte elements. Within each N byte
1857 /// element of the mask, the indices could be either in increasing or
1858 /// decreasing order as long as they are consecutive.
1859 /// \param[in] N the shuffle vector SD Node to analyze
1860 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1861 /// Word/DoubleWord/QuadWord).
1862 /// \param[in] StepLen the delta indices number among the N byte element, if
1863 /// the mask is in increasing/decreasing order then it is 1/-1.
1864 /// \return true iff the mask is shuffling N byte elements.
1865 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1866                                    int StepLen) {
1867   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1868          "Unexpected element width.");
1869   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1870 
1871   unsigned NumOfElem = 16 / Width;
1872   unsigned MaskVal[16]; //  Width is never greater than 16
1873   for (unsigned i = 0; i < NumOfElem; ++i) {
1874     MaskVal[0] = N->getMaskElt(i * Width);
1875     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1876       return false;
1877     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1878       return false;
1879     }
1880 
1881     for (unsigned int j = 1; j < Width; ++j) {
1882       MaskVal[j] = N->getMaskElt(i * Width + j);
1883       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1884         return false;
1885       }
1886     }
1887   }
1888 
1889   return true;
1890 }
1891 
1892 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1893                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1894   if (!isNByteElemShuffleMask(N, 4, 1))
1895     return false;
1896 
1897   // Now we look at mask elements 0,4,8,12
1898   unsigned M0 = N->getMaskElt(0) / 4;
1899   unsigned M1 = N->getMaskElt(4) / 4;
1900   unsigned M2 = N->getMaskElt(8) / 4;
1901   unsigned M3 = N->getMaskElt(12) / 4;
1902   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1903   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1904 
1905   // Below, let H and L be arbitrary elements of the shuffle mask
1906   // where H is in the range [4,7] and L is in the range [0,3].
1907   // H, 1, 2, 3 or L, 5, 6, 7
1908   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1909       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1910     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1911     InsertAtByte = IsLE ? 12 : 0;
1912     Swap = M0 < 4;
1913     return true;
1914   }
1915   // 0, H, 2, 3 or 4, L, 6, 7
1916   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1917       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1918     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1919     InsertAtByte = IsLE ? 8 : 4;
1920     Swap = M1 < 4;
1921     return true;
1922   }
1923   // 0, 1, H, 3 or 4, 5, L, 7
1924   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1925       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1926     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1927     InsertAtByte = IsLE ? 4 : 8;
1928     Swap = M2 < 4;
1929     return true;
1930   }
1931   // 0, 1, 2, H or 4, 5, 6, L
1932   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1933       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1934     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1935     InsertAtByte = IsLE ? 0 : 12;
1936     Swap = M3 < 4;
1937     return true;
1938   }
1939 
1940   // If both vector operands for the shuffle are the same vector, the mask will
1941   // contain only elements from the first one and the second one will be undef.
1942   if (N->getOperand(1).isUndef()) {
1943     ShiftElts = 0;
1944     Swap = true;
1945     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1946     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1947       InsertAtByte = IsLE ? 12 : 0;
1948       return true;
1949     }
1950     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1951       InsertAtByte = IsLE ? 8 : 4;
1952       return true;
1953     }
1954     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1955       InsertAtByte = IsLE ? 4 : 8;
1956       return true;
1957     }
1958     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1959       InsertAtByte = IsLE ? 0 : 12;
1960       return true;
1961     }
1962   }
1963 
1964   return false;
1965 }
1966 
1967 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1968                                bool &Swap, bool IsLE) {
1969   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1970   // Ensure each byte index of the word is consecutive.
1971   if (!isNByteElemShuffleMask(N, 4, 1))
1972     return false;
1973 
1974   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
1975   unsigned M0 = N->getMaskElt(0) / 4;
1976   unsigned M1 = N->getMaskElt(4) / 4;
1977   unsigned M2 = N->getMaskElt(8) / 4;
1978   unsigned M3 = N->getMaskElt(12) / 4;
1979 
1980   // If both vector operands for the shuffle are the same vector, the mask will
1981   // contain only elements from the first one and the second one will be undef.
1982   if (N->getOperand(1).isUndef()) {
1983     assert(M0 < 4 && "Indexing into an undef vector?");
1984     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
1985       return false;
1986 
1987     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
1988     Swap = false;
1989     return true;
1990   }
1991 
1992   // Ensure each word index of the ShuffleVector Mask is consecutive.
1993   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
1994     return false;
1995 
1996   if (IsLE) {
1997     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
1998       // Input vectors don't need to be swapped if the leading element
1999       // of the result is one of the 3 left elements of the second vector
2000       // (or if there is no shift to be done at all).
2001       Swap = false;
2002       ShiftElts = (8 - M0) % 8;
2003     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2004       // Input vectors need to be swapped if the leading element
2005       // of the result is one of the 3 left elements of the first vector
2006       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2007       Swap = true;
2008       ShiftElts = (4 - M0) % 4;
2009     }
2010 
2011     return true;
2012   } else {                                          // BE
2013     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2014       // Input vectors don't need to be swapped if the leading element
2015       // of the result is one of the 4 elements of the first vector.
2016       Swap = false;
2017       ShiftElts = M0;
2018     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2019       // Input vectors need to be swapped if the leading element
2020       // of the result is one of the 4 elements of the right vector.
2021       Swap = true;
2022       ShiftElts = M0 - 4;
2023     }
2024 
2025     return true;
2026   }
2027 }
2028 
2029 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2030   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2031 
2032   if (!isNByteElemShuffleMask(N, Width, -1))
2033     return false;
2034 
2035   for (int i = 0; i < 16; i += Width)
2036     if (N->getMaskElt(i) != i + Width - 1)
2037       return false;
2038 
2039   return true;
2040 }
2041 
2042 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2043   return isXXBRShuffleMaskHelper(N, 2);
2044 }
2045 
2046 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2047   return isXXBRShuffleMaskHelper(N, 4);
2048 }
2049 
2050 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2051   return isXXBRShuffleMaskHelper(N, 8);
2052 }
2053 
2054 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2055   return isXXBRShuffleMaskHelper(N, 16);
2056 }
2057 
2058 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2059 /// if the inputs to the instruction should be swapped and set \p DM to the
2060 /// value for the immediate.
2061 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2062 /// AND element 0 of the result comes from the first input (LE) or second input
2063 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2064 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2065 /// mask.
2066 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2067                                bool &Swap, bool IsLE) {
2068   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2069 
2070   // Ensure each byte index of the double word is consecutive.
2071   if (!isNByteElemShuffleMask(N, 8, 1))
2072     return false;
2073 
2074   unsigned M0 = N->getMaskElt(0) / 8;
2075   unsigned M1 = N->getMaskElt(8) / 8;
2076   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2077 
2078   // If both vector operands for the shuffle are the same vector, the mask will
2079   // contain only elements from the first one and the second one will be undef.
2080   if (N->getOperand(1).isUndef()) {
2081     if ((M0 | M1) < 2) {
2082       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2083       Swap = false;
2084       return true;
2085     } else
2086       return false;
2087   }
2088 
2089   if (IsLE) {
2090     if (M0 > 1 && M1 < 2) {
2091       Swap = false;
2092     } else if (M0 < 2 && M1 > 1) {
2093       M0 = (M0 + 2) % 4;
2094       M1 = (M1 + 2) % 4;
2095       Swap = true;
2096     } else
2097       return false;
2098 
2099     // Note: if control flow comes here that means Swap is already set above
2100     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2101     return true;
2102   } else { // BE
2103     if (M0 < 2 && M1 > 1) {
2104       Swap = false;
2105     } else if (M0 > 1 && M1 < 2) {
2106       M0 = (M0 + 2) % 4;
2107       M1 = (M1 + 2) % 4;
2108       Swap = true;
2109     } else
2110       return false;
2111 
2112     // Note: if control flow comes here that means Swap is already set above
2113     DM = (M0 << 1) + (M1 & 1);
2114     return true;
2115   }
2116 }
2117 
2118 
2119 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2120 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2121 /// elements are counted from the left of the vector register).
2122 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2123                                          SelectionDAG &DAG) {
2124   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2125   assert(isSplatShuffleMask(SVOp, EltSize));
2126   if (DAG.getDataLayout().isLittleEndian())
2127     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2128   else
2129     return SVOp->getMaskElt(0) / EltSize;
2130 }
2131 
2132 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2133 /// by using a vspltis[bhw] instruction of the specified element size, return
2134 /// the constant being splatted.  The ByteSize field indicates the number of
2135 /// bytes of each element [124] -> [bhw].
2136 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2137   SDValue OpVal(nullptr, 0);
2138 
2139   // If ByteSize of the splat is bigger than the element size of the
2140   // build_vector, then we have a case where we are checking for a splat where
2141   // multiple elements of the buildvector are folded together into a single
2142   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2143   unsigned EltSize = 16/N->getNumOperands();
2144   if (EltSize < ByteSize) {
2145     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2146     SDValue UniquedVals[4];
2147     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2148 
2149     // See if all of the elements in the buildvector agree across.
2150     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2151       if (N->getOperand(i).isUndef()) continue;
2152       // If the element isn't a constant, bail fully out.
2153       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2154 
2155       if (!UniquedVals[i&(Multiple-1)].getNode())
2156         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2157       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2158         return SDValue();  // no match.
2159     }
2160 
2161     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2162     // either constant or undef values that are identical for each chunk.  See
2163     // if these chunks can form into a larger vspltis*.
2164 
2165     // Check to see if all of the leading entries are either 0 or -1.  If
2166     // neither, then this won't fit into the immediate field.
2167     bool LeadingZero = true;
2168     bool LeadingOnes = true;
2169     for (unsigned i = 0; i != Multiple-1; ++i) {
2170       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2171 
2172       LeadingZero &= isNullConstant(UniquedVals[i]);
2173       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2174     }
2175     // Finally, check the least significant entry.
2176     if (LeadingZero) {
2177       if (!UniquedVals[Multiple-1].getNode())
2178         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2179       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2180       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2181         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2182     }
2183     if (LeadingOnes) {
2184       if (!UniquedVals[Multiple-1].getNode())
2185         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2186       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2187       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2188         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2189     }
2190 
2191     return SDValue();
2192   }
2193 
2194   // Check to see if this buildvec has a single non-undef value in its elements.
2195   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2196     if (N->getOperand(i).isUndef()) continue;
2197     if (!OpVal.getNode())
2198       OpVal = N->getOperand(i);
2199     else if (OpVal != N->getOperand(i))
2200       return SDValue();
2201   }
2202 
2203   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2204 
2205   unsigned ValSizeInBytes = EltSize;
2206   uint64_t Value = 0;
2207   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2208     Value = CN->getZExtValue();
2209   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2210     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2211     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2212   }
2213 
2214   // If the splat value is larger than the element value, then we can never do
2215   // this splat.  The only case that we could fit the replicated bits into our
2216   // immediate field for would be zero, and we prefer to use vxor for it.
2217   if (ValSizeInBytes < ByteSize) return SDValue();
2218 
2219   // If the element value is larger than the splat value, check if it consists
2220   // of a repeated bit pattern of size ByteSize.
2221   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2222     return SDValue();
2223 
2224   // Properly sign extend the value.
2225   int MaskVal = SignExtend32(Value, ByteSize * 8);
2226 
2227   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2228   if (MaskVal == 0) return SDValue();
2229 
2230   // Finally, if this value fits in a 5 bit sext field, return it
2231   if (SignExtend32<5>(MaskVal) == MaskVal)
2232     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2233   return SDValue();
2234 }
2235 
2236 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2237 /// amount, otherwise return -1.
2238 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2239   EVT VT = N->getValueType(0);
2240   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2241     return -1;
2242 
2243   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2244 
2245   // Find the first non-undef value in the shuffle mask.
2246   unsigned i;
2247   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2248     /*search*/;
2249 
2250   if (i == 4) return -1;  // all undef.
2251 
2252   // Otherwise, check to see if the rest of the elements are consecutively
2253   // numbered from this value.
2254   unsigned ShiftAmt = SVOp->getMaskElt(i);
2255   if (ShiftAmt < i) return -1;
2256   ShiftAmt -= i;
2257 
2258   // Check the rest of the elements to see if they are consecutive.
2259   for (++i; i != 4; ++i)
2260     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2261       return -1;
2262 
2263   return ShiftAmt;
2264 }
2265 
2266 //===----------------------------------------------------------------------===//
2267 //  Addressing Mode Selection
2268 //===----------------------------------------------------------------------===//
2269 
2270 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2271 /// or 64-bit immediate, and if the value can be accurately represented as a
2272 /// sign extension from a 16-bit value.  If so, this returns true and the
2273 /// immediate.
2274 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2275   if (!isa<ConstantSDNode>(N))
2276     return false;
2277 
2278   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2279   if (N->getValueType(0) == MVT::i32)
2280     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2281   else
2282     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2283 }
2284 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2285   return isIntS16Immediate(Op.getNode(), Imm);
2286 }
2287 
2288 
2289 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2290 /// be represented as an indexed [r+r] operation.
2291 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2292                                                SDValue &Index,
2293                                                SelectionDAG &DAG) const {
2294   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2295       UI != E; ++UI) {
2296     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2297       if (Memop->getMemoryVT() == MVT::f64) {
2298           Base = N.getOperand(0);
2299           Index = N.getOperand(1);
2300           return true;
2301       }
2302     }
2303   }
2304   return false;
2305 }
2306 
2307 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2308 /// can be represented as an indexed [r+r] operation.  Returns false if it
2309 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2310 /// non-zero and N can be represented by a base register plus a signed 16-bit
2311 /// displacement, make a more precise judgement by checking (displacement % \p
2312 /// EncodingAlignment).
2313 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2314                                             SDValue &Index, SelectionDAG &DAG,
2315                                             unsigned EncodingAlignment) const {
2316   int16_t imm = 0;
2317   if (N.getOpcode() == ISD::ADD) {
2318     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2319     // SPE load/store can only handle 8-bit offsets.
2320     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2321         return true;
2322     if (isIntS16Immediate(N.getOperand(1), imm) &&
2323         (!EncodingAlignment || !(imm % EncodingAlignment)))
2324       return false; // r+i
2325     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2326       return false;    // r+i
2327 
2328     Base = N.getOperand(0);
2329     Index = N.getOperand(1);
2330     return true;
2331   } else if (N.getOpcode() == ISD::OR) {
2332     if (isIntS16Immediate(N.getOperand(1), imm) &&
2333         (!EncodingAlignment || !(imm % EncodingAlignment)))
2334       return false; // r+i can fold it if we can.
2335 
2336     // If this is an or of disjoint bitfields, we can codegen this as an add
2337     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2338     // disjoint.
2339     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2340 
2341     if (LHSKnown.Zero.getBoolValue()) {
2342       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2343       // If all of the bits are known zero on the LHS or RHS, the add won't
2344       // carry.
2345       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2346         Base = N.getOperand(0);
2347         Index = N.getOperand(1);
2348         return true;
2349       }
2350     }
2351   }
2352 
2353   return false;
2354 }
2355 
2356 // If we happen to be doing an i64 load or store into a stack slot that has
2357 // less than a 4-byte alignment, then the frame-index elimination may need to
2358 // use an indexed load or store instruction (because the offset may not be a
2359 // multiple of 4). The extra register needed to hold the offset comes from the
2360 // register scavenger, and it is possible that the scavenger will need to use
2361 // an emergency spill slot. As a result, we need to make sure that a spill slot
2362 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2363 // stack slot.
2364 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2365   // FIXME: This does not handle the LWA case.
2366   if (VT != MVT::i64)
2367     return;
2368 
2369   // NOTE: We'll exclude negative FIs here, which come from argument
2370   // lowering, because there are no known test cases triggering this problem
2371   // using packed structures (or similar). We can remove this exclusion if
2372   // we find such a test case. The reason why this is so test-case driven is
2373   // because this entire 'fixup' is only to prevent crashes (from the
2374   // register scavenger) on not-really-valid inputs. For example, if we have:
2375   //   %a = alloca i1
2376   //   %b = bitcast i1* %a to i64*
2377   //   store i64* a, i64 b
2378   // then the store should really be marked as 'align 1', but is not. If it
2379   // were marked as 'align 1' then the indexed form would have been
2380   // instruction-selected initially, and the problem this 'fixup' is preventing
2381   // won't happen regardless.
2382   if (FrameIdx < 0)
2383     return;
2384 
2385   MachineFunction &MF = DAG.getMachineFunction();
2386   MachineFrameInfo &MFI = MF.getFrameInfo();
2387 
2388   unsigned Align = MFI.getObjectAlignment(FrameIdx);
2389   if (Align >= 4)
2390     return;
2391 
2392   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2393   FuncInfo->setHasNonRISpills();
2394 }
2395 
2396 /// Returns true if the address N can be represented by a base register plus
2397 /// a signed 16-bit displacement [r+imm], and if it is not better
2398 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2399 /// displacements that are multiples of that value.
2400 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2401                                             SDValue &Base,
2402                                             SelectionDAG &DAG,
2403                                             unsigned EncodingAlignment) const {
2404   // FIXME dl should come from parent load or store, not from address
2405   SDLoc dl(N);
2406   // If this can be more profitably realized as r+r, fail.
2407   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2408     return false;
2409 
2410   if (N.getOpcode() == ISD::ADD) {
2411     int16_t imm = 0;
2412     if (isIntS16Immediate(N.getOperand(1), imm) &&
2413         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2414       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2415       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2416         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2417         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2418       } else {
2419         Base = N.getOperand(0);
2420       }
2421       return true; // [r+i]
2422     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2423       // Match LOAD (ADD (X, Lo(G))).
2424       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2425              && "Cannot handle constant offsets yet!");
2426       Disp = N.getOperand(1).getOperand(0);  // The global address.
2427       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2428              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2429              Disp.getOpcode() == ISD::TargetConstantPool ||
2430              Disp.getOpcode() == ISD::TargetJumpTable);
2431       Base = N.getOperand(0);
2432       return true;  // [&g+r]
2433     }
2434   } else if (N.getOpcode() == ISD::OR) {
2435     int16_t imm = 0;
2436     if (isIntS16Immediate(N.getOperand(1), imm) &&
2437         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2438       // If this is an or of disjoint bitfields, we can codegen this as an add
2439       // (for better address arithmetic) if the LHS and RHS of the OR are
2440       // provably disjoint.
2441       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2442 
2443       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2444         // If all of the bits are known zero on the LHS or RHS, the add won't
2445         // carry.
2446         if (FrameIndexSDNode *FI =
2447               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2448           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2449           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2450         } else {
2451           Base = N.getOperand(0);
2452         }
2453         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2454         return true;
2455       }
2456     }
2457   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2458     // Loading from a constant address.
2459 
2460     // If this address fits entirely in a 16-bit sext immediate field, codegen
2461     // this as "d, 0"
2462     int16_t Imm;
2463     if (isIntS16Immediate(CN, Imm) &&
2464         (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) {
2465       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2466       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2467                              CN->getValueType(0));
2468       return true;
2469     }
2470 
2471     // Handle 32-bit sext immediates with LIS + addr mode.
2472     if ((CN->getValueType(0) == MVT::i32 ||
2473          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2474         (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) {
2475       int Addr = (int)CN->getZExtValue();
2476 
2477       // Otherwise, break this down into an LIS + disp.
2478       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2479 
2480       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2481                                    MVT::i32);
2482       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2483       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2484       return true;
2485     }
2486   }
2487 
2488   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2489   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2490     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2491     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2492   } else
2493     Base = N;
2494   return true;      // [r+0]
2495 }
2496 
2497 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2498 /// represented as an indexed [r+r] operation.
2499 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2500                                                 SDValue &Index,
2501                                                 SelectionDAG &DAG) const {
2502   // Check to see if we can easily represent this as an [r+r] address.  This
2503   // will fail if it thinks that the address is more profitably represented as
2504   // reg+imm, e.g. where imm = 0.
2505   if (SelectAddressRegReg(N, Base, Index, DAG))
2506     return true;
2507 
2508   // If the address is the result of an add, we will utilize the fact that the
2509   // address calculation includes an implicit add.  However, we can reduce
2510   // register pressure if we do not materialize a constant just for use as the
2511   // index register.  We only get rid of the add if it is not an add of a
2512   // value and a 16-bit signed constant and both have a single use.
2513   int16_t imm = 0;
2514   if (N.getOpcode() == ISD::ADD &&
2515       (!isIntS16Immediate(N.getOperand(1), imm) ||
2516        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2517     Base = N.getOperand(0);
2518     Index = N.getOperand(1);
2519     return true;
2520   }
2521 
2522   // Otherwise, do it the hard way, using R0 as the base register.
2523   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2524                          N.getValueType());
2525   Index = N;
2526   return true;
2527 }
2528 
2529 /// Returns true if we should use a direct load into vector instruction
2530 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2531 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2532 
2533   // If there are any other uses other than scalar to vector, then we should
2534   // keep it as a scalar load -> direct move pattern to prevent multiple
2535   // loads.
2536   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2537   if (!LD)
2538     return false;
2539 
2540   EVT MemVT = LD->getMemoryVT();
2541   if (!MemVT.isSimple())
2542     return false;
2543   switch(MemVT.getSimpleVT().SimpleTy) {
2544   case MVT::i64:
2545     break;
2546   case MVT::i32:
2547     if (!ST.hasP8Vector())
2548       return false;
2549     break;
2550   case MVT::i16:
2551   case MVT::i8:
2552     if (!ST.hasP9Vector())
2553       return false;
2554     break;
2555   default:
2556     return false;
2557   }
2558 
2559   SDValue LoadedVal(N, 0);
2560   if (!LoadedVal.hasOneUse())
2561     return false;
2562 
2563   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2564        UI != UE; ++UI)
2565     if (UI.getUse().get().getResNo() == 0 &&
2566         UI->getOpcode() != ISD::SCALAR_TO_VECTOR)
2567       return false;
2568 
2569   return true;
2570 }
2571 
2572 /// getPreIndexedAddressParts - returns true by value, base pointer and
2573 /// offset pointer and addressing mode by reference if the node's address
2574 /// can be legally represented as pre-indexed load / store address.
2575 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2576                                                   SDValue &Offset,
2577                                                   ISD::MemIndexedMode &AM,
2578                                                   SelectionDAG &DAG) const {
2579   if (DisablePPCPreinc) return false;
2580 
2581   bool isLoad = true;
2582   SDValue Ptr;
2583   EVT VT;
2584   unsigned Alignment;
2585   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2586     Ptr = LD->getBasePtr();
2587     VT = LD->getMemoryVT();
2588     Alignment = LD->getAlignment();
2589   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2590     Ptr = ST->getBasePtr();
2591     VT  = ST->getMemoryVT();
2592     Alignment = ST->getAlignment();
2593     isLoad = false;
2594   } else
2595     return false;
2596 
2597   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2598   // instructions because we can fold these into a more efficient instruction
2599   // instead, (such as LXSD).
2600   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2601     return false;
2602   }
2603 
2604   // PowerPC doesn't have preinc load/store instructions for vectors (except
2605   // for QPX, which does have preinc r+r forms).
2606   if (VT.isVector()) {
2607     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2608       return false;
2609     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2610       AM = ISD::PRE_INC;
2611       return true;
2612     }
2613   }
2614 
2615   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2616     // Common code will reject creating a pre-inc form if the base pointer
2617     // is a frame index, or if N is a store and the base pointer is either
2618     // the same as or a predecessor of the value being stored.  Check for
2619     // those situations here, and try with swapped Base/Offset instead.
2620     bool Swap = false;
2621 
2622     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2623       Swap = true;
2624     else if (!isLoad) {
2625       SDValue Val = cast<StoreSDNode>(N)->getValue();
2626       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2627         Swap = true;
2628     }
2629 
2630     if (Swap)
2631       std::swap(Base, Offset);
2632 
2633     AM = ISD::PRE_INC;
2634     return true;
2635   }
2636 
2637   // LDU/STU can only handle immediates that are a multiple of 4.
2638   if (VT != MVT::i64) {
2639     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2640       return false;
2641   } else {
2642     // LDU/STU need an address with at least 4-byte alignment.
2643     if (Alignment < 4)
2644       return false;
2645 
2646     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2647       return false;
2648   }
2649 
2650   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2651     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2652     // sext i32 to i64 when addr mode is r+i.
2653     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2654         LD->getExtensionType() == ISD::SEXTLOAD &&
2655         isa<ConstantSDNode>(Offset))
2656       return false;
2657   }
2658 
2659   AM = ISD::PRE_INC;
2660   return true;
2661 }
2662 
2663 //===----------------------------------------------------------------------===//
2664 //  LowerOperation implementation
2665 //===----------------------------------------------------------------------===//
2666 
2667 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2668 /// and LoOpFlags to the target MO flags.
2669 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2670                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2671                                const GlobalValue *GV = nullptr) {
2672   HiOpFlags = PPCII::MO_HA;
2673   LoOpFlags = PPCII::MO_LO;
2674 
2675   // Don't use the pic base if not in PIC relocation model.
2676   if (IsPIC) {
2677     HiOpFlags |= PPCII::MO_PIC_FLAG;
2678     LoOpFlags |= PPCII::MO_PIC_FLAG;
2679   }
2680 }
2681 
2682 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2683                              SelectionDAG &DAG) {
2684   SDLoc DL(HiPart);
2685   EVT PtrVT = HiPart.getValueType();
2686   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2687 
2688   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2689   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2690 
2691   // With PIC, the first instruction is actually "GR+hi(&G)".
2692   if (isPIC)
2693     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2694                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2695 
2696   // Generate non-pic code that has direct accesses to the constant pool.
2697   // The address of the global is just (hi(&g)+lo(&g)).
2698   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2699 }
2700 
2701 static void setUsesTOCBasePtr(MachineFunction &MF) {
2702   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2703   FuncInfo->setUsesTOCBasePtr();
2704 }
2705 
2706 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2707   setUsesTOCBasePtr(DAG.getMachineFunction());
2708 }
2709 
2710 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
2711                                        SDValue GA) const {
2712   const bool Is64Bit = Subtarget.isPPC64();
2713   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2714   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
2715                         : Subtarget.isAIXABI()
2716                               ? DAG.getRegister(PPC::R2, VT)
2717                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2718   SDValue Ops[] = { GA, Reg };
2719   return DAG.getMemIntrinsicNode(
2720       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2721       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
2722       MachineMemOperand::MOLoad);
2723 }
2724 
2725 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2726                                              SelectionDAG &DAG) const {
2727   EVT PtrVT = Op.getValueType();
2728   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2729   const Constant *C = CP->getConstVal();
2730 
2731   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2732   // The actual address of the GlobalValue is stored in the TOC.
2733   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2734     setUsesTOCBasePtr(DAG);
2735     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2736     return getTOCEntry(DAG, SDLoc(CP), GA);
2737   }
2738 
2739   unsigned MOHiFlag, MOLoFlag;
2740   bool IsPIC = isPositionIndependent();
2741   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2742 
2743   if (IsPIC && Subtarget.isSVR4ABI()) {
2744     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2745                                            PPCII::MO_PIC_FLAG);
2746     return getTOCEntry(DAG, SDLoc(CP), GA);
2747   }
2748 
2749   SDValue CPIHi =
2750     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2751   SDValue CPILo =
2752     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2753   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2754 }
2755 
2756 // For 64-bit PowerPC, prefer the more compact relative encodings.
2757 // This trades 32 bits per jump table entry for one or two instructions
2758 // on the jump site.
2759 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2760   if (isJumpTableRelative())
2761     return MachineJumpTableInfo::EK_LabelDifference32;
2762 
2763   return TargetLowering::getJumpTableEncoding();
2764 }
2765 
2766 bool PPCTargetLowering::isJumpTableRelative() const {
2767   if (UseAbsoluteJumpTables)
2768     return false;
2769   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
2770     return true;
2771   return TargetLowering::isJumpTableRelative();
2772 }
2773 
2774 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2775                                                     SelectionDAG &DAG) const {
2776   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2777     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2778 
2779   switch (getTargetMachine().getCodeModel()) {
2780   case CodeModel::Small:
2781   case CodeModel::Medium:
2782     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2783   default:
2784     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2785                        getPointerTy(DAG.getDataLayout()));
2786   }
2787 }
2788 
2789 const MCExpr *
2790 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2791                                                 unsigned JTI,
2792                                                 MCContext &Ctx) const {
2793   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2794     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2795 
2796   switch (getTargetMachine().getCodeModel()) {
2797   case CodeModel::Small:
2798   case CodeModel::Medium:
2799     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2800   default:
2801     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2802   }
2803 }
2804 
2805 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2806   EVT PtrVT = Op.getValueType();
2807   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2808 
2809   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2810   // The actual address of the GlobalValue is stored in the TOC.
2811   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2812     setUsesTOCBasePtr(DAG);
2813     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2814     return getTOCEntry(DAG, SDLoc(JT), GA);
2815   }
2816 
2817   unsigned MOHiFlag, MOLoFlag;
2818   bool IsPIC = isPositionIndependent();
2819   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2820 
2821   if (IsPIC && Subtarget.isSVR4ABI()) {
2822     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2823                                         PPCII::MO_PIC_FLAG);
2824     return getTOCEntry(DAG, SDLoc(GA), GA);
2825   }
2826 
2827   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2828   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2829   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2830 }
2831 
2832 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2833                                              SelectionDAG &DAG) const {
2834   EVT PtrVT = Op.getValueType();
2835   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2836   const BlockAddress *BA = BASDN->getBlockAddress();
2837 
2838   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2839   // The actual BlockAddress is stored in the TOC.
2840   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2841     setUsesTOCBasePtr(DAG);
2842     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2843     return getTOCEntry(DAG, SDLoc(BASDN), GA);
2844   }
2845 
2846   // 32-bit position-independent ELF stores the BlockAddress in the .got.
2847   if (Subtarget.is32BitELFABI() && isPositionIndependent())
2848     return getTOCEntry(
2849         DAG, SDLoc(BASDN),
2850         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
2851 
2852   unsigned MOHiFlag, MOLoFlag;
2853   bool IsPIC = isPositionIndependent();
2854   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2855   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2856   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2857   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2858 }
2859 
2860 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2861                                               SelectionDAG &DAG) const {
2862   // FIXME: TLS addresses currently use medium model code sequences,
2863   // which is the most useful form.  Eventually support for small and
2864   // large models could be added if users need it, at the cost of
2865   // additional complexity.
2866   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2867   if (DAG.getTarget().useEmulatedTLS())
2868     return LowerToTLSEmulatedModel(GA, DAG);
2869 
2870   SDLoc dl(GA);
2871   const GlobalValue *GV = GA->getGlobal();
2872   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2873   bool is64bit = Subtarget.isPPC64();
2874   const Module *M = DAG.getMachineFunction().getFunction().getParent();
2875   PICLevel::Level picLevel = M->getPICLevel();
2876 
2877   const TargetMachine &TM = getTargetMachine();
2878   TLSModel::Model Model = TM.getTLSModel(GV);
2879 
2880   if (Model == TLSModel::LocalExec) {
2881     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2882                                                PPCII::MO_TPREL_HA);
2883     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2884                                                PPCII::MO_TPREL_LO);
2885     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2886                              : DAG.getRegister(PPC::R2, MVT::i32);
2887 
2888     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2889     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2890   }
2891 
2892   if (Model == TLSModel::InitialExec) {
2893     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2894     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2895                                                 PPCII::MO_TLS);
2896     SDValue GOTPtr;
2897     if (is64bit) {
2898       setUsesTOCBasePtr(DAG);
2899       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2900       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2901                            PtrVT, GOTReg, TGA);
2902     } else {
2903       if (!TM.isPositionIndependent())
2904         GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2905       else if (picLevel == PICLevel::SmallPIC)
2906         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2907       else
2908         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2909     }
2910     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2911                                    PtrVT, TGA, GOTPtr);
2912     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2913   }
2914 
2915   if (Model == TLSModel::GeneralDynamic) {
2916     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2917     SDValue GOTPtr;
2918     if (is64bit) {
2919       setUsesTOCBasePtr(DAG);
2920       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2921       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2922                                    GOTReg, TGA);
2923     } else {
2924       if (picLevel == PICLevel::SmallPIC)
2925         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2926       else
2927         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2928     }
2929     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2930                        GOTPtr, TGA, TGA);
2931   }
2932 
2933   if (Model == TLSModel::LocalDynamic) {
2934     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2935     SDValue GOTPtr;
2936     if (is64bit) {
2937       setUsesTOCBasePtr(DAG);
2938       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2939       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2940                            GOTReg, TGA);
2941     } else {
2942       if (picLevel == PICLevel::SmallPIC)
2943         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2944       else
2945         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2946     }
2947     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2948                                   PtrVT, GOTPtr, TGA, TGA);
2949     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2950                                       PtrVT, TLSAddr, TGA);
2951     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2952   }
2953 
2954   llvm_unreachable("Unknown TLS model!");
2955 }
2956 
2957 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2958                                               SelectionDAG &DAG) const {
2959   EVT PtrVT = Op.getValueType();
2960   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2961   SDLoc DL(GSDN);
2962   const GlobalValue *GV = GSDN->getGlobal();
2963 
2964   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
2965   // The actual address of the GlobalValue is stored in the TOC.
2966   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2967     setUsesTOCBasePtr(DAG);
2968     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2969     return getTOCEntry(DAG, DL, GA);
2970   }
2971 
2972   unsigned MOHiFlag, MOLoFlag;
2973   bool IsPIC = isPositionIndependent();
2974   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2975 
2976   if (IsPIC && Subtarget.isSVR4ABI()) {
2977     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2978                                             GSDN->getOffset(),
2979                                             PPCII::MO_PIC_FLAG);
2980     return getTOCEntry(DAG, DL, GA);
2981   }
2982 
2983   SDValue GAHi =
2984     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2985   SDValue GALo =
2986     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2987 
2988   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
2989 }
2990 
2991 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2992   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2993   SDLoc dl(Op);
2994 
2995   if (Op.getValueType() == MVT::v2i64) {
2996     // When the operands themselves are v2i64 values, we need to do something
2997     // special because VSX has no underlying comparison operations for these.
2998     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2999       // Equality can be handled by casting to the legal type for Altivec
3000       // comparisons, everything else needs to be expanded.
3001       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3002         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
3003                  DAG.getSetCC(dl, MVT::v4i32,
3004                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
3005                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
3006                    CC));
3007       }
3008 
3009       return SDValue();
3010     }
3011 
3012     // We handle most of these in the usual way.
3013     return Op;
3014   }
3015 
3016   // If we're comparing for equality to zero, expose the fact that this is
3017   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3018   // fold the new nodes.
3019   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3020     return V;
3021 
3022   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3023     // Leave comparisons against 0 and -1 alone for now, since they're usually
3024     // optimized.  FIXME: revisit this when we can custom lower all setcc
3025     // optimizations.
3026     if (C->isAllOnesValue() || C->isNullValue())
3027       return SDValue();
3028   }
3029 
3030   // If we have an integer seteq/setne, turn it into a compare against zero
3031   // by xor'ing the rhs with the lhs, which is faster than setting a
3032   // condition register, reading it back out, and masking the correct bit.  The
3033   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3034   // the result to other bit-twiddling opportunities.
3035   EVT LHSVT = Op.getOperand(0).getValueType();
3036   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3037     EVT VT = Op.getValueType();
3038     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
3039                                 Op.getOperand(1));
3040     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3041   }
3042   return SDValue();
3043 }
3044 
3045 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3046   SDNode *Node = Op.getNode();
3047   EVT VT = Node->getValueType(0);
3048   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3049   SDValue InChain = Node->getOperand(0);
3050   SDValue VAListPtr = Node->getOperand(1);
3051   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3052   SDLoc dl(Node);
3053 
3054   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3055 
3056   // gpr_index
3057   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3058                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3059   InChain = GprIndex.getValue(1);
3060 
3061   if (VT == MVT::i64) {
3062     // Check if GprIndex is even
3063     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3064                                  DAG.getConstant(1, dl, MVT::i32));
3065     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3066                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3067     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3068                                           DAG.getConstant(1, dl, MVT::i32));
3069     // Align GprIndex to be even if it isn't
3070     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3071                            GprIndex);
3072   }
3073 
3074   // fpr index is 1 byte after gpr
3075   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3076                                DAG.getConstant(1, dl, MVT::i32));
3077 
3078   // fpr
3079   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3080                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3081   InChain = FprIndex.getValue(1);
3082 
3083   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3084                                        DAG.getConstant(8, dl, MVT::i32));
3085 
3086   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3087                                         DAG.getConstant(4, dl, MVT::i32));
3088 
3089   // areas
3090   SDValue OverflowArea =
3091       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3092   InChain = OverflowArea.getValue(1);
3093 
3094   SDValue RegSaveArea =
3095       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3096   InChain = RegSaveArea.getValue(1);
3097 
3098   // select overflow_area if index > 8
3099   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3100                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3101 
3102   // adjustment constant gpr_index * 4/8
3103   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3104                                     VT.isInteger() ? GprIndex : FprIndex,
3105                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3106                                                     MVT::i32));
3107 
3108   // OurReg = RegSaveArea + RegConstant
3109   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3110                                RegConstant);
3111 
3112   // Floating types are 32 bytes into RegSaveArea
3113   if (VT.isFloatingPoint())
3114     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3115                          DAG.getConstant(32, dl, MVT::i32));
3116 
3117   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3118   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3119                                    VT.isInteger() ? GprIndex : FprIndex,
3120                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3121                                                    MVT::i32));
3122 
3123   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3124                               VT.isInteger() ? VAListPtr : FprPtr,
3125                               MachinePointerInfo(SV), MVT::i8);
3126 
3127   // determine if we should load from reg_save_area or overflow_area
3128   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3129 
3130   // increase overflow_area by 4/8 if gpr/fpr > 8
3131   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3132                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3133                                           dl, MVT::i32));
3134 
3135   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3136                              OverflowAreaPlusN);
3137 
3138   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3139                               MachinePointerInfo(), MVT::i32);
3140 
3141   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3142 }
3143 
3144 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3145   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3146 
3147   // We have to copy the entire va_list struct:
3148   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3149   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3150                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3151                        false, true, false, MachinePointerInfo(),
3152                        MachinePointerInfo());
3153 }
3154 
3155 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3156                                                   SelectionDAG &DAG) const {
3157   if (Subtarget.isAIXABI())
3158     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3159 
3160   return Op.getOperand(0);
3161 }
3162 
3163 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3164                                                 SelectionDAG &DAG) const {
3165   if (Subtarget.isAIXABI())
3166     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3167 
3168   SDValue Chain = Op.getOperand(0);
3169   SDValue Trmp = Op.getOperand(1); // trampoline
3170   SDValue FPtr = Op.getOperand(2); // nested function
3171   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3172   SDLoc dl(Op);
3173 
3174   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3175   bool isPPC64 = (PtrVT == MVT::i64);
3176   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3177 
3178   TargetLowering::ArgListTy Args;
3179   TargetLowering::ArgListEntry Entry;
3180 
3181   Entry.Ty = IntPtrTy;
3182   Entry.Node = Trmp; Args.push_back(Entry);
3183 
3184   // TrampSize == (isPPC64 ? 48 : 40);
3185   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3186                                isPPC64 ? MVT::i64 : MVT::i32);
3187   Args.push_back(Entry);
3188 
3189   Entry.Node = FPtr; Args.push_back(Entry);
3190   Entry.Node = Nest; Args.push_back(Entry);
3191 
3192   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3193   TargetLowering::CallLoweringInfo CLI(DAG);
3194   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3195       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3196       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3197 
3198   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3199   return CallResult.second;
3200 }
3201 
3202 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3203   MachineFunction &MF = DAG.getMachineFunction();
3204   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3205   EVT PtrVT = getPointerTy(MF.getDataLayout());
3206 
3207   SDLoc dl(Op);
3208 
3209   if (Subtarget.isPPC64()) {
3210     // vastart just stores the address of the VarArgsFrameIndex slot into the
3211     // memory location argument.
3212     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3213     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3214     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3215                         MachinePointerInfo(SV));
3216   }
3217 
3218   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3219   // We suppose the given va_list is already allocated.
3220   //
3221   // typedef struct {
3222   //  char gpr;     /* index into the array of 8 GPRs
3223   //                 * stored in the register save area
3224   //                 * gpr=0 corresponds to r3,
3225   //                 * gpr=1 to r4, etc.
3226   //                 */
3227   //  char fpr;     /* index into the array of 8 FPRs
3228   //                 * stored in the register save area
3229   //                 * fpr=0 corresponds to f1,
3230   //                 * fpr=1 to f2, etc.
3231   //                 */
3232   //  char *overflow_arg_area;
3233   //                /* location on stack that holds
3234   //                 * the next overflow argument
3235   //                 */
3236   //  char *reg_save_area;
3237   //               /* where r3:r10 and f1:f8 (if saved)
3238   //                * are stored
3239   //                */
3240   // } va_list[1];
3241 
3242   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3243   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3244   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3245                                             PtrVT);
3246   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3247                                  PtrVT);
3248 
3249   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3250   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3251 
3252   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3253   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3254 
3255   uint64_t FPROffset = 1;
3256   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3257 
3258   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3259 
3260   // Store first byte : number of int regs
3261   SDValue firstStore =
3262       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3263                         MachinePointerInfo(SV), MVT::i8);
3264   uint64_t nextOffset = FPROffset;
3265   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3266                                   ConstFPROffset);
3267 
3268   // Store second byte : number of float regs
3269   SDValue secondStore =
3270       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3271                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3272   nextOffset += StackOffset;
3273   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3274 
3275   // Store second word : arguments given on stack
3276   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3277                                     MachinePointerInfo(SV, nextOffset));
3278   nextOffset += FrameOffset;
3279   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3280 
3281   // Store third word : arguments given in registers
3282   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3283                       MachinePointerInfo(SV, nextOffset));
3284 }
3285 
3286 /// FPR - The set of FP registers that should be allocated for arguments
3287 /// on Darwin and AIX.
3288 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3289                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3290                                 PPC::F11, PPC::F12, PPC::F13};
3291 
3292 /// QFPR - The set of QPX registers that should be allocated for arguments.
3293 static const MCPhysReg QFPR[] = {
3294     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3295     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3296 
3297 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3298 /// the stack.
3299 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3300                                        unsigned PtrByteSize) {
3301   unsigned ArgSize = ArgVT.getStoreSize();
3302   if (Flags.isByVal())
3303     ArgSize = Flags.getByValSize();
3304 
3305   // Round up to multiples of the pointer size, except for array members,
3306   // which are always packed.
3307   if (!Flags.isInConsecutiveRegs())
3308     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3309 
3310   return ArgSize;
3311 }
3312 
3313 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3314 /// on the stack.
3315 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3316                                          ISD::ArgFlagsTy Flags,
3317                                          unsigned PtrByteSize) {
3318   Align Alignment(PtrByteSize);
3319 
3320   // Altivec parameters are padded to a 16 byte boundary.
3321   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3322       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3323       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3324       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3325     Alignment = Align(16);
3326   // QPX vector types stored in double-precision are padded to a 32 byte
3327   // boundary.
3328   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3329     Alignment = Align(32);
3330 
3331   // ByVal parameters are aligned as requested.
3332   if (Flags.isByVal()) {
3333     auto BVAlign = Flags.getNonZeroByValAlign();
3334     if (BVAlign > PtrByteSize) {
3335       if (BVAlign.value() % PtrByteSize != 0)
3336         llvm_unreachable(
3337             "ByVal alignment is not a multiple of the pointer size");
3338 
3339       Alignment = BVAlign;
3340     }
3341   }
3342 
3343   // Array members are always packed to their original alignment.
3344   if (Flags.isInConsecutiveRegs()) {
3345     // If the array member was split into multiple registers, the first
3346     // needs to be aligned to the size of the full type.  (Except for
3347     // ppcf128, which is only aligned as its f64 components.)
3348     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3349       Alignment = Align(OrigVT.getStoreSize());
3350     else
3351       Alignment = Align(ArgVT.getStoreSize());
3352   }
3353 
3354   return Alignment;
3355 }
3356 
3357 /// CalculateStackSlotUsed - Return whether this argument will use its
3358 /// stack slot (instead of being passed in registers).  ArgOffset,
3359 /// AvailableFPRs, and AvailableVRs must hold the current argument
3360 /// position, and will be updated to account for this argument.
3361 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3362                                    ISD::ArgFlagsTy Flags,
3363                                    unsigned PtrByteSize,
3364                                    unsigned LinkageSize,
3365                                    unsigned ParamAreaSize,
3366                                    unsigned &ArgOffset,
3367                                    unsigned &AvailableFPRs,
3368                                    unsigned &AvailableVRs, bool HasQPX) {
3369   bool UseMemory = false;
3370 
3371   // Respect alignment of argument on the stack.
3372   Align Alignment =
3373       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3374   ArgOffset = alignTo(ArgOffset, Alignment);
3375   // If there's no space left in the argument save area, we must
3376   // use memory (this check also catches zero-sized arguments).
3377   if (ArgOffset >= LinkageSize + ParamAreaSize)
3378     UseMemory = true;
3379 
3380   // Allocate argument on the stack.
3381   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3382   if (Flags.isInConsecutiveRegsLast())
3383     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3384   // If we overran the argument save area, we must use memory
3385   // (this check catches arguments passed partially in memory)
3386   if (ArgOffset > LinkageSize + ParamAreaSize)
3387     UseMemory = true;
3388 
3389   // However, if the argument is actually passed in an FPR or a VR,
3390   // we don't use memory after all.
3391   if (!Flags.isByVal()) {
3392     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3393         // QPX registers overlap with the scalar FP registers.
3394         (HasQPX && (ArgVT == MVT::v4f32 ||
3395                     ArgVT == MVT::v4f64 ||
3396                     ArgVT == MVT::v4i1)))
3397       if (AvailableFPRs > 0) {
3398         --AvailableFPRs;
3399         return false;
3400       }
3401     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3402         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3403         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3404         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3405       if (AvailableVRs > 0) {
3406         --AvailableVRs;
3407         return false;
3408       }
3409   }
3410 
3411   return UseMemory;
3412 }
3413 
3414 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3415 /// ensure minimum alignment required for target.
3416 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3417                                      unsigned NumBytes) {
3418   unsigned TargetAlign = Lowering->getStackAlignment();
3419   unsigned AlignMask = TargetAlign - 1;
3420   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
3421   return NumBytes;
3422 }
3423 
3424 SDValue PPCTargetLowering::LowerFormalArguments(
3425     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3426     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3427     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3428   if (Subtarget.isAIXABI())
3429     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3430                                     InVals);
3431   if (Subtarget.is64BitELFABI())
3432     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3433                                        InVals);
3434   if (Subtarget.is32BitELFABI())
3435     return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3436                                        InVals);
3437 
3438   return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG,
3439                                      InVals);
3440 }
3441 
3442 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3443     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3444     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3445     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3446 
3447   // 32-bit SVR4 ABI Stack Frame Layout:
3448   //              +-----------------------------------+
3449   //        +-->  |            Back chain             |
3450   //        |     +-----------------------------------+
3451   //        |     | Floating-point register save area |
3452   //        |     +-----------------------------------+
3453   //        |     |    General register save area     |
3454   //        |     +-----------------------------------+
3455   //        |     |          CR save word             |
3456   //        |     +-----------------------------------+
3457   //        |     |         VRSAVE save word          |
3458   //        |     +-----------------------------------+
3459   //        |     |         Alignment padding         |
3460   //        |     +-----------------------------------+
3461   //        |     |     Vector register save area     |
3462   //        |     +-----------------------------------+
3463   //        |     |       Local variable space        |
3464   //        |     +-----------------------------------+
3465   //        |     |        Parameter list area        |
3466   //        |     +-----------------------------------+
3467   //        |     |           LR save word            |
3468   //        |     +-----------------------------------+
3469   // SP-->  +---  |            Back chain             |
3470   //              +-----------------------------------+
3471   //
3472   // Specifications:
3473   //   System V Application Binary Interface PowerPC Processor Supplement
3474   //   AltiVec Technology Programming Interface Manual
3475 
3476   MachineFunction &MF = DAG.getMachineFunction();
3477   MachineFrameInfo &MFI = MF.getFrameInfo();
3478   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3479 
3480   EVT PtrVT = getPointerTy(MF.getDataLayout());
3481   // Potential tail calls could cause overwriting of argument stack slots.
3482   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3483                        (CallConv == CallingConv::Fast));
3484   unsigned PtrByteSize = 4;
3485 
3486   // Assign locations to all of the incoming arguments.
3487   SmallVector<CCValAssign, 16> ArgLocs;
3488   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3489                  *DAG.getContext());
3490 
3491   // Reserve space for the linkage area on the stack.
3492   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3493   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3494   if (useSoftFloat())
3495     CCInfo.PreAnalyzeFormalArguments(Ins);
3496 
3497   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3498   CCInfo.clearWasPPCF128();
3499 
3500   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3501     CCValAssign &VA = ArgLocs[i];
3502 
3503     // Arguments stored in registers.
3504     if (VA.isRegLoc()) {
3505       const TargetRegisterClass *RC;
3506       EVT ValVT = VA.getValVT();
3507 
3508       switch (ValVT.getSimpleVT().SimpleTy) {
3509         default:
3510           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3511         case MVT::i1:
3512         case MVT::i32:
3513           RC = &PPC::GPRCRegClass;
3514           break;
3515         case MVT::f32:
3516           if (Subtarget.hasP8Vector())
3517             RC = &PPC::VSSRCRegClass;
3518           else if (Subtarget.hasSPE())
3519             RC = &PPC::GPRCRegClass;
3520           else
3521             RC = &PPC::F4RCRegClass;
3522           break;
3523         case MVT::f64:
3524           if (Subtarget.hasVSX())
3525             RC = &PPC::VSFRCRegClass;
3526           else if (Subtarget.hasSPE())
3527             // SPE passes doubles in GPR pairs.
3528             RC = &PPC::GPRCRegClass;
3529           else
3530             RC = &PPC::F8RCRegClass;
3531           break;
3532         case MVT::v16i8:
3533         case MVT::v8i16:
3534         case MVT::v4i32:
3535           RC = &PPC::VRRCRegClass;
3536           break;
3537         case MVT::v4f32:
3538           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3539           break;
3540         case MVT::v2f64:
3541         case MVT::v2i64:
3542           RC = &PPC::VRRCRegClass;
3543           break;
3544         case MVT::v4f64:
3545           RC = &PPC::QFRCRegClass;
3546           break;
3547         case MVT::v4i1:
3548           RC = &PPC::QBRCRegClass;
3549           break;
3550       }
3551 
3552       SDValue ArgValue;
3553       // Transform the arguments stored in physical registers into
3554       // virtual ones.
3555       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3556         assert(i + 1 < e && "No second half of double precision argument");
3557         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3558         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3559         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3560         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3561         if (!Subtarget.isLittleEndian())
3562           std::swap (ArgValueLo, ArgValueHi);
3563         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3564                                ArgValueHi);
3565       } else {
3566         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3567         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3568                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
3569         if (ValVT == MVT::i1)
3570           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3571       }
3572 
3573       InVals.push_back(ArgValue);
3574     } else {
3575       // Argument stored in memory.
3576       assert(VA.isMemLoc());
3577 
3578       // Get the extended size of the argument type in stack
3579       unsigned ArgSize = VA.getLocVT().getStoreSize();
3580       // Get the actual size of the argument type
3581       unsigned ObjSize = VA.getValVT().getStoreSize();
3582       unsigned ArgOffset = VA.getLocMemOffset();
3583       // Stack objects in PPC32 are right justified.
3584       ArgOffset += ArgSize - ObjSize;
3585       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3586 
3587       // Create load nodes to retrieve arguments from the stack.
3588       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3589       InVals.push_back(
3590           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3591     }
3592   }
3593 
3594   // Assign locations to all of the incoming aggregate by value arguments.
3595   // Aggregates passed by value are stored in the local variable space of the
3596   // caller's stack frame, right above the parameter list area.
3597   SmallVector<CCValAssign, 16> ByValArgLocs;
3598   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3599                       ByValArgLocs, *DAG.getContext());
3600 
3601   // Reserve stack space for the allocations in CCInfo.
3602   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3603 
3604   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3605 
3606   // Area that is at least reserved in the caller of this function.
3607   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3608   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3609 
3610   // Set the size that is at least reserved in caller of this function.  Tail
3611   // call optimized function's reserved stack space needs to be aligned so that
3612   // taking the difference between two stack areas will result in an aligned
3613   // stack.
3614   MinReservedArea =
3615       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3616   FuncInfo->setMinReservedArea(MinReservedArea);
3617 
3618   SmallVector<SDValue, 8> MemOps;
3619 
3620   // If the function takes variable number of arguments, make a frame index for
3621   // the start of the first vararg value... for expansion of llvm.va_start.
3622   if (isVarArg) {
3623     static const MCPhysReg GPArgRegs[] = {
3624       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3625       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3626     };
3627     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3628 
3629     static const MCPhysReg FPArgRegs[] = {
3630       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3631       PPC::F8
3632     };
3633     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3634 
3635     if (useSoftFloat() || hasSPE())
3636        NumFPArgRegs = 0;
3637 
3638     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3639     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3640 
3641     // Make room for NumGPArgRegs and NumFPArgRegs.
3642     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3643                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3644 
3645     FuncInfo->setVarArgsStackOffset(
3646       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3647                             CCInfo.getNextStackOffset(), true));
3648 
3649     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3650     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3651 
3652     // The fixed integer arguments of a variadic function are stored to the
3653     // VarArgsFrameIndex on the stack so that they may be loaded by
3654     // dereferencing the result of va_next.
3655     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3656       // Get an existing live-in vreg, or add a new one.
3657       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3658       if (!VReg)
3659         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3660 
3661       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3662       SDValue Store =
3663           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3664       MemOps.push_back(Store);
3665       // Increment the address by four for the next argument to store
3666       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3667       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3668     }
3669 
3670     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3671     // is set.
3672     // The double arguments are stored to the VarArgsFrameIndex
3673     // on the stack.
3674     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3675       // Get an existing live-in vreg, or add a new one.
3676       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3677       if (!VReg)
3678         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3679 
3680       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3681       SDValue Store =
3682           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3683       MemOps.push_back(Store);
3684       // Increment the address by eight for the next argument to store
3685       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3686                                          PtrVT);
3687       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3688     }
3689   }
3690 
3691   if (!MemOps.empty())
3692     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3693 
3694   return Chain;
3695 }
3696 
3697 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3698 // value to MVT::i64 and then truncate to the correct register size.
3699 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3700                                              EVT ObjectVT, SelectionDAG &DAG,
3701                                              SDValue ArgVal,
3702                                              const SDLoc &dl) const {
3703   if (Flags.isSExt())
3704     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3705                          DAG.getValueType(ObjectVT));
3706   else if (Flags.isZExt())
3707     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3708                          DAG.getValueType(ObjectVT));
3709 
3710   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3711 }
3712 
3713 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3714     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3715     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3716     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3717   // TODO: add description of PPC stack frame format, or at least some docs.
3718   //
3719   bool isELFv2ABI = Subtarget.isELFv2ABI();
3720   bool isLittleEndian = Subtarget.isLittleEndian();
3721   MachineFunction &MF = DAG.getMachineFunction();
3722   MachineFrameInfo &MFI = MF.getFrameInfo();
3723   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3724 
3725   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3726          "fastcc not supported on varargs functions");
3727 
3728   EVT PtrVT = getPointerTy(MF.getDataLayout());
3729   // Potential tail calls could cause overwriting of argument stack slots.
3730   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3731                        (CallConv == CallingConv::Fast));
3732   unsigned PtrByteSize = 8;
3733   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3734 
3735   static const MCPhysReg GPR[] = {
3736     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3737     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3738   };
3739   static const MCPhysReg VR[] = {
3740     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3741     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3742   };
3743 
3744   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3745   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3746   const unsigned Num_VR_Regs  = array_lengthof(VR);
3747   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3748 
3749   // Do a first pass over the arguments to determine whether the ABI
3750   // guarantees that our caller has allocated the parameter save area
3751   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3752   // in the ELFv2 ABI, it is true if this is a vararg function or if
3753   // any parameter is located in a stack slot.
3754 
3755   bool HasParameterArea = !isELFv2ABI || isVarArg;
3756   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3757   unsigned NumBytes = LinkageSize;
3758   unsigned AvailableFPRs = Num_FPR_Regs;
3759   unsigned AvailableVRs = Num_VR_Regs;
3760   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3761     if (Ins[i].Flags.isNest())
3762       continue;
3763 
3764     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3765                                PtrByteSize, LinkageSize, ParamAreaSize,
3766                                NumBytes, AvailableFPRs, AvailableVRs,
3767                                Subtarget.hasQPX()))
3768       HasParameterArea = true;
3769   }
3770 
3771   // Add DAG nodes to load the arguments or copy them out of registers.  On
3772   // entry to a function on PPC, the arguments start after the linkage area,
3773   // although the first ones are often in registers.
3774 
3775   unsigned ArgOffset = LinkageSize;
3776   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3777   unsigned &QFPR_idx = FPR_idx;
3778   SmallVector<SDValue, 8> MemOps;
3779   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3780   unsigned CurArgIdx = 0;
3781   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3782     SDValue ArgVal;
3783     bool needsLoad = false;
3784     EVT ObjectVT = Ins[ArgNo].VT;
3785     EVT OrigVT = Ins[ArgNo].ArgVT;
3786     unsigned ObjSize = ObjectVT.getStoreSize();
3787     unsigned ArgSize = ObjSize;
3788     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3789     if (Ins[ArgNo].isOrigArg()) {
3790       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3791       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3792     }
3793     // We re-align the argument offset for each argument, except when using the
3794     // fast calling convention, when we need to make sure we do that only when
3795     // we'll actually use a stack slot.
3796     unsigned CurArgOffset;
3797     Align Alignment;
3798     auto ComputeArgOffset = [&]() {
3799       /* Respect alignment of argument on the stack.  */
3800       Alignment =
3801           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3802       ArgOffset = alignTo(ArgOffset, Alignment);
3803       CurArgOffset = ArgOffset;
3804     };
3805 
3806     if (CallConv != CallingConv::Fast) {
3807       ComputeArgOffset();
3808 
3809       /* Compute GPR index associated with argument offset.  */
3810       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3811       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3812     }
3813 
3814     // FIXME the codegen can be much improved in some cases.
3815     // We do not have to keep everything in memory.
3816     if (Flags.isByVal()) {
3817       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3818 
3819       if (CallConv == CallingConv::Fast)
3820         ComputeArgOffset();
3821 
3822       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3823       ObjSize = Flags.getByValSize();
3824       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3825       // Empty aggregate parameters do not take up registers.  Examples:
3826       //   struct { } a;
3827       //   union  { } b;
3828       //   int c[0];
3829       // etc.  However, we have to provide a place-holder in InVals, so
3830       // pretend we have an 8-byte item at the current address for that
3831       // purpose.
3832       if (!ObjSize) {
3833         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3834         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3835         InVals.push_back(FIN);
3836         continue;
3837       }
3838 
3839       // Create a stack object covering all stack doublewords occupied
3840       // by the argument.  If the argument is (fully or partially) on
3841       // the stack, or if the argument is fully in registers but the
3842       // caller has allocated the parameter save anyway, we can refer
3843       // directly to the caller's stack frame.  Otherwise, create a
3844       // local copy in our own frame.
3845       int FI;
3846       if (HasParameterArea ||
3847           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3848         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3849       else
3850         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
3851       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3852 
3853       // Handle aggregates smaller than 8 bytes.
3854       if (ObjSize < PtrByteSize) {
3855         // The value of the object is its address, which differs from the
3856         // address of the enclosing doubleword on big-endian systems.
3857         SDValue Arg = FIN;
3858         if (!isLittleEndian) {
3859           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3860           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3861         }
3862         InVals.push_back(Arg);
3863 
3864         if (GPR_idx != Num_GPR_Regs) {
3865           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3866           FuncInfo->addLiveInAttr(VReg, Flags);
3867           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3868           SDValue Store;
3869 
3870           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3871             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3872                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3873             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3874                                       MachinePointerInfo(&*FuncArg), ObjType);
3875           } else {
3876             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3877             // store the whole register as-is to the parameter save area
3878             // slot.
3879             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3880                                  MachinePointerInfo(&*FuncArg));
3881           }
3882 
3883           MemOps.push_back(Store);
3884         }
3885         // Whether we copied from a register or not, advance the offset
3886         // into the parameter save area by a full doubleword.
3887         ArgOffset += PtrByteSize;
3888         continue;
3889       }
3890 
3891       // The value of the object is its address, which is the address of
3892       // its first stack doubleword.
3893       InVals.push_back(FIN);
3894 
3895       // Store whatever pieces of the object are in registers to memory.
3896       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3897         if (GPR_idx == Num_GPR_Regs)
3898           break;
3899 
3900         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3901         FuncInfo->addLiveInAttr(VReg, Flags);
3902         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3903         SDValue Addr = FIN;
3904         if (j) {
3905           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3906           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3907         }
3908         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3909                                      MachinePointerInfo(&*FuncArg, j));
3910         MemOps.push_back(Store);
3911         ++GPR_idx;
3912       }
3913       ArgOffset += ArgSize;
3914       continue;
3915     }
3916 
3917     switch (ObjectVT.getSimpleVT().SimpleTy) {
3918     default: llvm_unreachable("Unhandled argument type!");
3919     case MVT::i1:
3920     case MVT::i32:
3921     case MVT::i64:
3922       if (Flags.isNest()) {
3923         // The 'nest' parameter, if any, is passed in R11.
3924         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3925         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3926 
3927         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3928           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3929 
3930         break;
3931       }
3932 
3933       // These can be scalar arguments or elements of an integer array type
3934       // passed directly.  Clang may use those instead of "byval" aggregate
3935       // types to avoid forcing arguments to memory unnecessarily.
3936       if (GPR_idx != Num_GPR_Regs) {
3937         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3938         FuncInfo->addLiveInAttr(VReg, Flags);
3939         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3940 
3941         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3942           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3943           // value to MVT::i64 and then truncate to the correct register size.
3944           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3945       } else {
3946         if (CallConv == CallingConv::Fast)
3947           ComputeArgOffset();
3948 
3949         needsLoad = true;
3950         ArgSize = PtrByteSize;
3951       }
3952       if (CallConv != CallingConv::Fast || needsLoad)
3953         ArgOffset += 8;
3954       break;
3955 
3956     case MVT::f32:
3957     case MVT::f64:
3958       // These can be scalar arguments or elements of a float array type
3959       // passed directly.  The latter are used to implement ELFv2 homogenous
3960       // float aggregates.
3961       if (FPR_idx != Num_FPR_Regs) {
3962         unsigned VReg;
3963 
3964         if (ObjectVT == MVT::f32)
3965           VReg = MF.addLiveIn(FPR[FPR_idx],
3966                               Subtarget.hasP8Vector()
3967                                   ? &PPC::VSSRCRegClass
3968                                   : &PPC::F4RCRegClass);
3969         else
3970           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3971                                                 ? &PPC::VSFRCRegClass
3972                                                 : &PPC::F8RCRegClass);
3973 
3974         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3975         ++FPR_idx;
3976       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3977         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3978         // once we support fp <-> gpr moves.
3979 
3980         // This can only ever happen in the presence of f32 array types,
3981         // since otherwise we never run out of FPRs before running out
3982         // of GPRs.
3983         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3984         FuncInfo->addLiveInAttr(VReg, Flags);
3985         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3986 
3987         if (ObjectVT == MVT::f32) {
3988           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3989             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3990                                  DAG.getConstant(32, dl, MVT::i32));
3991           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3992         }
3993 
3994         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3995       } else {
3996         if (CallConv == CallingConv::Fast)
3997           ComputeArgOffset();
3998 
3999         needsLoad = true;
4000       }
4001 
4002       // When passing an array of floats, the array occupies consecutive
4003       // space in the argument area; only round up to the next doubleword
4004       // at the end of the array.  Otherwise, each float takes 8 bytes.
4005       if (CallConv != CallingConv::Fast || needsLoad) {
4006         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4007         ArgOffset += ArgSize;
4008         if (Flags.isInConsecutiveRegsLast())
4009           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4010       }
4011       break;
4012     case MVT::v4f32:
4013     case MVT::v4i32:
4014     case MVT::v8i16:
4015     case MVT::v16i8:
4016     case MVT::v2f64:
4017     case MVT::v2i64:
4018     case MVT::v1i128:
4019     case MVT::f128:
4020       if (!Subtarget.hasQPX()) {
4021         // These can be scalar arguments or elements of a vector array type
4022         // passed directly.  The latter are used to implement ELFv2 homogenous
4023         // vector aggregates.
4024         if (VR_idx != Num_VR_Regs) {
4025           unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4026           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4027           ++VR_idx;
4028         } else {
4029           if (CallConv == CallingConv::Fast)
4030             ComputeArgOffset();
4031           needsLoad = true;
4032         }
4033         if (CallConv != CallingConv::Fast || needsLoad)
4034           ArgOffset += 16;
4035         break;
4036       } // not QPX
4037 
4038       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
4039              "Invalid QPX parameter type");
4040       LLVM_FALLTHROUGH;
4041 
4042     case MVT::v4f64:
4043     case MVT::v4i1:
4044       // QPX vectors are treated like their scalar floating-point subregisters
4045       // (except that they're larger).
4046       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
4047       if (QFPR_idx != Num_QFPR_Regs) {
4048         const TargetRegisterClass *RC;
4049         switch (ObjectVT.getSimpleVT().SimpleTy) {
4050         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
4051         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
4052         default:         RC = &PPC::QBRCRegClass; break;
4053         }
4054 
4055         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
4056         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4057         ++QFPR_idx;
4058       } else {
4059         if (CallConv == CallingConv::Fast)
4060           ComputeArgOffset();
4061         needsLoad = true;
4062       }
4063       if (CallConv != CallingConv::Fast || needsLoad)
4064         ArgOffset += Sz;
4065       break;
4066     }
4067 
4068     // We need to load the argument to a virtual register if we determined
4069     // above that we ran out of physical registers of the appropriate type.
4070     if (needsLoad) {
4071       if (ObjSize < ArgSize && !isLittleEndian)
4072         CurArgOffset += ArgSize - ObjSize;
4073       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4074       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4075       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4076     }
4077 
4078     InVals.push_back(ArgVal);
4079   }
4080 
4081   // Area that is at least reserved in the caller of this function.
4082   unsigned MinReservedArea;
4083   if (HasParameterArea)
4084     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4085   else
4086     MinReservedArea = LinkageSize;
4087 
4088   // Set the size that is at least reserved in caller of this function.  Tail
4089   // call optimized functions' reserved stack space needs to be aligned so that
4090   // taking the difference between two stack areas will result in an aligned
4091   // stack.
4092   MinReservedArea =
4093       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4094   FuncInfo->setMinReservedArea(MinReservedArea);
4095 
4096   // If the function takes variable number of arguments, make a frame index for
4097   // the start of the first vararg value... for expansion of llvm.va_start.
4098   if (isVarArg) {
4099     int Depth = ArgOffset;
4100 
4101     FuncInfo->setVarArgsFrameIndex(
4102       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4103     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4104 
4105     // If this function is vararg, store any remaining integer argument regs
4106     // to their spots on the stack so that they may be loaded by dereferencing
4107     // the result of va_next.
4108     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4109          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4110       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4111       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4112       SDValue Store =
4113           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4114       MemOps.push_back(Store);
4115       // Increment the address by four for the next argument to store
4116       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4117       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4118     }
4119   }
4120 
4121   if (!MemOps.empty())
4122     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4123 
4124   return Chain;
4125 }
4126 
4127 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4128     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4129     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4130     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4131   // TODO: add description of PPC stack frame format, or at least some docs.
4132   //
4133   MachineFunction &MF = DAG.getMachineFunction();
4134   MachineFrameInfo &MFI = MF.getFrameInfo();
4135   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4136 
4137   EVT PtrVT = getPointerTy(MF.getDataLayout());
4138   bool isPPC64 = PtrVT == MVT::i64;
4139   // Potential tail calls could cause overwriting of argument stack slots.
4140   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4141                        (CallConv == CallingConv::Fast));
4142   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4143   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4144   unsigned ArgOffset = LinkageSize;
4145   // Area that is at least reserved in caller of this function.
4146   unsigned MinReservedArea = ArgOffset;
4147 
4148   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4149     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4150     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4151   };
4152   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4153     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4154     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4155   };
4156   static const MCPhysReg VR[] = {
4157     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4158     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4159   };
4160 
4161   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4162   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4163   const unsigned Num_VR_Regs  = array_lengthof( VR);
4164 
4165   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4166 
4167   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4168 
4169   // In 32-bit non-varargs functions, the stack space for vectors is after the
4170   // stack space for non-vectors.  We do not use this space unless we have
4171   // too many vectors to fit in registers, something that only occurs in
4172   // constructed examples:), but we have to walk the arglist to figure
4173   // that out...for the pathological case, compute VecArgOffset as the
4174   // start of the vector parameter area.  Computing VecArgOffset is the
4175   // entire point of the following loop.
4176   unsigned VecArgOffset = ArgOffset;
4177   if (!isVarArg && !isPPC64) {
4178     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4179          ++ArgNo) {
4180       EVT ObjectVT = Ins[ArgNo].VT;
4181       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4182 
4183       if (Flags.isByVal()) {
4184         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4185         unsigned ObjSize = Flags.getByValSize();
4186         unsigned ArgSize =
4187                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4188         VecArgOffset += ArgSize;
4189         continue;
4190       }
4191 
4192       switch(ObjectVT.getSimpleVT().SimpleTy) {
4193       default: llvm_unreachable("Unhandled argument type!");
4194       case MVT::i1:
4195       case MVT::i32:
4196       case MVT::f32:
4197         VecArgOffset += 4;
4198         break;
4199       case MVT::i64:  // PPC64
4200       case MVT::f64:
4201         // FIXME: We are guaranteed to be !isPPC64 at this point.
4202         // Does MVT::i64 apply?
4203         VecArgOffset += 8;
4204         break;
4205       case MVT::v4f32:
4206       case MVT::v4i32:
4207       case MVT::v8i16:
4208       case MVT::v16i8:
4209         // Nothing to do, we're only looking at Nonvector args here.
4210         break;
4211       }
4212     }
4213   }
4214   // We've found where the vector parameter area in memory is.  Skip the
4215   // first 12 parameters; these don't use that memory.
4216   VecArgOffset = ((VecArgOffset+15)/16)*16;
4217   VecArgOffset += 12*16;
4218 
4219   // Add DAG nodes to load the arguments or copy them out of registers.  On
4220   // entry to a function on PPC, the arguments start after the linkage area,
4221   // although the first ones are often in registers.
4222 
4223   SmallVector<SDValue, 8> MemOps;
4224   unsigned nAltivecParamsAtEnd = 0;
4225   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4226   unsigned CurArgIdx = 0;
4227   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4228     SDValue ArgVal;
4229     bool needsLoad = false;
4230     EVT ObjectVT = Ins[ArgNo].VT;
4231     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4232     unsigned ArgSize = ObjSize;
4233     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4234     if (Ins[ArgNo].isOrigArg()) {
4235       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4236       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4237     }
4238     unsigned CurArgOffset = ArgOffset;
4239 
4240     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4241     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4242         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4243       if (isVarArg || isPPC64) {
4244         MinReservedArea = ((MinReservedArea+15)/16)*16;
4245         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4246                                                   Flags,
4247                                                   PtrByteSize);
4248       } else  nAltivecParamsAtEnd++;
4249     } else
4250       // Calculate min reserved area.
4251       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4252                                                 Flags,
4253                                                 PtrByteSize);
4254 
4255     // FIXME the codegen can be much improved in some cases.
4256     // We do not have to keep everything in memory.
4257     if (Flags.isByVal()) {
4258       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4259 
4260       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4261       ObjSize = Flags.getByValSize();
4262       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4263       // Objects of size 1 and 2 are right justified, everything else is
4264       // left justified.  This means the memory address is adjusted forwards.
4265       if (ObjSize==1 || ObjSize==2) {
4266         CurArgOffset = CurArgOffset + (4 - ObjSize);
4267       }
4268       // The value of the object is its address.
4269       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4270       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4271       InVals.push_back(FIN);
4272       if (ObjSize==1 || ObjSize==2) {
4273         if (GPR_idx != Num_GPR_Regs) {
4274           unsigned VReg;
4275           if (isPPC64)
4276             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4277           else
4278             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4279           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4280           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4281           SDValue Store =
4282               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4283                                 MachinePointerInfo(&*FuncArg), ObjType);
4284           MemOps.push_back(Store);
4285           ++GPR_idx;
4286         }
4287 
4288         ArgOffset += PtrByteSize;
4289 
4290         continue;
4291       }
4292       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4293         // Store whatever pieces of the object are in registers
4294         // to memory.  ArgOffset will be the address of the beginning
4295         // of the object.
4296         if (GPR_idx != Num_GPR_Regs) {
4297           unsigned VReg;
4298           if (isPPC64)
4299             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4300           else
4301             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4302           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4303           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4304           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4305           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4306                                        MachinePointerInfo(&*FuncArg, j));
4307           MemOps.push_back(Store);
4308           ++GPR_idx;
4309           ArgOffset += PtrByteSize;
4310         } else {
4311           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4312           break;
4313         }
4314       }
4315       continue;
4316     }
4317 
4318     switch (ObjectVT.getSimpleVT().SimpleTy) {
4319     default: llvm_unreachable("Unhandled argument type!");
4320     case MVT::i1:
4321     case MVT::i32:
4322       if (!isPPC64) {
4323         if (GPR_idx != Num_GPR_Regs) {
4324           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4325           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4326 
4327           if (ObjectVT == MVT::i1)
4328             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4329 
4330           ++GPR_idx;
4331         } else {
4332           needsLoad = true;
4333           ArgSize = PtrByteSize;
4334         }
4335         // All int arguments reserve stack space in the Darwin ABI.
4336         ArgOffset += PtrByteSize;
4337         break;
4338       }
4339       LLVM_FALLTHROUGH;
4340     case MVT::i64:  // PPC64
4341       if (GPR_idx != Num_GPR_Regs) {
4342         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4343         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4344 
4345         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4346           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4347           // value to MVT::i64 and then truncate to the correct register size.
4348           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4349 
4350         ++GPR_idx;
4351       } else {
4352         needsLoad = true;
4353         ArgSize = PtrByteSize;
4354       }
4355       // All int arguments reserve stack space in the Darwin ABI.
4356       ArgOffset += 8;
4357       break;
4358 
4359     case MVT::f32:
4360     case MVT::f64:
4361       // Every 4 bytes of argument space consumes one of the GPRs available for
4362       // argument passing.
4363       if (GPR_idx != Num_GPR_Regs) {
4364         ++GPR_idx;
4365         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4366           ++GPR_idx;
4367       }
4368       if (FPR_idx != Num_FPR_Regs) {
4369         unsigned VReg;
4370 
4371         if (ObjectVT == MVT::f32)
4372           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4373         else
4374           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4375 
4376         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4377         ++FPR_idx;
4378       } else {
4379         needsLoad = true;
4380       }
4381 
4382       // All FP arguments reserve stack space in the Darwin ABI.
4383       ArgOffset += isPPC64 ? 8 : ObjSize;
4384       break;
4385     case MVT::v4f32:
4386     case MVT::v4i32:
4387     case MVT::v8i16:
4388     case MVT::v16i8:
4389       // Note that vector arguments in registers don't reserve stack space,
4390       // except in varargs functions.
4391       if (VR_idx != Num_VR_Regs) {
4392         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4393         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4394         if (isVarArg) {
4395           while ((ArgOffset % 16) != 0) {
4396             ArgOffset += PtrByteSize;
4397             if (GPR_idx != Num_GPR_Regs)
4398               GPR_idx++;
4399           }
4400           ArgOffset += 16;
4401           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4402         }
4403         ++VR_idx;
4404       } else {
4405         if (!isVarArg && !isPPC64) {
4406           // Vectors go after all the nonvectors.
4407           CurArgOffset = VecArgOffset;
4408           VecArgOffset += 16;
4409         } else {
4410           // Vectors are aligned.
4411           ArgOffset = ((ArgOffset+15)/16)*16;
4412           CurArgOffset = ArgOffset;
4413           ArgOffset += 16;
4414         }
4415         needsLoad = true;
4416       }
4417       break;
4418     }
4419 
4420     // We need to load the argument to a virtual register if we determined above
4421     // that we ran out of physical registers of the appropriate type.
4422     if (needsLoad) {
4423       int FI = MFI.CreateFixedObject(ObjSize,
4424                                      CurArgOffset + (ArgSize - ObjSize),
4425                                      isImmutable);
4426       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4427       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4428     }
4429 
4430     InVals.push_back(ArgVal);
4431   }
4432 
4433   // Allow for Altivec parameters at the end, if needed.
4434   if (nAltivecParamsAtEnd) {
4435     MinReservedArea = ((MinReservedArea+15)/16)*16;
4436     MinReservedArea += 16*nAltivecParamsAtEnd;
4437   }
4438 
4439   // Area that is at least reserved in the caller of this function.
4440   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4441 
4442   // Set the size that is at least reserved in caller of this function.  Tail
4443   // call optimized functions' reserved stack space needs to be aligned so that
4444   // taking the difference between two stack areas will result in an aligned
4445   // stack.
4446   MinReservedArea =
4447       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4448   FuncInfo->setMinReservedArea(MinReservedArea);
4449 
4450   // If the function takes variable number of arguments, make a frame index for
4451   // the start of the first vararg value... for expansion of llvm.va_start.
4452   if (isVarArg) {
4453     int Depth = ArgOffset;
4454 
4455     FuncInfo->setVarArgsFrameIndex(
4456       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4457                             Depth, true));
4458     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4459 
4460     // If this function is vararg, store any remaining integer argument regs
4461     // to their spots on the stack so that they may be loaded by dereferencing
4462     // the result of va_next.
4463     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4464       unsigned VReg;
4465 
4466       if (isPPC64)
4467         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4468       else
4469         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4470 
4471       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4472       SDValue Store =
4473           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4474       MemOps.push_back(Store);
4475       // Increment the address by four for the next argument to store
4476       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4477       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4478     }
4479   }
4480 
4481   if (!MemOps.empty())
4482     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4483 
4484   return Chain;
4485 }
4486 
4487 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4488 /// adjusted to accommodate the arguments for the tailcall.
4489 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4490                                    unsigned ParamSize) {
4491 
4492   if (!isTailCall) return 0;
4493 
4494   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4495   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4496   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4497   // Remember only if the new adjustment is bigger.
4498   if (SPDiff < FI->getTailCallSPDelta())
4499     FI->setTailCallSPDelta(SPDiff);
4500 
4501   return SPDiff;
4502 }
4503 
4504 static bool isFunctionGlobalAddress(SDValue Callee);
4505 
4506 static bool
4507 callsShareTOCBase(const Function *Caller, SDValue Callee,
4508                     const TargetMachine &TM) {
4509    // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4510    // don't have enough information to determine if the caller and calle share
4511    // the same  TOC base, so we have to pessimistically assume they don't for
4512    // correctness.
4513    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4514    if (!G)
4515      return false;
4516 
4517    const GlobalValue *GV = G->getGlobal();
4518   // The medium and large code models are expected to provide a sufficiently
4519   // large TOC to provide all data addressing needs of a module with a
4520   // single TOC. Since each module will be addressed with a single TOC then we
4521   // only need to check that caller and callee don't cross dso boundaries.
4522   if (CodeModel::Medium == TM.getCodeModel() ||
4523       CodeModel::Large == TM.getCodeModel())
4524     return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV);
4525 
4526   // Otherwise we need to ensure callee and caller are in the same section,
4527   // since the linker may allocate multiple TOCs, and we don't know which
4528   // sections will belong to the same TOC base.
4529 
4530   if (!GV->isStrongDefinitionForLinker())
4531     return false;
4532 
4533   // Any explicitly-specified sections and section prefixes must also match.
4534   // Also, if we're using -ffunction-sections, then each function is always in
4535   // a different section (the same is true for COMDAT functions).
4536   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4537       GV->getSection() != Caller->getSection())
4538     return false;
4539   if (const auto *F = dyn_cast<Function>(GV)) {
4540     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4541       return false;
4542   }
4543 
4544   // If the callee might be interposed, then we can't assume the ultimate call
4545   // target will be in the same section. Even in cases where we can assume that
4546   // interposition won't happen, in any case where the linker might insert a
4547   // stub to allow for interposition, we must generate code as though
4548   // interposition might occur. To understand why this matters, consider a
4549   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4550   // in the same section, but a is in a different module (i.e. has a different
4551   // TOC base pointer). If the linker allows for interposition between b and c,
4552   // then it will generate a stub for the call edge between b and c which will
4553   // save the TOC pointer into the designated stack slot allocated by b. If we
4554   // return true here, and therefore allow a tail call between b and c, that
4555   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4556   // pointer into the stack slot allocated by a (where the a -> b stub saved
4557   // a's TOC base pointer). If we're not considering a tail call, but rather,
4558   // whether a nop is needed after the call instruction in b, because the linker
4559   // will insert a stub, it might complain about a missing nop if we omit it
4560   // (although many don't complain in this case).
4561   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4562     return false;
4563 
4564   return true;
4565 }
4566 
4567 static bool
4568 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4569                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4570   assert(Subtarget.is64BitELFABI());
4571 
4572   const unsigned PtrByteSize = 8;
4573   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4574 
4575   static const MCPhysReg GPR[] = {
4576     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4577     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4578   };
4579   static const MCPhysReg VR[] = {
4580     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4581     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4582   };
4583 
4584   const unsigned NumGPRs = array_lengthof(GPR);
4585   const unsigned NumFPRs = 13;
4586   const unsigned NumVRs = array_lengthof(VR);
4587   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4588 
4589   unsigned NumBytes = LinkageSize;
4590   unsigned AvailableFPRs = NumFPRs;
4591   unsigned AvailableVRs = NumVRs;
4592 
4593   for (const ISD::OutputArg& Param : Outs) {
4594     if (Param.Flags.isNest()) continue;
4595 
4596     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4597                                PtrByteSize, LinkageSize, ParamAreaSize,
4598                                NumBytes, AvailableFPRs, AvailableVRs,
4599                                Subtarget.hasQPX()))
4600       return true;
4601   }
4602   return false;
4603 }
4604 
4605 static bool
4606 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
4607   if (CS.arg_size() != CallerFn->arg_size())
4608     return false;
4609 
4610   ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
4611   ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
4612   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4613 
4614   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4615     const Value* CalleeArg = *CalleeArgIter;
4616     const Value* CallerArg = &(*CallerArgIter);
4617     if (CalleeArg == CallerArg)
4618       continue;
4619 
4620     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4621     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4622     //      }
4623     // 1st argument of callee is undef and has the same type as caller.
4624     if (CalleeArg->getType() == CallerArg->getType() &&
4625         isa<UndefValue>(CalleeArg))
4626       continue;
4627 
4628     return false;
4629   }
4630 
4631   return true;
4632 }
4633 
4634 // Returns true if TCO is possible between the callers and callees
4635 // calling conventions.
4636 static bool
4637 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4638                                     CallingConv::ID CalleeCC) {
4639   // Tail calls are possible with fastcc and ccc.
4640   auto isTailCallableCC  = [] (CallingConv::ID CC){
4641       return  CC == CallingConv::C || CC == CallingConv::Fast;
4642   };
4643   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4644     return false;
4645 
4646   // We can safely tail call both fastcc and ccc callees from a c calling
4647   // convention caller. If the caller is fastcc, we may have less stack space
4648   // than a non-fastcc caller with the same signature so disable tail-calls in
4649   // that case.
4650   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4651 }
4652 
4653 bool
4654 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4655                                     SDValue Callee,
4656                                     CallingConv::ID CalleeCC,
4657                                     ImmutableCallSite CS,
4658                                     bool isVarArg,
4659                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4660                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4661                                     SelectionDAG& DAG) const {
4662   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4663 
4664   if (DisableSCO && !TailCallOpt) return false;
4665 
4666   // Variadic argument functions are not supported.
4667   if (isVarArg) return false;
4668 
4669   auto &Caller = DAG.getMachineFunction().getFunction();
4670   // Check that the calling conventions are compatible for tco.
4671   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4672     return false;
4673 
4674   // Caller contains any byval parameter is not supported.
4675   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4676     return false;
4677 
4678   // Callee contains any byval parameter is not supported, too.
4679   // Note: This is a quick work around, because in some cases, e.g.
4680   // caller's stack size > callee's stack size, we are still able to apply
4681   // sibling call optimization. For example, gcc is able to do SCO for caller1
4682   // in the following example, but not for caller2.
4683   //   struct test {
4684   //     long int a;
4685   //     char ary[56];
4686   //   } gTest;
4687   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4688   //     b->a = v.a;
4689   //     return 0;
4690   //   }
4691   //   void caller1(struct test a, struct test c, struct test *b) {
4692   //     callee(gTest, b); }
4693   //   void caller2(struct test *b) { callee(gTest, b); }
4694   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4695     return false;
4696 
4697   // If callee and caller use different calling conventions, we cannot pass
4698   // parameters on stack since offsets for the parameter area may be different.
4699   if (Caller.getCallingConv() != CalleeCC &&
4700       needStackSlotPassParameters(Subtarget, Outs))
4701     return false;
4702 
4703   // No TCO/SCO on indirect call because Caller have to restore its TOC
4704   if (!isFunctionGlobalAddress(Callee) &&
4705       !isa<ExternalSymbolSDNode>(Callee))
4706     return false;
4707 
4708   // If the caller and callee potentially have different TOC bases then we
4709   // cannot tail call since we need to restore the TOC pointer after the call.
4710   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4711   if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4712     return false;
4713 
4714   // TCO allows altering callee ABI, so we don't have to check further.
4715   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4716     return true;
4717 
4718   if (DisableSCO) return false;
4719 
4720   // If callee use the same argument list that caller is using, then we can
4721   // apply SCO on this case. If it is not, then we need to check if callee needs
4722   // stack for passing arguments.
4723   if (!hasSameArgumentList(&Caller, CS) &&
4724       needStackSlotPassParameters(Subtarget, Outs)) {
4725     return false;
4726   }
4727 
4728   return true;
4729 }
4730 
4731 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4732 /// for tail call optimization. Targets which want to do tail call
4733 /// optimization should implement this function.
4734 bool
4735 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4736                                                      CallingConv::ID CalleeCC,
4737                                                      bool isVarArg,
4738                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4739                                                      SelectionDAG& DAG) const {
4740   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4741     return false;
4742 
4743   // Variable argument functions are not supported.
4744   if (isVarArg)
4745     return false;
4746 
4747   MachineFunction &MF = DAG.getMachineFunction();
4748   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4749   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4750     // Functions containing by val parameters are not supported.
4751     for (unsigned i = 0; i != Ins.size(); i++) {
4752        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4753        if (Flags.isByVal()) return false;
4754     }
4755 
4756     // Non-PIC/GOT tail calls are supported.
4757     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4758       return true;
4759 
4760     // At the moment we can only do local tail calls (in same module, hidden
4761     // or protected) if we are generating PIC.
4762     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4763       return G->getGlobal()->hasHiddenVisibility()
4764           || G->getGlobal()->hasProtectedVisibility();
4765   }
4766 
4767   return false;
4768 }
4769 
4770 /// isCallCompatibleAddress - Return the immediate to use if the specified
4771 /// 32-bit value is representable in the immediate field of a BxA instruction.
4772 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4773   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4774   if (!C) return nullptr;
4775 
4776   int Addr = C->getZExtValue();
4777   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4778       SignExtend32<26>(Addr) != Addr)
4779     return nullptr;  // Top 6 bits have to be sext of immediate.
4780 
4781   return DAG
4782       .getConstant(
4783           (int)C->getZExtValue() >> 2, SDLoc(Op),
4784           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4785       .getNode();
4786 }
4787 
4788 namespace {
4789 
4790 struct TailCallArgumentInfo {
4791   SDValue Arg;
4792   SDValue FrameIdxOp;
4793   int FrameIdx = 0;
4794 
4795   TailCallArgumentInfo() = default;
4796 };
4797 
4798 } // end anonymous namespace
4799 
4800 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4801 static void StoreTailCallArgumentsToStackSlot(
4802     SelectionDAG &DAG, SDValue Chain,
4803     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4804     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4805   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4806     SDValue Arg = TailCallArgs[i].Arg;
4807     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4808     int FI = TailCallArgs[i].FrameIdx;
4809     // Store relative to framepointer.
4810     MemOpChains.push_back(DAG.getStore(
4811         Chain, dl, Arg, FIN,
4812         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4813   }
4814 }
4815 
4816 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4817 /// the appropriate stack slot for the tail call optimized function call.
4818 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4819                                              SDValue OldRetAddr, SDValue OldFP,
4820                                              int SPDiff, const SDLoc &dl) {
4821   if (SPDiff) {
4822     // Calculate the new stack slot for the return address.
4823     MachineFunction &MF = DAG.getMachineFunction();
4824     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4825     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4826     bool isPPC64 = Subtarget.isPPC64();
4827     int SlotSize = isPPC64 ? 8 : 4;
4828     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4829     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4830                                                          NewRetAddrLoc, true);
4831     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4832     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4833     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4834                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4835   }
4836   return Chain;
4837 }
4838 
4839 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4840 /// the position of the argument.
4841 static void
4842 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4843                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4844                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4845   int Offset = ArgOffset + SPDiff;
4846   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4847   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4848   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4849   SDValue FIN = DAG.getFrameIndex(FI, VT);
4850   TailCallArgumentInfo Info;
4851   Info.Arg = Arg;
4852   Info.FrameIdxOp = FIN;
4853   Info.FrameIdx = FI;
4854   TailCallArguments.push_back(Info);
4855 }
4856 
4857 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4858 /// stack slot. Returns the chain as result and the loaded frame pointers in
4859 /// LROpOut/FPOpout. Used when tail calling.
4860 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4861     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4862     SDValue &FPOpOut, const SDLoc &dl) const {
4863   if (SPDiff) {
4864     // Load the LR and FP stack slot for later adjusting.
4865     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4866     LROpOut = getReturnAddrFrameIndex(DAG);
4867     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4868     Chain = SDValue(LROpOut.getNode(), 1);
4869   }
4870   return Chain;
4871 }
4872 
4873 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4874 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4875 /// specified by the specific parameter attribute. The copy will be passed as
4876 /// a byval function parameter.
4877 /// Sometimes what we are copying is the end of a larger object, the part that
4878 /// does not fit in registers.
4879 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4880                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4881                                          SelectionDAG &DAG, const SDLoc &dl) {
4882   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4883   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
4884                        Flags.getNonZeroByValAlign(), false, false, false,
4885                        MachinePointerInfo(), MachinePointerInfo());
4886 }
4887 
4888 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4889 /// tail calls.
4890 static void LowerMemOpCallTo(
4891     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4892     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4893     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4894     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4895   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4896   if (!isTailCall) {
4897     if (isVector) {
4898       SDValue StackPtr;
4899       if (isPPC64)
4900         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4901       else
4902         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4903       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4904                            DAG.getConstant(ArgOffset, dl, PtrVT));
4905     }
4906     MemOpChains.push_back(
4907         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4908     // Calculate and remember argument location.
4909   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4910                                   TailCallArguments);
4911 }
4912 
4913 static void
4914 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4915                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4916                 SDValue FPOp,
4917                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4918   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4919   // might overwrite each other in case of tail call optimization.
4920   SmallVector<SDValue, 8> MemOpChains2;
4921   // Do not flag preceding copytoreg stuff together with the following stuff.
4922   InFlag = SDValue();
4923   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4924                                     MemOpChains2, dl);
4925   if (!MemOpChains2.empty())
4926     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4927 
4928   // Store the return address to the appropriate stack slot.
4929   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4930 
4931   // Emit callseq_end just before tailcall node.
4932   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4933                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4934   InFlag = Chain.getValue(1);
4935 }
4936 
4937 // Is this global address that of a function that can be called by name? (as
4938 // opposed to something that must hold a descriptor for an indirect call).
4939 static bool isFunctionGlobalAddress(SDValue Callee) {
4940   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4941     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4942         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4943       return false;
4944 
4945     return G->getGlobal()->getValueType()->isFunctionTy();
4946   }
4947 
4948   return false;
4949 }
4950 
4951 SDValue PPCTargetLowering::LowerCallResult(
4952     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
4953     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4954     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4955   SmallVector<CCValAssign, 16> RVLocs;
4956   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4957                     *DAG.getContext());
4958 
4959   CCRetInfo.AnalyzeCallResult(
4960       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
4961                ? RetCC_PPC_Cold
4962                : RetCC_PPC);
4963 
4964   // Copy all of the result registers out of their specified physreg.
4965   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
4966     CCValAssign &VA = RVLocs[i];
4967     assert(VA.isRegLoc() && "Can only return in registers!");
4968 
4969     SDValue Val;
4970 
4971     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
4972       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
4973                                       InFlag);
4974       Chain = Lo.getValue(1);
4975       InFlag = Lo.getValue(2);
4976       VA = RVLocs[++i]; // skip ahead to next loc
4977       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
4978                                       InFlag);
4979       Chain = Hi.getValue(1);
4980       InFlag = Hi.getValue(2);
4981       if (!Subtarget.isLittleEndian())
4982         std::swap (Lo, Hi);
4983       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
4984     } else {
4985       Val = DAG.getCopyFromReg(Chain, dl,
4986                                VA.getLocReg(), VA.getLocVT(), InFlag);
4987       Chain = Val.getValue(1);
4988       InFlag = Val.getValue(2);
4989     }
4990 
4991     switch (VA.getLocInfo()) {
4992     default: llvm_unreachable("Unknown loc info!");
4993     case CCValAssign::Full: break;
4994     case CCValAssign::AExt:
4995       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4996       break;
4997     case CCValAssign::ZExt:
4998       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
4999                         DAG.getValueType(VA.getValVT()));
5000       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5001       break;
5002     case CCValAssign::SExt:
5003       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5004                         DAG.getValueType(VA.getValVT()));
5005       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5006       break;
5007     }
5008 
5009     InVals.push_back(Val);
5010   }
5011 
5012   return Chain;
5013 }
5014 
5015 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5016                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5017   // PatchPoint calls are not indirect.
5018   if (isPatchPoint)
5019     return false;
5020 
5021   if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee))
5022     return false;
5023 
5024   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5025   // becuase the immediate function pointer points to a descriptor instead of
5026   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5027   // pointer immediate points to the global entry point, while the BLA would
5028   // need to jump to the local entry point (see rL211174).
5029   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5030       isBLACompatibleAddress(Callee, DAG))
5031     return false;
5032 
5033   return true;
5034 }
5035 
5036 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5037                               const Function &Caller,
5038                               const SDValue &Callee,
5039                               const PPCSubtarget &Subtarget,
5040                               const TargetMachine &TM) {
5041   if (CFlags.IsTailCall)
5042     return PPCISD::TC_RETURN;
5043 
5044   // This is a call through a function pointer.
5045   if (CFlags.IsIndirect) {
5046     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5047     // indirect calls. The save of the caller's TOC pointer to the stack will be
5048     // inserted into the DAG as part of call lowering. The restore of the TOC
5049     // pointer is modeled by using a pseudo instruction for the call opcode that
5050     // represents the 2 instruction sequence of an indirect branch and link,
5051     // immediately followed by a load of the TOC pointer from the the stack save
5052     // slot into gpr2.
5053     if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5054       return PPCISD::BCTRL_LOAD_TOC;
5055 
5056     // An indirect call that does not need a TOC restore.
5057     return PPCISD::BCTRL;
5058   }
5059 
5060   // The ABIs that maintain a TOC pointer accross calls need to have a nop
5061   // immediately following the call instruction if the caller and callee may
5062   // have different TOC bases. At link time if the linker determines the calls
5063   // may not share a TOC base, the call is redirected to a trampoline inserted
5064   // by the linker. The trampoline will (among other things) save the callers
5065   // TOC pointer at an ABI designated offset in the linkage area and the linker
5066   // will rewrite the nop to be a load of the TOC pointer from the linkage area
5067   // into gpr2.
5068   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5069     return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5070                                                   : PPCISD::CALL_NOP;
5071 
5072   return PPCISD::CALL;
5073 }
5074 
5075 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5076                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5077   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5078     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5079       return SDValue(Dest, 0);
5080 
5081   // Returns true if the callee is local, and false otherwise.
5082   auto isLocalCallee = [&]() {
5083     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5084     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5085     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5086 
5087     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5088            !dyn_cast_or_null<GlobalIFunc>(GV);
5089   };
5090 
5091   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5092   // a static relocation model causes some versions of GNU LD (2.17.50, at
5093   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5094   // built with secure-PLT.
5095   bool UsePlt =
5096       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5097       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5098 
5099   // On AIX, direct function calls reference the symbol for the function's
5100   // entry point, which is named by prepending a "." before the function's
5101   // C-linkage name.
5102   const auto getAIXFuncEntryPointSymbolSDNode =
5103       [&](StringRef FuncName, bool IsDeclaration,
5104           const XCOFF::StorageClass &SC) {
5105         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5106 
5107         MCSymbolXCOFF *S = cast<MCSymbolXCOFF>(
5108             Context.getOrCreateSymbol(Twine(".") + Twine(FuncName)));
5109 
5110         if (IsDeclaration && !S->hasContainingCsect()) {
5111           // On AIX, an undefined symbol needs to be associated with a
5112           // MCSectionXCOFF to get the correct storage mapping class.
5113           // In this case, XCOFF::XMC_PR.
5114           MCSectionXCOFF *Sec = Context.getXCOFFSection(
5115               S->getName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC,
5116               SectionKind::getMetadata());
5117           S->setContainingCsect(Sec);
5118         }
5119 
5120         MVT PtrVT =
5121             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5122         return DAG.getMCSymbol(S, PtrVT);
5123       };
5124 
5125   if (isFunctionGlobalAddress(Callee)) {
5126     const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
5127     const GlobalValue *GV = G->getGlobal();
5128 
5129     if (!Subtarget.isAIXABI())
5130       return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5131                                         UsePlt ? PPCII::MO_PLT : 0);
5132 
5133     assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5134     const GlobalObject *GO = cast<GlobalObject>(GV);
5135     const XCOFF::StorageClass SC =
5136         TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO);
5137     return getAIXFuncEntryPointSymbolSDNode(GO->getName(), GO->isDeclaration(),
5138                                             SC);
5139   }
5140 
5141   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5142     const char *SymName = S->getSymbol();
5143     if (!Subtarget.isAIXABI())
5144       return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5145                                          UsePlt ? PPCII::MO_PLT : 0);
5146 
5147     // If there exists a user-declared function whose name is the same as the
5148     // ExternalSymbol's, then we pick up the user-declared version.
5149     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5150     if (const Function *F =
5151             dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) {
5152       const XCOFF::StorageClass SC =
5153           TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(F);
5154       return getAIXFuncEntryPointSymbolSDNode(F->getName(), F->isDeclaration(),
5155                                               SC);
5156     }
5157 
5158     return getAIXFuncEntryPointSymbolSDNode(SymName, true, XCOFF::C_EXT);
5159   }
5160 
5161   // No transformation needed.
5162   assert(Callee.getNode() && "What no callee?");
5163   return Callee;
5164 }
5165 
5166 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5167   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5168          "Expected a CALLSEQ_STARTSDNode.");
5169 
5170   // The last operand is the chain, except when the node has glue. If the node
5171   // has glue, then the last operand is the glue, and the chain is the second
5172   // last operand.
5173   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5174   if (LastValue.getValueType() != MVT::Glue)
5175     return LastValue;
5176 
5177   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5178 }
5179 
5180 // Creates the node that moves a functions address into the count register
5181 // to prepare for an indirect call instruction.
5182 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5183                                 SDValue &Glue, SDValue &Chain,
5184                                 const SDLoc &dl) {
5185   SDValue MTCTROps[] = {Chain, Callee, Glue};
5186   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5187   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5188                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5189   // The glue is the second value produced.
5190   Glue = Chain.getValue(1);
5191 }
5192 
5193 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5194                                           SDValue &Glue, SDValue &Chain,
5195                                           SDValue CallSeqStart,
5196                                           ImmutableCallSite CS, const SDLoc &dl,
5197                                           bool hasNest,
5198                                           const PPCSubtarget &Subtarget) {
5199   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5200   // entry point, but to the function descriptor (the function entry point
5201   // address is part of the function descriptor though).
5202   // The function descriptor is a three doubleword structure with the
5203   // following fields: function entry point, TOC base address and
5204   // environment pointer.
5205   // Thus for a call through a function pointer, the following actions need
5206   // to be performed:
5207   //   1. Save the TOC of the caller in the TOC save area of its stack
5208   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5209   //   2. Load the address of the function entry point from the function
5210   //      descriptor.
5211   //   3. Load the TOC of the callee from the function descriptor into r2.
5212   //   4. Load the environment pointer from the function descriptor into
5213   //      r11.
5214   //   5. Branch to the function entry point address.
5215   //   6. On return of the callee, the TOC of the caller needs to be
5216   //      restored (this is done in FinishCall()).
5217   //
5218   // The loads are scheduled at the beginning of the call sequence, and the
5219   // register copies are flagged together to ensure that no other
5220   // operations can be scheduled in between. E.g. without flagging the
5221   // copies together, a TOC access in the caller could be scheduled between
5222   // the assignment of the callee TOC and the branch to the callee, which leads
5223   // to incorrect code.
5224 
5225   // Start by loading the function address from the descriptor.
5226   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5227   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5228                       ? (MachineMemOperand::MODereferenceable |
5229                          MachineMemOperand::MOInvariant)
5230                       : MachineMemOperand::MONone;
5231 
5232   MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
5233 
5234   // Registers used in building the DAG.
5235   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5236   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5237 
5238   // Offsets of descriptor members.
5239   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5240   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5241 
5242   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5243   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5244 
5245   // One load for the functions entry point address.
5246   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5247                                     Alignment, MMOFlags);
5248 
5249   // One for loading the TOC anchor for the module that contains the called
5250   // function.
5251   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5252   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5253   SDValue TOCPtr =
5254       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5255                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5256 
5257   // One for loading the environment pointer.
5258   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5259   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5260   SDValue LoadEnvPtr =
5261       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5262                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5263 
5264 
5265   // Then copy the newly loaded TOC anchor to the TOC pointer.
5266   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5267   Chain = TOCVal.getValue(0);
5268   Glue = TOCVal.getValue(1);
5269 
5270   // If the function call has an explicit 'nest' parameter, it takes the
5271   // place of the environment pointer.
5272   assert((!hasNest || !Subtarget.isAIXABI()) &&
5273          "Nest parameter is not supported on AIX.");
5274   if (!hasNest) {
5275     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5276     Chain = EnvVal.getValue(0);
5277     Glue = EnvVal.getValue(1);
5278   }
5279 
5280   // The rest of the indirect call sequence is the same as the non-descriptor
5281   // DAG.
5282   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5283 }
5284 
5285 static void
5286 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5287                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5288                   SelectionDAG &DAG,
5289                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5290                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5291                   const PPCSubtarget &Subtarget) {
5292   const bool IsPPC64 = Subtarget.isPPC64();
5293   // MVT for a general purpose register.
5294   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5295 
5296   // First operand is always the chain.
5297   Ops.push_back(Chain);
5298 
5299   // If it's a direct call pass the callee as the second operand.
5300   if (!CFlags.IsIndirect)
5301     Ops.push_back(Callee);
5302   else {
5303     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5304 
5305     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5306     // on the stack (this would have been done in `LowerCall_64SVR4` or
5307     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5308     // represents both the indirect branch and a load that restores the TOC
5309     // pointer from the linkage area. The operand for the TOC restore is an add
5310     // of the TOC save offset to the stack pointer. This must be the second
5311     // operand: after the chain input but before any other variadic arguments.
5312     if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
5313       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5314 
5315       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5316       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5317       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5318       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5319       Ops.push_back(AddTOC);
5320     }
5321 
5322     // Add the register used for the environment pointer.
5323     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5324       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5325                                     RegVT));
5326 
5327 
5328     // Add CTR register as callee so a bctr can be emitted later.
5329     if (CFlags.IsTailCall)
5330       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5331   }
5332 
5333   // If this is a tail call add stack pointer delta.
5334   if (CFlags.IsTailCall)
5335     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5336 
5337   // Add argument registers to the end of the list so that they are known live
5338   // into the call.
5339   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5340     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5341                                   RegsToPass[i].second.getValueType()));
5342 
5343   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5344   // no way to mark dependencies as implicit here.
5345   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5346   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5347       !CFlags.IsPatchPoint)
5348     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5349 
5350   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5351   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5352     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5353 
5354   // Add a register mask operand representing the call-preserved registers.
5355   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5356   const uint32_t *Mask =
5357       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5358   assert(Mask && "Missing call preserved mask for calling convention");
5359   Ops.push_back(DAG.getRegisterMask(Mask));
5360 
5361   // If the glue is valid, it is the last operand.
5362   if (Glue.getNode())
5363     Ops.push_back(Glue);
5364 }
5365 
5366 SDValue PPCTargetLowering::FinishCall(
5367     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5368     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5369     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5370     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5371     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
5372 
5373   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI())
5374     setUsesTOCBasePtr(DAG);
5375 
5376   unsigned CallOpc =
5377       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5378                     Subtarget, DAG.getTarget());
5379 
5380   if (!CFlags.IsIndirect)
5381     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5382   else if (Subtarget.usesFunctionDescriptors())
5383     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CS,
5384                                   dl, CFlags.HasNest, Subtarget);
5385   else
5386     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5387 
5388   // Build the operand list for the call instruction.
5389   SmallVector<SDValue, 8> Ops;
5390   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5391                     SPDiff, Subtarget);
5392 
5393   // Emit tail call.
5394   if (CFlags.IsTailCall) {
5395     assert(((Callee.getOpcode() == ISD::Register &&
5396              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5397             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5398             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5399             isa<ConstantSDNode>(Callee)) &&
5400            "Expecting a global address, external symbol, absolute value or "
5401            "register");
5402     assert(CallOpc == PPCISD::TC_RETURN &&
5403            "Unexpected call opcode for a tail call.");
5404     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5405     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5406   }
5407 
5408   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5409   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5410   Glue = Chain.getValue(1);
5411 
5412   // When performing tail call optimization the callee pops its arguments off
5413   // the stack. Account for this here so these bytes can be pushed back on in
5414   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5415   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5416                          getTargetMachine().Options.GuaranteedTailCallOpt)
5417                             ? NumBytes
5418                             : 0;
5419 
5420   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5421                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5422                              Glue, dl);
5423   Glue = Chain.getValue(1);
5424 
5425   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5426                          DAG, InVals);
5427 }
5428 
5429 SDValue
5430 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5431                              SmallVectorImpl<SDValue> &InVals) const {
5432   SelectionDAG &DAG                     = CLI.DAG;
5433   SDLoc &dl                             = CLI.DL;
5434   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5435   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5436   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5437   SDValue Chain                         = CLI.Chain;
5438   SDValue Callee                        = CLI.Callee;
5439   bool &isTailCall                      = CLI.IsTailCall;
5440   CallingConv::ID CallConv              = CLI.CallConv;
5441   bool isVarArg                         = CLI.IsVarArg;
5442   bool isPatchPoint                     = CLI.IsPatchPoint;
5443   ImmutableCallSite CS                  = CLI.CS;
5444 
5445   if (isTailCall) {
5446     if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
5447       isTailCall = false;
5448     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5449       isTailCall =
5450         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
5451                                                  isVarArg, Outs, Ins, DAG);
5452     else
5453       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5454                                                      Ins, DAG);
5455     if (isTailCall) {
5456       ++NumTailCalls;
5457       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5458         ++NumSiblingCalls;
5459 
5460       assert(isa<GlobalAddressSDNode>(Callee) &&
5461              "Callee should be an llvm::Function object.");
5462       LLVM_DEBUG(
5463           const GlobalValue *GV =
5464               cast<GlobalAddressSDNode>(Callee)->getGlobal();
5465           const unsigned Width =
5466               80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0");
5467           dbgs() << "TCO caller: "
5468                  << left_justify(DAG.getMachineFunction().getName(), Width)
5469                  << ", callee linkage: " << GV->getVisibility() << ", "
5470                  << GV->getLinkage() << "\n");
5471     }
5472   }
5473 
5474   if (!isTailCall && CS && CS.isMustTailCall())
5475     report_fatal_error("failed to perform tail call elimination on a call "
5476                        "site marked musttail");
5477 
5478   // When long calls (i.e. indirect calls) are always used, calls are always
5479   // made via function pointer. If we have a function name, first translate it
5480   // into a pointer.
5481   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5482       !isTailCall)
5483     Callee = LowerGlobalAddress(Callee, DAG);
5484 
5485   CallFlags CFlags(
5486       CallConv, isTailCall, isVarArg, isPatchPoint,
5487       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5488       // hasNest
5489       Subtarget.is64BitELFABI() &&
5490           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }));
5491 
5492   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5493     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5494                             InVals, CS);
5495 
5496   if (Subtarget.isSVR4ABI())
5497     return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5498                             InVals, CS);
5499 
5500   if (Subtarget.isAIXABI())
5501     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5502                          InVals, CS);
5503 
5504   return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5505                           InVals, CS);
5506 }
5507 
5508 SDValue PPCTargetLowering::LowerCall_32SVR4(
5509     SDValue Chain, SDValue Callee, CallFlags CFlags,
5510     const SmallVectorImpl<ISD::OutputArg> &Outs,
5511     const SmallVectorImpl<SDValue> &OutVals,
5512     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5513     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5514     ImmutableCallSite CS) const {
5515   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5516   // of the 32-bit SVR4 ABI stack frame layout.
5517 
5518   const CallingConv::ID CallConv = CFlags.CallConv;
5519   const bool IsVarArg = CFlags.IsVarArg;
5520   const bool IsTailCall = CFlags.IsTailCall;
5521 
5522   assert((CallConv == CallingConv::C ||
5523           CallConv == CallingConv::Cold ||
5524           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5525 
5526   unsigned PtrByteSize = 4;
5527 
5528   MachineFunction &MF = DAG.getMachineFunction();
5529 
5530   // Mark this function as potentially containing a function that contains a
5531   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5532   // and restoring the callers stack pointer in this functions epilog. This is
5533   // done because by tail calling the called function might overwrite the value
5534   // in this function's (MF) stack pointer stack slot 0(SP).
5535   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5536       CallConv == CallingConv::Fast)
5537     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5538 
5539   // Count how many bytes are to be pushed on the stack, including the linkage
5540   // area, parameter list area and the part of the local variable space which
5541   // contains copies of aggregates which are passed by value.
5542 
5543   // Assign locations to all of the outgoing arguments.
5544   SmallVector<CCValAssign, 16> ArgLocs;
5545   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5546 
5547   // Reserve space for the linkage area on the stack.
5548   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5549                        PtrByteSize);
5550   if (useSoftFloat())
5551     CCInfo.PreAnalyzeCallOperands(Outs);
5552 
5553   if (IsVarArg) {
5554     // Handle fixed and variable vector arguments differently.
5555     // Fixed vector arguments go into registers as long as registers are
5556     // available. Variable vector arguments always go into memory.
5557     unsigned NumArgs = Outs.size();
5558 
5559     for (unsigned i = 0; i != NumArgs; ++i) {
5560       MVT ArgVT = Outs[i].VT;
5561       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5562       bool Result;
5563 
5564       if (Outs[i].IsFixed) {
5565         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5566                                CCInfo);
5567       } else {
5568         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5569                                       ArgFlags, CCInfo);
5570       }
5571 
5572       if (Result) {
5573 #ifndef NDEBUG
5574         errs() << "Call operand #" << i << " has unhandled type "
5575              << EVT(ArgVT).getEVTString() << "\n";
5576 #endif
5577         llvm_unreachable(nullptr);
5578       }
5579     }
5580   } else {
5581     // All arguments are treated the same.
5582     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5583   }
5584   CCInfo.clearWasPPCF128();
5585 
5586   // Assign locations to all of the outgoing aggregate by value arguments.
5587   SmallVector<CCValAssign, 16> ByValArgLocs;
5588   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5589 
5590   // Reserve stack space for the allocations in CCInfo.
5591   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
5592 
5593   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5594 
5595   // Size of the linkage area, parameter list area and the part of the local
5596   // space variable where copies of aggregates which are passed by value are
5597   // stored.
5598   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5599 
5600   // Calculate by how many bytes the stack has to be adjusted in case of tail
5601   // call optimization.
5602   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5603 
5604   // Adjust the stack pointer for the new arguments...
5605   // These operations are automatically eliminated by the prolog/epilog pass
5606   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5607   SDValue CallSeqStart = Chain;
5608 
5609   // Load the return address and frame pointer so it can be moved somewhere else
5610   // later.
5611   SDValue LROp, FPOp;
5612   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5613 
5614   // Set up a copy of the stack pointer for use loading and storing any
5615   // arguments that may not fit in the registers available for argument
5616   // passing.
5617   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5618 
5619   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5620   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5621   SmallVector<SDValue, 8> MemOpChains;
5622 
5623   bool seenFloatArg = false;
5624   // Walk the register/memloc assignments, inserting copies/loads.
5625   // i - Tracks the index into the list of registers allocated for the call
5626   // RealArgIdx - Tracks the index into the list of actual function arguments
5627   // j - Tracks the index into the list of byval arguments
5628   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5629        i != e;
5630        ++i, ++RealArgIdx) {
5631     CCValAssign &VA = ArgLocs[i];
5632     SDValue Arg = OutVals[RealArgIdx];
5633     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5634 
5635     if (Flags.isByVal()) {
5636       // Argument is an aggregate which is passed by value, thus we need to
5637       // create a copy of it in the local variable space of the current stack
5638       // frame (which is the stack frame of the caller) and pass the address of
5639       // this copy to the callee.
5640       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5641       CCValAssign &ByValVA = ByValArgLocs[j++];
5642       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5643 
5644       // Memory reserved in the local variable space of the callers stack frame.
5645       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5646 
5647       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5648       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5649                            StackPtr, PtrOff);
5650 
5651       // Create a copy of the argument in the local area of the current
5652       // stack frame.
5653       SDValue MemcpyCall =
5654         CreateCopyOfByValArgument(Arg, PtrOff,
5655                                   CallSeqStart.getNode()->getOperand(0),
5656                                   Flags, DAG, dl);
5657 
5658       // This must go outside the CALLSEQ_START..END.
5659       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5660                                                      SDLoc(MemcpyCall));
5661       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5662                              NewCallSeqStart.getNode());
5663       Chain = CallSeqStart = NewCallSeqStart;
5664 
5665       // Pass the address of the aggregate copy on the stack either in a
5666       // physical register or in the parameter list area of the current stack
5667       // frame to the callee.
5668       Arg = PtrOff;
5669     }
5670 
5671     // When useCRBits() is true, there can be i1 arguments.
5672     // It is because getRegisterType(MVT::i1) => MVT::i1,
5673     // and for other integer types getRegisterType() => MVT::i32.
5674     // Extend i1 and ensure callee will get i32.
5675     if (Arg.getValueType() == MVT::i1)
5676       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5677                         dl, MVT::i32, Arg);
5678 
5679     if (VA.isRegLoc()) {
5680       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5681       // Put argument in a physical register.
5682       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5683         bool IsLE = Subtarget.isLittleEndian();
5684         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5685                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5686         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5687         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5688                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5689         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5690                              SVal.getValue(0)));
5691       } else
5692         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5693     } else {
5694       // Put argument in the parameter list area of the current stack frame.
5695       assert(VA.isMemLoc());
5696       unsigned LocMemOffset = VA.getLocMemOffset();
5697 
5698       if (!IsTailCall) {
5699         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5700         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5701                              StackPtr, PtrOff);
5702 
5703         MemOpChains.push_back(
5704             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5705       } else {
5706         // Calculate and remember argument location.
5707         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5708                                  TailCallArguments);
5709       }
5710     }
5711   }
5712 
5713   if (!MemOpChains.empty())
5714     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5715 
5716   // Build a sequence of copy-to-reg nodes chained together with token chain
5717   // and flag operands which copy the outgoing args into the appropriate regs.
5718   SDValue InFlag;
5719   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5720     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5721                              RegsToPass[i].second, InFlag);
5722     InFlag = Chain.getValue(1);
5723   }
5724 
5725   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5726   // registers.
5727   if (IsVarArg) {
5728     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5729     SDValue Ops[] = { Chain, InFlag };
5730 
5731     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5732                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5733 
5734     InFlag = Chain.getValue(1);
5735   }
5736 
5737   if (IsTailCall)
5738     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5739                     TailCallArguments);
5740 
5741   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5742                     Callee, SPDiff, NumBytes, Ins, InVals, CS);
5743 }
5744 
5745 // Copy an argument into memory, being careful to do this outside the
5746 // call sequence for the call to which the argument belongs.
5747 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5748     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5749     SelectionDAG &DAG, const SDLoc &dl) const {
5750   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5751                         CallSeqStart.getNode()->getOperand(0),
5752                         Flags, DAG, dl);
5753   // The MEMCPY must go outside the CALLSEQ_START..END.
5754   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5755   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5756                                                  SDLoc(MemcpyCall));
5757   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5758                          NewCallSeqStart.getNode());
5759   return NewCallSeqStart;
5760 }
5761 
5762 SDValue PPCTargetLowering::LowerCall_64SVR4(
5763     SDValue Chain, SDValue Callee, CallFlags CFlags,
5764     const SmallVectorImpl<ISD::OutputArg> &Outs,
5765     const SmallVectorImpl<SDValue> &OutVals,
5766     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5767     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5768     ImmutableCallSite CS) const {
5769   bool isELFv2ABI = Subtarget.isELFv2ABI();
5770   bool isLittleEndian = Subtarget.isLittleEndian();
5771   unsigned NumOps = Outs.size();
5772   bool IsSibCall = false;
5773   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5774 
5775   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5776   unsigned PtrByteSize = 8;
5777 
5778   MachineFunction &MF = DAG.getMachineFunction();
5779 
5780   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5781     IsSibCall = true;
5782 
5783   // Mark this function as potentially containing a function that contains a
5784   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5785   // and restoring the callers stack pointer in this functions epilog. This is
5786   // done because by tail calling the called function might overwrite the value
5787   // in this function's (MF) stack pointer stack slot 0(SP).
5788   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5789     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5790 
5791   assert(!(IsFastCall && CFlags.IsVarArg) &&
5792          "fastcc not supported on varargs functions");
5793 
5794   // Count how many bytes are to be pushed on the stack, including the linkage
5795   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5796   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5797   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5798   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5799   unsigned NumBytes = LinkageSize;
5800   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5801   unsigned &QFPR_idx = FPR_idx;
5802 
5803   static const MCPhysReg GPR[] = {
5804     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5805     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5806   };
5807   static const MCPhysReg VR[] = {
5808     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5809     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5810   };
5811 
5812   const unsigned NumGPRs = array_lengthof(GPR);
5813   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5814   const unsigned NumVRs  = array_lengthof(VR);
5815   const unsigned NumQFPRs = NumFPRs;
5816 
5817   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5818   // can be passed to the callee in registers.
5819   // For the fast calling convention, there is another check below.
5820   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5821   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
5822   if (!HasParameterArea) {
5823     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5824     unsigned AvailableFPRs = NumFPRs;
5825     unsigned AvailableVRs = NumVRs;
5826     unsigned NumBytesTmp = NumBytes;
5827     for (unsigned i = 0; i != NumOps; ++i) {
5828       if (Outs[i].Flags.isNest()) continue;
5829       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5830                                 PtrByteSize, LinkageSize, ParamAreaSize,
5831                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
5832                                 Subtarget.hasQPX()))
5833         HasParameterArea = true;
5834     }
5835   }
5836 
5837   // When using the fast calling convention, we don't provide backing for
5838   // arguments that will be in registers.
5839   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5840 
5841   // Avoid allocating parameter area for fastcc functions if all the arguments
5842   // can be passed in the registers.
5843   if (IsFastCall)
5844     HasParameterArea = false;
5845 
5846   // Add up all the space actually used.
5847   for (unsigned i = 0; i != NumOps; ++i) {
5848     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5849     EVT ArgVT = Outs[i].VT;
5850     EVT OrigVT = Outs[i].ArgVT;
5851 
5852     if (Flags.isNest())
5853       continue;
5854 
5855     if (IsFastCall) {
5856       if (Flags.isByVal()) {
5857         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5858         if (NumGPRsUsed > NumGPRs)
5859           HasParameterArea = true;
5860       } else {
5861         switch (ArgVT.getSimpleVT().SimpleTy) {
5862         default: llvm_unreachable("Unexpected ValueType for argument!");
5863         case MVT::i1:
5864         case MVT::i32:
5865         case MVT::i64:
5866           if (++NumGPRsUsed <= NumGPRs)
5867             continue;
5868           break;
5869         case MVT::v4i32:
5870         case MVT::v8i16:
5871         case MVT::v16i8:
5872         case MVT::v2f64:
5873         case MVT::v2i64:
5874         case MVT::v1i128:
5875         case MVT::f128:
5876           if (++NumVRsUsed <= NumVRs)
5877             continue;
5878           break;
5879         case MVT::v4f32:
5880           // When using QPX, this is handled like a FP register, otherwise, it
5881           // is an Altivec register.
5882           if (Subtarget.hasQPX()) {
5883             if (++NumFPRsUsed <= NumFPRs)
5884               continue;
5885           } else {
5886             if (++NumVRsUsed <= NumVRs)
5887               continue;
5888           }
5889           break;
5890         case MVT::f32:
5891         case MVT::f64:
5892         case MVT::v4f64: // QPX
5893         case MVT::v4i1:  // QPX
5894           if (++NumFPRsUsed <= NumFPRs)
5895             continue;
5896           break;
5897         }
5898         HasParameterArea = true;
5899       }
5900     }
5901 
5902     /* Respect alignment of argument on the stack.  */
5903     auto Alignement =
5904         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5905     NumBytes = alignTo(NumBytes, Alignement);
5906 
5907     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5908     if (Flags.isInConsecutiveRegsLast())
5909       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5910   }
5911 
5912   unsigned NumBytesActuallyUsed = NumBytes;
5913 
5914   // In the old ELFv1 ABI,
5915   // the prolog code of the callee may store up to 8 GPR argument registers to
5916   // the stack, allowing va_start to index over them in memory if its varargs.
5917   // Because we cannot tell if this is needed on the caller side, we have to
5918   // conservatively assume that it is needed.  As such, make sure we have at
5919   // least enough stack space for the caller to store the 8 GPRs.
5920   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5921   // really requires memory operands, e.g. a vararg function.
5922   if (HasParameterArea)
5923     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5924   else
5925     NumBytes = LinkageSize;
5926 
5927   // Tail call needs the stack to be aligned.
5928   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5929     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5930 
5931   int SPDiff = 0;
5932 
5933   // Calculate by how many bytes the stack has to be adjusted in case of tail
5934   // call optimization.
5935   if (!IsSibCall)
5936     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
5937 
5938   // To protect arguments on the stack from being clobbered in a tail call,
5939   // force all the loads to happen before doing any other lowering.
5940   if (CFlags.IsTailCall)
5941     Chain = DAG.getStackArgumentTokenFactor(Chain);
5942 
5943   // Adjust the stack pointer for the new arguments...
5944   // These operations are automatically eliminated by the prolog/epilog pass
5945   if (!IsSibCall)
5946     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5947   SDValue CallSeqStart = Chain;
5948 
5949   // Load the return address and frame pointer so it can be move somewhere else
5950   // later.
5951   SDValue LROp, FPOp;
5952   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5953 
5954   // Set up a copy of the stack pointer for use loading and storing any
5955   // arguments that may not fit in the registers available for argument
5956   // passing.
5957   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5958 
5959   // Figure out which arguments are going to go in registers, and which in
5960   // memory.  Also, if this is a vararg function, floating point operations
5961   // must be stored to our stack, and loaded into integer regs as well, if
5962   // any integer regs are available for argument passing.
5963   unsigned ArgOffset = LinkageSize;
5964 
5965   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5966   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5967 
5968   SmallVector<SDValue, 8> MemOpChains;
5969   for (unsigned i = 0; i != NumOps; ++i) {
5970     SDValue Arg = OutVals[i];
5971     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5972     EVT ArgVT = Outs[i].VT;
5973     EVT OrigVT = Outs[i].ArgVT;
5974 
5975     // PtrOff will be used to store the current argument to the stack if a
5976     // register cannot be found for it.
5977     SDValue PtrOff;
5978 
5979     // We re-align the argument offset for each argument, except when using the
5980     // fast calling convention, when we need to make sure we do that only when
5981     // we'll actually use a stack slot.
5982     auto ComputePtrOff = [&]() {
5983       /* Respect alignment of argument on the stack.  */
5984       auto Alignment =
5985           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5986       ArgOffset = alignTo(ArgOffset, Alignment);
5987 
5988       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5989 
5990       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5991     };
5992 
5993     if (!IsFastCall) {
5994       ComputePtrOff();
5995 
5996       /* Compute GPR index associated with argument offset.  */
5997       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5998       GPR_idx = std::min(GPR_idx, NumGPRs);
5999     }
6000 
6001     // Promote integers to 64-bit values.
6002     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6003       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6004       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6005       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6006     }
6007 
6008     // FIXME memcpy is used way more than necessary.  Correctness first.
6009     // Note: "by value" is code for passing a structure by value, not
6010     // basic types.
6011     if (Flags.isByVal()) {
6012       // Note: Size includes alignment padding, so
6013       //   struct x { short a; char b; }
6014       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6015       // These are the proper values we need for right-justifying the
6016       // aggregate in a parameter register.
6017       unsigned Size = Flags.getByValSize();
6018 
6019       // An empty aggregate parameter takes up no storage and no
6020       // registers.
6021       if (Size == 0)
6022         continue;
6023 
6024       if (IsFastCall)
6025         ComputePtrOff();
6026 
6027       // All aggregates smaller than 8 bytes must be passed right-justified.
6028       if (Size==1 || Size==2 || Size==4) {
6029         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6030         if (GPR_idx != NumGPRs) {
6031           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6032                                         MachinePointerInfo(), VT);
6033           MemOpChains.push_back(Load.getValue(1));
6034           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6035 
6036           ArgOffset += PtrByteSize;
6037           continue;
6038         }
6039       }
6040 
6041       if (GPR_idx == NumGPRs && Size < 8) {
6042         SDValue AddPtr = PtrOff;
6043         if (!isLittleEndian) {
6044           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6045                                           PtrOff.getValueType());
6046           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6047         }
6048         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6049                                                           CallSeqStart,
6050                                                           Flags, DAG, dl);
6051         ArgOffset += PtrByteSize;
6052         continue;
6053       }
6054       // Copy entire object into memory.  There are cases where gcc-generated
6055       // code assumes it is there, even if it could be put entirely into
6056       // registers.  (This is not what the doc says.)
6057 
6058       // FIXME: The above statement is likely due to a misunderstanding of the
6059       // documents.  All arguments must be copied into the parameter area BY
6060       // THE CALLEE in the event that the callee takes the address of any
6061       // formal argument.  That has not yet been implemented.  However, it is
6062       // reasonable to use the stack area as a staging area for the register
6063       // load.
6064 
6065       // Skip this for small aggregates, as we will use the same slot for a
6066       // right-justified copy, below.
6067       if (Size >= 8)
6068         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6069                                                           CallSeqStart,
6070                                                           Flags, DAG, dl);
6071 
6072       // When a register is available, pass a small aggregate right-justified.
6073       if (Size < 8 && GPR_idx != NumGPRs) {
6074         // The easiest way to get this right-justified in a register
6075         // is to copy the structure into the rightmost portion of a
6076         // local variable slot, then load the whole slot into the
6077         // register.
6078         // FIXME: The memcpy seems to produce pretty awful code for
6079         // small aggregates, particularly for packed ones.
6080         // FIXME: It would be preferable to use the slot in the
6081         // parameter save area instead of a new local variable.
6082         SDValue AddPtr = PtrOff;
6083         if (!isLittleEndian) {
6084           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6085           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6086         }
6087         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6088                                                           CallSeqStart,
6089                                                           Flags, DAG, dl);
6090 
6091         // Load the slot into the register.
6092         SDValue Load =
6093             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6094         MemOpChains.push_back(Load.getValue(1));
6095         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6096 
6097         // Done with this argument.
6098         ArgOffset += PtrByteSize;
6099         continue;
6100       }
6101 
6102       // For aggregates larger than PtrByteSize, copy the pieces of the
6103       // object that fit into registers from the parameter save area.
6104       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6105         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6106         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6107         if (GPR_idx != NumGPRs) {
6108           SDValue Load =
6109               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6110           MemOpChains.push_back(Load.getValue(1));
6111           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6112           ArgOffset += PtrByteSize;
6113         } else {
6114           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6115           break;
6116         }
6117       }
6118       continue;
6119     }
6120 
6121     switch (Arg.getSimpleValueType().SimpleTy) {
6122     default: llvm_unreachable("Unexpected ValueType for argument!");
6123     case MVT::i1:
6124     case MVT::i32:
6125     case MVT::i64:
6126       if (Flags.isNest()) {
6127         // The 'nest' parameter, if any, is passed in R11.
6128         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6129         break;
6130       }
6131 
6132       // These can be scalar arguments or elements of an integer array type
6133       // passed directly.  Clang may use those instead of "byval" aggregate
6134       // types to avoid forcing arguments to memory unnecessarily.
6135       if (GPR_idx != NumGPRs) {
6136         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6137       } else {
6138         if (IsFastCall)
6139           ComputePtrOff();
6140 
6141         assert(HasParameterArea &&
6142                "Parameter area must exist to pass an argument in memory.");
6143         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6144                          true, CFlags.IsTailCall, false, MemOpChains,
6145                          TailCallArguments, dl);
6146         if (IsFastCall)
6147           ArgOffset += PtrByteSize;
6148       }
6149       if (!IsFastCall)
6150         ArgOffset += PtrByteSize;
6151       break;
6152     case MVT::f32:
6153     case MVT::f64: {
6154       // These can be scalar arguments or elements of a float array type
6155       // passed directly.  The latter are used to implement ELFv2 homogenous
6156       // float aggregates.
6157 
6158       // Named arguments go into FPRs first, and once they overflow, the
6159       // remaining arguments go into GPRs and then the parameter save area.
6160       // Unnamed arguments for vararg functions always go to GPRs and
6161       // then the parameter save area.  For now, put all arguments to vararg
6162       // routines always in both locations (FPR *and* GPR or stack slot).
6163       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6164       bool NeededLoad = false;
6165 
6166       // First load the argument into the next available FPR.
6167       if (FPR_idx != NumFPRs)
6168         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6169 
6170       // Next, load the argument into GPR or stack slot if needed.
6171       if (!NeedGPROrStack)
6172         ;
6173       else if (GPR_idx != NumGPRs && !IsFastCall) {
6174         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6175         // once we support fp <-> gpr moves.
6176 
6177         // In the non-vararg case, this can only ever happen in the
6178         // presence of f32 array types, since otherwise we never run
6179         // out of FPRs before running out of GPRs.
6180         SDValue ArgVal;
6181 
6182         // Double values are always passed in a single GPR.
6183         if (Arg.getValueType() != MVT::f32) {
6184           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6185 
6186         // Non-array float values are extended and passed in a GPR.
6187         } else if (!Flags.isInConsecutiveRegs()) {
6188           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6189           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6190 
6191         // If we have an array of floats, we collect every odd element
6192         // together with its predecessor into one GPR.
6193         } else if (ArgOffset % PtrByteSize != 0) {
6194           SDValue Lo, Hi;
6195           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6196           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6197           if (!isLittleEndian)
6198             std::swap(Lo, Hi);
6199           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6200 
6201         // The final element, if even, goes into the first half of a GPR.
6202         } else if (Flags.isInConsecutiveRegsLast()) {
6203           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6204           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6205           if (!isLittleEndian)
6206             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6207                                  DAG.getConstant(32, dl, MVT::i32));
6208 
6209         // Non-final even elements are skipped; they will be handled
6210         // together the with subsequent argument on the next go-around.
6211         } else
6212           ArgVal = SDValue();
6213 
6214         if (ArgVal.getNode())
6215           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6216       } else {
6217         if (IsFastCall)
6218           ComputePtrOff();
6219 
6220         // Single-precision floating-point values are mapped to the
6221         // second (rightmost) word of the stack doubleword.
6222         if (Arg.getValueType() == MVT::f32 &&
6223             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6224           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6225           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6226         }
6227 
6228         assert(HasParameterArea &&
6229                "Parameter area must exist to pass an argument in memory.");
6230         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6231                          true, CFlags.IsTailCall, false, MemOpChains,
6232                          TailCallArguments, dl);
6233 
6234         NeededLoad = true;
6235       }
6236       // When passing an array of floats, the array occupies consecutive
6237       // space in the argument area; only round up to the next doubleword
6238       // at the end of the array.  Otherwise, each float takes 8 bytes.
6239       if (!IsFastCall || NeededLoad) {
6240         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6241                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6242         if (Flags.isInConsecutiveRegsLast())
6243           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6244       }
6245       break;
6246     }
6247     case MVT::v4f32:
6248     case MVT::v4i32:
6249     case MVT::v8i16:
6250     case MVT::v16i8:
6251     case MVT::v2f64:
6252     case MVT::v2i64:
6253     case MVT::v1i128:
6254     case MVT::f128:
6255       if (!Subtarget.hasQPX()) {
6256       // These can be scalar arguments or elements of a vector array type
6257       // passed directly.  The latter are used to implement ELFv2 homogenous
6258       // vector aggregates.
6259 
6260       // For a varargs call, named arguments go into VRs or on the stack as
6261       // usual; unnamed arguments always go to the stack or the corresponding
6262       // GPRs when within range.  For now, we always put the value in both
6263       // locations (or even all three).
6264       if (CFlags.IsVarArg) {
6265         assert(HasParameterArea &&
6266                "Parameter area must exist if we have a varargs call.");
6267         // We could elide this store in the case where the object fits
6268         // entirely in R registers.  Maybe later.
6269         SDValue Store =
6270             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6271         MemOpChains.push_back(Store);
6272         if (VR_idx != NumVRs) {
6273           SDValue Load =
6274               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6275           MemOpChains.push_back(Load.getValue(1));
6276           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6277         }
6278         ArgOffset += 16;
6279         for (unsigned i=0; i<16; i+=PtrByteSize) {
6280           if (GPR_idx == NumGPRs)
6281             break;
6282           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6283                                    DAG.getConstant(i, dl, PtrVT));
6284           SDValue Load =
6285               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6286           MemOpChains.push_back(Load.getValue(1));
6287           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6288         }
6289         break;
6290       }
6291 
6292       // Non-varargs Altivec params go into VRs or on the stack.
6293       if (VR_idx != NumVRs) {
6294         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6295       } else {
6296         if (IsFastCall)
6297           ComputePtrOff();
6298 
6299         assert(HasParameterArea &&
6300                "Parameter area must exist to pass an argument in memory.");
6301         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6302                          true, CFlags.IsTailCall, true, MemOpChains,
6303                          TailCallArguments, dl);
6304         if (IsFastCall)
6305           ArgOffset += 16;
6306       }
6307 
6308       if (!IsFastCall)
6309         ArgOffset += 16;
6310       break;
6311       } // not QPX
6312 
6313       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
6314              "Invalid QPX parameter type");
6315 
6316       LLVM_FALLTHROUGH;
6317     case MVT::v4f64:
6318     case MVT::v4i1: {
6319       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
6320       if (CFlags.IsVarArg) {
6321         assert(HasParameterArea &&
6322                "Parameter area must exist if we have a varargs call.");
6323         // We could elide this store in the case where the object fits
6324         // entirely in R registers.  Maybe later.
6325         SDValue Store =
6326             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6327         MemOpChains.push_back(Store);
6328         if (QFPR_idx != NumQFPRs) {
6329           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
6330                                      PtrOff, MachinePointerInfo());
6331           MemOpChains.push_back(Load.getValue(1));
6332           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
6333         }
6334         ArgOffset += (IsF32 ? 16 : 32);
6335         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
6336           if (GPR_idx == NumGPRs)
6337             break;
6338           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6339                                    DAG.getConstant(i, dl, PtrVT));
6340           SDValue Load =
6341               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6342           MemOpChains.push_back(Load.getValue(1));
6343           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6344         }
6345         break;
6346       }
6347 
6348       // Non-varargs QPX params go into registers or on the stack.
6349       if (QFPR_idx != NumQFPRs) {
6350         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
6351       } else {
6352         if (IsFastCall)
6353           ComputePtrOff();
6354 
6355         assert(HasParameterArea &&
6356                "Parameter area must exist to pass an argument in memory.");
6357         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6358                          true, CFlags.IsTailCall, true, MemOpChains,
6359                          TailCallArguments, dl);
6360         if (IsFastCall)
6361           ArgOffset += (IsF32 ? 16 : 32);
6362       }
6363 
6364       if (!IsFastCall)
6365         ArgOffset += (IsF32 ? 16 : 32);
6366       break;
6367       }
6368     }
6369   }
6370 
6371   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6372          "mismatch in size of parameter area");
6373   (void)NumBytesActuallyUsed;
6374 
6375   if (!MemOpChains.empty())
6376     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6377 
6378   // Check if this is an indirect call (MTCTR/BCTRL).
6379   // See prepareDescriptorIndirectCall and buildCallOperands for more
6380   // information about calls through function pointers in the 64-bit SVR4 ABI.
6381   if (CFlags.IsIndirect) {
6382     assert(!CFlags.IsTailCall &&  "Indirect tails calls not supported");
6383     // Load r2 into a virtual register and store it to the TOC save area.
6384     setUsesTOCBasePtr(DAG);
6385     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6386     // TOC save area offset.
6387     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6388     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6389     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6390     Chain = DAG.getStore(
6391         Val.getValue(1), dl, Val, AddPtr,
6392         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
6393     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6394     // This does not mean the MTCTR instruction must use R12; it's easier
6395     // to model this as an extra parameter, so do that.
6396     if (isELFv2ABI && !CFlags.IsPatchPoint)
6397       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6398   }
6399 
6400   // Build a sequence of copy-to-reg nodes chained together with token chain
6401   // and flag operands which copy the outgoing args into the appropriate regs.
6402   SDValue InFlag;
6403   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6404     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6405                              RegsToPass[i].second, InFlag);
6406     InFlag = Chain.getValue(1);
6407   }
6408 
6409   if (CFlags.IsTailCall && !IsSibCall)
6410     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6411                     TailCallArguments);
6412 
6413   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6414                     Callee, SPDiff, NumBytes, Ins, InVals, CS);
6415 }
6416 
6417 SDValue PPCTargetLowering::LowerCall_Darwin(
6418     SDValue Chain, SDValue Callee, CallFlags CFlags,
6419     const SmallVectorImpl<ISD::OutputArg> &Outs,
6420     const SmallVectorImpl<SDValue> &OutVals,
6421     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6422     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6423     ImmutableCallSite CS) const {
6424   unsigned NumOps = Outs.size();
6425 
6426   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6427   bool isPPC64 = PtrVT == MVT::i64;
6428   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6429 
6430   MachineFunction &MF = DAG.getMachineFunction();
6431 
6432   // Mark this function as potentially containing a function that contains a
6433   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6434   // and restoring the callers stack pointer in this functions epilog. This is
6435   // done because by tail calling the called function might overwrite the value
6436   // in this function's (MF) stack pointer stack slot 0(SP).
6437   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6438       CFlags.CallConv == CallingConv::Fast)
6439     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6440 
6441   // Count how many bytes are to be pushed on the stack, including the linkage
6442   // area, and parameter passing area.  We start with 24/48 bytes, which is
6443   // prereserved space for [SP][CR][LR][3 x unused].
6444   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6445   unsigned NumBytes = LinkageSize;
6446 
6447   // Add up all the space actually used.
6448   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6449   // they all go in registers, but we must reserve stack space for them for
6450   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6451   // assigned stack space in order, with padding so Altivec parameters are
6452   // 16-byte aligned.
6453   unsigned nAltivecParamsAtEnd = 0;
6454   for (unsigned i = 0; i != NumOps; ++i) {
6455     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6456     EVT ArgVT = Outs[i].VT;
6457     // Varargs Altivec parameters are padded to a 16 byte boundary.
6458     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6459         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6460         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6461       if (!CFlags.IsVarArg && !isPPC64) {
6462         // Non-varargs Altivec parameters go after all the non-Altivec
6463         // parameters; handle those later so we know how much padding we need.
6464         nAltivecParamsAtEnd++;
6465         continue;
6466       }
6467       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6468       NumBytes = ((NumBytes+15)/16)*16;
6469     }
6470     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6471   }
6472 
6473   // Allow for Altivec parameters at the end, if needed.
6474   if (nAltivecParamsAtEnd) {
6475     NumBytes = ((NumBytes+15)/16)*16;
6476     NumBytes += 16*nAltivecParamsAtEnd;
6477   }
6478 
6479   // The prolog code of the callee may store up to 8 GPR argument registers to
6480   // the stack, allowing va_start to index over them in memory if its varargs.
6481   // Because we cannot tell if this is needed on the caller side, we have to
6482   // conservatively assume that it is needed.  As such, make sure we have at
6483   // least enough stack space for the caller to store the 8 GPRs.
6484   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6485 
6486   // Tail call needs the stack to be aligned.
6487   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6488       CFlags.CallConv == CallingConv::Fast)
6489     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6490 
6491   // Calculate by how many bytes the stack has to be adjusted in case of tail
6492   // call optimization.
6493   int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6494 
6495   // To protect arguments on the stack from being clobbered in a tail call,
6496   // force all the loads to happen before doing any other lowering.
6497   if (CFlags.IsTailCall)
6498     Chain = DAG.getStackArgumentTokenFactor(Chain);
6499 
6500   // Adjust the stack pointer for the new arguments...
6501   // These operations are automatically eliminated by the prolog/epilog pass
6502   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6503   SDValue CallSeqStart = Chain;
6504 
6505   // Load the return address and frame pointer so it can be move somewhere else
6506   // later.
6507   SDValue LROp, FPOp;
6508   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6509 
6510   // Set up a copy of the stack pointer for use loading and storing any
6511   // arguments that may not fit in the registers available for argument
6512   // passing.
6513   SDValue StackPtr;
6514   if (isPPC64)
6515     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6516   else
6517     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6518 
6519   // Figure out which arguments are going to go in registers, and which in
6520   // memory.  Also, if this is a vararg function, floating point operations
6521   // must be stored to our stack, and loaded into integer regs as well, if
6522   // any integer regs are available for argument passing.
6523   unsigned ArgOffset = LinkageSize;
6524   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6525 
6526   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6527     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6528     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6529   };
6530   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6531     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6532     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6533   };
6534   static const MCPhysReg VR[] = {
6535     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6536     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6537   };
6538   const unsigned NumGPRs = array_lengthof(GPR_32);
6539   const unsigned NumFPRs = 13;
6540   const unsigned NumVRs  = array_lengthof(VR);
6541 
6542   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6543 
6544   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6545   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6546 
6547   SmallVector<SDValue, 8> MemOpChains;
6548   for (unsigned i = 0; i != NumOps; ++i) {
6549     SDValue Arg = OutVals[i];
6550     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6551 
6552     // PtrOff will be used to store the current argument to the stack if a
6553     // register cannot be found for it.
6554     SDValue PtrOff;
6555 
6556     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6557 
6558     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6559 
6560     // On PPC64, promote integers to 64-bit values.
6561     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6562       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6563       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6564       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6565     }
6566 
6567     // FIXME memcpy is used way more than necessary.  Correctness first.
6568     // Note: "by value" is code for passing a structure by value, not
6569     // basic types.
6570     if (Flags.isByVal()) {
6571       unsigned Size = Flags.getByValSize();
6572       // Very small objects are passed right-justified.  Everything else is
6573       // passed left-justified.
6574       if (Size==1 || Size==2) {
6575         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6576         if (GPR_idx != NumGPRs) {
6577           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6578                                         MachinePointerInfo(), VT);
6579           MemOpChains.push_back(Load.getValue(1));
6580           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6581 
6582           ArgOffset += PtrByteSize;
6583         } else {
6584           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6585                                           PtrOff.getValueType());
6586           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6587           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6588                                                             CallSeqStart,
6589                                                             Flags, DAG, dl);
6590           ArgOffset += PtrByteSize;
6591         }
6592         continue;
6593       }
6594       // Copy entire object into memory.  There are cases where gcc-generated
6595       // code assumes it is there, even if it could be put entirely into
6596       // registers.  (This is not what the doc says.)
6597       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6598                                                         CallSeqStart,
6599                                                         Flags, DAG, dl);
6600 
6601       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6602       // copy the pieces of the object that fit into registers from the
6603       // parameter save area.
6604       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6605         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6606         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6607         if (GPR_idx != NumGPRs) {
6608           SDValue Load =
6609               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6610           MemOpChains.push_back(Load.getValue(1));
6611           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6612           ArgOffset += PtrByteSize;
6613         } else {
6614           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6615           break;
6616         }
6617       }
6618       continue;
6619     }
6620 
6621     switch (Arg.getSimpleValueType().SimpleTy) {
6622     default: llvm_unreachable("Unexpected ValueType for argument!");
6623     case MVT::i1:
6624     case MVT::i32:
6625     case MVT::i64:
6626       if (GPR_idx != NumGPRs) {
6627         if (Arg.getValueType() == MVT::i1)
6628           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6629 
6630         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6631       } else {
6632         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6633                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6634                          TailCallArguments, dl);
6635       }
6636       ArgOffset += PtrByteSize;
6637       break;
6638     case MVT::f32:
6639     case MVT::f64:
6640       if (FPR_idx != NumFPRs) {
6641         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6642 
6643         if (CFlags.IsVarArg) {
6644           SDValue Store =
6645               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6646           MemOpChains.push_back(Store);
6647 
6648           // Float varargs are always shadowed in available integer registers
6649           if (GPR_idx != NumGPRs) {
6650             SDValue Load =
6651                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6652             MemOpChains.push_back(Load.getValue(1));
6653             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6654           }
6655           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6656             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6657             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6658             SDValue Load =
6659                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6660             MemOpChains.push_back(Load.getValue(1));
6661             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6662           }
6663         } else {
6664           // If we have any FPRs remaining, we may also have GPRs remaining.
6665           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6666           // GPRs.
6667           if (GPR_idx != NumGPRs)
6668             ++GPR_idx;
6669           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6670               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6671             ++GPR_idx;
6672         }
6673       } else
6674         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6675                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6676                          TailCallArguments, dl);
6677       if (isPPC64)
6678         ArgOffset += 8;
6679       else
6680         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6681       break;
6682     case MVT::v4f32:
6683     case MVT::v4i32:
6684     case MVT::v8i16:
6685     case MVT::v16i8:
6686       if (CFlags.IsVarArg) {
6687         // These go aligned on the stack, or in the corresponding R registers
6688         // when within range.  The Darwin PPC ABI doc claims they also go in
6689         // V registers; in fact gcc does this only for arguments that are
6690         // prototyped, not for those that match the ...  We do it for all
6691         // arguments, seems to work.
6692         while (ArgOffset % 16 !=0) {
6693           ArgOffset += PtrByteSize;
6694           if (GPR_idx != NumGPRs)
6695             GPR_idx++;
6696         }
6697         // We could elide this store in the case where the object fits
6698         // entirely in R registers.  Maybe later.
6699         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6700                              DAG.getConstant(ArgOffset, dl, PtrVT));
6701         SDValue Store =
6702             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6703         MemOpChains.push_back(Store);
6704         if (VR_idx != NumVRs) {
6705           SDValue Load =
6706               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6707           MemOpChains.push_back(Load.getValue(1));
6708           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6709         }
6710         ArgOffset += 16;
6711         for (unsigned i=0; i<16; i+=PtrByteSize) {
6712           if (GPR_idx == NumGPRs)
6713             break;
6714           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6715                                    DAG.getConstant(i, dl, PtrVT));
6716           SDValue Load =
6717               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6718           MemOpChains.push_back(Load.getValue(1));
6719           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6720         }
6721         break;
6722       }
6723 
6724       // Non-varargs Altivec params generally go in registers, but have
6725       // stack space allocated at the end.
6726       if (VR_idx != NumVRs) {
6727         // Doesn't have GPR space allocated.
6728         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6729       } else if (nAltivecParamsAtEnd==0) {
6730         // We are emitting Altivec params in order.
6731         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6732                          isPPC64, CFlags.IsTailCall, true, MemOpChains,
6733                          TailCallArguments, dl);
6734         ArgOffset += 16;
6735       }
6736       break;
6737     }
6738   }
6739   // If all Altivec parameters fit in registers, as they usually do,
6740   // they get stack space following the non-Altivec parameters.  We
6741   // don't track this here because nobody below needs it.
6742   // If there are more Altivec parameters than fit in registers emit
6743   // the stores here.
6744   if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) {
6745     unsigned j = 0;
6746     // Offset is aligned; skip 1st 12 params which go in V registers.
6747     ArgOffset = ((ArgOffset+15)/16)*16;
6748     ArgOffset += 12*16;
6749     for (unsigned i = 0; i != NumOps; ++i) {
6750       SDValue Arg = OutVals[i];
6751       EVT ArgType = Outs[i].VT;
6752       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6753           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6754         if (++j > NumVRs) {
6755           SDValue PtrOff;
6756           // We are emitting Altivec params in order.
6757           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6758                            isPPC64, CFlags.IsTailCall, true, MemOpChains,
6759                            TailCallArguments, dl);
6760           ArgOffset += 16;
6761         }
6762       }
6763     }
6764   }
6765 
6766   if (!MemOpChains.empty())
6767     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6768 
6769   // On Darwin, R12 must contain the address of an indirect callee.  This does
6770   // not mean the MTCTR instruction must use R12; it's easier to model this as
6771   // an extra parameter, so do that.
6772   if (CFlags.IsIndirect) {
6773     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
6774     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6775                                                    PPC::R12), Callee));
6776   }
6777 
6778   // Build a sequence of copy-to-reg nodes chained together with token chain
6779   // and flag operands which copy the outgoing args into the appropriate regs.
6780   SDValue InFlag;
6781   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6782     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6783                              RegsToPass[i].second, InFlag);
6784     InFlag = Chain.getValue(1);
6785   }
6786 
6787   if (CFlags.IsTailCall)
6788     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6789                     TailCallArguments);
6790 
6791   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6792                     Callee, SPDiff, NumBytes, Ins, InVals, CS);
6793 }
6794 
6795 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6796                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6797                    CCState &State) {
6798 
6799   if (ValVT == MVT::f128)
6800     report_fatal_error("f128 is unimplemented on AIX.");
6801 
6802   if (ArgFlags.isByVal())
6803     report_fatal_error("Passing structure by value is unimplemented.");
6804 
6805   if (ArgFlags.isNest())
6806     report_fatal_error("Nest arguments are unimplemented.");
6807 
6808   if (ValVT.isVector() || LocVT.isVector())
6809     report_fatal_error("Vector arguments are unimplemented on AIX.");
6810 
6811   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6812       State.getMachineFunction().getSubtarget());
6813   const bool IsPPC64 = Subtarget.isPPC64();
6814   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6815 
6816   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6817                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6818                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6819   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6820                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6821                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6822 
6823   // Arguments always reserve parameter save area.
6824   switch (ValVT.SimpleTy) {
6825   default:
6826     report_fatal_error("Unhandled value type for argument.");
6827   case MVT::i64:
6828     // i64 arguments should have been split to i32 for PPC32.
6829     assert(IsPPC64 && "PPC32 should have split i64 values.");
6830     LLVM_FALLTHROUGH;
6831   case MVT::i1:
6832   case MVT::i32: {
6833     const unsigned Offset = State.AllocateStack(PtrByteSize, PtrByteSize);
6834     const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6835     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6836       // Promote integers if needed.
6837       if (ValVT.getSizeInBits() < RegVT.getSizeInBits())
6838         LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6839                                     : CCValAssign::LocInfo::ZExt;
6840       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6841     }
6842     else
6843       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
6844 
6845     return false;
6846   }
6847   case MVT::f32:
6848   case MVT::f64: {
6849     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6850     const unsigned StoreSize = LocVT.getStoreSize();
6851     // Floats are always 4-byte aligned in the PSA on AIX.
6852     // This includes f64 in 64-bit mode for ABI compatibility.
6853     const unsigned Offset = State.AllocateStack(IsPPC64 ? 8 : StoreSize, 4);
6854     unsigned FReg = State.AllocateReg(FPR);
6855     if (FReg)
6856       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
6857 
6858     // Reserve and initialize GPRs or initialize the PSA as required.
6859     const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6860     for (unsigned I = 0; I < StoreSize; I += PtrByteSize) {
6861       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6862         assert(FReg && "An FPR should be available when a GPR is reserved.");
6863         if (State.isVarArg()) {
6864           // Successfully reserved GPRs are only initialized for vararg calls.
6865           // Custom handling is required for:
6866           //   f64 in PPC32 needs to be split into 2 GPRs.
6867           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6868           State.addLoc(
6869               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6870         }
6871       } else {
6872         // If there are insufficient GPRs, the PSA needs to be initialized.
6873         // Initialization occurs even if an FPR was initialized for
6874         // compatibility with the AIX XL compiler. The full memory for the
6875         // argument will be initialized even if a prior word is saved in GPR.
6876         // A custom memLoc is used when the argument also passes in FPR so
6877         // that the callee handling can skip over it easily.
6878         State.addLoc(
6879             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
6880                                              LocInfo)
6881                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6882         break;
6883       }
6884     }
6885 
6886     return false;
6887   }
6888   }
6889   return true;
6890 }
6891 
6892 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6893                                                     bool IsPPC64) {
6894   assert((IsPPC64 || SVT != MVT::i64) &&
6895          "i64 should have been split for 32-bit codegen.");
6896 
6897   switch (SVT) {
6898   default:
6899     report_fatal_error("Unexpected value type for formal argument");
6900   case MVT::i1:
6901   case MVT::i32:
6902   case MVT::i64:
6903     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6904   case MVT::f32:
6905     return &PPC::F4RCRegClass;
6906   case MVT::f64:
6907     return &PPC::F8RCRegClass;
6908   }
6909 }
6910 
6911 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6912                                         SelectionDAG &DAG, SDValue ArgValue,
6913                                         MVT LocVT, const SDLoc &dl) {
6914   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
6915   assert(ValVT.getSizeInBits() < LocVT.getSizeInBits());
6916 
6917   if (Flags.isSExt())
6918     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
6919                            DAG.getValueType(ValVT));
6920   else if (Flags.isZExt())
6921     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
6922                            DAG.getValueType(ValVT));
6923 
6924   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
6925 }
6926 
6927 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
6928     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
6929     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6930     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
6931 
6932   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
6933           CallConv == CallingConv::Fast) &&
6934          "Unexpected calling convention!");
6935 
6936   if (isVarArg)
6937     report_fatal_error("This call type is unimplemented on AIX.");
6938 
6939   if (getTargetMachine().Options.GuaranteedTailCallOpt)
6940     report_fatal_error("Tail call support is unimplemented on AIX.");
6941 
6942   if (useSoftFloat())
6943     report_fatal_error("Soft float support is unimplemented on AIX.");
6944 
6945   const PPCSubtarget &Subtarget =
6946       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
6947   if (Subtarget.hasQPX())
6948     report_fatal_error("QPX support is not supported on AIX.");
6949 
6950   const bool IsPPC64 = Subtarget.isPPC64();
6951   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6952 
6953   // Assign locations to all of the incoming arguments.
6954   SmallVector<CCValAssign, 16> ArgLocs;
6955   MachineFunction &MF = DAG.getMachineFunction();
6956   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
6957 
6958   // Reserve space for the linkage area on the stack.
6959   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6960   // On AIX a minimum of 8 words is saved to the parameter save area.
6961   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
6962   CCInfo.AllocateStack(LinkageSize + MinParameterSaveArea, PtrByteSize);
6963   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
6964 
6965   for (CCValAssign &VA : ArgLocs) {
6966 
6967     if (VA.isMemLoc()) {
6968       // For compatibility with the AIX XL compiler, the float args in the
6969       // parameter save area are initialized even if the argument is available
6970       // in register.  The caller is required to initialize both the register
6971       // and memory, however, the callee can choose to expect it in either.  The
6972       // memloc is dismissed here because the argument is retrieved from the
6973       // register.
6974       if (VA.needsCustom())
6975         continue;
6976       report_fatal_error(
6977           "Handling of formal arguments on the stack is unimplemented!");
6978     }
6979 
6980     assert(VA.isRegLoc() && "Unexpected argument location.");
6981 
6982     EVT ValVT = VA.getValVT();
6983     MVT LocVT = VA.getLocVT();
6984     MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy;
6985     unsigned VReg =
6986         MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
6987     SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
6988     if (ValVT.isScalarInteger() &&
6989         (ValVT.getSizeInBits() < LocVT.getSizeInBits())) {
6990       ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
6991       ArgValue =
6992           truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
6993     }
6994     InVals.push_back(ArgValue);
6995   }
6996 
6997   // Area that is at least reserved in the caller of this function.
6998   unsigned MinReservedArea = CCInfo.getNextStackOffset();
6999 
7000   // Set the size that is at least reserved in caller of this function. Tail
7001   // call optimized function's reserved stack space needs to be aligned so
7002   // that taking the difference between two stack areas will result in an
7003   // aligned stack.
7004   MinReservedArea =
7005       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
7006   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7007   FuncInfo->setMinReservedArea(MinReservedArea);
7008 
7009   return Chain;
7010 }
7011 
7012 SDValue PPCTargetLowering::LowerCall_AIX(
7013     SDValue Chain, SDValue Callee, CallFlags CFlags,
7014     const SmallVectorImpl<ISD::OutputArg> &Outs,
7015     const SmallVectorImpl<SDValue> &OutVals,
7016     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7017     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7018     ImmutableCallSite CS) const {
7019 
7020   assert((CFlags.CallConv == CallingConv::C ||
7021           CFlags.CallConv == CallingConv::Cold ||
7022           CFlags.CallConv == CallingConv::Fast) &&
7023          "Unexpected calling convention!");
7024 
7025   if (CFlags.IsPatchPoint)
7026     report_fatal_error("This call type is unimplemented on AIX.");
7027 
7028   const PPCSubtarget& Subtarget =
7029       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7030   if (Subtarget.hasQPX())
7031     report_fatal_error("QPX is not supported on AIX.");
7032   if (Subtarget.hasAltivec())
7033     report_fatal_error("Altivec support is unimplemented on AIX.");
7034 
7035   MachineFunction &MF = DAG.getMachineFunction();
7036   SmallVector<CCValAssign, 16> ArgLocs;
7037   CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7038                  *DAG.getContext());
7039 
7040   // Reserve space for the linkage save area (LSA) on the stack.
7041   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7042   //   [SP][CR][LR][2 x reserved][TOC].
7043   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7044   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7045   const bool IsPPC64 = Subtarget.isPPC64();
7046   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7047   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7048   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
7049   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7050 
7051   // The prolog code of the callee may store up to 8 GPR argument registers to
7052   // the stack, allowing va_start to index over them in memory if the callee
7053   // is variadic.
7054   // Because we cannot tell if this is needed on the caller side, we have to
7055   // conservatively assume that it is needed.  As such, make sure we have at
7056   // least enough stack space for the caller to store the 8 GPRs.
7057   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7058   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7059                                      CCInfo.getNextStackOffset());
7060 
7061   // Adjust the stack pointer for the new arguments...
7062   // These operations are automatically eliminated by the prolog/epilog pass.
7063   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7064   SDValue CallSeqStart = Chain;
7065 
7066   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7067   SmallVector<SDValue, 8> MemOpChains;
7068 
7069   // Set up a copy of the stack pointer for loading and storing any
7070   // arguments that may not fit in the registers available for argument
7071   // passing.
7072   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7073                                    : DAG.getRegister(PPC::R1, MVT::i32);
7074 
7075   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7076     CCValAssign &VA = ArgLocs[I++];
7077 
7078     SDValue Arg = OutVals[VA.getValNo()];
7079 
7080     if (!VA.isRegLoc() && !VA.isMemLoc())
7081       report_fatal_error("Unexpected location for function call argument.");
7082 
7083     if (VA.isRegLoc() && !VA.needsCustom()) {
7084       switch (VA.getLocInfo()) {
7085       default:
7086         report_fatal_error("Unexpected argument extension type.");
7087       case CCValAssign::Full:
7088         break;
7089       case CCValAssign::ZExt:
7090         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7091         break;
7092       case CCValAssign::SExt:
7093         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7094         break;
7095       }
7096       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7097 
7098       continue;
7099     }
7100 
7101     if (VA.isMemLoc()) {
7102       SDValue PtrOff =
7103           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7104       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7105       MemOpChains.push_back(
7106           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7107 
7108       continue;
7109     }
7110 
7111     // Custom handling is used for GPR initializations for vararg float
7112     // arguments.
7113     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7114            VA.getValVT().isFloatingPoint() && VA.getLocVT().isInteger() &&
7115            "Unexpected register handling for calling convention.");
7116 
7117     SDValue ArgAsInt =
7118         DAG.getBitcast(MVT::getIntegerVT(VA.getValVT().getSizeInBits()), Arg);
7119 
7120     if (Arg.getValueType().getStoreSize() == VA.getLocVT().getStoreSize())
7121       // f32 in 32-bit GPR
7122       // f64 in 64-bit GPR
7123       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7124     else if (Arg.getValueType().getSizeInBits() < VA.getLocVT().getSizeInBits())
7125       // f32 in 64-bit GPR.
7126       RegsToPass.push_back(std::make_pair(
7127           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, VA.getLocVT())));
7128     else {
7129       // f64 in two 32-bit GPRs
7130       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7131       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7132              "Unexpected custom register for argument!");
7133       CCValAssign &GPR1 = VA;
7134       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7135                                      DAG.getConstant(32, dl, MVT::i8));
7136       RegsToPass.push_back(std::make_pair(
7137           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7138 
7139       if (I != E) {
7140         // If only 1 GPR was available, there will only be one custom GPR and
7141         // the argument will also pass in memory.
7142         CCValAssign &PeekArg = ArgLocs[I];
7143         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7144           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7145           CCValAssign &GPR2 = ArgLocs[I++];
7146           RegsToPass.push_back(std::make_pair(
7147               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7148         }
7149       }
7150     }
7151   }
7152 
7153   if (!MemOpChains.empty())
7154     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7155 
7156   // For indirect calls, we need to save the TOC base to the stack for
7157   // restoration after the call.
7158   if (CFlags.IsIndirect) {
7159     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7160     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7161     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7162     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7163     const unsigned TOCSaveOffset =
7164         Subtarget.getFrameLowering()->getTOCSaveOffset();
7165 
7166     setUsesTOCBasePtr(DAG);
7167     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7168     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7169     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7170     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7171     Chain = DAG.getStore(
7172         Val.getValue(1), dl, Val, AddPtr,
7173         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7174   }
7175 
7176   // Build a sequence of copy-to-reg nodes chained together with token chain
7177   // and flag operands which copy the outgoing args into the appropriate regs.
7178   SDValue InFlag;
7179   for (auto Reg : RegsToPass) {
7180     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7181     InFlag = Chain.getValue(1);
7182   }
7183 
7184   const int SPDiff = 0;
7185   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7186                     Callee, SPDiff, NumBytes, Ins, InVals, CS);
7187 }
7188 
7189 bool
7190 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7191                                   MachineFunction &MF, bool isVarArg,
7192                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7193                                   LLVMContext &Context) const {
7194   SmallVector<CCValAssign, 16> RVLocs;
7195   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7196   return CCInfo.CheckReturn(
7197       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7198                 ? RetCC_PPC_Cold
7199                 : RetCC_PPC);
7200 }
7201 
7202 SDValue
7203 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7204                                bool isVarArg,
7205                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7206                                const SmallVectorImpl<SDValue> &OutVals,
7207                                const SDLoc &dl, SelectionDAG &DAG) const {
7208   SmallVector<CCValAssign, 16> RVLocs;
7209   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7210                  *DAG.getContext());
7211   CCInfo.AnalyzeReturn(Outs,
7212                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7213                            ? RetCC_PPC_Cold
7214                            : RetCC_PPC);
7215 
7216   SDValue Flag;
7217   SmallVector<SDValue, 4> RetOps(1, Chain);
7218 
7219   // Copy the result values into the output registers.
7220   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7221     CCValAssign &VA = RVLocs[i];
7222     assert(VA.isRegLoc() && "Can only return in registers!");
7223 
7224     SDValue Arg = OutVals[RealResIdx];
7225 
7226     switch (VA.getLocInfo()) {
7227     default: llvm_unreachable("Unknown loc info!");
7228     case CCValAssign::Full: break;
7229     case CCValAssign::AExt:
7230       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7231       break;
7232     case CCValAssign::ZExt:
7233       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7234       break;
7235     case CCValAssign::SExt:
7236       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7237       break;
7238     }
7239     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7240       bool isLittleEndian = Subtarget.isLittleEndian();
7241       // Legalize ret f64 -> ret 2 x i32.
7242       SDValue SVal =
7243           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7244                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7245       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7246       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7247       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7248                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7249       Flag = Chain.getValue(1);
7250       VA = RVLocs[++i]; // skip ahead to next loc
7251       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7252     } else
7253       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7254     Flag = Chain.getValue(1);
7255     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7256   }
7257 
7258   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
7259   const MCPhysReg *I =
7260     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
7261   if (I) {
7262     for (; *I; ++I) {
7263 
7264       if (PPC::G8RCRegClass.contains(*I))
7265         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
7266       else if (PPC::F8RCRegClass.contains(*I))
7267         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
7268       else if (PPC::CRRCRegClass.contains(*I))
7269         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
7270       else if (PPC::VRRCRegClass.contains(*I))
7271         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
7272       else
7273         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
7274     }
7275   }
7276 
7277   RetOps[0] = Chain;  // Update chain.
7278 
7279   // Add the flag if we have it.
7280   if (Flag.getNode())
7281     RetOps.push_back(Flag);
7282 
7283   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7284 }
7285 
7286 SDValue
7287 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7288                                                 SelectionDAG &DAG) const {
7289   SDLoc dl(Op);
7290 
7291   // Get the correct type for integers.
7292   EVT IntVT = Op.getValueType();
7293 
7294   // Get the inputs.
7295   SDValue Chain = Op.getOperand(0);
7296   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7297   // Build a DYNAREAOFFSET node.
7298   SDValue Ops[2] = {Chain, FPSIdx};
7299   SDVTList VTs = DAG.getVTList(IntVT);
7300   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7301 }
7302 
7303 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7304                                              SelectionDAG &DAG) const {
7305   // When we pop the dynamic allocation we need to restore the SP link.
7306   SDLoc dl(Op);
7307 
7308   // Get the correct type for pointers.
7309   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7310 
7311   // Construct the stack pointer operand.
7312   bool isPPC64 = Subtarget.isPPC64();
7313   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7314   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7315 
7316   // Get the operands for the STACKRESTORE.
7317   SDValue Chain = Op.getOperand(0);
7318   SDValue SaveSP = Op.getOperand(1);
7319 
7320   // Load the old link SP.
7321   SDValue LoadLinkSP =
7322       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7323 
7324   // Restore the stack pointer.
7325   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7326 
7327   // Store the old link SP.
7328   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7329 }
7330 
7331 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7332   MachineFunction &MF = DAG.getMachineFunction();
7333   bool isPPC64 = Subtarget.isPPC64();
7334   EVT PtrVT = getPointerTy(MF.getDataLayout());
7335 
7336   // Get current frame pointer save index.  The users of this index will be
7337   // primarily DYNALLOC instructions.
7338   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7339   int RASI = FI->getReturnAddrSaveIndex();
7340 
7341   // If the frame pointer save index hasn't been defined yet.
7342   if (!RASI) {
7343     // Find out what the fix offset of the frame pointer save area.
7344     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7345     // Allocate the frame index for frame pointer save area.
7346     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7347     // Save the result.
7348     FI->setReturnAddrSaveIndex(RASI);
7349   }
7350   return DAG.getFrameIndex(RASI, PtrVT);
7351 }
7352 
7353 SDValue
7354 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7355   MachineFunction &MF = DAG.getMachineFunction();
7356   bool isPPC64 = Subtarget.isPPC64();
7357   EVT PtrVT = getPointerTy(MF.getDataLayout());
7358 
7359   // Get current frame pointer save index.  The users of this index will be
7360   // primarily DYNALLOC instructions.
7361   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7362   int FPSI = FI->getFramePointerSaveIndex();
7363 
7364   // If the frame pointer save index hasn't been defined yet.
7365   if (!FPSI) {
7366     // Find out what the fix offset of the frame pointer save area.
7367     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7368     // Allocate the frame index for frame pointer save area.
7369     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7370     // Save the result.
7371     FI->setFramePointerSaveIndex(FPSI);
7372   }
7373   return DAG.getFrameIndex(FPSI, PtrVT);
7374 }
7375 
7376 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7377                                                    SelectionDAG &DAG) const {
7378   // Get the inputs.
7379   SDValue Chain = Op.getOperand(0);
7380   SDValue Size  = Op.getOperand(1);
7381   SDLoc dl(Op);
7382 
7383   // Get the correct type for pointers.
7384   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7385   // Negate the size.
7386   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7387                                 DAG.getConstant(0, dl, PtrVT), Size);
7388   // Construct a node for the frame pointer save index.
7389   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7390   // Build a DYNALLOC node.
7391   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7392   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7393   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7394 }
7395 
7396 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7397                                                      SelectionDAG &DAG) const {
7398   MachineFunction &MF = DAG.getMachineFunction();
7399 
7400   bool isPPC64 = Subtarget.isPPC64();
7401   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7402 
7403   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7404   return DAG.getFrameIndex(FI, PtrVT);
7405 }
7406 
7407 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7408                                                SelectionDAG &DAG) const {
7409   SDLoc DL(Op);
7410   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7411                      DAG.getVTList(MVT::i32, MVT::Other),
7412                      Op.getOperand(0), Op.getOperand(1));
7413 }
7414 
7415 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7416                                                 SelectionDAG &DAG) const {
7417   SDLoc DL(Op);
7418   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7419                      Op.getOperand(0), Op.getOperand(1));
7420 }
7421 
7422 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7423   if (Op.getValueType().isVector())
7424     return LowerVectorLoad(Op, DAG);
7425 
7426   assert(Op.getValueType() == MVT::i1 &&
7427          "Custom lowering only for i1 loads");
7428 
7429   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7430 
7431   SDLoc dl(Op);
7432   LoadSDNode *LD = cast<LoadSDNode>(Op);
7433 
7434   SDValue Chain = LD->getChain();
7435   SDValue BasePtr = LD->getBasePtr();
7436   MachineMemOperand *MMO = LD->getMemOperand();
7437 
7438   SDValue NewLD =
7439       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7440                      BasePtr, MVT::i8, MMO);
7441   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7442 
7443   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7444   return DAG.getMergeValues(Ops, dl);
7445 }
7446 
7447 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7448   if (Op.getOperand(1).getValueType().isVector())
7449     return LowerVectorStore(Op, DAG);
7450 
7451   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7452          "Custom lowering only for i1 stores");
7453 
7454   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7455 
7456   SDLoc dl(Op);
7457   StoreSDNode *ST = cast<StoreSDNode>(Op);
7458 
7459   SDValue Chain = ST->getChain();
7460   SDValue BasePtr = ST->getBasePtr();
7461   SDValue Value = ST->getValue();
7462   MachineMemOperand *MMO = ST->getMemOperand();
7463 
7464   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7465                       Value);
7466   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7467 }
7468 
7469 // FIXME: Remove this once the ANDI glue bug is fixed:
7470 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7471   assert(Op.getValueType() == MVT::i1 &&
7472          "Custom lowering only for i1 results");
7473 
7474   SDLoc DL(Op);
7475   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7476 }
7477 
7478 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7479                                                SelectionDAG &DAG) const {
7480 
7481   // Implements a vector truncate that fits in a vector register as a shuffle.
7482   // We want to legalize vector truncates down to where the source fits in
7483   // a vector register (and target is therefore smaller than vector register
7484   // size).  At that point legalization will try to custom lower the sub-legal
7485   // result and get here - where we can contain the truncate as a single target
7486   // operation.
7487 
7488   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7489   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7490   //
7491   // We will implement it for big-endian ordering as this (where x denotes
7492   // undefined):
7493   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7494   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7495   //
7496   // The same operation in little-endian ordering will be:
7497   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7498   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7499 
7500   assert(Op.getValueType().isVector() && "Vector type expected.");
7501 
7502   SDLoc DL(Op);
7503   SDValue N1 = Op.getOperand(0);
7504   unsigned SrcSize = N1.getValueType().getSizeInBits();
7505   assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector");
7506   SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7507 
7508   EVT TrgVT = Op.getValueType();
7509   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7510   EVT EltVT = TrgVT.getVectorElementType();
7511   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7512   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7513 
7514   // First list the elements we want to keep.
7515   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7516   SmallVector<int, 16> ShuffV;
7517   if (Subtarget.isLittleEndian())
7518     for (unsigned i = 0; i < TrgNumElts; ++i)
7519       ShuffV.push_back(i * SizeMult);
7520   else
7521     for (unsigned i = 1; i <= TrgNumElts; ++i)
7522       ShuffV.push_back(i * SizeMult - 1);
7523 
7524   // Populate the remaining elements with undefs.
7525   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7526     // ShuffV.push_back(i + WideNumElts);
7527     ShuffV.push_back(WideNumElts + 1);
7528 
7529   SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc);
7530   return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV);
7531 }
7532 
7533 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7534 /// possible.
7535 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7536   // Not FP? Not a fsel.
7537   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
7538       !Op.getOperand(2).getValueType().isFloatingPoint())
7539     return Op;
7540 
7541   bool HasNoInfs = DAG.getTarget().Options.NoInfsFPMath;
7542   bool HasNoNaNs = DAG.getTarget().Options.NoNaNsFPMath;
7543   // We might be able to do better than this under some circumstances, but in
7544   // general, fsel-based lowering of select is a finite-math-only optimization.
7545   // For more information, see section F.3 of the 2.06 ISA specification.
7546   // With ISA 3.0, we have xsmaxcdp/xsmincdp which are OK to emit even in the
7547   // presence of infinities.
7548   if (!Subtarget.hasP9Vector() && (!HasNoInfs || !HasNoNaNs))
7549     return Op;
7550   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7551 
7552   EVT ResVT = Op.getValueType();
7553   EVT CmpVT = Op.getOperand(0).getValueType();
7554   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7555   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7556   SDLoc dl(Op);
7557 
7558   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7559     switch (CC) {
7560     default:
7561       // Not a min/max but with finite math, we may still be able to use fsel.
7562       if (HasNoInfs && HasNoNaNs)
7563         break;
7564       return Op;
7565     case ISD::SETOGT:
7566     case ISD::SETGT:
7567       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
7568     case ISD::SETOLT:
7569     case ISD::SETLT:
7570       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
7571     }
7572   } else if (!HasNoInfs || !HasNoNaNs)
7573     return Op;
7574 
7575   // TODO: Propagate flags from the select rather than global settings.
7576   SDNodeFlags Flags;
7577   Flags.setNoInfs(true);
7578   Flags.setNoNaNs(true);
7579 
7580   // If the RHS of the comparison is a 0.0, we don't need to do the
7581   // subtraction at all.
7582   SDValue Sel1;
7583   if (isFloatingPointZero(RHS))
7584     switch (CC) {
7585     default: break;       // SETUO etc aren't handled by fsel.
7586     case ISD::SETNE:
7587       std::swap(TV, FV);
7588       LLVM_FALLTHROUGH;
7589     case ISD::SETEQ:
7590       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7591         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7592       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7593       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7594         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7595       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7596                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7597     case ISD::SETULT:
7598     case ISD::SETLT:
7599       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7600       LLVM_FALLTHROUGH;
7601     case ISD::SETOGE:
7602     case ISD::SETGE:
7603       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7604         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7605       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7606     case ISD::SETUGT:
7607     case ISD::SETGT:
7608       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7609       LLVM_FALLTHROUGH;
7610     case ISD::SETOLE:
7611     case ISD::SETLE:
7612       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7613         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7614       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7615                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7616     }
7617 
7618   SDValue Cmp;
7619   switch (CC) {
7620   default: break;       // SETUO etc aren't handled by fsel.
7621   case ISD::SETNE:
7622     std::swap(TV, FV);
7623     LLVM_FALLTHROUGH;
7624   case ISD::SETEQ:
7625     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7626     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7627       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7628     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7629     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7630       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7631     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7632                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7633   case ISD::SETULT:
7634   case ISD::SETLT:
7635     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7636     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7637       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7638     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7639   case ISD::SETOGE:
7640   case ISD::SETGE:
7641     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7642     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7643       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7644     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7645   case ISD::SETUGT:
7646   case ISD::SETGT:
7647     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7648     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7649       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7650     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7651   case ISD::SETOLE:
7652   case ISD::SETLE:
7653     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7654     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7655       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7656     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7657   }
7658   return Op;
7659 }
7660 
7661 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
7662                                                SelectionDAG &DAG,
7663                                                const SDLoc &dl) const {
7664   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7665   SDValue Src = Op.getOperand(0);
7666   if (Src.getValueType() == MVT::f32)
7667     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7668 
7669   SDValue Tmp;
7670   switch (Op.getSimpleValueType().SimpleTy) {
7671   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7672   case MVT::i32:
7673     Tmp = DAG.getNode(
7674         Op.getOpcode() == ISD::FP_TO_SINT
7675             ? PPCISD::FCTIWZ
7676             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7677         dl, MVT::f64, Src);
7678     break;
7679   case MVT::i64:
7680     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7681            "i64 FP_TO_UINT is supported only with FPCVT");
7682     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7683                                                         PPCISD::FCTIDUZ,
7684                       dl, MVT::f64, Src);
7685     break;
7686   }
7687 
7688   // Convert the FP value to an int value through memory.
7689   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
7690     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
7691   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
7692   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
7693   MachinePointerInfo MPI =
7694       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
7695 
7696   // Emit a store to the stack slot.
7697   SDValue Chain;
7698   if (i32Stack) {
7699     MachineFunction &MF = DAG.getMachineFunction();
7700     MachineMemOperand *MMO =
7701       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
7702     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
7703     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7704               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
7705   } else
7706     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
7707 
7708   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
7709   // add in a bias on big endian.
7710   if (Op.getValueType() == MVT::i32 && !i32Stack) {
7711     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
7712                         DAG.getConstant(4, dl, FIPtr.getValueType()));
7713     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
7714   }
7715 
7716   RLI.Chain = Chain;
7717   RLI.Ptr = FIPtr;
7718   RLI.MPI = MPI;
7719 }
7720 
7721 /// Custom lowers floating point to integer conversions to use
7722 /// the direct move instructions available in ISA 2.07 to avoid the
7723 /// need for load/store combinations.
7724 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
7725                                                     SelectionDAG &DAG,
7726                                                     const SDLoc &dl) const {
7727   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7728   SDValue Src = Op.getOperand(0);
7729 
7730   if (Src.getValueType() == MVT::f32)
7731     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7732 
7733   SDValue Tmp;
7734   switch (Op.getSimpleValueType().SimpleTy) {
7735   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7736   case MVT::i32:
7737     Tmp = DAG.getNode(
7738         Op.getOpcode() == ISD::FP_TO_SINT
7739             ? PPCISD::FCTIWZ
7740             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7741         dl, MVT::f64, Src);
7742     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
7743     break;
7744   case MVT::i64:
7745     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7746            "i64 FP_TO_UINT is supported only with FPCVT");
7747     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7748                                                         PPCISD::FCTIDUZ,
7749                       dl, MVT::f64, Src);
7750     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
7751     break;
7752   }
7753   return Tmp;
7754 }
7755 
7756 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
7757                                           const SDLoc &dl) const {
7758 
7759   // FP to INT conversions are legal for f128.
7760   if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
7761     return Op;
7762 
7763   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
7764   // PPC (the libcall is not available).
7765   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
7766     if (Op.getValueType() == MVT::i32) {
7767       if (Op.getOpcode() == ISD::FP_TO_SINT) {
7768         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7769                                  MVT::f64, Op.getOperand(0),
7770                                  DAG.getIntPtrConstant(0, dl));
7771         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7772                                  MVT::f64, Op.getOperand(0),
7773                                  DAG.getIntPtrConstant(1, dl));
7774 
7775         // Add the two halves of the long double in round-to-zero mode.
7776         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
7777 
7778         // Now use a smaller FP_TO_SINT.
7779         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
7780       }
7781       if (Op.getOpcode() == ISD::FP_TO_UINT) {
7782         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
7783         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
7784         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
7785         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
7786         // FIXME: generated code sucks.
7787         // TODO: Are there fast-math-flags to propagate to this FSUB?
7788         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
7789                                    Op.getOperand(0), Tmp);
7790         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
7791         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
7792                            DAG.getConstant(0x80000000, dl, MVT::i32));
7793         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
7794                                     Op.getOperand(0));
7795         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
7796                                ISD::SETGE);
7797       }
7798     }
7799 
7800     return SDValue();
7801   }
7802 
7803   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
7804     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
7805 
7806   ReuseLoadInfo RLI;
7807   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7808 
7809   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7810                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7811 }
7812 
7813 // We're trying to insert a regular store, S, and then a load, L. If the
7814 // incoming value, O, is a load, we might just be able to have our load use the
7815 // address used by O. However, we don't know if anything else will store to
7816 // that address before we can load from it. To prevent this situation, we need
7817 // to insert our load, L, into the chain as a peer of O. To do this, we give L
7818 // the same chain operand as O, we create a token factor from the chain results
7819 // of O and L, and we replace all uses of O's chain result with that token
7820 // factor (see spliceIntoChain below for this last part).
7821 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
7822                                             ReuseLoadInfo &RLI,
7823                                             SelectionDAG &DAG,
7824                                             ISD::LoadExtType ET) const {
7825   SDLoc dl(Op);
7826   if (ET == ISD::NON_EXTLOAD &&
7827       (Op.getOpcode() == ISD::FP_TO_UINT ||
7828        Op.getOpcode() == ISD::FP_TO_SINT) &&
7829       isOperationLegalOrCustom(Op.getOpcode(),
7830                                Op.getOperand(0).getValueType())) {
7831 
7832     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7833     return true;
7834   }
7835 
7836   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
7837   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
7838       LD->isNonTemporal())
7839     return false;
7840   if (LD->getMemoryVT() != MemVT)
7841     return false;
7842 
7843   RLI.Ptr = LD->getBasePtr();
7844   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
7845     assert(LD->getAddressingMode() == ISD::PRE_INC &&
7846            "Non-pre-inc AM on PPC?");
7847     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
7848                           LD->getOffset());
7849   }
7850 
7851   RLI.Chain = LD->getChain();
7852   RLI.MPI = LD->getPointerInfo();
7853   RLI.IsDereferenceable = LD->isDereferenceable();
7854   RLI.IsInvariant = LD->isInvariant();
7855   RLI.Alignment = LD->getAlignment();
7856   RLI.AAInfo = LD->getAAInfo();
7857   RLI.Ranges = LD->getRanges();
7858 
7859   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
7860   return true;
7861 }
7862 
7863 // Given the head of the old chain, ResChain, insert a token factor containing
7864 // it and NewResChain, and make users of ResChain now be users of that token
7865 // factor.
7866 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
7867 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
7868                                         SDValue NewResChain,
7869                                         SelectionDAG &DAG) const {
7870   if (!ResChain)
7871     return;
7872 
7873   SDLoc dl(NewResChain);
7874 
7875   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7876                            NewResChain, DAG.getUNDEF(MVT::Other));
7877   assert(TF.getNode() != NewResChain.getNode() &&
7878          "A new TF really is required here");
7879 
7880   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
7881   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
7882 }
7883 
7884 /// Analyze profitability of direct move
7885 /// prefer float load to int load plus direct move
7886 /// when there is no integer use of int load
7887 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
7888   SDNode *Origin = Op.getOperand(0).getNode();
7889   if (Origin->getOpcode() != ISD::LOAD)
7890     return true;
7891 
7892   // If there is no LXSIBZX/LXSIHZX, like Power8,
7893   // prefer direct move if the memory size is 1 or 2 bytes.
7894   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
7895   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
7896     return true;
7897 
7898   for (SDNode::use_iterator UI = Origin->use_begin(),
7899                             UE = Origin->use_end();
7900        UI != UE; ++UI) {
7901 
7902     // Only look at the users of the loaded value.
7903     if (UI.getUse().get().getResNo() != 0)
7904       continue;
7905 
7906     if (UI->getOpcode() != ISD::SINT_TO_FP &&
7907         UI->getOpcode() != ISD::UINT_TO_FP)
7908       return true;
7909   }
7910 
7911   return false;
7912 }
7913 
7914 /// Custom lowers integer to floating point conversions to use
7915 /// the direct move instructions available in ISA 2.07 to avoid the
7916 /// need for load/store combinations.
7917 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
7918                                                     SelectionDAG &DAG,
7919                                                     const SDLoc &dl) const {
7920   assert((Op.getValueType() == MVT::f32 ||
7921           Op.getValueType() == MVT::f64) &&
7922          "Invalid floating point type as target of conversion");
7923   assert(Subtarget.hasFPCVT() &&
7924          "Int to FP conversions with direct moves require FPCVT");
7925   SDValue FP;
7926   SDValue Src = Op.getOperand(0);
7927   bool SinglePrec = Op.getValueType() == MVT::f32;
7928   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
7929   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
7930   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
7931                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
7932 
7933   if (WordInt) {
7934     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
7935                      dl, MVT::f64, Src);
7936     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7937   }
7938   else {
7939     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
7940     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7941   }
7942 
7943   return FP;
7944 }
7945 
7946 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
7947 
7948   EVT VecVT = Vec.getValueType();
7949   assert(VecVT.isVector() && "Expected a vector type.");
7950   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
7951 
7952   EVT EltVT = VecVT.getVectorElementType();
7953   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7954   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7955 
7956   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
7957   SmallVector<SDValue, 16> Ops(NumConcat);
7958   Ops[0] = Vec;
7959   SDValue UndefVec = DAG.getUNDEF(VecVT);
7960   for (unsigned i = 1; i < NumConcat; ++i)
7961     Ops[i] = UndefVec;
7962 
7963   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
7964 }
7965 
7966 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
7967                                                 const SDLoc &dl) const {
7968 
7969   unsigned Opc = Op.getOpcode();
7970   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
7971          "Unexpected conversion type");
7972   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
7973          "Supports conversions to v2f64/v4f32 only.");
7974 
7975   bool SignedConv = Opc == ISD::SINT_TO_FP;
7976   bool FourEltRes = Op.getValueType() == MVT::v4f32;
7977 
7978   SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
7979   EVT WideVT = Wide.getValueType();
7980   unsigned WideNumElts = WideVT.getVectorNumElements();
7981   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
7982 
7983   SmallVector<int, 16> ShuffV;
7984   for (unsigned i = 0; i < WideNumElts; ++i)
7985     ShuffV.push_back(i + WideNumElts);
7986 
7987   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
7988   int SaveElts = FourEltRes ? 4 : 2;
7989   if (Subtarget.isLittleEndian())
7990     for (int i = 0; i < SaveElts; i++)
7991       ShuffV[i * Stride] = i;
7992   else
7993     for (int i = 1; i <= SaveElts; i++)
7994       ShuffV[i * Stride - 1] = i - 1;
7995 
7996   SDValue ShuffleSrc2 =
7997       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
7998   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
7999   unsigned ExtendOp =
8000       SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST;
8001 
8002   SDValue Extend;
8003   if (!Subtarget.hasP9Altivec() && SignedConv) {
8004     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8005     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8006                          DAG.getValueType(Op.getOperand(0).getValueType()));
8007   } else
8008     Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange);
8009 
8010   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8011 }
8012 
8013 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8014                                           SelectionDAG &DAG) const {
8015   SDLoc dl(Op);
8016 
8017   EVT InVT = Op.getOperand(0).getValueType();
8018   EVT OutVT = Op.getValueType();
8019   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8020       isOperationCustom(Op.getOpcode(), InVT))
8021     return LowerINT_TO_FPVector(Op, DAG, dl);
8022 
8023   // Conversions to f128 are legal.
8024   if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
8025     return Op;
8026 
8027   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
8028     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
8029       return SDValue();
8030 
8031     SDValue Value = Op.getOperand(0);
8032     // The values are now known to be -1 (false) or 1 (true). To convert this
8033     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
8034     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
8035     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
8036 
8037     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
8038 
8039     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
8040 
8041     if (Op.getValueType() != MVT::v4f64)
8042       Value = DAG.getNode(ISD::FP_ROUND, dl,
8043                           Op.getValueType(), Value,
8044                           DAG.getIntPtrConstant(1, dl));
8045     return Value;
8046   }
8047 
8048   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8049   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8050     return SDValue();
8051 
8052   if (Op.getOperand(0).getValueType() == MVT::i1)
8053     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
8054                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
8055                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
8056 
8057   // If we have direct moves, we can do all the conversion, skip the store/load
8058   // however, without FPCVT we can't do most conversions.
8059   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8060       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8061     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8062 
8063   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
8064          "UINT_TO_FP is supported only with FPCVT");
8065 
8066   // If we have FCFIDS, then use it when converting to single-precision.
8067   // Otherwise, convert to double-precision and then round.
8068   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
8069                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
8070                                                             : PPCISD::FCFIDS)
8071                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
8072                                                             : PPCISD::FCFID);
8073   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
8074                   ? MVT::f32
8075                   : MVT::f64;
8076 
8077   if (Op.getOperand(0).getValueType() == MVT::i64) {
8078     SDValue SINT = Op.getOperand(0);
8079     // When converting to single-precision, we actually need to convert
8080     // to double-precision first and then round to single-precision.
8081     // To avoid double-rounding effects during that operation, we have
8082     // to prepare the input operand.  Bits that might be truncated when
8083     // converting to double-precision are replaced by a bit that won't
8084     // be lost at this stage, but is below the single-precision rounding
8085     // position.
8086     //
8087     // However, if -enable-unsafe-fp-math is in effect, accept double
8088     // rounding to avoid the extra overhead.
8089     if (Op.getValueType() == MVT::f32 &&
8090         !Subtarget.hasFPCVT() &&
8091         !DAG.getTarget().Options.UnsafeFPMath) {
8092 
8093       // Twiddle input to make sure the low 11 bits are zero.  (If this
8094       // is the case, we are guaranteed the value will fit into the 53 bit
8095       // mantissa of an IEEE double-precision value without rounding.)
8096       // If any of those low 11 bits were not zero originally, make sure
8097       // bit 12 (value 2048) is set instead, so that the final rounding
8098       // to single-precision gets the correct result.
8099       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8100                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8101       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8102                           Round, DAG.getConstant(2047, dl, MVT::i64));
8103       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8104       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8105                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8106 
8107       // However, we cannot use that value unconditionally: if the magnitude
8108       // of the input value is small, the bit-twiddling we did above might
8109       // end up visibly changing the output.  Fortunately, in that case, we
8110       // don't need to twiddle bits since the original input will convert
8111       // exactly to double-precision floating-point already.  Therefore,
8112       // construct a conditional to use the original value if the top 11
8113       // bits are all sign-bit copies, and use the rounded value computed
8114       // above otherwise.
8115       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8116                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8117       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8118                          Cond, DAG.getConstant(1, dl, MVT::i64));
8119       Cond = DAG.getSetCC(dl, MVT::i32,
8120                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8121 
8122       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8123     }
8124 
8125     ReuseLoadInfo RLI;
8126     SDValue Bits;
8127 
8128     MachineFunction &MF = DAG.getMachineFunction();
8129     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8130       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8131                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8132       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8133     } else if (Subtarget.hasLFIWAX() &&
8134                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8135       MachineMemOperand *MMO =
8136         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8137                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8138       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8139       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8140                                      DAG.getVTList(MVT::f64, MVT::Other),
8141                                      Ops, MVT::i32, MMO);
8142       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8143     } else if (Subtarget.hasFPCVT() &&
8144                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8145       MachineMemOperand *MMO =
8146         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8147                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8148       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8149       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8150                                      DAG.getVTList(MVT::f64, MVT::Other),
8151                                      Ops, MVT::i32, MMO);
8152       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8153     } else if (((Subtarget.hasLFIWAX() &&
8154                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8155                 (Subtarget.hasFPCVT() &&
8156                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8157                SINT.getOperand(0).getValueType() == MVT::i32) {
8158       MachineFrameInfo &MFI = MF.getFrameInfo();
8159       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8160 
8161       int FrameIdx = MFI.CreateStackObject(4, 4, false);
8162       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8163 
8164       SDValue Store =
8165           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
8166                        MachinePointerInfo::getFixedStack(
8167                            DAG.getMachineFunction(), FrameIdx));
8168 
8169       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8170              "Expected an i32 store");
8171 
8172       RLI.Ptr = FIdx;
8173       RLI.Chain = Store;
8174       RLI.MPI =
8175           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8176       RLI.Alignment = 4;
8177 
8178       MachineMemOperand *MMO =
8179         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8180                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8181       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8182       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8183                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8184                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8185                                      Ops, MVT::i32, MMO);
8186     } else
8187       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8188 
8189     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
8190 
8191     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8192       FP = DAG.getNode(ISD::FP_ROUND, dl,
8193                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
8194     return FP;
8195   }
8196 
8197   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
8198          "Unhandled INT_TO_FP type in custom expander!");
8199   // Since we only generate this in 64-bit mode, we can take advantage of
8200   // 64-bit registers.  In particular, sign extend the input value into the
8201   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8202   // then lfd it and fcfid it.
8203   MachineFunction &MF = DAG.getMachineFunction();
8204   MachineFrameInfo &MFI = MF.getFrameInfo();
8205   EVT PtrVT = getPointerTy(MF.getDataLayout());
8206 
8207   SDValue Ld;
8208   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8209     ReuseLoadInfo RLI;
8210     bool ReusingLoad;
8211     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
8212                                             DAG))) {
8213       int FrameIdx = MFI.CreateStackObject(4, 4, false);
8214       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8215 
8216       SDValue Store =
8217           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
8218                        MachinePointerInfo::getFixedStack(
8219                            DAG.getMachineFunction(), FrameIdx));
8220 
8221       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8222              "Expected an i32 store");
8223 
8224       RLI.Ptr = FIdx;
8225       RLI.Chain = Store;
8226       RLI.MPI =
8227           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8228       RLI.Alignment = 4;
8229     }
8230 
8231     MachineMemOperand *MMO =
8232       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8233                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8234     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8235     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
8236                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
8237                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
8238                                  Ops, MVT::i32, MMO);
8239     if (ReusingLoad)
8240       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8241   } else {
8242     assert(Subtarget.isPPC64() &&
8243            "i32->FP without LFIWAX supported only on PPC64");
8244 
8245     int FrameIdx = MFI.CreateStackObject(8, 8, false);
8246     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8247 
8248     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
8249                                 Op.getOperand(0));
8250 
8251     // STD the extended value into the stack slot.
8252     SDValue Store = DAG.getStore(
8253         DAG.getEntryNode(), dl, Ext64, FIdx,
8254         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8255 
8256     // Load the value as a double.
8257     Ld = DAG.getLoad(
8258         MVT::f64, dl, Store, FIdx,
8259         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8260   }
8261 
8262   // FCFID it and return it.
8263   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
8264   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8265     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8266                      DAG.getIntPtrConstant(0, dl));
8267   return FP;
8268 }
8269 
8270 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8271                                             SelectionDAG &DAG) const {
8272   SDLoc dl(Op);
8273   /*
8274    The rounding mode is in bits 30:31 of FPSR, and has the following
8275    settings:
8276      00 Round to nearest
8277      01 Round to 0
8278      10 Round to +inf
8279      11 Round to -inf
8280 
8281   FLT_ROUNDS, on the other hand, expects the following:
8282     -1 Undefined
8283      0 Round to 0
8284      1 Round to nearest
8285      2 Round to +inf
8286      3 Round to -inf
8287 
8288   To perform the conversion, we do:
8289     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8290   */
8291 
8292   MachineFunction &MF = DAG.getMachineFunction();
8293   EVT VT = Op.getValueType();
8294   EVT PtrVT = getPointerTy(MF.getDataLayout());
8295 
8296   // Save FP Control Word to register
8297   SDValue Chain = Op.getOperand(0);
8298   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8299   Chain = MFFS.getValue(1);
8300 
8301   // Save FP register to stack slot
8302   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
8303   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8304   Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8305 
8306   // Load FP Control Word from low 32 bits of stack slot.
8307   SDValue Four = DAG.getConstant(4, dl, PtrVT);
8308   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8309   SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8310   Chain = CWD.getValue(1);
8311 
8312   // Transform as necessary
8313   SDValue CWD1 =
8314     DAG.getNode(ISD::AND, dl, MVT::i32,
8315                 CWD, DAG.getConstant(3, dl, MVT::i32));
8316   SDValue CWD2 =
8317     DAG.getNode(ISD::SRL, dl, MVT::i32,
8318                 DAG.getNode(ISD::AND, dl, MVT::i32,
8319                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8320                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8321                             DAG.getConstant(3, dl, MVT::i32)),
8322                 DAG.getConstant(1, dl, MVT::i32));
8323 
8324   SDValue RetVal =
8325     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8326 
8327   RetVal =
8328       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8329                   dl, VT, RetVal);
8330 
8331   return DAG.getMergeValues({RetVal, Chain}, dl);
8332 }
8333 
8334 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8335   EVT VT = Op.getValueType();
8336   unsigned BitWidth = VT.getSizeInBits();
8337   SDLoc dl(Op);
8338   assert(Op.getNumOperands() == 3 &&
8339          VT == Op.getOperand(1).getValueType() &&
8340          "Unexpected SHL!");
8341 
8342   // Expand into a bunch of logical ops.  Note that these ops
8343   // depend on the PPC behavior for oversized shift amounts.
8344   SDValue Lo = Op.getOperand(0);
8345   SDValue Hi = Op.getOperand(1);
8346   SDValue Amt = Op.getOperand(2);
8347   EVT AmtVT = Amt.getValueType();
8348 
8349   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8350                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8351   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8352   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8353   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8354   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8355                              DAG.getConstant(-BitWidth, dl, AmtVT));
8356   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8357   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8358   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8359   SDValue OutOps[] = { OutLo, OutHi };
8360   return DAG.getMergeValues(OutOps, dl);
8361 }
8362 
8363 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8364   EVT VT = Op.getValueType();
8365   SDLoc dl(Op);
8366   unsigned BitWidth = VT.getSizeInBits();
8367   assert(Op.getNumOperands() == 3 &&
8368          VT == Op.getOperand(1).getValueType() &&
8369          "Unexpected SRL!");
8370 
8371   // Expand into a bunch of logical ops.  Note that these ops
8372   // depend on the PPC behavior for oversized shift amounts.
8373   SDValue Lo = Op.getOperand(0);
8374   SDValue Hi = Op.getOperand(1);
8375   SDValue Amt = Op.getOperand(2);
8376   EVT AmtVT = Amt.getValueType();
8377 
8378   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8379                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8380   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8381   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8382   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8383   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8384                              DAG.getConstant(-BitWidth, dl, AmtVT));
8385   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8386   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8387   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8388   SDValue OutOps[] = { OutLo, OutHi };
8389   return DAG.getMergeValues(OutOps, dl);
8390 }
8391 
8392 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8393   SDLoc dl(Op);
8394   EVT VT = Op.getValueType();
8395   unsigned BitWidth = VT.getSizeInBits();
8396   assert(Op.getNumOperands() == 3 &&
8397          VT == Op.getOperand(1).getValueType() &&
8398          "Unexpected SRA!");
8399 
8400   // Expand into a bunch of logical ops, followed by a select_cc.
8401   SDValue Lo = Op.getOperand(0);
8402   SDValue Hi = Op.getOperand(1);
8403   SDValue Amt = Op.getOperand(2);
8404   EVT AmtVT = Amt.getValueType();
8405 
8406   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8407                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8408   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8409   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8410   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8411   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8412                              DAG.getConstant(-BitWidth, dl, AmtVT));
8413   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8414   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8415   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8416                                   Tmp4, Tmp6, ISD::SETLE);
8417   SDValue OutOps[] = { OutLo, OutHi };
8418   return DAG.getMergeValues(OutOps, dl);
8419 }
8420 
8421 //===----------------------------------------------------------------------===//
8422 // Vector related lowering.
8423 //
8424 
8425 /// BuildSplatI - Build a canonical splati of Val with an element size of
8426 /// SplatSize.  Cast the result to VT.
8427 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
8428                            SelectionDAG &DAG, const SDLoc &dl) {
8429   static const MVT VTys[] = { // canonical VT to use for each size.
8430     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8431   };
8432 
8433   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8434 
8435   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
8436   if (Val == -1)
8437     SplatSize = 1;
8438 
8439   EVT CanonicalVT = VTys[SplatSize-1];
8440 
8441   // Build a canonical splat for this value.
8442   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8443 }
8444 
8445 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8446 /// specified intrinsic ID.
8447 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8448                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8449   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8450   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8451                      DAG.getConstant(IID, dl, MVT::i32), Op);
8452 }
8453 
8454 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8455 /// specified intrinsic ID.
8456 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8457                                 SelectionDAG &DAG, const SDLoc &dl,
8458                                 EVT DestVT = MVT::Other) {
8459   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8460   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8461                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8462 }
8463 
8464 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8465 /// specified intrinsic ID.
8466 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8467                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8468                                 EVT DestVT = MVT::Other) {
8469   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8470   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8471                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8472 }
8473 
8474 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8475 /// amount.  The result has the specified value type.
8476 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8477                            SelectionDAG &DAG, const SDLoc &dl) {
8478   // Force LHS/RHS to be the right type.
8479   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8480   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8481 
8482   int Ops[16];
8483   for (unsigned i = 0; i != 16; ++i)
8484     Ops[i] = i + Amt;
8485   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8486   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8487 }
8488 
8489 /// Do we have an efficient pattern in a .td file for this node?
8490 ///
8491 /// \param V - pointer to the BuildVectorSDNode being matched
8492 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8493 ///
8494 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8495 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8496 /// the opposite is true (expansion is beneficial) are:
8497 /// - The node builds a vector out of integers that are not 32 or 64-bits
8498 /// - The node builds a vector out of constants
8499 /// - The node is a "load-and-splat"
8500 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8501 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8502                                             bool HasDirectMove,
8503                                             bool HasP8Vector) {
8504   EVT VecVT = V->getValueType(0);
8505   bool RightType = VecVT == MVT::v2f64 ||
8506     (HasP8Vector && VecVT == MVT::v4f32) ||
8507     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
8508   if (!RightType)
8509     return false;
8510 
8511   bool IsSplat = true;
8512   bool IsLoad = false;
8513   SDValue Op0 = V->getOperand(0);
8514 
8515   // This function is called in a block that confirms the node is not a constant
8516   // splat. So a constant BUILD_VECTOR here means the vector is built out of
8517   // different constants.
8518   if (V->isConstant())
8519     return false;
8520   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
8521     if (V->getOperand(i).isUndef())
8522       return false;
8523     // We want to expand nodes that represent load-and-splat even if the
8524     // loaded value is a floating point truncation or conversion to int.
8525     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
8526         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
8527          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8528         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
8529          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8530         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
8531          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
8532       IsLoad = true;
8533     // If the operands are different or the input is not a load and has more
8534     // uses than just this BV node, then it isn't a splat.
8535     if (V->getOperand(i) != Op0 ||
8536         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
8537       IsSplat = false;
8538   }
8539   return !(IsSplat && IsLoad);
8540 }
8541 
8542 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
8543 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
8544 
8545   SDLoc dl(Op);
8546   SDValue Op0 = Op->getOperand(0);
8547 
8548   if (!EnableQuadPrecision ||
8549       (Op.getValueType() != MVT::f128 ) ||
8550       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
8551       (Op0.getOperand(0).getValueType() !=  MVT::i64) ||
8552       (Op0.getOperand(1).getValueType() != MVT::i64))
8553     return SDValue();
8554 
8555   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
8556                      Op0.getOperand(1));
8557 }
8558 
8559 static const SDValue *getNormalLoadInput(const SDValue &Op) {
8560   const SDValue *InputLoad = &Op;
8561   if (InputLoad->getOpcode() == ISD::BITCAST)
8562     InputLoad = &InputLoad->getOperand(0);
8563   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR)
8564     InputLoad = &InputLoad->getOperand(0);
8565   if (InputLoad->getOpcode() != ISD::LOAD)
8566     return nullptr;
8567   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8568   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
8569 }
8570 
8571 // If this is a case we can't handle, return null and let the default
8572 // expansion code take care of it.  If we CAN select this case, and if it
8573 // selects to a single instruction, return Op.  Otherwise, if we can codegen
8574 // this case more efficiently than a constant pool load, lower it to the
8575 // sequence of ops that should be used.
8576 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
8577                                              SelectionDAG &DAG) const {
8578   SDLoc dl(Op);
8579   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
8580   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
8581 
8582   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
8583     // We first build an i32 vector, load it into a QPX register,
8584     // then convert it to a floating-point vector and compare it
8585     // to a zero vector to get the boolean result.
8586     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8587     int FrameIdx = MFI.CreateStackObject(16, 16, false);
8588     MachinePointerInfo PtrInfo =
8589         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8590     EVT PtrVT = getPointerTy(DAG.getDataLayout());
8591     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8592 
8593     assert(BVN->getNumOperands() == 4 &&
8594       "BUILD_VECTOR for v4i1 does not have 4 operands");
8595 
8596     bool IsConst = true;
8597     for (unsigned i = 0; i < 4; ++i) {
8598       if (BVN->getOperand(i).isUndef()) continue;
8599       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
8600         IsConst = false;
8601         break;
8602       }
8603     }
8604 
8605     if (IsConst) {
8606       Constant *One =
8607         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
8608       Constant *NegOne =
8609         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
8610 
8611       Constant *CV[4];
8612       for (unsigned i = 0; i < 4; ++i) {
8613         if (BVN->getOperand(i).isUndef())
8614           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
8615         else if (isNullConstant(BVN->getOperand(i)))
8616           CV[i] = NegOne;
8617         else
8618           CV[i] = One;
8619       }
8620 
8621       Constant *CP = ConstantVector::get(CV);
8622       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
8623                                           16 /* alignment */);
8624 
8625       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
8626       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
8627       return DAG.getMemIntrinsicNode(
8628           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
8629           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
8630     }
8631 
8632     SmallVector<SDValue, 4> Stores;
8633     for (unsigned i = 0; i < 4; ++i) {
8634       if (BVN->getOperand(i).isUndef()) continue;
8635 
8636       unsigned Offset = 4*i;
8637       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
8638       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
8639 
8640       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
8641       if (StoreSize > 4) {
8642         Stores.push_back(
8643             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
8644                               PtrInfo.getWithOffset(Offset), MVT::i32));
8645       } else {
8646         SDValue StoreValue = BVN->getOperand(i);
8647         if (StoreSize < 4)
8648           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
8649 
8650         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
8651                                       PtrInfo.getWithOffset(Offset)));
8652       }
8653     }
8654 
8655     SDValue StoreChain;
8656     if (!Stores.empty())
8657       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8658     else
8659       StoreChain = DAG.getEntryNode();
8660 
8661     // Now load from v4i32 into the QPX register; this will extend it to
8662     // v4i64 but not yet convert it to a floating point. Nevertheless, this
8663     // is typed as v4f64 because the QPX register integer states are not
8664     // explicitly represented.
8665 
8666     SDValue Ops[] = {StoreChain,
8667                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
8668                      FIdx};
8669     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
8670 
8671     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
8672       dl, VTs, Ops, MVT::v4i32, PtrInfo);
8673     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
8674       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
8675       LoadedVect);
8676 
8677     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
8678 
8679     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
8680   }
8681 
8682   // All other QPX vectors are handled by generic code.
8683   if (Subtarget.hasQPX())
8684     return SDValue();
8685 
8686   // Check if this is a splat of a constant value.
8687   APInt APSplatBits, APSplatUndef;
8688   unsigned SplatBitSize;
8689   bool HasAnyUndefs;
8690   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
8691                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
8692       SplatBitSize > 32) {
8693 
8694     const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0));
8695     // Handle load-and-splat patterns as we have instructions that will do this
8696     // in one go.
8697     if (InputLoad && DAG.isSplatValue(Op, true)) {
8698       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8699 
8700       // We have handling for 4 and 8 byte elements.
8701       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
8702 
8703       // Checking for a single use of this load, we have to check for vector
8704       // width (128 bits) / ElementSize uses (since each operand of the
8705       // BUILD_VECTOR is a separate use of the value.
8706       if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) &&
8707           ((Subtarget.hasVSX() && ElementSize == 64) ||
8708            (Subtarget.hasP9Vector() && ElementSize == 32))) {
8709         SDValue Ops[] = {
8710           LD->getChain(),    // Chain
8711           LD->getBasePtr(),  // Ptr
8712           DAG.getValueType(Op.getValueType()) // VT
8713         };
8714         return
8715           DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl,
8716                                   DAG.getVTList(Op.getValueType(), MVT::Other),
8717                                   Ops, LD->getMemoryVT(), LD->getMemOperand());
8718       }
8719     }
8720 
8721     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
8722     // lowered to VSX instructions under certain conditions.
8723     // Without VSX, there is no pattern more efficient than expanding the node.
8724     if (Subtarget.hasVSX() &&
8725         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
8726                                         Subtarget.hasP8Vector()))
8727       return Op;
8728     return SDValue();
8729   }
8730 
8731   unsigned SplatBits = APSplatBits.getZExtValue();
8732   unsigned SplatUndef = APSplatUndef.getZExtValue();
8733   unsigned SplatSize = SplatBitSize / 8;
8734 
8735   // First, handle single instruction cases.
8736 
8737   // All zeros?
8738   if (SplatBits == 0) {
8739     // Canonicalize all zero vectors to be v4i32.
8740     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
8741       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
8742       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
8743     }
8744     return Op;
8745   }
8746 
8747   // We have XXSPLTIB for constant splats one byte wide
8748   // FIXME: SplatBits is an unsigned int being cast to an int while passing it
8749   // as an argument to BuildSplatiI. Given SplatSize == 1 it is okay here.
8750   if (Subtarget.hasP9Vector() && SplatSize == 1)
8751     return BuildSplatI(SplatBits, SplatSize, Op.getValueType(), DAG, dl);
8752 
8753   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
8754   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
8755                     (32-SplatBitSize));
8756   if (SextVal >= -16 && SextVal <= 15)
8757     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
8758 
8759   // Two instruction sequences.
8760 
8761   // If this value is in the range [-32,30] and is even, use:
8762   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
8763   // If this value is in the range [17,31] and is odd, use:
8764   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
8765   // If this value is in the range [-31,-17] and is odd, use:
8766   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
8767   // Note the last two are three-instruction sequences.
8768   if (SextVal >= -32 && SextVal <= 31) {
8769     // To avoid having these optimizations undone by constant folding,
8770     // we convert to a pseudo that will be expanded later into one of
8771     // the above forms.
8772     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
8773     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
8774               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
8775     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
8776     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
8777     if (VT == Op.getValueType())
8778       return RetVal;
8779     else
8780       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
8781   }
8782 
8783   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
8784   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
8785   // for fneg/fabs.
8786   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
8787     // Make -1 and vspltisw -1:
8788     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
8789 
8790     // Make the VSLW intrinsic, computing 0x8000_0000.
8791     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
8792                                    OnesV, DAG, dl);
8793 
8794     // xor by OnesV to invert it.
8795     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
8796     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8797   }
8798 
8799   // Check to see if this is a wide variety of vsplti*, binop self cases.
8800   static const signed char SplatCsts[] = {
8801     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
8802     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
8803   };
8804 
8805   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
8806     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
8807     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
8808     int i = SplatCsts[idx];
8809 
8810     // Figure out what shift amount will be used by altivec if shifted by i in
8811     // this splat size.
8812     unsigned TypeShiftAmt = i & (SplatBitSize-1);
8813 
8814     // vsplti + shl self.
8815     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
8816       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8817       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8818         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
8819         Intrinsic::ppc_altivec_vslw
8820       };
8821       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8822       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8823     }
8824 
8825     // vsplti + srl self.
8826     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8827       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8828       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8829         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
8830         Intrinsic::ppc_altivec_vsrw
8831       };
8832       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8833       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8834     }
8835 
8836     // vsplti + sra self.
8837     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8838       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8839       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8840         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
8841         Intrinsic::ppc_altivec_vsraw
8842       };
8843       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8844       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8845     }
8846 
8847     // vsplti + rol self.
8848     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
8849                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
8850       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8851       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8852         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
8853         Intrinsic::ppc_altivec_vrlw
8854       };
8855       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8856       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8857     }
8858 
8859     // t = vsplti c, result = vsldoi t, t, 1
8860     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
8861       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8862       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
8863       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8864     }
8865     // t = vsplti c, result = vsldoi t, t, 2
8866     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
8867       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8868       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
8869       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8870     }
8871     // t = vsplti c, result = vsldoi t, t, 3
8872     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
8873       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8874       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
8875       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8876     }
8877   }
8878 
8879   return SDValue();
8880 }
8881 
8882 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8883 /// the specified operations to build the shuffle.
8884 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8885                                       SDValue RHS, SelectionDAG &DAG,
8886                                       const SDLoc &dl) {
8887   unsigned OpNum = (PFEntry >> 26) & 0x0F;
8888   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8889   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8890 
8891   enum {
8892     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8893     OP_VMRGHW,
8894     OP_VMRGLW,
8895     OP_VSPLTISW0,
8896     OP_VSPLTISW1,
8897     OP_VSPLTISW2,
8898     OP_VSPLTISW3,
8899     OP_VSLDOI4,
8900     OP_VSLDOI8,
8901     OP_VSLDOI12
8902   };
8903 
8904   if (OpNum == OP_COPY) {
8905     if (LHSID == (1*9+2)*9+3) return LHS;
8906     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8907     return RHS;
8908   }
8909 
8910   SDValue OpLHS, OpRHS;
8911   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8912   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8913 
8914   int ShufIdxs[16];
8915   switch (OpNum) {
8916   default: llvm_unreachable("Unknown i32 permute!");
8917   case OP_VMRGHW:
8918     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
8919     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
8920     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
8921     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
8922     break;
8923   case OP_VMRGLW:
8924     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
8925     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
8926     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
8927     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
8928     break;
8929   case OP_VSPLTISW0:
8930     for (unsigned i = 0; i != 16; ++i)
8931       ShufIdxs[i] = (i&3)+0;
8932     break;
8933   case OP_VSPLTISW1:
8934     for (unsigned i = 0; i != 16; ++i)
8935       ShufIdxs[i] = (i&3)+4;
8936     break;
8937   case OP_VSPLTISW2:
8938     for (unsigned i = 0; i != 16; ++i)
8939       ShufIdxs[i] = (i&3)+8;
8940     break;
8941   case OP_VSPLTISW3:
8942     for (unsigned i = 0; i != 16; ++i)
8943       ShufIdxs[i] = (i&3)+12;
8944     break;
8945   case OP_VSLDOI4:
8946     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
8947   case OP_VSLDOI8:
8948     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
8949   case OP_VSLDOI12:
8950     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
8951   }
8952   EVT VT = OpLHS.getValueType();
8953   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
8954   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
8955   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
8956   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8957 }
8958 
8959 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
8960 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
8961 /// SDValue.
8962 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
8963                                            SelectionDAG &DAG) const {
8964   const unsigned BytesInVector = 16;
8965   bool IsLE = Subtarget.isLittleEndian();
8966   SDLoc dl(N);
8967   SDValue V1 = N->getOperand(0);
8968   SDValue V2 = N->getOperand(1);
8969   unsigned ShiftElts = 0, InsertAtByte = 0;
8970   bool Swap = false;
8971 
8972   // Shifts required to get the byte we want at element 7.
8973   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
8974                                    0, 15, 14, 13, 12, 11, 10, 9};
8975   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
8976                                 1, 2,  3,  4,  5,  6,  7,  8};
8977 
8978   ArrayRef<int> Mask = N->getMask();
8979   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
8980 
8981   // For each mask element, find out if we're just inserting something
8982   // from V2 into V1 or vice versa.
8983   // Possible permutations inserting an element from V2 into V1:
8984   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8985   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8986   //   ...
8987   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
8988   // Inserting from V1 into V2 will be similar, except mask range will be
8989   // [16,31].
8990 
8991   bool FoundCandidate = false;
8992   // If both vector operands for the shuffle are the same vector, the mask
8993   // will contain only elements from the first one and the second one will be
8994   // undef.
8995   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
8996   // Go through the mask of half-words to find an element that's being moved
8997   // from one vector to the other.
8998   for (unsigned i = 0; i < BytesInVector; ++i) {
8999     unsigned CurrentElement = Mask[i];
9000     // If 2nd operand is undefined, we should only look for element 7 in the
9001     // Mask.
9002     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9003       continue;
9004 
9005     bool OtherElementsInOrder = true;
9006     // Examine the other elements in the Mask to see if they're in original
9007     // order.
9008     for (unsigned j = 0; j < BytesInVector; ++j) {
9009       if (j == i)
9010         continue;
9011       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9012       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9013       // in which we always assume we're always picking from the 1st operand.
9014       int MaskOffset =
9015           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9016       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9017         OtherElementsInOrder = false;
9018         break;
9019       }
9020     }
9021     // If other elements are in original order, we record the number of shifts
9022     // we need to get the element we want into element 7. Also record which byte
9023     // in the vector we should insert into.
9024     if (OtherElementsInOrder) {
9025       // If 2nd operand is undefined, we assume no shifts and no swapping.
9026       if (V2.isUndef()) {
9027         ShiftElts = 0;
9028         Swap = false;
9029       } else {
9030         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9031         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9032                          : BigEndianShifts[CurrentElement & 0xF];
9033         Swap = CurrentElement < BytesInVector;
9034       }
9035       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9036       FoundCandidate = true;
9037       break;
9038     }
9039   }
9040 
9041   if (!FoundCandidate)
9042     return SDValue();
9043 
9044   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9045   // optionally with VECSHL if shift is required.
9046   if (Swap)
9047     std::swap(V1, V2);
9048   if (V2.isUndef())
9049     V2 = V1;
9050   if (ShiftElts) {
9051     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9052                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9053     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9054                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9055   }
9056   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9057                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9058 }
9059 
9060 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9061 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9062 /// SDValue.
9063 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9064                                            SelectionDAG &DAG) const {
9065   const unsigned NumHalfWords = 8;
9066   const unsigned BytesInVector = NumHalfWords * 2;
9067   // Check that the shuffle is on half-words.
9068   if (!isNByteElemShuffleMask(N, 2, 1))
9069     return SDValue();
9070 
9071   bool IsLE = Subtarget.isLittleEndian();
9072   SDLoc dl(N);
9073   SDValue V1 = N->getOperand(0);
9074   SDValue V2 = N->getOperand(1);
9075   unsigned ShiftElts = 0, InsertAtByte = 0;
9076   bool Swap = false;
9077 
9078   // Shifts required to get the half-word we want at element 3.
9079   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9080   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9081 
9082   uint32_t Mask = 0;
9083   uint32_t OriginalOrderLow = 0x1234567;
9084   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9085   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9086   // 32-bit space, only need 4-bit nibbles per element.
9087   for (unsigned i = 0; i < NumHalfWords; ++i) {
9088     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9089     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9090   }
9091 
9092   // For each mask element, find out if we're just inserting something
9093   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9094   // from V2 into V1:
9095   //   X, 1, 2, 3, 4, 5, 6, 7
9096   //   0, X, 2, 3, 4, 5, 6, 7
9097   //   0, 1, X, 3, 4, 5, 6, 7
9098   //   0, 1, 2, X, 4, 5, 6, 7
9099   //   0, 1, 2, 3, X, 5, 6, 7
9100   //   0, 1, 2, 3, 4, X, 6, 7
9101   //   0, 1, 2, 3, 4, 5, X, 7
9102   //   0, 1, 2, 3, 4, 5, 6, X
9103   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9104 
9105   bool FoundCandidate = false;
9106   // Go through the mask of half-words to find an element that's being moved
9107   // from one vector to the other.
9108   for (unsigned i = 0; i < NumHalfWords; ++i) {
9109     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9110     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9111     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9112     uint32_t TargetOrder = 0x0;
9113 
9114     // If both vector operands for the shuffle are the same vector, the mask
9115     // will contain only elements from the first one and the second one will be
9116     // undef.
9117     if (V2.isUndef()) {
9118       ShiftElts = 0;
9119       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9120       TargetOrder = OriginalOrderLow;
9121       Swap = false;
9122       // Skip if not the correct element or mask of other elements don't equal
9123       // to our expected order.
9124       if (MaskOneElt == VINSERTHSrcElem &&
9125           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9126         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9127         FoundCandidate = true;
9128         break;
9129       }
9130     } else { // If both operands are defined.
9131       // Target order is [8,15] if the current mask is between [0,7].
9132       TargetOrder =
9133           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9134       // Skip if mask of other elements don't equal our expected order.
9135       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9136         // We only need the last 3 bits for the number of shifts.
9137         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9138                          : BigEndianShifts[MaskOneElt & 0x7];
9139         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9140         Swap = MaskOneElt < NumHalfWords;
9141         FoundCandidate = true;
9142         break;
9143       }
9144     }
9145   }
9146 
9147   if (!FoundCandidate)
9148     return SDValue();
9149 
9150   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9151   // optionally with VECSHL if shift is required.
9152   if (Swap)
9153     std::swap(V1, V2);
9154   if (V2.isUndef())
9155     V2 = V1;
9156   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9157   if (ShiftElts) {
9158     // Double ShiftElts because we're left shifting on v16i8 type.
9159     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9160                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9161     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9162     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9163                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9164     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9165   }
9166   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9167   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9168                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9169   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9170 }
9171 
9172 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9173 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9174 /// return the code it can be lowered into.  Worst case, it can always be
9175 /// lowered into a vperm.
9176 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9177                                                SelectionDAG &DAG) const {
9178   SDLoc dl(Op);
9179   SDValue V1 = Op.getOperand(0);
9180   SDValue V2 = Op.getOperand(1);
9181   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9182   EVT VT = Op.getValueType();
9183   bool isLittleEndian = Subtarget.isLittleEndian();
9184 
9185   unsigned ShiftElts, InsertAtByte;
9186   bool Swap = false;
9187 
9188   // If this is a load-and-splat, we can do that with a single instruction
9189   // in some cases. However if the load has multiple uses, we don't want to
9190   // combine it because that will just produce multiple loads.
9191   const SDValue *InputLoad = getNormalLoadInput(V1);
9192   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9193       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9194       InputLoad->hasOneUse()) {
9195     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9196     int SplatIdx =
9197       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9198 
9199     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9200     // For 4-byte load-and-splat, we need Power9.
9201     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9202       uint64_t Offset = 0;
9203       if (IsFourByte)
9204         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9205       else
9206         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9207       SDValue BasePtr = LD->getBasePtr();
9208       if (Offset != 0)
9209         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9210                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9211       SDValue Ops[] = {
9212         LD->getChain(),    // Chain
9213         BasePtr,           // BasePtr
9214         DAG.getValueType(Op.getValueType()) // VT
9215       };
9216       SDVTList VTL =
9217         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9218       SDValue LdSplt =
9219         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9220                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9221       if (LdSplt.getValueType() != SVOp->getValueType(0))
9222         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9223       return LdSplt;
9224     }
9225   }
9226   if (Subtarget.hasP9Vector() &&
9227       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9228                            isLittleEndian)) {
9229     if (Swap)
9230       std::swap(V1, V2);
9231     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9232     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9233     if (ShiftElts) {
9234       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9235                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9236       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9237                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9238       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9239     }
9240     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9241                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9242     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9243   }
9244 
9245   if (Subtarget.hasP9Altivec()) {
9246     SDValue NewISDNode;
9247     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9248       return NewISDNode;
9249 
9250     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9251       return NewISDNode;
9252   }
9253 
9254   if (Subtarget.hasVSX() &&
9255       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9256     if (Swap)
9257       std::swap(V1, V2);
9258     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9259     SDValue Conv2 =
9260         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9261 
9262     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9263                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9264     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9265   }
9266 
9267   if (Subtarget.hasVSX() &&
9268     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9269     if (Swap)
9270       std::swap(V1, V2);
9271     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9272     SDValue Conv2 =
9273         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9274 
9275     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9276                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9277     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9278   }
9279 
9280   if (Subtarget.hasP9Vector()) {
9281      if (PPC::isXXBRHShuffleMask(SVOp)) {
9282       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9283       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9284       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9285     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9286       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9287       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9288       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9289     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9290       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9291       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9292       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9293     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9294       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9295       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9296       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9297     }
9298   }
9299 
9300   if (Subtarget.hasVSX()) {
9301     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9302       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9303 
9304       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9305       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9306                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9307       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9308     }
9309 
9310     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9311     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9312       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9313       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9314       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9315     }
9316   }
9317 
9318   if (Subtarget.hasQPX()) {
9319     if (VT.getVectorNumElements() != 4)
9320       return SDValue();
9321 
9322     if (V2.isUndef()) V2 = V1;
9323 
9324     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
9325     if (AlignIdx != -1) {
9326       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
9327                          DAG.getConstant(AlignIdx, dl, MVT::i32));
9328     } else if (SVOp->isSplat()) {
9329       int SplatIdx = SVOp->getSplatIndex();
9330       if (SplatIdx >= 4) {
9331         std::swap(V1, V2);
9332         SplatIdx -= 4;
9333       }
9334 
9335       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
9336                          DAG.getConstant(SplatIdx, dl, MVT::i32));
9337     }
9338 
9339     // Lower this into a qvgpci/qvfperm pair.
9340 
9341     // Compute the qvgpci literal
9342     unsigned idx = 0;
9343     for (unsigned i = 0; i < 4; ++i) {
9344       int m = SVOp->getMaskElt(i);
9345       unsigned mm = m >= 0 ? (unsigned) m : i;
9346       idx |= mm << (3-i)*3;
9347     }
9348 
9349     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
9350                              DAG.getConstant(idx, dl, MVT::i32));
9351     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
9352   }
9353 
9354   // Cases that are handled by instructions that take permute immediates
9355   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9356   // selected by the instruction selector.
9357   if (V2.isUndef()) {
9358     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9359         PPC::isSplatShuffleMask(SVOp, 2) ||
9360         PPC::isSplatShuffleMask(SVOp, 4) ||
9361         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9362         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9363         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9364         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9365         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9366         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9367         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9368         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9369         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9370         (Subtarget.hasP8Altivec() && (
9371          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9372          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9373          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9374       return Op;
9375     }
9376   }
9377 
9378   // Altivec has a variety of "shuffle immediates" that take two vector inputs
9379   // and produce a fixed permutation.  If any of these match, do not lower to
9380   // VPERM.
9381   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
9382   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9383       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9384       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
9385       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9386       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9387       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9388       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9389       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9390       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9391       (Subtarget.hasP8Altivec() && (
9392        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9393        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
9394        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
9395     return Op;
9396 
9397   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
9398   // perfect shuffle table to emit an optimal matching sequence.
9399   ArrayRef<int> PermMask = SVOp->getMask();
9400 
9401   unsigned PFIndexes[4];
9402   bool isFourElementShuffle = true;
9403   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
9404     unsigned EltNo = 8;   // Start out undef.
9405     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
9406       if (PermMask[i*4+j] < 0)
9407         continue;   // Undef, ignore it.
9408 
9409       unsigned ByteSource = PermMask[i*4+j];
9410       if ((ByteSource & 3) != j) {
9411         isFourElementShuffle = false;
9412         break;
9413       }
9414 
9415       if (EltNo == 8) {
9416         EltNo = ByteSource/4;
9417       } else if (EltNo != ByteSource/4) {
9418         isFourElementShuffle = false;
9419         break;
9420       }
9421     }
9422     PFIndexes[i] = EltNo;
9423   }
9424 
9425   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
9426   // perfect shuffle vector to determine if it is cost effective to do this as
9427   // discrete instructions, or whether we should use a vperm.
9428   // For now, we skip this for little endian until such time as we have a
9429   // little-endian perfect shuffle table.
9430   if (isFourElementShuffle && !isLittleEndian) {
9431     // Compute the index in the perfect shuffle table.
9432     unsigned PFTableIndex =
9433       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
9434 
9435     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
9436     unsigned Cost  = (PFEntry >> 30);
9437 
9438     // Determining when to avoid vperm is tricky.  Many things affect the cost
9439     // of vperm, particularly how many times the perm mask needs to be computed.
9440     // For example, if the perm mask can be hoisted out of a loop or is already
9441     // used (perhaps because there are multiple permutes with the same shuffle
9442     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
9443     // the loop requires an extra register.
9444     //
9445     // As a compromise, we only emit discrete instructions if the shuffle can be
9446     // generated in 3 or fewer operations.  When we have loop information
9447     // available, if this block is within a loop, we should avoid using vperm
9448     // for 3-operation perms and use a constant pool load instead.
9449     if (Cost < 3)
9450       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
9451   }
9452 
9453   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
9454   // vector that will get spilled to the constant pool.
9455   if (V2.isUndef()) V2 = V1;
9456 
9457   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
9458   // that it is in input element units, not in bytes.  Convert now.
9459 
9460   // For little endian, the order of the input vectors is reversed, and
9461   // the permutation mask is complemented with respect to 31.  This is
9462   // necessary to produce proper semantics with the big-endian-biased vperm
9463   // instruction.
9464   EVT EltVT = V1.getValueType().getVectorElementType();
9465   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
9466 
9467   SmallVector<SDValue, 16> ResultMask;
9468   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
9469     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
9470 
9471     for (unsigned j = 0; j != BytesPerElement; ++j)
9472       if (isLittleEndian)
9473         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
9474                                              dl, MVT::i32));
9475       else
9476         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
9477                                              MVT::i32));
9478   }
9479 
9480   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
9481   if (isLittleEndian)
9482     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9483                        V2, V1, VPermMask);
9484   else
9485     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9486                        V1, V2, VPermMask);
9487 }
9488 
9489 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
9490 /// vector comparison.  If it is, return true and fill in Opc/isDot with
9491 /// information about the intrinsic.
9492 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
9493                                  bool &isDot, const PPCSubtarget &Subtarget) {
9494   unsigned IntrinsicID =
9495       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
9496   CompareOpc = -1;
9497   isDot = false;
9498   switch (IntrinsicID) {
9499   default:
9500     return false;
9501   // Comparison predicates.
9502   case Intrinsic::ppc_altivec_vcmpbfp_p:
9503     CompareOpc = 966;
9504     isDot = true;
9505     break;
9506   case Intrinsic::ppc_altivec_vcmpeqfp_p:
9507     CompareOpc = 198;
9508     isDot = true;
9509     break;
9510   case Intrinsic::ppc_altivec_vcmpequb_p:
9511     CompareOpc = 6;
9512     isDot = true;
9513     break;
9514   case Intrinsic::ppc_altivec_vcmpequh_p:
9515     CompareOpc = 70;
9516     isDot = true;
9517     break;
9518   case Intrinsic::ppc_altivec_vcmpequw_p:
9519     CompareOpc = 134;
9520     isDot = true;
9521     break;
9522   case Intrinsic::ppc_altivec_vcmpequd_p:
9523     if (Subtarget.hasP8Altivec()) {
9524       CompareOpc = 199;
9525       isDot = true;
9526     } else
9527       return false;
9528     break;
9529   case Intrinsic::ppc_altivec_vcmpneb_p:
9530   case Intrinsic::ppc_altivec_vcmpneh_p:
9531   case Intrinsic::ppc_altivec_vcmpnew_p:
9532   case Intrinsic::ppc_altivec_vcmpnezb_p:
9533   case Intrinsic::ppc_altivec_vcmpnezh_p:
9534   case Intrinsic::ppc_altivec_vcmpnezw_p:
9535     if (Subtarget.hasP9Altivec()) {
9536       switch (IntrinsicID) {
9537       default:
9538         llvm_unreachable("Unknown comparison intrinsic.");
9539       case Intrinsic::ppc_altivec_vcmpneb_p:
9540         CompareOpc = 7;
9541         break;
9542       case Intrinsic::ppc_altivec_vcmpneh_p:
9543         CompareOpc = 71;
9544         break;
9545       case Intrinsic::ppc_altivec_vcmpnew_p:
9546         CompareOpc = 135;
9547         break;
9548       case Intrinsic::ppc_altivec_vcmpnezb_p:
9549         CompareOpc = 263;
9550         break;
9551       case Intrinsic::ppc_altivec_vcmpnezh_p:
9552         CompareOpc = 327;
9553         break;
9554       case Intrinsic::ppc_altivec_vcmpnezw_p:
9555         CompareOpc = 391;
9556         break;
9557       }
9558       isDot = true;
9559     } else
9560       return false;
9561     break;
9562   case Intrinsic::ppc_altivec_vcmpgefp_p:
9563     CompareOpc = 454;
9564     isDot = true;
9565     break;
9566   case Intrinsic::ppc_altivec_vcmpgtfp_p:
9567     CompareOpc = 710;
9568     isDot = true;
9569     break;
9570   case Intrinsic::ppc_altivec_vcmpgtsb_p:
9571     CompareOpc = 774;
9572     isDot = true;
9573     break;
9574   case Intrinsic::ppc_altivec_vcmpgtsh_p:
9575     CompareOpc = 838;
9576     isDot = true;
9577     break;
9578   case Intrinsic::ppc_altivec_vcmpgtsw_p:
9579     CompareOpc = 902;
9580     isDot = true;
9581     break;
9582   case Intrinsic::ppc_altivec_vcmpgtsd_p:
9583     if (Subtarget.hasP8Altivec()) {
9584       CompareOpc = 967;
9585       isDot = true;
9586     } else
9587       return false;
9588     break;
9589   case Intrinsic::ppc_altivec_vcmpgtub_p:
9590     CompareOpc = 518;
9591     isDot = true;
9592     break;
9593   case Intrinsic::ppc_altivec_vcmpgtuh_p:
9594     CompareOpc = 582;
9595     isDot = true;
9596     break;
9597   case Intrinsic::ppc_altivec_vcmpgtuw_p:
9598     CompareOpc = 646;
9599     isDot = true;
9600     break;
9601   case Intrinsic::ppc_altivec_vcmpgtud_p:
9602     if (Subtarget.hasP8Altivec()) {
9603       CompareOpc = 711;
9604       isDot = true;
9605     } else
9606       return false;
9607     break;
9608 
9609   // VSX predicate comparisons use the same infrastructure
9610   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9611   case Intrinsic::ppc_vsx_xvcmpgedp_p:
9612   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9613   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9614   case Intrinsic::ppc_vsx_xvcmpgesp_p:
9615   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9616     if (Subtarget.hasVSX()) {
9617       switch (IntrinsicID) {
9618       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9619         CompareOpc = 99;
9620         break;
9621       case Intrinsic::ppc_vsx_xvcmpgedp_p:
9622         CompareOpc = 115;
9623         break;
9624       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9625         CompareOpc = 107;
9626         break;
9627       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9628         CompareOpc = 67;
9629         break;
9630       case Intrinsic::ppc_vsx_xvcmpgesp_p:
9631         CompareOpc = 83;
9632         break;
9633       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9634         CompareOpc = 75;
9635         break;
9636       }
9637       isDot = true;
9638     } else
9639       return false;
9640     break;
9641 
9642   // Normal Comparisons.
9643   case Intrinsic::ppc_altivec_vcmpbfp:
9644     CompareOpc = 966;
9645     break;
9646   case Intrinsic::ppc_altivec_vcmpeqfp:
9647     CompareOpc = 198;
9648     break;
9649   case Intrinsic::ppc_altivec_vcmpequb:
9650     CompareOpc = 6;
9651     break;
9652   case Intrinsic::ppc_altivec_vcmpequh:
9653     CompareOpc = 70;
9654     break;
9655   case Intrinsic::ppc_altivec_vcmpequw:
9656     CompareOpc = 134;
9657     break;
9658   case Intrinsic::ppc_altivec_vcmpequd:
9659     if (Subtarget.hasP8Altivec())
9660       CompareOpc = 199;
9661     else
9662       return false;
9663     break;
9664   case Intrinsic::ppc_altivec_vcmpneb:
9665   case Intrinsic::ppc_altivec_vcmpneh:
9666   case Intrinsic::ppc_altivec_vcmpnew:
9667   case Intrinsic::ppc_altivec_vcmpnezb:
9668   case Intrinsic::ppc_altivec_vcmpnezh:
9669   case Intrinsic::ppc_altivec_vcmpnezw:
9670     if (Subtarget.hasP9Altivec())
9671       switch (IntrinsicID) {
9672       default:
9673         llvm_unreachable("Unknown comparison intrinsic.");
9674       case Intrinsic::ppc_altivec_vcmpneb:
9675         CompareOpc = 7;
9676         break;
9677       case Intrinsic::ppc_altivec_vcmpneh:
9678         CompareOpc = 71;
9679         break;
9680       case Intrinsic::ppc_altivec_vcmpnew:
9681         CompareOpc = 135;
9682         break;
9683       case Intrinsic::ppc_altivec_vcmpnezb:
9684         CompareOpc = 263;
9685         break;
9686       case Intrinsic::ppc_altivec_vcmpnezh:
9687         CompareOpc = 327;
9688         break;
9689       case Intrinsic::ppc_altivec_vcmpnezw:
9690         CompareOpc = 391;
9691         break;
9692       }
9693     else
9694       return false;
9695     break;
9696   case Intrinsic::ppc_altivec_vcmpgefp:
9697     CompareOpc = 454;
9698     break;
9699   case Intrinsic::ppc_altivec_vcmpgtfp:
9700     CompareOpc = 710;
9701     break;
9702   case Intrinsic::ppc_altivec_vcmpgtsb:
9703     CompareOpc = 774;
9704     break;
9705   case Intrinsic::ppc_altivec_vcmpgtsh:
9706     CompareOpc = 838;
9707     break;
9708   case Intrinsic::ppc_altivec_vcmpgtsw:
9709     CompareOpc = 902;
9710     break;
9711   case Intrinsic::ppc_altivec_vcmpgtsd:
9712     if (Subtarget.hasP8Altivec())
9713       CompareOpc = 967;
9714     else
9715       return false;
9716     break;
9717   case Intrinsic::ppc_altivec_vcmpgtub:
9718     CompareOpc = 518;
9719     break;
9720   case Intrinsic::ppc_altivec_vcmpgtuh:
9721     CompareOpc = 582;
9722     break;
9723   case Intrinsic::ppc_altivec_vcmpgtuw:
9724     CompareOpc = 646;
9725     break;
9726   case Intrinsic::ppc_altivec_vcmpgtud:
9727     if (Subtarget.hasP8Altivec())
9728       CompareOpc = 711;
9729     else
9730       return false;
9731     break;
9732   }
9733   return true;
9734 }
9735 
9736 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
9737 /// lower, do it, otherwise return null.
9738 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
9739                                                    SelectionDAG &DAG) const {
9740   unsigned IntrinsicID =
9741     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9742 
9743   SDLoc dl(Op);
9744 
9745   if (IntrinsicID == Intrinsic::thread_pointer) {
9746     // Reads the thread pointer register, used for __builtin_thread_pointer.
9747     if (Subtarget.isPPC64())
9748       return DAG.getRegister(PPC::X13, MVT::i64);
9749     return DAG.getRegister(PPC::R2, MVT::i32);
9750   }
9751 
9752   // If this is a lowered altivec predicate compare, CompareOpc is set to the
9753   // opcode number of the comparison.
9754   int CompareOpc;
9755   bool isDot;
9756   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
9757     return SDValue();    // Don't custom lower most intrinsics.
9758 
9759   // If this is a non-dot comparison, make the VCMP node and we are done.
9760   if (!isDot) {
9761     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
9762                               Op.getOperand(1), Op.getOperand(2),
9763                               DAG.getConstant(CompareOpc, dl, MVT::i32));
9764     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
9765   }
9766 
9767   // Create the PPCISD altivec 'dot' comparison node.
9768   SDValue Ops[] = {
9769     Op.getOperand(2),  // LHS
9770     Op.getOperand(3),  // RHS
9771     DAG.getConstant(CompareOpc, dl, MVT::i32)
9772   };
9773   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
9774   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
9775 
9776   // Now that we have the comparison, emit a copy from the CR to a GPR.
9777   // This is flagged to the above dot comparison.
9778   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
9779                                 DAG.getRegister(PPC::CR6, MVT::i32),
9780                                 CompNode.getValue(1));
9781 
9782   // Unpack the result based on how the target uses it.
9783   unsigned BitNo;   // Bit # of CR6.
9784   bool InvertBit;   // Invert result?
9785   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
9786   default:  // Can't happen, don't crash on invalid number though.
9787   case 0:   // Return the value of the EQ bit of CR6.
9788     BitNo = 0; InvertBit = false;
9789     break;
9790   case 1:   // Return the inverted value of the EQ bit of CR6.
9791     BitNo = 0; InvertBit = true;
9792     break;
9793   case 2:   // Return the value of the LT bit of CR6.
9794     BitNo = 2; InvertBit = false;
9795     break;
9796   case 3:   // Return the inverted value of the LT bit of CR6.
9797     BitNo = 2; InvertBit = true;
9798     break;
9799   }
9800 
9801   // Shift the bit into the low position.
9802   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
9803                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
9804   // Isolate the bit.
9805   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
9806                       DAG.getConstant(1, dl, MVT::i32));
9807 
9808   // If we are supposed to, toggle the bit.
9809   if (InvertBit)
9810     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
9811                         DAG.getConstant(1, dl, MVT::i32));
9812   return Flags;
9813 }
9814 
9815 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
9816                                                SelectionDAG &DAG) const {
9817   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
9818   // the beginning of the argument list.
9819   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
9820   SDLoc DL(Op);
9821   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
9822   case Intrinsic::ppc_cfence: {
9823     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
9824     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
9825     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
9826                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
9827                                                   Op.getOperand(ArgStart + 1)),
9828                                       Op.getOperand(0)),
9829                    0);
9830   }
9831   default:
9832     break;
9833   }
9834   return SDValue();
9835 }
9836 
9837 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
9838   // Check for a DIV with the same operands as this REM.
9839   for (auto UI : Op.getOperand(1)->uses()) {
9840     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
9841         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
9842       if (UI->getOperand(0) == Op.getOperand(0) &&
9843           UI->getOperand(1) == Op.getOperand(1))
9844         return SDValue();
9845   }
9846   return Op;
9847 }
9848 
9849 // Lower scalar BSWAP64 to xxbrd.
9850 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
9851   SDLoc dl(Op);
9852   // MTVSRDD
9853   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
9854                    Op.getOperand(0));
9855   // XXBRD
9856   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
9857   // MFVSRD
9858   int VectorIndex = 0;
9859   if (Subtarget.isLittleEndian())
9860     VectorIndex = 1;
9861   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
9862                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
9863   return Op;
9864 }
9865 
9866 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
9867 // compared to a value that is atomically loaded (atomic loads zero-extend).
9868 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
9869                                                 SelectionDAG &DAG) const {
9870   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
9871          "Expecting an atomic compare-and-swap here.");
9872   SDLoc dl(Op);
9873   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
9874   EVT MemVT = AtomicNode->getMemoryVT();
9875   if (MemVT.getSizeInBits() >= 32)
9876     return Op;
9877 
9878   SDValue CmpOp = Op.getOperand(2);
9879   // If this is already correctly zero-extended, leave it alone.
9880   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
9881   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
9882     return Op;
9883 
9884   // Clear the high bits of the compare operand.
9885   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
9886   SDValue NewCmpOp =
9887     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
9888                 DAG.getConstant(MaskVal, dl, MVT::i32));
9889 
9890   // Replace the existing compare operand with the properly zero-extended one.
9891   SmallVector<SDValue, 4> Ops;
9892   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
9893     Ops.push_back(AtomicNode->getOperand(i));
9894   Ops[2] = NewCmpOp;
9895   MachineMemOperand *MMO = AtomicNode->getMemOperand();
9896   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
9897   auto NodeTy =
9898     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
9899   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
9900 }
9901 
9902 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
9903                                                  SelectionDAG &DAG) const {
9904   SDLoc dl(Op);
9905   // Create a stack slot that is 16-byte aligned.
9906   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9907   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9908   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9909   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9910 
9911   // Store the input value into Value#0 of the stack slot.
9912   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
9913                                MachinePointerInfo());
9914   // Load it out.
9915   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
9916 }
9917 
9918 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
9919                                                   SelectionDAG &DAG) const {
9920   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
9921          "Should only be called for ISD::INSERT_VECTOR_ELT");
9922 
9923   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
9924   // We have legal lowering for constant indices but not for variable ones.
9925   if (!C)
9926     return SDValue();
9927 
9928   EVT VT = Op.getValueType();
9929   SDLoc dl(Op);
9930   SDValue V1 = Op.getOperand(0);
9931   SDValue V2 = Op.getOperand(1);
9932   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
9933   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
9934     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
9935     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
9936     unsigned InsertAtElement = C->getZExtValue();
9937     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
9938     if (Subtarget.isLittleEndian()) {
9939       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
9940     }
9941     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
9942                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9943   }
9944   return Op;
9945 }
9946 
9947 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
9948                                                    SelectionDAG &DAG) const {
9949   SDLoc dl(Op);
9950   SDNode *N = Op.getNode();
9951 
9952   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
9953          "Unknown extract_vector_elt type");
9954 
9955   SDValue Value = N->getOperand(0);
9956 
9957   // The first part of this is like the store lowering except that we don't
9958   // need to track the chain.
9959 
9960   // The values are now known to be -1 (false) or 1 (true). To convert this
9961   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9962   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9963   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9964 
9965   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9966   // understand how to form the extending load.
9967   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9968 
9969   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9970 
9971   // Now convert to an integer and store.
9972   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9973     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9974     Value);
9975 
9976   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9977   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9978   MachinePointerInfo PtrInfo =
9979       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9980   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9981   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9982 
9983   SDValue StoreChain = DAG.getEntryNode();
9984   SDValue Ops[] = {StoreChain,
9985                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9986                    Value, FIdx};
9987   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9988 
9989   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9990     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9991 
9992   // Extract the value requested.
9993   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9994   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9995   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9996 
9997   SDValue IntVal =
9998       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
9999 
10000   if (!Subtarget.useCRBits())
10001     return IntVal;
10002 
10003   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
10004 }
10005 
10006 /// Lowering for QPX v4i1 loads
10007 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
10008                                            SelectionDAG &DAG) const {
10009   SDLoc dl(Op);
10010   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
10011   SDValue LoadChain = LN->getChain();
10012   SDValue BasePtr = LN->getBasePtr();
10013 
10014   if (Op.getValueType() == MVT::v4f64 ||
10015       Op.getValueType() == MVT::v4f32) {
10016     EVT MemVT = LN->getMemoryVT();
10017     unsigned Alignment = LN->getAlignment();
10018 
10019     // If this load is properly aligned, then it is legal.
10020     if (Alignment >= MemVT.getStoreSize())
10021       return Op;
10022 
10023     EVT ScalarVT = Op.getValueType().getScalarType(),
10024         ScalarMemVT = MemVT.getScalarType();
10025     unsigned Stride = ScalarMemVT.getStoreSize();
10026 
10027     SDValue Vals[4], LoadChains[4];
10028     for (unsigned Idx = 0; Idx < 4; ++Idx) {
10029       SDValue Load;
10030       if (ScalarVT != ScalarMemVT)
10031         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
10032                               BasePtr,
10033                               LN->getPointerInfo().getWithOffset(Idx * Stride),
10034                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
10035                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
10036       else
10037         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
10038                            LN->getPointerInfo().getWithOffset(Idx * Stride),
10039                            MinAlign(Alignment, Idx * Stride),
10040                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
10041 
10042       if (Idx == 0 && LN->isIndexed()) {
10043         assert(LN->getAddressingMode() == ISD::PRE_INC &&
10044                "Unknown addressing mode on vector load");
10045         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
10046                                   LN->getAddressingMode());
10047       }
10048 
10049       Vals[Idx] = Load;
10050       LoadChains[Idx] = Load.getValue(1);
10051 
10052       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10053                             DAG.getConstant(Stride, dl,
10054                                             BasePtr.getValueType()));
10055     }
10056 
10057     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10058     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
10059 
10060     if (LN->isIndexed()) {
10061       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
10062       return DAG.getMergeValues(RetOps, dl);
10063     }
10064 
10065     SDValue RetOps[] = { Value, TF };
10066     return DAG.getMergeValues(RetOps, dl);
10067   }
10068 
10069   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
10070   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
10071 
10072   // To lower v4i1 from a byte array, we load the byte elements of the
10073   // vector and then reuse the BUILD_VECTOR logic.
10074 
10075   SDValue VectElmts[4], VectElmtChains[4];
10076   for (unsigned i = 0; i < 4; ++i) {
10077     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
10078     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
10079 
10080     VectElmts[i] = DAG.getExtLoad(
10081         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
10082         LN->getPointerInfo().getWithOffset(i), MVT::i8,
10083         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
10084     VectElmtChains[i] = VectElmts[i].getValue(1);
10085   }
10086 
10087   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
10088   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
10089 
10090   SDValue RVals[] = { Value, LoadChain };
10091   return DAG.getMergeValues(RVals, dl);
10092 }
10093 
10094 /// Lowering for QPX v4i1 stores
10095 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10096                                             SelectionDAG &DAG) const {
10097   SDLoc dl(Op);
10098   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10099   SDValue StoreChain = SN->getChain();
10100   SDValue BasePtr = SN->getBasePtr();
10101   SDValue Value = SN->getValue();
10102 
10103   if (Value.getValueType() == MVT::v4f64 ||
10104       Value.getValueType() == MVT::v4f32) {
10105     EVT MemVT = SN->getMemoryVT();
10106     unsigned Alignment = SN->getAlignment();
10107 
10108     // If this store is properly aligned, then it is legal.
10109     if (Alignment >= MemVT.getStoreSize())
10110       return Op;
10111 
10112     EVT ScalarVT = Value.getValueType().getScalarType(),
10113         ScalarMemVT = MemVT.getScalarType();
10114     unsigned Stride = ScalarMemVT.getStoreSize();
10115 
10116     SDValue Stores[4];
10117     for (unsigned Idx = 0; Idx < 4; ++Idx) {
10118       SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
10119                                DAG.getVectorIdxConstant(Idx, dl));
10120       SDValue Store;
10121       if (ScalarVT != ScalarMemVT)
10122         Store =
10123             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
10124                               SN->getPointerInfo().getWithOffset(Idx * Stride),
10125                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
10126                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
10127       else
10128         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
10129                              SN->getPointerInfo().getWithOffset(Idx * Stride),
10130                              MinAlign(Alignment, Idx * Stride),
10131                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
10132 
10133       if (Idx == 0 && SN->isIndexed()) {
10134         assert(SN->getAddressingMode() == ISD::PRE_INC &&
10135                "Unknown addressing mode on vector store");
10136         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
10137                                     SN->getAddressingMode());
10138       }
10139 
10140       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10141                             DAG.getConstant(Stride, dl,
10142                                             BasePtr.getValueType()));
10143       Stores[Idx] = Store;
10144     }
10145 
10146     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10147 
10148     if (SN->isIndexed()) {
10149       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
10150       return DAG.getMergeValues(RetOps, dl);
10151     }
10152 
10153     return TF;
10154   }
10155 
10156   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
10157   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
10158 
10159   // The values are now known to be -1 (false) or 1 (true). To convert this
10160   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
10161   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
10162   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
10163 
10164   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
10165   // understand how to form the extending load.
10166   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
10167 
10168   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
10169 
10170   // Now convert to an integer and store.
10171   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
10172     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
10173     Value);
10174 
10175   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10176   int FrameIdx = MFI.CreateStackObject(16, 16, false);
10177   MachinePointerInfo PtrInfo =
10178       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
10179   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10180   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10181 
10182   SDValue Ops[] = {StoreChain,
10183                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
10184                    Value, FIdx};
10185   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
10186 
10187   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
10188     dl, VTs, Ops, MVT::v4i32, PtrInfo);
10189 
10190   // Move data into the byte array.
10191   SDValue Loads[4], LoadChains[4];
10192   for (unsigned i = 0; i < 4; ++i) {
10193     unsigned Offset = 4*i;
10194     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
10195     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
10196 
10197     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
10198                            PtrInfo.getWithOffset(Offset));
10199     LoadChains[i] = Loads[i].getValue(1);
10200   }
10201 
10202   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10203 
10204   SDValue Stores[4];
10205   for (unsigned i = 0; i < 4; ++i) {
10206     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
10207     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
10208 
10209     Stores[i] = DAG.getTruncStore(
10210         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
10211         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
10212         SN->getAAInfo());
10213   }
10214 
10215   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10216 
10217   return StoreChain;
10218 }
10219 
10220 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10221   SDLoc dl(Op);
10222   if (Op.getValueType() == MVT::v4i32) {
10223     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10224 
10225     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
10226     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
10227 
10228     SDValue RHSSwap =   // = vrlw RHS, 16
10229       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10230 
10231     // Shrinkify inputs to v8i16.
10232     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10233     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10234     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10235 
10236     // Low parts multiplied together, generating 32-bit results (we ignore the
10237     // top parts).
10238     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10239                                         LHS, RHS, DAG, dl, MVT::v4i32);
10240 
10241     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10242                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10243     // Shift the high parts up 16 bits.
10244     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10245                               Neg16, DAG, dl);
10246     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10247   } else if (Op.getValueType() == MVT::v8i16) {
10248     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10249 
10250     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
10251 
10252     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
10253                             LHS, RHS, Zero, DAG, dl);
10254   } else if (Op.getValueType() == MVT::v16i8) {
10255     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10256     bool isLittleEndian = Subtarget.isLittleEndian();
10257 
10258     // Multiply the even 8-bit parts, producing 16-bit sums.
10259     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10260                                            LHS, RHS, DAG, dl, MVT::v8i16);
10261     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10262 
10263     // Multiply the odd 8-bit parts, producing 16-bit sums.
10264     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10265                                           LHS, RHS, DAG, dl, MVT::v8i16);
10266     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10267 
10268     // Merge the results together.  Because vmuleub and vmuloub are
10269     // instructions with a big-endian bias, we must reverse the
10270     // element numbering and reverse the meaning of "odd" and "even"
10271     // when generating little endian code.
10272     int Ops[16];
10273     for (unsigned i = 0; i != 8; ++i) {
10274       if (isLittleEndian) {
10275         Ops[i*2  ] = 2*i;
10276         Ops[i*2+1] = 2*i+16;
10277       } else {
10278         Ops[i*2  ] = 2*i+1;
10279         Ops[i*2+1] = 2*i+1+16;
10280       }
10281     }
10282     if (isLittleEndian)
10283       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10284     else
10285       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10286   } else {
10287     llvm_unreachable("Unknown mul to lower!");
10288   }
10289 }
10290 
10291 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
10292 
10293   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
10294 
10295   EVT VT = Op.getValueType();
10296   assert(VT.isVector() &&
10297          "Only set vector abs as custom, scalar abs shouldn't reach here!");
10298   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10299           VT == MVT::v16i8) &&
10300          "Unexpected vector element type!");
10301   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
10302          "Current subtarget doesn't support smax v2i64!");
10303 
10304   // For vector abs, it can be lowered to:
10305   // abs x
10306   // ==>
10307   // y = -x
10308   // smax(x, y)
10309 
10310   SDLoc dl(Op);
10311   SDValue X = Op.getOperand(0);
10312   SDValue Zero = DAG.getConstant(0, dl, VT);
10313   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
10314 
10315   // SMAX patch https://reviews.llvm.org/D47332
10316   // hasn't landed yet, so use intrinsic first here.
10317   // TODO: Should use SMAX directly once SMAX patch landed
10318   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
10319   if (VT == MVT::v2i64)
10320     BifID = Intrinsic::ppc_altivec_vmaxsd;
10321   else if (VT == MVT::v8i16)
10322     BifID = Intrinsic::ppc_altivec_vmaxsh;
10323   else if (VT == MVT::v16i8)
10324     BifID = Intrinsic::ppc_altivec_vmaxsb;
10325 
10326   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
10327 }
10328 
10329 // Custom lowering for fpext vf32 to v2f64
10330 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10331 
10332   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10333          "Should only be called for ISD::FP_EXTEND");
10334 
10335   // We only want to custom lower an extend from v2f32 to v2f64.
10336   if (Op.getValueType() != MVT::v2f64 ||
10337       Op.getOperand(0).getValueType() != MVT::v2f32)
10338     return SDValue();
10339 
10340   SDLoc dl(Op);
10341   SDValue Op0 = Op.getOperand(0);
10342 
10343   switch (Op0.getOpcode()) {
10344   default:
10345     return SDValue();
10346   case ISD::EXTRACT_SUBVECTOR: {
10347     assert(Op0.getNumOperands() == 2 &&
10348            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10349            "Node should have 2 operands with second one being a constant!");
10350 
10351     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10352       return SDValue();
10353 
10354     // Custom lower is only done for high or low doubleword.
10355     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10356     if (Idx % 2 != 0)
10357       return SDValue();
10358 
10359     // Since input is v4f32, at this point Idx is either 0 or 2.
10360     // Shift to get the doubleword position we want.
10361     int DWord = Idx >> 1;
10362 
10363     // High and low word positions are different on little endian.
10364     if (Subtarget.isLittleEndian())
10365       DWord ^= 0x1;
10366 
10367     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10368                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10369   }
10370   case ISD::FADD:
10371   case ISD::FMUL:
10372   case ISD::FSUB: {
10373     SDValue NewLoad[2];
10374     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10375       // Ensure both input are loads.
10376       SDValue LdOp = Op0.getOperand(i);
10377       if (LdOp.getOpcode() != ISD::LOAD)
10378         return SDValue();
10379       // Generate new load node.
10380       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10381       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10382       NewLoad[i] = DAG.getMemIntrinsicNode(
10383           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10384           LD->getMemoryVT(), LD->getMemOperand());
10385     }
10386     SDValue NewOp =
10387         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10388                     NewLoad[1], Op0.getNode()->getFlags());
10389     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10390                        DAG.getConstant(0, dl, MVT::i32));
10391   }
10392   case ISD::LOAD: {
10393     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10394     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10395     SDValue NewLd = DAG.getMemIntrinsicNode(
10396         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10397         LD->getMemoryVT(), LD->getMemOperand());
10398     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10399                        DAG.getConstant(0, dl, MVT::i32));
10400   }
10401   }
10402   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10403 }
10404 
10405 /// LowerOperation - Provide custom lowering hooks for some operations.
10406 ///
10407 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10408   switch (Op.getOpcode()) {
10409   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10410   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10411   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10412   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10413   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10414   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10415   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10416   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10417   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10418 
10419   // Variable argument lowering.
10420   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10421   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10422   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10423 
10424   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10425   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10426   case ISD::GET_DYNAMIC_AREA_OFFSET:
10427     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10428 
10429   // Exception handling lowering.
10430   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
10431   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
10432   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
10433 
10434   case ISD::LOAD:               return LowerLOAD(Op, DAG);
10435   case ISD::STORE:              return LowerSTORE(Op, DAG);
10436   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
10437   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
10438   case ISD::FP_TO_UINT:
10439   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
10440   case ISD::UINT_TO_FP:
10441   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
10442   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10443 
10444   // Lower 64-bit shifts.
10445   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
10446   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
10447   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
10448 
10449   // Vector-related lowering.
10450   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10451   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10452   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10453   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10454   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10455   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10456   case ISD::MUL:                return LowerMUL(Op, DAG);
10457   case ISD::ABS:                return LowerABS(Op, DAG);
10458   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
10459 
10460   // For counter-based loop handling.
10461   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
10462 
10463   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10464 
10465   // Frame & Return address.
10466   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10467   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10468 
10469   case ISD::INTRINSIC_VOID:
10470     return LowerINTRINSIC_VOID(Op, DAG);
10471   case ISD::SREM:
10472   case ISD::UREM:
10473     return LowerREM(Op, DAG);
10474   case ISD::BSWAP:
10475     return LowerBSWAP(Op, DAG);
10476   case ISD::ATOMIC_CMP_SWAP:
10477     return LowerATOMIC_CMP_SWAP(Op, DAG);
10478   }
10479 }
10480 
10481 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10482                                            SmallVectorImpl<SDValue>&Results,
10483                                            SelectionDAG &DAG) const {
10484   SDLoc dl(N);
10485   switch (N->getOpcode()) {
10486   default:
10487     llvm_unreachable("Do not know how to custom type legalize this operation!");
10488   case ISD::READCYCLECOUNTER: {
10489     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10490     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
10491 
10492     Results.push_back(
10493         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
10494     Results.push_back(RTB.getValue(2));
10495     break;
10496   }
10497   case ISD::INTRINSIC_W_CHAIN: {
10498     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
10499         Intrinsic::loop_decrement)
10500       break;
10501 
10502     assert(N->getValueType(0) == MVT::i1 &&
10503            "Unexpected result type for CTR decrement intrinsic");
10504     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
10505                                  N->getValueType(0));
10506     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
10507     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
10508                                  N->getOperand(1));
10509 
10510     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
10511     Results.push_back(NewInt.getValue(1));
10512     break;
10513   }
10514   case ISD::VAARG: {
10515     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
10516       return;
10517 
10518     EVT VT = N->getValueType(0);
10519 
10520     if (VT == MVT::i64) {
10521       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
10522 
10523       Results.push_back(NewNode);
10524       Results.push_back(NewNode.getValue(1));
10525     }
10526     return;
10527   }
10528   case ISD::FP_TO_SINT:
10529   case ISD::FP_TO_UINT:
10530     // LowerFP_TO_INT() can only handle f32 and f64.
10531     if (N->getOperand(0).getValueType() == MVT::ppcf128)
10532       return;
10533     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
10534     return;
10535   case ISD::TRUNCATE: {
10536     EVT TrgVT = N->getValueType(0);
10537     EVT OpVT = N->getOperand(0).getValueType();
10538     if (TrgVT.isVector() &&
10539         isOperationCustom(N->getOpcode(), TrgVT) &&
10540         OpVT.getSizeInBits() <= 128 &&
10541         isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits()))
10542       Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG));
10543     return;
10544   }
10545   case ISD::BITCAST:
10546     // Don't handle bitcast here.
10547     return;
10548   }
10549 }
10550 
10551 //===----------------------------------------------------------------------===//
10552 //  Other Lowering Code
10553 //===----------------------------------------------------------------------===//
10554 
10555 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
10556   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10557   Function *Func = Intrinsic::getDeclaration(M, Id);
10558   return Builder.CreateCall(Func, {});
10559 }
10560 
10561 // The mappings for emitLeading/TrailingFence is taken from
10562 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
10563 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
10564                                                  Instruction *Inst,
10565                                                  AtomicOrdering Ord) const {
10566   if (Ord == AtomicOrdering::SequentiallyConsistent)
10567     return callIntrinsic(Builder, Intrinsic::ppc_sync);
10568   if (isReleaseOrStronger(Ord))
10569     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10570   return nullptr;
10571 }
10572 
10573 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
10574                                                   Instruction *Inst,
10575                                                   AtomicOrdering Ord) const {
10576   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
10577     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
10578     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
10579     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
10580     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
10581       return Builder.CreateCall(
10582           Intrinsic::getDeclaration(
10583               Builder.GetInsertBlock()->getParent()->getParent(),
10584               Intrinsic::ppc_cfence, {Inst->getType()}),
10585           {Inst});
10586     // FIXME: Can use isync for rmw operation.
10587     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10588   }
10589   return nullptr;
10590 }
10591 
10592 MachineBasicBlock *
10593 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
10594                                     unsigned AtomicSize,
10595                                     unsigned BinOpcode,
10596                                     unsigned CmpOpcode,
10597                                     unsigned CmpPred) const {
10598   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10599   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10600 
10601   auto LoadMnemonic = PPC::LDARX;
10602   auto StoreMnemonic = PPC::STDCX;
10603   switch (AtomicSize) {
10604   default:
10605     llvm_unreachable("Unexpected size of atomic entity");
10606   case 1:
10607     LoadMnemonic = PPC::LBARX;
10608     StoreMnemonic = PPC::STBCX;
10609     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10610     break;
10611   case 2:
10612     LoadMnemonic = PPC::LHARX;
10613     StoreMnemonic = PPC::STHCX;
10614     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10615     break;
10616   case 4:
10617     LoadMnemonic = PPC::LWARX;
10618     StoreMnemonic = PPC::STWCX;
10619     break;
10620   case 8:
10621     LoadMnemonic = PPC::LDARX;
10622     StoreMnemonic = PPC::STDCX;
10623     break;
10624   }
10625 
10626   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10627   MachineFunction *F = BB->getParent();
10628   MachineFunction::iterator It = ++BB->getIterator();
10629 
10630   Register dest = MI.getOperand(0).getReg();
10631   Register ptrA = MI.getOperand(1).getReg();
10632   Register ptrB = MI.getOperand(2).getReg();
10633   Register incr = MI.getOperand(3).getReg();
10634   DebugLoc dl = MI.getDebugLoc();
10635 
10636   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10637   MachineBasicBlock *loop2MBB =
10638     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10639   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10640   F->insert(It, loopMBB);
10641   if (CmpOpcode)
10642     F->insert(It, loop2MBB);
10643   F->insert(It, exitMBB);
10644   exitMBB->splice(exitMBB->begin(), BB,
10645                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10646   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10647 
10648   MachineRegisterInfo &RegInfo = F->getRegInfo();
10649   Register TmpReg = (!BinOpcode) ? incr :
10650     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
10651                                            : &PPC::GPRCRegClass);
10652 
10653   //  thisMBB:
10654   //   ...
10655   //   fallthrough --> loopMBB
10656   BB->addSuccessor(loopMBB);
10657 
10658   //  loopMBB:
10659   //   l[wd]arx dest, ptr
10660   //   add r0, dest, incr
10661   //   st[wd]cx. r0, ptr
10662   //   bne- loopMBB
10663   //   fallthrough --> exitMBB
10664 
10665   // For max/min...
10666   //  loopMBB:
10667   //   l[wd]arx dest, ptr
10668   //   cmpl?[wd] incr, dest
10669   //   bgt exitMBB
10670   //  loop2MBB:
10671   //   st[wd]cx. dest, ptr
10672   //   bne- loopMBB
10673   //   fallthrough --> exitMBB
10674 
10675   BB = loopMBB;
10676   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10677     .addReg(ptrA).addReg(ptrB);
10678   if (BinOpcode)
10679     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
10680   if (CmpOpcode) {
10681     // Signed comparisons of byte or halfword values must be sign-extended.
10682     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
10683       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10684       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
10685               ExtReg).addReg(dest);
10686       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10687         .addReg(incr).addReg(ExtReg);
10688     } else
10689       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10690         .addReg(incr).addReg(dest);
10691 
10692     BuildMI(BB, dl, TII->get(PPC::BCC))
10693       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
10694     BB->addSuccessor(loop2MBB);
10695     BB->addSuccessor(exitMBB);
10696     BB = loop2MBB;
10697   }
10698   BuildMI(BB, dl, TII->get(StoreMnemonic))
10699     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
10700   BuildMI(BB, dl, TII->get(PPC::BCC))
10701     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
10702   BB->addSuccessor(loopMBB);
10703   BB->addSuccessor(exitMBB);
10704 
10705   //  exitMBB:
10706   //   ...
10707   BB = exitMBB;
10708   return BB;
10709 }
10710 
10711 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
10712     MachineInstr &MI, MachineBasicBlock *BB,
10713     bool is8bit, // operation
10714     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
10715   // If we support part-word atomic mnemonics, just use them
10716   if (Subtarget.hasPartwordAtomics())
10717     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
10718                             CmpPred);
10719 
10720   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10721   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10722   // In 64 bit mode we have to use 64 bits for addresses, even though the
10723   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
10724   // registers without caring whether they're 32 or 64, but here we're
10725   // doing actual arithmetic on the addresses.
10726   bool is64bit = Subtarget.isPPC64();
10727   bool isLittleEndian = Subtarget.isLittleEndian();
10728   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10729 
10730   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10731   MachineFunction *F = BB->getParent();
10732   MachineFunction::iterator It = ++BB->getIterator();
10733 
10734   Register dest = MI.getOperand(0).getReg();
10735   Register ptrA = MI.getOperand(1).getReg();
10736   Register ptrB = MI.getOperand(2).getReg();
10737   Register incr = MI.getOperand(3).getReg();
10738   DebugLoc dl = MI.getDebugLoc();
10739 
10740   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10741   MachineBasicBlock *loop2MBB =
10742       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10743   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10744   F->insert(It, loopMBB);
10745   if (CmpOpcode)
10746     F->insert(It, loop2MBB);
10747   F->insert(It, exitMBB);
10748   exitMBB->splice(exitMBB->begin(), BB,
10749                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10750   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10751 
10752   MachineRegisterInfo &RegInfo = F->getRegInfo();
10753   const TargetRegisterClass *RC =
10754       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10755   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
10756 
10757   Register PtrReg = RegInfo.createVirtualRegister(RC);
10758   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
10759   Register ShiftReg =
10760       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
10761   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
10762   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
10763   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
10764   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
10765   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
10766   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
10767   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
10768   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
10769   Register Ptr1Reg;
10770   Register TmpReg =
10771       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
10772 
10773   //  thisMBB:
10774   //   ...
10775   //   fallthrough --> loopMBB
10776   BB->addSuccessor(loopMBB);
10777 
10778   // The 4-byte load must be aligned, while a char or short may be
10779   // anywhere in the word.  Hence all this nasty bookkeeping code.
10780   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10781   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10782   //   xori shift, shift1, 24 [16]
10783   //   rlwinm ptr, ptr1, 0, 0, 29
10784   //   slw incr2, incr, shift
10785   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10786   //   slw mask, mask2, shift
10787   //  loopMBB:
10788   //   lwarx tmpDest, ptr
10789   //   add tmp, tmpDest, incr2
10790   //   andc tmp2, tmpDest, mask
10791   //   and tmp3, tmp, mask
10792   //   or tmp4, tmp3, tmp2
10793   //   stwcx. tmp4, ptr
10794   //   bne- loopMBB
10795   //   fallthrough --> exitMBB
10796   //   srw dest, tmpDest, shift
10797   if (ptrA != ZeroReg) {
10798     Ptr1Reg = RegInfo.createVirtualRegister(RC);
10799     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10800         .addReg(ptrA)
10801         .addReg(ptrB);
10802   } else {
10803     Ptr1Reg = ptrB;
10804   }
10805   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
10806   // mode.
10807   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
10808       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
10809       .addImm(3)
10810       .addImm(27)
10811       .addImm(is8bit ? 28 : 27);
10812   if (!isLittleEndian)
10813     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
10814         .addReg(Shift1Reg)
10815         .addImm(is8bit ? 24 : 16);
10816   if (is64bit)
10817     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10818         .addReg(Ptr1Reg)
10819         .addImm(0)
10820         .addImm(61);
10821   else
10822     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10823         .addReg(Ptr1Reg)
10824         .addImm(0)
10825         .addImm(0)
10826         .addImm(29);
10827   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
10828   if (is8bit)
10829     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10830   else {
10831     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10832     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10833         .addReg(Mask3Reg)
10834         .addImm(65535);
10835   }
10836   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10837       .addReg(Mask2Reg)
10838       .addReg(ShiftReg);
10839 
10840   BB = loopMBB;
10841   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10842       .addReg(ZeroReg)
10843       .addReg(PtrReg);
10844   if (BinOpcode)
10845     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
10846         .addReg(Incr2Reg)
10847         .addReg(TmpDestReg);
10848   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10849       .addReg(TmpDestReg)
10850       .addReg(MaskReg);
10851   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
10852   if (CmpOpcode) {
10853     // For unsigned comparisons, we can directly compare the shifted values.
10854     // For signed comparisons we shift and sign extend.
10855     Register SReg = RegInfo.createVirtualRegister(GPRC);
10856     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
10857         .addReg(TmpDestReg)
10858         .addReg(MaskReg);
10859     unsigned ValueReg = SReg;
10860     unsigned CmpReg = Incr2Reg;
10861     if (CmpOpcode == PPC::CMPW) {
10862       ValueReg = RegInfo.createVirtualRegister(GPRC);
10863       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
10864           .addReg(SReg)
10865           .addReg(ShiftReg);
10866       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
10867       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
10868           .addReg(ValueReg);
10869       ValueReg = ValueSReg;
10870       CmpReg = incr;
10871     }
10872     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10873         .addReg(CmpReg)
10874         .addReg(ValueReg);
10875     BuildMI(BB, dl, TII->get(PPC::BCC))
10876         .addImm(CmpPred)
10877         .addReg(PPC::CR0)
10878         .addMBB(exitMBB);
10879     BB->addSuccessor(loop2MBB);
10880     BB->addSuccessor(exitMBB);
10881     BB = loop2MBB;
10882   }
10883   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
10884   BuildMI(BB, dl, TII->get(PPC::STWCX))
10885       .addReg(Tmp4Reg)
10886       .addReg(ZeroReg)
10887       .addReg(PtrReg);
10888   BuildMI(BB, dl, TII->get(PPC::BCC))
10889       .addImm(PPC::PRED_NE)
10890       .addReg(PPC::CR0)
10891       .addMBB(loopMBB);
10892   BB->addSuccessor(loopMBB);
10893   BB->addSuccessor(exitMBB);
10894 
10895   //  exitMBB:
10896   //   ...
10897   BB = exitMBB;
10898   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
10899       .addReg(TmpDestReg)
10900       .addReg(ShiftReg);
10901   return BB;
10902 }
10903 
10904 llvm::MachineBasicBlock *
10905 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
10906                                     MachineBasicBlock *MBB) const {
10907   DebugLoc DL = MI.getDebugLoc();
10908   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10909   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
10910 
10911   MachineFunction *MF = MBB->getParent();
10912   MachineRegisterInfo &MRI = MF->getRegInfo();
10913 
10914   const BasicBlock *BB = MBB->getBasicBlock();
10915   MachineFunction::iterator I = ++MBB->getIterator();
10916 
10917   Register DstReg = MI.getOperand(0).getReg();
10918   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
10919   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
10920   Register mainDstReg = MRI.createVirtualRegister(RC);
10921   Register restoreDstReg = MRI.createVirtualRegister(RC);
10922 
10923   MVT PVT = getPointerTy(MF->getDataLayout());
10924   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10925          "Invalid Pointer Size!");
10926   // For v = setjmp(buf), we generate
10927   //
10928   // thisMBB:
10929   //  SjLjSetup mainMBB
10930   //  bl mainMBB
10931   //  v_restore = 1
10932   //  b sinkMBB
10933   //
10934   // mainMBB:
10935   //  buf[LabelOffset] = LR
10936   //  v_main = 0
10937   //
10938   // sinkMBB:
10939   //  v = phi(main, restore)
10940   //
10941 
10942   MachineBasicBlock *thisMBB = MBB;
10943   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
10944   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
10945   MF->insert(I, mainMBB);
10946   MF->insert(I, sinkMBB);
10947 
10948   MachineInstrBuilder MIB;
10949 
10950   // Transfer the remainder of BB and its successor edges to sinkMBB.
10951   sinkMBB->splice(sinkMBB->begin(), MBB,
10952                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
10953   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
10954 
10955   // Note that the structure of the jmp_buf used here is not compatible
10956   // with that used by libc, and is not designed to be. Specifically, it
10957   // stores only those 'reserved' registers that LLVM does not otherwise
10958   // understand how to spill. Also, by convention, by the time this
10959   // intrinsic is called, Clang has already stored the frame address in the
10960   // first slot of the buffer and stack address in the third. Following the
10961   // X86 target code, we'll store the jump address in the second slot. We also
10962   // need to save the TOC pointer (R2) to handle jumps between shared
10963   // libraries, and that will be stored in the fourth slot. The thread
10964   // identifier (R13) is not affected.
10965 
10966   // thisMBB:
10967   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10968   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10969   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10970 
10971   // Prepare IP either in reg.
10972   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
10973   Register LabelReg = MRI.createVirtualRegister(PtrRC);
10974   Register BufReg = MI.getOperand(1).getReg();
10975 
10976   if (Subtarget.is64BitELFABI()) {
10977     setUsesTOCBasePtr(*MBB->getParent());
10978     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
10979               .addReg(PPC::X2)
10980               .addImm(TOCOffset)
10981               .addReg(BufReg)
10982               .cloneMemRefs(MI);
10983   }
10984 
10985   // Naked functions never have a base pointer, and so we use r1. For all
10986   // other functions, this decision must be delayed until during PEI.
10987   unsigned BaseReg;
10988   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
10989     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
10990   else
10991     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
10992 
10993   MIB = BuildMI(*thisMBB, MI, DL,
10994                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
10995             .addReg(BaseReg)
10996             .addImm(BPOffset)
10997             .addReg(BufReg)
10998             .cloneMemRefs(MI);
10999 
11000   // Setup
11001   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11002   MIB.addRegMask(TRI->getNoPreservedMask());
11003 
11004   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11005 
11006   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11007           .addMBB(mainMBB);
11008   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11009 
11010   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11011   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11012 
11013   // mainMBB:
11014   //  mainDstReg = 0
11015   MIB =
11016       BuildMI(mainMBB, DL,
11017               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11018 
11019   // Store IP
11020   if (Subtarget.isPPC64()) {
11021     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11022             .addReg(LabelReg)
11023             .addImm(LabelOffset)
11024             .addReg(BufReg);
11025   } else {
11026     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11027             .addReg(LabelReg)
11028             .addImm(LabelOffset)
11029             .addReg(BufReg);
11030   }
11031   MIB.cloneMemRefs(MI);
11032 
11033   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11034   mainMBB->addSuccessor(sinkMBB);
11035 
11036   // sinkMBB:
11037   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11038           TII->get(PPC::PHI), DstReg)
11039     .addReg(mainDstReg).addMBB(mainMBB)
11040     .addReg(restoreDstReg).addMBB(thisMBB);
11041 
11042   MI.eraseFromParent();
11043   return sinkMBB;
11044 }
11045 
11046 MachineBasicBlock *
11047 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11048                                      MachineBasicBlock *MBB) const {
11049   DebugLoc DL = MI.getDebugLoc();
11050   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11051 
11052   MachineFunction *MF = MBB->getParent();
11053   MachineRegisterInfo &MRI = MF->getRegInfo();
11054 
11055   MVT PVT = getPointerTy(MF->getDataLayout());
11056   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11057          "Invalid Pointer Size!");
11058 
11059   const TargetRegisterClass *RC =
11060     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11061   Register Tmp = MRI.createVirtualRegister(RC);
11062   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11063   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11064   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11065   unsigned BP =
11066       (PVT == MVT::i64)
11067           ? PPC::X30
11068           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11069                                                               : PPC::R30);
11070 
11071   MachineInstrBuilder MIB;
11072 
11073   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11074   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11075   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11076   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11077 
11078   Register BufReg = MI.getOperand(0).getReg();
11079 
11080   // Reload FP (the jumped-to function may not have had a
11081   // frame pointer, and if so, then its r31 will be restored
11082   // as necessary).
11083   if (PVT == MVT::i64) {
11084     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11085             .addImm(0)
11086             .addReg(BufReg);
11087   } else {
11088     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11089             .addImm(0)
11090             .addReg(BufReg);
11091   }
11092   MIB.cloneMemRefs(MI);
11093 
11094   // Reload IP
11095   if (PVT == MVT::i64) {
11096     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11097             .addImm(LabelOffset)
11098             .addReg(BufReg);
11099   } else {
11100     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11101             .addImm(LabelOffset)
11102             .addReg(BufReg);
11103   }
11104   MIB.cloneMemRefs(MI);
11105 
11106   // Reload SP
11107   if (PVT == MVT::i64) {
11108     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11109             .addImm(SPOffset)
11110             .addReg(BufReg);
11111   } else {
11112     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11113             .addImm(SPOffset)
11114             .addReg(BufReg);
11115   }
11116   MIB.cloneMemRefs(MI);
11117 
11118   // Reload BP
11119   if (PVT == MVT::i64) {
11120     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11121             .addImm(BPOffset)
11122             .addReg(BufReg);
11123   } else {
11124     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11125             .addImm(BPOffset)
11126             .addReg(BufReg);
11127   }
11128   MIB.cloneMemRefs(MI);
11129 
11130   // Reload TOC
11131   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11132     setUsesTOCBasePtr(*MBB->getParent());
11133     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11134               .addImm(TOCOffset)
11135               .addReg(BufReg)
11136               .cloneMemRefs(MI);
11137   }
11138 
11139   // Jump
11140   BuildMI(*MBB, MI, DL,
11141           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11142   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11143 
11144   MI.eraseFromParent();
11145   return MBB;
11146 }
11147 
11148 MachineBasicBlock *
11149 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11150                                                MachineBasicBlock *BB) const {
11151   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11152       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11153     if (Subtarget.is64BitELFABI() &&
11154         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11155       // Call lowering should have added an r2 operand to indicate a dependence
11156       // on the TOC base pointer value. It can't however, because there is no
11157       // way to mark the dependence as implicit there, and so the stackmap code
11158       // will confuse it with a regular operand. Instead, add the dependence
11159       // here.
11160       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11161     }
11162 
11163     return emitPatchPoint(MI, BB);
11164   }
11165 
11166   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11167       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11168     return emitEHSjLjSetJmp(MI, BB);
11169   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11170              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11171     return emitEHSjLjLongJmp(MI, BB);
11172   }
11173 
11174   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11175 
11176   // To "insert" these instructions we actually have to insert their
11177   // control-flow patterns.
11178   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11179   MachineFunction::iterator It = ++BB->getIterator();
11180 
11181   MachineFunction *F = BB->getParent();
11182 
11183   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11184       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11185       MI.getOpcode() == PPC::SELECT_I8) {
11186     SmallVector<MachineOperand, 2> Cond;
11187     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11188         MI.getOpcode() == PPC::SELECT_CC_I8)
11189       Cond.push_back(MI.getOperand(4));
11190     else
11191       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11192     Cond.push_back(MI.getOperand(1));
11193 
11194     DebugLoc dl = MI.getDebugLoc();
11195     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11196                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11197   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11198              MI.getOpcode() == PPC::SELECT_CC_F8 ||
11199              MI.getOpcode() == PPC::SELECT_CC_F16 ||
11200              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
11201              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
11202              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
11203              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11204              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11205              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11206              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11207              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11208              MI.getOpcode() == PPC::SELECT_CC_SPE ||
11209              MI.getOpcode() == PPC::SELECT_F4 ||
11210              MI.getOpcode() == PPC::SELECT_F8 ||
11211              MI.getOpcode() == PPC::SELECT_F16 ||
11212              MI.getOpcode() == PPC::SELECT_QFRC ||
11213              MI.getOpcode() == PPC::SELECT_QSRC ||
11214              MI.getOpcode() == PPC::SELECT_QBRC ||
11215              MI.getOpcode() == PPC::SELECT_SPE ||
11216              MI.getOpcode() == PPC::SELECT_SPE4 ||
11217              MI.getOpcode() == PPC::SELECT_VRRC ||
11218              MI.getOpcode() == PPC::SELECT_VSFRC ||
11219              MI.getOpcode() == PPC::SELECT_VSSRC ||
11220              MI.getOpcode() == PPC::SELECT_VSRC) {
11221     // The incoming instruction knows the destination vreg to set, the
11222     // condition code register to branch on, the true/false values to
11223     // select between, and a branch opcode to use.
11224 
11225     //  thisMBB:
11226     //  ...
11227     //   TrueVal = ...
11228     //   cmpTY ccX, r1, r2
11229     //   bCC copy1MBB
11230     //   fallthrough --> copy0MBB
11231     MachineBasicBlock *thisMBB = BB;
11232     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11233     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11234     DebugLoc dl = MI.getDebugLoc();
11235     F->insert(It, copy0MBB);
11236     F->insert(It, sinkMBB);
11237 
11238     // Transfer the remainder of BB and its successor edges to sinkMBB.
11239     sinkMBB->splice(sinkMBB->begin(), BB,
11240                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11241     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11242 
11243     // Next, add the true and fallthrough blocks as its successors.
11244     BB->addSuccessor(copy0MBB);
11245     BB->addSuccessor(sinkMBB);
11246 
11247     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
11248         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
11249         MI.getOpcode() == PPC::SELECT_F16 ||
11250         MI.getOpcode() == PPC::SELECT_SPE4 ||
11251         MI.getOpcode() == PPC::SELECT_SPE ||
11252         MI.getOpcode() == PPC::SELECT_QFRC ||
11253         MI.getOpcode() == PPC::SELECT_QSRC ||
11254         MI.getOpcode() == PPC::SELECT_QBRC ||
11255         MI.getOpcode() == PPC::SELECT_VRRC ||
11256         MI.getOpcode() == PPC::SELECT_VSFRC ||
11257         MI.getOpcode() == PPC::SELECT_VSSRC ||
11258         MI.getOpcode() == PPC::SELECT_VSRC) {
11259       BuildMI(BB, dl, TII->get(PPC::BC))
11260           .addReg(MI.getOperand(1).getReg())
11261           .addMBB(sinkMBB);
11262     } else {
11263       unsigned SelectPred = MI.getOperand(4).getImm();
11264       BuildMI(BB, dl, TII->get(PPC::BCC))
11265           .addImm(SelectPred)
11266           .addReg(MI.getOperand(1).getReg())
11267           .addMBB(sinkMBB);
11268     }
11269 
11270     //  copy0MBB:
11271     //   %FalseValue = ...
11272     //   # fallthrough to sinkMBB
11273     BB = copy0MBB;
11274 
11275     // Update machine-CFG edges
11276     BB->addSuccessor(sinkMBB);
11277 
11278     //  sinkMBB:
11279     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11280     //  ...
11281     BB = sinkMBB;
11282     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
11283         .addReg(MI.getOperand(3).getReg())
11284         .addMBB(copy0MBB)
11285         .addReg(MI.getOperand(2).getReg())
11286         .addMBB(thisMBB);
11287   } else if (MI.getOpcode() == PPC::ReadTB) {
11288     // To read the 64-bit time-base register on a 32-bit target, we read the
11289     // two halves. Should the counter have wrapped while it was being read, we
11290     // need to try again.
11291     // ...
11292     // readLoop:
11293     // mfspr Rx,TBU # load from TBU
11294     // mfspr Ry,TB  # load from TB
11295     // mfspr Rz,TBU # load from TBU
11296     // cmpw crX,Rx,Rz # check if 'old'='new'
11297     // bne readLoop   # branch if they're not equal
11298     // ...
11299 
11300     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
11301     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11302     DebugLoc dl = MI.getDebugLoc();
11303     F->insert(It, readMBB);
11304     F->insert(It, sinkMBB);
11305 
11306     // Transfer the remainder of BB and its successor edges to sinkMBB.
11307     sinkMBB->splice(sinkMBB->begin(), BB,
11308                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11309     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11310 
11311     BB->addSuccessor(readMBB);
11312     BB = readMBB;
11313 
11314     MachineRegisterInfo &RegInfo = F->getRegInfo();
11315     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11316     Register LoReg = MI.getOperand(0).getReg();
11317     Register HiReg = MI.getOperand(1).getReg();
11318 
11319     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
11320     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
11321     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
11322 
11323     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11324 
11325     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
11326         .addReg(HiReg)
11327         .addReg(ReadAgainReg);
11328     BuildMI(BB, dl, TII->get(PPC::BCC))
11329         .addImm(PPC::PRED_NE)
11330         .addReg(CmpReg)
11331         .addMBB(readMBB);
11332 
11333     BB->addSuccessor(readMBB);
11334     BB->addSuccessor(sinkMBB);
11335   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
11336     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
11337   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
11338     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
11339   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
11340     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
11341   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
11342     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
11343 
11344   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
11345     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
11346   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
11347     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
11348   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
11349     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
11350   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
11351     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
11352 
11353   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
11354     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
11355   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
11356     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
11357   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
11358     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
11359   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
11360     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
11361 
11362   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
11363     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
11364   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
11365     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
11366   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
11367     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
11368   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
11369     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
11370 
11371   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
11372     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
11373   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
11374     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
11375   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
11376     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
11377   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
11378     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
11379 
11380   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
11381     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
11382   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
11383     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
11384   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
11385     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
11386   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
11387     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
11388 
11389   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
11390     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
11391   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
11392     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
11393   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
11394     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
11395   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
11396     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
11397 
11398   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
11399     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
11400   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
11401     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
11402   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
11403     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
11404   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
11405     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
11406 
11407   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
11408     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
11409   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
11410     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
11411   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
11412     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
11413   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
11414     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
11415 
11416   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
11417     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
11418   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
11419     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
11420   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
11421     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
11422   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
11423     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
11424 
11425   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
11426     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
11427   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
11428     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
11429   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
11430     BB = EmitAtomicBinary(MI, BB, 4, 0);
11431   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
11432     BB = EmitAtomicBinary(MI, BB, 8, 0);
11433   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
11434            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
11435            (Subtarget.hasPartwordAtomics() &&
11436             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
11437            (Subtarget.hasPartwordAtomics() &&
11438             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
11439     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
11440 
11441     auto LoadMnemonic = PPC::LDARX;
11442     auto StoreMnemonic = PPC::STDCX;
11443     switch (MI.getOpcode()) {
11444     default:
11445       llvm_unreachable("Compare and swap of unknown size");
11446     case PPC::ATOMIC_CMP_SWAP_I8:
11447       LoadMnemonic = PPC::LBARX;
11448       StoreMnemonic = PPC::STBCX;
11449       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11450       break;
11451     case PPC::ATOMIC_CMP_SWAP_I16:
11452       LoadMnemonic = PPC::LHARX;
11453       StoreMnemonic = PPC::STHCX;
11454       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11455       break;
11456     case PPC::ATOMIC_CMP_SWAP_I32:
11457       LoadMnemonic = PPC::LWARX;
11458       StoreMnemonic = PPC::STWCX;
11459       break;
11460     case PPC::ATOMIC_CMP_SWAP_I64:
11461       LoadMnemonic = PPC::LDARX;
11462       StoreMnemonic = PPC::STDCX;
11463       break;
11464     }
11465     Register dest = MI.getOperand(0).getReg();
11466     Register ptrA = MI.getOperand(1).getReg();
11467     Register ptrB = MI.getOperand(2).getReg();
11468     Register oldval = MI.getOperand(3).getReg();
11469     Register newval = MI.getOperand(4).getReg();
11470     DebugLoc dl = MI.getDebugLoc();
11471 
11472     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11473     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11474     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11475     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11476     F->insert(It, loop1MBB);
11477     F->insert(It, loop2MBB);
11478     F->insert(It, midMBB);
11479     F->insert(It, exitMBB);
11480     exitMBB->splice(exitMBB->begin(), BB,
11481                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11482     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11483 
11484     //  thisMBB:
11485     //   ...
11486     //   fallthrough --> loopMBB
11487     BB->addSuccessor(loop1MBB);
11488 
11489     // loop1MBB:
11490     //   l[bhwd]arx dest, ptr
11491     //   cmp[wd] dest, oldval
11492     //   bne- midMBB
11493     // loop2MBB:
11494     //   st[bhwd]cx. newval, ptr
11495     //   bne- loopMBB
11496     //   b exitBB
11497     // midMBB:
11498     //   st[bhwd]cx. dest, ptr
11499     // exitBB:
11500     BB = loop1MBB;
11501     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
11502     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
11503         .addReg(oldval)
11504         .addReg(dest);
11505     BuildMI(BB, dl, TII->get(PPC::BCC))
11506         .addImm(PPC::PRED_NE)
11507         .addReg(PPC::CR0)
11508         .addMBB(midMBB);
11509     BB->addSuccessor(loop2MBB);
11510     BB->addSuccessor(midMBB);
11511 
11512     BB = loop2MBB;
11513     BuildMI(BB, dl, TII->get(StoreMnemonic))
11514         .addReg(newval)
11515         .addReg(ptrA)
11516         .addReg(ptrB);
11517     BuildMI(BB, dl, TII->get(PPC::BCC))
11518         .addImm(PPC::PRED_NE)
11519         .addReg(PPC::CR0)
11520         .addMBB(loop1MBB);
11521     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11522     BB->addSuccessor(loop1MBB);
11523     BB->addSuccessor(exitMBB);
11524 
11525     BB = midMBB;
11526     BuildMI(BB, dl, TII->get(StoreMnemonic))
11527         .addReg(dest)
11528         .addReg(ptrA)
11529         .addReg(ptrB);
11530     BB->addSuccessor(exitMBB);
11531 
11532     //  exitMBB:
11533     //   ...
11534     BB = exitMBB;
11535   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
11536              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
11537     // We must use 64-bit registers for addresses when targeting 64-bit,
11538     // since we're actually doing arithmetic on them.  Other registers
11539     // can be 32-bit.
11540     bool is64bit = Subtarget.isPPC64();
11541     bool isLittleEndian = Subtarget.isLittleEndian();
11542     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
11543 
11544     Register dest = MI.getOperand(0).getReg();
11545     Register ptrA = MI.getOperand(1).getReg();
11546     Register ptrB = MI.getOperand(2).getReg();
11547     Register oldval = MI.getOperand(3).getReg();
11548     Register newval = MI.getOperand(4).getReg();
11549     DebugLoc dl = MI.getDebugLoc();
11550 
11551     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11552     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11553     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11554     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11555     F->insert(It, loop1MBB);
11556     F->insert(It, loop2MBB);
11557     F->insert(It, midMBB);
11558     F->insert(It, exitMBB);
11559     exitMBB->splice(exitMBB->begin(), BB,
11560                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11561     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11562 
11563     MachineRegisterInfo &RegInfo = F->getRegInfo();
11564     const TargetRegisterClass *RC =
11565         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11566     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11567 
11568     Register PtrReg = RegInfo.createVirtualRegister(RC);
11569     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11570     Register ShiftReg =
11571         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11572     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
11573     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
11574     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
11575     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
11576     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11577     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11578     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11579     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11580     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11581     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11582     Register Ptr1Reg;
11583     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
11584     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11585     //  thisMBB:
11586     //   ...
11587     //   fallthrough --> loopMBB
11588     BB->addSuccessor(loop1MBB);
11589 
11590     // The 4-byte load must be aligned, while a char or short may be
11591     // anywhere in the word.  Hence all this nasty bookkeeping code.
11592     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11593     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11594     //   xori shift, shift1, 24 [16]
11595     //   rlwinm ptr, ptr1, 0, 0, 29
11596     //   slw newval2, newval, shift
11597     //   slw oldval2, oldval,shift
11598     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11599     //   slw mask, mask2, shift
11600     //   and newval3, newval2, mask
11601     //   and oldval3, oldval2, mask
11602     // loop1MBB:
11603     //   lwarx tmpDest, ptr
11604     //   and tmp, tmpDest, mask
11605     //   cmpw tmp, oldval3
11606     //   bne- midMBB
11607     // loop2MBB:
11608     //   andc tmp2, tmpDest, mask
11609     //   or tmp4, tmp2, newval3
11610     //   stwcx. tmp4, ptr
11611     //   bne- loop1MBB
11612     //   b exitBB
11613     // midMBB:
11614     //   stwcx. tmpDest, ptr
11615     // exitBB:
11616     //   srw dest, tmpDest, shift
11617     if (ptrA != ZeroReg) {
11618       Ptr1Reg = RegInfo.createVirtualRegister(RC);
11619       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11620           .addReg(ptrA)
11621           .addReg(ptrB);
11622     } else {
11623       Ptr1Reg = ptrB;
11624     }
11625 
11626     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11627     // mode.
11628     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11629         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11630         .addImm(3)
11631         .addImm(27)
11632         .addImm(is8bit ? 28 : 27);
11633     if (!isLittleEndian)
11634       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11635           .addReg(Shift1Reg)
11636           .addImm(is8bit ? 24 : 16);
11637     if (is64bit)
11638       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11639           .addReg(Ptr1Reg)
11640           .addImm(0)
11641           .addImm(61);
11642     else
11643       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11644           .addReg(Ptr1Reg)
11645           .addImm(0)
11646           .addImm(0)
11647           .addImm(29);
11648     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
11649         .addReg(newval)
11650         .addReg(ShiftReg);
11651     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
11652         .addReg(oldval)
11653         .addReg(ShiftReg);
11654     if (is8bit)
11655       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11656     else {
11657       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11658       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11659           .addReg(Mask3Reg)
11660           .addImm(65535);
11661     }
11662     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11663         .addReg(Mask2Reg)
11664         .addReg(ShiftReg);
11665     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
11666         .addReg(NewVal2Reg)
11667         .addReg(MaskReg);
11668     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
11669         .addReg(OldVal2Reg)
11670         .addReg(MaskReg);
11671 
11672     BB = loop1MBB;
11673     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11674         .addReg(ZeroReg)
11675         .addReg(PtrReg);
11676     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
11677         .addReg(TmpDestReg)
11678         .addReg(MaskReg);
11679     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
11680         .addReg(TmpReg)
11681         .addReg(OldVal3Reg);
11682     BuildMI(BB, dl, TII->get(PPC::BCC))
11683         .addImm(PPC::PRED_NE)
11684         .addReg(PPC::CR0)
11685         .addMBB(midMBB);
11686     BB->addSuccessor(loop2MBB);
11687     BB->addSuccessor(midMBB);
11688 
11689     BB = loop2MBB;
11690     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11691         .addReg(TmpDestReg)
11692         .addReg(MaskReg);
11693     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
11694         .addReg(Tmp2Reg)
11695         .addReg(NewVal3Reg);
11696     BuildMI(BB, dl, TII->get(PPC::STWCX))
11697         .addReg(Tmp4Reg)
11698         .addReg(ZeroReg)
11699         .addReg(PtrReg);
11700     BuildMI(BB, dl, TII->get(PPC::BCC))
11701         .addImm(PPC::PRED_NE)
11702         .addReg(PPC::CR0)
11703         .addMBB(loop1MBB);
11704     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11705     BB->addSuccessor(loop1MBB);
11706     BB->addSuccessor(exitMBB);
11707 
11708     BB = midMBB;
11709     BuildMI(BB, dl, TII->get(PPC::STWCX))
11710         .addReg(TmpDestReg)
11711         .addReg(ZeroReg)
11712         .addReg(PtrReg);
11713     BB->addSuccessor(exitMBB);
11714 
11715     //  exitMBB:
11716     //   ...
11717     BB = exitMBB;
11718     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11719         .addReg(TmpReg)
11720         .addReg(ShiftReg);
11721   } else if (MI.getOpcode() == PPC::FADDrtz) {
11722     // This pseudo performs an FADD with rounding mode temporarily forced
11723     // to round-to-zero.  We emit this via custom inserter since the FPSCR
11724     // is not modeled at the SelectionDAG level.
11725     Register Dest = MI.getOperand(0).getReg();
11726     Register Src1 = MI.getOperand(1).getReg();
11727     Register Src2 = MI.getOperand(2).getReg();
11728     DebugLoc dl = MI.getDebugLoc();
11729 
11730     MachineRegisterInfo &RegInfo = F->getRegInfo();
11731     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11732 
11733     // Save FPSCR value.
11734     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
11735 
11736     // Set rounding mode to round-to-zero.
11737     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
11738     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
11739 
11740     // Perform addition.
11741     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
11742 
11743     // Restore FPSCR value.
11744     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
11745   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
11746              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
11747              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
11748              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
11749     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
11750                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
11751                           ? PPC::ANDI8_rec
11752                           : PPC::ANDI_rec;
11753     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
11754                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
11755 
11756     MachineRegisterInfo &RegInfo = F->getRegInfo();
11757     Register Dest = RegInfo.createVirtualRegister(
11758         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
11759 
11760     DebugLoc Dl = MI.getDebugLoc();
11761     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
11762         .addReg(MI.getOperand(1).getReg())
11763         .addImm(1);
11764     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11765             MI.getOperand(0).getReg())
11766         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
11767   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
11768     DebugLoc Dl = MI.getDebugLoc();
11769     MachineRegisterInfo &RegInfo = F->getRegInfo();
11770     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11771     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
11772     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11773             MI.getOperand(0).getReg())
11774         .addReg(CRReg);
11775   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
11776     DebugLoc Dl = MI.getDebugLoc();
11777     unsigned Imm = MI.getOperand(1).getImm();
11778     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
11779     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11780             MI.getOperand(0).getReg())
11781         .addReg(PPC::CR0EQ);
11782   } else if (MI.getOpcode() == PPC::SETRNDi) {
11783     DebugLoc dl = MI.getDebugLoc();
11784     Register OldFPSCRReg = MI.getOperand(0).getReg();
11785 
11786     // Save FPSCR value.
11787     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11788 
11789     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
11790     // the following settings:
11791     //   00 Round to nearest
11792     //   01 Round to 0
11793     //   10 Round to +inf
11794     //   11 Round to -inf
11795 
11796     // When the operand is immediate, using the two least significant bits of
11797     // the immediate to set the bits 62:63 of FPSCR.
11798     unsigned Mode = MI.getOperand(1).getImm();
11799     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
11800       .addImm(31);
11801 
11802     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
11803       .addImm(30);
11804   } else if (MI.getOpcode() == PPC::SETRND) {
11805     DebugLoc dl = MI.getDebugLoc();
11806 
11807     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
11808     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
11809     // If the target doesn't have DirectMove, we should use stack to do the
11810     // conversion, because the target doesn't have the instructions like mtvsrd
11811     // or mfvsrd to do this conversion directly.
11812     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
11813       if (Subtarget.hasDirectMove()) {
11814         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
11815           .addReg(SrcReg);
11816       } else {
11817         // Use stack to do the register copy.
11818         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
11819         MachineRegisterInfo &RegInfo = F->getRegInfo();
11820         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
11821         if (RC == &PPC::F8RCRegClass) {
11822           // Copy register from F8RCRegClass to G8RCRegclass.
11823           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
11824                  "Unsupported RegClass.");
11825 
11826           StoreOp = PPC::STFD;
11827           LoadOp = PPC::LD;
11828         } else {
11829           // Copy register from G8RCRegClass to F8RCRegclass.
11830           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
11831                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
11832                  "Unsupported RegClass.");
11833         }
11834 
11835         MachineFrameInfo &MFI = F->getFrameInfo();
11836         int FrameIdx = MFI.CreateStackObject(8, 8, false);
11837 
11838         MachineMemOperand *MMOStore = F->getMachineMemOperand(
11839           MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11840           MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
11841           MFI.getObjectAlignment(FrameIdx));
11842 
11843         // Store the SrcReg into the stack.
11844         BuildMI(*BB, MI, dl, TII->get(StoreOp))
11845           .addReg(SrcReg)
11846           .addImm(0)
11847           .addFrameIndex(FrameIdx)
11848           .addMemOperand(MMOStore);
11849 
11850         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
11851           MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11852           MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
11853           MFI.getObjectAlignment(FrameIdx));
11854 
11855         // Load from the stack where SrcReg is stored, and save to DestReg,
11856         // so we have done the RegClass conversion from RegClass::SrcReg to
11857         // RegClass::DestReg.
11858         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
11859           .addImm(0)
11860           .addFrameIndex(FrameIdx)
11861           .addMemOperand(MMOLoad);
11862       }
11863     };
11864 
11865     Register OldFPSCRReg = MI.getOperand(0).getReg();
11866 
11867     // Save FPSCR value.
11868     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11869 
11870     // When the operand is gprc register, use two least significant bits of the
11871     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
11872     //
11873     // copy OldFPSCRTmpReg, OldFPSCRReg
11874     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
11875     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
11876     // copy NewFPSCRReg, NewFPSCRTmpReg
11877     // mtfsf 255, NewFPSCRReg
11878     MachineOperand SrcOp = MI.getOperand(1);
11879     MachineRegisterInfo &RegInfo = F->getRegInfo();
11880     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11881 
11882     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
11883 
11884     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11885     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11886 
11887     // The first operand of INSERT_SUBREG should be a register which has
11888     // subregisters, we only care about its RegClass, so we should use an
11889     // IMPLICIT_DEF register.
11890     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
11891     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
11892       .addReg(ImDefReg)
11893       .add(SrcOp)
11894       .addImm(1);
11895 
11896     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11897     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
11898       .addReg(OldFPSCRTmpReg)
11899       .addReg(ExtSrcReg)
11900       .addImm(0)
11901       .addImm(62);
11902 
11903     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11904     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
11905 
11906     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
11907     // bits of FPSCR.
11908     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
11909       .addImm(255)
11910       .addReg(NewFPSCRReg)
11911       .addImm(0)
11912       .addImm(0);
11913   } else {
11914     llvm_unreachable("Unexpected instr type to insert");
11915   }
11916 
11917   MI.eraseFromParent(); // The pseudo instruction is gone now.
11918   return BB;
11919 }
11920 
11921 //===----------------------------------------------------------------------===//
11922 // Target Optimization Hooks
11923 //===----------------------------------------------------------------------===//
11924 
11925 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
11926   // For the estimates, convergence is quadratic, so we essentially double the
11927   // number of digits correct after every iteration. For both FRE and FRSQRTE,
11928   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
11929   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
11930   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
11931   if (VT.getScalarType() == MVT::f64)
11932     RefinementSteps++;
11933   return RefinementSteps;
11934 }
11935 
11936 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
11937                                            int Enabled, int &RefinementSteps,
11938                                            bool &UseOneConstNR,
11939                                            bool Reciprocal) const {
11940   EVT VT = Operand.getValueType();
11941   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
11942       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
11943       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11944       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11945       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11946       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11947     if (RefinementSteps == ReciprocalEstimate::Unspecified)
11948       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11949 
11950     // The Newton-Raphson computation with a single constant does not provide
11951     // enough accuracy on some CPUs.
11952     UseOneConstNR = !Subtarget.needsTwoConstNR();
11953     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
11954   }
11955   return SDValue();
11956 }
11957 
11958 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
11959                                             int Enabled,
11960                                             int &RefinementSteps) const {
11961   EVT VT = Operand.getValueType();
11962   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
11963       (VT == MVT::f64 && Subtarget.hasFRE()) ||
11964       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11965       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11966       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11967       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11968     if (RefinementSteps == ReciprocalEstimate::Unspecified)
11969       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11970     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
11971   }
11972   return SDValue();
11973 }
11974 
11975 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
11976   // Note: This functionality is used only when unsafe-fp-math is enabled, and
11977   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
11978   // enabled for division), this functionality is redundant with the default
11979   // combiner logic (once the division -> reciprocal/multiply transformation
11980   // has taken place). As a result, this matters more for older cores than for
11981   // newer ones.
11982 
11983   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
11984   // reciprocal if there are two or more FDIVs (for embedded cores with only
11985   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
11986   switch (Subtarget.getCPUDirective()) {
11987   default:
11988     return 3;
11989   case PPC::DIR_440:
11990   case PPC::DIR_A2:
11991   case PPC::DIR_E500:
11992   case PPC::DIR_E500mc:
11993   case PPC::DIR_E5500:
11994     return 2;
11995   }
11996 }
11997 
11998 // isConsecutiveLSLoc needs to work even if all adds have not yet been
11999 // collapsed, and so we need to look through chains of them.
12000 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
12001                                      int64_t& Offset, SelectionDAG &DAG) {
12002   if (DAG.isBaseWithConstantOffset(Loc)) {
12003     Base = Loc.getOperand(0);
12004     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
12005 
12006     // The base might itself be a base plus an offset, and if so, accumulate
12007     // that as well.
12008     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
12009   }
12010 }
12011 
12012 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
12013                             unsigned Bytes, int Dist,
12014                             SelectionDAG &DAG) {
12015   if (VT.getSizeInBits() / 8 != Bytes)
12016     return false;
12017 
12018   SDValue BaseLoc = Base->getBasePtr();
12019   if (Loc.getOpcode() == ISD::FrameIndex) {
12020     if (BaseLoc.getOpcode() != ISD::FrameIndex)
12021       return false;
12022     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
12023     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
12024     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
12025     int FS  = MFI.getObjectSize(FI);
12026     int BFS = MFI.getObjectSize(BFI);
12027     if (FS != BFS || FS != (int)Bytes) return false;
12028     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12029   }
12030 
12031   SDValue Base1 = Loc, Base2 = BaseLoc;
12032   int64_t Offset1 = 0, Offset2 = 0;
12033   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12034   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12035   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12036     return true;
12037 
12038   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12039   const GlobalValue *GV1 = nullptr;
12040   const GlobalValue *GV2 = nullptr;
12041   Offset1 = 0;
12042   Offset2 = 0;
12043   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12044   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12045   if (isGA1 && isGA2 && GV1 == GV2)
12046     return Offset1 == (Offset2 + Dist*Bytes);
12047   return false;
12048 }
12049 
12050 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12051 // not enforce equality of the chain operands.
12052 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12053                             unsigned Bytes, int Dist,
12054                             SelectionDAG &DAG) {
12055   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12056     EVT VT = LS->getMemoryVT();
12057     SDValue Loc = LS->getBasePtr();
12058     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12059   }
12060 
12061   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12062     EVT VT;
12063     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12064     default: return false;
12065     case Intrinsic::ppc_qpx_qvlfd:
12066     case Intrinsic::ppc_qpx_qvlfda:
12067       VT = MVT::v4f64;
12068       break;
12069     case Intrinsic::ppc_qpx_qvlfs:
12070     case Intrinsic::ppc_qpx_qvlfsa:
12071       VT = MVT::v4f32;
12072       break;
12073     case Intrinsic::ppc_qpx_qvlfcd:
12074     case Intrinsic::ppc_qpx_qvlfcda:
12075       VT = MVT::v2f64;
12076       break;
12077     case Intrinsic::ppc_qpx_qvlfcs:
12078     case Intrinsic::ppc_qpx_qvlfcsa:
12079       VT = MVT::v2f32;
12080       break;
12081     case Intrinsic::ppc_qpx_qvlfiwa:
12082     case Intrinsic::ppc_qpx_qvlfiwz:
12083     case Intrinsic::ppc_altivec_lvx:
12084     case Intrinsic::ppc_altivec_lvxl:
12085     case Intrinsic::ppc_vsx_lxvw4x:
12086     case Intrinsic::ppc_vsx_lxvw4x_be:
12087       VT = MVT::v4i32;
12088       break;
12089     case Intrinsic::ppc_vsx_lxvd2x:
12090     case Intrinsic::ppc_vsx_lxvd2x_be:
12091       VT = MVT::v2f64;
12092       break;
12093     case Intrinsic::ppc_altivec_lvebx:
12094       VT = MVT::i8;
12095       break;
12096     case Intrinsic::ppc_altivec_lvehx:
12097       VT = MVT::i16;
12098       break;
12099     case Intrinsic::ppc_altivec_lvewx:
12100       VT = MVT::i32;
12101       break;
12102     }
12103 
12104     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12105   }
12106 
12107   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12108     EVT VT;
12109     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12110     default: return false;
12111     case Intrinsic::ppc_qpx_qvstfd:
12112     case Intrinsic::ppc_qpx_qvstfda:
12113       VT = MVT::v4f64;
12114       break;
12115     case Intrinsic::ppc_qpx_qvstfs:
12116     case Intrinsic::ppc_qpx_qvstfsa:
12117       VT = MVT::v4f32;
12118       break;
12119     case Intrinsic::ppc_qpx_qvstfcd:
12120     case Intrinsic::ppc_qpx_qvstfcda:
12121       VT = MVT::v2f64;
12122       break;
12123     case Intrinsic::ppc_qpx_qvstfcs:
12124     case Intrinsic::ppc_qpx_qvstfcsa:
12125       VT = MVT::v2f32;
12126       break;
12127     case Intrinsic::ppc_qpx_qvstfiw:
12128     case Intrinsic::ppc_qpx_qvstfiwa:
12129     case Intrinsic::ppc_altivec_stvx:
12130     case Intrinsic::ppc_altivec_stvxl:
12131     case Intrinsic::ppc_vsx_stxvw4x:
12132       VT = MVT::v4i32;
12133       break;
12134     case Intrinsic::ppc_vsx_stxvd2x:
12135       VT = MVT::v2f64;
12136       break;
12137     case Intrinsic::ppc_vsx_stxvw4x_be:
12138       VT = MVT::v4i32;
12139       break;
12140     case Intrinsic::ppc_vsx_stxvd2x_be:
12141       VT = MVT::v2f64;
12142       break;
12143     case Intrinsic::ppc_altivec_stvebx:
12144       VT = MVT::i8;
12145       break;
12146     case Intrinsic::ppc_altivec_stvehx:
12147       VT = MVT::i16;
12148       break;
12149     case Intrinsic::ppc_altivec_stvewx:
12150       VT = MVT::i32;
12151       break;
12152     }
12153 
12154     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12155   }
12156 
12157   return false;
12158 }
12159 
12160 // Return true is there is a nearyby consecutive load to the one provided
12161 // (regardless of alignment). We search up and down the chain, looking though
12162 // token factors and other loads (but nothing else). As a result, a true result
12163 // indicates that it is safe to create a new consecutive load adjacent to the
12164 // load provided.
12165 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
12166   SDValue Chain = LD->getChain();
12167   EVT VT = LD->getMemoryVT();
12168 
12169   SmallSet<SDNode *, 16> LoadRoots;
12170   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
12171   SmallSet<SDNode *, 16> Visited;
12172 
12173   // First, search up the chain, branching to follow all token-factor operands.
12174   // If we find a consecutive load, then we're done, otherwise, record all
12175   // nodes just above the top-level loads and token factors.
12176   while (!Queue.empty()) {
12177     SDNode *ChainNext = Queue.pop_back_val();
12178     if (!Visited.insert(ChainNext).second)
12179       continue;
12180 
12181     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
12182       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12183         return true;
12184 
12185       if (!Visited.count(ChainLD->getChain().getNode()))
12186         Queue.push_back(ChainLD->getChain().getNode());
12187     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
12188       for (const SDUse &O : ChainNext->ops())
12189         if (!Visited.count(O.getNode()))
12190           Queue.push_back(O.getNode());
12191     } else
12192       LoadRoots.insert(ChainNext);
12193   }
12194 
12195   // Second, search down the chain, starting from the top-level nodes recorded
12196   // in the first phase. These top-level nodes are the nodes just above all
12197   // loads and token factors. Starting with their uses, recursively look though
12198   // all loads (just the chain uses) and token factors to find a consecutive
12199   // load.
12200   Visited.clear();
12201   Queue.clear();
12202 
12203   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
12204        IE = LoadRoots.end(); I != IE; ++I) {
12205     Queue.push_back(*I);
12206 
12207     while (!Queue.empty()) {
12208       SDNode *LoadRoot = Queue.pop_back_val();
12209       if (!Visited.insert(LoadRoot).second)
12210         continue;
12211 
12212       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
12213         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12214           return true;
12215 
12216       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
12217            UE = LoadRoot->use_end(); UI != UE; ++UI)
12218         if (((isa<MemSDNode>(*UI) &&
12219             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
12220             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
12221           Queue.push_back(*UI);
12222     }
12223   }
12224 
12225   return false;
12226 }
12227 
12228 /// This function is called when we have proved that a SETCC node can be replaced
12229 /// by subtraction (and other supporting instructions) so that the result of
12230 /// comparison is kept in a GPR instead of CR. This function is purely for
12231 /// codegen purposes and has some flags to guide the codegen process.
12232 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
12233                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
12234   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12235 
12236   // Zero extend the operands to the largest legal integer. Originally, they
12237   // must be of a strictly smaller size.
12238   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
12239                          DAG.getConstant(Size, DL, MVT::i32));
12240   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
12241                          DAG.getConstant(Size, DL, MVT::i32));
12242 
12243   // Swap if needed. Depends on the condition code.
12244   if (Swap)
12245     std::swap(Op0, Op1);
12246 
12247   // Subtract extended integers.
12248   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
12249 
12250   // Move the sign bit to the least significant position and zero out the rest.
12251   // Now the least significant bit carries the result of original comparison.
12252   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
12253                              DAG.getConstant(Size - 1, DL, MVT::i32));
12254   auto Final = Shifted;
12255 
12256   // Complement the result if needed. Based on the condition code.
12257   if (Complement)
12258     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
12259                         DAG.getConstant(1, DL, MVT::i64));
12260 
12261   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
12262 }
12263 
12264 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
12265                                                   DAGCombinerInfo &DCI) const {
12266   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12267 
12268   SelectionDAG &DAG = DCI.DAG;
12269   SDLoc DL(N);
12270 
12271   // Size of integers being compared has a critical role in the following
12272   // analysis, so we prefer to do this when all types are legal.
12273   if (!DCI.isAfterLegalizeDAG())
12274     return SDValue();
12275 
12276   // If all users of SETCC extend its value to a legal integer type
12277   // then we replace SETCC with a subtraction
12278   for (SDNode::use_iterator UI = N->use_begin(),
12279        UE = N->use_end(); UI != UE; ++UI) {
12280     if (UI->getOpcode() != ISD::ZERO_EXTEND)
12281       return SDValue();
12282   }
12283 
12284   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12285   auto OpSize = N->getOperand(0).getValueSizeInBits();
12286 
12287   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
12288 
12289   if (OpSize < Size) {
12290     switch (CC) {
12291     default: break;
12292     case ISD::SETULT:
12293       return generateEquivalentSub(N, Size, false, false, DL, DAG);
12294     case ISD::SETULE:
12295       return generateEquivalentSub(N, Size, true, true, DL, DAG);
12296     case ISD::SETUGT:
12297       return generateEquivalentSub(N, Size, false, true, DL, DAG);
12298     case ISD::SETUGE:
12299       return generateEquivalentSub(N, Size, true, false, DL, DAG);
12300     }
12301   }
12302 
12303   return SDValue();
12304 }
12305 
12306 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
12307                                                   DAGCombinerInfo &DCI) const {
12308   SelectionDAG &DAG = DCI.DAG;
12309   SDLoc dl(N);
12310 
12311   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
12312   // If we're tracking CR bits, we need to be careful that we don't have:
12313   //   trunc(binary-ops(zext(x), zext(y)))
12314   // or
12315   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
12316   // such that we're unnecessarily moving things into GPRs when it would be
12317   // better to keep them in CR bits.
12318 
12319   // Note that trunc here can be an actual i1 trunc, or can be the effective
12320   // truncation that comes from a setcc or select_cc.
12321   if (N->getOpcode() == ISD::TRUNCATE &&
12322       N->getValueType(0) != MVT::i1)
12323     return SDValue();
12324 
12325   if (N->getOperand(0).getValueType() != MVT::i32 &&
12326       N->getOperand(0).getValueType() != MVT::i64)
12327     return SDValue();
12328 
12329   if (N->getOpcode() == ISD::SETCC ||
12330       N->getOpcode() == ISD::SELECT_CC) {
12331     // If we're looking at a comparison, then we need to make sure that the
12332     // high bits (all except for the first) don't matter the result.
12333     ISD::CondCode CC =
12334       cast<CondCodeSDNode>(N->getOperand(
12335         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
12336     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
12337 
12338     if (ISD::isSignedIntSetCC(CC)) {
12339       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
12340           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
12341         return SDValue();
12342     } else if (ISD::isUnsignedIntSetCC(CC)) {
12343       if (!DAG.MaskedValueIsZero(N->getOperand(0),
12344                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
12345           !DAG.MaskedValueIsZero(N->getOperand(1),
12346                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
12347         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
12348                                              : SDValue());
12349     } else {
12350       // This is neither a signed nor an unsigned comparison, just make sure
12351       // that the high bits are equal.
12352       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
12353       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
12354 
12355       // We don't really care about what is known about the first bit (if
12356       // anything), so clear it in all masks prior to comparing them.
12357       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
12358       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
12359 
12360       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
12361         return SDValue();
12362     }
12363   }
12364 
12365   // We now know that the higher-order bits are irrelevant, we just need to
12366   // make sure that all of the intermediate operations are bit operations, and
12367   // all inputs are extensions.
12368   if (N->getOperand(0).getOpcode() != ISD::AND &&
12369       N->getOperand(0).getOpcode() != ISD::OR  &&
12370       N->getOperand(0).getOpcode() != ISD::XOR &&
12371       N->getOperand(0).getOpcode() != ISD::SELECT &&
12372       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
12373       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
12374       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
12375       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
12376       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
12377     return SDValue();
12378 
12379   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
12380       N->getOperand(1).getOpcode() != ISD::AND &&
12381       N->getOperand(1).getOpcode() != ISD::OR  &&
12382       N->getOperand(1).getOpcode() != ISD::XOR &&
12383       N->getOperand(1).getOpcode() != ISD::SELECT &&
12384       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
12385       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
12386       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
12387       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
12388       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
12389     return SDValue();
12390 
12391   SmallVector<SDValue, 4> Inputs;
12392   SmallVector<SDValue, 8> BinOps, PromOps;
12393   SmallPtrSet<SDNode *, 16> Visited;
12394 
12395   for (unsigned i = 0; i < 2; ++i) {
12396     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12397           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12398           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12399           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12400         isa<ConstantSDNode>(N->getOperand(i)))
12401       Inputs.push_back(N->getOperand(i));
12402     else
12403       BinOps.push_back(N->getOperand(i));
12404 
12405     if (N->getOpcode() == ISD::TRUNCATE)
12406       break;
12407   }
12408 
12409   // Visit all inputs, collect all binary operations (and, or, xor and
12410   // select) that are all fed by extensions.
12411   while (!BinOps.empty()) {
12412     SDValue BinOp = BinOps.back();
12413     BinOps.pop_back();
12414 
12415     if (!Visited.insert(BinOp.getNode()).second)
12416       continue;
12417 
12418     PromOps.push_back(BinOp);
12419 
12420     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12421       // The condition of the select is not promoted.
12422       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12423         continue;
12424       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12425         continue;
12426 
12427       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12428             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12429             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12430            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12431           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12432         Inputs.push_back(BinOp.getOperand(i));
12433       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12434                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12435                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12436                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12437                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
12438                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12439                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12440                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12441                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
12442         BinOps.push_back(BinOp.getOperand(i));
12443       } else {
12444         // We have an input that is not an extension or another binary
12445         // operation; we'll abort this transformation.
12446         return SDValue();
12447       }
12448     }
12449   }
12450 
12451   // Make sure that this is a self-contained cluster of operations (which
12452   // is not quite the same thing as saying that everything has only one
12453   // use).
12454   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12455     if (isa<ConstantSDNode>(Inputs[i]))
12456       continue;
12457 
12458     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12459                               UE = Inputs[i].getNode()->use_end();
12460          UI != UE; ++UI) {
12461       SDNode *User = *UI;
12462       if (User != N && !Visited.count(User))
12463         return SDValue();
12464 
12465       // Make sure that we're not going to promote the non-output-value
12466       // operand(s) or SELECT or SELECT_CC.
12467       // FIXME: Although we could sometimes handle this, and it does occur in
12468       // practice that one of the condition inputs to the select is also one of
12469       // the outputs, we currently can't deal with this.
12470       if (User->getOpcode() == ISD::SELECT) {
12471         if (User->getOperand(0) == Inputs[i])
12472           return SDValue();
12473       } else if (User->getOpcode() == ISD::SELECT_CC) {
12474         if (User->getOperand(0) == Inputs[i] ||
12475             User->getOperand(1) == Inputs[i])
12476           return SDValue();
12477       }
12478     }
12479   }
12480 
12481   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12482     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12483                               UE = PromOps[i].getNode()->use_end();
12484          UI != UE; ++UI) {
12485       SDNode *User = *UI;
12486       if (User != N && !Visited.count(User))
12487         return SDValue();
12488 
12489       // Make sure that we're not going to promote the non-output-value
12490       // operand(s) or SELECT or SELECT_CC.
12491       // FIXME: Although we could sometimes handle this, and it does occur in
12492       // practice that one of the condition inputs to the select is also one of
12493       // the outputs, we currently can't deal with this.
12494       if (User->getOpcode() == ISD::SELECT) {
12495         if (User->getOperand(0) == PromOps[i])
12496           return SDValue();
12497       } else if (User->getOpcode() == ISD::SELECT_CC) {
12498         if (User->getOperand(0) == PromOps[i] ||
12499             User->getOperand(1) == PromOps[i])
12500           return SDValue();
12501       }
12502     }
12503   }
12504 
12505   // Replace all inputs with the extension operand.
12506   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12507     // Constants may have users outside the cluster of to-be-promoted nodes,
12508     // and so we need to replace those as we do the promotions.
12509     if (isa<ConstantSDNode>(Inputs[i]))
12510       continue;
12511     else
12512       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
12513   }
12514 
12515   std::list<HandleSDNode> PromOpHandles;
12516   for (auto &PromOp : PromOps)
12517     PromOpHandles.emplace_back(PromOp);
12518 
12519   // Replace all operations (these are all the same, but have a different
12520   // (i1) return type). DAG.getNode will validate that the types of
12521   // a binary operator match, so go through the list in reverse so that
12522   // we've likely promoted both operands first. Any intermediate truncations or
12523   // extensions disappear.
12524   while (!PromOpHandles.empty()) {
12525     SDValue PromOp = PromOpHandles.back().getValue();
12526     PromOpHandles.pop_back();
12527 
12528     if (PromOp.getOpcode() == ISD::TRUNCATE ||
12529         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
12530         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
12531         PromOp.getOpcode() == ISD::ANY_EXTEND) {
12532       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
12533           PromOp.getOperand(0).getValueType() != MVT::i1) {
12534         // The operand is not yet ready (see comment below).
12535         PromOpHandles.emplace_front(PromOp);
12536         continue;
12537       }
12538 
12539       SDValue RepValue = PromOp.getOperand(0);
12540       if (isa<ConstantSDNode>(RepValue))
12541         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
12542 
12543       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
12544       continue;
12545     }
12546 
12547     unsigned C;
12548     switch (PromOp.getOpcode()) {
12549     default:             C = 0; break;
12550     case ISD::SELECT:    C = 1; break;
12551     case ISD::SELECT_CC: C = 2; break;
12552     }
12553 
12554     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12555          PromOp.getOperand(C).getValueType() != MVT::i1) ||
12556         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12557          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
12558       // The to-be-promoted operands of this node have not yet been
12559       // promoted (this should be rare because we're going through the
12560       // list backward, but if one of the operands has several users in
12561       // this cluster of to-be-promoted nodes, it is possible).
12562       PromOpHandles.emplace_front(PromOp);
12563       continue;
12564     }
12565 
12566     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12567                                 PromOp.getNode()->op_end());
12568 
12569     // If there are any constant inputs, make sure they're replaced now.
12570     for (unsigned i = 0; i < 2; ++i)
12571       if (isa<ConstantSDNode>(Ops[C+i]))
12572         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
12573 
12574     DAG.ReplaceAllUsesOfValueWith(PromOp,
12575       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
12576   }
12577 
12578   // Now we're left with the initial truncation itself.
12579   if (N->getOpcode() == ISD::TRUNCATE)
12580     return N->getOperand(0);
12581 
12582   // Otherwise, this is a comparison. The operands to be compared have just
12583   // changed type (to i1), but everything else is the same.
12584   return SDValue(N, 0);
12585 }
12586 
12587 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
12588                                                   DAGCombinerInfo &DCI) const {
12589   SelectionDAG &DAG = DCI.DAG;
12590   SDLoc dl(N);
12591 
12592   // If we're tracking CR bits, we need to be careful that we don't have:
12593   //   zext(binary-ops(trunc(x), trunc(y)))
12594   // or
12595   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
12596   // such that we're unnecessarily moving things into CR bits that can more
12597   // efficiently stay in GPRs. Note that if we're not certain that the high
12598   // bits are set as required by the final extension, we still may need to do
12599   // some masking to get the proper behavior.
12600 
12601   // This same functionality is important on PPC64 when dealing with
12602   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
12603   // the return values of functions. Because it is so similar, it is handled
12604   // here as well.
12605 
12606   if (N->getValueType(0) != MVT::i32 &&
12607       N->getValueType(0) != MVT::i64)
12608     return SDValue();
12609 
12610   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
12611         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
12612     return SDValue();
12613 
12614   if (N->getOperand(0).getOpcode() != ISD::AND &&
12615       N->getOperand(0).getOpcode() != ISD::OR  &&
12616       N->getOperand(0).getOpcode() != ISD::XOR &&
12617       N->getOperand(0).getOpcode() != ISD::SELECT &&
12618       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
12619     return SDValue();
12620 
12621   SmallVector<SDValue, 4> Inputs;
12622   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
12623   SmallPtrSet<SDNode *, 16> Visited;
12624 
12625   // Visit all inputs, collect all binary operations (and, or, xor and
12626   // select) that are all fed by truncations.
12627   while (!BinOps.empty()) {
12628     SDValue BinOp = BinOps.back();
12629     BinOps.pop_back();
12630 
12631     if (!Visited.insert(BinOp.getNode()).second)
12632       continue;
12633 
12634     PromOps.push_back(BinOp);
12635 
12636     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12637       // The condition of the select is not promoted.
12638       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12639         continue;
12640       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12641         continue;
12642 
12643       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12644           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12645         Inputs.push_back(BinOp.getOperand(i));
12646       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12647                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12648                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12649                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12650                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
12651         BinOps.push_back(BinOp.getOperand(i));
12652       } else {
12653         // We have an input that is not a truncation or another binary
12654         // operation; we'll abort this transformation.
12655         return SDValue();
12656       }
12657     }
12658   }
12659 
12660   // The operands of a select that must be truncated when the select is
12661   // promoted because the operand is actually part of the to-be-promoted set.
12662   DenseMap<SDNode *, EVT> SelectTruncOp[2];
12663 
12664   // Make sure that this is a self-contained cluster of operations (which
12665   // is not quite the same thing as saying that everything has only one
12666   // use).
12667   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12668     if (isa<ConstantSDNode>(Inputs[i]))
12669       continue;
12670 
12671     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12672                               UE = Inputs[i].getNode()->use_end();
12673          UI != UE; ++UI) {
12674       SDNode *User = *UI;
12675       if (User != N && !Visited.count(User))
12676         return SDValue();
12677 
12678       // If we're going to promote the non-output-value operand(s) or SELECT or
12679       // SELECT_CC, record them for truncation.
12680       if (User->getOpcode() == ISD::SELECT) {
12681         if (User->getOperand(0) == Inputs[i])
12682           SelectTruncOp[0].insert(std::make_pair(User,
12683                                     User->getOperand(0).getValueType()));
12684       } else if (User->getOpcode() == ISD::SELECT_CC) {
12685         if (User->getOperand(0) == Inputs[i])
12686           SelectTruncOp[0].insert(std::make_pair(User,
12687                                     User->getOperand(0).getValueType()));
12688         if (User->getOperand(1) == Inputs[i])
12689           SelectTruncOp[1].insert(std::make_pair(User,
12690                                     User->getOperand(1).getValueType()));
12691       }
12692     }
12693   }
12694 
12695   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12696     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12697                               UE = PromOps[i].getNode()->use_end();
12698          UI != UE; ++UI) {
12699       SDNode *User = *UI;
12700       if (User != N && !Visited.count(User))
12701         return SDValue();
12702 
12703       // If we're going to promote the non-output-value operand(s) or SELECT or
12704       // SELECT_CC, record them for truncation.
12705       if (User->getOpcode() == ISD::SELECT) {
12706         if (User->getOperand(0) == PromOps[i])
12707           SelectTruncOp[0].insert(std::make_pair(User,
12708                                     User->getOperand(0).getValueType()));
12709       } else if (User->getOpcode() == ISD::SELECT_CC) {
12710         if (User->getOperand(0) == PromOps[i])
12711           SelectTruncOp[0].insert(std::make_pair(User,
12712                                     User->getOperand(0).getValueType()));
12713         if (User->getOperand(1) == PromOps[i])
12714           SelectTruncOp[1].insert(std::make_pair(User,
12715                                     User->getOperand(1).getValueType()));
12716       }
12717     }
12718   }
12719 
12720   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
12721   bool ReallyNeedsExt = false;
12722   if (N->getOpcode() != ISD::ANY_EXTEND) {
12723     // If all of the inputs are not already sign/zero extended, then
12724     // we'll still need to do that at the end.
12725     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12726       if (isa<ConstantSDNode>(Inputs[i]))
12727         continue;
12728 
12729       unsigned OpBits =
12730         Inputs[i].getOperand(0).getValueSizeInBits();
12731       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
12732 
12733       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
12734            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
12735                                   APInt::getHighBitsSet(OpBits,
12736                                                         OpBits-PromBits))) ||
12737           (N->getOpcode() == ISD::SIGN_EXTEND &&
12738            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
12739              (OpBits-(PromBits-1)))) {
12740         ReallyNeedsExt = true;
12741         break;
12742       }
12743     }
12744   }
12745 
12746   // Replace all inputs, either with the truncation operand, or a
12747   // truncation or extension to the final output type.
12748   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12749     // Constant inputs need to be replaced with the to-be-promoted nodes that
12750     // use them because they might have users outside of the cluster of
12751     // promoted nodes.
12752     if (isa<ConstantSDNode>(Inputs[i]))
12753       continue;
12754 
12755     SDValue InSrc = Inputs[i].getOperand(0);
12756     if (Inputs[i].getValueType() == N->getValueType(0))
12757       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
12758     else if (N->getOpcode() == ISD::SIGN_EXTEND)
12759       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12760         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
12761     else if (N->getOpcode() == ISD::ZERO_EXTEND)
12762       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12763         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
12764     else
12765       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12766         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
12767   }
12768 
12769   std::list<HandleSDNode> PromOpHandles;
12770   for (auto &PromOp : PromOps)
12771     PromOpHandles.emplace_back(PromOp);
12772 
12773   // Replace all operations (these are all the same, but have a different
12774   // (promoted) return type). DAG.getNode will validate that the types of
12775   // a binary operator match, so go through the list in reverse so that
12776   // we've likely promoted both operands first.
12777   while (!PromOpHandles.empty()) {
12778     SDValue PromOp = PromOpHandles.back().getValue();
12779     PromOpHandles.pop_back();
12780 
12781     unsigned C;
12782     switch (PromOp.getOpcode()) {
12783     default:             C = 0; break;
12784     case ISD::SELECT:    C = 1; break;
12785     case ISD::SELECT_CC: C = 2; break;
12786     }
12787 
12788     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12789          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
12790         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12791          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
12792       // The to-be-promoted operands of this node have not yet been
12793       // promoted (this should be rare because we're going through the
12794       // list backward, but if one of the operands has several users in
12795       // this cluster of to-be-promoted nodes, it is possible).
12796       PromOpHandles.emplace_front(PromOp);
12797       continue;
12798     }
12799 
12800     // For SELECT and SELECT_CC nodes, we do a similar check for any
12801     // to-be-promoted comparison inputs.
12802     if (PromOp.getOpcode() == ISD::SELECT ||
12803         PromOp.getOpcode() == ISD::SELECT_CC) {
12804       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
12805            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
12806           (SelectTruncOp[1].count(PromOp.getNode()) &&
12807            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
12808         PromOpHandles.emplace_front(PromOp);
12809         continue;
12810       }
12811     }
12812 
12813     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12814                                 PromOp.getNode()->op_end());
12815 
12816     // If this node has constant inputs, then they'll need to be promoted here.
12817     for (unsigned i = 0; i < 2; ++i) {
12818       if (!isa<ConstantSDNode>(Ops[C+i]))
12819         continue;
12820       if (Ops[C+i].getValueType() == N->getValueType(0))
12821         continue;
12822 
12823       if (N->getOpcode() == ISD::SIGN_EXTEND)
12824         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12825       else if (N->getOpcode() == ISD::ZERO_EXTEND)
12826         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12827       else
12828         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12829     }
12830 
12831     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
12832     // truncate them again to the original value type.
12833     if (PromOp.getOpcode() == ISD::SELECT ||
12834         PromOp.getOpcode() == ISD::SELECT_CC) {
12835       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
12836       if (SI0 != SelectTruncOp[0].end())
12837         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
12838       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
12839       if (SI1 != SelectTruncOp[1].end())
12840         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
12841     }
12842 
12843     DAG.ReplaceAllUsesOfValueWith(PromOp,
12844       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
12845   }
12846 
12847   // Now we're left with the initial extension itself.
12848   if (!ReallyNeedsExt)
12849     return N->getOperand(0);
12850 
12851   // To zero extend, just mask off everything except for the first bit (in the
12852   // i1 case).
12853   if (N->getOpcode() == ISD::ZERO_EXTEND)
12854     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
12855                        DAG.getConstant(APInt::getLowBitsSet(
12856                                          N->getValueSizeInBits(0), PromBits),
12857                                        dl, N->getValueType(0)));
12858 
12859   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
12860          "Invalid extension type");
12861   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
12862   SDValue ShiftCst =
12863       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
12864   return DAG.getNode(
12865       ISD::SRA, dl, N->getValueType(0),
12866       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
12867       ShiftCst);
12868 }
12869 
12870 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
12871                                         DAGCombinerInfo &DCI) const {
12872   assert(N->getOpcode() == ISD::SETCC &&
12873          "Should be called with a SETCC node");
12874 
12875   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12876   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
12877     SDValue LHS = N->getOperand(0);
12878     SDValue RHS = N->getOperand(1);
12879 
12880     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
12881     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
12882         LHS.hasOneUse())
12883       std::swap(LHS, RHS);
12884 
12885     // x == 0-y --> x+y == 0
12886     // x != 0-y --> x+y != 0
12887     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
12888         RHS.hasOneUse()) {
12889       SDLoc DL(N);
12890       SelectionDAG &DAG = DCI.DAG;
12891       EVT VT = N->getValueType(0);
12892       EVT OpVT = LHS.getValueType();
12893       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
12894       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
12895     }
12896   }
12897 
12898   return DAGCombineTruncBoolExt(N, DCI);
12899 }
12900 
12901 // Is this an extending load from an f32 to an f64?
12902 static bool isFPExtLoad(SDValue Op) {
12903   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
12904     return LD->getExtensionType() == ISD::EXTLOAD &&
12905       Op.getValueType() == MVT::f64;
12906   return false;
12907 }
12908 
12909 /// Reduces the number of fp-to-int conversion when building a vector.
12910 ///
12911 /// If this vector is built out of floating to integer conversions,
12912 /// transform it to a vector built out of floating point values followed by a
12913 /// single floating to integer conversion of the vector.
12914 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
12915 /// becomes (fptosi (build_vector ($A, $B, ...)))
12916 SDValue PPCTargetLowering::
12917 combineElementTruncationToVectorTruncation(SDNode *N,
12918                                            DAGCombinerInfo &DCI) const {
12919   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12920          "Should be called with a BUILD_VECTOR node");
12921 
12922   SelectionDAG &DAG = DCI.DAG;
12923   SDLoc dl(N);
12924 
12925   SDValue FirstInput = N->getOperand(0);
12926   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
12927          "The input operand must be an fp-to-int conversion.");
12928 
12929   // This combine happens after legalization so the fp_to_[su]i nodes are
12930   // already converted to PPCSISD nodes.
12931   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
12932   if (FirstConversion == PPCISD::FCTIDZ ||
12933       FirstConversion == PPCISD::FCTIDUZ ||
12934       FirstConversion == PPCISD::FCTIWZ ||
12935       FirstConversion == PPCISD::FCTIWUZ) {
12936     bool IsSplat = true;
12937     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
12938       FirstConversion == PPCISD::FCTIWUZ;
12939     EVT SrcVT = FirstInput.getOperand(0).getValueType();
12940     SmallVector<SDValue, 4> Ops;
12941     EVT TargetVT = N->getValueType(0);
12942     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12943       SDValue NextOp = N->getOperand(i);
12944       if (NextOp.getOpcode() != PPCISD::MFVSR)
12945         return SDValue();
12946       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
12947       if (NextConversion != FirstConversion)
12948         return SDValue();
12949       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
12950       // This is not valid if the input was originally double precision. It is
12951       // also not profitable to do unless this is an extending load in which
12952       // case doing this combine will allow us to combine consecutive loads.
12953       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
12954         return SDValue();
12955       if (N->getOperand(i) != FirstInput)
12956         IsSplat = false;
12957     }
12958 
12959     // If this is a splat, we leave it as-is since there will be only a single
12960     // fp-to-int conversion followed by a splat of the integer. This is better
12961     // for 32-bit and smaller ints and neutral for 64-bit ints.
12962     if (IsSplat)
12963       return SDValue();
12964 
12965     // Now that we know we have the right type of node, get its operands
12966     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12967       SDValue In = N->getOperand(i).getOperand(0);
12968       if (Is32Bit) {
12969         // For 32-bit values, we need to add an FP_ROUND node (if we made it
12970         // here, we know that all inputs are extending loads so this is safe).
12971         if (In.isUndef())
12972           Ops.push_back(DAG.getUNDEF(SrcVT));
12973         else {
12974           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
12975                                       MVT::f32, In.getOperand(0),
12976                                       DAG.getIntPtrConstant(1, dl));
12977           Ops.push_back(Trunc);
12978         }
12979       } else
12980         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
12981     }
12982 
12983     unsigned Opcode;
12984     if (FirstConversion == PPCISD::FCTIDZ ||
12985         FirstConversion == PPCISD::FCTIWZ)
12986       Opcode = ISD::FP_TO_SINT;
12987     else
12988       Opcode = ISD::FP_TO_UINT;
12989 
12990     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
12991     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
12992     return DAG.getNode(Opcode, dl, TargetVT, BV);
12993   }
12994   return SDValue();
12995 }
12996 
12997 /// Reduce the number of loads when building a vector.
12998 ///
12999 /// Building a vector out of multiple loads can be converted to a load
13000 /// of the vector type if the loads are consecutive. If the loads are
13001 /// consecutive but in descending order, a shuffle is added at the end
13002 /// to reorder the vector.
13003 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13004   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13005          "Should be called with a BUILD_VECTOR node");
13006 
13007   SDLoc dl(N);
13008 
13009   // Return early for non byte-sized type, as they can't be consecutive.
13010   if (!N->getValueType(0).getVectorElementType().isByteSized())
13011     return SDValue();
13012 
13013   bool InputsAreConsecutiveLoads = true;
13014   bool InputsAreReverseConsecutive = true;
13015   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13016   SDValue FirstInput = N->getOperand(0);
13017   bool IsRoundOfExtLoad = false;
13018 
13019   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13020       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13021     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13022     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13023   }
13024   // Not a build vector of (possibly fp_rounded) loads.
13025   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13026       N->getNumOperands() == 1)
13027     return SDValue();
13028 
13029   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13030     // If any inputs are fp_round(extload), they all must be.
13031     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13032       return SDValue();
13033 
13034     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13035       N->getOperand(i);
13036     if (NextInput.getOpcode() != ISD::LOAD)
13037       return SDValue();
13038 
13039     SDValue PreviousInput =
13040       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13041     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13042     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13043 
13044     // If any inputs are fp_round(extload), they all must be.
13045     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13046       return SDValue();
13047 
13048     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13049       InputsAreConsecutiveLoads = false;
13050     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13051       InputsAreReverseConsecutive = false;
13052 
13053     // Exit early if the loads are neither consecutive nor reverse consecutive.
13054     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13055       return SDValue();
13056   }
13057 
13058   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13059          "The loads cannot be both consecutive and reverse consecutive.");
13060 
13061   SDValue FirstLoadOp =
13062     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13063   SDValue LastLoadOp =
13064     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13065                        N->getOperand(N->getNumOperands()-1);
13066 
13067   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
13068   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
13069   if (InputsAreConsecutiveLoads) {
13070     assert(LD1 && "Input needs to be a LoadSDNode.");
13071     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
13072                        LD1->getBasePtr(), LD1->getPointerInfo(),
13073                        LD1->getAlignment());
13074   }
13075   if (InputsAreReverseConsecutive) {
13076     assert(LDL && "Input needs to be a LoadSDNode.");
13077     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
13078                                LDL->getBasePtr(), LDL->getPointerInfo(),
13079                                LDL->getAlignment());
13080     SmallVector<int, 16> Ops;
13081     for (int i = N->getNumOperands() - 1; i >= 0; i--)
13082       Ops.push_back(i);
13083 
13084     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
13085                                 DAG.getUNDEF(N->getValueType(0)), Ops);
13086   }
13087   return SDValue();
13088 }
13089 
13090 // This function adds the required vector_shuffle needed to get
13091 // the elements of the vector extract in the correct position
13092 // as specified by the CorrectElems encoding.
13093 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
13094                                       SDValue Input, uint64_t Elems,
13095                                       uint64_t CorrectElems) {
13096   SDLoc dl(N);
13097 
13098   unsigned NumElems = Input.getValueType().getVectorNumElements();
13099   SmallVector<int, 16> ShuffleMask(NumElems, -1);
13100 
13101   // Knowing the element indices being extracted from the original
13102   // vector and the order in which they're being inserted, just put
13103   // them at element indices required for the instruction.
13104   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13105     if (DAG.getDataLayout().isLittleEndian())
13106       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13107     else
13108       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13109     CorrectElems = CorrectElems >> 8;
13110     Elems = Elems >> 8;
13111   }
13112 
13113   SDValue Shuffle =
13114       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13115                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13116 
13117   EVT Ty = N->getValueType(0);
13118   SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
13119   return BV;
13120 }
13121 
13122 // Look for build vector patterns where input operands come from sign
13123 // extended vector_extract elements of specific indices. If the correct indices
13124 // aren't used, add a vector shuffle to fix up the indices and create a new
13125 // PPCISD:SExtVElems node which selects the vector sign extend instructions
13126 // during instruction selection.
13127 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13128   // This array encodes the indices that the vector sign extend instructions
13129   // extract from when extending from one type to another for both BE and LE.
13130   // The right nibble of each byte corresponds to the LE incides.
13131   // and the left nibble of each byte corresponds to the BE incides.
13132   // For example: 0x3074B8FC  byte->word
13133   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13134   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13135   // For example: 0x000070F8  byte->double word
13136   // For LE: the allowed indices are: 0x0,0x8
13137   // For BE: the allowed indices are: 0x7,0xF
13138   uint64_t TargetElems[] = {
13139       0x3074B8FC, // b->w
13140       0x000070F8, // b->d
13141       0x10325476, // h->w
13142       0x00003074, // h->d
13143       0x00001032, // w->d
13144   };
13145 
13146   uint64_t Elems = 0;
13147   int Index;
13148   SDValue Input;
13149 
13150   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13151     if (!Op)
13152       return false;
13153     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13154         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13155       return false;
13156 
13157     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13158     // of the right width.
13159     SDValue Extract = Op.getOperand(0);
13160     if (Extract.getOpcode() == ISD::ANY_EXTEND)
13161       Extract = Extract.getOperand(0);
13162     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13163       return false;
13164 
13165     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
13166     if (!ExtOp)
13167       return false;
13168 
13169     Index = ExtOp->getZExtValue();
13170     if (Input && Input != Extract.getOperand(0))
13171       return false;
13172 
13173     if (!Input)
13174       Input = Extract.getOperand(0);
13175 
13176     Elems = Elems << 8;
13177     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
13178     Elems |= Index;
13179 
13180     return true;
13181   };
13182 
13183   // If the build vector operands aren't sign extended vector extracts,
13184   // of the same input vector, then return.
13185   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13186     if (!isSExtOfVecExtract(N->getOperand(i))) {
13187       return SDValue();
13188     }
13189   }
13190 
13191   // If the vector extract indicies are not correct, add the appropriate
13192   // vector_shuffle.
13193   int TgtElemArrayIdx;
13194   int InputSize = Input.getValueType().getScalarSizeInBits();
13195   int OutputSize = N->getValueType(0).getScalarSizeInBits();
13196   if (InputSize + OutputSize == 40)
13197     TgtElemArrayIdx = 0;
13198   else if (InputSize + OutputSize == 72)
13199     TgtElemArrayIdx = 1;
13200   else if (InputSize + OutputSize == 48)
13201     TgtElemArrayIdx = 2;
13202   else if (InputSize + OutputSize == 80)
13203     TgtElemArrayIdx = 3;
13204   else if (InputSize + OutputSize == 96)
13205     TgtElemArrayIdx = 4;
13206   else
13207     return SDValue();
13208 
13209   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
13210   CorrectElems = DAG.getDataLayout().isLittleEndian()
13211                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
13212                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
13213   if (Elems != CorrectElems) {
13214     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
13215   }
13216 
13217   // Regular lowering will catch cases where a shuffle is not needed.
13218   return SDValue();
13219 }
13220 
13221 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
13222                                                  DAGCombinerInfo &DCI) const {
13223   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13224          "Should be called with a BUILD_VECTOR node");
13225 
13226   SelectionDAG &DAG = DCI.DAG;
13227   SDLoc dl(N);
13228 
13229   if (!Subtarget.hasVSX())
13230     return SDValue();
13231 
13232   // The target independent DAG combiner will leave a build_vector of
13233   // float-to-int conversions intact. We can generate MUCH better code for
13234   // a float-to-int conversion of a vector of floats.
13235   SDValue FirstInput = N->getOperand(0);
13236   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
13237     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
13238     if (Reduced)
13239       return Reduced;
13240   }
13241 
13242   // If we're building a vector out of consecutive loads, just load that
13243   // vector type.
13244   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
13245   if (Reduced)
13246     return Reduced;
13247 
13248   // If we're building a vector out of extended elements from another vector
13249   // we have P9 vector integer extend instructions. The code assumes legal
13250   // input types (i.e. it can't handle things like v4i16) so do not run before
13251   // legalization.
13252   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
13253     Reduced = combineBVOfVecSExt(N, DAG);
13254     if (Reduced)
13255       return Reduced;
13256   }
13257 
13258 
13259   if (N->getValueType(0) != MVT::v2f64)
13260     return SDValue();
13261 
13262   // Looking for:
13263   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
13264   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
13265       FirstInput.getOpcode() != ISD::UINT_TO_FP)
13266     return SDValue();
13267   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
13268       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
13269     return SDValue();
13270   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
13271     return SDValue();
13272 
13273   SDValue Ext1 = FirstInput.getOperand(0);
13274   SDValue Ext2 = N->getOperand(1).getOperand(0);
13275   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13276      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13277     return SDValue();
13278 
13279   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
13280   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
13281   if (!Ext1Op || !Ext2Op)
13282     return SDValue();
13283   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
13284       Ext1.getOperand(0) != Ext2.getOperand(0))
13285     return SDValue();
13286 
13287   int FirstElem = Ext1Op->getZExtValue();
13288   int SecondElem = Ext2Op->getZExtValue();
13289   int SubvecIdx;
13290   if (FirstElem == 0 && SecondElem == 1)
13291     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
13292   else if (FirstElem == 2 && SecondElem == 3)
13293     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
13294   else
13295     return SDValue();
13296 
13297   SDValue SrcVec = Ext1.getOperand(0);
13298   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
13299     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
13300   return DAG.getNode(NodeType, dl, MVT::v2f64,
13301                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
13302 }
13303 
13304 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
13305                                               DAGCombinerInfo &DCI) const {
13306   assert((N->getOpcode() == ISD::SINT_TO_FP ||
13307           N->getOpcode() == ISD::UINT_TO_FP) &&
13308          "Need an int -> FP conversion node here");
13309 
13310   if (useSoftFloat() || !Subtarget.has64BitSupport())
13311     return SDValue();
13312 
13313   SelectionDAG &DAG = DCI.DAG;
13314   SDLoc dl(N);
13315   SDValue Op(N, 0);
13316 
13317   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
13318   // from the hardware.
13319   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
13320     return SDValue();
13321   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
13322       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
13323     return SDValue();
13324 
13325   SDValue FirstOperand(Op.getOperand(0));
13326   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
13327     (FirstOperand.getValueType() == MVT::i8 ||
13328      FirstOperand.getValueType() == MVT::i16);
13329   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
13330     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
13331     bool DstDouble = Op.getValueType() == MVT::f64;
13332     unsigned ConvOp = Signed ?
13333       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
13334       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
13335     SDValue WidthConst =
13336       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
13337                             dl, false);
13338     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
13339     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
13340     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
13341                                          DAG.getVTList(MVT::f64, MVT::Other),
13342                                          Ops, MVT::i8, LDN->getMemOperand());
13343 
13344     // For signed conversion, we need to sign-extend the value in the VSR
13345     if (Signed) {
13346       SDValue ExtOps[] = { Ld, WidthConst };
13347       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
13348       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
13349     } else
13350       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
13351   }
13352 
13353 
13354   // For i32 intermediate values, unfortunately, the conversion functions
13355   // leave the upper 32 bits of the value are undefined. Within the set of
13356   // scalar instructions, we have no method for zero- or sign-extending the
13357   // value. Thus, we cannot handle i32 intermediate values here.
13358   if (Op.getOperand(0).getValueType() == MVT::i32)
13359     return SDValue();
13360 
13361   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
13362          "UINT_TO_FP is supported only with FPCVT");
13363 
13364   // If we have FCFIDS, then use it when converting to single-precision.
13365   // Otherwise, convert to double-precision and then round.
13366   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13367                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
13368                                                             : PPCISD::FCFIDS)
13369                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
13370                                                             : PPCISD::FCFID);
13371   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13372                   ? MVT::f32
13373                   : MVT::f64;
13374 
13375   // If we're converting from a float, to an int, and back to a float again,
13376   // then we don't need the store/load pair at all.
13377   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
13378        Subtarget.hasFPCVT()) ||
13379       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
13380     SDValue Src = Op.getOperand(0).getOperand(0);
13381     if (Src.getValueType() == MVT::f32) {
13382       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
13383       DCI.AddToWorklist(Src.getNode());
13384     } else if (Src.getValueType() != MVT::f64) {
13385       // Make sure that we don't pick up a ppc_fp128 source value.
13386       return SDValue();
13387     }
13388 
13389     unsigned FCTOp =
13390       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
13391                                                         PPCISD::FCTIDUZ;
13392 
13393     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
13394     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
13395 
13396     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
13397       FP = DAG.getNode(ISD::FP_ROUND, dl,
13398                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
13399       DCI.AddToWorklist(FP.getNode());
13400     }
13401 
13402     return FP;
13403   }
13404 
13405   return SDValue();
13406 }
13407 
13408 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
13409 // builtins) into loads with swaps.
13410 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
13411                                               DAGCombinerInfo &DCI) const {
13412   SelectionDAG &DAG = DCI.DAG;
13413   SDLoc dl(N);
13414   SDValue Chain;
13415   SDValue Base;
13416   MachineMemOperand *MMO;
13417 
13418   switch (N->getOpcode()) {
13419   default:
13420     llvm_unreachable("Unexpected opcode for little endian VSX load");
13421   case ISD::LOAD: {
13422     LoadSDNode *LD = cast<LoadSDNode>(N);
13423     Chain = LD->getChain();
13424     Base = LD->getBasePtr();
13425     MMO = LD->getMemOperand();
13426     // If the MMO suggests this isn't a load of a full vector, leave
13427     // things alone.  For a built-in, we have to make the change for
13428     // correctness, so if there is a size problem that will be a bug.
13429     if (MMO->getSize() < 16)
13430       return SDValue();
13431     break;
13432   }
13433   case ISD::INTRINSIC_W_CHAIN: {
13434     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13435     Chain = Intrin->getChain();
13436     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
13437     // us what we want. Get operand 2 instead.
13438     Base = Intrin->getOperand(2);
13439     MMO = Intrin->getMemOperand();
13440     break;
13441   }
13442   }
13443 
13444   MVT VecTy = N->getValueType(0).getSimpleVT();
13445 
13446   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
13447   // aligned and the type is a vector with elements up to 4 bytes
13448   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
13449       && VecTy.getScalarSizeInBits() <= 32 ) {
13450     return SDValue();
13451   }
13452 
13453   SDValue LoadOps[] = { Chain, Base };
13454   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
13455                                          DAG.getVTList(MVT::v2f64, MVT::Other),
13456                                          LoadOps, MVT::v2f64, MMO);
13457 
13458   DCI.AddToWorklist(Load.getNode());
13459   Chain = Load.getValue(1);
13460   SDValue Swap = DAG.getNode(
13461       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
13462   DCI.AddToWorklist(Swap.getNode());
13463 
13464   // Add a bitcast if the resulting load type doesn't match v2f64.
13465   if (VecTy != MVT::v2f64) {
13466     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
13467     DCI.AddToWorklist(N.getNode());
13468     // Package {bitcast value, swap's chain} to match Load's shape.
13469     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
13470                        N, Swap.getValue(1));
13471   }
13472 
13473   return Swap;
13474 }
13475 
13476 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
13477 // builtins) into stores with swaps.
13478 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
13479                                                DAGCombinerInfo &DCI) const {
13480   SelectionDAG &DAG = DCI.DAG;
13481   SDLoc dl(N);
13482   SDValue Chain;
13483   SDValue Base;
13484   unsigned SrcOpnd;
13485   MachineMemOperand *MMO;
13486 
13487   switch (N->getOpcode()) {
13488   default:
13489     llvm_unreachable("Unexpected opcode for little endian VSX store");
13490   case ISD::STORE: {
13491     StoreSDNode *ST = cast<StoreSDNode>(N);
13492     Chain = ST->getChain();
13493     Base = ST->getBasePtr();
13494     MMO = ST->getMemOperand();
13495     SrcOpnd = 1;
13496     // If the MMO suggests this isn't a store of a full vector, leave
13497     // things alone.  For a built-in, we have to make the change for
13498     // correctness, so if there is a size problem that will be a bug.
13499     if (MMO->getSize() < 16)
13500       return SDValue();
13501     break;
13502   }
13503   case ISD::INTRINSIC_VOID: {
13504     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13505     Chain = Intrin->getChain();
13506     // Intrin->getBasePtr() oddly does not get what we want.
13507     Base = Intrin->getOperand(3);
13508     MMO = Intrin->getMemOperand();
13509     SrcOpnd = 2;
13510     break;
13511   }
13512   }
13513 
13514   SDValue Src = N->getOperand(SrcOpnd);
13515   MVT VecTy = Src.getValueType().getSimpleVT();
13516 
13517   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
13518   // aligned and the type is a vector with elements up to 4 bytes
13519   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
13520       && VecTy.getScalarSizeInBits() <= 32 ) {
13521     return SDValue();
13522   }
13523 
13524   // All stores are done as v2f64 and possible bit cast.
13525   if (VecTy != MVT::v2f64) {
13526     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
13527     DCI.AddToWorklist(Src.getNode());
13528   }
13529 
13530   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
13531                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
13532   DCI.AddToWorklist(Swap.getNode());
13533   Chain = Swap.getValue(1);
13534   SDValue StoreOps[] = { Chain, Swap, Base };
13535   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
13536                                           DAG.getVTList(MVT::Other),
13537                                           StoreOps, VecTy, MMO);
13538   DCI.AddToWorklist(Store.getNode());
13539   return Store;
13540 }
13541 
13542 // Handle DAG combine for STORE (FP_TO_INT F).
13543 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
13544                                                DAGCombinerInfo &DCI) const {
13545 
13546   SelectionDAG &DAG = DCI.DAG;
13547   SDLoc dl(N);
13548   unsigned Opcode = N->getOperand(1).getOpcode();
13549 
13550   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
13551          && "Not a FP_TO_INT Instruction!");
13552 
13553   SDValue Val = N->getOperand(1).getOperand(0);
13554   EVT Op1VT = N->getOperand(1).getValueType();
13555   EVT ResVT = Val.getValueType();
13556 
13557   // Floating point types smaller than 32 bits are not legal on Power.
13558   if (ResVT.getScalarSizeInBits() < 32)
13559     return SDValue();
13560 
13561   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
13562   bool ValidTypeForStoreFltAsInt =
13563         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
13564          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
13565 
13566   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() ||
13567       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
13568     return SDValue();
13569 
13570   // Extend f32 values to f64
13571   if (ResVT.getScalarSizeInBits() == 32) {
13572     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
13573     DCI.AddToWorklist(Val.getNode());
13574   }
13575 
13576   // Set signed or unsigned conversion opcode.
13577   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
13578                           PPCISD::FP_TO_SINT_IN_VSR :
13579                           PPCISD::FP_TO_UINT_IN_VSR;
13580 
13581   Val = DAG.getNode(ConvOpcode,
13582                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
13583   DCI.AddToWorklist(Val.getNode());
13584 
13585   // Set number of bytes being converted.
13586   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
13587   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
13588                     DAG.getIntPtrConstant(ByteSize, dl, false),
13589                     DAG.getValueType(Op1VT) };
13590 
13591   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
13592           DAG.getVTList(MVT::Other), Ops,
13593           cast<StoreSDNode>(N)->getMemoryVT(),
13594           cast<StoreSDNode>(N)->getMemOperand());
13595 
13596   DCI.AddToWorklist(Val.getNode());
13597   return Val;
13598 }
13599 
13600 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
13601                                                 LSBaseSDNode *LSBase,
13602                                                 DAGCombinerInfo &DCI) const {
13603   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
13604         "Not a reverse memop pattern!");
13605 
13606   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
13607     auto Mask = SVN->getMask();
13608     int i = 0;
13609     auto I = Mask.rbegin();
13610     auto E = Mask.rend();
13611 
13612     for (; I != E; ++I) {
13613       if (*I != i)
13614         return false;
13615       i++;
13616     }
13617     return true;
13618   };
13619 
13620   SelectionDAG &DAG = DCI.DAG;
13621   EVT VT = SVN->getValueType(0);
13622 
13623   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
13624     return SDValue();
13625 
13626   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
13627   // See comment in PPCVSXSwapRemoval.cpp.
13628   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
13629   if (!Subtarget.hasP9Vector())
13630     return SDValue();
13631 
13632   if(!IsElementReverse(SVN))
13633     return SDValue();
13634 
13635   if (LSBase->getOpcode() == ISD::LOAD) {
13636     SDLoc dl(SVN);
13637     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
13638     return DAG.getMemIntrinsicNode(
13639         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
13640         LSBase->getMemoryVT(), LSBase->getMemOperand());
13641   }
13642 
13643   if (LSBase->getOpcode() == ISD::STORE) {
13644     SDLoc dl(LSBase);
13645     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
13646                           LSBase->getBasePtr()};
13647     return DAG.getMemIntrinsicNode(
13648         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
13649         LSBase->getMemoryVT(), LSBase->getMemOperand());
13650   }
13651 
13652   llvm_unreachable("Expected a load or store node here");
13653 }
13654 
13655 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
13656                                              DAGCombinerInfo &DCI) const {
13657   SelectionDAG &DAG = DCI.DAG;
13658   SDLoc dl(N);
13659   switch (N->getOpcode()) {
13660   default: break;
13661   case ISD::ADD:
13662     return combineADD(N, DCI);
13663   case ISD::SHL:
13664     return combineSHL(N, DCI);
13665   case ISD::SRA:
13666     return combineSRA(N, DCI);
13667   case ISD::SRL:
13668     return combineSRL(N, DCI);
13669   case ISD::MUL:
13670     return combineMUL(N, DCI);
13671   case PPCISD::SHL:
13672     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
13673         return N->getOperand(0);
13674     break;
13675   case PPCISD::SRL:
13676     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
13677         return N->getOperand(0);
13678     break;
13679   case PPCISD::SRA:
13680     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
13681       if (C->isNullValue() ||   //  0 >>s V -> 0.
13682           C->isAllOnesValue())    // -1 >>s V -> -1.
13683         return N->getOperand(0);
13684     }
13685     break;
13686   case ISD::SIGN_EXTEND:
13687   case ISD::ZERO_EXTEND:
13688   case ISD::ANY_EXTEND:
13689     return DAGCombineExtBoolTrunc(N, DCI);
13690   case ISD::TRUNCATE:
13691     return combineTRUNCATE(N, DCI);
13692   case ISD::SETCC:
13693     if (SDValue CSCC = combineSetCC(N, DCI))
13694       return CSCC;
13695     LLVM_FALLTHROUGH;
13696   case ISD::SELECT_CC:
13697     return DAGCombineTruncBoolExt(N, DCI);
13698   case ISD::SINT_TO_FP:
13699   case ISD::UINT_TO_FP:
13700     return combineFPToIntToFP(N, DCI);
13701   case ISD::VECTOR_SHUFFLE:
13702     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
13703       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
13704       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
13705     }
13706     break;
13707   case ISD::STORE: {
13708 
13709     EVT Op1VT = N->getOperand(1).getValueType();
13710     unsigned Opcode = N->getOperand(1).getOpcode();
13711 
13712     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
13713       SDValue Val= combineStoreFPToInt(N, DCI);
13714       if (Val)
13715         return Val;
13716     }
13717 
13718     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
13719       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
13720       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
13721       if (Val)
13722         return Val;
13723     }
13724 
13725     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
13726     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
13727         N->getOperand(1).getNode()->hasOneUse() &&
13728         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
13729          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
13730 
13731       // STBRX can only handle simple types and it makes no sense to store less
13732       // two bytes in byte-reversed order.
13733       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
13734       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
13735         break;
13736 
13737       SDValue BSwapOp = N->getOperand(1).getOperand(0);
13738       // Do an any-extend to 32-bits if this is a half-word input.
13739       if (BSwapOp.getValueType() == MVT::i16)
13740         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
13741 
13742       // If the type of BSWAP operand is wider than stored memory width
13743       // it need to be shifted to the right side before STBRX.
13744       if (Op1VT.bitsGT(mVT)) {
13745         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
13746         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
13747                               DAG.getConstant(Shift, dl, MVT::i32));
13748         // Need to truncate if this is a bswap of i64 stored as i32/i16.
13749         if (Op1VT == MVT::i64)
13750           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
13751       }
13752 
13753       SDValue Ops[] = {
13754         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
13755       };
13756       return
13757         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
13758                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
13759                                 cast<StoreSDNode>(N)->getMemOperand());
13760     }
13761 
13762     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
13763     // So it can increase the chance of CSE constant construction.
13764     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
13765         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
13766       // Need to sign-extended to 64-bits to handle negative values.
13767       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
13768       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
13769                                     MemVT.getSizeInBits());
13770       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
13771 
13772       // DAG.getTruncStore() can't be used here because it doesn't accept
13773       // the general (base + offset) addressing mode.
13774       // So we use UpdateNodeOperands and setTruncatingStore instead.
13775       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
13776                              N->getOperand(3));
13777       cast<StoreSDNode>(N)->setTruncatingStore(true);
13778       return SDValue(N, 0);
13779     }
13780 
13781     // For little endian, VSX stores require generating xxswapd/lxvd2x.
13782     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
13783     if (Op1VT.isSimple()) {
13784       MVT StoreVT = Op1VT.getSimpleVT();
13785       if (Subtarget.needsSwapsForVSXMemOps() &&
13786           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
13787            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
13788         return expandVSXStoreForLE(N, DCI);
13789     }
13790     break;
13791   }
13792   case ISD::LOAD: {
13793     LoadSDNode *LD = cast<LoadSDNode>(N);
13794     EVT VT = LD->getValueType(0);
13795 
13796     // For little endian, VSX loads require generating lxvd2x/xxswapd.
13797     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
13798     if (VT.isSimple()) {
13799       MVT LoadVT = VT.getSimpleVT();
13800       if (Subtarget.needsSwapsForVSXMemOps() &&
13801           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
13802            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
13803         return expandVSXLoadForLE(N, DCI);
13804     }
13805 
13806     // We sometimes end up with a 64-bit integer load, from which we extract
13807     // two single-precision floating-point numbers. This happens with
13808     // std::complex<float>, and other similar structures, because of the way we
13809     // canonicalize structure copies. However, if we lack direct moves,
13810     // then the final bitcasts from the extracted integer values to the
13811     // floating-point numbers turn into store/load pairs. Even with direct moves,
13812     // just loading the two floating-point numbers is likely better.
13813     auto ReplaceTwoFloatLoad = [&]() {
13814       if (VT != MVT::i64)
13815         return false;
13816 
13817       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
13818           LD->isVolatile())
13819         return false;
13820 
13821       //  We're looking for a sequence like this:
13822       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
13823       //      t16: i64 = srl t13, Constant:i32<32>
13824       //    t17: i32 = truncate t16
13825       //  t18: f32 = bitcast t17
13826       //    t19: i32 = truncate t13
13827       //  t20: f32 = bitcast t19
13828 
13829       if (!LD->hasNUsesOfValue(2, 0))
13830         return false;
13831 
13832       auto UI = LD->use_begin();
13833       while (UI.getUse().getResNo() != 0) ++UI;
13834       SDNode *Trunc = *UI++;
13835       while (UI.getUse().getResNo() != 0) ++UI;
13836       SDNode *RightShift = *UI;
13837       if (Trunc->getOpcode() != ISD::TRUNCATE)
13838         std::swap(Trunc, RightShift);
13839 
13840       if (Trunc->getOpcode() != ISD::TRUNCATE ||
13841           Trunc->getValueType(0) != MVT::i32 ||
13842           !Trunc->hasOneUse())
13843         return false;
13844       if (RightShift->getOpcode() != ISD::SRL ||
13845           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
13846           RightShift->getConstantOperandVal(1) != 32 ||
13847           !RightShift->hasOneUse())
13848         return false;
13849 
13850       SDNode *Trunc2 = *RightShift->use_begin();
13851       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
13852           Trunc2->getValueType(0) != MVT::i32 ||
13853           !Trunc2->hasOneUse())
13854         return false;
13855 
13856       SDNode *Bitcast = *Trunc->use_begin();
13857       SDNode *Bitcast2 = *Trunc2->use_begin();
13858 
13859       if (Bitcast->getOpcode() != ISD::BITCAST ||
13860           Bitcast->getValueType(0) != MVT::f32)
13861         return false;
13862       if (Bitcast2->getOpcode() != ISD::BITCAST ||
13863           Bitcast2->getValueType(0) != MVT::f32)
13864         return false;
13865 
13866       if (Subtarget.isLittleEndian())
13867         std::swap(Bitcast, Bitcast2);
13868 
13869       // Bitcast has the second float (in memory-layout order) and Bitcast2
13870       // has the first one.
13871 
13872       SDValue BasePtr = LD->getBasePtr();
13873       if (LD->isIndexed()) {
13874         assert(LD->getAddressingMode() == ISD::PRE_INC &&
13875                "Non-pre-inc AM on PPC?");
13876         BasePtr =
13877           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
13878                       LD->getOffset());
13879       }
13880 
13881       auto MMOFlags =
13882           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
13883       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
13884                                       LD->getPointerInfo(), LD->getAlignment(),
13885                                       MMOFlags, LD->getAAInfo());
13886       SDValue AddPtr =
13887         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
13888                     BasePtr, DAG.getIntPtrConstant(4, dl));
13889       SDValue FloatLoad2 = DAG.getLoad(
13890           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
13891           LD->getPointerInfo().getWithOffset(4),
13892           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
13893 
13894       if (LD->isIndexed()) {
13895         // Note that DAGCombine should re-form any pre-increment load(s) from
13896         // what is produced here if that makes sense.
13897         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
13898       }
13899 
13900       DCI.CombineTo(Bitcast2, FloatLoad);
13901       DCI.CombineTo(Bitcast, FloatLoad2);
13902 
13903       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
13904                                     SDValue(FloatLoad2.getNode(), 1));
13905       return true;
13906     };
13907 
13908     if (ReplaceTwoFloatLoad())
13909       return SDValue(N, 0);
13910 
13911     EVT MemVT = LD->getMemoryVT();
13912     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
13913     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
13914     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
13915     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
13916     if (LD->isUnindexed() && VT.isVector() &&
13917         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
13918           // P8 and later hardware should just use LOAD.
13919           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
13920                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
13921          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
13922           LD->getAlignment() >= ScalarABIAlignment)) &&
13923         LD->getAlignment() < ABIAlignment) {
13924       // This is a type-legal unaligned Altivec or QPX load.
13925       SDValue Chain = LD->getChain();
13926       SDValue Ptr = LD->getBasePtr();
13927       bool isLittleEndian = Subtarget.isLittleEndian();
13928 
13929       // This implements the loading of unaligned vectors as described in
13930       // the venerable Apple Velocity Engine overview. Specifically:
13931       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
13932       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
13933       //
13934       // The general idea is to expand a sequence of one or more unaligned
13935       // loads into an alignment-based permutation-control instruction (lvsl
13936       // or lvsr), a series of regular vector loads (which always truncate
13937       // their input address to an aligned address), and a series of
13938       // permutations.  The results of these permutations are the requested
13939       // loaded values.  The trick is that the last "extra" load is not taken
13940       // from the address you might suspect (sizeof(vector) bytes after the
13941       // last requested load), but rather sizeof(vector) - 1 bytes after the
13942       // last requested vector. The point of this is to avoid a page fault if
13943       // the base address happened to be aligned. This works because if the
13944       // base address is aligned, then adding less than a full vector length
13945       // will cause the last vector in the sequence to be (re)loaded.
13946       // Otherwise, the next vector will be fetched as you might suspect was
13947       // necessary.
13948 
13949       // We might be able to reuse the permutation generation from
13950       // a different base address offset from this one by an aligned amount.
13951       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
13952       // optimization later.
13953       Intrinsic::ID Intr, IntrLD, IntrPerm;
13954       MVT PermCntlTy, PermTy, LDTy;
13955       if (Subtarget.hasAltivec()) {
13956         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
13957                                  Intrinsic::ppc_altivec_lvsl;
13958         IntrLD = Intrinsic::ppc_altivec_lvx;
13959         IntrPerm = Intrinsic::ppc_altivec_vperm;
13960         PermCntlTy = MVT::v16i8;
13961         PermTy = MVT::v4i32;
13962         LDTy = MVT::v4i32;
13963       } else {
13964         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
13965                                        Intrinsic::ppc_qpx_qvlpcls;
13966         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
13967                                        Intrinsic::ppc_qpx_qvlfs;
13968         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
13969         PermCntlTy = MVT::v4f64;
13970         PermTy = MVT::v4f64;
13971         LDTy = MemVT.getSimpleVT();
13972       }
13973 
13974       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
13975 
13976       // Create the new MMO for the new base load. It is like the original MMO,
13977       // but represents an area in memory almost twice the vector size centered
13978       // on the original address. If the address is unaligned, we might start
13979       // reading up to (sizeof(vector)-1) bytes below the address of the
13980       // original unaligned load.
13981       MachineFunction &MF = DAG.getMachineFunction();
13982       MachineMemOperand *BaseMMO =
13983         MF.getMachineMemOperand(LD->getMemOperand(),
13984                                 -(long)MemVT.getStoreSize()+1,
13985                                 2*MemVT.getStoreSize()-1);
13986 
13987       // Create the new base load.
13988       SDValue LDXIntID =
13989           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
13990       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
13991       SDValue BaseLoad =
13992         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
13993                                 DAG.getVTList(PermTy, MVT::Other),
13994                                 BaseLoadOps, LDTy, BaseMMO);
13995 
13996       // Note that the value of IncOffset (which is provided to the next
13997       // load's pointer info offset value, and thus used to calculate the
13998       // alignment), and the value of IncValue (which is actually used to
13999       // increment the pointer value) are different! This is because we
14000       // require the next load to appear to be aligned, even though it
14001       // is actually offset from the base pointer by a lesser amount.
14002       int IncOffset = VT.getSizeInBits() / 8;
14003       int IncValue = IncOffset;
14004 
14005       // Walk (both up and down) the chain looking for another load at the real
14006       // (aligned) offset (the alignment of the other load does not matter in
14007       // this case). If found, then do not use the offset reduction trick, as
14008       // that will prevent the loads from being later combined (as they would
14009       // otherwise be duplicates).
14010       if (!findConsecutiveLoad(LD, DAG))
14011         --IncValue;
14012 
14013       SDValue Increment =
14014           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
14015       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14016 
14017       MachineMemOperand *ExtraMMO =
14018         MF.getMachineMemOperand(LD->getMemOperand(),
14019                                 1, 2*MemVT.getStoreSize()-1);
14020       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
14021       SDValue ExtraLoad =
14022         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14023                                 DAG.getVTList(PermTy, MVT::Other),
14024                                 ExtraLoadOps, LDTy, ExtraMMO);
14025 
14026       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14027         BaseLoad.getValue(1), ExtraLoad.getValue(1));
14028 
14029       // Because vperm has a big-endian bias, we must reverse the order
14030       // of the input vectors and complement the permute control vector
14031       // when generating little endian code.  We have already handled the
14032       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
14033       // and ExtraLoad here.
14034       SDValue Perm;
14035       if (isLittleEndian)
14036         Perm = BuildIntrinsicOp(IntrPerm,
14037                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
14038       else
14039         Perm = BuildIntrinsicOp(IntrPerm,
14040                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
14041 
14042       if (VT != PermTy)
14043         Perm = Subtarget.hasAltivec() ?
14044                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
14045                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
14046                                DAG.getTargetConstant(1, dl, MVT::i64));
14047                                // second argument is 1 because this rounding
14048                                // is always exact.
14049 
14050       // The output of the permutation is our loaded result, the TokenFactor is
14051       // our new chain.
14052       DCI.CombineTo(N, Perm, TF);
14053       return SDValue(N, 0);
14054     }
14055     }
14056     break;
14057     case ISD::INTRINSIC_WO_CHAIN: {
14058       bool isLittleEndian = Subtarget.isLittleEndian();
14059       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
14060       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14061                                            : Intrinsic::ppc_altivec_lvsl);
14062       if ((IID == Intr ||
14063            IID == Intrinsic::ppc_qpx_qvlpcld  ||
14064            IID == Intrinsic::ppc_qpx_qvlpcls) &&
14065         N->getOperand(1)->getOpcode() == ISD::ADD) {
14066         SDValue Add = N->getOperand(1);
14067 
14068         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
14069                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
14070 
14071         if (DAG.MaskedValueIsZero(Add->getOperand(1),
14072                                   APInt::getAllOnesValue(Bits /* alignment */)
14073                                       .zext(Add.getScalarValueSizeInBits()))) {
14074           SDNode *BasePtr = Add->getOperand(0).getNode();
14075           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14076                                     UE = BasePtr->use_end();
14077                UI != UE; ++UI) {
14078             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14079                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
14080               // We've found another LVSL/LVSR, and this address is an aligned
14081               // multiple of that one. The results will be the same, so use the
14082               // one we've just found instead.
14083 
14084               return SDValue(*UI, 0);
14085             }
14086           }
14087         }
14088 
14089         if (isa<ConstantSDNode>(Add->getOperand(1))) {
14090           SDNode *BasePtr = Add->getOperand(0).getNode();
14091           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14092                UE = BasePtr->use_end(); UI != UE; ++UI) {
14093             if (UI->getOpcode() == ISD::ADD &&
14094                 isa<ConstantSDNode>(UI->getOperand(1)) &&
14095                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
14096                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
14097                 (1ULL << Bits) == 0) {
14098               SDNode *OtherAdd = *UI;
14099               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
14100                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
14101                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14102                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
14103                   return SDValue(*VI, 0);
14104                 }
14105               }
14106             }
14107           }
14108         }
14109       }
14110 
14111       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
14112       // Expose the vabsduw/h/b opportunity for down stream
14113       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
14114           (IID == Intrinsic::ppc_altivec_vmaxsw ||
14115            IID == Intrinsic::ppc_altivec_vmaxsh ||
14116            IID == Intrinsic::ppc_altivec_vmaxsb)) {
14117         SDValue V1 = N->getOperand(1);
14118         SDValue V2 = N->getOperand(2);
14119         if ((V1.getSimpleValueType() == MVT::v4i32 ||
14120              V1.getSimpleValueType() == MVT::v8i16 ||
14121              V1.getSimpleValueType() == MVT::v16i8) &&
14122             V1.getSimpleValueType() == V2.getSimpleValueType()) {
14123           // (0-a, a)
14124           if (V1.getOpcode() == ISD::SUB &&
14125               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
14126               V1.getOperand(1) == V2) {
14127             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
14128           }
14129           // (a, 0-a)
14130           if (V2.getOpcode() == ISD::SUB &&
14131               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
14132               V2.getOperand(1) == V1) {
14133             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14134           }
14135           // (x-y, y-x)
14136           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
14137               V1.getOperand(0) == V2.getOperand(1) &&
14138               V1.getOperand(1) == V2.getOperand(0)) {
14139             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14140           }
14141         }
14142       }
14143     }
14144 
14145     break;
14146   case ISD::INTRINSIC_W_CHAIN:
14147     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14148     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14149     if (Subtarget.needsSwapsForVSXMemOps()) {
14150       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14151       default:
14152         break;
14153       case Intrinsic::ppc_vsx_lxvw4x:
14154       case Intrinsic::ppc_vsx_lxvd2x:
14155         return expandVSXLoadForLE(N, DCI);
14156       }
14157     }
14158     break;
14159   case ISD::INTRINSIC_VOID:
14160     // For little endian, VSX stores require generating xxswapd/stxvd2x.
14161     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14162     if (Subtarget.needsSwapsForVSXMemOps()) {
14163       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14164       default:
14165         break;
14166       case Intrinsic::ppc_vsx_stxvw4x:
14167       case Intrinsic::ppc_vsx_stxvd2x:
14168         return expandVSXStoreForLE(N, DCI);
14169       }
14170     }
14171     break;
14172   case ISD::BSWAP:
14173     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
14174     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
14175         N->getOperand(0).hasOneUse() &&
14176         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
14177          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
14178           N->getValueType(0) == MVT::i64))) {
14179       SDValue Load = N->getOperand(0);
14180       LoadSDNode *LD = cast<LoadSDNode>(Load);
14181       // Create the byte-swapping load.
14182       SDValue Ops[] = {
14183         LD->getChain(),    // Chain
14184         LD->getBasePtr(),  // Ptr
14185         DAG.getValueType(N->getValueType(0)) // VT
14186       };
14187       SDValue BSLoad =
14188         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
14189                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
14190                                               MVT::i64 : MVT::i32, MVT::Other),
14191                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
14192 
14193       // If this is an i16 load, insert the truncate.
14194       SDValue ResVal = BSLoad;
14195       if (N->getValueType(0) == MVT::i16)
14196         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
14197 
14198       // First, combine the bswap away.  This makes the value produced by the
14199       // load dead.
14200       DCI.CombineTo(N, ResVal);
14201 
14202       // Next, combine the load away, we give it a bogus result value but a real
14203       // chain result.  The result value is dead because the bswap is dead.
14204       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
14205 
14206       // Return N so it doesn't get rechecked!
14207       return SDValue(N, 0);
14208     }
14209     break;
14210   case PPCISD::VCMP:
14211     // If a VCMPo node already exists with exactly the same operands as this
14212     // node, use its result instead of this node (VCMPo computes both a CR6 and
14213     // a normal output).
14214     //
14215     if (!N->getOperand(0).hasOneUse() &&
14216         !N->getOperand(1).hasOneUse() &&
14217         !N->getOperand(2).hasOneUse()) {
14218 
14219       // Scan all of the users of the LHS, looking for VCMPo's that match.
14220       SDNode *VCMPoNode = nullptr;
14221 
14222       SDNode *LHSN = N->getOperand(0).getNode();
14223       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
14224            UI != E; ++UI)
14225         if (UI->getOpcode() == PPCISD::VCMPo &&
14226             UI->getOperand(1) == N->getOperand(1) &&
14227             UI->getOperand(2) == N->getOperand(2) &&
14228             UI->getOperand(0) == N->getOperand(0)) {
14229           VCMPoNode = *UI;
14230           break;
14231         }
14232 
14233       // If there is no VCMPo node, or if the flag value has a single use, don't
14234       // transform this.
14235       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
14236         break;
14237 
14238       // Look at the (necessarily single) use of the flag value.  If it has a
14239       // chain, this transformation is more complex.  Note that multiple things
14240       // could use the value result, which we should ignore.
14241       SDNode *FlagUser = nullptr;
14242       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
14243            FlagUser == nullptr; ++UI) {
14244         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
14245         SDNode *User = *UI;
14246         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
14247           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
14248             FlagUser = User;
14249             break;
14250           }
14251         }
14252       }
14253 
14254       // If the user is a MFOCRF instruction, we know this is safe.
14255       // Otherwise we give up for right now.
14256       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
14257         return SDValue(VCMPoNode, 0);
14258     }
14259     break;
14260   case ISD::BRCOND: {
14261     SDValue Cond = N->getOperand(1);
14262     SDValue Target = N->getOperand(2);
14263 
14264     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14265         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
14266           Intrinsic::loop_decrement) {
14267 
14268       // We now need to make the intrinsic dead (it cannot be instruction
14269       // selected).
14270       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
14271       assert(Cond.getNode()->hasOneUse() &&
14272              "Counter decrement has more than one use");
14273 
14274       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
14275                          N->getOperand(0), Target);
14276     }
14277   }
14278   break;
14279   case ISD::BR_CC: {
14280     // If this is a branch on an altivec predicate comparison, lower this so
14281     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
14282     // lowering is done pre-legalize, because the legalizer lowers the predicate
14283     // compare down to code that is difficult to reassemble.
14284     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
14285     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
14286 
14287     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
14288     // value. If so, pass-through the AND to get to the intrinsic.
14289     if (LHS.getOpcode() == ISD::AND &&
14290         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14291         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
14292           Intrinsic::loop_decrement &&
14293         isa<ConstantSDNode>(LHS.getOperand(1)) &&
14294         !isNullConstant(LHS.getOperand(1)))
14295       LHS = LHS.getOperand(0);
14296 
14297     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14298         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
14299           Intrinsic::loop_decrement &&
14300         isa<ConstantSDNode>(RHS)) {
14301       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
14302              "Counter decrement comparison is not EQ or NE");
14303 
14304       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14305       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
14306                     (CC == ISD::SETNE && !Val);
14307 
14308       // We now need to make the intrinsic dead (it cannot be instruction
14309       // selected).
14310       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
14311       assert(LHS.getNode()->hasOneUse() &&
14312              "Counter decrement has more than one use");
14313 
14314       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
14315                          N->getOperand(0), N->getOperand(4));
14316     }
14317 
14318     int CompareOpc;
14319     bool isDot;
14320 
14321     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14322         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
14323         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
14324       assert(isDot && "Can't compare against a vector result!");
14325 
14326       // If this is a comparison against something other than 0/1, then we know
14327       // that the condition is never/always true.
14328       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14329       if (Val != 0 && Val != 1) {
14330         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
14331           return N->getOperand(0);
14332         // Always !=, turn it into an unconditional branch.
14333         return DAG.getNode(ISD::BR, dl, MVT::Other,
14334                            N->getOperand(0), N->getOperand(4));
14335       }
14336 
14337       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
14338 
14339       // Create the PPCISD altivec 'dot' comparison node.
14340       SDValue Ops[] = {
14341         LHS.getOperand(2),  // LHS of compare
14342         LHS.getOperand(3),  // RHS of compare
14343         DAG.getConstant(CompareOpc, dl, MVT::i32)
14344       };
14345       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
14346       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
14347 
14348       // Unpack the result based on how the target uses it.
14349       PPC::Predicate CompOpc;
14350       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
14351       default:  // Can't happen, don't crash on invalid number though.
14352       case 0:   // Branch on the value of the EQ bit of CR6.
14353         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
14354         break;
14355       case 1:   // Branch on the inverted value of the EQ bit of CR6.
14356         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
14357         break;
14358       case 2:   // Branch on the value of the LT bit of CR6.
14359         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
14360         break;
14361       case 3:   // Branch on the inverted value of the LT bit of CR6.
14362         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
14363         break;
14364       }
14365 
14366       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
14367                          DAG.getConstant(CompOpc, dl, MVT::i32),
14368                          DAG.getRegister(PPC::CR6, MVT::i32),
14369                          N->getOperand(4), CompNode.getValue(1));
14370     }
14371     break;
14372   }
14373   case ISD::BUILD_VECTOR:
14374     return DAGCombineBuildVector(N, DCI);
14375   case ISD::ABS:
14376     return combineABS(N, DCI);
14377   case ISD::VSELECT:
14378     return combineVSelect(N, DCI);
14379   }
14380 
14381   return SDValue();
14382 }
14383 
14384 SDValue
14385 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
14386                                  SelectionDAG &DAG,
14387                                  SmallVectorImpl<SDNode *> &Created) const {
14388   // fold (sdiv X, pow2)
14389   EVT VT = N->getValueType(0);
14390   if (VT == MVT::i64 && !Subtarget.isPPC64())
14391     return SDValue();
14392   if ((VT != MVT::i32 && VT != MVT::i64) ||
14393       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
14394     return SDValue();
14395 
14396   SDLoc DL(N);
14397   SDValue N0 = N->getOperand(0);
14398 
14399   bool IsNegPow2 = (-Divisor).isPowerOf2();
14400   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
14401   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
14402 
14403   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
14404   Created.push_back(Op.getNode());
14405 
14406   if (IsNegPow2) {
14407     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
14408     Created.push_back(Op.getNode());
14409   }
14410 
14411   return Op;
14412 }
14413 
14414 //===----------------------------------------------------------------------===//
14415 // Inline Assembly Support
14416 //===----------------------------------------------------------------------===//
14417 
14418 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
14419                                                       KnownBits &Known,
14420                                                       const APInt &DemandedElts,
14421                                                       const SelectionDAG &DAG,
14422                                                       unsigned Depth) const {
14423   Known.resetAll();
14424   switch (Op.getOpcode()) {
14425   default: break;
14426   case PPCISD::LBRX: {
14427     // lhbrx is known to have the top bits cleared out.
14428     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
14429       Known.Zero = 0xFFFF0000;
14430     break;
14431   }
14432   case ISD::INTRINSIC_WO_CHAIN: {
14433     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
14434     default: break;
14435     case Intrinsic::ppc_altivec_vcmpbfp_p:
14436     case Intrinsic::ppc_altivec_vcmpeqfp_p:
14437     case Intrinsic::ppc_altivec_vcmpequb_p:
14438     case Intrinsic::ppc_altivec_vcmpequh_p:
14439     case Intrinsic::ppc_altivec_vcmpequw_p:
14440     case Intrinsic::ppc_altivec_vcmpequd_p:
14441     case Intrinsic::ppc_altivec_vcmpgefp_p:
14442     case Intrinsic::ppc_altivec_vcmpgtfp_p:
14443     case Intrinsic::ppc_altivec_vcmpgtsb_p:
14444     case Intrinsic::ppc_altivec_vcmpgtsh_p:
14445     case Intrinsic::ppc_altivec_vcmpgtsw_p:
14446     case Intrinsic::ppc_altivec_vcmpgtsd_p:
14447     case Intrinsic::ppc_altivec_vcmpgtub_p:
14448     case Intrinsic::ppc_altivec_vcmpgtuh_p:
14449     case Intrinsic::ppc_altivec_vcmpgtuw_p:
14450     case Intrinsic::ppc_altivec_vcmpgtud_p:
14451       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
14452       break;
14453     }
14454   }
14455   }
14456 }
14457 
14458 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
14459   switch (Subtarget.getCPUDirective()) {
14460   default: break;
14461   case PPC::DIR_970:
14462   case PPC::DIR_PWR4:
14463   case PPC::DIR_PWR5:
14464   case PPC::DIR_PWR5X:
14465   case PPC::DIR_PWR6:
14466   case PPC::DIR_PWR6X:
14467   case PPC::DIR_PWR7:
14468   case PPC::DIR_PWR8:
14469   case PPC::DIR_PWR9:
14470   case PPC::DIR_PWR_FUTURE: {
14471     if (!ML)
14472       break;
14473 
14474     if (!DisableInnermostLoopAlign32) {
14475       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
14476       // so that we can decrease cache misses and branch-prediction misses.
14477       // Actual alignment of the loop will depend on the hotness check and other
14478       // logic in alignBlocks.
14479       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
14480         return Align(32);
14481     }
14482 
14483     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
14484 
14485     // For small loops (between 5 and 8 instructions), align to a 32-byte
14486     // boundary so that the entire loop fits in one instruction-cache line.
14487     uint64_t LoopSize = 0;
14488     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
14489       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
14490         LoopSize += TII->getInstSizeInBytes(*J);
14491         if (LoopSize > 32)
14492           break;
14493       }
14494 
14495     if (LoopSize > 16 && LoopSize <= 32)
14496       return Align(32);
14497 
14498     break;
14499   }
14500   }
14501 
14502   return TargetLowering::getPrefLoopAlignment(ML);
14503 }
14504 
14505 /// getConstraintType - Given a constraint, return the type of
14506 /// constraint it is for this target.
14507 PPCTargetLowering::ConstraintType
14508 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
14509   if (Constraint.size() == 1) {
14510     switch (Constraint[0]) {
14511     default: break;
14512     case 'b':
14513     case 'r':
14514     case 'f':
14515     case 'd':
14516     case 'v':
14517     case 'y':
14518       return C_RegisterClass;
14519     case 'Z':
14520       // FIXME: While Z does indicate a memory constraint, it specifically
14521       // indicates an r+r address (used in conjunction with the 'y' modifier
14522       // in the replacement string). Currently, we're forcing the base
14523       // register to be r0 in the asm printer (which is interpreted as zero)
14524       // and forming the complete address in the second register. This is
14525       // suboptimal.
14526       return C_Memory;
14527     }
14528   } else if (Constraint == "wc") { // individual CR bits.
14529     return C_RegisterClass;
14530   } else if (Constraint == "wa" || Constraint == "wd" ||
14531              Constraint == "wf" || Constraint == "ws" ||
14532              Constraint == "wi" || Constraint == "ww") {
14533     return C_RegisterClass; // VSX registers.
14534   }
14535   return TargetLowering::getConstraintType(Constraint);
14536 }
14537 
14538 /// Examine constraint type and operand type and determine a weight value.
14539 /// This object must already have been set up with the operand type
14540 /// and the current alternative constraint selected.
14541 TargetLowering::ConstraintWeight
14542 PPCTargetLowering::getSingleConstraintMatchWeight(
14543     AsmOperandInfo &info, const char *constraint) const {
14544   ConstraintWeight weight = CW_Invalid;
14545   Value *CallOperandVal = info.CallOperandVal;
14546     // If we don't have a value, we can't do a match,
14547     // but allow it at the lowest weight.
14548   if (!CallOperandVal)
14549     return CW_Default;
14550   Type *type = CallOperandVal->getType();
14551 
14552   // Look at the constraint type.
14553   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
14554     return CW_Register; // an individual CR bit.
14555   else if ((StringRef(constraint) == "wa" ||
14556             StringRef(constraint) == "wd" ||
14557             StringRef(constraint) == "wf") &&
14558            type->isVectorTy())
14559     return CW_Register;
14560   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
14561     return CW_Register; // just hold 64-bit integers data.
14562   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
14563     return CW_Register;
14564   else if (StringRef(constraint) == "ww" && type->isFloatTy())
14565     return CW_Register;
14566 
14567   switch (*constraint) {
14568   default:
14569     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14570     break;
14571   case 'b':
14572     if (type->isIntegerTy())
14573       weight = CW_Register;
14574     break;
14575   case 'f':
14576     if (type->isFloatTy())
14577       weight = CW_Register;
14578     break;
14579   case 'd':
14580     if (type->isDoubleTy())
14581       weight = CW_Register;
14582     break;
14583   case 'v':
14584     if (type->isVectorTy())
14585       weight = CW_Register;
14586     break;
14587   case 'y':
14588     weight = CW_Register;
14589     break;
14590   case 'Z':
14591     weight = CW_Memory;
14592     break;
14593   }
14594   return weight;
14595 }
14596 
14597 std::pair<unsigned, const TargetRegisterClass *>
14598 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
14599                                                 StringRef Constraint,
14600                                                 MVT VT) const {
14601   if (Constraint.size() == 1) {
14602     // GCC RS6000 Constraint Letters
14603     switch (Constraint[0]) {
14604     case 'b':   // R1-R31
14605       if (VT == MVT::i64 && Subtarget.isPPC64())
14606         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
14607       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
14608     case 'r':   // R0-R31
14609       if (VT == MVT::i64 && Subtarget.isPPC64())
14610         return std::make_pair(0U, &PPC::G8RCRegClass);
14611       return std::make_pair(0U, &PPC::GPRCRegClass);
14612     // 'd' and 'f' constraints are both defined to be "the floating point
14613     // registers", where one is for 32-bit and the other for 64-bit. We don't
14614     // really care overly much here so just give them all the same reg classes.
14615     case 'd':
14616     case 'f':
14617       if (Subtarget.hasSPE()) {
14618         if (VT == MVT::f32 || VT == MVT::i32)
14619           return std::make_pair(0U, &PPC::GPRCRegClass);
14620         if (VT == MVT::f64 || VT == MVT::i64)
14621           return std::make_pair(0U, &PPC::SPERCRegClass);
14622       } else {
14623         if (VT == MVT::f32 || VT == MVT::i32)
14624           return std::make_pair(0U, &PPC::F4RCRegClass);
14625         if (VT == MVT::f64 || VT == MVT::i64)
14626           return std::make_pair(0U, &PPC::F8RCRegClass);
14627         if (VT == MVT::v4f64 && Subtarget.hasQPX())
14628           return std::make_pair(0U, &PPC::QFRCRegClass);
14629         if (VT == MVT::v4f32 && Subtarget.hasQPX())
14630           return std::make_pair(0U, &PPC::QSRCRegClass);
14631       }
14632       break;
14633     case 'v':
14634       if (VT == MVT::v4f64 && Subtarget.hasQPX())
14635         return std::make_pair(0U, &PPC::QFRCRegClass);
14636       if (VT == MVT::v4f32 && Subtarget.hasQPX())
14637         return std::make_pair(0U, &PPC::QSRCRegClass);
14638       if (Subtarget.hasAltivec())
14639         return std::make_pair(0U, &PPC::VRRCRegClass);
14640       break;
14641     case 'y':   // crrc
14642       return std::make_pair(0U, &PPC::CRRCRegClass);
14643     }
14644   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
14645     // An individual CR bit.
14646     return std::make_pair(0U, &PPC::CRBITRCRegClass);
14647   } else if ((Constraint == "wa" || Constraint == "wd" ||
14648              Constraint == "wf" || Constraint == "wi") &&
14649              Subtarget.hasVSX()) {
14650     return std::make_pair(0U, &PPC::VSRCRegClass);
14651   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
14652     if (VT == MVT::f32 && Subtarget.hasP8Vector())
14653       return std::make_pair(0U, &PPC::VSSRCRegClass);
14654     else
14655       return std::make_pair(0U, &PPC::VSFRCRegClass);
14656   }
14657 
14658   // If we name a VSX register, we can't defer to the base class because it
14659   // will not recognize the correct register (their names will be VSL{0-31}
14660   // and V{0-31} so they won't match). So we match them here.
14661   if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
14662     int VSNum = atoi(Constraint.data() + 3);
14663     assert(VSNum >= 0 && VSNum <= 63 &&
14664            "Attempted to access a vsr out of range");
14665     if (VSNum < 32)
14666       return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
14667     return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
14668   }
14669   std::pair<unsigned, const TargetRegisterClass *> R =
14670       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
14671 
14672   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
14673   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
14674   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
14675   // register.
14676   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
14677   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
14678   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
14679       PPC::GPRCRegClass.contains(R.first))
14680     return std::make_pair(TRI->getMatchingSuperReg(R.first,
14681                             PPC::sub_32, &PPC::G8RCRegClass),
14682                           &PPC::G8RCRegClass);
14683 
14684   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
14685   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
14686     R.first = PPC::CR0;
14687     R.second = &PPC::CRRCRegClass;
14688   }
14689 
14690   return R;
14691 }
14692 
14693 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14694 /// vector.  If it is invalid, don't add anything to Ops.
14695 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
14696                                                      std::string &Constraint,
14697                                                      std::vector<SDValue>&Ops,
14698                                                      SelectionDAG &DAG) const {
14699   SDValue Result;
14700 
14701   // Only support length 1 constraints.
14702   if (Constraint.length() > 1) return;
14703 
14704   char Letter = Constraint[0];
14705   switch (Letter) {
14706   default: break;
14707   case 'I':
14708   case 'J':
14709   case 'K':
14710   case 'L':
14711   case 'M':
14712   case 'N':
14713   case 'O':
14714   case 'P': {
14715     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
14716     if (!CST) return; // Must be an immediate to match.
14717     SDLoc dl(Op);
14718     int64_t Value = CST->getSExtValue();
14719     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
14720                          // numbers are printed as such.
14721     switch (Letter) {
14722     default: llvm_unreachable("Unknown constraint letter!");
14723     case 'I':  // "I" is a signed 16-bit constant.
14724       if (isInt<16>(Value))
14725         Result = DAG.getTargetConstant(Value, dl, TCVT);
14726       break;
14727     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
14728       if (isShiftedUInt<16, 16>(Value))
14729         Result = DAG.getTargetConstant(Value, dl, TCVT);
14730       break;
14731     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
14732       if (isShiftedInt<16, 16>(Value))
14733         Result = DAG.getTargetConstant(Value, dl, TCVT);
14734       break;
14735     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
14736       if (isUInt<16>(Value))
14737         Result = DAG.getTargetConstant(Value, dl, TCVT);
14738       break;
14739     case 'M':  // "M" is a constant that is greater than 31.
14740       if (Value > 31)
14741         Result = DAG.getTargetConstant(Value, dl, TCVT);
14742       break;
14743     case 'N':  // "N" is a positive constant that is an exact power of two.
14744       if (Value > 0 && isPowerOf2_64(Value))
14745         Result = DAG.getTargetConstant(Value, dl, TCVT);
14746       break;
14747     case 'O':  // "O" is the constant zero.
14748       if (Value == 0)
14749         Result = DAG.getTargetConstant(Value, dl, TCVT);
14750       break;
14751     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
14752       if (isInt<16>(-Value))
14753         Result = DAG.getTargetConstant(Value, dl, TCVT);
14754       break;
14755     }
14756     break;
14757   }
14758   }
14759 
14760   if (Result.getNode()) {
14761     Ops.push_back(Result);
14762     return;
14763   }
14764 
14765   // Handle standard constraint letters.
14766   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
14767 }
14768 
14769 // isLegalAddressingMode - Return true if the addressing mode represented
14770 // by AM is legal for this target, for a load/store of the specified type.
14771 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
14772                                               const AddrMode &AM, Type *Ty,
14773                                               unsigned AS, Instruction *I) const {
14774   // PPC does not allow r+i addressing modes for vectors!
14775   if (Ty->isVectorTy() && AM.BaseOffs != 0)
14776     return false;
14777 
14778   // PPC allows a sign-extended 16-bit immediate field.
14779   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
14780     return false;
14781 
14782   // No global is ever allowed as a base.
14783   if (AM.BaseGV)
14784     return false;
14785 
14786   // PPC only support r+r,
14787   switch (AM.Scale) {
14788   case 0:  // "r+i" or just "i", depending on HasBaseReg.
14789     break;
14790   case 1:
14791     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
14792       return false;
14793     // Otherwise we have r+r or r+i.
14794     break;
14795   case 2:
14796     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
14797       return false;
14798     // Allow 2*r as r+r.
14799     break;
14800   default:
14801     // No other scales are supported.
14802     return false;
14803   }
14804 
14805   return true;
14806 }
14807 
14808 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
14809                                            SelectionDAG &DAG) const {
14810   MachineFunction &MF = DAG.getMachineFunction();
14811   MachineFrameInfo &MFI = MF.getFrameInfo();
14812   MFI.setReturnAddressIsTaken(true);
14813 
14814   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
14815     return SDValue();
14816 
14817   SDLoc dl(Op);
14818   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14819 
14820   // Make sure the function does not optimize away the store of the RA to
14821   // the stack.
14822   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
14823   FuncInfo->setLRStoreRequired();
14824   bool isPPC64 = Subtarget.isPPC64();
14825   auto PtrVT = getPointerTy(MF.getDataLayout());
14826 
14827   if (Depth > 0) {
14828     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
14829     SDValue Offset =
14830         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
14831                         isPPC64 ? MVT::i64 : MVT::i32);
14832     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
14833                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
14834                        MachinePointerInfo());
14835   }
14836 
14837   // Just load the return address off the stack.
14838   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
14839   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
14840                      MachinePointerInfo());
14841 }
14842 
14843 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
14844                                           SelectionDAG &DAG) const {
14845   SDLoc dl(Op);
14846   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14847 
14848   MachineFunction &MF = DAG.getMachineFunction();
14849   MachineFrameInfo &MFI = MF.getFrameInfo();
14850   MFI.setFrameAddressIsTaken(true);
14851 
14852   EVT PtrVT = getPointerTy(MF.getDataLayout());
14853   bool isPPC64 = PtrVT == MVT::i64;
14854 
14855   // Naked functions never have a frame pointer, and so we use r1. For all
14856   // other functions, this decision must be delayed until during PEI.
14857   unsigned FrameReg;
14858   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
14859     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
14860   else
14861     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
14862 
14863   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
14864                                          PtrVT);
14865   while (Depth--)
14866     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
14867                             FrameAddr, MachinePointerInfo());
14868   return FrameAddr;
14869 }
14870 
14871 // FIXME? Maybe this could be a TableGen attribute on some registers and
14872 // this table could be generated automatically from RegInfo.
14873 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
14874                                               const MachineFunction &MF) const {
14875   bool isPPC64 = Subtarget.isPPC64();
14876 
14877   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
14878   if (!is64Bit && VT != LLT::scalar(32))
14879     report_fatal_error("Invalid register global variable type");
14880 
14881   Register Reg = StringSwitch<Register>(RegName)
14882                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
14883                      .Case("r2", isPPC64 ? Register() : PPC::R2)
14884                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
14885                      .Default(Register());
14886 
14887   if (Reg)
14888     return Reg;
14889   report_fatal_error("Invalid register name global variable");
14890 }
14891 
14892 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
14893   // 32-bit SVR4 ABI access everything as got-indirect.
14894   if (Subtarget.is32BitELFABI())
14895     return true;
14896 
14897   // AIX accesses everything indirectly through the TOC, which is similar to
14898   // the GOT.
14899   if (Subtarget.isAIXABI())
14900     return true;
14901 
14902   CodeModel::Model CModel = getTargetMachine().getCodeModel();
14903   // If it is small or large code model, module locals are accessed
14904   // indirectly by loading their address from .toc/.got.
14905   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
14906     return true;
14907 
14908   // JumpTable and BlockAddress are accessed as got-indirect.
14909   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
14910     return true;
14911 
14912   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
14913     return Subtarget.isGVIndirectSymbol(G->getGlobal());
14914 
14915   return false;
14916 }
14917 
14918 bool
14919 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
14920   // The PowerPC target isn't yet aware of offsets.
14921   return false;
14922 }
14923 
14924 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
14925                                            const CallInst &I,
14926                                            MachineFunction &MF,
14927                                            unsigned Intrinsic) const {
14928   switch (Intrinsic) {
14929   case Intrinsic::ppc_qpx_qvlfd:
14930   case Intrinsic::ppc_qpx_qvlfs:
14931   case Intrinsic::ppc_qpx_qvlfcd:
14932   case Intrinsic::ppc_qpx_qvlfcs:
14933   case Intrinsic::ppc_qpx_qvlfiwa:
14934   case Intrinsic::ppc_qpx_qvlfiwz:
14935   case Intrinsic::ppc_altivec_lvx:
14936   case Intrinsic::ppc_altivec_lvxl:
14937   case Intrinsic::ppc_altivec_lvebx:
14938   case Intrinsic::ppc_altivec_lvehx:
14939   case Intrinsic::ppc_altivec_lvewx:
14940   case Intrinsic::ppc_vsx_lxvd2x:
14941   case Intrinsic::ppc_vsx_lxvw4x: {
14942     EVT VT;
14943     switch (Intrinsic) {
14944     case Intrinsic::ppc_altivec_lvebx:
14945       VT = MVT::i8;
14946       break;
14947     case Intrinsic::ppc_altivec_lvehx:
14948       VT = MVT::i16;
14949       break;
14950     case Intrinsic::ppc_altivec_lvewx:
14951       VT = MVT::i32;
14952       break;
14953     case Intrinsic::ppc_vsx_lxvd2x:
14954       VT = MVT::v2f64;
14955       break;
14956     case Intrinsic::ppc_qpx_qvlfd:
14957       VT = MVT::v4f64;
14958       break;
14959     case Intrinsic::ppc_qpx_qvlfs:
14960       VT = MVT::v4f32;
14961       break;
14962     case Intrinsic::ppc_qpx_qvlfcd:
14963       VT = MVT::v2f64;
14964       break;
14965     case Intrinsic::ppc_qpx_qvlfcs:
14966       VT = MVT::v2f32;
14967       break;
14968     default:
14969       VT = MVT::v4i32;
14970       break;
14971     }
14972 
14973     Info.opc = ISD::INTRINSIC_W_CHAIN;
14974     Info.memVT = VT;
14975     Info.ptrVal = I.getArgOperand(0);
14976     Info.offset = -VT.getStoreSize()+1;
14977     Info.size = 2*VT.getStoreSize()-1;
14978     Info.align = Align(1);
14979     Info.flags = MachineMemOperand::MOLoad;
14980     return true;
14981   }
14982   case Intrinsic::ppc_qpx_qvlfda:
14983   case Intrinsic::ppc_qpx_qvlfsa:
14984   case Intrinsic::ppc_qpx_qvlfcda:
14985   case Intrinsic::ppc_qpx_qvlfcsa:
14986   case Intrinsic::ppc_qpx_qvlfiwaa:
14987   case Intrinsic::ppc_qpx_qvlfiwza: {
14988     EVT VT;
14989     switch (Intrinsic) {
14990     case Intrinsic::ppc_qpx_qvlfda:
14991       VT = MVT::v4f64;
14992       break;
14993     case Intrinsic::ppc_qpx_qvlfsa:
14994       VT = MVT::v4f32;
14995       break;
14996     case Intrinsic::ppc_qpx_qvlfcda:
14997       VT = MVT::v2f64;
14998       break;
14999     case Intrinsic::ppc_qpx_qvlfcsa:
15000       VT = MVT::v2f32;
15001       break;
15002     default:
15003       VT = MVT::v4i32;
15004       break;
15005     }
15006 
15007     Info.opc = ISD::INTRINSIC_W_CHAIN;
15008     Info.memVT = VT;
15009     Info.ptrVal = I.getArgOperand(0);
15010     Info.offset = 0;
15011     Info.size = VT.getStoreSize();
15012     Info.align = Align(1);
15013     Info.flags = MachineMemOperand::MOLoad;
15014     return true;
15015   }
15016   case Intrinsic::ppc_qpx_qvstfd:
15017   case Intrinsic::ppc_qpx_qvstfs:
15018   case Intrinsic::ppc_qpx_qvstfcd:
15019   case Intrinsic::ppc_qpx_qvstfcs:
15020   case Intrinsic::ppc_qpx_qvstfiw:
15021   case Intrinsic::ppc_altivec_stvx:
15022   case Intrinsic::ppc_altivec_stvxl:
15023   case Intrinsic::ppc_altivec_stvebx:
15024   case Intrinsic::ppc_altivec_stvehx:
15025   case Intrinsic::ppc_altivec_stvewx:
15026   case Intrinsic::ppc_vsx_stxvd2x:
15027   case Intrinsic::ppc_vsx_stxvw4x: {
15028     EVT VT;
15029     switch (Intrinsic) {
15030     case Intrinsic::ppc_altivec_stvebx:
15031       VT = MVT::i8;
15032       break;
15033     case Intrinsic::ppc_altivec_stvehx:
15034       VT = MVT::i16;
15035       break;
15036     case Intrinsic::ppc_altivec_stvewx:
15037       VT = MVT::i32;
15038       break;
15039     case Intrinsic::ppc_vsx_stxvd2x:
15040       VT = MVT::v2f64;
15041       break;
15042     case Intrinsic::ppc_qpx_qvstfd:
15043       VT = MVT::v4f64;
15044       break;
15045     case Intrinsic::ppc_qpx_qvstfs:
15046       VT = MVT::v4f32;
15047       break;
15048     case Intrinsic::ppc_qpx_qvstfcd:
15049       VT = MVT::v2f64;
15050       break;
15051     case Intrinsic::ppc_qpx_qvstfcs:
15052       VT = MVT::v2f32;
15053       break;
15054     default:
15055       VT = MVT::v4i32;
15056       break;
15057     }
15058 
15059     Info.opc = ISD::INTRINSIC_VOID;
15060     Info.memVT = VT;
15061     Info.ptrVal = I.getArgOperand(1);
15062     Info.offset = -VT.getStoreSize()+1;
15063     Info.size = 2*VT.getStoreSize()-1;
15064     Info.align = Align(1);
15065     Info.flags = MachineMemOperand::MOStore;
15066     return true;
15067   }
15068   case Intrinsic::ppc_qpx_qvstfda:
15069   case Intrinsic::ppc_qpx_qvstfsa:
15070   case Intrinsic::ppc_qpx_qvstfcda:
15071   case Intrinsic::ppc_qpx_qvstfcsa:
15072   case Intrinsic::ppc_qpx_qvstfiwa: {
15073     EVT VT;
15074     switch (Intrinsic) {
15075     case Intrinsic::ppc_qpx_qvstfda:
15076       VT = MVT::v4f64;
15077       break;
15078     case Intrinsic::ppc_qpx_qvstfsa:
15079       VT = MVT::v4f32;
15080       break;
15081     case Intrinsic::ppc_qpx_qvstfcda:
15082       VT = MVT::v2f64;
15083       break;
15084     case Intrinsic::ppc_qpx_qvstfcsa:
15085       VT = MVT::v2f32;
15086       break;
15087     default:
15088       VT = MVT::v4i32;
15089       break;
15090     }
15091 
15092     Info.opc = ISD::INTRINSIC_VOID;
15093     Info.memVT = VT;
15094     Info.ptrVal = I.getArgOperand(1);
15095     Info.offset = 0;
15096     Info.size = VT.getStoreSize();
15097     Info.align = Align(1);
15098     Info.flags = MachineMemOperand::MOStore;
15099     return true;
15100   }
15101   default:
15102     break;
15103   }
15104 
15105   return false;
15106 }
15107 
15108 /// It returns EVT::Other if the type should be determined using generic
15109 /// target-independent logic.
15110 EVT PPCTargetLowering::getOptimalMemOpType(
15111     const MemOp &Op, const AttributeList &FuncAttributes) const {
15112   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
15113     // When expanding a memset, require at least two QPX instructions to cover
15114     // the cost of loading the value to be stored from the constant pool.
15115     if (Subtarget.hasQPX() && Op.size() >= 32 &&
15116         (Op.isMemcpy() || Op.size() >= 64) && Op.isAligned(Align(32)) &&
15117         !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
15118       return MVT::v4f64;
15119     }
15120 
15121     // We should use Altivec/VSX loads and stores when available. For unaligned
15122     // addresses, unaligned VSX loads are only fast starting with the P8.
15123     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
15124         (Op.isAligned(Align(16)) ||
15125          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
15126       return MVT::v4i32;
15127   }
15128 
15129   if (Subtarget.isPPC64()) {
15130     return MVT::i64;
15131   }
15132 
15133   return MVT::i32;
15134 }
15135 
15136 /// Returns true if it is beneficial to convert a load of a constant
15137 /// to just the constant itself.
15138 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
15139                                                           Type *Ty) const {
15140   assert(Ty->isIntegerTy());
15141 
15142   unsigned BitSize = Ty->getPrimitiveSizeInBits();
15143   return !(BitSize == 0 || BitSize > 64);
15144 }
15145 
15146 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
15147   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15148     return false;
15149   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
15150   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
15151   return NumBits1 == 64 && NumBits2 == 32;
15152 }
15153 
15154 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
15155   if (!VT1.isInteger() || !VT2.isInteger())
15156     return false;
15157   unsigned NumBits1 = VT1.getSizeInBits();
15158   unsigned NumBits2 = VT2.getSizeInBits();
15159   return NumBits1 == 64 && NumBits2 == 32;
15160 }
15161 
15162 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
15163   // Generally speaking, zexts are not free, but they are free when they can be
15164   // folded with other operations.
15165   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
15166     EVT MemVT = LD->getMemoryVT();
15167     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
15168          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
15169         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
15170          LD->getExtensionType() == ISD::ZEXTLOAD))
15171       return true;
15172   }
15173 
15174   // FIXME: Add other cases...
15175   //  - 32-bit shifts with a zext to i64
15176   //  - zext after ctlz, bswap, etc.
15177   //  - zext after and by a constant mask
15178 
15179   return TargetLowering::isZExtFree(Val, VT2);
15180 }
15181 
15182 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
15183   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
15184          "invalid fpext types");
15185   // Extending to float128 is not free.
15186   if (DestVT == MVT::f128)
15187     return false;
15188   return true;
15189 }
15190 
15191 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
15192   return isInt<16>(Imm) || isUInt<16>(Imm);
15193 }
15194 
15195 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
15196   return isInt<16>(Imm) || isUInt<16>(Imm);
15197 }
15198 
15199 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
15200                                                        unsigned,
15201                                                        unsigned,
15202                                                        MachineMemOperand::Flags,
15203                                                        bool *Fast) const {
15204   if (DisablePPCUnaligned)
15205     return false;
15206 
15207   // PowerPC supports unaligned memory access for simple non-vector types.
15208   // Although accessing unaligned addresses is not as efficient as accessing
15209   // aligned addresses, it is generally more efficient than manual expansion,
15210   // and generally only traps for software emulation when crossing page
15211   // boundaries.
15212 
15213   if (!VT.isSimple())
15214     return false;
15215 
15216   if (VT.isFloatingPoint() && !Subtarget.allowsUnalignedFPAccess())
15217     return false;
15218 
15219   if (VT.getSimpleVT().isVector()) {
15220     if (Subtarget.hasVSX()) {
15221       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
15222           VT != MVT::v4f32 && VT != MVT::v4i32)
15223         return false;
15224     } else {
15225       return false;
15226     }
15227   }
15228 
15229   if (VT == MVT::ppcf128)
15230     return false;
15231 
15232   if (Fast)
15233     *Fast = true;
15234 
15235   return true;
15236 }
15237 
15238 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
15239                                                    EVT VT) const {
15240   VT = VT.getScalarType();
15241 
15242   if (!VT.isSimple())
15243     return false;
15244 
15245   switch (VT.getSimpleVT().SimpleTy) {
15246   case MVT::f32:
15247   case MVT::f64:
15248     return true;
15249   case MVT::f128:
15250     return (EnableQuadPrecision && Subtarget.hasP9Vector());
15251   default:
15252     break;
15253   }
15254 
15255   return false;
15256 }
15257 
15258 const MCPhysReg *
15259 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
15260   // LR is a callee-save register, but we must treat it as clobbered by any call
15261   // site. Hence we include LR in the scratch registers, which are in turn added
15262   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
15263   // to CTR, which is used by any indirect call.
15264   static const MCPhysReg ScratchRegs[] = {
15265     PPC::X12, PPC::LR8, PPC::CTR8, 0
15266   };
15267 
15268   return ScratchRegs;
15269 }
15270 
15271 unsigned PPCTargetLowering::getExceptionPointerRegister(
15272     const Constant *PersonalityFn) const {
15273   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
15274 }
15275 
15276 unsigned PPCTargetLowering::getExceptionSelectorRegister(
15277     const Constant *PersonalityFn) const {
15278   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
15279 }
15280 
15281 bool
15282 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
15283                      EVT VT , unsigned DefinedValues) const {
15284   if (VT == MVT::v2i64)
15285     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
15286 
15287   if (Subtarget.hasVSX() || Subtarget.hasQPX())
15288     return true;
15289 
15290   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
15291 }
15292 
15293 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
15294   if (DisableILPPref || Subtarget.enableMachineScheduler())
15295     return TargetLowering::getSchedulingPreference(N);
15296 
15297   return Sched::ILP;
15298 }
15299 
15300 // Create a fast isel object.
15301 FastISel *
15302 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
15303                                   const TargetLibraryInfo *LibInfo) const {
15304   return PPC::createFastISel(FuncInfo, LibInfo);
15305 }
15306 
15307 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
15308   if (!Subtarget.isPPC64()) return;
15309 
15310   // Update IsSplitCSR in PPCFunctionInfo
15311   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
15312   PFI->setIsSplitCSR(true);
15313 }
15314 
15315 void PPCTargetLowering::insertCopiesSplitCSR(
15316   MachineBasicBlock *Entry,
15317   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
15318   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
15319   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
15320   if (!IStart)
15321     return;
15322 
15323   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
15324   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
15325   MachineBasicBlock::iterator MBBI = Entry->begin();
15326   for (const MCPhysReg *I = IStart; *I; ++I) {
15327     const TargetRegisterClass *RC = nullptr;
15328     if (PPC::G8RCRegClass.contains(*I))
15329       RC = &PPC::G8RCRegClass;
15330     else if (PPC::F8RCRegClass.contains(*I))
15331       RC = &PPC::F8RCRegClass;
15332     else if (PPC::CRRCRegClass.contains(*I))
15333       RC = &PPC::CRRCRegClass;
15334     else if (PPC::VRRCRegClass.contains(*I))
15335       RC = &PPC::VRRCRegClass;
15336     else
15337       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
15338 
15339     Register NewVR = MRI->createVirtualRegister(RC);
15340     // Create copy from CSR to a virtual register.
15341     // FIXME: this currently does not emit CFI pseudo-instructions, it works
15342     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
15343     // nounwind. If we want to generalize this later, we may need to emit
15344     // CFI pseudo-instructions.
15345     assert(Entry->getParent()->getFunction().hasFnAttribute(
15346              Attribute::NoUnwind) &&
15347            "Function should be nounwind in insertCopiesSplitCSR!");
15348     Entry->addLiveIn(*I);
15349     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
15350       .addReg(*I);
15351 
15352     // Insert the copy-back instructions right before the terminator.
15353     for (auto *Exit : Exits)
15354       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
15355               TII->get(TargetOpcode::COPY), *I)
15356         .addReg(NewVR);
15357   }
15358 }
15359 
15360 // Override to enable LOAD_STACK_GUARD lowering on Linux.
15361 bool PPCTargetLowering::useLoadStackGuardNode() const {
15362   if (!Subtarget.isTargetLinux())
15363     return TargetLowering::useLoadStackGuardNode();
15364   return true;
15365 }
15366 
15367 // Override to disable global variable loading on Linux.
15368 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
15369   if (!Subtarget.isTargetLinux())
15370     return TargetLowering::insertSSPDeclarations(M);
15371 }
15372 
15373 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
15374                                      bool ForCodeSize) const {
15375   if (!VT.isSimple() || !Subtarget.hasVSX())
15376     return false;
15377 
15378   switch(VT.getSimpleVT().SimpleTy) {
15379   default:
15380     // For FP types that are currently not supported by PPC backend, return
15381     // false. Examples: f16, f80.
15382     return false;
15383   case MVT::f32:
15384   case MVT::f64:
15385   case MVT::ppcf128:
15386     return Imm.isPosZero();
15387   }
15388 }
15389 
15390 // For vector shift operation op, fold
15391 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
15392 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
15393                                   SelectionDAG &DAG) {
15394   SDValue N0 = N->getOperand(0);
15395   SDValue N1 = N->getOperand(1);
15396   EVT VT = N0.getValueType();
15397   unsigned OpSizeInBits = VT.getScalarSizeInBits();
15398   unsigned Opcode = N->getOpcode();
15399   unsigned TargetOpcode;
15400 
15401   switch (Opcode) {
15402   default:
15403     llvm_unreachable("Unexpected shift operation");
15404   case ISD::SHL:
15405     TargetOpcode = PPCISD::SHL;
15406     break;
15407   case ISD::SRL:
15408     TargetOpcode = PPCISD::SRL;
15409     break;
15410   case ISD::SRA:
15411     TargetOpcode = PPCISD::SRA;
15412     break;
15413   }
15414 
15415   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
15416       N1->getOpcode() == ISD::AND)
15417     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
15418       if (Mask->getZExtValue() == OpSizeInBits - 1)
15419         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
15420 
15421   return SDValue();
15422 }
15423 
15424 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
15425   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15426     return Value;
15427 
15428   SDValue N0 = N->getOperand(0);
15429   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
15430   if (!Subtarget.isISA3_0() ||
15431       N0.getOpcode() != ISD::SIGN_EXTEND ||
15432       N0.getOperand(0).getValueType() != MVT::i32 ||
15433       CN1 == nullptr || N->getValueType(0) != MVT::i64)
15434     return SDValue();
15435 
15436   // We can't save an operation here if the value is already extended, and
15437   // the existing shift is easier to combine.
15438   SDValue ExtsSrc = N0.getOperand(0);
15439   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
15440       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
15441     return SDValue();
15442 
15443   SDLoc DL(N0);
15444   SDValue ShiftBy = SDValue(CN1, 0);
15445   // We want the shift amount to be i32 on the extswli, but the shift could
15446   // have an i64.
15447   if (ShiftBy.getValueType() == MVT::i64)
15448     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
15449 
15450   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
15451                          ShiftBy);
15452 }
15453 
15454 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
15455   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15456     return Value;
15457 
15458   return SDValue();
15459 }
15460 
15461 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
15462   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15463     return Value;
15464 
15465   return SDValue();
15466 }
15467 
15468 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
15469 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
15470 // When C is zero, the equation (addi Z, -C) can be simplified to Z
15471 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
15472 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
15473                                  const PPCSubtarget &Subtarget) {
15474   if (!Subtarget.isPPC64())
15475     return SDValue();
15476 
15477   SDValue LHS = N->getOperand(0);
15478   SDValue RHS = N->getOperand(1);
15479 
15480   auto isZextOfCompareWithConstant = [](SDValue Op) {
15481     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
15482         Op.getValueType() != MVT::i64)
15483       return false;
15484 
15485     SDValue Cmp = Op.getOperand(0);
15486     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
15487         Cmp.getOperand(0).getValueType() != MVT::i64)
15488       return false;
15489 
15490     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
15491       int64_t NegConstant = 0 - Constant->getSExtValue();
15492       // Due to the limitations of the addi instruction,
15493       // -C is required to be [-32768, 32767].
15494       return isInt<16>(NegConstant);
15495     }
15496 
15497     return false;
15498   };
15499 
15500   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
15501   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
15502 
15503   // If there is a pattern, canonicalize a zext operand to the RHS.
15504   if (LHSHasPattern && !RHSHasPattern)
15505     std::swap(LHS, RHS);
15506   else if (!LHSHasPattern && !RHSHasPattern)
15507     return SDValue();
15508 
15509   SDLoc DL(N);
15510   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
15511   SDValue Cmp = RHS.getOperand(0);
15512   SDValue Z = Cmp.getOperand(0);
15513   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
15514 
15515   assert(Constant && "Constant Should not be a null pointer.");
15516   int64_t NegConstant = 0 - Constant->getSExtValue();
15517 
15518   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
15519   default: break;
15520   case ISD::SETNE: {
15521     //                                 when C == 0
15522     //                             --> addze X, (addic Z, -1).carry
15523     //                            /
15524     // add X, (zext(setne Z, C))--
15525     //                            \    when -32768 <= -C <= 32767 && C != 0
15526     //                             --> addze X, (addic (addi Z, -C), -1).carry
15527     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
15528                               DAG.getConstant(NegConstant, DL, MVT::i64));
15529     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
15530     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
15531                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
15532     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
15533                        SDValue(Addc.getNode(), 1));
15534     }
15535   case ISD::SETEQ: {
15536     //                                 when C == 0
15537     //                             --> addze X, (subfic Z, 0).carry
15538     //                            /
15539     // add X, (zext(sete  Z, C))--
15540     //                            \    when -32768 <= -C <= 32767 && C != 0
15541     //                             --> addze X, (subfic (addi Z, -C), 0).carry
15542     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
15543                               DAG.getConstant(NegConstant, DL, MVT::i64));
15544     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
15545     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
15546                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
15547     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
15548                        SDValue(Subc.getNode(), 1));
15549     }
15550   }
15551 
15552   return SDValue();
15553 }
15554 
15555 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
15556   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
15557     return Value;
15558 
15559   return SDValue();
15560 }
15561 
15562 // Detect TRUNCATE operations on bitcasts of float128 values.
15563 // What we are looking for here is the situtation where we extract a subset
15564 // of bits from a 128 bit float.
15565 // This can be of two forms:
15566 // 1) BITCAST of f128 feeding TRUNCATE
15567 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
15568 // The reason this is required is because we do not have a legal i128 type
15569 // and so we want to prevent having to store the f128 and then reload part
15570 // of it.
15571 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
15572                                            DAGCombinerInfo &DCI) const {
15573   // If we are using CRBits then try that first.
15574   if (Subtarget.useCRBits()) {
15575     // Check if CRBits did anything and return that if it did.
15576     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
15577       return CRTruncValue;
15578   }
15579 
15580   SDLoc dl(N);
15581   SDValue Op0 = N->getOperand(0);
15582 
15583   // Looking for a truncate of i128 to i64.
15584   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
15585     return SDValue();
15586 
15587   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
15588 
15589   // SRL feeding TRUNCATE.
15590   if (Op0.getOpcode() == ISD::SRL) {
15591     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
15592     // The right shift has to be by 64 bits.
15593     if (!ConstNode || ConstNode->getZExtValue() != 64)
15594       return SDValue();
15595 
15596     // Switch the element number to extract.
15597     EltToExtract = EltToExtract ? 0 : 1;
15598     // Update Op0 past the SRL.
15599     Op0 = Op0.getOperand(0);
15600   }
15601 
15602   // BITCAST feeding a TRUNCATE possibly via SRL.
15603   if (Op0.getOpcode() == ISD::BITCAST &&
15604       Op0.getValueType() == MVT::i128 &&
15605       Op0.getOperand(0).getValueType() == MVT::f128) {
15606     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
15607     return DCI.DAG.getNode(
15608         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
15609         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
15610   }
15611   return SDValue();
15612 }
15613 
15614 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
15615   SelectionDAG &DAG = DCI.DAG;
15616 
15617   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
15618   if (!ConstOpOrElement)
15619     return SDValue();
15620 
15621   // An imul is usually smaller than the alternative sequence for legal type.
15622   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
15623       isOperationLegal(ISD::MUL, N->getValueType(0)))
15624     return SDValue();
15625 
15626   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
15627     switch (this->Subtarget.getCPUDirective()) {
15628     default:
15629       // TODO: enhance the condition for subtarget before pwr8
15630       return false;
15631     case PPC::DIR_PWR8:
15632       //  type        mul     add    shl
15633       // scalar        4       1      1
15634       // vector        7       2      2
15635       return true;
15636     case PPC::DIR_PWR9:
15637     case PPC::DIR_PWR_FUTURE:
15638       //  type        mul     add    shl
15639       // scalar        5       2      2
15640       // vector        7       2      2
15641 
15642       // The cycle RATIO of related operations are showed as a table above.
15643       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
15644       // scalar and vector type. For 2 instrs patterns, add/sub + shl
15645       // are 4, it is always profitable; but for 3 instrs patterns
15646       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
15647       // So we should only do it for vector type.
15648       return IsAddOne && IsNeg ? VT.isVector() : true;
15649     }
15650   };
15651 
15652   EVT VT = N->getValueType(0);
15653   SDLoc DL(N);
15654 
15655   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
15656   bool IsNeg = MulAmt.isNegative();
15657   APInt MulAmtAbs = MulAmt.abs();
15658 
15659   if ((MulAmtAbs - 1).isPowerOf2()) {
15660     // (mul x, 2^N + 1) => (add (shl x, N), x)
15661     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
15662 
15663     if (!IsProfitable(IsNeg, true, VT))
15664       return SDValue();
15665 
15666     SDValue Op0 = N->getOperand(0);
15667     SDValue Op1 =
15668         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15669                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
15670     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
15671 
15672     if (!IsNeg)
15673       return Res;
15674 
15675     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
15676   } else if ((MulAmtAbs + 1).isPowerOf2()) {
15677     // (mul x, 2^N - 1) => (sub (shl x, N), x)
15678     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
15679 
15680     if (!IsProfitable(IsNeg, false, VT))
15681       return SDValue();
15682 
15683     SDValue Op0 = N->getOperand(0);
15684     SDValue Op1 =
15685         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15686                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
15687 
15688     if (!IsNeg)
15689       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
15690     else
15691       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
15692 
15693   } else {
15694     return SDValue();
15695   }
15696 }
15697 
15698 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
15699   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
15700   if (!Subtarget.is64BitELFABI())
15701     return false;
15702 
15703   // If not a tail call then no need to proceed.
15704   if (!CI->isTailCall())
15705     return false;
15706 
15707   // If sibling calls have been disabled and tail-calls aren't guaranteed
15708   // there is no reason to duplicate.
15709   auto &TM = getTargetMachine();
15710   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
15711     return false;
15712 
15713   // Can't tail call a function called indirectly, or if it has variadic args.
15714   const Function *Callee = CI->getCalledFunction();
15715   if (!Callee || Callee->isVarArg())
15716     return false;
15717 
15718   // Make sure the callee and caller calling conventions are eligible for tco.
15719   const Function *Caller = CI->getParent()->getParent();
15720   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
15721                                            CI->getCallingConv()))
15722       return false;
15723 
15724   // If the function is local then we have a good chance at tail-calling it
15725   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
15726 }
15727 
15728 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
15729   if (!Subtarget.hasVSX())
15730     return false;
15731   if (Subtarget.hasP9Vector() && VT == MVT::f128)
15732     return true;
15733   return VT == MVT::f32 || VT == MVT::f64 ||
15734     VT == MVT::v4f32 || VT == MVT::v2f64;
15735 }
15736 
15737 bool PPCTargetLowering::
15738 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
15739   const Value *Mask = AndI.getOperand(1);
15740   // If the mask is suitable for andi. or andis. we should sink the and.
15741   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
15742     // Can't handle constants wider than 64-bits.
15743     if (CI->getBitWidth() > 64)
15744       return false;
15745     int64_t ConstVal = CI->getZExtValue();
15746     return isUInt<16>(ConstVal) ||
15747       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
15748   }
15749 
15750   // For non-constant masks, we can always use the record-form and.
15751   return true;
15752 }
15753 
15754 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
15755 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
15756 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
15757 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
15758 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
15759 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
15760   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
15761   assert(Subtarget.hasP9Altivec() &&
15762          "Only combine this when P9 altivec supported!");
15763   EVT VT = N->getValueType(0);
15764   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
15765     return SDValue();
15766 
15767   SelectionDAG &DAG = DCI.DAG;
15768   SDLoc dl(N);
15769   if (N->getOperand(0).getOpcode() == ISD::SUB) {
15770     // Even for signed integers, if it's known to be positive (as signed
15771     // integer) due to zero-extended inputs.
15772     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
15773     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
15774     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
15775          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
15776         (SubOpcd1 == ISD::ZERO_EXTEND ||
15777          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
15778       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
15779                          N->getOperand(0)->getOperand(0),
15780                          N->getOperand(0)->getOperand(1),
15781                          DAG.getTargetConstant(0, dl, MVT::i32));
15782     }
15783 
15784     // For type v4i32, it can be optimized with xvnegsp + vabsduw
15785     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
15786         N->getOperand(0).hasOneUse()) {
15787       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
15788                          N->getOperand(0)->getOperand(0),
15789                          N->getOperand(0)->getOperand(1),
15790                          DAG.getTargetConstant(1, dl, MVT::i32));
15791     }
15792   }
15793 
15794   return SDValue();
15795 }
15796 
15797 // For type v4i32/v8ii16/v16i8, transform
15798 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
15799 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
15800 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
15801 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
15802 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
15803                                           DAGCombinerInfo &DCI) const {
15804   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
15805   assert(Subtarget.hasP9Altivec() &&
15806          "Only combine this when P9 altivec supported!");
15807 
15808   SelectionDAG &DAG = DCI.DAG;
15809   SDLoc dl(N);
15810   SDValue Cond = N->getOperand(0);
15811   SDValue TrueOpnd = N->getOperand(1);
15812   SDValue FalseOpnd = N->getOperand(2);
15813   EVT VT = N->getOperand(1).getValueType();
15814 
15815   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
15816       FalseOpnd.getOpcode() != ISD::SUB)
15817     return SDValue();
15818 
15819   // ABSD only available for type v4i32/v8i16/v16i8
15820   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
15821     return SDValue();
15822 
15823   // At least to save one more dependent computation
15824   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
15825     return SDValue();
15826 
15827   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15828 
15829   // Can only handle unsigned comparison here
15830   switch (CC) {
15831   default:
15832     return SDValue();
15833   case ISD::SETUGT:
15834   case ISD::SETUGE:
15835     break;
15836   case ISD::SETULT:
15837   case ISD::SETULE:
15838     std::swap(TrueOpnd, FalseOpnd);
15839     break;
15840   }
15841 
15842   SDValue CmpOpnd1 = Cond.getOperand(0);
15843   SDValue CmpOpnd2 = Cond.getOperand(1);
15844 
15845   // SETCC CmpOpnd1 CmpOpnd2 cond
15846   // TrueOpnd = CmpOpnd1 - CmpOpnd2
15847   // FalseOpnd = CmpOpnd2 - CmpOpnd1
15848   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
15849       TrueOpnd.getOperand(1) == CmpOpnd2 &&
15850       FalseOpnd.getOperand(0) == CmpOpnd2 &&
15851       FalseOpnd.getOperand(1) == CmpOpnd1) {
15852     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
15853                        CmpOpnd1, CmpOpnd2,
15854                        DAG.getTargetConstant(0, dl, MVT::i32));
15855   }
15856 
15857   return SDValue();
15858 }
15859