1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallSite.h" 59 #include "llvm/IR/CallingConv.h" 60 #include "llvm/IR/Constant.h" 61 #include "llvm/IR/Constants.h" 62 #include "llvm/IR/DataLayout.h" 63 #include "llvm/IR/DebugLoc.h" 64 #include "llvm/IR/DerivedTypes.h" 65 #include "llvm/IR/Function.h" 66 #include "llvm/IR/GlobalValue.h" 67 #include "llvm/IR/IRBuilder.h" 68 #include "llvm/IR/Instructions.h" 69 #include "llvm/IR/Intrinsics.h" 70 #include "llvm/IR/IntrinsicsPowerPC.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/Type.h" 73 #include "llvm/IR/Use.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/MC/MCContext.h" 76 #include "llvm/MC/MCExpr.h" 77 #include "llvm/MC/MCRegisterInfo.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision", 122 cl::desc("enable quad precision float support on ppc"), cl::Hidden); 123 124 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 125 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 126 127 STATISTIC(NumTailCalls, "Number of tail calls"); 128 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 129 130 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 131 132 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 133 134 // FIXME: Remove this once the bug has been fixed! 135 extern cl::opt<bool> ANDIGlueBug; 136 137 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 138 const PPCSubtarget &STI) 139 : TargetLowering(TM), Subtarget(STI) { 140 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 141 // arguments are at least 4/8 bytes aligned. 142 bool isPPC64 = Subtarget.isPPC64(); 143 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 144 145 // Set up the register classes. 146 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 147 if (!useSoftFloat()) { 148 if (hasSPE()) { 149 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 150 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 151 } else { 152 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 153 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 154 } 155 } 156 157 // Match BITREVERSE to customized fast code sequence in the td file. 158 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 159 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 160 161 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 162 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 163 164 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 165 for (MVT VT : MVT::integer_valuetypes()) { 166 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 167 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 168 } 169 170 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 171 172 // PowerPC has pre-inc load and store's. 173 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 174 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 175 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 176 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 177 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 178 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 179 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 180 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 181 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 182 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 183 if (!Subtarget.hasSPE()) { 184 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 185 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 186 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 187 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 188 } 189 190 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 191 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 192 for (MVT VT : ScalarIntVTs) { 193 setOperationAction(ISD::ADDC, VT, Legal); 194 setOperationAction(ISD::ADDE, VT, Legal); 195 setOperationAction(ISD::SUBC, VT, Legal); 196 setOperationAction(ISD::SUBE, VT, Legal); 197 } 198 199 if (Subtarget.useCRBits()) { 200 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 201 202 if (isPPC64 || Subtarget.hasFPCVT()) { 203 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 204 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 205 isPPC64 ? MVT::i64 : MVT::i32); 206 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 207 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 208 isPPC64 ? MVT::i64 : MVT::i32); 209 } else { 210 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 211 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 212 } 213 214 // PowerPC does not support direct load/store of condition registers. 215 setOperationAction(ISD::LOAD, MVT::i1, Custom); 216 setOperationAction(ISD::STORE, MVT::i1, Custom); 217 218 // FIXME: Remove this once the ANDI glue bug is fixed: 219 if (ANDIGlueBug) 220 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 221 222 for (MVT VT : MVT::integer_valuetypes()) { 223 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 224 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 225 setTruncStoreAction(VT, MVT::i1, Expand); 226 } 227 228 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 229 } 230 231 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 232 // PPC (the libcall is not available). 233 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 234 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 235 236 // We do not currently implement these libm ops for PowerPC. 237 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 238 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 239 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 240 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 241 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 242 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 243 244 // PowerPC has no SREM/UREM instructions unless we are on P9 245 // On P9 we may use a hardware instruction to compute the remainder. 246 // The instructions are not legalized directly because in the cases where the 247 // result of both the remainder and the division is required it is more 248 // efficient to compute the remainder from the result of the division rather 249 // than use the remainder instruction. 250 if (Subtarget.isISA3_0()) { 251 setOperationAction(ISD::SREM, MVT::i32, Custom); 252 setOperationAction(ISD::UREM, MVT::i32, Custom); 253 setOperationAction(ISD::SREM, MVT::i64, Custom); 254 setOperationAction(ISD::UREM, MVT::i64, Custom); 255 } else { 256 setOperationAction(ISD::SREM, MVT::i32, Expand); 257 setOperationAction(ISD::UREM, MVT::i32, Expand); 258 setOperationAction(ISD::SREM, MVT::i64, Expand); 259 setOperationAction(ISD::UREM, MVT::i64, Expand); 260 } 261 262 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 263 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 264 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 265 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 266 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 267 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 268 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 269 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 270 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 271 272 // We don't support sin/cos/sqrt/fmod/pow 273 setOperationAction(ISD::FSIN , MVT::f64, Expand); 274 setOperationAction(ISD::FCOS , MVT::f64, Expand); 275 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 276 setOperationAction(ISD::FREM , MVT::f64, Expand); 277 setOperationAction(ISD::FPOW , MVT::f64, Expand); 278 setOperationAction(ISD::FSIN , MVT::f32, Expand); 279 setOperationAction(ISD::FCOS , MVT::f32, Expand); 280 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 281 setOperationAction(ISD::FREM , MVT::f32, Expand); 282 setOperationAction(ISD::FPOW , MVT::f32, Expand); 283 if (Subtarget.hasSPE()) { 284 setOperationAction(ISD::FMA , MVT::f64, Expand); 285 setOperationAction(ISD::FMA , MVT::f32, Expand); 286 } else { 287 setOperationAction(ISD::FMA , MVT::f64, Legal); 288 setOperationAction(ISD::FMA , MVT::f32, Legal); 289 } 290 291 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 292 293 // If we're enabling GP optimizations, use hardware square root 294 if (!Subtarget.hasFSQRT() && 295 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 296 Subtarget.hasFRE())) 297 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 298 299 if (!Subtarget.hasFSQRT() && 300 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 301 Subtarget.hasFRES())) 302 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 303 304 if (Subtarget.hasFCPSGN()) { 305 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 306 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 307 } else { 308 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 309 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 310 } 311 312 if (Subtarget.hasFPRND()) { 313 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 314 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 315 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 316 setOperationAction(ISD::FROUND, MVT::f64, Legal); 317 318 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 319 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 320 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 321 setOperationAction(ISD::FROUND, MVT::f32, Legal); 322 } 323 324 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 325 // to speed up scalar BSWAP64. 326 // CTPOP or CTTZ were introduced in P8/P9 respectively 327 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 328 if (Subtarget.hasP9Vector()) 329 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 330 else 331 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 332 if (Subtarget.isISA3_0()) { 333 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 334 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 335 } else { 336 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 337 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 338 } 339 340 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 341 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 342 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 343 } else { 344 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 345 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 346 } 347 348 // PowerPC does not have ROTR 349 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 350 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 351 352 if (!Subtarget.useCRBits()) { 353 // PowerPC does not have Select 354 setOperationAction(ISD::SELECT, MVT::i32, Expand); 355 setOperationAction(ISD::SELECT, MVT::i64, Expand); 356 setOperationAction(ISD::SELECT, MVT::f32, Expand); 357 setOperationAction(ISD::SELECT, MVT::f64, Expand); 358 } 359 360 // PowerPC wants to turn select_cc of FP into fsel when possible. 361 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 362 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 363 364 // PowerPC wants to optimize integer setcc a bit 365 if (!Subtarget.useCRBits()) 366 setOperationAction(ISD::SETCC, MVT::i32, Custom); 367 368 // PowerPC does not have BRCOND which requires SetCC 369 if (!Subtarget.useCRBits()) 370 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 371 372 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 373 374 if (Subtarget.hasSPE()) { 375 // SPE has built-in conversions 376 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 377 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 378 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 379 } else { 380 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 381 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 382 383 // PowerPC does not have [U|S]INT_TO_FP 384 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 385 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 386 } 387 388 if (Subtarget.hasDirectMove() && isPPC64) { 389 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 390 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 391 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 392 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 393 if (TM.Options.UnsafeFPMath) { 394 setOperationAction(ISD::LRINT, MVT::f64, Legal); 395 setOperationAction(ISD::LRINT, MVT::f32, Legal); 396 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 397 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 398 setOperationAction(ISD::LROUND, MVT::f64, Legal); 399 setOperationAction(ISD::LROUND, MVT::f32, Legal); 400 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 401 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 402 } 403 } else { 404 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 405 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 406 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 407 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 408 } 409 410 // We cannot sextinreg(i1). Expand to shifts. 411 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 412 413 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 414 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 415 // support continuation, user-level threading, and etc.. As a result, no 416 // other SjLj exception interfaces are implemented and please don't build 417 // your own exception handling based on them. 418 // LLVM/Clang supports zero-cost DWARF exception handling. 419 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 420 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 421 422 // We want to legalize GlobalAddress and ConstantPool nodes into the 423 // appropriate instructions to materialize the address. 424 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 425 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 426 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 427 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 428 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 429 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 430 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 431 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 432 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 433 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 434 435 // TRAP is legal. 436 setOperationAction(ISD::TRAP, MVT::Other, Legal); 437 438 // TRAMPOLINE is custom lowered. 439 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 440 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 441 442 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 443 setOperationAction(ISD::VASTART , MVT::Other, Custom); 444 445 if (Subtarget.is64BitELFABI()) { 446 // VAARG always uses double-word chunks, so promote anything smaller. 447 setOperationAction(ISD::VAARG, MVT::i1, Promote); 448 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 449 setOperationAction(ISD::VAARG, MVT::i8, Promote); 450 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 451 setOperationAction(ISD::VAARG, MVT::i16, Promote); 452 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 453 setOperationAction(ISD::VAARG, MVT::i32, Promote); 454 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 455 setOperationAction(ISD::VAARG, MVT::Other, Expand); 456 } else if (Subtarget.is32BitELFABI()) { 457 // VAARG is custom lowered with the 32-bit SVR4 ABI. 458 setOperationAction(ISD::VAARG, MVT::Other, Custom); 459 setOperationAction(ISD::VAARG, MVT::i64, Custom); 460 } else 461 setOperationAction(ISD::VAARG, MVT::Other, Expand); 462 463 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 464 if (Subtarget.is32BitELFABI()) 465 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 466 else 467 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 468 469 // Use the default implementation. 470 setOperationAction(ISD::VAEND , MVT::Other, Expand); 471 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 472 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 473 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 474 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 475 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 476 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 477 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 478 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 479 480 // We want to custom lower some of our intrinsics. 481 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 482 483 // To handle counter-based loop conditions. 484 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 485 486 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 487 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 488 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 489 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 490 491 // Comparisons that require checking two conditions. 492 if (Subtarget.hasSPE()) { 493 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 494 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 495 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 496 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 497 } 498 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 499 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 500 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 501 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 502 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 503 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 504 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 505 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 506 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 507 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 508 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 509 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 510 511 if (Subtarget.has64BitSupport()) { 512 // They also have instructions for converting between i64 and fp. 513 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 514 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 515 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 516 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 517 // This is just the low 32 bits of a (signed) fp->i64 conversion. 518 // We cannot do this with Promote because i64 is not a legal type. 519 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 520 521 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 522 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 523 } else { 524 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 525 if (Subtarget.hasSPE()) 526 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 527 else 528 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 529 } 530 531 // With the instructions enabled under FPCVT, we can do everything. 532 if (Subtarget.hasFPCVT()) { 533 if (Subtarget.has64BitSupport()) { 534 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 535 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 536 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 537 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 538 } 539 540 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 541 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 542 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 543 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 544 } 545 546 if (Subtarget.use64BitRegs()) { 547 // 64-bit PowerPC implementations can support i64 types directly 548 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 549 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 550 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 551 // 64-bit PowerPC wants to expand i128 shifts itself. 552 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 553 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 554 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 555 } else { 556 // 32-bit PowerPC wants to expand i64 shifts itself. 557 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 558 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 559 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 560 } 561 562 if (Subtarget.hasVSX()) { 563 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 564 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 565 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 566 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 567 } 568 569 if (Subtarget.hasAltivec()) { 570 // First set operation action for all vector types to expand. Then we 571 // will selectively turn on ones that can be effectively codegen'd. 572 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 573 // add/sub are legal for all supported vector VT's. 574 setOperationAction(ISD::ADD, VT, Legal); 575 setOperationAction(ISD::SUB, VT, Legal); 576 577 // For v2i64, these are only valid with P8Vector. This is corrected after 578 // the loop. 579 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 580 setOperationAction(ISD::SMAX, VT, Legal); 581 setOperationAction(ISD::SMIN, VT, Legal); 582 setOperationAction(ISD::UMAX, VT, Legal); 583 setOperationAction(ISD::UMIN, VT, Legal); 584 } 585 else { 586 setOperationAction(ISD::SMAX, VT, Expand); 587 setOperationAction(ISD::SMIN, VT, Expand); 588 setOperationAction(ISD::UMAX, VT, Expand); 589 setOperationAction(ISD::UMIN, VT, Expand); 590 } 591 592 if (Subtarget.hasVSX()) { 593 setOperationAction(ISD::FMAXNUM, VT, Legal); 594 setOperationAction(ISD::FMINNUM, VT, Legal); 595 } 596 597 // Vector instructions introduced in P8 598 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 599 setOperationAction(ISD::CTPOP, VT, Legal); 600 setOperationAction(ISD::CTLZ, VT, Legal); 601 } 602 else { 603 setOperationAction(ISD::CTPOP, VT, Expand); 604 setOperationAction(ISD::CTLZ, VT, Expand); 605 } 606 607 // Vector instructions introduced in P9 608 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 609 setOperationAction(ISD::CTTZ, VT, Legal); 610 else 611 setOperationAction(ISD::CTTZ, VT, Expand); 612 613 // We promote all shuffles to v16i8. 614 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 615 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 616 617 // We promote all non-typed operations to v4i32. 618 setOperationAction(ISD::AND , VT, Promote); 619 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 620 setOperationAction(ISD::OR , VT, Promote); 621 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 622 setOperationAction(ISD::XOR , VT, Promote); 623 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 624 setOperationAction(ISD::LOAD , VT, Promote); 625 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 626 setOperationAction(ISD::SELECT, VT, Promote); 627 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 628 setOperationAction(ISD::VSELECT, VT, Legal); 629 setOperationAction(ISD::SELECT_CC, VT, Promote); 630 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 631 setOperationAction(ISD::STORE, VT, Promote); 632 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 633 634 // No other operations are legal. 635 setOperationAction(ISD::MUL , VT, Expand); 636 setOperationAction(ISD::SDIV, VT, Expand); 637 setOperationAction(ISD::SREM, VT, Expand); 638 setOperationAction(ISD::UDIV, VT, Expand); 639 setOperationAction(ISD::UREM, VT, Expand); 640 setOperationAction(ISD::FDIV, VT, Expand); 641 setOperationAction(ISD::FREM, VT, Expand); 642 setOperationAction(ISD::FNEG, VT, Expand); 643 setOperationAction(ISD::FSQRT, VT, Expand); 644 setOperationAction(ISD::FLOG, VT, Expand); 645 setOperationAction(ISD::FLOG10, VT, Expand); 646 setOperationAction(ISD::FLOG2, VT, Expand); 647 setOperationAction(ISD::FEXP, VT, Expand); 648 setOperationAction(ISD::FEXP2, VT, Expand); 649 setOperationAction(ISD::FSIN, VT, Expand); 650 setOperationAction(ISD::FCOS, VT, Expand); 651 setOperationAction(ISD::FABS, VT, Expand); 652 setOperationAction(ISD::FFLOOR, VT, Expand); 653 setOperationAction(ISD::FCEIL, VT, Expand); 654 setOperationAction(ISD::FTRUNC, VT, Expand); 655 setOperationAction(ISD::FRINT, VT, Expand); 656 setOperationAction(ISD::FNEARBYINT, VT, Expand); 657 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 658 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 659 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 660 setOperationAction(ISD::MULHU, VT, Expand); 661 setOperationAction(ISD::MULHS, VT, Expand); 662 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 663 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 664 setOperationAction(ISD::UDIVREM, VT, Expand); 665 setOperationAction(ISD::SDIVREM, VT, Expand); 666 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 667 setOperationAction(ISD::FPOW, VT, Expand); 668 setOperationAction(ISD::BSWAP, VT, Expand); 669 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 670 setOperationAction(ISD::ROTL, VT, Expand); 671 setOperationAction(ISD::ROTR, VT, Expand); 672 673 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 674 setTruncStoreAction(VT, InnerVT, Expand); 675 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 676 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 677 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 678 } 679 } 680 if (!Subtarget.hasP8Vector()) { 681 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 682 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 683 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 684 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 685 } 686 687 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 688 setOperationAction(ISD::ABS, VT, Custom); 689 690 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 691 // with merges, splats, etc. 692 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 693 694 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 695 // are cheap, so handle them before they get expanded to scalar. 696 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 697 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 698 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 699 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 700 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 701 702 setOperationAction(ISD::AND , MVT::v4i32, Legal); 703 setOperationAction(ISD::OR , MVT::v4i32, Legal); 704 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 705 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 706 setOperationAction(ISD::SELECT, MVT::v4i32, 707 Subtarget.useCRBits() ? Legal : Expand); 708 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 709 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 710 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 711 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 712 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 713 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 714 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 715 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 716 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 717 718 // Without hasP8Altivec set, v2i64 SMAX isn't available. 719 // But ABS custom lowering requires SMAX support. 720 if (!Subtarget.hasP8Altivec()) 721 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 722 723 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 724 if (Subtarget.hasAltivec()) 725 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 726 setOperationAction(ISD::ROTL, VT, Legal); 727 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 728 if (Subtarget.hasP8Altivec()) 729 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 730 731 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 732 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 733 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 734 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 735 736 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 737 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 738 739 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 740 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 741 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 742 } 743 744 if (Subtarget.hasP8Altivec()) 745 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 746 else 747 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 748 749 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 750 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 751 752 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 753 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 754 755 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 756 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 757 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 758 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 759 760 // Altivec does not contain unordered floating-point compare instructions 761 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 762 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 763 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 764 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 765 766 if (Subtarget.hasVSX()) { 767 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 768 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 769 if (Subtarget.hasP8Vector()) { 770 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 771 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 772 } 773 if (Subtarget.hasDirectMove() && isPPC64) { 774 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 775 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 776 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 777 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 778 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 779 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 780 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 781 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 782 } 783 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 784 785 // The nearbyint variants are not allowed to raise the inexact exception 786 // so we can only code-gen them with unsafe math. 787 if (TM.Options.UnsafeFPMath) { 788 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 789 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 790 } 791 792 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 793 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 794 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 795 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 796 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 797 setOperationAction(ISD::FROUND, MVT::f64, Legal); 798 799 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 800 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 801 setOperationAction(ISD::FROUND, MVT::f32, Legal); 802 803 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 804 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 805 806 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 807 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 808 809 // Share the Altivec comparison restrictions. 810 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 811 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 812 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 813 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 814 815 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 816 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 817 818 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 819 820 if (Subtarget.hasP8Vector()) 821 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 822 823 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 824 825 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 826 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 827 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 828 829 if (Subtarget.hasP8Altivec()) { 830 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 831 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 832 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 833 834 // 128 bit shifts can be accomplished via 3 instructions for SHL and 835 // SRL, but not for SRA because of the instructions available: 836 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 837 // doing 838 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 839 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 840 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 841 842 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 843 } 844 else { 845 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 846 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 847 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 848 849 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 850 851 // VSX v2i64 only supports non-arithmetic operations. 852 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 853 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 854 } 855 856 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 857 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 858 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 859 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 860 861 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 862 863 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 864 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 865 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 866 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 867 868 // Custom handling for partial vectors of integers converted to 869 // floating point. We already have optimal handling for v2i32 through 870 // the DAG combine, so those aren't necessary. 871 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 872 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 873 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 874 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 875 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 876 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 877 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 878 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 879 880 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 881 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 882 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 883 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 884 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 885 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 886 887 if (Subtarget.hasDirectMove()) 888 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 889 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 890 891 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 892 } 893 894 if (Subtarget.hasP8Altivec()) { 895 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 896 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 897 } 898 899 if (Subtarget.hasP9Vector()) { 900 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 901 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 902 903 // 128 bit shifts can be accomplished via 3 instructions for SHL and 904 // SRL, but not for SRA because of the instructions available: 905 // VS{RL} and VS{RL}O. 906 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 907 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 908 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 909 910 if (EnableQuadPrecision) { 911 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 912 setOperationAction(ISD::FADD, MVT::f128, Legal); 913 setOperationAction(ISD::FSUB, MVT::f128, Legal); 914 setOperationAction(ISD::FDIV, MVT::f128, Legal); 915 setOperationAction(ISD::FMUL, MVT::f128, Legal); 916 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 917 // No extending loads to f128 on PPC. 918 for (MVT FPT : MVT::fp_valuetypes()) 919 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 920 setOperationAction(ISD::FMA, MVT::f128, Legal); 921 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 922 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 923 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 924 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 925 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 926 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 927 928 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 929 setOperationAction(ISD::FRINT, MVT::f128, Legal); 930 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 931 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 932 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 933 setOperationAction(ISD::FROUND, MVT::f128, Legal); 934 935 setOperationAction(ISD::SELECT, MVT::f128, Expand); 936 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 937 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 938 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 939 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 940 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 941 // No implementation for these ops for PowerPC. 942 setOperationAction(ISD::FSIN , MVT::f128, Expand); 943 setOperationAction(ISD::FCOS , MVT::f128, Expand); 944 setOperationAction(ISD::FPOW, MVT::f128, Expand); 945 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 946 setOperationAction(ISD::FREM, MVT::f128, Expand); 947 } 948 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 949 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 950 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 951 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 952 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 953 } 954 955 if (Subtarget.hasP9Altivec()) { 956 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 957 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 958 959 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 960 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 961 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 962 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 963 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 964 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 965 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 966 } 967 } 968 969 if (Subtarget.hasQPX()) { 970 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 971 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 972 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 973 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 974 975 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 976 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 977 978 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 979 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 980 981 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 982 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 983 984 if (!Subtarget.useCRBits()) 985 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 986 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 987 988 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 989 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 990 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 991 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 992 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 993 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 994 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 995 996 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 997 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 998 999 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 1000 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 1001 1002 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 1003 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 1004 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 1005 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 1006 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 1007 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 1008 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 1009 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 1010 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 1011 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 1012 1013 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 1014 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 1015 1016 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 1017 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 1018 1019 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 1020 1021 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 1022 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 1023 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 1024 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 1025 1026 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1027 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 1028 1029 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 1030 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 1031 1032 if (!Subtarget.useCRBits()) 1033 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 1034 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 1035 1036 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 1037 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 1038 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 1039 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 1040 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 1041 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 1042 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 1043 1044 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 1045 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 1046 1047 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 1048 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 1049 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 1050 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 1051 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 1052 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 1053 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 1054 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 1055 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 1056 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 1057 1058 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 1059 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 1060 1061 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 1062 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 1063 1064 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 1065 1066 setOperationAction(ISD::AND , MVT::v4i1, Legal); 1067 setOperationAction(ISD::OR , MVT::v4i1, Legal); 1068 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 1069 1070 if (!Subtarget.useCRBits()) 1071 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 1072 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 1073 1074 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 1075 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 1076 1077 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 1078 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 1079 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 1080 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 1081 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 1082 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 1083 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 1084 1085 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 1086 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 1087 1088 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 1089 1090 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 1091 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 1092 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 1093 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 1094 1095 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 1096 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 1097 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 1098 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1099 1100 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 1101 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 1102 1103 // These need to set FE_INEXACT, and so cannot be vectorized here. 1104 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 1105 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 1106 1107 if (TM.Options.UnsafeFPMath) { 1108 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 1109 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 1110 1111 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 1112 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 1113 } else { 1114 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 1115 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 1116 1117 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 1118 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 1119 } 1120 } 1121 1122 if (Subtarget.has64BitSupport()) 1123 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1124 1125 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1126 1127 if (!isPPC64) { 1128 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1129 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1130 } 1131 1132 setBooleanContents(ZeroOrOneBooleanContent); 1133 1134 if (Subtarget.hasAltivec()) { 1135 // Altivec instructions set fields to all zeros or all ones. 1136 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1137 } 1138 1139 if (!isPPC64) { 1140 // These libcalls are not available in 32-bit. 1141 setLibcallName(RTLIB::SHL_I128, nullptr); 1142 setLibcallName(RTLIB::SRL_I128, nullptr); 1143 setLibcallName(RTLIB::SRA_I128, nullptr); 1144 } 1145 1146 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1147 1148 // We have target-specific dag combine patterns for the following nodes: 1149 setTargetDAGCombine(ISD::ADD); 1150 setTargetDAGCombine(ISD::SHL); 1151 setTargetDAGCombine(ISD::SRA); 1152 setTargetDAGCombine(ISD::SRL); 1153 setTargetDAGCombine(ISD::MUL); 1154 setTargetDAGCombine(ISD::SINT_TO_FP); 1155 setTargetDAGCombine(ISD::BUILD_VECTOR); 1156 if (Subtarget.hasFPCVT()) 1157 setTargetDAGCombine(ISD::UINT_TO_FP); 1158 setTargetDAGCombine(ISD::LOAD); 1159 setTargetDAGCombine(ISD::STORE); 1160 setTargetDAGCombine(ISD::BR_CC); 1161 if (Subtarget.useCRBits()) 1162 setTargetDAGCombine(ISD::BRCOND); 1163 setTargetDAGCombine(ISD::BSWAP); 1164 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1165 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1166 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1167 1168 setTargetDAGCombine(ISD::SIGN_EXTEND); 1169 setTargetDAGCombine(ISD::ZERO_EXTEND); 1170 setTargetDAGCombine(ISD::ANY_EXTEND); 1171 1172 setTargetDAGCombine(ISD::TRUNCATE); 1173 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1174 1175 1176 if (Subtarget.useCRBits()) { 1177 setTargetDAGCombine(ISD::TRUNCATE); 1178 setTargetDAGCombine(ISD::SETCC); 1179 setTargetDAGCombine(ISD::SELECT_CC); 1180 } 1181 1182 // Use reciprocal estimates. 1183 if (TM.Options.UnsafeFPMath) { 1184 setTargetDAGCombine(ISD::FDIV); 1185 setTargetDAGCombine(ISD::FSQRT); 1186 } 1187 1188 if (Subtarget.hasP9Altivec()) { 1189 setTargetDAGCombine(ISD::ABS); 1190 setTargetDAGCombine(ISD::VSELECT); 1191 } 1192 1193 // Darwin long double math library functions have $LDBL128 appended. 1194 if (Subtarget.isDarwin()) { 1195 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 1196 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 1197 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 1198 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 1199 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 1200 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 1201 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 1202 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 1203 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 1204 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 1205 } 1206 1207 if (EnableQuadPrecision) { 1208 setLibcallName(RTLIB::LOG_F128, "logf128"); 1209 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1210 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1211 setLibcallName(RTLIB::EXP_F128, "expf128"); 1212 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1213 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1214 setLibcallName(RTLIB::COS_F128, "cosf128"); 1215 setLibcallName(RTLIB::POW_F128, "powf128"); 1216 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1217 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1218 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1219 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1220 } 1221 1222 // With 32 condition bits, we don't need to sink (and duplicate) compares 1223 // aggressively in CodeGenPrep. 1224 if (Subtarget.useCRBits()) { 1225 setHasMultipleConditionRegisters(); 1226 setJumpIsExpensive(); 1227 } 1228 1229 setMinFunctionAlignment(Align(4)); 1230 if (Subtarget.isDarwin()) 1231 setPrefFunctionAlignment(Align(16)); 1232 1233 switch (Subtarget.getCPUDirective()) { 1234 default: break; 1235 case PPC::DIR_970: 1236 case PPC::DIR_A2: 1237 case PPC::DIR_E500: 1238 case PPC::DIR_E500mc: 1239 case PPC::DIR_E5500: 1240 case PPC::DIR_PWR4: 1241 case PPC::DIR_PWR5: 1242 case PPC::DIR_PWR5X: 1243 case PPC::DIR_PWR6: 1244 case PPC::DIR_PWR6X: 1245 case PPC::DIR_PWR7: 1246 case PPC::DIR_PWR8: 1247 case PPC::DIR_PWR9: 1248 case PPC::DIR_PWR_FUTURE: 1249 setPrefLoopAlignment(Align(16)); 1250 setPrefFunctionAlignment(Align(16)); 1251 break; 1252 } 1253 1254 if (Subtarget.enableMachineScheduler()) 1255 setSchedulingPreference(Sched::Source); 1256 else 1257 setSchedulingPreference(Sched::Hybrid); 1258 1259 computeRegisterProperties(STI.getRegisterInfo()); 1260 1261 // The Freescale cores do better with aggressive inlining of memcpy and 1262 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1263 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1264 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1265 MaxStoresPerMemset = 32; 1266 MaxStoresPerMemsetOptSize = 16; 1267 MaxStoresPerMemcpy = 32; 1268 MaxStoresPerMemcpyOptSize = 8; 1269 MaxStoresPerMemmove = 32; 1270 MaxStoresPerMemmoveOptSize = 8; 1271 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1272 // The A2 also benefits from (very) aggressive inlining of memcpy and 1273 // friends. The overhead of a the function call, even when warm, can be 1274 // over one hundred cycles. 1275 MaxStoresPerMemset = 128; 1276 MaxStoresPerMemcpy = 128; 1277 MaxStoresPerMemmove = 128; 1278 MaxLoadsPerMemcmp = 128; 1279 } else { 1280 MaxLoadsPerMemcmp = 8; 1281 MaxLoadsPerMemcmpOptSize = 4; 1282 } 1283 } 1284 1285 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1286 /// the desired ByVal argument alignment. 1287 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 1288 unsigned MaxMaxAlign) { 1289 if (MaxAlign == MaxMaxAlign) 1290 return; 1291 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1292 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 1293 MaxAlign = 32; 1294 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 1295 MaxAlign = 16; 1296 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1297 unsigned EltAlign = 0; 1298 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1299 if (EltAlign > MaxAlign) 1300 MaxAlign = EltAlign; 1301 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1302 for (auto *EltTy : STy->elements()) { 1303 unsigned EltAlign = 0; 1304 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1305 if (EltAlign > MaxAlign) 1306 MaxAlign = EltAlign; 1307 if (MaxAlign == MaxMaxAlign) 1308 break; 1309 } 1310 } 1311 } 1312 1313 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1314 /// function arguments in the caller parameter area. 1315 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1316 const DataLayout &DL) const { 1317 // Darwin passes everything on 4 byte boundary. 1318 if (Subtarget.isDarwin()) 1319 return 4; 1320 1321 // 16byte and wider vectors are passed on 16byte boundary. 1322 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1323 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1324 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1325 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1326 return Align; 1327 } 1328 1329 bool PPCTargetLowering::useSoftFloat() const { 1330 return Subtarget.useSoftFloat(); 1331 } 1332 1333 bool PPCTargetLowering::hasSPE() const { 1334 return Subtarget.hasSPE(); 1335 } 1336 1337 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1338 return VT.isScalarInteger(); 1339 } 1340 1341 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1342 switch ((PPCISD::NodeType)Opcode) { 1343 case PPCISD::FIRST_NUMBER: break; 1344 case PPCISD::FSEL: return "PPCISD::FSEL"; 1345 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1346 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1347 case PPCISD::FCFID: return "PPCISD::FCFID"; 1348 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1349 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1350 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1351 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1352 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1353 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1354 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1355 case PPCISD::FP_TO_UINT_IN_VSR: 1356 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1357 case PPCISD::FP_TO_SINT_IN_VSR: 1358 return "PPCISD::FP_TO_SINT_IN_VSR"; 1359 case PPCISD::FRE: return "PPCISD::FRE"; 1360 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1361 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1362 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1363 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1364 case PPCISD::VPERM: return "PPCISD::VPERM"; 1365 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1366 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1367 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1368 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1369 case PPCISD::CMPB: return "PPCISD::CMPB"; 1370 case PPCISD::Hi: return "PPCISD::Hi"; 1371 case PPCISD::Lo: return "PPCISD::Lo"; 1372 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1373 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1374 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1375 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1376 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1377 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1378 case PPCISD::SRL: return "PPCISD::SRL"; 1379 case PPCISD::SRA: return "PPCISD::SRA"; 1380 case PPCISD::SHL: return "PPCISD::SHL"; 1381 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1382 case PPCISD::CALL: return "PPCISD::CALL"; 1383 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1384 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1385 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1386 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1387 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1388 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1389 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1390 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1391 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1392 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1393 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1394 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1395 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1396 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1397 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1398 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1399 case PPCISD::VCMP: return "PPCISD::VCMP"; 1400 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1401 case PPCISD::LBRX: return "PPCISD::LBRX"; 1402 case PPCISD::STBRX: return "PPCISD::STBRX"; 1403 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1404 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1405 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1406 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1407 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1408 case PPCISD::SExtVElems: return "PPCISD::SExtVElems"; 1409 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1410 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1411 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1412 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1413 case PPCISD::ST_VSR_SCAL_INT: 1414 return "PPCISD::ST_VSR_SCAL_INT"; 1415 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1416 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1417 case PPCISD::BDZ: return "PPCISD::BDZ"; 1418 case PPCISD::MFFS: return "PPCISD::MFFS"; 1419 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1420 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1421 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1422 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1423 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1424 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1425 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1426 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1427 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1428 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1429 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1430 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1431 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1432 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1433 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1434 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1435 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1436 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1437 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1438 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1439 case PPCISD::SC: return "PPCISD::SC"; 1440 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1441 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1442 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1443 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1444 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1445 case PPCISD::VABSD: return "PPCISD::VABSD"; 1446 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1447 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1448 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1449 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1450 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1451 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1452 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1453 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1454 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1455 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1456 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1457 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1458 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1459 } 1460 return nullptr; 1461 } 1462 1463 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1464 EVT VT) const { 1465 if (!VT.isVector()) 1466 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1467 1468 if (Subtarget.hasQPX()) 1469 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1470 1471 return VT.changeVectorElementTypeToInteger(); 1472 } 1473 1474 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1475 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1476 return true; 1477 } 1478 1479 //===----------------------------------------------------------------------===// 1480 // Node matching predicates, for use by the tblgen matching code. 1481 //===----------------------------------------------------------------------===// 1482 1483 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1484 static bool isFloatingPointZero(SDValue Op) { 1485 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1486 return CFP->getValueAPF().isZero(); 1487 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1488 // Maybe this has already been legalized into the constant pool? 1489 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1490 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1491 return CFP->getValueAPF().isZero(); 1492 } 1493 return false; 1494 } 1495 1496 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1497 /// true if Op is undef or if it matches the specified value. 1498 static bool isConstantOrUndef(int Op, int Val) { 1499 return Op < 0 || Op == Val; 1500 } 1501 1502 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1503 /// VPKUHUM instruction. 1504 /// The ShuffleKind distinguishes between big-endian operations with 1505 /// two different inputs (0), either-endian operations with two identical 1506 /// inputs (1), and little-endian operations with two different inputs (2). 1507 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1508 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1509 SelectionDAG &DAG) { 1510 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1511 if (ShuffleKind == 0) { 1512 if (IsLE) 1513 return false; 1514 for (unsigned i = 0; i != 16; ++i) 1515 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1516 return false; 1517 } else if (ShuffleKind == 2) { 1518 if (!IsLE) 1519 return false; 1520 for (unsigned i = 0; i != 16; ++i) 1521 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1522 return false; 1523 } else if (ShuffleKind == 1) { 1524 unsigned j = IsLE ? 0 : 1; 1525 for (unsigned i = 0; i != 8; ++i) 1526 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1527 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1528 return false; 1529 } 1530 return true; 1531 } 1532 1533 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1534 /// VPKUWUM instruction. 1535 /// The ShuffleKind distinguishes between big-endian operations with 1536 /// two different inputs (0), either-endian operations with two identical 1537 /// inputs (1), and little-endian operations with two different inputs (2). 1538 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1539 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1540 SelectionDAG &DAG) { 1541 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1542 if (ShuffleKind == 0) { 1543 if (IsLE) 1544 return false; 1545 for (unsigned i = 0; i != 16; i += 2) 1546 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1547 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1548 return false; 1549 } else if (ShuffleKind == 2) { 1550 if (!IsLE) 1551 return false; 1552 for (unsigned i = 0; i != 16; i += 2) 1553 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1554 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1555 return false; 1556 } else if (ShuffleKind == 1) { 1557 unsigned j = IsLE ? 0 : 2; 1558 for (unsigned i = 0; i != 8; i += 2) 1559 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1560 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1561 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1562 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1563 return false; 1564 } 1565 return true; 1566 } 1567 1568 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1569 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1570 /// current subtarget. 1571 /// 1572 /// The ShuffleKind distinguishes between big-endian operations with 1573 /// two different inputs (0), either-endian operations with two identical 1574 /// inputs (1), and little-endian operations with two different inputs (2). 1575 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1576 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1577 SelectionDAG &DAG) { 1578 const PPCSubtarget& Subtarget = 1579 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1580 if (!Subtarget.hasP8Vector()) 1581 return false; 1582 1583 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1584 if (ShuffleKind == 0) { 1585 if (IsLE) 1586 return false; 1587 for (unsigned i = 0; i != 16; i += 4) 1588 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1589 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1590 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1591 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1592 return false; 1593 } else if (ShuffleKind == 2) { 1594 if (!IsLE) 1595 return false; 1596 for (unsigned i = 0; i != 16; i += 4) 1597 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1598 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1599 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1600 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1601 return false; 1602 } else if (ShuffleKind == 1) { 1603 unsigned j = IsLE ? 0 : 4; 1604 for (unsigned i = 0; i != 8; i += 4) 1605 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1606 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1607 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1608 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1609 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1610 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1611 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1612 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1613 return false; 1614 } 1615 return true; 1616 } 1617 1618 /// isVMerge - Common function, used to match vmrg* shuffles. 1619 /// 1620 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1621 unsigned LHSStart, unsigned RHSStart) { 1622 if (N->getValueType(0) != MVT::v16i8) 1623 return false; 1624 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1625 "Unsupported merge size!"); 1626 1627 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1628 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1629 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1630 LHSStart+j+i*UnitSize) || 1631 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1632 RHSStart+j+i*UnitSize)) 1633 return false; 1634 } 1635 return true; 1636 } 1637 1638 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1639 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1640 /// The ShuffleKind distinguishes between big-endian merges with two 1641 /// different inputs (0), either-endian merges with two identical inputs (1), 1642 /// and little-endian merges with two different inputs (2). For the latter, 1643 /// the input operands are swapped (see PPCInstrAltivec.td). 1644 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1645 unsigned ShuffleKind, SelectionDAG &DAG) { 1646 if (DAG.getDataLayout().isLittleEndian()) { 1647 if (ShuffleKind == 1) // unary 1648 return isVMerge(N, UnitSize, 0, 0); 1649 else if (ShuffleKind == 2) // swapped 1650 return isVMerge(N, UnitSize, 0, 16); 1651 else 1652 return false; 1653 } else { 1654 if (ShuffleKind == 1) // unary 1655 return isVMerge(N, UnitSize, 8, 8); 1656 else if (ShuffleKind == 0) // normal 1657 return isVMerge(N, UnitSize, 8, 24); 1658 else 1659 return false; 1660 } 1661 } 1662 1663 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1664 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1665 /// The ShuffleKind distinguishes between big-endian merges with two 1666 /// different inputs (0), either-endian merges with two identical inputs (1), 1667 /// and little-endian merges with two different inputs (2). For the latter, 1668 /// the input operands are swapped (see PPCInstrAltivec.td). 1669 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1670 unsigned ShuffleKind, SelectionDAG &DAG) { 1671 if (DAG.getDataLayout().isLittleEndian()) { 1672 if (ShuffleKind == 1) // unary 1673 return isVMerge(N, UnitSize, 8, 8); 1674 else if (ShuffleKind == 2) // swapped 1675 return isVMerge(N, UnitSize, 8, 24); 1676 else 1677 return false; 1678 } else { 1679 if (ShuffleKind == 1) // unary 1680 return isVMerge(N, UnitSize, 0, 0); 1681 else if (ShuffleKind == 0) // normal 1682 return isVMerge(N, UnitSize, 0, 16); 1683 else 1684 return false; 1685 } 1686 } 1687 1688 /** 1689 * Common function used to match vmrgew and vmrgow shuffles 1690 * 1691 * The indexOffset determines whether to look for even or odd words in 1692 * the shuffle mask. This is based on the of the endianness of the target 1693 * machine. 1694 * - Little Endian: 1695 * - Use offset of 0 to check for odd elements 1696 * - Use offset of 4 to check for even elements 1697 * - Big Endian: 1698 * - Use offset of 0 to check for even elements 1699 * - Use offset of 4 to check for odd elements 1700 * A detailed description of the vector element ordering for little endian and 1701 * big endian can be found at 1702 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1703 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1704 * compiler differences mean to you 1705 * 1706 * The mask to the shuffle vector instruction specifies the indices of the 1707 * elements from the two input vectors to place in the result. The elements are 1708 * numbered in array-access order, starting with the first vector. These vectors 1709 * are always of type v16i8, thus each vector will contain 16 elements of size 1710 * 8. More info on the shuffle vector can be found in the 1711 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1712 * Language Reference. 1713 * 1714 * The RHSStartValue indicates whether the same input vectors are used (unary) 1715 * or two different input vectors are used, based on the following: 1716 * - If the instruction uses the same vector for both inputs, the range of the 1717 * indices will be 0 to 15. In this case, the RHSStart value passed should 1718 * be 0. 1719 * - If the instruction has two different vectors then the range of the 1720 * indices will be 0 to 31. In this case, the RHSStart value passed should 1721 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1722 * to 31 specify elements in the second vector). 1723 * 1724 * \param[in] N The shuffle vector SD Node to analyze 1725 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1726 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1727 * vector to the shuffle_vector instruction 1728 * \return true iff this shuffle vector represents an even or odd word merge 1729 */ 1730 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1731 unsigned RHSStartValue) { 1732 if (N->getValueType(0) != MVT::v16i8) 1733 return false; 1734 1735 for (unsigned i = 0; i < 2; ++i) 1736 for (unsigned j = 0; j < 4; ++j) 1737 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1738 i*RHSStartValue+j+IndexOffset) || 1739 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1740 i*RHSStartValue+j+IndexOffset+8)) 1741 return false; 1742 return true; 1743 } 1744 1745 /** 1746 * Determine if the specified shuffle mask is suitable for the vmrgew or 1747 * vmrgow instructions. 1748 * 1749 * \param[in] N The shuffle vector SD Node to analyze 1750 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1751 * \param[in] ShuffleKind Identify the type of merge: 1752 * - 0 = big-endian merge with two different inputs; 1753 * - 1 = either-endian merge with two identical inputs; 1754 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1755 * little-endian merges). 1756 * \param[in] DAG The current SelectionDAG 1757 * \return true iff this shuffle mask 1758 */ 1759 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1760 unsigned ShuffleKind, SelectionDAG &DAG) { 1761 if (DAG.getDataLayout().isLittleEndian()) { 1762 unsigned indexOffset = CheckEven ? 4 : 0; 1763 if (ShuffleKind == 1) // Unary 1764 return isVMerge(N, indexOffset, 0); 1765 else if (ShuffleKind == 2) // swapped 1766 return isVMerge(N, indexOffset, 16); 1767 else 1768 return false; 1769 } 1770 else { 1771 unsigned indexOffset = CheckEven ? 0 : 4; 1772 if (ShuffleKind == 1) // Unary 1773 return isVMerge(N, indexOffset, 0); 1774 else if (ShuffleKind == 0) // Normal 1775 return isVMerge(N, indexOffset, 16); 1776 else 1777 return false; 1778 } 1779 return false; 1780 } 1781 1782 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1783 /// amount, otherwise return -1. 1784 /// The ShuffleKind distinguishes between big-endian operations with two 1785 /// different inputs (0), either-endian operations with two identical inputs 1786 /// (1), and little-endian operations with two different inputs (2). For the 1787 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1788 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1789 SelectionDAG &DAG) { 1790 if (N->getValueType(0) != MVT::v16i8) 1791 return -1; 1792 1793 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1794 1795 // Find the first non-undef value in the shuffle mask. 1796 unsigned i; 1797 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1798 /*search*/; 1799 1800 if (i == 16) return -1; // all undef. 1801 1802 // Otherwise, check to see if the rest of the elements are consecutively 1803 // numbered from this value. 1804 unsigned ShiftAmt = SVOp->getMaskElt(i); 1805 if (ShiftAmt < i) return -1; 1806 1807 ShiftAmt -= i; 1808 bool isLE = DAG.getDataLayout().isLittleEndian(); 1809 1810 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1811 // Check the rest of the elements to see if they are consecutive. 1812 for (++i; i != 16; ++i) 1813 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1814 return -1; 1815 } else if (ShuffleKind == 1) { 1816 // Check the rest of the elements to see if they are consecutive. 1817 for (++i; i != 16; ++i) 1818 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1819 return -1; 1820 } else 1821 return -1; 1822 1823 if (isLE) 1824 ShiftAmt = 16 - ShiftAmt; 1825 1826 return ShiftAmt; 1827 } 1828 1829 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1830 /// specifies a splat of a single element that is suitable for input to 1831 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1832 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1833 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1834 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 1835 1836 // The consecutive indices need to specify an element, not part of two 1837 // different elements. So abandon ship early if this isn't the case. 1838 if (N->getMaskElt(0) % EltSize != 0) 1839 return false; 1840 1841 // This is a splat operation if each element of the permute is the same, and 1842 // if the value doesn't reference the second vector. 1843 unsigned ElementBase = N->getMaskElt(0); 1844 1845 // FIXME: Handle UNDEF elements too! 1846 if (ElementBase >= 16) 1847 return false; 1848 1849 // Check that the indices are consecutive, in the case of a multi-byte element 1850 // splatted with a v16i8 mask. 1851 for (unsigned i = 1; i != EltSize; ++i) 1852 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1853 return false; 1854 1855 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1856 if (N->getMaskElt(i) < 0) continue; 1857 for (unsigned j = 0; j != EltSize; ++j) 1858 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1859 return false; 1860 } 1861 return true; 1862 } 1863 1864 /// Check that the mask is shuffling N byte elements. Within each N byte 1865 /// element of the mask, the indices could be either in increasing or 1866 /// decreasing order as long as they are consecutive. 1867 /// \param[in] N the shuffle vector SD Node to analyze 1868 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1869 /// Word/DoubleWord/QuadWord). 1870 /// \param[in] StepLen the delta indices number among the N byte element, if 1871 /// the mask is in increasing/decreasing order then it is 1/-1. 1872 /// \return true iff the mask is shuffling N byte elements. 1873 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1874 int StepLen) { 1875 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1876 "Unexpected element width."); 1877 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1878 1879 unsigned NumOfElem = 16 / Width; 1880 unsigned MaskVal[16]; // Width is never greater than 16 1881 for (unsigned i = 0; i < NumOfElem; ++i) { 1882 MaskVal[0] = N->getMaskElt(i * Width); 1883 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1884 return false; 1885 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1886 return false; 1887 } 1888 1889 for (unsigned int j = 1; j < Width; ++j) { 1890 MaskVal[j] = N->getMaskElt(i * Width + j); 1891 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1892 return false; 1893 } 1894 } 1895 } 1896 1897 return true; 1898 } 1899 1900 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1901 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1902 if (!isNByteElemShuffleMask(N, 4, 1)) 1903 return false; 1904 1905 // Now we look at mask elements 0,4,8,12 1906 unsigned M0 = N->getMaskElt(0) / 4; 1907 unsigned M1 = N->getMaskElt(4) / 4; 1908 unsigned M2 = N->getMaskElt(8) / 4; 1909 unsigned M3 = N->getMaskElt(12) / 4; 1910 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1911 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1912 1913 // Below, let H and L be arbitrary elements of the shuffle mask 1914 // where H is in the range [4,7] and L is in the range [0,3]. 1915 // H, 1, 2, 3 or L, 5, 6, 7 1916 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1917 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1918 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1919 InsertAtByte = IsLE ? 12 : 0; 1920 Swap = M0 < 4; 1921 return true; 1922 } 1923 // 0, H, 2, 3 or 4, L, 6, 7 1924 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1925 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1926 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1927 InsertAtByte = IsLE ? 8 : 4; 1928 Swap = M1 < 4; 1929 return true; 1930 } 1931 // 0, 1, H, 3 or 4, 5, L, 7 1932 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1933 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1934 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1935 InsertAtByte = IsLE ? 4 : 8; 1936 Swap = M2 < 4; 1937 return true; 1938 } 1939 // 0, 1, 2, H or 4, 5, 6, L 1940 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1941 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1942 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1943 InsertAtByte = IsLE ? 0 : 12; 1944 Swap = M3 < 4; 1945 return true; 1946 } 1947 1948 // If both vector operands for the shuffle are the same vector, the mask will 1949 // contain only elements from the first one and the second one will be undef. 1950 if (N->getOperand(1).isUndef()) { 1951 ShiftElts = 0; 1952 Swap = true; 1953 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1954 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1955 InsertAtByte = IsLE ? 12 : 0; 1956 return true; 1957 } 1958 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 1959 InsertAtByte = IsLE ? 8 : 4; 1960 return true; 1961 } 1962 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 1963 InsertAtByte = IsLE ? 4 : 8; 1964 return true; 1965 } 1966 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 1967 InsertAtByte = IsLE ? 0 : 12; 1968 return true; 1969 } 1970 } 1971 1972 return false; 1973 } 1974 1975 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1976 bool &Swap, bool IsLE) { 1977 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1978 // Ensure each byte index of the word is consecutive. 1979 if (!isNByteElemShuffleMask(N, 4, 1)) 1980 return false; 1981 1982 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 1983 unsigned M0 = N->getMaskElt(0) / 4; 1984 unsigned M1 = N->getMaskElt(4) / 4; 1985 unsigned M2 = N->getMaskElt(8) / 4; 1986 unsigned M3 = N->getMaskElt(12) / 4; 1987 1988 // If both vector operands for the shuffle are the same vector, the mask will 1989 // contain only elements from the first one and the second one will be undef. 1990 if (N->getOperand(1).isUndef()) { 1991 assert(M0 < 4 && "Indexing into an undef vector?"); 1992 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 1993 return false; 1994 1995 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 1996 Swap = false; 1997 return true; 1998 } 1999 2000 // Ensure each word index of the ShuffleVector Mask is consecutive. 2001 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2002 return false; 2003 2004 if (IsLE) { 2005 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2006 // Input vectors don't need to be swapped if the leading element 2007 // of the result is one of the 3 left elements of the second vector 2008 // (or if there is no shift to be done at all). 2009 Swap = false; 2010 ShiftElts = (8 - M0) % 8; 2011 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2012 // Input vectors need to be swapped if the leading element 2013 // of the result is one of the 3 left elements of the first vector 2014 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2015 Swap = true; 2016 ShiftElts = (4 - M0) % 4; 2017 } 2018 2019 return true; 2020 } else { // BE 2021 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2022 // Input vectors don't need to be swapped if the leading element 2023 // of the result is one of the 4 elements of the first vector. 2024 Swap = false; 2025 ShiftElts = M0; 2026 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2027 // Input vectors need to be swapped if the leading element 2028 // of the result is one of the 4 elements of the right vector. 2029 Swap = true; 2030 ShiftElts = M0 - 4; 2031 } 2032 2033 return true; 2034 } 2035 } 2036 2037 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2038 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2039 2040 if (!isNByteElemShuffleMask(N, Width, -1)) 2041 return false; 2042 2043 for (int i = 0; i < 16; i += Width) 2044 if (N->getMaskElt(i) != i + Width - 1) 2045 return false; 2046 2047 return true; 2048 } 2049 2050 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2051 return isXXBRShuffleMaskHelper(N, 2); 2052 } 2053 2054 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2055 return isXXBRShuffleMaskHelper(N, 4); 2056 } 2057 2058 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2059 return isXXBRShuffleMaskHelper(N, 8); 2060 } 2061 2062 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2063 return isXXBRShuffleMaskHelper(N, 16); 2064 } 2065 2066 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2067 /// if the inputs to the instruction should be swapped and set \p DM to the 2068 /// value for the immediate. 2069 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2070 /// AND element 0 of the result comes from the first input (LE) or second input 2071 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2072 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2073 /// mask. 2074 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2075 bool &Swap, bool IsLE) { 2076 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2077 2078 // Ensure each byte index of the double word is consecutive. 2079 if (!isNByteElemShuffleMask(N, 8, 1)) 2080 return false; 2081 2082 unsigned M0 = N->getMaskElt(0) / 8; 2083 unsigned M1 = N->getMaskElt(8) / 8; 2084 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2085 2086 // If both vector operands for the shuffle are the same vector, the mask will 2087 // contain only elements from the first one and the second one will be undef. 2088 if (N->getOperand(1).isUndef()) { 2089 if ((M0 | M1) < 2) { 2090 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2091 Swap = false; 2092 return true; 2093 } else 2094 return false; 2095 } 2096 2097 if (IsLE) { 2098 if (M0 > 1 && M1 < 2) { 2099 Swap = false; 2100 } else if (M0 < 2 && M1 > 1) { 2101 M0 = (M0 + 2) % 4; 2102 M1 = (M1 + 2) % 4; 2103 Swap = true; 2104 } else 2105 return false; 2106 2107 // Note: if control flow comes here that means Swap is already set above 2108 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2109 return true; 2110 } else { // BE 2111 if (M0 < 2 && M1 > 1) { 2112 Swap = false; 2113 } else if (M0 > 1 && M1 < 2) { 2114 M0 = (M0 + 2) % 4; 2115 M1 = (M1 + 2) % 4; 2116 Swap = true; 2117 } else 2118 return false; 2119 2120 // Note: if control flow comes here that means Swap is already set above 2121 DM = (M0 << 1) + (M1 & 1); 2122 return true; 2123 } 2124 } 2125 2126 2127 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2128 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2129 /// elements are counted from the left of the vector register). 2130 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2131 SelectionDAG &DAG) { 2132 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2133 assert(isSplatShuffleMask(SVOp, EltSize)); 2134 if (DAG.getDataLayout().isLittleEndian()) 2135 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2136 else 2137 return SVOp->getMaskElt(0) / EltSize; 2138 } 2139 2140 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2141 /// by using a vspltis[bhw] instruction of the specified element size, return 2142 /// the constant being splatted. The ByteSize field indicates the number of 2143 /// bytes of each element [124] -> [bhw]. 2144 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2145 SDValue OpVal(nullptr, 0); 2146 2147 // If ByteSize of the splat is bigger than the element size of the 2148 // build_vector, then we have a case where we are checking for a splat where 2149 // multiple elements of the buildvector are folded together into a single 2150 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2151 unsigned EltSize = 16/N->getNumOperands(); 2152 if (EltSize < ByteSize) { 2153 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2154 SDValue UniquedVals[4]; 2155 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2156 2157 // See if all of the elements in the buildvector agree across. 2158 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2159 if (N->getOperand(i).isUndef()) continue; 2160 // If the element isn't a constant, bail fully out. 2161 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2162 2163 if (!UniquedVals[i&(Multiple-1)].getNode()) 2164 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2165 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2166 return SDValue(); // no match. 2167 } 2168 2169 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2170 // either constant or undef values that are identical for each chunk. See 2171 // if these chunks can form into a larger vspltis*. 2172 2173 // Check to see if all of the leading entries are either 0 or -1. If 2174 // neither, then this won't fit into the immediate field. 2175 bool LeadingZero = true; 2176 bool LeadingOnes = true; 2177 for (unsigned i = 0; i != Multiple-1; ++i) { 2178 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2179 2180 LeadingZero &= isNullConstant(UniquedVals[i]); 2181 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2182 } 2183 // Finally, check the least significant entry. 2184 if (LeadingZero) { 2185 if (!UniquedVals[Multiple-1].getNode()) 2186 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2187 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2188 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2189 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2190 } 2191 if (LeadingOnes) { 2192 if (!UniquedVals[Multiple-1].getNode()) 2193 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2194 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2195 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2196 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2197 } 2198 2199 return SDValue(); 2200 } 2201 2202 // Check to see if this buildvec has a single non-undef value in its elements. 2203 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2204 if (N->getOperand(i).isUndef()) continue; 2205 if (!OpVal.getNode()) 2206 OpVal = N->getOperand(i); 2207 else if (OpVal != N->getOperand(i)) 2208 return SDValue(); 2209 } 2210 2211 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2212 2213 unsigned ValSizeInBytes = EltSize; 2214 uint64_t Value = 0; 2215 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2216 Value = CN->getZExtValue(); 2217 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2218 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2219 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2220 } 2221 2222 // If the splat value is larger than the element value, then we can never do 2223 // this splat. The only case that we could fit the replicated bits into our 2224 // immediate field for would be zero, and we prefer to use vxor for it. 2225 if (ValSizeInBytes < ByteSize) return SDValue(); 2226 2227 // If the element value is larger than the splat value, check if it consists 2228 // of a repeated bit pattern of size ByteSize. 2229 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2230 return SDValue(); 2231 2232 // Properly sign extend the value. 2233 int MaskVal = SignExtend32(Value, ByteSize * 8); 2234 2235 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2236 if (MaskVal == 0) return SDValue(); 2237 2238 // Finally, if this value fits in a 5 bit sext field, return it 2239 if (SignExtend32<5>(MaskVal) == MaskVal) 2240 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2241 return SDValue(); 2242 } 2243 2244 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2245 /// amount, otherwise return -1. 2246 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2247 EVT VT = N->getValueType(0); 2248 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2249 return -1; 2250 2251 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2252 2253 // Find the first non-undef value in the shuffle mask. 2254 unsigned i; 2255 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2256 /*search*/; 2257 2258 if (i == 4) return -1; // all undef. 2259 2260 // Otherwise, check to see if the rest of the elements are consecutively 2261 // numbered from this value. 2262 unsigned ShiftAmt = SVOp->getMaskElt(i); 2263 if (ShiftAmt < i) return -1; 2264 ShiftAmt -= i; 2265 2266 // Check the rest of the elements to see if they are consecutive. 2267 for (++i; i != 4; ++i) 2268 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2269 return -1; 2270 2271 return ShiftAmt; 2272 } 2273 2274 //===----------------------------------------------------------------------===// 2275 // Addressing Mode Selection 2276 //===----------------------------------------------------------------------===// 2277 2278 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2279 /// or 64-bit immediate, and if the value can be accurately represented as a 2280 /// sign extension from a 16-bit value. If so, this returns true and the 2281 /// immediate. 2282 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2283 if (!isa<ConstantSDNode>(N)) 2284 return false; 2285 2286 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2287 if (N->getValueType(0) == MVT::i32) 2288 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2289 else 2290 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2291 } 2292 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2293 return isIntS16Immediate(Op.getNode(), Imm); 2294 } 2295 2296 2297 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2298 /// be represented as an indexed [r+r] operation. 2299 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2300 SDValue &Index, 2301 SelectionDAG &DAG) const { 2302 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2303 UI != E; ++UI) { 2304 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2305 if (Memop->getMemoryVT() == MVT::f64) { 2306 Base = N.getOperand(0); 2307 Index = N.getOperand(1); 2308 return true; 2309 } 2310 } 2311 } 2312 return false; 2313 } 2314 2315 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2316 /// can be represented as an indexed [r+r] operation. Returns false if it 2317 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2318 /// non-zero and N can be represented by a base register plus a signed 16-bit 2319 /// displacement, make a more precise judgement by checking (displacement % \p 2320 /// EncodingAlignment). 2321 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 2322 SDValue &Index, SelectionDAG &DAG, 2323 unsigned EncodingAlignment) const { 2324 int16_t imm = 0; 2325 if (N.getOpcode() == ISD::ADD) { 2326 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2327 // SPE load/store can only handle 8-bit offsets. 2328 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2329 return true; 2330 if (isIntS16Immediate(N.getOperand(1), imm) && 2331 (!EncodingAlignment || !(imm % EncodingAlignment))) 2332 return false; // r+i 2333 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2334 return false; // r+i 2335 2336 Base = N.getOperand(0); 2337 Index = N.getOperand(1); 2338 return true; 2339 } else if (N.getOpcode() == ISD::OR) { 2340 if (isIntS16Immediate(N.getOperand(1), imm) && 2341 (!EncodingAlignment || !(imm % EncodingAlignment))) 2342 return false; // r+i can fold it if we can. 2343 2344 // If this is an or of disjoint bitfields, we can codegen this as an add 2345 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2346 // disjoint. 2347 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2348 2349 if (LHSKnown.Zero.getBoolValue()) { 2350 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2351 // If all of the bits are known zero on the LHS or RHS, the add won't 2352 // carry. 2353 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2354 Base = N.getOperand(0); 2355 Index = N.getOperand(1); 2356 return true; 2357 } 2358 } 2359 } 2360 2361 return false; 2362 } 2363 2364 // If we happen to be doing an i64 load or store into a stack slot that has 2365 // less than a 4-byte alignment, then the frame-index elimination may need to 2366 // use an indexed load or store instruction (because the offset may not be a 2367 // multiple of 4). The extra register needed to hold the offset comes from the 2368 // register scavenger, and it is possible that the scavenger will need to use 2369 // an emergency spill slot. As a result, we need to make sure that a spill slot 2370 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2371 // stack slot. 2372 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2373 // FIXME: This does not handle the LWA case. 2374 if (VT != MVT::i64) 2375 return; 2376 2377 // NOTE: We'll exclude negative FIs here, which come from argument 2378 // lowering, because there are no known test cases triggering this problem 2379 // using packed structures (or similar). We can remove this exclusion if 2380 // we find such a test case. The reason why this is so test-case driven is 2381 // because this entire 'fixup' is only to prevent crashes (from the 2382 // register scavenger) on not-really-valid inputs. For example, if we have: 2383 // %a = alloca i1 2384 // %b = bitcast i1* %a to i64* 2385 // store i64* a, i64 b 2386 // then the store should really be marked as 'align 1', but is not. If it 2387 // were marked as 'align 1' then the indexed form would have been 2388 // instruction-selected initially, and the problem this 'fixup' is preventing 2389 // won't happen regardless. 2390 if (FrameIdx < 0) 2391 return; 2392 2393 MachineFunction &MF = DAG.getMachineFunction(); 2394 MachineFrameInfo &MFI = MF.getFrameInfo(); 2395 2396 unsigned Align = MFI.getObjectAlignment(FrameIdx); 2397 if (Align >= 4) 2398 return; 2399 2400 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2401 FuncInfo->setHasNonRISpills(); 2402 } 2403 2404 /// Returns true if the address N can be represented by a base register plus 2405 /// a signed 16-bit displacement [r+imm], and if it is not better 2406 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2407 /// displacements that are multiples of that value. 2408 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 2409 SDValue &Base, 2410 SelectionDAG &DAG, 2411 unsigned EncodingAlignment) const { 2412 // FIXME dl should come from parent load or store, not from address 2413 SDLoc dl(N); 2414 // If this can be more profitably realized as r+r, fail. 2415 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2416 return false; 2417 2418 if (N.getOpcode() == ISD::ADD) { 2419 int16_t imm = 0; 2420 if (isIntS16Immediate(N.getOperand(1), imm) && 2421 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2422 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2423 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2424 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2425 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2426 } else { 2427 Base = N.getOperand(0); 2428 } 2429 return true; // [r+i] 2430 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2431 // Match LOAD (ADD (X, Lo(G))). 2432 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2433 && "Cannot handle constant offsets yet!"); 2434 Disp = N.getOperand(1).getOperand(0); // The global address. 2435 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2436 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2437 Disp.getOpcode() == ISD::TargetConstantPool || 2438 Disp.getOpcode() == ISD::TargetJumpTable); 2439 Base = N.getOperand(0); 2440 return true; // [&g+r] 2441 } 2442 } else if (N.getOpcode() == ISD::OR) { 2443 int16_t imm = 0; 2444 if (isIntS16Immediate(N.getOperand(1), imm) && 2445 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2446 // If this is an or of disjoint bitfields, we can codegen this as an add 2447 // (for better address arithmetic) if the LHS and RHS of the OR are 2448 // provably disjoint. 2449 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2450 2451 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2452 // If all of the bits are known zero on the LHS or RHS, the add won't 2453 // carry. 2454 if (FrameIndexSDNode *FI = 2455 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2456 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2457 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2458 } else { 2459 Base = N.getOperand(0); 2460 } 2461 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2462 return true; 2463 } 2464 } 2465 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2466 // Loading from a constant address. 2467 2468 // If this address fits entirely in a 16-bit sext immediate field, codegen 2469 // this as "d, 0" 2470 int16_t Imm; 2471 if (isIntS16Immediate(CN, Imm) && 2472 (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) { 2473 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2474 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2475 CN->getValueType(0)); 2476 return true; 2477 } 2478 2479 // Handle 32-bit sext immediates with LIS + addr mode. 2480 if ((CN->getValueType(0) == MVT::i32 || 2481 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2482 (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) { 2483 int Addr = (int)CN->getZExtValue(); 2484 2485 // Otherwise, break this down into an LIS + disp. 2486 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2487 2488 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2489 MVT::i32); 2490 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2491 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2492 return true; 2493 } 2494 } 2495 2496 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2497 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2498 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2499 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2500 } else 2501 Base = N; 2502 return true; // [r+0] 2503 } 2504 2505 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2506 /// represented as an indexed [r+r] operation. 2507 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2508 SDValue &Index, 2509 SelectionDAG &DAG) const { 2510 // Check to see if we can easily represent this as an [r+r] address. This 2511 // will fail if it thinks that the address is more profitably represented as 2512 // reg+imm, e.g. where imm = 0. 2513 if (SelectAddressRegReg(N, Base, Index, DAG)) 2514 return true; 2515 2516 // If the address is the result of an add, we will utilize the fact that the 2517 // address calculation includes an implicit add. However, we can reduce 2518 // register pressure if we do not materialize a constant just for use as the 2519 // index register. We only get rid of the add if it is not an add of a 2520 // value and a 16-bit signed constant and both have a single use. 2521 int16_t imm = 0; 2522 if (N.getOpcode() == ISD::ADD && 2523 (!isIntS16Immediate(N.getOperand(1), imm) || 2524 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2525 Base = N.getOperand(0); 2526 Index = N.getOperand(1); 2527 return true; 2528 } 2529 2530 // Otherwise, do it the hard way, using R0 as the base register. 2531 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2532 N.getValueType()); 2533 Index = N; 2534 return true; 2535 } 2536 2537 /// Returns true if we should use a direct load into vector instruction 2538 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2539 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2540 2541 // If there are any other uses other than scalar to vector, then we should 2542 // keep it as a scalar load -> direct move pattern to prevent multiple 2543 // loads. 2544 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2545 if (!LD) 2546 return false; 2547 2548 EVT MemVT = LD->getMemoryVT(); 2549 if (!MemVT.isSimple()) 2550 return false; 2551 switch(MemVT.getSimpleVT().SimpleTy) { 2552 case MVT::i64: 2553 break; 2554 case MVT::i32: 2555 if (!ST.hasP8Vector()) 2556 return false; 2557 break; 2558 case MVT::i16: 2559 case MVT::i8: 2560 if (!ST.hasP9Vector()) 2561 return false; 2562 break; 2563 default: 2564 return false; 2565 } 2566 2567 SDValue LoadedVal(N, 0); 2568 if (!LoadedVal.hasOneUse()) 2569 return false; 2570 2571 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2572 UI != UE; ++UI) 2573 if (UI.getUse().get().getResNo() == 0 && 2574 UI->getOpcode() != ISD::SCALAR_TO_VECTOR) 2575 return false; 2576 2577 return true; 2578 } 2579 2580 /// getPreIndexedAddressParts - returns true by value, base pointer and 2581 /// offset pointer and addressing mode by reference if the node's address 2582 /// can be legally represented as pre-indexed load / store address. 2583 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2584 SDValue &Offset, 2585 ISD::MemIndexedMode &AM, 2586 SelectionDAG &DAG) const { 2587 if (DisablePPCPreinc) return false; 2588 2589 bool isLoad = true; 2590 SDValue Ptr; 2591 EVT VT; 2592 unsigned Alignment; 2593 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2594 Ptr = LD->getBasePtr(); 2595 VT = LD->getMemoryVT(); 2596 Alignment = LD->getAlignment(); 2597 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2598 Ptr = ST->getBasePtr(); 2599 VT = ST->getMemoryVT(); 2600 Alignment = ST->getAlignment(); 2601 isLoad = false; 2602 } else 2603 return false; 2604 2605 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2606 // instructions because we can fold these into a more efficient instruction 2607 // instead, (such as LXSD). 2608 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2609 return false; 2610 } 2611 2612 // PowerPC doesn't have preinc load/store instructions for vectors (except 2613 // for QPX, which does have preinc r+r forms). 2614 if (VT.isVector()) { 2615 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2616 return false; 2617 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2618 AM = ISD::PRE_INC; 2619 return true; 2620 } 2621 } 2622 2623 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2624 // Common code will reject creating a pre-inc form if the base pointer 2625 // is a frame index, or if N is a store and the base pointer is either 2626 // the same as or a predecessor of the value being stored. Check for 2627 // those situations here, and try with swapped Base/Offset instead. 2628 bool Swap = false; 2629 2630 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2631 Swap = true; 2632 else if (!isLoad) { 2633 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2634 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2635 Swap = true; 2636 } 2637 2638 if (Swap) 2639 std::swap(Base, Offset); 2640 2641 AM = ISD::PRE_INC; 2642 return true; 2643 } 2644 2645 // LDU/STU can only handle immediates that are a multiple of 4. 2646 if (VT != MVT::i64) { 2647 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0)) 2648 return false; 2649 } else { 2650 // LDU/STU need an address with at least 4-byte alignment. 2651 if (Alignment < 4) 2652 return false; 2653 2654 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4)) 2655 return false; 2656 } 2657 2658 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2659 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2660 // sext i32 to i64 when addr mode is r+i. 2661 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2662 LD->getExtensionType() == ISD::SEXTLOAD && 2663 isa<ConstantSDNode>(Offset)) 2664 return false; 2665 } 2666 2667 AM = ISD::PRE_INC; 2668 return true; 2669 } 2670 2671 //===----------------------------------------------------------------------===// 2672 // LowerOperation implementation 2673 //===----------------------------------------------------------------------===// 2674 2675 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2676 /// and LoOpFlags to the target MO flags. 2677 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2678 unsigned &HiOpFlags, unsigned &LoOpFlags, 2679 const GlobalValue *GV = nullptr) { 2680 HiOpFlags = PPCII::MO_HA; 2681 LoOpFlags = PPCII::MO_LO; 2682 2683 // Don't use the pic base if not in PIC relocation model. 2684 if (IsPIC) { 2685 HiOpFlags |= PPCII::MO_PIC_FLAG; 2686 LoOpFlags |= PPCII::MO_PIC_FLAG; 2687 } 2688 2689 // If this is a reference to a global value that requires a non-lazy-ptr, make 2690 // sure that instruction lowering adds it. 2691 if (GV && Subtarget.hasLazyResolverStub(GV)) { 2692 HiOpFlags |= PPCII::MO_NLP_FLAG; 2693 LoOpFlags |= PPCII::MO_NLP_FLAG; 2694 2695 if (GV->hasHiddenVisibility()) { 2696 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2697 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2698 } 2699 } 2700 } 2701 2702 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2703 SelectionDAG &DAG) { 2704 SDLoc DL(HiPart); 2705 EVT PtrVT = HiPart.getValueType(); 2706 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2707 2708 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2709 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2710 2711 // With PIC, the first instruction is actually "GR+hi(&G)". 2712 if (isPIC) 2713 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2714 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2715 2716 // Generate non-pic code that has direct accesses to the constant pool. 2717 // The address of the global is just (hi(&g)+lo(&g)). 2718 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2719 } 2720 2721 static void setUsesTOCBasePtr(MachineFunction &MF) { 2722 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2723 FuncInfo->setUsesTOCBasePtr(); 2724 } 2725 2726 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2727 setUsesTOCBasePtr(DAG.getMachineFunction()); 2728 } 2729 2730 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2731 SDValue GA) const { 2732 const bool Is64Bit = Subtarget.isPPC64(); 2733 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2734 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2735 : Subtarget.isAIXABI() 2736 ? DAG.getRegister(PPC::R2, VT) 2737 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2738 SDValue Ops[] = { GA, Reg }; 2739 return DAG.getMemIntrinsicNode( 2740 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2741 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, 2742 MachineMemOperand::MOLoad); 2743 } 2744 2745 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2746 SelectionDAG &DAG) const { 2747 EVT PtrVT = Op.getValueType(); 2748 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2749 const Constant *C = CP->getConstVal(); 2750 2751 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2752 // The actual address of the GlobalValue is stored in the TOC. 2753 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2754 setUsesTOCBasePtr(DAG); 2755 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2756 return getTOCEntry(DAG, SDLoc(CP), GA); 2757 } 2758 2759 unsigned MOHiFlag, MOLoFlag; 2760 bool IsPIC = isPositionIndependent(); 2761 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2762 2763 if (IsPIC && Subtarget.isSVR4ABI()) { 2764 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2765 PPCII::MO_PIC_FLAG); 2766 return getTOCEntry(DAG, SDLoc(CP), GA); 2767 } 2768 2769 SDValue CPIHi = 2770 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2771 SDValue CPILo = 2772 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2773 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2774 } 2775 2776 // For 64-bit PowerPC, prefer the more compact relative encodings. 2777 // This trades 32 bits per jump table entry for one or two instructions 2778 // on the jump site. 2779 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2780 if (isJumpTableRelative()) 2781 return MachineJumpTableInfo::EK_LabelDifference32; 2782 2783 return TargetLowering::getJumpTableEncoding(); 2784 } 2785 2786 bool PPCTargetLowering::isJumpTableRelative() const { 2787 if (UseAbsoluteJumpTables) 2788 return false; 2789 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 2790 return true; 2791 return TargetLowering::isJumpTableRelative(); 2792 } 2793 2794 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2795 SelectionDAG &DAG) const { 2796 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2797 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2798 2799 switch (getTargetMachine().getCodeModel()) { 2800 case CodeModel::Small: 2801 case CodeModel::Medium: 2802 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2803 default: 2804 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2805 getPointerTy(DAG.getDataLayout())); 2806 } 2807 } 2808 2809 const MCExpr * 2810 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2811 unsigned JTI, 2812 MCContext &Ctx) const { 2813 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2814 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2815 2816 switch (getTargetMachine().getCodeModel()) { 2817 case CodeModel::Small: 2818 case CodeModel::Medium: 2819 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2820 default: 2821 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2822 } 2823 } 2824 2825 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2826 EVT PtrVT = Op.getValueType(); 2827 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2828 2829 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2830 // The actual address of the GlobalValue is stored in the TOC. 2831 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2832 setUsesTOCBasePtr(DAG); 2833 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2834 return getTOCEntry(DAG, SDLoc(JT), GA); 2835 } 2836 2837 unsigned MOHiFlag, MOLoFlag; 2838 bool IsPIC = isPositionIndependent(); 2839 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2840 2841 if (IsPIC && Subtarget.isSVR4ABI()) { 2842 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2843 PPCII::MO_PIC_FLAG); 2844 return getTOCEntry(DAG, SDLoc(GA), GA); 2845 } 2846 2847 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2848 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2849 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2850 } 2851 2852 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2853 SelectionDAG &DAG) const { 2854 EVT PtrVT = Op.getValueType(); 2855 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2856 const BlockAddress *BA = BASDN->getBlockAddress(); 2857 2858 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2859 // The actual BlockAddress is stored in the TOC. 2860 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2861 setUsesTOCBasePtr(DAG); 2862 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2863 return getTOCEntry(DAG, SDLoc(BASDN), GA); 2864 } 2865 2866 // 32-bit position-independent ELF stores the BlockAddress in the .got. 2867 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 2868 return getTOCEntry( 2869 DAG, SDLoc(BASDN), 2870 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 2871 2872 unsigned MOHiFlag, MOLoFlag; 2873 bool IsPIC = isPositionIndependent(); 2874 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2875 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2876 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2877 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2878 } 2879 2880 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2881 SelectionDAG &DAG) const { 2882 // FIXME: TLS addresses currently use medium model code sequences, 2883 // which is the most useful form. Eventually support for small and 2884 // large models could be added if users need it, at the cost of 2885 // additional complexity. 2886 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2887 if (DAG.getTarget().useEmulatedTLS()) 2888 return LowerToTLSEmulatedModel(GA, DAG); 2889 2890 SDLoc dl(GA); 2891 const GlobalValue *GV = GA->getGlobal(); 2892 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2893 bool is64bit = Subtarget.isPPC64(); 2894 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2895 PICLevel::Level picLevel = M->getPICLevel(); 2896 2897 const TargetMachine &TM = getTargetMachine(); 2898 TLSModel::Model Model = TM.getTLSModel(GV); 2899 2900 if (Model == TLSModel::LocalExec) { 2901 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2902 PPCII::MO_TPREL_HA); 2903 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2904 PPCII::MO_TPREL_LO); 2905 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 2906 : DAG.getRegister(PPC::R2, MVT::i32); 2907 2908 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2909 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2910 } 2911 2912 if (Model == TLSModel::InitialExec) { 2913 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2914 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2915 PPCII::MO_TLS); 2916 SDValue GOTPtr; 2917 if (is64bit) { 2918 setUsesTOCBasePtr(DAG); 2919 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2920 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2921 PtrVT, GOTReg, TGA); 2922 } else { 2923 if (!TM.isPositionIndependent()) 2924 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2925 else if (picLevel == PICLevel::SmallPIC) 2926 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2927 else 2928 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2929 } 2930 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2931 PtrVT, TGA, GOTPtr); 2932 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2933 } 2934 2935 if (Model == TLSModel::GeneralDynamic) { 2936 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2937 SDValue GOTPtr; 2938 if (is64bit) { 2939 setUsesTOCBasePtr(DAG); 2940 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2941 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2942 GOTReg, TGA); 2943 } else { 2944 if (picLevel == PICLevel::SmallPIC) 2945 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2946 else 2947 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2948 } 2949 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2950 GOTPtr, TGA, TGA); 2951 } 2952 2953 if (Model == TLSModel::LocalDynamic) { 2954 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2955 SDValue GOTPtr; 2956 if (is64bit) { 2957 setUsesTOCBasePtr(DAG); 2958 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2959 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2960 GOTReg, TGA); 2961 } else { 2962 if (picLevel == PICLevel::SmallPIC) 2963 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2964 else 2965 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2966 } 2967 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2968 PtrVT, GOTPtr, TGA, TGA); 2969 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2970 PtrVT, TLSAddr, TGA); 2971 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2972 } 2973 2974 llvm_unreachable("Unknown TLS model!"); 2975 } 2976 2977 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2978 SelectionDAG &DAG) const { 2979 EVT PtrVT = Op.getValueType(); 2980 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2981 SDLoc DL(GSDN); 2982 const GlobalValue *GV = GSDN->getGlobal(); 2983 2984 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 2985 // The actual address of the GlobalValue is stored in the TOC. 2986 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2987 setUsesTOCBasePtr(DAG); 2988 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2989 return getTOCEntry(DAG, DL, GA); 2990 } 2991 2992 unsigned MOHiFlag, MOLoFlag; 2993 bool IsPIC = isPositionIndependent(); 2994 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 2995 2996 if (IsPIC && Subtarget.isSVR4ABI()) { 2997 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2998 GSDN->getOffset(), 2999 PPCII::MO_PIC_FLAG); 3000 return getTOCEntry(DAG, DL, GA); 3001 } 3002 3003 SDValue GAHi = 3004 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3005 SDValue GALo = 3006 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3007 3008 SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3009 3010 // If the global reference is actually to a non-lazy-pointer, we have to do an 3011 // extra load to get the address of the global. 3012 if (MOHiFlag & PPCII::MO_NLP_FLAG) 3013 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3014 return Ptr; 3015 } 3016 3017 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3018 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3019 SDLoc dl(Op); 3020 3021 if (Op.getValueType() == MVT::v2i64) { 3022 // When the operands themselves are v2i64 values, we need to do something 3023 // special because VSX has no underlying comparison operations for these. 3024 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 3025 // Equality can be handled by casting to the legal type for Altivec 3026 // comparisons, everything else needs to be expanded. 3027 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3028 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 3029 DAG.getSetCC(dl, MVT::v4i32, 3030 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 3031 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 3032 CC)); 3033 } 3034 3035 return SDValue(); 3036 } 3037 3038 // We handle most of these in the usual way. 3039 return Op; 3040 } 3041 3042 // If we're comparing for equality to zero, expose the fact that this is 3043 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3044 // fold the new nodes. 3045 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3046 return V; 3047 3048 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3049 // Leave comparisons against 0 and -1 alone for now, since they're usually 3050 // optimized. FIXME: revisit this when we can custom lower all setcc 3051 // optimizations. 3052 if (C->isAllOnesValue() || C->isNullValue()) 3053 return SDValue(); 3054 } 3055 3056 // If we have an integer seteq/setne, turn it into a compare against zero 3057 // by xor'ing the rhs with the lhs, which is faster than setting a 3058 // condition register, reading it back out, and masking the correct bit. The 3059 // normal approach here uses sub to do this instead of xor. Using xor exposes 3060 // the result to other bit-twiddling opportunities. 3061 EVT LHSVT = Op.getOperand(0).getValueType(); 3062 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3063 EVT VT = Op.getValueType(); 3064 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3065 Op.getOperand(1)); 3066 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3067 } 3068 return SDValue(); 3069 } 3070 3071 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3072 SDNode *Node = Op.getNode(); 3073 EVT VT = Node->getValueType(0); 3074 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3075 SDValue InChain = Node->getOperand(0); 3076 SDValue VAListPtr = Node->getOperand(1); 3077 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3078 SDLoc dl(Node); 3079 3080 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3081 3082 // gpr_index 3083 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3084 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3085 InChain = GprIndex.getValue(1); 3086 3087 if (VT == MVT::i64) { 3088 // Check if GprIndex is even 3089 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3090 DAG.getConstant(1, dl, MVT::i32)); 3091 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3092 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3093 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3094 DAG.getConstant(1, dl, MVT::i32)); 3095 // Align GprIndex to be even if it isn't 3096 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3097 GprIndex); 3098 } 3099 3100 // fpr index is 1 byte after gpr 3101 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3102 DAG.getConstant(1, dl, MVT::i32)); 3103 3104 // fpr 3105 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3106 FprPtr, MachinePointerInfo(SV), MVT::i8); 3107 InChain = FprIndex.getValue(1); 3108 3109 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3110 DAG.getConstant(8, dl, MVT::i32)); 3111 3112 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3113 DAG.getConstant(4, dl, MVT::i32)); 3114 3115 // areas 3116 SDValue OverflowArea = 3117 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3118 InChain = OverflowArea.getValue(1); 3119 3120 SDValue RegSaveArea = 3121 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3122 InChain = RegSaveArea.getValue(1); 3123 3124 // select overflow_area if index > 8 3125 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3126 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3127 3128 // adjustment constant gpr_index * 4/8 3129 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3130 VT.isInteger() ? GprIndex : FprIndex, 3131 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3132 MVT::i32)); 3133 3134 // OurReg = RegSaveArea + RegConstant 3135 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3136 RegConstant); 3137 3138 // Floating types are 32 bytes into RegSaveArea 3139 if (VT.isFloatingPoint()) 3140 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3141 DAG.getConstant(32, dl, MVT::i32)); 3142 3143 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3144 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3145 VT.isInteger() ? GprIndex : FprIndex, 3146 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3147 MVT::i32)); 3148 3149 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3150 VT.isInteger() ? VAListPtr : FprPtr, 3151 MachinePointerInfo(SV), MVT::i8); 3152 3153 // determine if we should load from reg_save_area or overflow_area 3154 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3155 3156 // increase overflow_area by 4/8 if gpr/fpr > 8 3157 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3158 DAG.getConstant(VT.isInteger() ? 4 : 8, 3159 dl, MVT::i32)); 3160 3161 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3162 OverflowAreaPlusN); 3163 3164 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3165 MachinePointerInfo(), MVT::i32); 3166 3167 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3168 } 3169 3170 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3171 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3172 3173 // We have to copy the entire va_list struct: 3174 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3175 return DAG.getMemcpy(Op.getOperand(0), Op, 3176 Op.getOperand(1), Op.getOperand(2), 3177 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 3178 false, MachinePointerInfo(), MachinePointerInfo()); 3179 } 3180 3181 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3182 SelectionDAG &DAG) const { 3183 if (Subtarget.isAIXABI()) 3184 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3185 3186 return Op.getOperand(0); 3187 } 3188 3189 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3190 SelectionDAG &DAG) const { 3191 if (Subtarget.isAIXABI()) 3192 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3193 3194 SDValue Chain = Op.getOperand(0); 3195 SDValue Trmp = Op.getOperand(1); // trampoline 3196 SDValue FPtr = Op.getOperand(2); // nested function 3197 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3198 SDLoc dl(Op); 3199 3200 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3201 bool isPPC64 = (PtrVT == MVT::i64); 3202 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3203 3204 TargetLowering::ArgListTy Args; 3205 TargetLowering::ArgListEntry Entry; 3206 3207 Entry.Ty = IntPtrTy; 3208 Entry.Node = Trmp; Args.push_back(Entry); 3209 3210 // TrampSize == (isPPC64 ? 48 : 40); 3211 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3212 isPPC64 ? MVT::i64 : MVT::i32); 3213 Args.push_back(Entry); 3214 3215 Entry.Node = FPtr; Args.push_back(Entry); 3216 Entry.Node = Nest; Args.push_back(Entry); 3217 3218 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3219 TargetLowering::CallLoweringInfo CLI(DAG); 3220 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3221 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3222 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3223 3224 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3225 return CallResult.second; 3226 } 3227 3228 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3229 MachineFunction &MF = DAG.getMachineFunction(); 3230 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3231 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3232 3233 SDLoc dl(Op); 3234 3235 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 3236 // vastart just stores the address of the VarArgsFrameIndex slot into the 3237 // memory location argument. 3238 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3239 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3240 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3241 MachinePointerInfo(SV)); 3242 } 3243 3244 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3245 // We suppose the given va_list is already allocated. 3246 // 3247 // typedef struct { 3248 // char gpr; /* index into the array of 8 GPRs 3249 // * stored in the register save area 3250 // * gpr=0 corresponds to r3, 3251 // * gpr=1 to r4, etc. 3252 // */ 3253 // char fpr; /* index into the array of 8 FPRs 3254 // * stored in the register save area 3255 // * fpr=0 corresponds to f1, 3256 // * fpr=1 to f2, etc. 3257 // */ 3258 // char *overflow_arg_area; 3259 // /* location on stack that holds 3260 // * the next overflow argument 3261 // */ 3262 // char *reg_save_area; 3263 // /* where r3:r10 and f1:f8 (if saved) 3264 // * are stored 3265 // */ 3266 // } va_list[1]; 3267 3268 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3269 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3270 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3271 PtrVT); 3272 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3273 PtrVT); 3274 3275 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3276 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3277 3278 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3279 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3280 3281 uint64_t FPROffset = 1; 3282 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3283 3284 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3285 3286 // Store first byte : number of int regs 3287 SDValue firstStore = 3288 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3289 MachinePointerInfo(SV), MVT::i8); 3290 uint64_t nextOffset = FPROffset; 3291 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3292 ConstFPROffset); 3293 3294 // Store second byte : number of float regs 3295 SDValue secondStore = 3296 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3297 MachinePointerInfo(SV, nextOffset), MVT::i8); 3298 nextOffset += StackOffset; 3299 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3300 3301 // Store second word : arguments given on stack 3302 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3303 MachinePointerInfo(SV, nextOffset)); 3304 nextOffset += FrameOffset; 3305 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3306 3307 // Store third word : arguments given in registers 3308 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3309 MachinePointerInfo(SV, nextOffset)); 3310 } 3311 3312 /// FPR - The set of FP registers that should be allocated for arguments 3313 /// on Darwin and AIX. 3314 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3315 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3316 PPC::F11, PPC::F12, PPC::F13}; 3317 3318 /// QFPR - The set of QPX registers that should be allocated for arguments. 3319 static const MCPhysReg QFPR[] = { 3320 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3321 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3322 3323 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3324 /// the stack. 3325 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3326 unsigned PtrByteSize) { 3327 unsigned ArgSize = ArgVT.getStoreSize(); 3328 if (Flags.isByVal()) 3329 ArgSize = Flags.getByValSize(); 3330 3331 // Round up to multiples of the pointer size, except for array members, 3332 // which are always packed. 3333 if (!Flags.isInConsecutiveRegs()) 3334 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3335 3336 return ArgSize; 3337 } 3338 3339 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3340 /// on the stack. 3341 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3342 ISD::ArgFlagsTy Flags, 3343 unsigned PtrByteSize) { 3344 unsigned Align = PtrByteSize; 3345 3346 // Altivec parameters are padded to a 16 byte boundary. 3347 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3348 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3349 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3350 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3351 Align = 16; 3352 // QPX vector types stored in double-precision are padded to a 32 byte 3353 // boundary. 3354 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3355 Align = 32; 3356 3357 // ByVal parameters are aligned as requested. 3358 if (Flags.isByVal()) { 3359 unsigned BVAlign = Flags.getByValAlign(); 3360 if (BVAlign > PtrByteSize) { 3361 if (BVAlign % PtrByteSize != 0) 3362 llvm_unreachable( 3363 "ByVal alignment is not a multiple of the pointer size"); 3364 3365 Align = BVAlign; 3366 } 3367 } 3368 3369 // Array members are always packed to their original alignment. 3370 if (Flags.isInConsecutiveRegs()) { 3371 // If the array member was split into multiple registers, the first 3372 // needs to be aligned to the size of the full type. (Except for 3373 // ppcf128, which is only aligned as its f64 components.) 3374 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3375 Align = OrigVT.getStoreSize(); 3376 else 3377 Align = ArgVT.getStoreSize(); 3378 } 3379 3380 return Align; 3381 } 3382 3383 /// CalculateStackSlotUsed - Return whether this argument will use its 3384 /// stack slot (instead of being passed in registers). ArgOffset, 3385 /// AvailableFPRs, and AvailableVRs must hold the current argument 3386 /// position, and will be updated to account for this argument. 3387 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3388 ISD::ArgFlagsTy Flags, 3389 unsigned PtrByteSize, 3390 unsigned LinkageSize, 3391 unsigned ParamAreaSize, 3392 unsigned &ArgOffset, 3393 unsigned &AvailableFPRs, 3394 unsigned &AvailableVRs, bool HasQPX) { 3395 bool UseMemory = false; 3396 3397 // Respect alignment of argument on the stack. 3398 unsigned Align = 3399 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3400 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3401 // If there's no space left in the argument save area, we must 3402 // use memory (this check also catches zero-sized arguments). 3403 if (ArgOffset >= LinkageSize + ParamAreaSize) 3404 UseMemory = true; 3405 3406 // Allocate argument on the stack. 3407 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3408 if (Flags.isInConsecutiveRegsLast()) 3409 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3410 // If we overran the argument save area, we must use memory 3411 // (this check catches arguments passed partially in memory) 3412 if (ArgOffset > LinkageSize + ParamAreaSize) 3413 UseMemory = true; 3414 3415 // However, if the argument is actually passed in an FPR or a VR, 3416 // we don't use memory after all. 3417 if (!Flags.isByVal()) { 3418 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3419 // QPX registers overlap with the scalar FP registers. 3420 (HasQPX && (ArgVT == MVT::v4f32 || 3421 ArgVT == MVT::v4f64 || 3422 ArgVT == MVT::v4i1))) 3423 if (AvailableFPRs > 0) { 3424 --AvailableFPRs; 3425 return false; 3426 } 3427 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3428 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3429 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3430 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3431 if (AvailableVRs > 0) { 3432 --AvailableVRs; 3433 return false; 3434 } 3435 } 3436 3437 return UseMemory; 3438 } 3439 3440 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3441 /// ensure minimum alignment required for target. 3442 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3443 unsigned NumBytes) { 3444 unsigned TargetAlign = Lowering->getStackAlignment(); 3445 unsigned AlignMask = TargetAlign - 1; 3446 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 3447 return NumBytes; 3448 } 3449 3450 SDValue PPCTargetLowering::LowerFormalArguments( 3451 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3452 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3453 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3454 if (Subtarget.isAIXABI()) 3455 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3456 InVals); 3457 if (Subtarget.is64BitELFABI()) 3458 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3459 InVals); 3460 if (Subtarget.is32BitELFABI()) 3461 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3462 InVals); 3463 3464 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, 3465 InVals); 3466 } 3467 3468 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3469 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3470 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3471 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3472 3473 // 32-bit SVR4 ABI Stack Frame Layout: 3474 // +-----------------------------------+ 3475 // +--> | Back chain | 3476 // | +-----------------------------------+ 3477 // | | Floating-point register save area | 3478 // | +-----------------------------------+ 3479 // | | General register save area | 3480 // | +-----------------------------------+ 3481 // | | CR save word | 3482 // | +-----------------------------------+ 3483 // | | VRSAVE save word | 3484 // | +-----------------------------------+ 3485 // | | Alignment padding | 3486 // | +-----------------------------------+ 3487 // | | Vector register save area | 3488 // | +-----------------------------------+ 3489 // | | Local variable space | 3490 // | +-----------------------------------+ 3491 // | | Parameter list area | 3492 // | +-----------------------------------+ 3493 // | | LR save word | 3494 // | +-----------------------------------+ 3495 // SP--> +--- | Back chain | 3496 // +-----------------------------------+ 3497 // 3498 // Specifications: 3499 // System V Application Binary Interface PowerPC Processor Supplement 3500 // AltiVec Technology Programming Interface Manual 3501 3502 MachineFunction &MF = DAG.getMachineFunction(); 3503 MachineFrameInfo &MFI = MF.getFrameInfo(); 3504 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3505 3506 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3507 // Potential tail calls could cause overwriting of argument stack slots. 3508 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3509 (CallConv == CallingConv::Fast)); 3510 unsigned PtrByteSize = 4; 3511 3512 // Assign locations to all of the incoming arguments. 3513 SmallVector<CCValAssign, 16> ArgLocs; 3514 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3515 *DAG.getContext()); 3516 3517 // Reserve space for the linkage area on the stack. 3518 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3519 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 3520 if (useSoftFloat()) 3521 CCInfo.PreAnalyzeFormalArguments(Ins); 3522 3523 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3524 CCInfo.clearWasPPCF128(); 3525 3526 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3527 CCValAssign &VA = ArgLocs[i]; 3528 3529 // Arguments stored in registers. 3530 if (VA.isRegLoc()) { 3531 const TargetRegisterClass *RC; 3532 EVT ValVT = VA.getValVT(); 3533 3534 switch (ValVT.getSimpleVT().SimpleTy) { 3535 default: 3536 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3537 case MVT::i1: 3538 case MVT::i32: 3539 RC = &PPC::GPRCRegClass; 3540 break; 3541 case MVT::f32: 3542 if (Subtarget.hasP8Vector()) 3543 RC = &PPC::VSSRCRegClass; 3544 else if (Subtarget.hasSPE()) 3545 RC = &PPC::GPRCRegClass; 3546 else 3547 RC = &PPC::F4RCRegClass; 3548 break; 3549 case MVT::f64: 3550 if (Subtarget.hasVSX()) 3551 RC = &PPC::VSFRCRegClass; 3552 else if (Subtarget.hasSPE()) 3553 // SPE passes doubles in GPR pairs. 3554 RC = &PPC::GPRCRegClass; 3555 else 3556 RC = &PPC::F8RCRegClass; 3557 break; 3558 case MVT::v16i8: 3559 case MVT::v8i16: 3560 case MVT::v4i32: 3561 RC = &PPC::VRRCRegClass; 3562 break; 3563 case MVT::v4f32: 3564 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3565 break; 3566 case MVT::v2f64: 3567 case MVT::v2i64: 3568 RC = &PPC::VRRCRegClass; 3569 break; 3570 case MVT::v4f64: 3571 RC = &PPC::QFRCRegClass; 3572 break; 3573 case MVT::v4i1: 3574 RC = &PPC::QBRCRegClass; 3575 break; 3576 } 3577 3578 SDValue ArgValue; 3579 // Transform the arguments stored in physical registers into 3580 // virtual ones. 3581 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3582 assert(i + 1 < e && "No second half of double precision argument"); 3583 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3584 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3585 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3586 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3587 if (!Subtarget.isLittleEndian()) 3588 std::swap (ArgValueLo, ArgValueHi); 3589 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3590 ArgValueHi); 3591 } else { 3592 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3593 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3594 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3595 if (ValVT == MVT::i1) 3596 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3597 } 3598 3599 InVals.push_back(ArgValue); 3600 } else { 3601 // Argument stored in memory. 3602 assert(VA.isMemLoc()); 3603 3604 // Get the extended size of the argument type in stack 3605 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3606 // Get the actual size of the argument type 3607 unsigned ObjSize = VA.getValVT().getStoreSize(); 3608 unsigned ArgOffset = VA.getLocMemOffset(); 3609 // Stack objects in PPC32 are right justified. 3610 ArgOffset += ArgSize - ObjSize; 3611 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3612 3613 // Create load nodes to retrieve arguments from the stack. 3614 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3615 InVals.push_back( 3616 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3617 } 3618 } 3619 3620 // Assign locations to all of the incoming aggregate by value arguments. 3621 // Aggregates passed by value are stored in the local variable space of the 3622 // caller's stack frame, right above the parameter list area. 3623 SmallVector<CCValAssign, 16> ByValArgLocs; 3624 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3625 ByValArgLocs, *DAG.getContext()); 3626 3627 // Reserve stack space for the allocations in CCInfo. 3628 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3629 3630 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3631 3632 // Area that is at least reserved in the caller of this function. 3633 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3634 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3635 3636 // Set the size that is at least reserved in caller of this function. Tail 3637 // call optimized function's reserved stack space needs to be aligned so that 3638 // taking the difference between two stack areas will result in an aligned 3639 // stack. 3640 MinReservedArea = 3641 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3642 FuncInfo->setMinReservedArea(MinReservedArea); 3643 3644 SmallVector<SDValue, 8> MemOps; 3645 3646 // If the function takes variable number of arguments, make a frame index for 3647 // the start of the first vararg value... for expansion of llvm.va_start. 3648 if (isVarArg) { 3649 static const MCPhysReg GPArgRegs[] = { 3650 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3651 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3652 }; 3653 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3654 3655 static const MCPhysReg FPArgRegs[] = { 3656 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3657 PPC::F8 3658 }; 3659 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3660 3661 if (useSoftFloat() || hasSPE()) 3662 NumFPArgRegs = 0; 3663 3664 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3665 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3666 3667 // Make room for NumGPArgRegs and NumFPArgRegs. 3668 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3669 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3670 3671 FuncInfo->setVarArgsStackOffset( 3672 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3673 CCInfo.getNextStackOffset(), true)); 3674 3675 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3676 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3677 3678 // The fixed integer arguments of a variadic function are stored to the 3679 // VarArgsFrameIndex on the stack so that they may be loaded by 3680 // dereferencing the result of va_next. 3681 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3682 // Get an existing live-in vreg, or add a new one. 3683 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3684 if (!VReg) 3685 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3686 3687 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3688 SDValue Store = 3689 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3690 MemOps.push_back(Store); 3691 // Increment the address by four for the next argument to store 3692 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3693 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3694 } 3695 3696 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3697 // is set. 3698 // The double arguments are stored to the VarArgsFrameIndex 3699 // on the stack. 3700 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3701 // Get an existing live-in vreg, or add a new one. 3702 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3703 if (!VReg) 3704 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3705 3706 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3707 SDValue Store = 3708 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3709 MemOps.push_back(Store); 3710 // Increment the address by eight for the next argument to store 3711 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3712 PtrVT); 3713 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3714 } 3715 } 3716 3717 if (!MemOps.empty()) 3718 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3719 3720 return Chain; 3721 } 3722 3723 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3724 // value to MVT::i64 and then truncate to the correct register size. 3725 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3726 EVT ObjectVT, SelectionDAG &DAG, 3727 SDValue ArgVal, 3728 const SDLoc &dl) const { 3729 if (Flags.isSExt()) 3730 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3731 DAG.getValueType(ObjectVT)); 3732 else if (Flags.isZExt()) 3733 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3734 DAG.getValueType(ObjectVT)); 3735 3736 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3737 } 3738 3739 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3740 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3741 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3742 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3743 // TODO: add description of PPC stack frame format, or at least some docs. 3744 // 3745 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3746 bool isLittleEndian = Subtarget.isLittleEndian(); 3747 MachineFunction &MF = DAG.getMachineFunction(); 3748 MachineFrameInfo &MFI = MF.getFrameInfo(); 3749 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3750 3751 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3752 "fastcc not supported on varargs functions"); 3753 3754 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3755 // Potential tail calls could cause overwriting of argument stack slots. 3756 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3757 (CallConv == CallingConv::Fast)); 3758 unsigned PtrByteSize = 8; 3759 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3760 3761 static const MCPhysReg GPR[] = { 3762 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3763 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3764 }; 3765 static const MCPhysReg VR[] = { 3766 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3767 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3768 }; 3769 3770 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3771 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3772 const unsigned Num_VR_Regs = array_lengthof(VR); 3773 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3774 3775 // Do a first pass over the arguments to determine whether the ABI 3776 // guarantees that our caller has allocated the parameter save area 3777 // on its stack frame. In the ELFv1 ABI, this is always the case; 3778 // in the ELFv2 ABI, it is true if this is a vararg function or if 3779 // any parameter is located in a stack slot. 3780 3781 bool HasParameterArea = !isELFv2ABI || isVarArg; 3782 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3783 unsigned NumBytes = LinkageSize; 3784 unsigned AvailableFPRs = Num_FPR_Regs; 3785 unsigned AvailableVRs = Num_VR_Regs; 3786 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3787 if (Ins[i].Flags.isNest()) 3788 continue; 3789 3790 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3791 PtrByteSize, LinkageSize, ParamAreaSize, 3792 NumBytes, AvailableFPRs, AvailableVRs, 3793 Subtarget.hasQPX())) 3794 HasParameterArea = true; 3795 } 3796 3797 // Add DAG nodes to load the arguments or copy them out of registers. On 3798 // entry to a function on PPC, the arguments start after the linkage area, 3799 // although the first ones are often in registers. 3800 3801 unsigned ArgOffset = LinkageSize; 3802 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3803 unsigned &QFPR_idx = FPR_idx; 3804 SmallVector<SDValue, 8> MemOps; 3805 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3806 unsigned CurArgIdx = 0; 3807 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3808 SDValue ArgVal; 3809 bool needsLoad = false; 3810 EVT ObjectVT = Ins[ArgNo].VT; 3811 EVT OrigVT = Ins[ArgNo].ArgVT; 3812 unsigned ObjSize = ObjectVT.getStoreSize(); 3813 unsigned ArgSize = ObjSize; 3814 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3815 if (Ins[ArgNo].isOrigArg()) { 3816 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3817 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3818 } 3819 // We re-align the argument offset for each argument, except when using the 3820 // fast calling convention, when we need to make sure we do that only when 3821 // we'll actually use a stack slot. 3822 unsigned CurArgOffset, Align; 3823 auto ComputeArgOffset = [&]() { 3824 /* Respect alignment of argument on the stack. */ 3825 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3826 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3827 CurArgOffset = ArgOffset; 3828 }; 3829 3830 if (CallConv != CallingConv::Fast) { 3831 ComputeArgOffset(); 3832 3833 /* Compute GPR index associated with argument offset. */ 3834 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3835 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3836 } 3837 3838 // FIXME the codegen can be much improved in some cases. 3839 // We do not have to keep everything in memory. 3840 if (Flags.isByVal()) { 3841 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3842 3843 if (CallConv == CallingConv::Fast) 3844 ComputeArgOffset(); 3845 3846 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3847 ObjSize = Flags.getByValSize(); 3848 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3849 // Empty aggregate parameters do not take up registers. Examples: 3850 // struct { } a; 3851 // union { } b; 3852 // int c[0]; 3853 // etc. However, we have to provide a place-holder in InVals, so 3854 // pretend we have an 8-byte item at the current address for that 3855 // purpose. 3856 if (!ObjSize) { 3857 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3858 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3859 InVals.push_back(FIN); 3860 continue; 3861 } 3862 3863 // Create a stack object covering all stack doublewords occupied 3864 // by the argument. If the argument is (fully or partially) on 3865 // the stack, or if the argument is fully in registers but the 3866 // caller has allocated the parameter save anyway, we can refer 3867 // directly to the caller's stack frame. Otherwise, create a 3868 // local copy in our own frame. 3869 int FI; 3870 if (HasParameterArea || 3871 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3872 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3873 else 3874 FI = MFI.CreateStackObject(ArgSize, Align, false); 3875 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3876 3877 // Handle aggregates smaller than 8 bytes. 3878 if (ObjSize < PtrByteSize) { 3879 // The value of the object is its address, which differs from the 3880 // address of the enclosing doubleword on big-endian systems. 3881 SDValue Arg = FIN; 3882 if (!isLittleEndian) { 3883 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3884 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3885 } 3886 InVals.push_back(Arg); 3887 3888 if (GPR_idx != Num_GPR_Regs) { 3889 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3890 FuncInfo->addLiveInAttr(VReg, Flags); 3891 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3892 SDValue Store; 3893 3894 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3895 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3896 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3897 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3898 MachinePointerInfo(&*FuncArg), ObjType); 3899 } else { 3900 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3901 // store the whole register as-is to the parameter save area 3902 // slot. 3903 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3904 MachinePointerInfo(&*FuncArg)); 3905 } 3906 3907 MemOps.push_back(Store); 3908 } 3909 // Whether we copied from a register or not, advance the offset 3910 // into the parameter save area by a full doubleword. 3911 ArgOffset += PtrByteSize; 3912 continue; 3913 } 3914 3915 // The value of the object is its address, which is the address of 3916 // its first stack doubleword. 3917 InVals.push_back(FIN); 3918 3919 // Store whatever pieces of the object are in registers to memory. 3920 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3921 if (GPR_idx == Num_GPR_Regs) 3922 break; 3923 3924 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3925 FuncInfo->addLiveInAttr(VReg, Flags); 3926 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3927 SDValue Addr = FIN; 3928 if (j) { 3929 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3930 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3931 } 3932 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3933 MachinePointerInfo(&*FuncArg, j)); 3934 MemOps.push_back(Store); 3935 ++GPR_idx; 3936 } 3937 ArgOffset += ArgSize; 3938 continue; 3939 } 3940 3941 switch (ObjectVT.getSimpleVT().SimpleTy) { 3942 default: llvm_unreachable("Unhandled argument type!"); 3943 case MVT::i1: 3944 case MVT::i32: 3945 case MVT::i64: 3946 if (Flags.isNest()) { 3947 // The 'nest' parameter, if any, is passed in R11. 3948 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3949 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3950 3951 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3952 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3953 3954 break; 3955 } 3956 3957 // These can be scalar arguments or elements of an integer array type 3958 // passed directly. Clang may use those instead of "byval" aggregate 3959 // types to avoid forcing arguments to memory unnecessarily. 3960 if (GPR_idx != Num_GPR_Regs) { 3961 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3962 FuncInfo->addLiveInAttr(VReg, Flags); 3963 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3964 3965 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3966 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3967 // value to MVT::i64 and then truncate to the correct register size. 3968 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3969 } else { 3970 if (CallConv == CallingConv::Fast) 3971 ComputeArgOffset(); 3972 3973 needsLoad = true; 3974 ArgSize = PtrByteSize; 3975 } 3976 if (CallConv != CallingConv::Fast || needsLoad) 3977 ArgOffset += 8; 3978 break; 3979 3980 case MVT::f32: 3981 case MVT::f64: 3982 // These can be scalar arguments or elements of a float array type 3983 // passed directly. The latter are used to implement ELFv2 homogenous 3984 // float aggregates. 3985 if (FPR_idx != Num_FPR_Regs) { 3986 unsigned VReg; 3987 3988 if (ObjectVT == MVT::f32) 3989 VReg = MF.addLiveIn(FPR[FPR_idx], 3990 Subtarget.hasP8Vector() 3991 ? &PPC::VSSRCRegClass 3992 : &PPC::F4RCRegClass); 3993 else 3994 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3995 ? &PPC::VSFRCRegClass 3996 : &PPC::F8RCRegClass); 3997 3998 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3999 ++FPR_idx; 4000 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4001 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4002 // once we support fp <-> gpr moves. 4003 4004 // This can only ever happen in the presence of f32 array types, 4005 // since otherwise we never run out of FPRs before running out 4006 // of GPRs. 4007 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4008 FuncInfo->addLiveInAttr(VReg, Flags); 4009 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4010 4011 if (ObjectVT == MVT::f32) { 4012 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4013 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4014 DAG.getConstant(32, dl, MVT::i32)); 4015 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4016 } 4017 4018 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4019 } else { 4020 if (CallConv == CallingConv::Fast) 4021 ComputeArgOffset(); 4022 4023 needsLoad = true; 4024 } 4025 4026 // When passing an array of floats, the array occupies consecutive 4027 // space in the argument area; only round up to the next doubleword 4028 // at the end of the array. Otherwise, each float takes 8 bytes. 4029 if (CallConv != CallingConv::Fast || needsLoad) { 4030 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4031 ArgOffset += ArgSize; 4032 if (Flags.isInConsecutiveRegsLast()) 4033 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4034 } 4035 break; 4036 case MVT::v4f32: 4037 case MVT::v4i32: 4038 case MVT::v8i16: 4039 case MVT::v16i8: 4040 case MVT::v2f64: 4041 case MVT::v2i64: 4042 case MVT::v1i128: 4043 case MVT::f128: 4044 if (!Subtarget.hasQPX()) { 4045 // These can be scalar arguments or elements of a vector array type 4046 // passed directly. The latter are used to implement ELFv2 homogenous 4047 // vector aggregates. 4048 if (VR_idx != Num_VR_Regs) { 4049 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4050 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4051 ++VR_idx; 4052 } else { 4053 if (CallConv == CallingConv::Fast) 4054 ComputeArgOffset(); 4055 needsLoad = true; 4056 } 4057 if (CallConv != CallingConv::Fast || needsLoad) 4058 ArgOffset += 16; 4059 break; 4060 } // not QPX 4061 4062 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 4063 "Invalid QPX parameter type"); 4064 LLVM_FALLTHROUGH; 4065 4066 case MVT::v4f64: 4067 case MVT::v4i1: 4068 // QPX vectors are treated like their scalar floating-point subregisters 4069 // (except that they're larger). 4070 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 4071 if (QFPR_idx != Num_QFPR_Regs) { 4072 const TargetRegisterClass *RC; 4073 switch (ObjectVT.getSimpleVT().SimpleTy) { 4074 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 4075 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 4076 default: RC = &PPC::QBRCRegClass; break; 4077 } 4078 4079 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 4080 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4081 ++QFPR_idx; 4082 } else { 4083 if (CallConv == CallingConv::Fast) 4084 ComputeArgOffset(); 4085 needsLoad = true; 4086 } 4087 if (CallConv != CallingConv::Fast || needsLoad) 4088 ArgOffset += Sz; 4089 break; 4090 } 4091 4092 // We need to load the argument to a virtual register if we determined 4093 // above that we ran out of physical registers of the appropriate type. 4094 if (needsLoad) { 4095 if (ObjSize < ArgSize && !isLittleEndian) 4096 CurArgOffset += ArgSize - ObjSize; 4097 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4098 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4099 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4100 } 4101 4102 InVals.push_back(ArgVal); 4103 } 4104 4105 // Area that is at least reserved in the caller of this function. 4106 unsigned MinReservedArea; 4107 if (HasParameterArea) 4108 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4109 else 4110 MinReservedArea = LinkageSize; 4111 4112 // Set the size that is at least reserved in caller of this function. Tail 4113 // call optimized functions' reserved stack space needs to be aligned so that 4114 // taking the difference between two stack areas will result in an aligned 4115 // stack. 4116 MinReservedArea = 4117 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4118 FuncInfo->setMinReservedArea(MinReservedArea); 4119 4120 // If the function takes variable number of arguments, make a frame index for 4121 // the start of the first vararg value... for expansion of llvm.va_start. 4122 if (isVarArg) { 4123 int Depth = ArgOffset; 4124 4125 FuncInfo->setVarArgsFrameIndex( 4126 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4127 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4128 4129 // If this function is vararg, store any remaining integer argument regs 4130 // to their spots on the stack so that they may be loaded by dereferencing 4131 // the result of va_next. 4132 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4133 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4134 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4135 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4136 SDValue Store = 4137 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4138 MemOps.push_back(Store); 4139 // Increment the address by four for the next argument to store 4140 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4141 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4142 } 4143 } 4144 4145 if (!MemOps.empty()) 4146 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4147 4148 return Chain; 4149 } 4150 4151 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4152 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4153 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4154 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4155 // TODO: add description of PPC stack frame format, or at least some docs. 4156 // 4157 MachineFunction &MF = DAG.getMachineFunction(); 4158 MachineFrameInfo &MFI = MF.getFrameInfo(); 4159 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4160 4161 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4162 bool isPPC64 = PtrVT == MVT::i64; 4163 // Potential tail calls could cause overwriting of argument stack slots. 4164 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4165 (CallConv == CallingConv::Fast)); 4166 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4167 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4168 unsigned ArgOffset = LinkageSize; 4169 // Area that is at least reserved in caller of this function. 4170 unsigned MinReservedArea = ArgOffset; 4171 4172 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4173 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4174 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4175 }; 4176 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4177 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4178 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4179 }; 4180 static const MCPhysReg VR[] = { 4181 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4182 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4183 }; 4184 4185 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4186 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4187 const unsigned Num_VR_Regs = array_lengthof( VR); 4188 4189 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4190 4191 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4192 4193 // In 32-bit non-varargs functions, the stack space for vectors is after the 4194 // stack space for non-vectors. We do not use this space unless we have 4195 // too many vectors to fit in registers, something that only occurs in 4196 // constructed examples:), but we have to walk the arglist to figure 4197 // that out...for the pathological case, compute VecArgOffset as the 4198 // start of the vector parameter area. Computing VecArgOffset is the 4199 // entire point of the following loop. 4200 unsigned VecArgOffset = ArgOffset; 4201 if (!isVarArg && !isPPC64) { 4202 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4203 ++ArgNo) { 4204 EVT ObjectVT = Ins[ArgNo].VT; 4205 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4206 4207 if (Flags.isByVal()) { 4208 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4209 unsigned ObjSize = Flags.getByValSize(); 4210 unsigned ArgSize = 4211 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4212 VecArgOffset += ArgSize; 4213 continue; 4214 } 4215 4216 switch(ObjectVT.getSimpleVT().SimpleTy) { 4217 default: llvm_unreachable("Unhandled argument type!"); 4218 case MVT::i1: 4219 case MVT::i32: 4220 case MVT::f32: 4221 VecArgOffset += 4; 4222 break; 4223 case MVT::i64: // PPC64 4224 case MVT::f64: 4225 // FIXME: We are guaranteed to be !isPPC64 at this point. 4226 // Does MVT::i64 apply? 4227 VecArgOffset += 8; 4228 break; 4229 case MVT::v4f32: 4230 case MVT::v4i32: 4231 case MVT::v8i16: 4232 case MVT::v16i8: 4233 // Nothing to do, we're only looking at Nonvector args here. 4234 break; 4235 } 4236 } 4237 } 4238 // We've found where the vector parameter area in memory is. Skip the 4239 // first 12 parameters; these don't use that memory. 4240 VecArgOffset = ((VecArgOffset+15)/16)*16; 4241 VecArgOffset += 12*16; 4242 4243 // Add DAG nodes to load the arguments or copy them out of registers. On 4244 // entry to a function on PPC, the arguments start after the linkage area, 4245 // although the first ones are often in registers. 4246 4247 SmallVector<SDValue, 8> MemOps; 4248 unsigned nAltivecParamsAtEnd = 0; 4249 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4250 unsigned CurArgIdx = 0; 4251 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4252 SDValue ArgVal; 4253 bool needsLoad = false; 4254 EVT ObjectVT = Ins[ArgNo].VT; 4255 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4256 unsigned ArgSize = ObjSize; 4257 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4258 if (Ins[ArgNo].isOrigArg()) { 4259 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4260 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4261 } 4262 unsigned CurArgOffset = ArgOffset; 4263 4264 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4265 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4266 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4267 if (isVarArg || isPPC64) { 4268 MinReservedArea = ((MinReservedArea+15)/16)*16; 4269 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4270 Flags, 4271 PtrByteSize); 4272 } else nAltivecParamsAtEnd++; 4273 } else 4274 // Calculate min reserved area. 4275 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4276 Flags, 4277 PtrByteSize); 4278 4279 // FIXME the codegen can be much improved in some cases. 4280 // We do not have to keep everything in memory. 4281 if (Flags.isByVal()) { 4282 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4283 4284 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4285 ObjSize = Flags.getByValSize(); 4286 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4287 // Objects of size 1 and 2 are right justified, everything else is 4288 // left justified. This means the memory address is adjusted forwards. 4289 if (ObjSize==1 || ObjSize==2) { 4290 CurArgOffset = CurArgOffset + (4 - ObjSize); 4291 } 4292 // The value of the object is its address. 4293 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4294 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4295 InVals.push_back(FIN); 4296 if (ObjSize==1 || ObjSize==2) { 4297 if (GPR_idx != Num_GPR_Regs) { 4298 unsigned VReg; 4299 if (isPPC64) 4300 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4301 else 4302 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4303 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4304 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4305 SDValue Store = 4306 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4307 MachinePointerInfo(&*FuncArg), ObjType); 4308 MemOps.push_back(Store); 4309 ++GPR_idx; 4310 } 4311 4312 ArgOffset += PtrByteSize; 4313 4314 continue; 4315 } 4316 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4317 // Store whatever pieces of the object are in registers 4318 // to memory. ArgOffset will be the address of the beginning 4319 // of the object. 4320 if (GPR_idx != Num_GPR_Regs) { 4321 unsigned VReg; 4322 if (isPPC64) 4323 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4324 else 4325 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4326 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4327 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4328 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4329 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4330 MachinePointerInfo(&*FuncArg, j)); 4331 MemOps.push_back(Store); 4332 ++GPR_idx; 4333 ArgOffset += PtrByteSize; 4334 } else { 4335 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4336 break; 4337 } 4338 } 4339 continue; 4340 } 4341 4342 switch (ObjectVT.getSimpleVT().SimpleTy) { 4343 default: llvm_unreachable("Unhandled argument type!"); 4344 case MVT::i1: 4345 case MVT::i32: 4346 if (!isPPC64) { 4347 if (GPR_idx != Num_GPR_Regs) { 4348 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4349 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4350 4351 if (ObjectVT == MVT::i1) 4352 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4353 4354 ++GPR_idx; 4355 } else { 4356 needsLoad = true; 4357 ArgSize = PtrByteSize; 4358 } 4359 // All int arguments reserve stack space in the Darwin ABI. 4360 ArgOffset += PtrByteSize; 4361 break; 4362 } 4363 LLVM_FALLTHROUGH; 4364 case MVT::i64: // PPC64 4365 if (GPR_idx != Num_GPR_Regs) { 4366 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4367 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4368 4369 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4370 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4371 // value to MVT::i64 and then truncate to the correct register size. 4372 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4373 4374 ++GPR_idx; 4375 } else { 4376 needsLoad = true; 4377 ArgSize = PtrByteSize; 4378 } 4379 // All int arguments reserve stack space in the Darwin ABI. 4380 ArgOffset += 8; 4381 break; 4382 4383 case MVT::f32: 4384 case MVT::f64: 4385 // Every 4 bytes of argument space consumes one of the GPRs available for 4386 // argument passing. 4387 if (GPR_idx != Num_GPR_Regs) { 4388 ++GPR_idx; 4389 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4390 ++GPR_idx; 4391 } 4392 if (FPR_idx != Num_FPR_Regs) { 4393 unsigned VReg; 4394 4395 if (ObjectVT == MVT::f32) 4396 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4397 else 4398 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4399 4400 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4401 ++FPR_idx; 4402 } else { 4403 needsLoad = true; 4404 } 4405 4406 // All FP arguments reserve stack space in the Darwin ABI. 4407 ArgOffset += isPPC64 ? 8 : ObjSize; 4408 break; 4409 case MVT::v4f32: 4410 case MVT::v4i32: 4411 case MVT::v8i16: 4412 case MVT::v16i8: 4413 // Note that vector arguments in registers don't reserve stack space, 4414 // except in varargs functions. 4415 if (VR_idx != Num_VR_Regs) { 4416 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4417 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4418 if (isVarArg) { 4419 while ((ArgOffset % 16) != 0) { 4420 ArgOffset += PtrByteSize; 4421 if (GPR_idx != Num_GPR_Regs) 4422 GPR_idx++; 4423 } 4424 ArgOffset += 16; 4425 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4426 } 4427 ++VR_idx; 4428 } else { 4429 if (!isVarArg && !isPPC64) { 4430 // Vectors go after all the nonvectors. 4431 CurArgOffset = VecArgOffset; 4432 VecArgOffset += 16; 4433 } else { 4434 // Vectors are aligned. 4435 ArgOffset = ((ArgOffset+15)/16)*16; 4436 CurArgOffset = ArgOffset; 4437 ArgOffset += 16; 4438 } 4439 needsLoad = true; 4440 } 4441 break; 4442 } 4443 4444 // We need to load the argument to a virtual register if we determined above 4445 // that we ran out of physical registers of the appropriate type. 4446 if (needsLoad) { 4447 int FI = MFI.CreateFixedObject(ObjSize, 4448 CurArgOffset + (ArgSize - ObjSize), 4449 isImmutable); 4450 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4451 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4452 } 4453 4454 InVals.push_back(ArgVal); 4455 } 4456 4457 // Allow for Altivec parameters at the end, if needed. 4458 if (nAltivecParamsAtEnd) { 4459 MinReservedArea = ((MinReservedArea+15)/16)*16; 4460 MinReservedArea += 16*nAltivecParamsAtEnd; 4461 } 4462 4463 // Area that is at least reserved in the caller of this function. 4464 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4465 4466 // Set the size that is at least reserved in caller of this function. Tail 4467 // call optimized functions' reserved stack space needs to be aligned so that 4468 // taking the difference between two stack areas will result in an aligned 4469 // stack. 4470 MinReservedArea = 4471 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4472 FuncInfo->setMinReservedArea(MinReservedArea); 4473 4474 // If the function takes variable number of arguments, make a frame index for 4475 // the start of the first vararg value... for expansion of llvm.va_start. 4476 if (isVarArg) { 4477 int Depth = ArgOffset; 4478 4479 FuncInfo->setVarArgsFrameIndex( 4480 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4481 Depth, true)); 4482 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4483 4484 // If this function is vararg, store any remaining integer argument regs 4485 // to their spots on the stack so that they may be loaded by dereferencing 4486 // the result of va_next. 4487 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4488 unsigned VReg; 4489 4490 if (isPPC64) 4491 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4492 else 4493 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4494 4495 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4496 SDValue Store = 4497 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4498 MemOps.push_back(Store); 4499 // Increment the address by four for the next argument to store 4500 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4501 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4502 } 4503 } 4504 4505 if (!MemOps.empty()) 4506 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4507 4508 return Chain; 4509 } 4510 4511 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4512 /// adjusted to accommodate the arguments for the tailcall. 4513 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4514 unsigned ParamSize) { 4515 4516 if (!isTailCall) return 0; 4517 4518 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4519 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4520 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4521 // Remember only if the new adjustment is bigger. 4522 if (SPDiff < FI->getTailCallSPDelta()) 4523 FI->setTailCallSPDelta(SPDiff); 4524 4525 return SPDiff; 4526 } 4527 4528 static bool isFunctionGlobalAddress(SDValue Callee); 4529 4530 static bool 4531 callsShareTOCBase(const Function *Caller, SDValue Callee, 4532 const TargetMachine &TM) { 4533 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4534 // don't have enough information to determine if the caller and calle share 4535 // the same TOC base, so we have to pessimistically assume they don't for 4536 // correctness. 4537 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4538 if (!G) 4539 return false; 4540 4541 const GlobalValue *GV = G->getGlobal(); 4542 // The medium and large code models are expected to provide a sufficiently 4543 // large TOC to provide all data addressing needs of a module with a 4544 // single TOC. Since each module will be addressed with a single TOC then we 4545 // only need to check that caller and callee don't cross dso boundaries. 4546 if (CodeModel::Medium == TM.getCodeModel() || 4547 CodeModel::Large == TM.getCodeModel()) 4548 return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV); 4549 4550 // Otherwise we need to ensure callee and caller are in the same section, 4551 // since the linker may allocate multiple TOCs, and we don't know which 4552 // sections will belong to the same TOC base. 4553 4554 if (!GV->isStrongDefinitionForLinker()) 4555 return false; 4556 4557 // Any explicitly-specified sections and section prefixes must also match. 4558 // Also, if we're using -ffunction-sections, then each function is always in 4559 // a different section (the same is true for COMDAT functions). 4560 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4561 GV->getSection() != Caller->getSection()) 4562 return false; 4563 if (const auto *F = dyn_cast<Function>(GV)) { 4564 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4565 return false; 4566 } 4567 4568 // If the callee might be interposed, then we can't assume the ultimate call 4569 // target will be in the same section. Even in cases where we can assume that 4570 // interposition won't happen, in any case where the linker might insert a 4571 // stub to allow for interposition, we must generate code as though 4572 // interposition might occur. To understand why this matters, consider a 4573 // situation where: a -> b -> c where the arrows indicate calls. b and c are 4574 // in the same section, but a is in a different module (i.e. has a different 4575 // TOC base pointer). If the linker allows for interposition between b and c, 4576 // then it will generate a stub for the call edge between b and c which will 4577 // save the TOC pointer into the designated stack slot allocated by b. If we 4578 // return true here, and therefore allow a tail call between b and c, that 4579 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base 4580 // pointer into the stack slot allocated by a (where the a -> b stub saved 4581 // a's TOC base pointer). If we're not considering a tail call, but rather, 4582 // whether a nop is needed after the call instruction in b, because the linker 4583 // will insert a stub, it might complain about a missing nop if we omit it 4584 // (although many don't complain in this case). 4585 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4586 return false; 4587 4588 return true; 4589 } 4590 4591 static bool 4592 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4593 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4594 assert(Subtarget.is64BitELFABI()); 4595 4596 const unsigned PtrByteSize = 8; 4597 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4598 4599 static const MCPhysReg GPR[] = { 4600 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4601 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4602 }; 4603 static const MCPhysReg VR[] = { 4604 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4605 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4606 }; 4607 4608 const unsigned NumGPRs = array_lengthof(GPR); 4609 const unsigned NumFPRs = 13; 4610 const unsigned NumVRs = array_lengthof(VR); 4611 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4612 4613 unsigned NumBytes = LinkageSize; 4614 unsigned AvailableFPRs = NumFPRs; 4615 unsigned AvailableVRs = NumVRs; 4616 4617 for (const ISD::OutputArg& Param : Outs) { 4618 if (Param.Flags.isNest()) continue; 4619 4620 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4621 PtrByteSize, LinkageSize, ParamAreaSize, 4622 NumBytes, AvailableFPRs, AvailableVRs, 4623 Subtarget.hasQPX())) 4624 return true; 4625 } 4626 return false; 4627 } 4628 4629 static bool 4630 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) { 4631 if (CS.arg_size() != CallerFn->arg_size()) 4632 return false; 4633 4634 ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin(); 4635 ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end(); 4636 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4637 4638 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4639 const Value* CalleeArg = *CalleeArgIter; 4640 const Value* CallerArg = &(*CallerArgIter); 4641 if (CalleeArg == CallerArg) 4642 continue; 4643 4644 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4645 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4646 // } 4647 // 1st argument of callee is undef and has the same type as caller. 4648 if (CalleeArg->getType() == CallerArg->getType() && 4649 isa<UndefValue>(CalleeArg)) 4650 continue; 4651 4652 return false; 4653 } 4654 4655 return true; 4656 } 4657 4658 // Returns true if TCO is possible between the callers and callees 4659 // calling conventions. 4660 static bool 4661 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4662 CallingConv::ID CalleeCC) { 4663 // Tail calls are possible with fastcc and ccc. 4664 auto isTailCallableCC = [] (CallingConv::ID CC){ 4665 return CC == CallingConv::C || CC == CallingConv::Fast; 4666 }; 4667 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4668 return false; 4669 4670 // We can safely tail call both fastcc and ccc callees from a c calling 4671 // convention caller. If the caller is fastcc, we may have less stack space 4672 // than a non-fastcc caller with the same signature so disable tail-calls in 4673 // that case. 4674 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4675 } 4676 4677 bool 4678 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4679 SDValue Callee, 4680 CallingConv::ID CalleeCC, 4681 ImmutableCallSite CS, 4682 bool isVarArg, 4683 const SmallVectorImpl<ISD::OutputArg> &Outs, 4684 const SmallVectorImpl<ISD::InputArg> &Ins, 4685 SelectionDAG& DAG) const { 4686 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4687 4688 if (DisableSCO && !TailCallOpt) return false; 4689 4690 // Variadic argument functions are not supported. 4691 if (isVarArg) return false; 4692 4693 auto &Caller = DAG.getMachineFunction().getFunction(); 4694 // Check that the calling conventions are compatible for tco. 4695 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4696 return false; 4697 4698 // Caller contains any byval parameter is not supported. 4699 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4700 return false; 4701 4702 // Callee contains any byval parameter is not supported, too. 4703 // Note: This is a quick work around, because in some cases, e.g. 4704 // caller's stack size > callee's stack size, we are still able to apply 4705 // sibling call optimization. For example, gcc is able to do SCO for caller1 4706 // in the following example, but not for caller2. 4707 // struct test { 4708 // long int a; 4709 // char ary[56]; 4710 // } gTest; 4711 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4712 // b->a = v.a; 4713 // return 0; 4714 // } 4715 // void caller1(struct test a, struct test c, struct test *b) { 4716 // callee(gTest, b); } 4717 // void caller2(struct test *b) { callee(gTest, b); } 4718 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4719 return false; 4720 4721 // If callee and caller use different calling conventions, we cannot pass 4722 // parameters on stack since offsets for the parameter area may be different. 4723 if (Caller.getCallingConv() != CalleeCC && 4724 needStackSlotPassParameters(Subtarget, Outs)) 4725 return false; 4726 4727 // No TCO/SCO on indirect call because Caller have to restore its TOC 4728 if (!isFunctionGlobalAddress(Callee) && 4729 !isa<ExternalSymbolSDNode>(Callee)) 4730 return false; 4731 4732 // If the caller and callee potentially have different TOC bases then we 4733 // cannot tail call since we need to restore the TOC pointer after the call. 4734 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4735 if (!callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4736 return false; 4737 4738 // TCO allows altering callee ABI, so we don't have to check further. 4739 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4740 return true; 4741 4742 if (DisableSCO) return false; 4743 4744 // If callee use the same argument list that caller is using, then we can 4745 // apply SCO on this case. If it is not, then we need to check if callee needs 4746 // stack for passing arguments. 4747 if (!hasSameArgumentList(&Caller, CS) && 4748 needStackSlotPassParameters(Subtarget, Outs)) { 4749 return false; 4750 } 4751 4752 return true; 4753 } 4754 4755 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4756 /// for tail call optimization. Targets which want to do tail call 4757 /// optimization should implement this function. 4758 bool 4759 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4760 CallingConv::ID CalleeCC, 4761 bool isVarArg, 4762 const SmallVectorImpl<ISD::InputArg> &Ins, 4763 SelectionDAG& DAG) const { 4764 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4765 return false; 4766 4767 // Variable argument functions are not supported. 4768 if (isVarArg) 4769 return false; 4770 4771 MachineFunction &MF = DAG.getMachineFunction(); 4772 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4773 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4774 // Functions containing by val parameters are not supported. 4775 for (unsigned i = 0; i != Ins.size(); i++) { 4776 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4777 if (Flags.isByVal()) return false; 4778 } 4779 4780 // Non-PIC/GOT tail calls are supported. 4781 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4782 return true; 4783 4784 // At the moment we can only do local tail calls (in same module, hidden 4785 // or protected) if we are generating PIC. 4786 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4787 return G->getGlobal()->hasHiddenVisibility() 4788 || G->getGlobal()->hasProtectedVisibility(); 4789 } 4790 4791 return false; 4792 } 4793 4794 /// isCallCompatibleAddress - Return the immediate to use if the specified 4795 /// 32-bit value is representable in the immediate field of a BxA instruction. 4796 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4797 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4798 if (!C) return nullptr; 4799 4800 int Addr = C->getZExtValue(); 4801 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4802 SignExtend32<26>(Addr) != Addr) 4803 return nullptr; // Top 6 bits have to be sext of immediate. 4804 4805 return DAG 4806 .getConstant( 4807 (int)C->getZExtValue() >> 2, SDLoc(Op), 4808 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4809 .getNode(); 4810 } 4811 4812 namespace { 4813 4814 struct TailCallArgumentInfo { 4815 SDValue Arg; 4816 SDValue FrameIdxOp; 4817 int FrameIdx = 0; 4818 4819 TailCallArgumentInfo() = default; 4820 }; 4821 4822 } // end anonymous namespace 4823 4824 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4825 static void StoreTailCallArgumentsToStackSlot( 4826 SelectionDAG &DAG, SDValue Chain, 4827 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4828 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4829 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4830 SDValue Arg = TailCallArgs[i].Arg; 4831 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4832 int FI = TailCallArgs[i].FrameIdx; 4833 // Store relative to framepointer. 4834 MemOpChains.push_back(DAG.getStore( 4835 Chain, dl, Arg, FIN, 4836 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4837 } 4838 } 4839 4840 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4841 /// the appropriate stack slot for the tail call optimized function call. 4842 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4843 SDValue OldRetAddr, SDValue OldFP, 4844 int SPDiff, const SDLoc &dl) { 4845 if (SPDiff) { 4846 // Calculate the new stack slot for the return address. 4847 MachineFunction &MF = DAG.getMachineFunction(); 4848 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4849 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4850 bool isPPC64 = Subtarget.isPPC64(); 4851 int SlotSize = isPPC64 ? 8 : 4; 4852 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4853 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4854 NewRetAddrLoc, true); 4855 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4856 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4857 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4858 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4859 4860 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 4861 // slot as the FP is never overwritten. 4862 if (Subtarget.isDarwinABI()) { 4863 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 4864 int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc, 4865 true); 4866 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 4867 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 4868 MachinePointerInfo::getFixedStack( 4869 DAG.getMachineFunction(), NewFPIdx)); 4870 } 4871 } 4872 return Chain; 4873 } 4874 4875 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4876 /// the position of the argument. 4877 static void 4878 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4879 SDValue Arg, int SPDiff, unsigned ArgOffset, 4880 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4881 int Offset = ArgOffset + SPDiff; 4882 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4883 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4884 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4885 SDValue FIN = DAG.getFrameIndex(FI, VT); 4886 TailCallArgumentInfo Info; 4887 Info.Arg = Arg; 4888 Info.FrameIdxOp = FIN; 4889 Info.FrameIdx = FI; 4890 TailCallArguments.push_back(Info); 4891 } 4892 4893 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4894 /// stack slot. Returns the chain as result and the loaded frame pointers in 4895 /// LROpOut/FPOpout. Used when tail calling. 4896 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4897 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4898 SDValue &FPOpOut, const SDLoc &dl) const { 4899 if (SPDiff) { 4900 // Load the LR and FP stack slot for later adjusting. 4901 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4902 LROpOut = getReturnAddrFrameIndex(DAG); 4903 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4904 Chain = SDValue(LROpOut.getNode(), 1); 4905 4906 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 4907 // slot as the FP is never overwritten. 4908 if (Subtarget.isDarwinABI()) { 4909 FPOpOut = getFramePointerFrameIndex(DAG); 4910 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo()); 4911 Chain = SDValue(FPOpOut.getNode(), 1); 4912 } 4913 } 4914 return Chain; 4915 } 4916 4917 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4918 /// by "Src" to address "Dst" of size "Size". Alignment information is 4919 /// specified by the specific parameter attribute. The copy will be passed as 4920 /// a byval function parameter. 4921 /// Sometimes what we are copying is the end of a larger object, the part that 4922 /// does not fit in registers. 4923 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4924 SDValue Chain, ISD::ArgFlagsTy Flags, 4925 SelectionDAG &DAG, const SDLoc &dl) { 4926 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4927 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4928 false, false, false, MachinePointerInfo(), 4929 MachinePointerInfo()); 4930 } 4931 4932 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4933 /// tail calls. 4934 static void LowerMemOpCallTo( 4935 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4936 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4937 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4938 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4939 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4940 if (!isTailCall) { 4941 if (isVector) { 4942 SDValue StackPtr; 4943 if (isPPC64) 4944 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4945 else 4946 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4947 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4948 DAG.getConstant(ArgOffset, dl, PtrVT)); 4949 } 4950 MemOpChains.push_back( 4951 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4952 // Calculate and remember argument location. 4953 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4954 TailCallArguments); 4955 } 4956 4957 static void 4958 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4959 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4960 SDValue FPOp, 4961 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4962 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4963 // might overwrite each other in case of tail call optimization. 4964 SmallVector<SDValue, 8> MemOpChains2; 4965 // Do not flag preceding copytoreg stuff together with the following stuff. 4966 InFlag = SDValue(); 4967 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4968 MemOpChains2, dl); 4969 if (!MemOpChains2.empty()) 4970 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4971 4972 // Store the return address to the appropriate stack slot. 4973 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4974 4975 // Emit callseq_end just before tailcall node. 4976 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4977 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4978 InFlag = Chain.getValue(1); 4979 } 4980 4981 // Is this global address that of a function that can be called by name? (as 4982 // opposed to something that must hold a descriptor for an indirect call). 4983 static bool isFunctionGlobalAddress(SDValue Callee) { 4984 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4985 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4986 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4987 return false; 4988 4989 return G->getGlobal()->getValueType()->isFunctionTy(); 4990 } 4991 4992 return false; 4993 } 4994 4995 SDValue PPCTargetLowering::LowerCallResult( 4996 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 4997 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4998 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4999 SmallVector<CCValAssign, 16> RVLocs; 5000 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5001 *DAG.getContext()); 5002 5003 CCRetInfo.AnalyzeCallResult( 5004 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5005 ? RetCC_PPC_Cold 5006 : RetCC_PPC); 5007 5008 // Copy all of the result registers out of their specified physreg. 5009 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5010 CCValAssign &VA = RVLocs[i]; 5011 assert(VA.isRegLoc() && "Can only return in registers!"); 5012 5013 SDValue Val; 5014 5015 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5016 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5017 InFlag); 5018 Chain = Lo.getValue(1); 5019 InFlag = Lo.getValue(2); 5020 VA = RVLocs[++i]; // skip ahead to next loc 5021 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5022 InFlag); 5023 Chain = Hi.getValue(1); 5024 InFlag = Hi.getValue(2); 5025 if (!Subtarget.isLittleEndian()) 5026 std::swap (Lo, Hi); 5027 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5028 } else { 5029 Val = DAG.getCopyFromReg(Chain, dl, 5030 VA.getLocReg(), VA.getLocVT(), InFlag); 5031 Chain = Val.getValue(1); 5032 InFlag = Val.getValue(2); 5033 } 5034 5035 switch (VA.getLocInfo()) { 5036 default: llvm_unreachable("Unknown loc info!"); 5037 case CCValAssign::Full: break; 5038 case CCValAssign::AExt: 5039 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5040 break; 5041 case CCValAssign::ZExt: 5042 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5043 DAG.getValueType(VA.getValVT())); 5044 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5045 break; 5046 case CCValAssign::SExt: 5047 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5048 DAG.getValueType(VA.getValVT())); 5049 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5050 break; 5051 } 5052 5053 InVals.push_back(Val); 5054 } 5055 5056 return Chain; 5057 } 5058 5059 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5060 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5061 // PatchPoint calls are not indirect. 5062 if (isPatchPoint) 5063 return false; 5064 5065 if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee)) 5066 return false; 5067 5068 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5069 // becuase the immediate function pointer points to a descriptor instead of 5070 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5071 // pointer immediate points to the global entry point, while the BLA would 5072 // need to jump to the local entry point (see rL211174). 5073 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5074 isBLACompatibleAddress(Callee, DAG)) 5075 return false; 5076 5077 return true; 5078 } 5079 5080 static unsigned getCallOpcode(bool isIndirectCall, bool isPatchPoint, 5081 bool isTailCall, const Function &Caller, 5082 const SDValue &Callee, 5083 const PPCSubtarget &Subtarget, 5084 const TargetMachine &TM) { 5085 if (isTailCall) 5086 return PPCISD::TC_RETURN; 5087 5088 // This is a call through a function pointer. 5089 if (isIndirectCall) { 5090 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5091 // indirect calls. The save of the caller's TOC pointer to the stack will be 5092 // inserted into the DAG as part of call lowering. The restore of the TOC 5093 // pointer is modeled by using a pseudo instruction for the call opcode that 5094 // represents the 2 instruction sequence of an indirect branch and link, 5095 // immediately followed by a load of the TOC pointer from the the stack save 5096 // slot into gpr2. 5097 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5098 return PPCISD::BCTRL_LOAD_TOC; 5099 5100 // An indirect call that does not need a TOC restore. 5101 return PPCISD::BCTRL; 5102 } 5103 5104 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5105 // immediately following the call instruction if the caller and callee may 5106 // have different TOC bases. At link time if the linker determines the calls 5107 // may not share a TOC base, the call is redirected to a trampoline inserted 5108 // by the linker. The trampoline will (among other things) save the callers 5109 // TOC pointer at an ABI designated offset in the linkage area and the linker 5110 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5111 // into gpr2. 5112 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5113 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5114 : PPCISD::CALL_NOP; 5115 5116 return PPCISD::CALL; 5117 } 5118 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5119 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5120 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5121 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5122 return SDValue(Dest, 0); 5123 5124 // Returns true if the callee is local, and false otherwise. 5125 auto isLocalCallee = [&]() { 5126 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5127 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5128 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5129 5130 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5131 !dyn_cast_or_null<GlobalIFunc>(GV); 5132 }; 5133 5134 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5135 // a static relocation model causes some versions of GNU LD (2.17.50, at 5136 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5137 // built with secure-PLT. 5138 bool UsePlt = 5139 Subtarget.is32BitELFABI() && !isLocalCallee() && 5140 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5141 5142 if (isFunctionGlobalAddress(Callee)) { 5143 const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 5144 if (!Subtarget.isAIXABI()) 5145 return DAG.getTargetGlobalAddress(G->getGlobal(), dl, 5146 Callee.getValueType(), 0, 5147 UsePlt ? PPCII::MO_PLT : 0); 5148 5149 // On AIX, direct function calls reference the symbol for the function's 5150 // entry point, which is named by prepending a "." before the function's 5151 // C-linkage name. 5152 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5153 5154 const GlobalObject *GO = cast<GlobalObject>(G->getGlobal()); 5155 MCSymbolXCOFF *S = cast<MCSymbolXCOFF>( 5156 Context.getOrCreateSymbol(Twine(".") + Twine(GO->getName()))); 5157 5158 if (GO && GO->isDeclaration() && !S->hasContainingCsect()) { 5159 // On AIX, an undefined symbol needs to be associated with a 5160 // MCSectionXCOFF to get the correct storage mapping class. 5161 // In this case, XCOFF::XMC_PR. 5162 const XCOFF::StorageClass SC = 5163 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO); 5164 MCSectionXCOFF *Sec = 5165 Context.getXCOFFSection(S->getName(), XCOFF::XMC_PR, XCOFF::XTY_ER, 5166 SC, SectionKind::getMetadata()); 5167 S->setContainingCsect(Sec); 5168 } 5169 5170 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5171 return DAG.getMCSymbol(S, PtrVT); 5172 } 5173 5174 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) 5175 return DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 5176 UsePlt ? PPCII::MO_PLT : 0); 5177 5178 // No transformation needed. 5179 assert(Callee.getNode() && "What no callee?"); 5180 return Callee; 5181 } 5182 5183 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5184 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5185 "Expected a CALLSEQ_STARTSDNode."); 5186 5187 // The last operand is the chain, except when the node has glue. If the node 5188 // has glue, then the last operand is the glue, and the chain is the second 5189 // last operand. 5190 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5191 if (LastValue.getValueType() != MVT::Glue) 5192 return LastValue; 5193 5194 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5195 } 5196 5197 // Creates the node that moves a functions address into the count register 5198 // to prepare for an indirect call instruction. 5199 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5200 SDValue &Glue, SDValue &Chain, 5201 const SDLoc &dl) { 5202 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5203 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5204 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5205 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5206 // The glue is the second value produced. 5207 Glue = Chain.getValue(1); 5208 } 5209 5210 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5211 SDValue &Glue, SDValue &Chain, 5212 SDValue CallSeqStart, 5213 ImmutableCallSite CS, const SDLoc &dl, 5214 bool hasNest, 5215 const PPCSubtarget &Subtarget) { 5216 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5217 // entry point, but to the function descriptor (the function entry point 5218 // address is part of the function descriptor though). 5219 // The function descriptor is a three doubleword structure with the 5220 // following fields: function entry point, TOC base address and 5221 // environment pointer. 5222 // Thus for a call through a function pointer, the following actions need 5223 // to be performed: 5224 // 1. Save the TOC of the caller in the TOC save area of its stack 5225 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5226 // 2. Load the address of the function entry point from the function 5227 // descriptor. 5228 // 3. Load the TOC of the callee from the function descriptor into r2. 5229 // 4. Load the environment pointer from the function descriptor into 5230 // r11. 5231 // 5. Branch to the function entry point address. 5232 // 6. On return of the callee, the TOC of the caller needs to be 5233 // restored (this is done in FinishCall()). 5234 // 5235 // The loads are scheduled at the beginning of the call sequence, and the 5236 // register copies are flagged together to ensure that no other 5237 // operations can be scheduled in between. E.g. without flagging the 5238 // copies together, a TOC access in the caller could be scheduled between 5239 // the assignment of the callee TOC and the branch to the callee, which leads 5240 // to incorrect code. 5241 5242 // Start by loading the function address from the descriptor. 5243 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5244 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5245 ? (MachineMemOperand::MODereferenceable | 5246 MachineMemOperand::MOInvariant) 5247 : MachineMemOperand::MONone; 5248 5249 MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr); 5250 5251 // Registers used in building the DAG. 5252 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5253 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5254 5255 // Offsets of descriptor members. 5256 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5257 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5258 5259 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5260 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5261 5262 // One load for the functions entry point address. 5263 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5264 Alignment, MMOFlags); 5265 5266 // One for loading the TOC anchor for the module that contains the called 5267 // function. 5268 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5269 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5270 SDValue TOCPtr = 5271 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5272 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5273 5274 // One for loading the environment pointer. 5275 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5276 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5277 SDValue LoadEnvPtr = 5278 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5279 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5280 5281 5282 // Then copy the newly loaded TOC anchor to the TOC pointer. 5283 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5284 Chain = TOCVal.getValue(0); 5285 Glue = TOCVal.getValue(1); 5286 5287 // If the function call has an explicit 'nest' parameter, it takes the 5288 // place of the environment pointer. 5289 assert((!hasNest || !Subtarget.isAIXABI()) && 5290 "Nest parameter is not supported on AIX."); 5291 if (!hasNest) { 5292 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5293 Chain = EnvVal.getValue(0); 5294 Glue = EnvVal.getValue(1); 5295 } 5296 5297 // The rest of the indirect call sequence is the same as the non-descriptor 5298 // DAG. 5299 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5300 } 5301 5302 static void 5303 buildCallOperands(SmallVectorImpl<SDValue> &Ops, CallingConv::ID CallConv, 5304 const SDLoc &dl, bool isTailCall, bool isVarArg, 5305 bool isPatchPoint, bool hasNest, SelectionDAG &DAG, 5306 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5307 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5308 const PPCSubtarget &Subtarget, bool isIndirect) { 5309 const bool IsPPC64 = Subtarget.isPPC64(); 5310 // MVT for a general purpose register. 5311 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5312 5313 // First operand is always the chain. 5314 Ops.push_back(Chain); 5315 5316 // If it's a direct call pass the callee as the second operand. 5317 if (!isIndirect) 5318 Ops.push_back(Callee); 5319 else { 5320 assert(!isPatchPoint && "Patch point call are not indirect."); 5321 5322 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5323 // on the stack (this would have been done in `LowerCall_64SVR4` or 5324 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5325 // represents both the indirect branch and a load that restores the TOC 5326 // pointer from the linkage area. The operand for the TOC restore is an add 5327 // of the TOC save offset to the stack pointer. This must be the second 5328 // operand: after the chain input but before any other variadic arguments. 5329 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 5330 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5331 5332 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5333 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5334 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5335 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5336 Ops.push_back(AddTOC); 5337 } 5338 5339 // Add the register used for the environment pointer. 5340 if (Subtarget.usesFunctionDescriptors() && !hasNest) 5341 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5342 RegVT)); 5343 5344 5345 // Add CTR register as callee so a bctr can be emitted later. 5346 if (isTailCall) 5347 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5348 } 5349 5350 // If this is a tail call add stack pointer delta. 5351 if (isTailCall) 5352 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5353 5354 // Add argument registers to the end of the list so that they are known live 5355 // into the call. 5356 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5357 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5358 RegsToPass[i].second.getValueType())); 5359 5360 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5361 // no way to mark dependencies as implicit here. 5362 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5363 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && !isPatchPoint) 5364 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5365 5366 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5367 if (isVarArg && Subtarget.is32BitELFABI()) 5368 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5369 5370 // Add a register mask operand representing the call-preserved registers. 5371 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5372 const uint32_t *Mask = 5373 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 5374 assert(Mask && "Missing call preserved mask for calling convention"); 5375 Ops.push_back(DAG.getRegisterMask(Mask)); 5376 5377 // If the glue is valid, it is the last operand. 5378 if (Glue.getNode()) 5379 Ops.push_back(Glue); 5380 } 5381 5382 SDValue PPCTargetLowering::FinishCall( 5383 CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg, 5384 bool isPatchPoint, bool hasNest, SelectionDAG &DAG, 5385 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5386 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5387 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5388 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const { 5389 5390 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) 5391 setUsesTOCBasePtr(DAG); 5392 5393 const bool isIndirect = isIndirectCall(Callee, DAG, Subtarget, isPatchPoint); 5394 unsigned CallOpc = getCallOpcode(isIndirect, isPatchPoint, isTailCall, 5395 DAG.getMachineFunction().getFunction(), 5396 Callee, Subtarget, DAG.getTarget()); 5397 5398 if (!isIndirect) 5399 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5400 else if (Subtarget.usesFunctionDescriptors()) 5401 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CS, 5402 dl, hasNest, Subtarget); 5403 else 5404 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5405 5406 // Build the operand list for the call instruction. 5407 SmallVector<SDValue, 8> Ops; 5408 buildCallOperands(Ops, CallConv, dl, isTailCall, isVarArg, isPatchPoint, 5409 hasNest, DAG, RegsToPass, Glue, Chain, Callee, SPDiff, 5410 Subtarget, isIndirect); 5411 5412 // Emit tail call. 5413 if (isTailCall) { 5414 assert(((Callee.getOpcode() == ISD::Register && 5415 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5416 Callee.getOpcode() == ISD::TargetExternalSymbol || 5417 Callee.getOpcode() == ISD::TargetGlobalAddress || 5418 isa<ConstantSDNode>(Callee)) && 5419 "Expecting a global address, external symbol, absolute value or " 5420 "register"); 5421 assert(CallOpc == PPCISD::TC_RETURN && 5422 "Unexpected call opcode for a tail call."); 5423 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5424 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5425 } 5426 5427 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5428 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5429 Glue = Chain.getValue(1); 5430 5431 // When performing tail call optimization the callee pops its arguments off 5432 // the stack. Account for this here so these bytes can be pushed back on in 5433 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5434 int BytesCalleePops = (CallConv == CallingConv::Fast && 5435 getTargetMachine().Options.GuaranteedTailCallOpt) 5436 ? NumBytes 5437 : 0; 5438 5439 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5440 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5441 Glue, dl); 5442 Glue = Chain.getValue(1); 5443 5444 return LowerCallResult(Chain, Glue, CallConv, isVarArg, Ins, dl, DAG, InVals); 5445 } 5446 5447 SDValue 5448 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5449 SmallVectorImpl<SDValue> &InVals) const { 5450 SelectionDAG &DAG = CLI.DAG; 5451 SDLoc &dl = CLI.DL; 5452 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5453 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5454 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5455 SDValue Chain = CLI.Chain; 5456 SDValue Callee = CLI.Callee; 5457 bool &isTailCall = CLI.IsTailCall; 5458 CallingConv::ID CallConv = CLI.CallConv; 5459 bool isVarArg = CLI.IsVarArg; 5460 bool isPatchPoint = CLI.IsPatchPoint; 5461 ImmutableCallSite CS = CLI.CS; 5462 5463 if (isTailCall) { 5464 if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall())) 5465 isTailCall = false; 5466 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5467 isTailCall = 5468 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 5469 isVarArg, Outs, Ins, DAG); 5470 else 5471 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5472 Ins, DAG); 5473 if (isTailCall) { 5474 ++NumTailCalls; 5475 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5476 ++NumSiblingCalls; 5477 5478 assert(isa<GlobalAddressSDNode>(Callee) && 5479 "Callee should be an llvm::Function object."); 5480 LLVM_DEBUG( 5481 const GlobalValue *GV = 5482 cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5483 const unsigned Width = 5484 80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0"); 5485 dbgs() << "TCO caller: " 5486 << left_justify(DAG.getMachineFunction().getName(), Width) 5487 << ", callee linkage: " << GV->getVisibility() << ", " 5488 << GV->getLinkage() << "\n"); 5489 } 5490 } 5491 5492 if (!isTailCall && CS && CS.isMustTailCall()) 5493 report_fatal_error("failed to perform tail call elimination on a call " 5494 "site marked musttail"); 5495 5496 // When long calls (i.e. indirect calls) are always used, calls are always 5497 // made via function pointer. If we have a function name, first translate it 5498 // into a pointer. 5499 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5500 !isTailCall) 5501 Callee = LowerGlobalAddress(Callee, DAG); 5502 5503 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5504 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 5505 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5506 dl, DAG, InVals, CS); 5507 5508 if (Subtarget.isSVR4ABI()) 5509 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 5510 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5511 dl, DAG, InVals, CS); 5512 5513 if (Subtarget.isAIXABI()) 5514 return LowerCall_AIX(Chain, Callee, CallConv, isVarArg, 5515 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5516 dl, DAG, InVals, CS); 5517 5518 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 5519 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5520 dl, DAG, InVals, CS); 5521 } 5522 5523 SDValue PPCTargetLowering::LowerCall_32SVR4( 5524 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5525 bool isTailCall, bool isPatchPoint, 5526 const SmallVectorImpl<ISD::OutputArg> &Outs, 5527 const SmallVectorImpl<SDValue> &OutVals, 5528 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5529 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5530 ImmutableCallSite CS) const { 5531 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5532 // of the 32-bit SVR4 ABI stack frame layout. 5533 5534 assert((CallConv == CallingConv::C || 5535 CallConv == CallingConv::Cold || 5536 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5537 5538 unsigned PtrByteSize = 4; 5539 5540 MachineFunction &MF = DAG.getMachineFunction(); 5541 5542 // Mark this function as potentially containing a function that contains a 5543 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5544 // and restoring the callers stack pointer in this functions epilog. This is 5545 // done because by tail calling the called function might overwrite the value 5546 // in this function's (MF) stack pointer stack slot 0(SP). 5547 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5548 CallConv == CallingConv::Fast) 5549 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5550 5551 // Count how many bytes are to be pushed on the stack, including the linkage 5552 // area, parameter list area and the part of the local variable space which 5553 // contains copies of aggregates which are passed by value. 5554 5555 // Assign locations to all of the outgoing arguments. 5556 SmallVector<CCValAssign, 16> ArgLocs; 5557 PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 5558 5559 // Reserve space for the linkage area on the stack. 5560 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5561 PtrByteSize); 5562 if (useSoftFloat()) 5563 CCInfo.PreAnalyzeCallOperands(Outs); 5564 5565 if (isVarArg) { 5566 // Handle fixed and variable vector arguments differently. 5567 // Fixed vector arguments go into registers as long as registers are 5568 // available. Variable vector arguments always go into memory. 5569 unsigned NumArgs = Outs.size(); 5570 5571 for (unsigned i = 0; i != NumArgs; ++i) { 5572 MVT ArgVT = Outs[i].VT; 5573 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5574 bool Result; 5575 5576 if (Outs[i].IsFixed) { 5577 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5578 CCInfo); 5579 } else { 5580 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5581 ArgFlags, CCInfo); 5582 } 5583 5584 if (Result) { 5585 #ifndef NDEBUG 5586 errs() << "Call operand #" << i << " has unhandled type " 5587 << EVT(ArgVT).getEVTString() << "\n"; 5588 #endif 5589 llvm_unreachable(nullptr); 5590 } 5591 } 5592 } else { 5593 // All arguments are treated the same. 5594 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5595 } 5596 CCInfo.clearWasPPCF128(); 5597 5598 // Assign locations to all of the outgoing aggregate by value arguments. 5599 SmallVector<CCValAssign, 16> ByValArgLocs; 5600 CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext()); 5601 5602 // Reserve stack space for the allocations in CCInfo. 5603 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 5604 5605 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5606 5607 // Size of the linkage area, parameter list area and the part of the local 5608 // space variable where copies of aggregates which are passed by value are 5609 // stored. 5610 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5611 5612 // Calculate by how many bytes the stack has to be adjusted in case of tail 5613 // call optimization. 5614 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5615 5616 // Adjust the stack pointer for the new arguments... 5617 // These operations are automatically eliminated by the prolog/epilog pass 5618 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5619 SDValue CallSeqStart = Chain; 5620 5621 // Load the return address and frame pointer so it can be moved somewhere else 5622 // later. 5623 SDValue LROp, FPOp; 5624 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5625 5626 // Set up a copy of the stack pointer for use loading and storing any 5627 // arguments that may not fit in the registers available for argument 5628 // passing. 5629 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5630 5631 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5632 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5633 SmallVector<SDValue, 8> MemOpChains; 5634 5635 bool seenFloatArg = false; 5636 // Walk the register/memloc assignments, inserting copies/loads. 5637 // i - Tracks the index into the list of registers allocated for the call 5638 // RealArgIdx - Tracks the index into the list of actual function arguments 5639 // j - Tracks the index into the list of byval arguments 5640 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5641 i != e; 5642 ++i, ++RealArgIdx) { 5643 CCValAssign &VA = ArgLocs[i]; 5644 SDValue Arg = OutVals[RealArgIdx]; 5645 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5646 5647 if (Flags.isByVal()) { 5648 // Argument is an aggregate which is passed by value, thus we need to 5649 // create a copy of it in the local variable space of the current stack 5650 // frame (which is the stack frame of the caller) and pass the address of 5651 // this copy to the callee. 5652 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5653 CCValAssign &ByValVA = ByValArgLocs[j++]; 5654 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5655 5656 // Memory reserved in the local variable space of the callers stack frame. 5657 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5658 5659 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5660 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5661 StackPtr, PtrOff); 5662 5663 // Create a copy of the argument in the local area of the current 5664 // stack frame. 5665 SDValue MemcpyCall = 5666 CreateCopyOfByValArgument(Arg, PtrOff, 5667 CallSeqStart.getNode()->getOperand(0), 5668 Flags, DAG, dl); 5669 5670 // This must go outside the CALLSEQ_START..END. 5671 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5672 SDLoc(MemcpyCall)); 5673 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5674 NewCallSeqStart.getNode()); 5675 Chain = CallSeqStart = NewCallSeqStart; 5676 5677 // Pass the address of the aggregate copy on the stack either in a 5678 // physical register or in the parameter list area of the current stack 5679 // frame to the callee. 5680 Arg = PtrOff; 5681 } 5682 5683 // When useCRBits() is true, there can be i1 arguments. 5684 // It is because getRegisterType(MVT::i1) => MVT::i1, 5685 // and for other integer types getRegisterType() => MVT::i32. 5686 // Extend i1 and ensure callee will get i32. 5687 if (Arg.getValueType() == MVT::i1) 5688 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5689 dl, MVT::i32, Arg); 5690 5691 if (VA.isRegLoc()) { 5692 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5693 // Put argument in a physical register. 5694 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5695 bool IsLE = Subtarget.isLittleEndian(); 5696 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5697 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5698 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5699 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5700 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5701 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5702 SVal.getValue(0))); 5703 } else 5704 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5705 } else { 5706 // Put argument in the parameter list area of the current stack frame. 5707 assert(VA.isMemLoc()); 5708 unsigned LocMemOffset = VA.getLocMemOffset(); 5709 5710 if (!isTailCall) { 5711 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5712 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5713 StackPtr, PtrOff); 5714 5715 MemOpChains.push_back( 5716 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5717 } else { 5718 // Calculate and remember argument location. 5719 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5720 TailCallArguments); 5721 } 5722 } 5723 } 5724 5725 if (!MemOpChains.empty()) 5726 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5727 5728 // Build a sequence of copy-to-reg nodes chained together with token chain 5729 // and flag operands which copy the outgoing args into the appropriate regs. 5730 SDValue InFlag; 5731 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5732 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5733 RegsToPass[i].second, InFlag); 5734 InFlag = Chain.getValue(1); 5735 } 5736 5737 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5738 // registers. 5739 if (isVarArg) { 5740 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5741 SDValue Ops[] = { Chain, InFlag }; 5742 5743 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5744 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5745 5746 InFlag = Chain.getValue(1); 5747 } 5748 5749 if (isTailCall) 5750 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5751 TailCallArguments); 5752 5753 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 5754 /* unused except on PPC64 ELFv1 */ false, DAG, 5755 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5756 NumBytes, Ins, InVals, CS); 5757 } 5758 5759 // Copy an argument into memory, being careful to do this outside the 5760 // call sequence for the call to which the argument belongs. 5761 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5762 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5763 SelectionDAG &DAG, const SDLoc &dl) const { 5764 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5765 CallSeqStart.getNode()->getOperand(0), 5766 Flags, DAG, dl); 5767 // The MEMCPY must go outside the CALLSEQ_START..END. 5768 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5769 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5770 SDLoc(MemcpyCall)); 5771 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5772 NewCallSeqStart.getNode()); 5773 return NewCallSeqStart; 5774 } 5775 5776 SDValue PPCTargetLowering::LowerCall_64SVR4( 5777 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5778 bool isTailCall, bool isPatchPoint, 5779 const SmallVectorImpl<ISD::OutputArg> &Outs, 5780 const SmallVectorImpl<SDValue> &OutVals, 5781 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5782 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5783 ImmutableCallSite CS) const { 5784 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5785 bool isLittleEndian = Subtarget.isLittleEndian(); 5786 unsigned NumOps = Outs.size(); 5787 bool hasNest = false; 5788 bool IsSibCall = false; 5789 5790 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5791 unsigned PtrByteSize = 8; 5792 5793 MachineFunction &MF = DAG.getMachineFunction(); 5794 5795 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5796 IsSibCall = true; 5797 5798 // Mark this function as potentially containing a function that contains a 5799 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5800 // and restoring the callers stack pointer in this functions epilog. This is 5801 // done because by tail calling the called function might overwrite the value 5802 // in this function's (MF) stack pointer stack slot 0(SP). 5803 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5804 CallConv == CallingConv::Fast) 5805 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5806 5807 assert(!(CallConv == CallingConv::Fast && isVarArg) && 5808 "fastcc not supported on varargs functions"); 5809 5810 // Count how many bytes are to be pushed on the stack, including the linkage 5811 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5812 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5813 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5814 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5815 unsigned NumBytes = LinkageSize; 5816 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5817 unsigned &QFPR_idx = FPR_idx; 5818 5819 static const MCPhysReg GPR[] = { 5820 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5821 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5822 }; 5823 static const MCPhysReg VR[] = { 5824 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5825 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5826 }; 5827 5828 const unsigned NumGPRs = array_lengthof(GPR); 5829 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5830 const unsigned NumVRs = array_lengthof(VR); 5831 const unsigned NumQFPRs = NumFPRs; 5832 5833 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5834 // can be passed to the callee in registers. 5835 // For the fast calling convention, there is another check below. 5836 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5837 bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast; 5838 if (!HasParameterArea) { 5839 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5840 unsigned AvailableFPRs = NumFPRs; 5841 unsigned AvailableVRs = NumVRs; 5842 unsigned NumBytesTmp = NumBytes; 5843 for (unsigned i = 0; i != NumOps; ++i) { 5844 if (Outs[i].Flags.isNest()) continue; 5845 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5846 PtrByteSize, LinkageSize, ParamAreaSize, 5847 NumBytesTmp, AvailableFPRs, AvailableVRs, 5848 Subtarget.hasQPX())) 5849 HasParameterArea = true; 5850 } 5851 } 5852 5853 // When using the fast calling convention, we don't provide backing for 5854 // arguments that will be in registers. 5855 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5856 5857 // Avoid allocating parameter area for fastcc functions if all the arguments 5858 // can be passed in the registers. 5859 if (CallConv == CallingConv::Fast) 5860 HasParameterArea = false; 5861 5862 // Add up all the space actually used. 5863 for (unsigned i = 0; i != NumOps; ++i) { 5864 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5865 EVT ArgVT = Outs[i].VT; 5866 EVT OrigVT = Outs[i].ArgVT; 5867 5868 if (Flags.isNest()) 5869 continue; 5870 5871 if (CallConv == CallingConv::Fast) { 5872 if (Flags.isByVal()) { 5873 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5874 if (NumGPRsUsed > NumGPRs) 5875 HasParameterArea = true; 5876 } else { 5877 switch (ArgVT.getSimpleVT().SimpleTy) { 5878 default: llvm_unreachable("Unexpected ValueType for argument!"); 5879 case MVT::i1: 5880 case MVT::i32: 5881 case MVT::i64: 5882 if (++NumGPRsUsed <= NumGPRs) 5883 continue; 5884 break; 5885 case MVT::v4i32: 5886 case MVT::v8i16: 5887 case MVT::v16i8: 5888 case MVT::v2f64: 5889 case MVT::v2i64: 5890 case MVT::v1i128: 5891 case MVT::f128: 5892 if (++NumVRsUsed <= NumVRs) 5893 continue; 5894 break; 5895 case MVT::v4f32: 5896 // When using QPX, this is handled like a FP register, otherwise, it 5897 // is an Altivec register. 5898 if (Subtarget.hasQPX()) { 5899 if (++NumFPRsUsed <= NumFPRs) 5900 continue; 5901 } else { 5902 if (++NumVRsUsed <= NumVRs) 5903 continue; 5904 } 5905 break; 5906 case MVT::f32: 5907 case MVT::f64: 5908 case MVT::v4f64: // QPX 5909 case MVT::v4i1: // QPX 5910 if (++NumFPRsUsed <= NumFPRs) 5911 continue; 5912 break; 5913 } 5914 HasParameterArea = true; 5915 } 5916 } 5917 5918 /* Respect alignment of argument on the stack. */ 5919 unsigned Align = 5920 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5921 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 5922 5923 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5924 if (Flags.isInConsecutiveRegsLast()) 5925 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5926 } 5927 5928 unsigned NumBytesActuallyUsed = NumBytes; 5929 5930 // In the old ELFv1 ABI, 5931 // the prolog code of the callee may store up to 8 GPR argument registers to 5932 // the stack, allowing va_start to index over them in memory if its varargs. 5933 // Because we cannot tell if this is needed on the caller side, we have to 5934 // conservatively assume that it is needed. As such, make sure we have at 5935 // least enough stack space for the caller to store the 8 GPRs. 5936 // In the ELFv2 ABI, we allocate the parameter area iff a callee 5937 // really requires memory operands, e.g. a vararg function. 5938 if (HasParameterArea) 5939 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5940 else 5941 NumBytes = LinkageSize; 5942 5943 // Tail call needs the stack to be aligned. 5944 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5945 CallConv == CallingConv::Fast) 5946 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5947 5948 int SPDiff = 0; 5949 5950 // Calculate by how many bytes the stack has to be adjusted in case of tail 5951 // call optimization. 5952 if (!IsSibCall) 5953 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5954 5955 // To protect arguments on the stack from being clobbered in a tail call, 5956 // force all the loads to happen before doing any other lowering. 5957 if (isTailCall) 5958 Chain = DAG.getStackArgumentTokenFactor(Chain); 5959 5960 // Adjust the stack pointer for the new arguments... 5961 // These operations are automatically eliminated by the prolog/epilog pass 5962 if (!IsSibCall) 5963 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5964 SDValue CallSeqStart = Chain; 5965 5966 // Load the return address and frame pointer so it can be move somewhere else 5967 // later. 5968 SDValue LROp, FPOp; 5969 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5970 5971 // Set up a copy of the stack pointer for use loading and storing any 5972 // arguments that may not fit in the registers available for argument 5973 // passing. 5974 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5975 5976 // Figure out which arguments are going to go in registers, and which in 5977 // memory. Also, if this is a vararg function, floating point operations 5978 // must be stored to our stack, and loaded into integer regs as well, if 5979 // any integer regs are available for argument passing. 5980 unsigned ArgOffset = LinkageSize; 5981 5982 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5983 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5984 5985 SmallVector<SDValue, 8> MemOpChains; 5986 for (unsigned i = 0; i != NumOps; ++i) { 5987 SDValue Arg = OutVals[i]; 5988 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5989 EVT ArgVT = Outs[i].VT; 5990 EVT OrigVT = Outs[i].ArgVT; 5991 5992 // PtrOff will be used to store the current argument to the stack if a 5993 // register cannot be found for it. 5994 SDValue PtrOff; 5995 5996 // We re-align the argument offset for each argument, except when using the 5997 // fast calling convention, when we need to make sure we do that only when 5998 // we'll actually use a stack slot. 5999 auto ComputePtrOff = [&]() { 6000 /* Respect alignment of argument on the stack. */ 6001 unsigned Align = 6002 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6003 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 6004 6005 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6006 6007 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6008 }; 6009 6010 if (CallConv != CallingConv::Fast) { 6011 ComputePtrOff(); 6012 6013 /* Compute GPR index associated with argument offset. */ 6014 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6015 GPR_idx = std::min(GPR_idx, NumGPRs); 6016 } 6017 6018 // Promote integers to 64-bit values. 6019 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6020 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6021 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6022 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6023 } 6024 6025 // FIXME memcpy is used way more than necessary. Correctness first. 6026 // Note: "by value" is code for passing a structure by value, not 6027 // basic types. 6028 if (Flags.isByVal()) { 6029 // Note: Size includes alignment padding, so 6030 // struct x { short a; char b; } 6031 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6032 // These are the proper values we need for right-justifying the 6033 // aggregate in a parameter register. 6034 unsigned Size = Flags.getByValSize(); 6035 6036 // An empty aggregate parameter takes up no storage and no 6037 // registers. 6038 if (Size == 0) 6039 continue; 6040 6041 if (CallConv == CallingConv::Fast) 6042 ComputePtrOff(); 6043 6044 // All aggregates smaller than 8 bytes must be passed right-justified. 6045 if (Size==1 || Size==2 || Size==4) { 6046 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6047 if (GPR_idx != NumGPRs) { 6048 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6049 MachinePointerInfo(), VT); 6050 MemOpChains.push_back(Load.getValue(1)); 6051 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6052 6053 ArgOffset += PtrByteSize; 6054 continue; 6055 } 6056 } 6057 6058 if (GPR_idx == NumGPRs && Size < 8) { 6059 SDValue AddPtr = PtrOff; 6060 if (!isLittleEndian) { 6061 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6062 PtrOff.getValueType()); 6063 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6064 } 6065 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6066 CallSeqStart, 6067 Flags, DAG, dl); 6068 ArgOffset += PtrByteSize; 6069 continue; 6070 } 6071 // Copy entire object into memory. There are cases where gcc-generated 6072 // code assumes it is there, even if it could be put entirely into 6073 // registers. (This is not what the doc says.) 6074 6075 // FIXME: The above statement is likely due to a misunderstanding of the 6076 // documents. All arguments must be copied into the parameter area BY 6077 // THE CALLEE in the event that the callee takes the address of any 6078 // formal argument. That has not yet been implemented. However, it is 6079 // reasonable to use the stack area as a staging area for the register 6080 // load. 6081 6082 // Skip this for small aggregates, as we will use the same slot for a 6083 // right-justified copy, below. 6084 if (Size >= 8) 6085 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6086 CallSeqStart, 6087 Flags, DAG, dl); 6088 6089 // When a register is available, pass a small aggregate right-justified. 6090 if (Size < 8 && GPR_idx != NumGPRs) { 6091 // The easiest way to get this right-justified in a register 6092 // is to copy the structure into the rightmost portion of a 6093 // local variable slot, then load the whole slot into the 6094 // register. 6095 // FIXME: The memcpy seems to produce pretty awful code for 6096 // small aggregates, particularly for packed ones. 6097 // FIXME: It would be preferable to use the slot in the 6098 // parameter save area instead of a new local variable. 6099 SDValue AddPtr = PtrOff; 6100 if (!isLittleEndian) { 6101 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6102 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6103 } 6104 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6105 CallSeqStart, 6106 Flags, DAG, dl); 6107 6108 // Load the slot into the register. 6109 SDValue Load = 6110 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6111 MemOpChains.push_back(Load.getValue(1)); 6112 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6113 6114 // Done with this argument. 6115 ArgOffset += PtrByteSize; 6116 continue; 6117 } 6118 6119 // For aggregates larger than PtrByteSize, copy the pieces of the 6120 // object that fit into registers from the parameter save area. 6121 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6122 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6123 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6124 if (GPR_idx != NumGPRs) { 6125 SDValue Load = 6126 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6127 MemOpChains.push_back(Load.getValue(1)); 6128 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6129 ArgOffset += PtrByteSize; 6130 } else { 6131 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6132 break; 6133 } 6134 } 6135 continue; 6136 } 6137 6138 switch (Arg.getSimpleValueType().SimpleTy) { 6139 default: llvm_unreachable("Unexpected ValueType for argument!"); 6140 case MVT::i1: 6141 case MVT::i32: 6142 case MVT::i64: 6143 if (Flags.isNest()) { 6144 // The 'nest' parameter, if any, is passed in R11. 6145 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6146 hasNest = true; 6147 break; 6148 } 6149 6150 // These can be scalar arguments or elements of an integer array type 6151 // passed directly. Clang may use those instead of "byval" aggregate 6152 // types to avoid forcing arguments to memory unnecessarily. 6153 if (GPR_idx != NumGPRs) { 6154 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6155 } else { 6156 if (CallConv == CallingConv::Fast) 6157 ComputePtrOff(); 6158 6159 assert(HasParameterArea && 6160 "Parameter area must exist to pass an argument in memory."); 6161 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6162 true, isTailCall, false, MemOpChains, 6163 TailCallArguments, dl); 6164 if (CallConv == CallingConv::Fast) 6165 ArgOffset += PtrByteSize; 6166 } 6167 if (CallConv != CallingConv::Fast) 6168 ArgOffset += PtrByteSize; 6169 break; 6170 case MVT::f32: 6171 case MVT::f64: { 6172 // These can be scalar arguments or elements of a float array type 6173 // passed directly. The latter are used to implement ELFv2 homogenous 6174 // float aggregates. 6175 6176 // Named arguments go into FPRs first, and once they overflow, the 6177 // remaining arguments go into GPRs and then the parameter save area. 6178 // Unnamed arguments for vararg functions always go to GPRs and 6179 // then the parameter save area. For now, put all arguments to vararg 6180 // routines always in both locations (FPR *and* GPR or stack slot). 6181 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 6182 bool NeededLoad = false; 6183 6184 // First load the argument into the next available FPR. 6185 if (FPR_idx != NumFPRs) 6186 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6187 6188 // Next, load the argument into GPR or stack slot if needed. 6189 if (!NeedGPROrStack) 6190 ; 6191 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 6192 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6193 // once we support fp <-> gpr moves. 6194 6195 // In the non-vararg case, this can only ever happen in the 6196 // presence of f32 array types, since otherwise we never run 6197 // out of FPRs before running out of GPRs. 6198 SDValue ArgVal; 6199 6200 // Double values are always passed in a single GPR. 6201 if (Arg.getValueType() != MVT::f32) { 6202 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6203 6204 // Non-array float values are extended and passed in a GPR. 6205 } else if (!Flags.isInConsecutiveRegs()) { 6206 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6207 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6208 6209 // If we have an array of floats, we collect every odd element 6210 // together with its predecessor into one GPR. 6211 } else if (ArgOffset % PtrByteSize != 0) { 6212 SDValue Lo, Hi; 6213 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6214 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6215 if (!isLittleEndian) 6216 std::swap(Lo, Hi); 6217 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6218 6219 // The final element, if even, goes into the first half of a GPR. 6220 } else if (Flags.isInConsecutiveRegsLast()) { 6221 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6222 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6223 if (!isLittleEndian) 6224 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6225 DAG.getConstant(32, dl, MVT::i32)); 6226 6227 // Non-final even elements are skipped; they will be handled 6228 // together the with subsequent argument on the next go-around. 6229 } else 6230 ArgVal = SDValue(); 6231 6232 if (ArgVal.getNode()) 6233 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6234 } else { 6235 if (CallConv == CallingConv::Fast) 6236 ComputePtrOff(); 6237 6238 // Single-precision floating-point values are mapped to the 6239 // second (rightmost) word of the stack doubleword. 6240 if (Arg.getValueType() == MVT::f32 && 6241 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6242 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6243 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6244 } 6245 6246 assert(HasParameterArea && 6247 "Parameter area must exist to pass an argument in memory."); 6248 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6249 true, isTailCall, false, MemOpChains, 6250 TailCallArguments, dl); 6251 6252 NeededLoad = true; 6253 } 6254 // When passing an array of floats, the array occupies consecutive 6255 // space in the argument area; only round up to the next doubleword 6256 // at the end of the array. Otherwise, each float takes 8 bytes. 6257 if (CallConv != CallingConv::Fast || NeededLoad) { 6258 ArgOffset += (Arg.getValueType() == MVT::f32 && 6259 Flags.isInConsecutiveRegs()) ? 4 : 8; 6260 if (Flags.isInConsecutiveRegsLast()) 6261 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6262 } 6263 break; 6264 } 6265 case MVT::v4f32: 6266 case MVT::v4i32: 6267 case MVT::v8i16: 6268 case MVT::v16i8: 6269 case MVT::v2f64: 6270 case MVT::v2i64: 6271 case MVT::v1i128: 6272 case MVT::f128: 6273 if (!Subtarget.hasQPX()) { 6274 // These can be scalar arguments or elements of a vector array type 6275 // passed directly. The latter are used to implement ELFv2 homogenous 6276 // vector aggregates. 6277 6278 // For a varargs call, named arguments go into VRs or on the stack as 6279 // usual; unnamed arguments always go to the stack or the corresponding 6280 // GPRs when within range. For now, we always put the value in both 6281 // locations (or even all three). 6282 if (isVarArg) { 6283 assert(HasParameterArea && 6284 "Parameter area must exist if we have a varargs call."); 6285 // We could elide this store in the case where the object fits 6286 // entirely in R registers. Maybe later. 6287 SDValue Store = 6288 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6289 MemOpChains.push_back(Store); 6290 if (VR_idx != NumVRs) { 6291 SDValue Load = 6292 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6293 MemOpChains.push_back(Load.getValue(1)); 6294 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6295 } 6296 ArgOffset += 16; 6297 for (unsigned i=0; i<16; i+=PtrByteSize) { 6298 if (GPR_idx == NumGPRs) 6299 break; 6300 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6301 DAG.getConstant(i, dl, PtrVT)); 6302 SDValue Load = 6303 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6304 MemOpChains.push_back(Load.getValue(1)); 6305 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6306 } 6307 break; 6308 } 6309 6310 // Non-varargs Altivec params go into VRs or on the stack. 6311 if (VR_idx != NumVRs) { 6312 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6313 } else { 6314 if (CallConv == CallingConv::Fast) 6315 ComputePtrOff(); 6316 6317 assert(HasParameterArea && 6318 "Parameter area must exist to pass an argument in memory."); 6319 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6320 true, isTailCall, true, MemOpChains, 6321 TailCallArguments, dl); 6322 if (CallConv == CallingConv::Fast) 6323 ArgOffset += 16; 6324 } 6325 6326 if (CallConv != CallingConv::Fast) 6327 ArgOffset += 16; 6328 break; 6329 } // not QPX 6330 6331 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 6332 "Invalid QPX parameter type"); 6333 6334 LLVM_FALLTHROUGH; 6335 case MVT::v4f64: 6336 case MVT::v4i1: { 6337 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 6338 if (isVarArg) { 6339 assert(HasParameterArea && 6340 "Parameter area must exist if we have a varargs call."); 6341 // We could elide this store in the case where the object fits 6342 // entirely in R registers. Maybe later. 6343 SDValue Store = 6344 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6345 MemOpChains.push_back(Store); 6346 if (QFPR_idx != NumQFPRs) { 6347 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 6348 PtrOff, MachinePointerInfo()); 6349 MemOpChains.push_back(Load.getValue(1)); 6350 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 6351 } 6352 ArgOffset += (IsF32 ? 16 : 32); 6353 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 6354 if (GPR_idx == NumGPRs) 6355 break; 6356 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6357 DAG.getConstant(i, dl, PtrVT)); 6358 SDValue Load = 6359 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6360 MemOpChains.push_back(Load.getValue(1)); 6361 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6362 } 6363 break; 6364 } 6365 6366 // Non-varargs QPX params go into registers or on the stack. 6367 if (QFPR_idx != NumQFPRs) { 6368 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6369 } else { 6370 if (CallConv == CallingConv::Fast) 6371 ComputePtrOff(); 6372 6373 assert(HasParameterArea && 6374 "Parameter area must exist to pass an argument in memory."); 6375 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6376 true, isTailCall, true, MemOpChains, 6377 TailCallArguments, dl); 6378 if (CallConv == CallingConv::Fast) 6379 ArgOffset += (IsF32 ? 16 : 32); 6380 } 6381 6382 if (CallConv != CallingConv::Fast) 6383 ArgOffset += (IsF32 ? 16 : 32); 6384 break; 6385 } 6386 } 6387 } 6388 6389 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6390 "mismatch in size of parameter area"); 6391 (void)NumBytesActuallyUsed; 6392 6393 if (!MemOpChains.empty()) 6394 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6395 6396 // Check if this is an indirect call (MTCTR/BCTRL). 6397 // See prepareDescriptorIndirectCall and buildCallOperands for more 6398 // information about calls through function pointers in the 64-bit SVR4 ABI. 6399 if (!isTailCall && !isPatchPoint && 6400 !isFunctionGlobalAddress(Callee) && 6401 !isa<ExternalSymbolSDNode>(Callee)) { 6402 // Load r2 into a virtual register and store it to the TOC save area. 6403 setUsesTOCBasePtr(DAG); 6404 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6405 // TOC save area offset. 6406 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6407 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6408 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6409 Chain = DAG.getStore( 6410 Val.getValue(1), dl, Val, AddPtr, 6411 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 6412 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6413 // This does not mean the MTCTR instruction must use R12; it's easier 6414 // to model this as an extra parameter, so do that. 6415 if (isELFv2ABI && !isPatchPoint) 6416 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6417 } 6418 6419 // Build a sequence of copy-to-reg nodes chained together with token chain 6420 // and flag operands which copy the outgoing args into the appropriate regs. 6421 SDValue InFlag; 6422 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6423 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6424 RegsToPass[i].second, InFlag); 6425 InFlag = Chain.getValue(1); 6426 } 6427 6428 if (isTailCall && !IsSibCall) 6429 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6430 TailCallArguments); 6431 6432 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest, 6433 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 6434 SPDiff, NumBytes, Ins, InVals, CS); 6435 } 6436 6437 SDValue PPCTargetLowering::LowerCall_Darwin( 6438 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 6439 bool isTailCall, bool isPatchPoint, 6440 const SmallVectorImpl<ISD::OutputArg> &Outs, 6441 const SmallVectorImpl<SDValue> &OutVals, 6442 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6443 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6444 ImmutableCallSite CS) const { 6445 unsigned NumOps = Outs.size(); 6446 6447 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6448 bool isPPC64 = PtrVT == MVT::i64; 6449 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6450 6451 MachineFunction &MF = DAG.getMachineFunction(); 6452 6453 // Mark this function as potentially containing a function that contains a 6454 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6455 // and restoring the callers stack pointer in this functions epilog. This is 6456 // done because by tail calling the called function might overwrite the value 6457 // in this function's (MF) stack pointer stack slot 0(SP). 6458 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6459 CallConv == CallingConv::Fast) 6460 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6461 6462 // Count how many bytes are to be pushed on the stack, including the linkage 6463 // area, and parameter passing area. We start with 24/48 bytes, which is 6464 // prereserved space for [SP][CR][LR][3 x unused]. 6465 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6466 unsigned NumBytes = LinkageSize; 6467 6468 // Add up all the space actually used. 6469 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6470 // they all go in registers, but we must reserve stack space for them for 6471 // possible use by the caller. In varargs or 64-bit calls, parameters are 6472 // assigned stack space in order, with padding so Altivec parameters are 6473 // 16-byte aligned. 6474 unsigned nAltivecParamsAtEnd = 0; 6475 for (unsigned i = 0; i != NumOps; ++i) { 6476 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6477 EVT ArgVT = Outs[i].VT; 6478 // Varargs Altivec parameters are padded to a 16 byte boundary. 6479 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6480 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6481 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6482 if (!isVarArg && !isPPC64) { 6483 // Non-varargs Altivec parameters go after all the non-Altivec 6484 // parameters; handle those later so we know how much padding we need. 6485 nAltivecParamsAtEnd++; 6486 continue; 6487 } 6488 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6489 NumBytes = ((NumBytes+15)/16)*16; 6490 } 6491 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6492 } 6493 6494 // Allow for Altivec parameters at the end, if needed. 6495 if (nAltivecParamsAtEnd) { 6496 NumBytes = ((NumBytes+15)/16)*16; 6497 NumBytes += 16*nAltivecParamsAtEnd; 6498 } 6499 6500 // The prolog code of the callee may store up to 8 GPR argument registers to 6501 // the stack, allowing va_start to index over them in memory if its varargs. 6502 // Because we cannot tell if this is needed on the caller side, we have to 6503 // conservatively assume that it is needed. As such, make sure we have at 6504 // least enough stack space for the caller to store the 8 GPRs. 6505 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6506 6507 // Tail call needs the stack to be aligned. 6508 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6509 CallConv == CallingConv::Fast) 6510 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6511 6512 // Calculate by how many bytes the stack has to be adjusted in case of tail 6513 // call optimization. 6514 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 6515 6516 // To protect arguments on the stack from being clobbered in a tail call, 6517 // force all the loads to happen before doing any other lowering. 6518 if (isTailCall) 6519 Chain = DAG.getStackArgumentTokenFactor(Chain); 6520 6521 // Adjust the stack pointer for the new arguments... 6522 // These operations are automatically eliminated by the prolog/epilog pass 6523 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6524 SDValue CallSeqStart = Chain; 6525 6526 // Load the return address and frame pointer so it can be move somewhere else 6527 // later. 6528 SDValue LROp, FPOp; 6529 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6530 6531 // Set up a copy of the stack pointer for use loading and storing any 6532 // arguments that may not fit in the registers available for argument 6533 // passing. 6534 SDValue StackPtr; 6535 if (isPPC64) 6536 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6537 else 6538 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6539 6540 // Figure out which arguments are going to go in registers, and which in 6541 // memory. Also, if this is a vararg function, floating point operations 6542 // must be stored to our stack, and loaded into integer regs as well, if 6543 // any integer regs are available for argument passing. 6544 unsigned ArgOffset = LinkageSize; 6545 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6546 6547 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6548 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6549 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6550 }; 6551 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6552 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6553 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6554 }; 6555 static const MCPhysReg VR[] = { 6556 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6557 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6558 }; 6559 const unsigned NumGPRs = array_lengthof(GPR_32); 6560 const unsigned NumFPRs = 13; 6561 const unsigned NumVRs = array_lengthof(VR); 6562 6563 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6564 6565 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6566 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6567 6568 SmallVector<SDValue, 8> MemOpChains; 6569 for (unsigned i = 0; i != NumOps; ++i) { 6570 SDValue Arg = OutVals[i]; 6571 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6572 6573 // PtrOff will be used to store the current argument to the stack if a 6574 // register cannot be found for it. 6575 SDValue PtrOff; 6576 6577 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6578 6579 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6580 6581 // On PPC64, promote integers to 64-bit values. 6582 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6583 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6584 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6585 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6586 } 6587 6588 // FIXME memcpy is used way more than necessary. Correctness first. 6589 // Note: "by value" is code for passing a structure by value, not 6590 // basic types. 6591 if (Flags.isByVal()) { 6592 unsigned Size = Flags.getByValSize(); 6593 // Very small objects are passed right-justified. Everything else is 6594 // passed left-justified. 6595 if (Size==1 || Size==2) { 6596 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6597 if (GPR_idx != NumGPRs) { 6598 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6599 MachinePointerInfo(), VT); 6600 MemOpChains.push_back(Load.getValue(1)); 6601 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6602 6603 ArgOffset += PtrByteSize; 6604 } else { 6605 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6606 PtrOff.getValueType()); 6607 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6608 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6609 CallSeqStart, 6610 Flags, DAG, dl); 6611 ArgOffset += PtrByteSize; 6612 } 6613 continue; 6614 } 6615 // Copy entire object into memory. There are cases where gcc-generated 6616 // code assumes it is there, even if it could be put entirely into 6617 // registers. (This is not what the doc says.) 6618 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6619 CallSeqStart, 6620 Flags, DAG, dl); 6621 6622 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6623 // copy the pieces of the object that fit into registers from the 6624 // parameter save area. 6625 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6626 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6627 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6628 if (GPR_idx != NumGPRs) { 6629 SDValue Load = 6630 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6631 MemOpChains.push_back(Load.getValue(1)); 6632 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6633 ArgOffset += PtrByteSize; 6634 } else { 6635 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6636 break; 6637 } 6638 } 6639 continue; 6640 } 6641 6642 switch (Arg.getSimpleValueType().SimpleTy) { 6643 default: llvm_unreachable("Unexpected ValueType for argument!"); 6644 case MVT::i1: 6645 case MVT::i32: 6646 case MVT::i64: 6647 if (GPR_idx != NumGPRs) { 6648 if (Arg.getValueType() == MVT::i1) 6649 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6650 6651 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6652 } else { 6653 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6654 isPPC64, isTailCall, false, MemOpChains, 6655 TailCallArguments, dl); 6656 } 6657 ArgOffset += PtrByteSize; 6658 break; 6659 case MVT::f32: 6660 case MVT::f64: 6661 if (FPR_idx != NumFPRs) { 6662 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6663 6664 if (isVarArg) { 6665 SDValue Store = 6666 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6667 MemOpChains.push_back(Store); 6668 6669 // Float varargs are always shadowed in available integer registers 6670 if (GPR_idx != NumGPRs) { 6671 SDValue Load = 6672 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6673 MemOpChains.push_back(Load.getValue(1)); 6674 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6675 } 6676 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6677 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6678 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6679 SDValue Load = 6680 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6681 MemOpChains.push_back(Load.getValue(1)); 6682 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6683 } 6684 } else { 6685 // If we have any FPRs remaining, we may also have GPRs remaining. 6686 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6687 // GPRs. 6688 if (GPR_idx != NumGPRs) 6689 ++GPR_idx; 6690 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6691 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6692 ++GPR_idx; 6693 } 6694 } else 6695 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6696 isPPC64, isTailCall, false, MemOpChains, 6697 TailCallArguments, dl); 6698 if (isPPC64) 6699 ArgOffset += 8; 6700 else 6701 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6702 break; 6703 case MVT::v4f32: 6704 case MVT::v4i32: 6705 case MVT::v8i16: 6706 case MVT::v16i8: 6707 if (isVarArg) { 6708 // These go aligned on the stack, or in the corresponding R registers 6709 // when within range. The Darwin PPC ABI doc claims they also go in 6710 // V registers; in fact gcc does this only for arguments that are 6711 // prototyped, not for those that match the ... We do it for all 6712 // arguments, seems to work. 6713 while (ArgOffset % 16 !=0) { 6714 ArgOffset += PtrByteSize; 6715 if (GPR_idx != NumGPRs) 6716 GPR_idx++; 6717 } 6718 // We could elide this store in the case where the object fits 6719 // entirely in R registers. Maybe later. 6720 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6721 DAG.getConstant(ArgOffset, dl, PtrVT)); 6722 SDValue Store = 6723 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6724 MemOpChains.push_back(Store); 6725 if (VR_idx != NumVRs) { 6726 SDValue Load = 6727 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6728 MemOpChains.push_back(Load.getValue(1)); 6729 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6730 } 6731 ArgOffset += 16; 6732 for (unsigned i=0; i<16; i+=PtrByteSize) { 6733 if (GPR_idx == NumGPRs) 6734 break; 6735 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6736 DAG.getConstant(i, dl, PtrVT)); 6737 SDValue Load = 6738 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6739 MemOpChains.push_back(Load.getValue(1)); 6740 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6741 } 6742 break; 6743 } 6744 6745 // Non-varargs Altivec params generally go in registers, but have 6746 // stack space allocated at the end. 6747 if (VR_idx != NumVRs) { 6748 // Doesn't have GPR space allocated. 6749 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6750 } else if (nAltivecParamsAtEnd==0) { 6751 // We are emitting Altivec params in order. 6752 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6753 isPPC64, isTailCall, true, MemOpChains, 6754 TailCallArguments, dl); 6755 ArgOffset += 16; 6756 } 6757 break; 6758 } 6759 } 6760 // If all Altivec parameters fit in registers, as they usually do, 6761 // they get stack space following the non-Altivec parameters. We 6762 // don't track this here because nobody below needs it. 6763 // If there are more Altivec parameters than fit in registers emit 6764 // the stores here. 6765 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 6766 unsigned j = 0; 6767 // Offset is aligned; skip 1st 12 params which go in V registers. 6768 ArgOffset = ((ArgOffset+15)/16)*16; 6769 ArgOffset += 12*16; 6770 for (unsigned i = 0; i != NumOps; ++i) { 6771 SDValue Arg = OutVals[i]; 6772 EVT ArgType = Outs[i].VT; 6773 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6774 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6775 if (++j > NumVRs) { 6776 SDValue PtrOff; 6777 // We are emitting Altivec params in order. 6778 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6779 isPPC64, isTailCall, true, MemOpChains, 6780 TailCallArguments, dl); 6781 ArgOffset += 16; 6782 } 6783 } 6784 } 6785 } 6786 6787 if (!MemOpChains.empty()) 6788 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6789 6790 // On Darwin, R12 must contain the address of an indirect callee. This does 6791 // not mean the MTCTR instruction must use R12; it's easier to model this as 6792 // an extra parameter, so do that. 6793 if (!isTailCall && 6794 !isFunctionGlobalAddress(Callee) && 6795 !isa<ExternalSymbolSDNode>(Callee) && 6796 !isBLACompatibleAddress(Callee, DAG)) 6797 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6798 PPC::R12), Callee)); 6799 6800 // Build a sequence of copy-to-reg nodes chained together with token chain 6801 // and flag operands which copy the outgoing args into the appropriate regs. 6802 SDValue InFlag; 6803 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6804 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6805 RegsToPass[i].second, InFlag); 6806 InFlag = Chain.getValue(1); 6807 } 6808 6809 if (isTailCall) 6810 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6811 TailCallArguments); 6812 6813 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6814 /* unused except on PPC64 ELFv1 */ false, DAG, 6815 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6816 NumBytes, Ins, InVals, CS); 6817 } 6818 6819 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6820 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6821 CCState &State) { 6822 6823 if (ValVT == MVT::f128) 6824 report_fatal_error("f128 is unimplemented on AIX."); 6825 6826 if (ArgFlags.isByVal()) 6827 report_fatal_error("Passing structure by value is unimplemented."); 6828 6829 if (ArgFlags.isNest()) 6830 report_fatal_error("Nest arguments are unimplemented."); 6831 6832 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6833 State.getMachineFunction().getSubtarget()); 6834 const bool IsPPC64 = Subtarget.isPPC64(); 6835 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6836 6837 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6838 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6839 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6840 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6841 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6842 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6843 6844 // Arguments always reserve parameter save area. 6845 switch (ValVT.SimpleTy) { 6846 default: 6847 report_fatal_error("Unhandled value type for argument."); 6848 case MVT::i64: 6849 // i64 arguments should have been split to i32 for PPC32. 6850 assert(IsPPC64 && "PPC32 should have split i64 values."); 6851 LLVM_FALLTHROUGH; 6852 case MVT::i1: 6853 case MVT::i32: 6854 State.AllocateStack(PtrByteSize, PtrByteSize); 6855 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6856 MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6857 // Promote integers if needed. 6858 if (ValVT.getSizeInBits() < RegVT.getSizeInBits()) 6859 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6860 : CCValAssign::LocInfo::ZExt; 6861 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6862 } 6863 else 6864 report_fatal_error("Handling of placing parameters on the stack is " 6865 "unimplemented!"); 6866 return false; 6867 6868 case MVT::f32: 6869 case MVT::f64: { 6870 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6871 const unsigned StoreSize = LocVT.getStoreSize(); 6872 // Floats are always 4-byte aligned in the PSA on AIX. 6873 // This includes f64 in 64-bit mode for ABI compatibility. 6874 State.AllocateStack(IsPPC64 ? 8 : StoreSize, 4); 6875 if (unsigned Reg = State.AllocateReg(FPR)) 6876 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, MVT::f64, LocInfo)); 6877 else 6878 report_fatal_error("Handling of placing parameters on the stack is " 6879 "unimplemented!"); 6880 6881 // f32 reserves 1 GPR in both PPC32 and PPC64. 6882 // f64 reserves 2 GPRs in PPC32 and 1 GPR in PPC64. 6883 for (unsigned i = 0; i < StoreSize; i += PtrByteSize) 6884 State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32); 6885 return false; 6886 } 6887 } 6888 } 6889 6890 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6891 bool IsPPC64) { 6892 assert((IsPPC64 || SVT != MVT::i64) && 6893 "i64 should have been split for 32-bit codegen."); 6894 6895 switch (SVT) { 6896 default: 6897 report_fatal_error("Unexpected value type for formal argument"); 6898 case MVT::i1: 6899 case MVT::i32: 6900 case MVT::i64: 6901 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6902 case MVT::f32: 6903 return &PPC::F4RCRegClass; 6904 case MVT::f64: 6905 return &PPC::F8RCRegClass; 6906 } 6907 } 6908 6909 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6910 SelectionDAG &DAG, SDValue ArgValue, 6911 MVT LocVT, const SDLoc &dl) { 6912 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6913 assert(ValVT.getSizeInBits() < LocVT.getSizeInBits()); 6914 6915 if (Flags.isSExt()) 6916 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6917 DAG.getValueType(ValVT)); 6918 else if (Flags.isZExt()) 6919 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6920 DAG.getValueType(ValVT)); 6921 6922 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6923 } 6924 6925 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 6926 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 6927 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6928 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 6929 6930 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 6931 CallConv == CallingConv::Fast) && 6932 "Unexpected calling convention!"); 6933 6934 if (isVarArg) 6935 report_fatal_error("This call type is unimplemented on AIX."); 6936 6937 if (getTargetMachine().Options.GuaranteedTailCallOpt) 6938 report_fatal_error("Tail call support is unimplemented on AIX."); 6939 6940 if (useSoftFloat()) 6941 report_fatal_error("Soft float support is unimplemented on AIX."); 6942 6943 const PPCSubtarget &Subtarget = 6944 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 6945 if (Subtarget.hasQPX()) 6946 report_fatal_error("QPX support is not supported on AIX."); 6947 6948 const bool IsPPC64 = Subtarget.isPPC64(); 6949 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6950 6951 // Assign locations to all of the incoming arguments. 6952 SmallVector<CCValAssign, 16> ArgLocs; 6953 MachineFunction &MF = DAG.getMachineFunction(); 6954 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 6955 6956 // Reserve space for the linkage area on the stack. 6957 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6958 // On AIX a minimum of 8 words is saved to the parameter save area. 6959 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 6960 CCInfo.AllocateStack(LinkageSize + MinParameterSaveArea, PtrByteSize); 6961 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 6962 6963 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 6964 CCValAssign &VA = ArgLocs[i]; 6965 SDValue ArgValue; 6966 ISD::ArgFlagsTy Flags = Ins[i].Flags; 6967 if (VA.isRegLoc()) { 6968 EVT ValVT = VA.getValVT(); 6969 MVT LocVT = VA.getLocVT(); 6970 MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy; 6971 unsigned VReg = 6972 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 6973 ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 6974 if (ValVT.isScalarInteger() && 6975 (ValVT.getSizeInBits() < LocVT.getSizeInBits())) { 6976 ArgValue = 6977 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 6978 } 6979 InVals.push_back(ArgValue); 6980 } else { 6981 report_fatal_error("Handling of formal arguments on the stack is " 6982 "unimplemented!"); 6983 } 6984 } 6985 6986 // Area that is at least reserved in the caller of this function. 6987 unsigned MinReservedArea = CCInfo.getNextStackOffset(); 6988 6989 // Set the size that is at least reserved in caller of this function. Tail 6990 // call optimized function's reserved stack space needs to be aligned so 6991 // that taking the difference between two stack areas will result in an 6992 // aligned stack. 6993 MinReservedArea = 6994 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 6995 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 6996 FuncInfo->setMinReservedArea(MinReservedArea); 6997 6998 return Chain; 6999 } 7000 7001 SDValue PPCTargetLowering::LowerCall_AIX( 7002 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 7003 bool isTailCall, bool isPatchPoint, 7004 const SmallVectorImpl<ISD::OutputArg> &Outs, 7005 const SmallVectorImpl<SDValue> &OutVals, 7006 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7007 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7008 ImmutableCallSite CS) const { 7009 7010 assert((CallConv == CallingConv::C || 7011 CallConv == CallingConv::Cold || 7012 CallConv == CallingConv::Fast) && "Unexpected calling convention!"); 7013 7014 if (isVarArg || isPatchPoint) 7015 report_fatal_error("This call type is unimplemented on AIX."); 7016 7017 const PPCSubtarget& Subtarget = 7018 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7019 if (Subtarget.hasQPX()) 7020 report_fatal_error("QPX is not supported on AIX."); 7021 if (Subtarget.hasAltivec()) 7022 report_fatal_error("Altivec support is unimplemented on AIX."); 7023 7024 MachineFunction &MF = DAG.getMachineFunction(); 7025 SmallVector<CCValAssign, 16> ArgLocs; 7026 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 7027 7028 // Reserve space for the linkage save area (LSA) on the stack. 7029 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7030 // [SP][CR][LR][2 x reserved][TOC]. 7031 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7032 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7033 const unsigned PtrByteSize = Subtarget.isPPC64() ? 8 : 4; 7034 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 7035 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7036 7037 // The prolog code of the callee may store up to 8 GPR argument registers to 7038 // the stack, allowing va_start to index over them in memory if the callee 7039 // is variadic. 7040 // Because we cannot tell if this is needed on the caller side, we have to 7041 // conservatively assume that it is needed. As such, make sure we have at 7042 // least enough stack space for the caller to store the 8 GPRs. 7043 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7044 const unsigned NumBytes = LinkageSize + MinParameterSaveAreaSize; 7045 7046 // Adjust the stack pointer for the new arguments... 7047 // These operations are automatically eliminated by the prolog/epilog pass. 7048 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7049 SDValue CallSeqStart = Chain; 7050 7051 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7052 7053 for (CCValAssign &VA : ArgLocs) { 7054 SDValue Arg = OutVals[VA.getValNo()]; 7055 7056 switch (VA.getLocInfo()) { 7057 default: report_fatal_error("Unexpected argument extension type."); 7058 case CCValAssign::Full: break; 7059 case CCValAssign::ZExt: 7060 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7061 break; 7062 case CCValAssign::SExt: 7063 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7064 break; 7065 } 7066 7067 if (VA.isRegLoc()) 7068 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7069 7070 if (VA.isMemLoc()) 7071 report_fatal_error("Handling of placing parameters on the stack is " 7072 "unimplemented!"); 7073 } 7074 7075 // For indirect calls, we need to save the TOC base to the stack for 7076 // restoration after the call. 7077 if (!isTailCall && !isPatchPoint && 7078 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) { 7079 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7080 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7081 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7082 const unsigned TOCSaveOffset = 7083 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7084 7085 setUsesTOCBasePtr(DAG); 7086 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7087 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7088 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7089 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7090 Chain = DAG.getStore( 7091 Val.getValue(1), dl, Val, AddPtr, 7092 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7093 } 7094 7095 // Build a sequence of copy-to-reg nodes chained together with token chain 7096 // and flag operands which copy the outgoing args into the appropriate regs. 7097 SDValue InFlag; 7098 for (auto Reg : RegsToPass) { 7099 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7100 InFlag = Chain.getValue(1); 7101 } 7102 7103 const int SPDiff = 0; 7104 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 7105 /* unused except on PPC64 ELFv1 */ false, DAG, RegsToPass, 7106 InFlag, Chain, CallSeqStart, Callee, SPDiff, NumBytes, Ins, 7107 InVals, CS); 7108 } 7109 7110 bool 7111 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7112 MachineFunction &MF, bool isVarArg, 7113 const SmallVectorImpl<ISD::OutputArg> &Outs, 7114 LLVMContext &Context) const { 7115 SmallVector<CCValAssign, 16> RVLocs; 7116 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7117 return CCInfo.CheckReturn( 7118 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7119 ? RetCC_PPC_Cold 7120 : RetCC_PPC); 7121 } 7122 7123 SDValue 7124 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7125 bool isVarArg, 7126 const SmallVectorImpl<ISD::OutputArg> &Outs, 7127 const SmallVectorImpl<SDValue> &OutVals, 7128 const SDLoc &dl, SelectionDAG &DAG) const { 7129 SmallVector<CCValAssign, 16> RVLocs; 7130 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7131 *DAG.getContext()); 7132 CCInfo.AnalyzeReturn(Outs, 7133 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7134 ? RetCC_PPC_Cold 7135 : RetCC_PPC); 7136 7137 SDValue Flag; 7138 SmallVector<SDValue, 4> RetOps(1, Chain); 7139 7140 // Copy the result values into the output registers. 7141 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7142 CCValAssign &VA = RVLocs[i]; 7143 assert(VA.isRegLoc() && "Can only return in registers!"); 7144 7145 SDValue Arg = OutVals[RealResIdx]; 7146 7147 switch (VA.getLocInfo()) { 7148 default: llvm_unreachable("Unknown loc info!"); 7149 case CCValAssign::Full: break; 7150 case CCValAssign::AExt: 7151 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7152 break; 7153 case CCValAssign::ZExt: 7154 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7155 break; 7156 case CCValAssign::SExt: 7157 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7158 break; 7159 } 7160 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7161 bool isLittleEndian = Subtarget.isLittleEndian(); 7162 // Legalize ret f64 -> ret 2 x i32. 7163 SDValue SVal = 7164 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7165 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7166 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7167 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7168 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7169 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7170 Flag = Chain.getValue(1); 7171 VA = RVLocs[++i]; // skip ahead to next loc 7172 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7173 } else 7174 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7175 Flag = Chain.getValue(1); 7176 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7177 } 7178 7179 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7180 const MCPhysReg *I = 7181 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 7182 if (I) { 7183 for (; *I; ++I) { 7184 7185 if (PPC::G8RCRegClass.contains(*I)) 7186 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 7187 else if (PPC::F8RCRegClass.contains(*I)) 7188 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 7189 else if (PPC::CRRCRegClass.contains(*I)) 7190 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 7191 else if (PPC::VRRCRegClass.contains(*I)) 7192 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 7193 else 7194 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 7195 } 7196 } 7197 7198 RetOps[0] = Chain; // Update chain. 7199 7200 // Add the flag if we have it. 7201 if (Flag.getNode()) 7202 RetOps.push_back(Flag); 7203 7204 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7205 } 7206 7207 SDValue 7208 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7209 SelectionDAG &DAG) const { 7210 SDLoc dl(Op); 7211 7212 // Get the correct type for integers. 7213 EVT IntVT = Op.getValueType(); 7214 7215 // Get the inputs. 7216 SDValue Chain = Op.getOperand(0); 7217 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7218 // Build a DYNAREAOFFSET node. 7219 SDValue Ops[2] = {Chain, FPSIdx}; 7220 SDVTList VTs = DAG.getVTList(IntVT); 7221 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7222 } 7223 7224 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7225 SelectionDAG &DAG) const { 7226 // When we pop the dynamic allocation we need to restore the SP link. 7227 SDLoc dl(Op); 7228 7229 // Get the correct type for pointers. 7230 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7231 7232 // Construct the stack pointer operand. 7233 bool isPPC64 = Subtarget.isPPC64(); 7234 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7235 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7236 7237 // Get the operands for the STACKRESTORE. 7238 SDValue Chain = Op.getOperand(0); 7239 SDValue SaveSP = Op.getOperand(1); 7240 7241 // Load the old link SP. 7242 SDValue LoadLinkSP = 7243 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7244 7245 // Restore the stack pointer. 7246 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7247 7248 // Store the old link SP. 7249 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7250 } 7251 7252 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7253 MachineFunction &MF = DAG.getMachineFunction(); 7254 bool isPPC64 = Subtarget.isPPC64(); 7255 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7256 7257 // Get current frame pointer save index. The users of this index will be 7258 // primarily DYNALLOC instructions. 7259 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7260 int RASI = FI->getReturnAddrSaveIndex(); 7261 7262 // If the frame pointer save index hasn't been defined yet. 7263 if (!RASI) { 7264 // Find out what the fix offset of the frame pointer save area. 7265 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7266 // Allocate the frame index for frame pointer save area. 7267 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7268 // Save the result. 7269 FI->setReturnAddrSaveIndex(RASI); 7270 } 7271 return DAG.getFrameIndex(RASI, PtrVT); 7272 } 7273 7274 SDValue 7275 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7276 MachineFunction &MF = DAG.getMachineFunction(); 7277 bool isPPC64 = Subtarget.isPPC64(); 7278 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7279 7280 // Get current frame pointer save index. The users of this index will be 7281 // primarily DYNALLOC instructions. 7282 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7283 int FPSI = FI->getFramePointerSaveIndex(); 7284 7285 // If the frame pointer save index hasn't been defined yet. 7286 if (!FPSI) { 7287 // Find out what the fix offset of the frame pointer save area. 7288 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7289 // Allocate the frame index for frame pointer save area. 7290 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7291 // Save the result. 7292 FI->setFramePointerSaveIndex(FPSI); 7293 } 7294 return DAG.getFrameIndex(FPSI, PtrVT); 7295 } 7296 7297 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7298 SelectionDAG &DAG) const { 7299 // Get the inputs. 7300 SDValue Chain = Op.getOperand(0); 7301 SDValue Size = Op.getOperand(1); 7302 SDLoc dl(Op); 7303 7304 // Get the correct type for pointers. 7305 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7306 // Negate the size. 7307 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7308 DAG.getConstant(0, dl, PtrVT), Size); 7309 // Construct a node for the frame pointer save index. 7310 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7311 // Build a DYNALLOC node. 7312 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7313 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7314 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7315 } 7316 7317 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7318 SelectionDAG &DAG) const { 7319 MachineFunction &MF = DAG.getMachineFunction(); 7320 7321 bool isPPC64 = Subtarget.isPPC64(); 7322 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7323 7324 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7325 return DAG.getFrameIndex(FI, PtrVT); 7326 } 7327 7328 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7329 SelectionDAG &DAG) const { 7330 SDLoc DL(Op); 7331 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7332 DAG.getVTList(MVT::i32, MVT::Other), 7333 Op.getOperand(0), Op.getOperand(1)); 7334 } 7335 7336 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7337 SelectionDAG &DAG) const { 7338 SDLoc DL(Op); 7339 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7340 Op.getOperand(0), Op.getOperand(1)); 7341 } 7342 7343 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7344 if (Op.getValueType().isVector()) 7345 return LowerVectorLoad(Op, DAG); 7346 7347 assert(Op.getValueType() == MVT::i1 && 7348 "Custom lowering only for i1 loads"); 7349 7350 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7351 7352 SDLoc dl(Op); 7353 LoadSDNode *LD = cast<LoadSDNode>(Op); 7354 7355 SDValue Chain = LD->getChain(); 7356 SDValue BasePtr = LD->getBasePtr(); 7357 MachineMemOperand *MMO = LD->getMemOperand(); 7358 7359 SDValue NewLD = 7360 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7361 BasePtr, MVT::i8, MMO); 7362 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7363 7364 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7365 return DAG.getMergeValues(Ops, dl); 7366 } 7367 7368 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7369 if (Op.getOperand(1).getValueType().isVector()) 7370 return LowerVectorStore(Op, DAG); 7371 7372 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7373 "Custom lowering only for i1 stores"); 7374 7375 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7376 7377 SDLoc dl(Op); 7378 StoreSDNode *ST = cast<StoreSDNode>(Op); 7379 7380 SDValue Chain = ST->getChain(); 7381 SDValue BasePtr = ST->getBasePtr(); 7382 SDValue Value = ST->getValue(); 7383 MachineMemOperand *MMO = ST->getMemOperand(); 7384 7385 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7386 Value); 7387 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7388 } 7389 7390 // FIXME: Remove this once the ANDI glue bug is fixed: 7391 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7392 assert(Op.getValueType() == MVT::i1 && 7393 "Custom lowering only for i1 results"); 7394 7395 SDLoc DL(Op); 7396 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 7397 Op.getOperand(0)); 7398 } 7399 7400 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7401 SelectionDAG &DAG) const { 7402 7403 // Implements a vector truncate that fits in a vector register as a shuffle. 7404 // We want to legalize vector truncates down to where the source fits in 7405 // a vector register (and target is therefore smaller than vector register 7406 // size). At that point legalization will try to custom lower the sub-legal 7407 // result and get here - where we can contain the truncate as a single target 7408 // operation. 7409 7410 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7411 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7412 // 7413 // We will implement it for big-endian ordering as this (where x denotes 7414 // undefined): 7415 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7416 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7417 // 7418 // The same operation in little-endian ordering will be: 7419 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7420 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7421 7422 assert(Op.getValueType().isVector() && "Vector type expected."); 7423 7424 SDLoc DL(Op); 7425 SDValue N1 = Op.getOperand(0); 7426 unsigned SrcSize = N1.getValueType().getSizeInBits(); 7427 assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector"); 7428 SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7429 7430 EVT TrgVT = Op.getValueType(); 7431 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7432 EVT EltVT = TrgVT.getVectorElementType(); 7433 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7434 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7435 7436 // First list the elements we want to keep. 7437 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7438 SmallVector<int, 16> ShuffV; 7439 if (Subtarget.isLittleEndian()) 7440 for (unsigned i = 0; i < TrgNumElts; ++i) 7441 ShuffV.push_back(i * SizeMult); 7442 else 7443 for (unsigned i = 1; i <= TrgNumElts; ++i) 7444 ShuffV.push_back(i * SizeMult - 1); 7445 7446 // Populate the remaining elements with undefs. 7447 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7448 // ShuffV.push_back(i + WideNumElts); 7449 ShuffV.push_back(WideNumElts + 1); 7450 7451 SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc); 7452 return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV); 7453 } 7454 7455 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7456 /// possible. 7457 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7458 // Not FP? Not a fsel. 7459 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 7460 !Op.getOperand(2).getValueType().isFloatingPoint()) 7461 return Op; 7462 7463 bool HasNoInfs = DAG.getTarget().Options.NoInfsFPMath; 7464 bool HasNoNaNs = DAG.getTarget().Options.NoNaNsFPMath; 7465 // We might be able to do better than this under some circumstances, but in 7466 // general, fsel-based lowering of select is a finite-math-only optimization. 7467 // For more information, see section F.3 of the 2.06 ISA specification. 7468 // With ISA 3.0, we have xsmaxcdp/xsmincdp which are OK to emit even in the 7469 // presence of infinities. 7470 if (!Subtarget.hasP9Vector() && (!HasNoInfs || !HasNoNaNs)) 7471 return Op; 7472 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7473 7474 EVT ResVT = Op.getValueType(); 7475 EVT CmpVT = Op.getOperand(0).getValueType(); 7476 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7477 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7478 SDLoc dl(Op); 7479 7480 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7481 switch (CC) { 7482 default: 7483 // Not a min/max but with finite math, we may still be able to use fsel. 7484 if (HasNoInfs && HasNoNaNs) 7485 break; 7486 return Op; 7487 case ISD::SETOGT: 7488 case ISD::SETGT: 7489 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 7490 case ISD::SETOLT: 7491 case ISD::SETLT: 7492 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 7493 } 7494 } 7495 7496 // TODO: Propagate flags from the select rather than global settings. 7497 SDNodeFlags Flags; 7498 Flags.setNoInfs(true); 7499 Flags.setNoNaNs(true); 7500 7501 // If the RHS of the comparison is a 0.0, we don't need to do the 7502 // subtraction at all. 7503 SDValue Sel1; 7504 if (isFloatingPointZero(RHS)) 7505 switch (CC) { 7506 default: break; // SETUO etc aren't handled by fsel. 7507 case ISD::SETNE: 7508 std::swap(TV, FV); 7509 LLVM_FALLTHROUGH; 7510 case ISD::SETEQ: 7511 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7512 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7513 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7514 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7515 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7516 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7517 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7518 case ISD::SETULT: 7519 case ISD::SETLT: 7520 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7521 LLVM_FALLTHROUGH; 7522 case ISD::SETOGE: 7523 case ISD::SETGE: 7524 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7525 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7526 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7527 case ISD::SETUGT: 7528 case ISD::SETGT: 7529 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7530 LLVM_FALLTHROUGH; 7531 case ISD::SETOLE: 7532 case ISD::SETLE: 7533 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7534 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7535 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7536 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7537 } 7538 7539 SDValue Cmp; 7540 switch (CC) { 7541 default: break; // SETUO etc aren't handled by fsel. 7542 case ISD::SETNE: 7543 std::swap(TV, FV); 7544 LLVM_FALLTHROUGH; 7545 case ISD::SETEQ: 7546 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7547 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7548 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7549 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7550 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7551 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7552 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7553 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7554 case ISD::SETULT: 7555 case ISD::SETLT: 7556 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7557 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7558 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7559 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7560 case ISD::SETOGE: 7561 case ISD::SETGE: 7562 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7563 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7564 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7565 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7566 case ISD::SETUGT: 7567 case ISD::SETGT: 7568 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7569 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7570 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7571 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7572 case ISD::SETOLE: 7573 case ISD::SETLE: 7574 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7575 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7576 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7577 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7578 } 7579 return Op; 7580 } 7581 7582 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 7583 SelectionDAG &DAG, 7584 const SDLoc &dl) const { 7585 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7586 SDValue Src = Op.getOperand(0); 7587 if (Src.getValueType() == MVT::f32) 7588 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7589 7590 SDValue Tmp; 7591 switch (Op.getSimpleValueType().SimpleTy) { 7592 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7593 case MVT::i32: 7594 Tmp = DAG.getNode( 7595 Op.getOpcode() == ISD::FP_TO_SINT 7596 ? PPCISD::FCTIWZ 7597 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7598 dl, MVT::f64, Src); 7599 break; 7600 case MVT::i64: 7601 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7602 "i64 FP_TO_UINT is supported only with FPCVT"); 7603 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7604 PPCISD::FCTIDUZ, 7605 dl, MVT::f64, Src); 7606 break; 7607 } 7608 7609 // Convert the FP value to an int value through memory. 7610 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 7611 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 7612 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 7613 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 7614 MachinePointerInfo MPI = 7615 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 7616 7617 // Emit a store to the stack slot. 7618 SDValue Chain; 7619 if (i32Stack) { 7620 MachineFunction &MF = DAG.getMachineFunction(); 7621 MachineMemOperand *MMO = 7622 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 7623 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 7624 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 7625 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 7626 } else 7627 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI); 7628 7629 // Result is a load from the stack slot. If loading 4 bytes, make sure to 7630 // add in a bias on big endian. 7631 if (Op.getValueType() == MVT::i32 && !i32Stack) { 7632 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 7633 DAG.getConstant(4, dl, FIPtr.getValueType())); 7634 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 7635 } 7636 7637 RLI.Chain = Chain; 7638 RLI.Ptr = FIPtr; 7639 RLI.MPI = MPI; 7640 } 7641 7642 /// Custom lowers floating point to integer conversions to use 7643 /// the direct move instructions available in ISA 2.07 to avoid the 7644 /// need for load/store combinations. 7645 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 7646 SelectionDAG &DAG, 7647 const SDLoc &dl) const { 7648 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7649 SDValue Src = Op.getOperand(0); 7650 7651 if (Src.getValueType() == MVT::f32) 7652 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7653 7654 SDValue Tmp; 7655 switch (Op.getSimpleValueType().SimpleTy) { 7656 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7657 case MVT::i32: 7658 Tmp = DAG.getNode( 7659 Op.getOpcode() == ISD::FP_TO_SINT 7660 ? PPCISD::FCTIWZ 7661 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7662 dl, MVT::f64, Src); 7663 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 7664 break; 7665 case MVT::i64: 7666 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7667 "i64 FP_TO_UINT is supported only with FPCVT"); 7668 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7669 PPCISD::FCTIDUZ, 7670 dl, MVT::f64, Src); 7671 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 7672 break; 7673 } 7674 return Tmp; 7675 } 7676 7677 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 7678 const SDLoc &dl) const { 7679 7680 // FP to INT conversions are legal for f128. 7681 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128)) 7682 return Op; 7683 7684 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 7685 // PPC (the libcall is not available). 7686 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 7687 if (Op.getValueType() == MVT::i32) { 7688 if (Op.getOpcode() == ISD::FP_TO_SINT) { 7689 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7690 MVT::f64, Op.getOperand(0), 7691 DAG.getIntPtrConstant(0, dl)); 7692 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7693 MVT::f64, Op.getOperand(0), 7694 DAG.getIntPtrConstant(1, dl)); 7695 7696 // Add the two halves of the long double in round-to-zero mode. 7697 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 7698 7699 // Now use a smaller FP_TO_SINT. 7700 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 7701 } 7702 if (Op.getOpcode() == ISD::FP_TO_UINT) { 7703 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 7704 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 7705 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 7706 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 7707 // FIXME: generated code sucks. 7708 // TODO: Are there fast-math-flags to propagate to this FSUB? 7709 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 7710 Op.getOperand(0), Tmp); 7711 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 7712 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 7713 DAG.getConstant(0x80000000, dl, MVT::i32)); 7714 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 7715 Op.getOperand(0)); 7716 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 7717 ISD::SETGE); 7718 } 7719 } 7720 7721 return SDValue(); 7722 } 7723 7724 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 7725 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 7726 7727 ReuseLoadInfo RLI; 7728 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7729 7730 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7731 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7732 } 7733 7734 // We're trying to insert a regular store, S, and then a load, L. If the 7735 // incoming value, O, is a load, we might just be able to have our load use the 7736 // address used by O. However, we don't know if anything else will store to 7737 // that address before we can load from it. To prevent this situation, we need 7738 // to insert our load, L, into the chain as a peer of O. To do this, we give L 7739 // the same chain operand as O, we create a token factor from the chain results 7740 // of O and L, and we replace all uses of O's chain result with that token 7741 // factor (see spliceIntoChain below for this last part). 7742 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 7743 ReuseLoadInfo &RLI, 7744 SelectionDAG &DAG, 7745 ISD::LoadExtType ET) const { 7746 SDLoc dl(Op); 7747 if (ET == ISD::NON_EXTLOAD && 7748 (Op.getOpcode() == ISD::FP_TO_UINT || 7749 Op.getOpcode() == ISD::FP_TO_SINT) && 7750 isOperationLegalOrCustom(Op.getOpcode(), 7751 Op.getOperand(0).getValueType())) { 7752 7753 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7754 return true; 7755 } 7756 7757 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 7758 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 7759 LD->isNonTemporal()) 7760 return false; 7761 if (LD->getMemoryVT() != MemVT) 7762 return false; 7763 7764 RLI.Ptr = LD->getBasePtr(); 7765 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 7766 assert(LD->getAddressingMode() == ISD::PRE_INC && 7767 "Non-pre-inc AM on PPC?"); 7768 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 7769 LD->getOffset()); 7770 } 7771 7772 RLI.Chain = LD->getChain(); 7773 RLI.MPI = LD->getPointerInfo(); 7774 RLI.IsDereferenceable = LD->isDereferenceable(); 7775 RLI.IsInvariant = LD->isInvariant(); 7776 RLI.Alignment = LD->getAlignment(); 7777 RLI.AAInfo = LD->getAAInfo(); 7778 RLI.Ranges = LD->getRanges(); 7779 7780 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 7781 return true; 7782 } 7783 7784 // Given the head of the old chain, ResChain, insert a token factor containing 7785 // it and NewResChain, and make users of ResChain now be users of that token 7786 // factor. 7787 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 7788 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 7789 SDValue NewResChain, 7790 SelectionDAG &DAG) const { 7791 if (!ResChain) 7792 return; 7793 7794 SDLoc dl(NewResChain); 7795 7796 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 7797 NewResChain, DAG.getUNDEF(MVT::Other)); 7798 assert(TF.getNode() != NewResChain.getNode() && 7799 "A new TF really is required here"); 7800 7801 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 7802 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 7803 } 7804 7805 /// Analyze profitability of direct move 7806 /// prefer float load to int load plus direct move 7807 /// when there is no integer use of int load 7808 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 7809 SDNode *Origin = Op.getOperand(0).getNode(); 7810 if (Origin->getOpcode() != ISD::LOAD) 7811 return true; 7812 7813 // If there is no LXSIBZX/LXSIHZX, like Power8, 7814 // prefer direct move if the memory size is 1 or 2 bytes. 7815 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 7816 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 7817 return true; 7818 7819 for (SDNode::use_iterator UI = Origin->use_begin(), 7820 UE = Origin->use_end(); 7821 UI != UE; ++UI) { 7822 7823 // Only look at the users of the loaded value. 7824 if (UI.getUse().get().getResNo() != 0) 7825 continue; 7826 7827 if (UI->getOpcode() != ISD::SINT_TO_FP && 7828 UI->getOpcode() != ISD::UINT_TO_FP) 7829 return true; 7830 } 7831 7832 return false; 7833 } 7834 7835 /// Custom lowers integer to floating point conversions to use 7836 /// the direct move instructions available in ISA 2.07 to avoid the 7837 /// need for load/store combinations. 7838 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 7839 SelectionDAG &DAG, 7840 const SDLoc &dl) const { 7841 assert((Op.getValueType() == MVT::f32 || 7842 Op.getValueType() == MVT::f64) && 7843 "Invalid floating point type as target of conversion"); 7844 assert(Subtarget.hasFPCVT() && 7845 "Int to FP conversions with direct moves require FPCVT"); 7846 SDValue FP; 7847 SDValue Src = Op.getOperand(0); 7848 bool SinglePrec = Op.getValueType() == MVT::f32; 7849 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 7850 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 7851 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 7852 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 7853 7854 if (WordInt) { 7855 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 7856 dl, MVT::f64, Src); 7857 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7858 } 7859 else { 7860 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 7861 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7862 } 7863 7864 return FP; 7865 } 7866 7867 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 7868 7869 EVT VecVT = Vec.getValueType(); 7870 assert(VecVT.isVector() && "Expected a vector type."); 7871 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 7872 7873 EVT EltVT = VecVT.getVectorElementType(); 7874 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7875 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7876 7877 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 7878 SmallVector<SDValue, 16> Ops(NumConcat); 7879 Ops[0] = Vec; 7880 SDValue UndefVec = DAG.getUNDEF(VecVT); 7881 for (unsigned i = 1; i < NumConcat; ++i) 7882 Ops[i] = UndefVec; 7883 7884 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 7885 } 7886 7887 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 7888 const SDLoc &dl) const { 7889 7890 unsigned Opc = Op.getOpcode(); 7891 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) && 7892 "Unexpected conversion type"); 7893 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 7894 "Supports conversions to v2f64/v4f32 only."); 7895 7896 bool SignedConv = Opc == ISD::SINT_TO_FP; 7897 bool FourEltRes = Op.getValueType() == MVT::v4f32; 7898 7899 SDValue Wide = widenVec(DAG, Op.getOperand(0), dl); 7900 EVT WideVT = Wide.getValueType(); 7901 unsigned WideNumElts = WideVT.getVectorNumElements(); 7902 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 7903 7904 SmallVector<int, 16> ShuffV; 7905 for (unsigned i = 0; i < WideNumElts; ++i) 7906 ShuffV.push_back(i + WideNumElts); 7907 7908 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 7909 int SaveElts = FourEltRes ? 4 : 2; 7910 if (Subtarget.isLittleEndian()) 7911 for (int i = 0; i < SaveElts; i++) 7912 ShuffV[i * Stride] = i; 7913 else 7914 for (int i = 1; i <= SaveElts; i++) 7915 ShuffV[i * Stride - 1] = i - 1; 7916 7917 SDValue ShuffleSrc2 = 7918 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 7919 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 7920 unsigned ExtendOp = 7921 SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST; 7922 7923 SDValue Extend; 7924 if (!Subtarget.hasP9Altivec() && SignedConv) { 7925 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 7926 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 7927 DAG.getValueType(Op.getOperand(0).getValueType())); 7928 } else 7929 Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange); 7930 7931 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 7932 } 7933 7934 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 7935 SelectionDAG &DAG) const { 7936 SDLoc dl(Op); 7937 7938 EVT InVT = Op.getOperand(0).getValueType(); 7939 EVT OutVT = Op.getValueType(); 7940 if (OutVT.isVector() && OutVT.isFloatingPoint() && 7941 isOperationCustom(Op.getOpcode(), InVT)) 7942 return LowerINT_TO_FPVector(Op, DAG, dl); 7943 7944 // Conversions to f128 are legal. 7945 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128)) 7946 return Op; 7947 7948 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 7949 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 7950 return SDValue(); 7951 7952 SDValue Value = Op.getOperand(0); 7953 // The values are now known to be -1 (false) or 1 (true). To convert this 7954 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7955 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7956 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7957 7958 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 7959 7960 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7961 7962 if (Op.getValueType() != MVT::v4f64) 7963 Value = DAG.getNode(ISD::FP_ROUND, dl, 7964 Op.getValueType(), Value, 7965 DAG.getIntPtrConstant(1, dl)); 7966 return Value; 7967 } 7968 7969 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 7970 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 7971 return SDValue(); 7972 7973 if (Op.getOperand(0).getValueType() == MVT::i1) 7974 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 7975 DAG.getConstantFP(1.0, dl, Op.getValueType()), 7976 DAG.getConstantFP(0.0, dl, Op.getValueType())); 7977 7978 // If we have direct moves, we can do all the conversion, skip the store/load 7979 // however, without FPCVT we can't do most conversions. 7980 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 7981 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 7982 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 7983 7984 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 7985 "UINT_TO_FP is supported only with FPCVT"); 7986 7987 // If we have FCFIDS, then use it when converting to single-precision. 7988 // Otherwise, convert to double-precision and then round. 7989 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7990 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 7991 : PPCISD::FCFIDS) 7992 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 7993 : PPCISD::FCFID); 7994 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7995 ? MVT::f32 7996 : MVT::f64; 7997 7998 if (Op.getOperand(0).getValueType() == MVT::i64) { 7999 SDValue SINT = Op.getOperand(0); 8000 // When converting to single-precision, we actually need to convert 8001 // to double-precision first and then round to single-precision. 8002 // To avoid double-rounding effects during that operation, we have 8003 // to prepare the input operand. Bits that might be truncated when 8004 // converting to double-precision are replaced by a bit that won't 8005 // be lost at this stage, but is below the single-precision rounding 8006 // position. 8007 // 8008 // However, if -enable-unsafe-fp-math is in effect, accept double 8009 // rounding to avoid the extra overhead. 8010 if (Op.getValueType() == MVT::f32 && 8011 !Subtarget.hasFPCVT() && 8012 !DAG.getTarget().Options.UnsafeFPMath) { 8013 8014 // Twiddle input to make sure the low 11 bits are zero. (If this 8015 // is the case, we are guaranteed the value will fit into the 53 bit 8016 // mantissa of an IEEE double-precision value without rounding.) 8017 // If any of those low 11 bits were not zero originally, make sure 8018 // bit 12 (value 2048) is set instead, so that the final rounding 8019 // to single-precision gets the correct result. 8020 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8021 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8022 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8023 Round, DAG.getConstant(2047, dl, MVT::i64)); 8024 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8025 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8026 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8027 8028 // However, we cannot use that value unconditionally: if the magnitude 8029 // of the input value is small, the bit-twiddling we did above might 8030 // end up visibly changing the output. Fortunately, in that case, we 8031 // don't need to twiddle bits since the original input will convert 8032 // exactly to double-precision floating-point already. Therefore, 8033 // construct a conditional to use the original value if the top 11 8034 // bits are all sign-bit copies, and use the rounded value computed 8035 // above otherwise. 8036 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8037 SINT, DAG.getConstant(53, dl, MVT::i32)); 8038 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8039 Cond, DAG.getConstant(1, dl, MVT::i64)); 8040 Cond = DAG.getSetCC(dl, MVT::i32, 8041 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8042 8043 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8044 } 8045 8046 ReuseLoadInfo RLI; 8047 SDValue Bits; 8048 8049 MachineFunction &MF = DAG.getMachineFunction(); 8050 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8051 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8052 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8053 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8054 } else if (Subtarget.hasLFIWAX() && 8055 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8056 MachineMemOperand *MMO = 8057 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8058 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8059 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8060 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8061 DAG.getVTList(MVT::f64, MVT::Other), 8062 Ops, MVT::i32, MMO); 8063 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8064 } else if (Subtarget.hasFPCVT() && 8065 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8066 MachineMemOperand *MMO = 8067 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8068 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8069 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8070 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8071 DAG.getVTList(MVT::f64, MVT::Other), 8072 Ops, MVT::i32, MMO); 8073 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8074 } else if (((Subtarget.hasLFIWAX() && 8075 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8076 (Subtarget.hasFPCVT() && 8077 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8078 SINT.getOperand(0).getValueType() == MVT::i32) { 8079 MachineFrameInfo &MFI = MF.getFrameInfo(); 8080 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8081 8082 int FrameIdx = MFI.CreateStackObject(4, 4, false); 8083 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8084 8085 SDValue Store = 8086 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 8087 MachinePointerInfo::getFixedStack( 8088 DAG.getMachineFunction(), FrameIdx)); 8089 8090 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8091 "Expected an i32 store"); 8092 8093 RLI.Ptr = FIdx; 8094 RLI.Chain = Store; 8095 RLI.MPI = 8096 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8097 RLI.Alignment = 4; 8098 8099 MachineMemOperand *MMO = 8100 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8101 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8102 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8103 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8104 PPCISD::LFIWZX : PPCISD::LFIWAX, 8105 dl, DAG.getVTList(MVT::f64, MVT::Other), 8106 Ops, MVT::i32, MMO); 8107 } else 8108 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8109 8110 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 8111 8112 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8113 FP = DAG.getNode(ISD::FP_ROUND, dl, 8114 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 8115 return FP; 8116 } 8117 8118 assert(Op.getOperand(0).getValueType() == MVT::i32 && 8119 "Unhandled INT_TO_FP type in custom expander!"); 8120 // Since we only generate this in 64-bit mode, we can take advantage of 8121 // 64-bit registers. In particular, sign extend the input value into the 8122 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8123 // then lfd it and fcfid it. 8124 MachineFunction &MF = DAG.getMachineFunction(); 8125 MachineFrameInfo &MFI = MF.getFrameInfo(); 8126 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8127 8128 SDValue Ld; 8129 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8130 ReuseLoadInfo RLI; 8131 bool ReusingLoad; 8132 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 8133 DAG))) { 8134 int FrameIdx = MFI.CreateStackObject(4, 4, false); 8135 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8136 8137 SDValue Store = 8138 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 8139 MachinePointerInfo::getFixedStack( 8140 DAG.getMachineFunction(), FrameIdx)); 8141 8142 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8143 "Expected an i32 store"); 8144 8145 RLI.Ptr = FIdx; 8146 RLI.Chain = Store; 8147 RLI.MPI = 8148 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8149 RLI.Alignment = 4; 8150 } 8151 8152 MachineMemOperand *MMO = 8153 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8154 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8155 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8156 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 8157 PPCISD::LFIWZX : PPCISD::LFIWAX, 8158 dl, DAG.getVTList(MVT::f64, MVT::Other), 8159 Ops, MVT::i32, MMO); 8160 if (ReusingLoad) 8161 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8162 } else { 8163 assert(Subtarget.isPPC64() && 8164 "i32->FP without LFIWAX supported only on PPC64"); 8165 8166 int FrameIdx = MFI.CreateStackObject(8, 8, false); 8167 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8168 8169 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 8170 Op.getOperand(0)); 8171 8172 // STD the extended value into the stack slot. 8173 SDValue Store = DAG.getStore( 8174 DAG.getEntryNode(), dl, Ext64, FIdx, 8175 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8176 8177 // Load the value as a double. 8178 Ld = DAG.getLoad( 8179 MVT::f64, dl, Store, FIdx, 8180 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8181 } 8182 8183 // FCFID it and return it. 8184 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 8185 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8186 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8187 DAG.getIntPtrConstant(0, dl)); 8188 return FP; 8189 } 8190 8191 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8192 SelectionDAG &DAG) const { 8193 SDLoc dl(Op); 8194 /* 8195 The rounding mode is in bits 30:31 of FPSR, and has the following 8196 settings: 8197 00 Round to nearest 8198 01 Round to 0 8199 10 Round to +inf 8200 11 Round to -inf 8201 8202 FLT_ROUNDS, on the other hand, expects the following: 8203 -1 Undefined 8204 0 Round to 0 8205 1 Round to nearest 8206 2 Round to +inf 8207 3 Round to -inf 8208 8209 To perform the conversion, we do: 8210 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8211 */ 8212 8213 MachineFunction &MF = DAG.getMachineFunction(); 8214 EVT VT = Op.getValueType(); 8215 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8216 8217 // Save FP Control Word to register 8218 EVT NodeTys[] = { 8219 MVT::f64, // return register 8220 MVT::Glue // unused in this context 8221 }; 8222 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 8223 8224 // Save FP register to stack slot 8225 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 8226 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8227 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot, 8228 MachinePointerInfo()); 8229 8230 // Load FP Control Word from low 32 bits of stack slot. 8231 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8232 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8233 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo()); 8234 8235 // Transform as necessary 8236 SDValue CWD1 = 8237 DAG.getNode(ISD::AND, dl, MVT::i32, 8238 CWD, DAG.getConstant(3, dl, MVT::i32)); 8239 SDValue CWD2 = 8240 DAG.getNode(ISD::SRL, dl, MVT::i32, 8241 DAG.getNode(ISD::AND, dl, MVT::i32, 8242 DAG.getNode(ISD::XOR, dl, MVT::i32, 8243 CWD, DAG.getConstant(3, dl, MVT::i32)), 8244 DAG.getConstant(3, dl, MVT::i32)), 8245 DAG.getConstant(1, dl, MVT::i32)); 8246 8247 SDValue RetVal = 8248 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8249 8250 return DAG.getNode((VT.getSizeInBits() < 16 ? 8251 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 8252 } 8253 8254 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8255 EVT VT = Op.getValueType(); 8256 unsigned BitWidth = VT.getSizeInBits(); 8257 SDLoc dl(Op); 8258 assert(Op.getNumOperands() == 3 && 8259 VT == Op.getOperand(1).getValueType() && 8260 "Unexpected SHL!"); 8261 8262 // Expand into a bunch of logical ops. Note that these ops 8263 // depend on the PPC behavior for oversized shift amounts. 8264 SDValue Lo = Op.getOperand(0); 8265 SDValue Hi = Op.getOperand(1); 8266 SDValue Amt = Op.getOperand(2); 8267 EVT AmtVT = Amt.getValueType(); 8268 8269 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8270 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8271 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8272 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8273 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8274 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8275 DAG.getConstant(-BitWidth, dl, AmtVT)); 8276 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8277 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8278 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8279 SDValue OutOps[] = { OutLo, OutHi }; 8280 return DAG.getMergeValues(OutOps, dl); 8281 } 8282 8283 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8284 EVT VT = Op.getValueType(); 8285 SDLoc dl(Op); 8286 unsigned BitWidth = VT.getSizeInBits(); 8287 assert(Op.getNumOperands() == 3 && 8288 VT == Op.getOperand(1).getValueType() && 8289 "Unexpected SRL!"); 8290 8291 // Expand into a bunch of logical ops. Note that these ops 8292 // depend on the PPC behavior for oversized shift amounts. 8293 SDValue Lo = Op.getOperand(0); 8294 SDValue Hi = Op.getOperand(1); 8295 SDValue Amt = Op.getOperand(2); 8296 EVT AmtVT = Amt.getValueType(); 8297 8298 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8299 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8300 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8301 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8302 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8303 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8304 DAG.getConstant(-BitWidth, dl, AmtVT)); 8305 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8306 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8307 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8308 SDValue OutOps[] = { OutLo, OutHi }; 8309 return DAG.getMergeValues(OutOps, dl); 8310 } 8311 8312 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8313 SDLoc dl(Op); 8314 EVT VT = Op.getValueType(); 8315 unsigned BitWidth = VT.getSizeInBits(); 8316 assert(Op.getNumOperands() == 3 && 8317 VT == Op.getOperand(1).getValueType() && 8318 "Unexpected SRA!"); 8319 8320 // Expand into a bunch of logical ops, followed by a select_cc. 8321 SDValue Lo = Op.getOperand(0); 8322 SDValue Hi = Op.getOperand(1); 8323 SDValue Amt = Op.getOperand(2); 8324 EVT AmtVT = Amt.getValueType(); 8325 8326 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8327 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8328 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8329 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8330 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8331 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8332 DAG.getConstant(-BitWidth, dl, AmtVT)); 8333 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8334 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8335 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8336 Tmp4, Tmp6, ISD::SETLE); 8337 SDValue OutOps[] = { OutLo, OutHi }; 8338 return DAG.getMergeValues(OutOps, dl); 8339 } 8340 8341 //===----------------------------------------------------------------------===// 8342 // Vector related lowering. 8343 // 8344 8345 /// BuildSplatI - Build a canonical splati of Val with an element size of 8346 /// SplatSize. Cast the result to VT. 8347 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 8348 SelectionDAG &DAG, const SDLoc &dl) { 8349 static const MVT VTys[] = { // canonical VT to use for each size. 8350 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8351 }; 8352 8353 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8354 8355 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 8356 if (Val == -1) 8357 SplatSize = 1; 8358 8359 EVT CanonicalVT = VTys[SplatSize-1]; 8360 8361 // Build a canonical splat for this value. 8362 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8363 } 8364 8365 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8366 /// specified intrinsic ID. 8367 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8368 const SDLoc &dl, EVT DestVT = MVT::Other) { 8369 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8370 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8371 DAG.getConstant(IID, dl, MVT::i32), Op); 8372 } 8373 8374 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8375 /// specified intrinsic ID. 8376 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8377 SelectionDAG &DAG, const SDLoc &dl, 8378 EVT DestVT = MVT::Other) { 8379 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8380 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8381 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8382 } 8383 8384 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8385 /// specified intrinsic ID. 8386 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8387 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8388 EVT DestVT = MVT::Other) { 8389 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8390 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8391 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8392 } 8393 8394 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8395 /// amount. The result has the specified value type. 8396 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8397 SelectionDAG &DAG, const SDLoc &dl) { 8398 // Force LHS/RHS to be the right type. 8399 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8400 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8401 8402 int Ops[16]; 8403 for (unsigned i = 0; i != 16; ++i) 8404 Ops[i] = i + Amt; 8405 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8406 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8407 } 8408 8409 /// Do we have an efficient pattern in a .td file for this node? 8410 /// 8411 /// \param V - pointer to the BuildVectorSDNode being matched 8412 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8413 /// 8414 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8415 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8416 /// the opposite is true (expansion is beneficial) are: 8417 /// - The node builds a vector out of integers that are not 32 or 64-bits 8418 /// - The node builds a vector out of constants 8419 /// - The node is a "load-and-splat" 8420 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8421 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8422 bool HasDirectMove, 8423 bool HasP8Vector) { 8424 EVT VecVT = V->getValueType(0); 8425 bool RightType = VecVT == MVT::v2f64 || 8426 (HasP8Vector && VecVT == MVT::v4f32) || 8427 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8428 if (!RightType) 8429 return false; 8430 8431 bool IsSplat = true; 8432 bool IsLoad = false; 8433 SDValue Op0 = V->getOperand(0); 8434 8435 // This function is called in a block that confirms the node is not a constant 8436 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8437 // different constants. 8438 if (V->isConstant()) 8439 return false; 8440 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8441 if (V->getOperand(i).isUndef()) 8442 return false; 8443 // We want to expand nodes that represent load-and-splat even if the 8444 // loaded value is a floating point truncation or conversion to int. 8445 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8446 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8447 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8448 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8449 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8450 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8451 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8452 IsLoad = true; 8453 // If the operands are different or the input is not a load and has more 8454 // uses than just this BV node, then it isn't a splat. 8455 if (V->getOperand(i) != Op0 || 8456 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8457 IsSplat = false; 8458 } 8459 return !(IsSplat && IsLoad); 8460 } 8461 8462 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 8463 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 8464 8465 SDLoc dl(Op); 8466 SDValue Op0 = Op->getOperand(0); 8467 8468 if (!EnableQuadPrecision || 8469 (Op.getValueType() != MVT::f128 ) || 8470 (Op0.getOpcode() != ISD::BUILD_PAIR) || 8471 (Op0.getOperand(0).getValueType() != MVT::i64) || 8472 (Op0.getOperand(1).getValueType() != MVT::i64)) 8473 return SDValue(); 8474 8475 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 8476 Op0.getOperand(1)); 8477 } 8478 8479 static const SDValue *getNormalLoadInput(const SDValue &Op) { 8480 const SDValue *InputLoad = &Op; 8481 if (InputLoad->getOpcode() == ISD::BITCAST) 8482 InputLoad = &InputLoad->getOperand(0); 8483 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR) 8484 InputLoad = &InputLoad->getOperand(0); 8485 if (InputLoad->getOpcode() != ISD::LOAD) 8486 return nullptr; 8487 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8488 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 8489 } 8490 8491 // If this is a case we can't handle, return null and let the default 8492 // expansion code take care of it. If we CAN select this case, and if it 8493 // selects to a single instruction, return Op. Otherwise, if we can codegen 8494 // this case more efficiently than a constant pool load, lower it to the 8495 // sequence of ops that should be used. 8496 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 8497 SelectionDAG &DAG) const { 8498 SDLoc dl(Op); 8499 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 8500 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 8501 8502 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 8503 // We first build an i32 vector, load it into a QPX register, 8504 // then convert it to a floating-point vector and compare it 8505 // to a zero vector to get the boolean result. 8506 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8507 int FrameIdx = MFI.CreateStackObject(16, 16, false); 8508 MachinePointerInfo PtrInfo = 8509 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8510 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8511 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8512 8513 assert(BVN->getNumOperands() == 4 && 8514 "BUILD_VECTOR for v4i1 does not have 4 operands"); 8515 8516 bool IsConst = true; 8517 for (unsigned i = 0; i < 4; ++i) { 8518 if (BVN->getOperand(i).isUndef()) continue; 8519 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 8520 IsConst = false; 8521 break; 8522 } 8523 } 8524 8525 if (IsConst) { 8526 Constant *One = 8527 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 8528 Constant *NegOne = 8529 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 8530 8531 Constant *CV[4]; 8532 for (unsigned i = 0; i < 4; ++i) { 8533 if (BVN->getOperand(i).isUndef()) 8534 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 8535 else if (isNullConstant(BVN->getOperand(i))) 8536 CV[i] = NegOne; 8537 else 8538 CV[i] = One; 8539 } 8540 8541 Constant *CP = ConstantVector::get(CV); 8542 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 8543 16 /* alignment */); 8544 8545 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 8546 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 8547 return DAG.getMemIntrinsicNode( 8548 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 8549 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 8550 } 8551 8552 SmallVector<SDValue, 4> Stores; 8553 for (unsigned i = 0; i < 4; ++i) { 8554 if (BVN->getOperand(i).isUndef()) continue; 8555 8556 unsigned Offset = 4*i; 8557 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 8558 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 8559 8560 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 8561 if (StoreSize > 4) { 8562 Stores.push_back( 8563 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 8564 PtrInfo.getWithOffset(Offset), MVT::i32)); 8565 } else { 8566 SDValue StoreValue = BVN->getOperand(i); 8567 if (StoreSize < 4) 8568 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 8569 8570 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 8571 PtrInfo.getWithOffset(Offset))); 8572 } 8573 } 8574 8575 SDValue StoreChain; 8576 if (!Stores.empty()) 8577 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8578 else 8579 StoreChain = DAG.getEntryNode(); 8580 8581 // Now load from v4i32 into the QPX register; this will extend it to 8582 // v4i64 but not yet convert it to a floating point. Nevertheless, this 8583 // is typed as v4f64 because the QPX register integer states are not 8584 // explicitly represented. 8585 8586 SDValue Ops[] = {StoreChain, 8587 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 8588 FIdx}; 8589 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 8590 8591 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 8592 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8593 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8594 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 8595 LoadedVect); 8596 8597 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 8598 8599 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 8600 } 8601 8602 // All other QPX vectors are handled by generic code. 8603 if (Subtarget.hasQPX()) 8604 return SDValue(); 8605 8606 // Check if this is a splat of a constant value. 8607 APInt APSplatBits, APSplatUndef; 8608 unsigned SplatBitSize; 8609 bool HasAnyUndefs; 8610 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 8611 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 8612 SplatBitSize > 32) { 8613 8614 const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0)); 8615 // Handle load-and-splat patterns as we have instructions that will do this 8616 // in one go. 8617 if (InputLoad && DAG.isSplatValue(Op, true)) { 8618 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8619 8620 // We have handling for 4 and 8 byte elements. 8621 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 8622 8623 // Checking for a single use of this load, we have to check for vector 8624 // width (128 bits) / ElementSize uses (since each operand of the 8625 // BUILD_VECTOR is a separate use of the value. 8626 if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) && 8627 ((Subtarget.hasVSX() && ElementSize == 64) || 8628 (Subtarget.hasP9Vector() && ElementSize == 32))) { 8629 SDValue Ops[] = { 8630 LD->getChain(), // Chain 8631 LD->getBasePtr(), // Ptr 8632 DAG.getValueType(Op.getValueType()) // VT 8633 }; 8634 return 8635 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, 8636 DAG.getVTList(Op.getValueType(), MVT::Other), 8637 Ops, LD->getMemoryVT(), LD->getMemOperand()); 8638 } 8639 } 8640 8641 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 8642 // lowered to VSX instructions under certain conditions. 8643 // Without VSX, there is no pattern more efficient than expanding the node. 8644 if (Subtarget.hasVSX() && 8645 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 8646 Subtarget.hasP8Vector())) 8647 return Op; 8648 return SDValue(); 8649 } 8650 8651 unsigned SplatBits = APSplatBits.getZExtValue(); 8652 unsigned SplatUndef = APSplatUndef.getZExtValue(); 8653 unsigned SplatSize = SplatBitSize / 8; 8654 8655 // First, handle single instruction cases. 8656 8657 // All zeros? 8658 if (SplatBits == 0) { 8659 // Canonicalize all zero vectors to be v4i32. 8660 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 8661 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 8662 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 8663 } 8664 return Op; 8665 } 8666 8667 // We have XXSPLTIB for constant splats one byte wide 8668 // FIXME: SplatBits is an unsigned int being cast to an int while passing it 8669 // as an argument to BuildSplatiI. Given SplatSize == 1 it is okay here. 8670 if (Subtarget.hasP9Vector() && SplatSize == 1) 8671 return BuildSplatI(SplatBits, SplatSize, Op.getValueType(), DAG, dl); 8672 8673 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 8674 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 8675 (32-SplatBitSize)); 8676 if (SextVal >= -16 && SextVal <= 15) 8677 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 8678 8679 // Two instruction sequences. 8680 8681 // If this value is in the range [-32,30] and is even, use: 8682 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 8683 // If this value is in the range [17,31] and is odd, use: 8684 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 8685 // If this value is in the range [-31,-17] and is odd, use: 8686 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 8687 // Note the last two are three-instruction sequences. 8688 if (SextVal >= -32 && SextVal <= 31) { 8689 // To avoid having these optimizations undone by constant folding, 8690 // we convert to a pseudo that will be expanded later into one of 8691 // the above forms. 8692 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 8693 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 8694 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 8695 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 8696 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 8697 if (VT == Op.getValueType()) 8698 return RetVal; 8699 else 8700 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 8701 } 8702 8703 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 8704 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 8705 // for fneg/fabs. 8706 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 8707 // Make -1 and vspltisw -1: 8708 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 8709 8710 // Make the VSLW intrinsic, computing 0x8000_0000. 8711 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 8712 OnesV, DAG, dl); 8713 8714 // xor by OnesV to invert it. 8715 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 8716 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8717 } 8718 8719 // Check to see if this is a wide variety of vsplti*, binop self cases. 8720 static const signed char SplatCsts[] = { 8721 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 8722 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 8723 }; 8724 8725 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 8726 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 8727 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 8728 int i = SplatCsts[idx]; 8729 8730 // Figure out what shift amount will be used by altivec if shifted by i in 8731 // this splat size. 8732 unsigned TypeShiftAmt = i & (SplatBitSize-1); 8733 8734 // vsplti + shl self. 8735 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 8736 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8737 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8738 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 8739 Intrinsic::ppc_altivec_vslw 8740 }; 8741 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8742 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8743 } 8744 8745 // vsplti + srl self. 8746 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8747 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8748 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8749 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 8750 Intrinsic::ppc_altivec_vsrw 8751 }; 8752 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8753 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8754 } 8755 8756 // vsplti + sra self. 8757 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8758 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8759 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8760 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 8761 Intrinsic::ppc_altivec_vsraw 8762 }; 8763 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8764 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8765 } 8766 8767 // vsplti + rol self. 8768 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 8769 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 8770 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8771 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8772 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 8773 Intrinsic::ppc_altivec_vrlw 8774 }; 8775 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8776 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8777 } 8778 8779 // t = vsplti c, result = vsldoi t, t, 1 8780 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 8781 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8782 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 8783 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8784 } 8785 // t = vsplti c, result = vsldoi t, t, 2 8786 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 8787 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8788 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 8789 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8790 } 8791 // t = vsplti c, result = vsldoi t, t, 3 8792 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 8793 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8794 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 8795 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8796 } 8797 } 8798 8799 return SDValue(); 8800 } 8801 8802 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 8803 /// the specified operations to build the shuffle. 8804 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 8805 SDValue RHS, SelectionDAG &DAG, 8806 const SDLoc &dl) { 8807 unsigned OpNum = (PFEntry >> 26) & 0x0F; 8808 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 8809 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 8810 8811 enum { 8812 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 8813 OP_VMRGHW, 8814 OP_VMRGLW, 8815 OP_VSPLTISW0, 8816 OP_VSPLTISW1, 8817 OP_VSPLTISW2, 8818 OP_VSPLTISW3, 8819 OP_VSLDOI4, 8820 OP_VSLDOI8, 8821 OP_VSLDOI12 8822 }; 8823 8824 if (OpNum == OP_COPY) { 8825 if (LHSID == (1*9+2)*9+3) return LHS; 8826 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 8827 return RHS; 8828 } 8829 8830 SDValue OpLHS, OpRHS; 8831 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 8832 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 8833 8834 int ShufIdxs[16]; 8835 switch (OpNum) { 8836 default: llvm_unreachable("Unknown i32 permute!"); 8837 case OP_VMRGHW: 8838 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 8839 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 8840 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 8841 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 8842 break; 8843 case OP_VMRGLW: 8844 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 8845 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 8846 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 8847 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 8848 break; 8849 case OP_VSPLTISW0: 8850 for (unsigned i = 0; i != 16; ++i) 8851 ShufIdxs[i] = (i&3)+0; 8852 break; 8853 case OP_VSPLTISW1: 8854 for (unsigned i = 0; i != 16; ++i) 8855 ShufIdxs[i] = (i&3)+4; 8856 break; 8857 case OP_VSPLTISW2: 8858 for (unsigned i = 0; i != 16; ++i) 8859 ShufIdxs[i] = (i&3)+8; 8860 break; 8861 case OP_VSPLTISW3: 8862 for (unsigned i = 0; i != 16; ++i) 8863 ShufIdxs[i] = (i&3)+12; 8864 break; 8865 case OP_VSLDOI4: 8866 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 8867 case OP_VSLDOI8: 8868 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 8869 case OP_VSLDOI12: 8870 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 8871 } 8872 EVT VT = OpLHS.getValueType(); 8873 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 8874 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 8875 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 8876 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8877 } 8878 8879 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 8880 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 8881 /// SDValue. 8882 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 8883 SelectionDAG &DAG) const { 8884 const unsigned BytesInVector = 16; 8885 bool IsLE = Subtarget.isLittleEndian(); 8886 SDLoc dl(N); 8887 SDValue V1 = N->getOperand(0); 8888 SDValue V2 = N->getOperand(1); 8889 unsigned ShiftElts = 0, InsertAtByte = 0; 8890 bool Swap = false; 8891 8892 // Shifts required to get the byte we want at element 7. 8893 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 8894 0, 15, 14, 13, 12, 11, 10, 9}; 8895 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 8896 1, 2, 3, 4, 5, 6, 7, 8}; 8897 8898 ArrayRef<int> Mask = N->getMask(); 8899 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 8900 8901 // For each mask element, find out if we're just inserting something 8902 // from V2 into V1 or vice versa. 8903 // Possible permutations inserting an element from V2 into V1: 8904 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8905 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8906 // ... 8907 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 8908 // Inserting from V1 into V2 will be similar, except mask range will be 8909 // [16,31]. 8910 8911 bool FoundCandidate = false; 8912 // If both vector operands for the shuffle are the same vector, the mask 8913 // will contain only elements from the first one and the second one will be 8914 // undef. 8915 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 8916 // Go through the mask of half-words to find an element that's being moved 8917 // from one vector to the other. 8918 for (unsigned i = 0; i < BytesInVector; ++i) { 8919 unsigned CurrentElement = Mask[i]; 8920 // If 2nd operand is undefined, we should only look for element 7 in the 8921 // Mask. 8922 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 8923 continue; 8924 8925 bool OtherElementsInOrder = true; 8926 // Examine the other elements in the Mask to see if they're in original 8927 // order. 8928 for (unsigned j = 0; j < BytesInVector; ++j) { 8929 if (j == i) 8930 continue; 8931 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 8932 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 8933 // in which we always assume we're always picking from the 1st operand. 8934 int MaskOffset = 8935 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 8936 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 8937 OtherElementsInOrder = false; 8938 break; 8939 } 8940 } 8941 // If other elements are in original order, we record the number of shifts 8942 // we need to get the element we want into element 7. Also record which byte 8943 // in the vector we should insert into. 8944 if (OtherElementsInOrder) { 8945 // If 2nd operand is undefined, we assume no shifts and no swapping. 8946 if (V2.isUndef()) { 8947 ShiftElts = 0; 8948 Swap = false; 8949 } else { 8950 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 8951 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 8952 : BigEndianShifts[CurrentElement & 0xF]; 8953 Swap = CurrentElement < BytesInVector; 8954 } 8955 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 8956 FoundCandidate = true; 8957 break; 8958 } 8959 } 8960 8961 if (!FoundCandidate) 8962 return SDValue(); 8963 8964 // Candidate found, construct the proper SDAG sequence with VINSERTB, 8965 // optionally with VECSHL if shift is required. 8966 if (Swap) 8967 std::swap(V1, V2); 8968 if (V2.isUndef()) 8969 V2 = V1; 8970 if (ShiftElts) { 8971 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8972 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8973 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 8974 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8975 } 8976 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 8977 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8978 } 8979 8980 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 8981 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 8982 /// SDValue. 8983 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 8984 SelectionDAG &DAG) const { 8985 const unsigned NumHalfWords = 8; 8986 const unsigned BytesInVector = NumHalfWords * 2; 8987 // Check that the shuffle is on half-words. 8988 if (!isNByteElemShuffleMask(N, 2, 1)) 8989 return SDValue(); 8990 8991 bool IsLE = Subtarget.isLittleEndian(); 8992 SDLoc dl(N); 8993 SDValue V1 = N->getOperand(0); 8994 SDValue V2 = N->getOperand(1); 8995 unsigned ShiftElts = 0, InsertAtByte = 0; 8996 bool Swap = false; 8997 8998 // Shifts required to get the half-word we want at element 3. 8999 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9000 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9001 9002 uint32_t Mask = 0; 9003 uint32_t OriginalOrderLow = 0x1234567; 9004 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9005 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9006 // 32-bit space, only need 4-bit nibbles per element. 9007 for (unsigned i = 0; i < NumHalfWords; ++i) { 9008 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9009 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9010 } 9011 9012 // For each mask element, find out if we're just inserting something 9013 // from V2 into V1 or vice versa. Possible permutations inserting an element 9014 // from V2 into V1: 9015 // X, 1, 2, 3, 4, 5, 6, 7 9016 // 0, X, 2, 3, 4, 5, 6, 7 9017 // 0, 1, X, 3, 4, 5, 6, 7 9018 // 0, 1, 2, X, 4, 5, 6, 7 9019 // 0, 1, 2, 3, X, 5, 6, 7 9020 // 0, 1, 2, 3, 4, X, 6, 7 9021 // 0, 1, 2, 3, 4, 5, X, 7 9022 // 0, 1, 2, 3, 4, 5, 6, X 9023 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9024 9025 bool FoundCandidate = false; 9026 // Go through the mask of half-words to find an element that's being moved 9027 // from one vector to the other. 9028 for (unsigned i = 0; i < NumHalfWords; ++i) { 9029 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9030 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9031 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9032 uint32_t TargetOrder = 0x0; 9033 9034 // If both vector operands for the shuffle are the same vector, the mask 9035 // will contain only elements from the first one and the second one will be 9036 // undef. 9037 if (V2.isUndef()) { 9038 ShiftElts = 0; 9039 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9040 TargetOrder = OriginalOrderLow; 9041 Swap = false; 9042 // Skip if not the correct element or mask of other elements don't equal 9043 // to our expected order. 9044 if (MaskOneElt == VINSERTHSrcElem && 9045 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9046 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9047 FoundCandidate = true; 9048 break; 9049 } 9050 } else { // If both operands are defined. 9051 // Target order is [8,15] if the current mask is between [0,7]. 9052 TargetOrder = 9053 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9054 // Skip if mask of other elements don't equal our expected order. 9055 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9056 // We only need the last 3 bits for the number of shifts. 9057 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9058 : BigEndianShifts[MaskOneElt & 0x7]; 9059 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9060 Swap = MaskOneElt < NumHalfWords; 9061 FoundCandidate = true; 9062 break; 9063 } 9064 } 9065 } 9066 9067 if (!FoundCandidate) 9068 return SDValue(); 9069 9070 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9071 // optionally with VECSHL if shift is required. 9072 if (Swap) 9073 std::swap(V1, V2); 9074 if (V2.isUndef()) 9075 V2 = V1; 9076 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9077 if (ShiftElts) { 9078 // Double ShiftElts because we're left shifting on v16i8 type. 9079 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9080 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9081 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9082 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9083 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9084 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9085 } 9086 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9087 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9088 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9089 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9090 } 9091 9092 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9093 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9094 /// return the code it can be lowered into. Worst case, it can always be 9095 /// lowered into a vperm. 9096 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9097 SelectionDAG &DAG) const { 9098 SDLoc dl(Op); 9099 SDValue V1 = Op.getOperand(0); 9100 SDValue V2 = Op.getOperand(1); 9101 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9102 EVT VT = Op.getValueType(); 9103 bool isLittleEndian = Subtarget.isLittleEndian(); 9104 9105 unsigned ShiftElts, InsertAtByte; 9106 bool Swap = false; 9107 9108 // If this is a load-and-splat, we can do that with a single instruction 9109 // in some cases. However if the load has multiple uses, we don't want to 9110 // combine it because that will just produce multiple loads. 9111 const SDValue *InputLoad = getNormalLoadInput(V1); 9112 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9113 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9114 InputLoad->hasOneUse()) { 9115 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9116 int SplatIdx = 9117 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9118 9119 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9120 // For 4-byte load-and-splat, we need Power9. 9121 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9122 uint64_t Offset = 0; 9123 if (IsFourByte) 9124 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9125 else 9126 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9127 SDValue BasePtr = LD->getBasePtr(); 9128 if (Offset != 0) 9129 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9130 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9131 SDValue Ops[] = { 9132 LD->getChain(), // Chain 9133 BasePtr, // BasePtr 9134 DAG.getValueType(Op.getValueType()) // VT 9135 }; 9136 SDVTList VTL = 9137 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9138 SDValue LdSplt = 9139 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9140 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9141 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9142 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9143 return LdSplt; 9144 } 9145 } 9146 if (Subtarget.hasP9Vector() && 9147 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9148 isLittleEndian)) { 9149 if (Swap) 9150 std::swap(V1, V2); 9151 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9152 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9153 if (ShiftElts) { 9154 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9155 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9156 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9157 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9158 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9159 } 9160 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9161 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9162 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9163 } 9164 9165 if (Subtarget.hasP9Altivec()) { 9166 SDValue NewISDNode; 9167 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9168 return NewISDNode; 9169 9170 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9171 return NewISDNode; 9172 } 9173 9174 if (Subtarget.hasVSX() && 9175 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9176 if (Swap) 9177 std::swap(V1, V2); 9178 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9179 SDValue Conv2 = 9180 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9181 9182 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9183 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9184 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9185 } 9186 9187 if (Subtarget.hasVSX() && 9188 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9189 if (Swap) 9190 std::swap(V1, V2); 9191 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9192 SDValue Conv2 = 9193 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9194 9195 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9196 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9197 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9198 } 9199 9200 if (Subtarget.hasP9Vector()) { 9201 if (PPC::isXXBRHShuffleMask(SVOp)) { 9202 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9203 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9204 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9205 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9206 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9207 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9208 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9209 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9210 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9211 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9212 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9213 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9214 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9215 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9216 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9217 } 9218 } 9219 9220 if (Subtarget.hasVSX()) { 9221 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9222 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9223 9224 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9225 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9226 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9227 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9228 } 9229 9230 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9231 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9232 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9233 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9234 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9235 } 9236 } 9237 9238 if (Subtarget.hasQPX()) { 9239 if (VT.getVectorNumElements() != 4) 9240 return SDValue(); 9241 9242 if (V2.isUndef()) V2 = V1; 9243 9244 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 9245 if (AlignIdx != -1) { 9246 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 9247 DAG.getConstant(AlignIdx, dl, MVT::i32)); 9248 } else if (SVOp->isSplat()) { 9249 int SplatIdx = SVOp->getSplatIndex(); 9250 if (SplatIdx >= 4) { 9251 std::swap(V1, V2); 9252 SplatIdx -= 4; 9253 } 9254 9255 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 9256 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9257 } 9258 9259 // Lower this into a qvgpci/qvfperm pair. 9260 9261 // Compute the qvgpci literal 9262 unsigned idx = 0; 9263 for (unsigned i = 0; i < 4; ++i) { 9264 int m = SVOp->getMaskElt(i); 9265 unsigned mm = m >= 0 ? (unsigned) m : i; 9266 idx |= mm << (3-i)*3; 9267 } 9268 9269 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 9270 DAG.getConstant(idx, dl, MVT::i32)); 9271 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 9272 } 9273 9274 // Cases that are handled by instructions that take permute immediates 9275 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9276 // selected by the instruction selector. 9277 if (V2.isUndef()) { 9278 if (PPC::isSplatShuffleMask(SVOp, 1) || 9279 PPC::isSplatShuffleMask(SVOp, 2) || 9280 PPC::isSplatShuffleMask(SVOp, 4) || 9281 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9282 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9283 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9284 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9285 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9286 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9287 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9288 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9289 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9290 (Subtarget.hasP8Altivec() && ( 9291 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9292 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9293 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9294 return Op; 9295 } 9296 } 9297 9298 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9299 // and produce a fixed permutation. If any of these match, do not lower to 9300 // VPERM. 9301 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9302 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9303 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9304 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9305 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9306 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9307 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9308 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9309 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9310 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9311 (Subtarget.hasP8Altivec() && ( 9312 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9313 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9314 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9315 return Op; 9316 9317 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9318 // perfect shuffle table to emit an optimal matching sequence. 9319 ArrayRef<int> PermMask = SVOp->getMask(); 9320 9321 unsigned PFIndexes[4]; 9322 bool isFourElementShuffle = true; 9323 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9324 unsigned EltNo = 8; // Start out undef. 9325 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9326 if (PermMask[i*4+j] < 0) 9327 continue; // Undef, ignore it. 9328 9329 unsigned ByteSource = PermMask[i*4+j]; 9330 if ((ByteSource & 3) != j) { 9331 isFourElementShuffle = false; 9332 break; 9333 } 9334 9335 if (EltNo == 8) { 9336 EltNo = ByteSource/4; 9337 } else if (EltNo != ByteSource/4) { 9338 isFourElementShuffle = false; 9339 break; 9340 } 9341 } 9342 PFIndexes[i] = EltNo; 9343 } 9344 9345 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 9346 // perfect shuffle vector to determine if it is cost effective to do this as 9347 // discrete instructions, or whether we should use a vperm. 9348 // For now, we skip this for little endian until such time as we have a 9349 // little-endian perfect shuffle table. 9350 if (isFourElementShuffle && !isLittleEndian) { 9351 // Compute the index in the perfect shuffle table. 9352 unsigned PFTableIndex = 9353 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 9354 9355 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 9356 unsigned Cost = (PFEntry >> 30); 9357 9358 // Determining when to avoid vperm is tricky. Many things affect the cost 9359 // of vperm, particularly how many times the perm mask needs to be computed. 9360 // For example, if the perm mask can be hoisted out of a loop or is already 9361 // used (perhaps because there are multiple permutes with the same shuffle 9362 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 9363 // the loop requires an extra register. 9364 // 9365 // As a compromise, we only emit discrete instructions if the shuffle can be 9366 // generated in 3 or fewer operations. When we have loop information 9367 // available, if this block is within a loop, we should avoid using vperm 9368 // for 3-operation perms and use a constant pool load instead. 9369 if (Cost < 3) 9370 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 9371 } 9372 9373 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 9374 // vector that will get spilled to the constant pool. 9375 if (V2.isUndef()) V2 = V1; 9376 9377 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 9378 // that it is in input element units, not in bytes. Convert now. 9379 9380 // For little endian, the order of the input vectors is reversed, and 9381 // the permutation mask is complemented with respect to 31. This is 9382 // necessary to produce proper semantics with the big-endian-biased vperm 9383 // instruction. 9384 EVT EltVT = V1.getValueType().getVectorElementType(); 9385 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 9386 9387 SmallVector<SDValue, 16> ResultMask; 9388 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 9389 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 9390 9391 for (unsigned j = 0; j != BytesPerElement; ++j) 9392 if (isLittleEndian) 9393 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 9394 dl, MVT::i32)); 9395 else 9396 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 9397 MVT::i32)); 9398 } 9399 9400 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 9401 if (isLittleEndian) 9402 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9403 V2, V1, VPermMask); 9404 else 9405 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9406 V1, V2, VPermMask); 9407 } 9408 9409 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 9410 /// vector comparison. If it is, return true and fill in Opc/isDot with 9411 /// information about the intrinsic. 9412 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 9413 bool &isDot, const PPCSubtarget &Subtarget) { 9414 unsigned IntrinsicID = 9415 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 9416 CompareOpc = -1; 9417 isDot = false; 9418 switch (IntrinsicID) { 9419 default: 9420 return false; 9421 // Comparison predicates. 9422 case Intrinsic::ppc_altivec_vcmpbfp_p: 9423 CompareOpc = 966; 9424 isDot = true; 9425 break; 9426 case Intrinsic::ppc_altivec_vcmpeqfp_p: 9427 CompareOpc = 198; 9428 isDot = true; 9429 break; 9430 case Intrinsic::ppc_altivec_vcmpequb_p: 9431 CompareOpc = 6; 9432 isDot = true; 9433 break; 9434 case Intrinsic::ppc_altivec_vcmpequh_p: 9435 CompareOpc = 70; 9436 isDot = true; 9437 break; 9438 case Intrinsic::ppc_altivec_vcmpequw_p: 9439 CompareOpc = 134; 9440 isDot = true; 9441 break; 9442 case Intrinsic::ppc_altivec_vcmpequd_p: 9443 if (Subtarget.hasP8Altivec()) { 9444 CompareOpc = 199; 9445 isDot = true; 9446 } else 9447 return false; 9448 break; 9449 case Intrinsic::ppc_altivec_vcmpneb_p: 9450 case Intrinsic::ppc_altivec_vcmpneh_p: 9451 case Intrinsic::ppc_altivec_vcmpnew_p: 9452 case Intrinsic::ppc_altivec_vcmpnezb_p: 9453 case Intrinsic::ppc_altivec_vcmpnezh_p: 9454 case Intrinsic::ppc_altivec_vcmpnezw_p: 9455 if (Subtarget.hasP9Altivec()) { 9456 switch (IntrinsicID) { 9457 default: 9458 llvm_unreachable("Unknown comparison intrinsic."); 9459 case Intrinsic::ppc_altivec_vcmpneb_p: 9460 CompareOpc = 7; 9461 break; 9462 case Intrinsic::ppc_altivec_vcmpneh_p: 9463 CompareOpc = 71; 9464 break; 9465 case Intrinsic::ppc_altivec_vcmpnew_p: 9466 CompareOpc = 135; 9467 break; 9468 case Intrinsic::ppc_altivec_vcmpnezb_p: 9469 CompareOpc = 263; 9470 break; 9471 case Intrinsic::ppc_altivec_vcmpnezh_p: 9472 CompareOpc = 327; 9473 break; 9474 case Intrinsic::ppc_altivec_vcmpnezw_p: 9475 CompareOpc = 391; 9476 break; 9477 } 9478 isDot = true; 9479 } else 9480 return false; 9481 break; 9482 case Intrinsic::ppc_altivec_vcmpgefp_p: 9483 CompareOpc = 454; 9484 isDot = true; 9485 break; 9486 case Intrinsic::ppc_altivec_vcmpgtfp_p: 9487 CompareOpc = 710; 9488 isDot = true; 9489 break; 9490 case Intrinsic::ppc_altivec_vcmpgtsb_p: 9491 CompareOpc = 774; 9492 isDot = true; 9493 break; 9494 case Intrinsic::ppc_altivec_vcmpgtsh_p: 9495 CompareOpc = 838; 9496 isDot = true; 9497 break; 9498 case Intrinsic::ppc_altivec_vcmpgtsw_p: 9499 CompareOpc = 902; 9500 isDot = true; 9501 break; 9502 case Intrinsic::ppc_altivec_vcmpgtsd_p: 9503 if (Subtarget.hasP8Altivec()) { 9504 CompareOpc = 967; 9505 isDot = true; 9506 } else 9507 return false; 9508 break; 9509 case Intrinsic::ppc_altivec_vcmpgtub_p: 9510 CompareOpc = 518; 9511 isDot = true; 9512 break; 9513 case Intrinsic::ppc_altivec_vcmpgtuh_p: 9514 CompareOpc = 582; 9515 isDot = true; 9516 break; 9517 case Intrinsic::ppc_altivec_vcmpgtuw_p: 9518 CompareOpc = 646; 9519 isDot = true; 9520 break; 9521 case Intrinsic::ppc_altivec_vcmpgtud_p: 9522 if (Subtarget.hasP8Altivec()) { 9523 CompareOpc = 711; 9524 isDot = true; 9525 } else 9526 return false; 9527 break; 9528 9529 // VSX predicate comparisons use the same infrastructure 9530 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9531 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9532 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9533 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9534 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9535 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9536 if (Subtarget.hasVSX()) { 9537 switch (IntrinsicID) { 9538 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9539 CompareOpc = 99; 9540 break; 9541 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9542 CompareOpc = 115; 9543 break; 9544 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9545 CompareOpc = 107; 9546 break; 9547 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9548 CompareOpc = 67; 9549 break; 9550 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9551 CompareOpc = 83; 9552 break; 9553 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9554 CompareOpc = 75; 9555 break; 9556 } 9557 isDot = true; 9558 } else 9559 return false; 9560 break; 9561 9562 // Normal Comparisons. 9563 case Intrinsic::ppc_altivec_vcmpbfp: 9564 CompareOpc = 966; 9565 break; 9566 case Intrinsic::ppc_altivec_vcmpeqfp: 9567 CompareOpc = 198; 9568 break; 9569 case Intrinsic::ppc_altivec_vcmpequb: 9570 CompareOpc = 6; 9571 break; 9572 case Intrinsic::ppc_altivec_vcmpequh: 9573 CompareOpc = 70; 9574 break; 9575 case Intrinsic::ppc_altivec_vcmpequw: 9576 CompareOpc = 134; 9577 break; 9578 case Intrinsic::ppc_altivec_vcmpequd: 9579 if (Subtarget.hasP8Altivec()) 9580 CompareOpc = 199; 9581 else 9582 return false; 9583 break; 9584 case Intrinsic::ppc_altivec_vcmpneb: 9585 case Intrinsic::ppc_altivec_vcmpneh: 9586 case Intrinsic::ppc_altivec_vcmpnew: 9587 case Intrinsic::ppc_altivec_vcmpnezb: 9588 case Intrinsic::ppc_altivec_vcmpnezh: 9589 case Intrinsic::ppc_altivec_vcmpnezw: 9590 if (Subtarget.hasP9Altivec()) 9591 switch (IntrinsicID) { 9592 default: 9593 llvm_unreachable("Unknown comparison intrinsic."); 9594 case Intrinsic::ppc_altivec_vcmpneb: 9595 CompareOpc = 7; 9596 break; 9597 case Intrinsic::ppc_altivec_vcmpneh: 9598 CompareOpc = 71; 9599 break; 9600 case Intrinsic::ppc_altivec_vcmpnew: 9601 CompareOpc = 135; 9602 break; 9603 case Intrinsic::ppc_altivec_vcmpnezb: 9604 CompareOpc = 263; 9605 break; 9606 case Intrinsic::ppc_altivec_vcmpnezh: 9607 CompareOpc = 327; 9608 break; 9609 case Intrinsic::ppc_altivec_vcmpnezw: 9610 CompareOpc = 391; 9611 break; 9612 } 9613 else 9614 return false; 9615 break; 9616 case Intrinsic::ppc_altivec_vcmpgefp: 9617 CompareOpc = 454; 9618 break; 9619 case Intrinsic::ppc_altivec_vcmpgtfp: 9620 CompareOpc = 710; 9621 break; 9622 case Intrinsic::ppc_altivec_vcmpgtsb: 9623 CompareOpc = 774; 9624 break; 9625 case Intrinsic::ppc_altivec_vcmpgtsh: 9626 CompareOpc = 838; 9627 break; 9628 case Intrinsic::ppc_altivec_vcmpgtsw: 9629 CompareOpc = 902; 9630 break; 9631 case Intrinsic::ppc_altivec_vcmpgtsd: 9632 if (Subtarget.hasP8Altivec()) 9633 CompareOpc = 967; 9634 else 9635 return false; 9636 break; 9637 case Intrinsic::ppc_altivec_vcmpgtub: 9638 CompareOpc = 518; 9639 break; 9640 case Intrinsic::ppc_altivec_vcmpgtuh: 9641 CompareOpc = 582; 9642 break; 9643 case Intrinsic::ppc_altivec_vcmpgtuw: 9644 CompareOpc = 646; 9645 break; 9646 case Intrinsic::ppc_altivec_vcmpgtud: 9647 if (Subtarget.hasP8Altivec()) 9648 CompareOpc = 711; 9649 else 9650 return false; 9651 break; 9652 } 9653 return true; 9654 } 9655 9656 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 9657 /// lower, do it, otherwise return null. 9658 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 9659 SelectionDAG &DAG) const { 9660 unsigned IntrinsicID = 9661 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9662 9663 SDLoc dl(Op); 9664 9665 if (IntrinsicID == Intrinsic::thread_pointer) { 9666 // Reads the thread pointer register, used for __builtin_thread_pointer. 9667 if (Subtarget.isPPC64()) 9668 return DAG.getRegister(PPC::X13, MVT::i64); 9669 return DAG.getRegister(PPC::R2, MVT::i32); 9670 } 9671 9672 // If this is a lowered altivec predicate compare, CompareOpc is set to the 9673 // opcode number of the comparison. 9674 int CompareOpc; 9675 bool isDot; 9676 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 9677 return SDValue(); // Don't custom lower most intrinsics. 9678 9679 // If this is a non-dot comparison, make the VCMP node and we are done. 9680 if (!isDot) { 9681 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 9682 Op.getOperand(1), Op.getOperand(2), 9683 DAG.getConstant(CompareOpc, dl, MVT::i32)); 9684 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 9685 } 9686 9687 // Create the PPCISD altivec 'dot' comparison node. 9688 SDValue Ops[] = { 9689 Op.getOperand(2), // LHS 9690 Op.getOperand(3), // RHS 9691 DAG.getConstant(CompareOpc, dl, MVT::i32) 9692 }; 9693 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 9694 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 9695 9696 // Now that we have the comparison, emit a copy from the CR to a GPR. 9697 // This is flagged to the above dot comparison. 9698 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 9699 DAG.getRegister(PPC::CR6, MVT::i32), 9700 CompNode.getValue(1)); 9701 9702 // Unpack the result based on how the target uses it. 9703 unsigned BitNo; // Bit # of CR6. 9704 bool InvertBit; // Invert result? 9705 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 9706 default: // Can't happen, don't crash on invalid number though. 9707 case 0: // Return the value of the EQ bit of CR6. 9708 BitNo = 0; InvertBit = false; 9709 break; 9710 case 1: // Return the inverted value of the EQ bit of CR6. 9711 BitNo = 0; InvertBit = true; 9712 break; 9713 case 2: // Return the value of the LT bit of CR6. 9714 BitNo = 2; InvertBit = false; 9715 break; 9716 case 3: // Return the inverted value of the LT bit of CR6. 9717 BitNo = 2; InvertBit = true; 9718 break; 9719 } 9720 9721 // Shift the bit into the low position. 9722 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 9723 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 9724 // Isolate the bit. 9725 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 9726 DAG.getConstant(1, dl, MVT::i32)); 9727 9728 // If we are supposed to, toggle the bit. 9729 if (InvertBit) 9730 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 9731 DAG.getConstant(1, dl, MVT::i32)); 9732 return Flags; 9733 } 9734 9735 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 9736 SelectionDAG &DAG) const { 9737 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 9738 // the beginning of the argument list. 9739 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 9740 SDLoc DL(Op); 9741 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 9742 case Intrinsic::ppc_cfence: { 9743 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 9744 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 9745 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 9746 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 9747 Op.getOperand(ArgStart + 1)), 9748 Op.getOperand(0)), 9749 0); 9750 } 9751 default: 9752 break; 9753 } 9754 return SDValue(); 9755 } 9756 9757 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const { 9758 // Check for a DIV with the same operands as this REM. 9759 for (auto UI : Op.getOperand(1)->uses()) { 9760 if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) || 9761 (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV)) 9762 if (UI->getOperand(0) == Op.getOperand(0) && 9763 UI->getOperand(1) == Op.getOperand(1)) 9764 return SDValue(); 9765 } 9766 return Op; 9767 } 9768 9769 // Lower scalar BSWAP64 to xxbrd. 9770 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 9771 SDLoc dl(Op); 9772 // MTVSRDD 9773 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 9774 Op.getOperand(0)); 9775 // XXBRD 9776 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 9777 // MFVSRD 9778 int VectorIndex = 0; 9779 if (Subtarget.isLittleEndian()) 9780 VectorIndex = 1; 9781 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 9782 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 9783 return Op; 9784 } 9785 9786 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 9787 // compared to a value that is atomically loaded (atomic loads zero-extend). 9788 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 9789 SelectionDAG &DAG) const { 9790 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 9791 "Expecting an atomic compare-and-swap here."); 9792 SDLoc dl(Op); 9793 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 9794 EVT MemVT = AtomicNode->getMemoryVT(); 9795 if (MemVT.getSizeInBits() >= 32) 9796 return Op; 9797 9798 SDValue CmpOp = Op.getOperand(2); 9799 // If this is already correctly zero-extended, leave it alone. 9800 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 9801 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 9802 return Op; 9803 9804 // Clear the high bits of the compare operand. 9805 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 9806 SDValue NewCmpOp = 9807 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 9808 DAG.getConstant(MaskVal, dl, MVT::i32)); 9809 9810 // Replace the existing compare operand with the properly zero-extended one. 9811 SmallVector<SDValue, 4> Ops; 9812 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 9813 Ops.push_back(AtomicNode->getOperand(i)); 9814 Ops[2] = NewCmpOp; 9815 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 9816 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 9817 auto NodeTy = 9818 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 9819 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 9820 } 9821 9822 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 9823 SelectionDAG &DAG) const { 9824 SDLoc dl(Op); 9825 // Create a stack slot that is 16-byte aligned. 9826 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9827 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9828 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9829 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9830 9831 // Store the input value into Value#0 of the stack slot. 9832 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 9833 MachinePointerInfo()); 9834 // Load it out. 9835 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 9836 } 9837 9838 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 9839 SelectionDAG &DAG) const { 9840 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 9841 "Should only be called for ISD::INSERT_VECTOR_ELT"); 9842 9843 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 9844 // We have legal lowering for constant indices but not for variable ones. 9845 if (!C) 9846 return SDValue(); 9847 9848 EVT VT = Op.getValueType(); 9849 SDLoc dl(Op); 9850 SDValue V1 = Op.getOperand(0); 9851 SDValue V2 = Op.getOperand(1); 9852 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 9853 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 9854 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 9855 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 9856 unsigned InsertAtElement = C->getZExtValue(); 9857 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 9858 if (Subtarget.isLittleEndian()) { 9859 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 9860 } 9861 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 9862 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9863 } 9864 return Op; 9865 } 9866 9867 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 9868 SelectionDAG &DAG) const { 9869 SDLoc dl(Op); 9870 SDNode *N = Op.getNode(); 9871 9872 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 9873 "Unknown extract_vector_elt type"); 9874 9875 SDValue Value = N->getOperand(0); 9876 9877 // The first part of this is like the store lowering except that we don't 9878 // need to track the chain. 9879 9880 // The values are now known to be -1 (false) or 1 (true). To convert this 9881 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9882 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9883 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9884 9885 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9886 // understand how to form the extending load. 9887 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9888 9889 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9890 9891 // Now convert to an integer and store. 9892 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9893 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9894 Value); 9895 9896 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9897 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9898 MachinePointerInfo PtrInfo = 9899 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9900 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9901 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9902 9903 SDValue StoreChain = DAG.getEntryNode(); 9904 SDValue Ops[] = {StoreChain, 9905 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9906 Value, FIdx}; 9907 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9908 9909 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9910 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9911 9912 // Extract the value requested. 9913 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 9914 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9915 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9916 9917 SDValue IntVal = 9918 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 9919 9920 if (!Subtarget.useCRBits()) 9921 return IntVal; 9922 9923 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 9924 } 9925 9926 /// Lowering for QPX v4i1 loads 9927 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 9928 SelectionDAG &DAG) const { 9929 SDLoc dl(Op); 9930 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 9931 SDValue LoadChain = LN->getChain(); 9932 SDValue BasePtr = LN->getBasePtr(); 9933 9934 if (Op.getValueType() == MVT::v4f64 || 9935 Op.getValueType() == MVT::v4f32) { 9936 EVT MemVT = LN->getMemoryVT(); 9937 unsigned Alignment = LN->getAlignment(); 9938 9939 // If this load is properly aligned, then it is legal. 9940 if (Alignment >= MemVT.getStoreSize()) 9941 return Op; 9942 9943 EVT ScalarVT = Op.getValueType().getScalarType(), 9944 ScalarMemVT = MemVT.getScalarType(); 9945 unsigned Stride = ScalarMemVT.getStoreSize(); 9946 9947 SDValue Vals[4], LoadChains[4]; 9948 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9949 SDValue Load; 9950 if (ScalarVT != ScalarMemVT) 9951 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 9952 BasePtr, 9953 LN->getPointerInfo().getWithOffset(Idx * Stride), 9954 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9955 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9956 else 9957 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 9958 LN->getPointerInfo().getWithOffset(Idx * Stride), 9959 MinAlign(Alignment, Idx * Stride), 9960 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9961 9962 if (Idx == 0 && LN->isIndexed()) { 9963 assert(LN->getAddressingMode() == ISD::PRE_INC && 9964 "Unknown addressing mode on vector load"); 9965 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 9966 LN->getAddressingMode()); 9967 } 9968 9969 Vals[Idx] = Load; 9970 LoadChains[Idx] = Load.getValue(1); 9971 9972 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9973 DAG.getConstant(Stride, dl, 9974 BasePtr.getValueType())); 9975 } 9976 9977 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9978 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 9979 9980 if (LN->isIndexed()) { 9981 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 9982 return DAG.getMergeValues(RetOps, dl); 9983 } 9984 9985 SDValue RetOps[] = { Value, TF }; 9986 return DAG.getMergeValues(RetOps, dl); 9987 } 9988 9989 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 9990 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 9991 9992 // To lower v4i1 from a byte array, we load the byte elements of the 9993 // vector and then reuse the BUILD_VECTOR logic. 9994 9995 SDValue VectElmts[4], VectElmtChains[4]; 9996 for (unsigned i = 0; i < 4; ++i) { 9997 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9998 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9999 10000 VectElmts[i] = DAG.getExtLoad( 10001 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 10002 LN->getPointerInfo().getWithOffset(i), MVT::i8, 10003 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10004 VectElmtChains[i] = VectElmts[i].getValue(1); 10005 } 10006 10007 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 10008 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 10009 10010 SDValue RVals[] = { Value, LoadChain }; 10011 return DAG.getMergeValues(RVals, dl); 10012 } 10013 10014 /// Lowering for QPX v4i1 stores 10015 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10016 SelectionDAG &DAG) const { 10017 SDLoc dl(Op); 10018 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10019 SDValue StoreChain = SN->getChain(); 10020 SDValue BasePtr = SN->getBasePtr(); 10021 SDValue Value = SN->getValue(); 10022 10023 if (Value.getValueType() == MVT::v4f64 || 10024 Value.getValueType() == MVT::v4f32) { 10025 EVT MemVT = SN->getMemoryVT(); 10026 unsigned Alignment = SN->getAlignment(); 10027 10028 // If this store is properly aligned, then it is legal. 10029 if (Alignment >= MemVT.getStoreSize()) 10030 return Op; 10031 10032 EVT ScalarVT = Value.getValueType().getScalarType(), 10033 ScalarMemVT = MemVT.getScalarType(); 10034 unsigned Stride = ScalarMemVT.getStoreSize(); 10035 10036 SDValue Stores[4]; 10037 for (unsigned Idx = 0; Idx < 4; ++Idx) { 10038 SDValue Ex = DAG.getNode( 10039 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 10040 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 10041 SDValue Store; 10042 if (ScalarVT != ScalarMemVT) 10043 Store = 10044 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 10045 SN->getPointerInfo().getWithOffset(Idx * Stride), 10046 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 10047 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10048 else 10049 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 10050 SN->getPointerInfo().getWithOffset(Idx * Stride), 10051 MinAlign(Alignment, Idx * Stride), 10052 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10053 10054 if (Idx == 0 && SN->isIndexed()) { 10055 assert(SN->getAddressingMode() == ISD::PRE_INC && 10056 "Unknown addressing mode on vector store"); 10057 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 10058 SN->getAddressingMode()); 10059 } 10060 10061 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10062 DAG.getConstant(Stride, dl, 10063 BasePtr.getValueType())); 10064 Stores[Idx] = Store; 10065 } 10066 10067 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10068 10069 if (SN->isIndexed()) { 10070 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 10071 return DAG.getMergeValues(RetOps, dl); 10072 } 10073 10074 return TF; 10075 } 10076 10077 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 10078 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 10079 10080 // The values are now known to be -1 (false) or 1 (true). To convert this 10081 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10082 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10083 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10084 10085 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10086 // understand how to form the extending load. 10087 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10088 10089 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10090 10091 // Now convert to an integer and store. 10092 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10093 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10094 Value); 10095 10096 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10097 int FrameIdx = MFI.CreateStackObject(16, 16, false); 10098 MachinePointerInfo PtrInfo = 10099 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10100 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10101 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10102 10103 SDValue Ops[] = {StoreChain, 10104 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10105 Value, FIdx}; 10106 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10107 10108 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10109 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10110 10111 // Move data into the byte array. 10112 SDValue Loads[4], LoadChains[4]; 10113 for (unsigned i = 0; i < 4; ++i) { 10114 unsigned Offset = 4*i; 10115 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10116 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10117 10118 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 10119 PtrInfo.getWithOffset(Offset)); 10120 LoadChains[i] = Loads[i].getValue(1); 10121 } 10122 10123 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10124 10125 SDValue Stores[4]; 10126 for (unsigned i = 0; i < 4; ++i) { 10127 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10128 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10129 10130 Stores[i] = DAG.getTruncStore( 10131 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 10132 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 10133 SN->getAAInfo()); 10134 } 10135 10136 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10137 10138 return StoreChain; 10139 } 10140 10141 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10142 SDLoc dl(Op); 10143 if (Op.getValueType() == MVT::v4i32) { 10144 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10145 10146 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 10147 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 10148 10149 SDValue RHSSwap = // = vrlw RHS, 16 10150 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10151 10152 // Shrinkify inputs to v8i16. 10153 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10154 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10155 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10156 10157 // Low parts multiplied together, generating 32-bit results (we ignore the 10158 // top parts). 10159 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10160 LHS, RHS, DAG, dl, MVT::v4i32); 10161 10162 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10163 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10164 // Shift the high parts up 16 bits. 10165 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10166 Neg16, DAG, dl); 10167 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10168 } else if (Op.getValueType() == MVT::v8i16) { 10169 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10170 10171 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 10172 10173 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 10174 LHS, RHS, Zero, DAG, dl); 10175 } else if (Op.getValueType() == MVT::v16i8) { 10176 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10177 bool isLittleEndian = Subtarget.isLittleEndian(); 10178 10179 // Multiply the even 8-bit parts, producing 16-bit sums. 10180 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10181 LHS, RHS, DAG, dl, MVT::v8i16); 10182 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10183 10184 // Multiply the odd 8-bit parts, producing 16-bit sums. 10185 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10186 LHS, RHS, DAG, dl, MVT::v8i16); 10187 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10188 10189 // Merge the results together. Because vmuleub and vmuloub are 10190 // instructions with a big-endian bias, we must reverse the 10191 // element numbering and reverse the meaning of "odd" and "even" 10192 // when generating little endian code. 10193 int Ops[16]; 10194 for (unsigned i = 0; i != 8; ++i) { 10195 if (isLittleEndian) { 10196 Ops[i*2 ] = 2*i; 10197 Ops[i*2+1] = 2*i+16; 10198 } else { 10199 Ops[i*2 ] = 2*i+1; 10200 Ops[i*2+1] = 2*i+1+16; 10201 } 10202 } 10203 if (isLittleEndian) 10204 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10205 else 10206 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10207 } else { 10208 llvm_unreachable("Unknown mul to lower!"); 10209 } 10210 } 10211 10212 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 10213 10214 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 10215 10216 EVT VT = Op.getValueType(); 10217 assert(VT.isVector() && 10218 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 10219 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 10220 VT == MVT::v16i8) && 10221 "Unexpected vector element type!"); 10222 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 10223 "Current subtarget doesn't support smax v2i64!"); 10224 10225 // For vector abs, it can be lowered to: 10226 // abs x 10227 // ==> 10228 // y = -x 10229 // smax(x, y) 10230 10231 SDLoc dl(Op); 10232 SDValue X = Op.getOperand(0); 10233 SDValue Zero = DAG.getConstant(0, dl, VT); 10234 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 10235 10236 // SMAX patch https://reviews.llvm.org/D47332 10237 // hasn't landed yet, so use intrinsic first here. 10238 // TODO: Should use SMAX directly once SMAX patch landed 10239 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 10240 if (VT == MVT::v2i64) 10241 BifID = Intrinsic::ppc_altivec_vmaxsd; 10242 else if (VT == MVT::v8i16) 10243 BifID = Intrinsic::ppc_altivec_vmaxsh; 10244 else if (VT == MVT::v16i8) 10245 BifID = Intrinsic::ppc_altivec_vmaxsb; 10246 10247 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 10248 } 10249 10250 // Custom lowering for fpext vf32 to v2f64 10251 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10252 10253 assert(Op.getOpcode() == ISD::FP_EXTEND && 10254 "Should only be called for ISD::FP_EXTEND"); 10255 10256 // We only want to custom lower an extend from v2f32 to v2f64. 10257 if (Op.getValueType() != MVT::v2f64 || 10258 Op.getOperand(0).getValueType() != MVT::v2f32) 10259 return SDValue(); 10260 10261 SDLoc dl(Op); 10262 SDValue Op0 = Op.getOperand(0); 10263 10264 switch (Op0.getOpcode()) { 10265 default: 10266 return SDValue(); 10267 case ISD::EXTRACT_SUBVECTOR: { 10268 assert(Op0.getNumOperands() == 2 && 10269 isa<ConstantSDNode>(Op0->getOperand(1)) && 10270 "Node should have 2 operands with second one being a constant!"); 10271 10272 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10273 return SDValue(); 10274 10275 // Custom lower is only done for high or low doubleword. 10276 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10277 if (Idx % 2 != 0) 10278 return SDValue(); 10279 10280 // Since input is v4f32, at this point Idx is either 0 or 2. 10281 // Shift to get the doubleword position we want. 10282 int DWord = Idx >> 1; 10283 10284 // High and low word positions are different on little endian. 10285 if (Subtarget.isLittleEndian()) 10286 DWord ^= 0x1; 10287 10288 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10289 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10290 } 10291 case ISD::FADD: 10292 case ISD::FMUL: 10293 case ISD::FSUB: { 10294 SDValue NewLoad[2]; 10295 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10296 // Ensure both input are loads. 10297 SDValue LdOp = Op0.getOperand(i); 10298 if (LdOp.getOpcode() != ISD::LOAD) 10299 return SDValue(); 10300 // Generate new load node. 10301 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10302 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10303 NewLoad[i] = DAG.getMemIntrinsicNode( 10304 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10305 LD->getMemoryVT(), LD->getMemOperand()); 10306 } 10307 SDValue NewOp = 10308 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10309 NewLoad[1], Op0.getNode()->getFlags()); 10310 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10311 DAG.getConstant(0, dl, MVT::i32)); 10312 } 10313 case ISD::LOAD: { 10314 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10315 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10316 SDValue NewLd = DAG.getMemIntrinsicNode( 10317 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10318 LD->getMemoryVT(), LD->getMemOperand()); 10319 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10320 DAG.getConstant(0, dl, MVT::i32)); 10321 } 10322 } 10323 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10324 } 10325 10326 /// LowerOperation - Provide custom lowering hooks for some operations. 10327 /// 10328 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10329 switch (Op.getOpcode()) { 10330 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10331 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10332 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10333 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10334 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10335 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10336 case ISD::SETCC: return LowerSETCC(Op, DAG); 10337 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10338 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10339 10340 // Variable argument lowering. 10341 case ISD::VASTART: return LowerVASTART(Op, DAG); 10342 case ISD::VAARG: return LowerVAARG(Op, DAG); 10343 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10344 10345 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10346 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10347 case ISD::GET_DYNAMIC_AREA_OFFSET: 10348 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10349 10350 // Exception handling lowering. 10351 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10352 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10353 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10354 10355 case ISD::LOAD: return LowerLOAD(Op, DAG); 10356 case ISD::STORE: return LowerSTORE(Op, DAG); 10357 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10358 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10359 case ISD::FP_TO_UINT: 10360 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10361 case ISD::UINT_TO_FP: 10362 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10363 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10364 10365 // Lower 64-bit shifts. 10366 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10367 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10368 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10369 10370 // Vector-related lowering. 10371 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10372 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10373 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10374 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10375 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 10376 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10377 case ISD::MUL: return LowerMUL(Op, DAG); 10378 case ISD::ABS: return LowerABS(Op, DAG); 10379 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10380 10381 // For counter-based loop handling. 10382 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10383 10384 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10385 10386 // Frame & Return address. 10387 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10388 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10389 10390 case ISD::INTRINSIC_VOID: 10391 return LowerINTRINSIC_VOID(Op, DAG); 10392 case ISD::SREM: 10393 case ISD::UREM: 10394 return LowerREM(Op, DAG); 10395 case ISD::BSWAP: 10396 return LowerBSWAP(Op, DAG); 10397 case ISD::ATOMIC_CMP_SWAP: 10398 return LowerATOMIC_CMP_SWAP(Op, DAG); 10399 } 10400 } 10401 10402 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 10403 SmallVectorImpl<SDValue>&Results, 10404 SelectionDAG &DAG) const { 10405 SDLoc dl(N); 10406 switch (N->getOpcode()) { 10407 default: 10408 llvm_unreachable("Do not know how to custom type legalize this operation!"); 10409 case ISD::READCYCLECOUNTER: { 10410 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 10411 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 10412 10413 Results.push_back(RTB); 10414 Results.push_back(RTB.getValue(1)); 10415 Results.push_back(RTB.getValue(2)); 10416 break; 10417 } 10418 case ISD::INTRINSIC_W_CHAIN: { 10419 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 10420 Intrinsic::loop_decrement) 10421 break; 10422 10423 assert(N->getValueType(0) == MVT::i1 && 10424 "Unexpected result type for CTR decrement intrinsic"); 10425 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 10426 N->getValueType(0)); 10427 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 10428 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 10429 N->getOperand(1)); 10430 10431 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 10432 Results.push_back(NewInt.getValue(1)); 10433 break; 10434 } 10435 case ISD::VAARG: { 10436 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 10437 return; 10438 10439 EVT VT = N->getValueType(0); 10440 10441 if (VT == MVT::i64) { 10442 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 10443 10444 Results.push_back(NewNode); 10445 Results.push_back(NewNode.getValue(1)); 10446 } 10447 return; 10448 } 10449 case ISD::FP_TO_SINT: 10450 case ISD::FP_TO_UINT: 10451 // LowerFP_TO_INT() can only handle f32 and f64. 10452 if (N->getOperand(0).getValueType() == MVT::ppcf128) 10453 return; 10454 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 10455 return; 10456 case ISD::TRUNCATE: { 10457 EVT TrgVT = N->getValueType(0); 10458 EVT OpVT = N->getOperand(0).getValueType(); 10459 if (TrgVT.isVector() && 10460 isOperationCustom(N->getOpcode(), TrgVT) && 10461 OpVT.getSizeInBits() <= 128 && 10462 isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits())) 10463 Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG)); 10464 return; 10465 } 10466 case ISD::BITCAST: 10467 // Don't handle bitcast here. 10468 return; 10469 } 10470 } 10471 10472 //===----------------------------------------------------------------------===// 10473 // Other Lowering Code 10474 //===----------------------------------------------------------------------===// 10475 10476 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 10477 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 10478 Function *Func = Intrinsic::getDeclaration(M, Id); 10479 return Builder.CreateCall(Func, {}); 10480 } 10481 10482 // The mappings for emitLeading/TrailingFence is taken from 10483 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 10484 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 10485 Instruction *Inst, 10486 AtomicOrdering Ord) const { 10487 if (Ord == AtomicOrdering::SequentiallyConsistent) 10488 return callIntrinsic(Builder, Intrinsic::ppc_sync); 10489 if (isReleaseOrStronger(Ord)) 10490 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10491 return nullptr; 10492 } 10493 10494 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 10495 Instruction *Inst, 10496 AtomicOrdering Ord) const { 10497 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 10498 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 10499 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 10500 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 10501 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 10502 return Builder.CreateCall( 10503 Intrinsic::getDeclaration( 10504 Builder.GetInsertBlock()->getParent()->getParent(), 10505 Intrinsic::ppc_cfence, {Inst->getType()}), 10506 {Inst}); 10507 // FIXME: Can use isync for rmw operation. 10508 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10509 } 10510 return nullptr; 10511 } 10512 10513 MachineBasicBlock * 10514 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 10515 unsigned AtomicSize, 10516 unsigned BinOpcode, 10517 unsigned CmpOpcode, 10518 unsigned CmpPred) const { 10519 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10520 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10521 10522 auto LoadMnemonic = PPC::LDARX; 10523 auto StoreMnemonic = PPC::STDCX; 10524 switch (AtomicSize) { 10525 default: 10526 llvm_unreachable("Unexpected size of atomic entity"); 10527 case 1: 10528 LoadMnemonic = PPC::LBARX; 10529 StoreMnemonic = PPC::STBCX; 10530 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10531 break; 10532 case 2: 10533 LoadMnemonic = PPC::LHARX; 10534 StoreMnemonic = PPC::STHCX; 10535 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10536 break; 10537 case 4: 10538 LoadMnemonic = PPC::LWARX; 10539 StoreMnemonic = PPC::STWCX; 10540 break; 10541 case 8: 10542 LoadMnemonic = PPC::LDARX; 10543 StoreMnemonic = PPC::STDCX; 10544 break; 10545 } 10546 10547 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10548 MachineFunction *F = BB->getParent(); 10549 MachineFunction::iterator It = ++BB->getIterator(); 10550 10551 Register dest = MI.getOperand(0).getReg(); 10552 Register ptrA = MI.getOperand(1).getReg(); 10553 Register ptrB = MI.getOperand(2).getReg(); 10554 Register incr = MI.getOperand(3).getReg(); 10555 DebugLoc dl = MI.getDebugLoc(); 10556 10557 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10558 MachineBasicBlock *loop2MBB = 10559 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10560 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10561 F->insert(It, loopMBB); 10562 if (CmpOpcode) 10563 F->insert(It, loop2MBB); 10564 F->insert(It, exitMBB); 10565 exitMBB->splice(exitMBB->begin(), BB, 10566 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10567 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10568 10569 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10570 Register TmpReg = (!BinOpcode) ? incr : 10571 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 10572 : &PPC::GPRCRegClass); 10573 10574 // thisMBB: 10575 // ... 10576 // fallthrough --> loopMBB 10577 BB->addSuccessor(loopMBB); 10578 10579 // loopMBB: 10580 // l[wd]arx dest, ptr 10581 // add r0, dest, incr 10582 // st[wd]cx. r0, ptr 10583 // bne- loopMBB 10584 // fallthrough --> exitMBB 10585 10586 // For max/min... 10587 // loopMBB: 10588 // l[wd]arx dest, ptr 10589 // cmpl?[wd] incr, dest 10590 // bgt exitMBB 10591 // loop2MBB: 10592 // st[wd]cx. dest, ptr 10593 // bne- loopMBB 10594 // fallthrough --> exitMBB 10595 10596 BB = loopMBB; 10597 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 10598 .addReg(ptrA).addReg(ptrB); 10599 if (BinOpcode) 10600 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 10601 if (CmpOpcode) { 10602 // Signed comparisons of byte or halfword values must be sign-extended. 10603 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 10604 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10605 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 10606 ExtReg).addReg(dest); 10607 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10608 .addReg(incr).addReg(ExtReg); 10609 } else 10610 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10611 .addReg(incr).addReg(dest); 10612 10613 BuildMI(BB, dl, TII->get(PPC::BCC)) 10614 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 10615 BB->addSuccessor(loop2MBB); 10616 BB->addSuccessor(exitMBB); 10617 BB = loop2MBB; 10618 } 10619 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10620 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 10621 BuildMI(BB, dl, TII->get(PPC::BCC)) 10622 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 10623 BB->addSuccessor(loopMBB); 10624 BB->addSuccessor(exitMBB); 10625 10626 // exitMBB: 10627 // ... 10628 BB = exitMBB; 10629 return BB; 10630 } 10631 10632 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 10633 MachineInstr &MI, MachineBasicBlock *BB, 10634 bool is8bit, // operation 10635 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 10636 // If we support part-word atomic mnemonics, just use them 10637 if (Subtarget.hasPartwordAtomics()) 10638 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 10639 CmpPred); 10640 10641 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10642 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10643 // In 64 bit mode we have to use 64 bits for addresses, even though the 10644 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 10645 // registers without caring whether they're 32 or 64, but here we're 10646 // doing actual arithmetic on the addresses. 10647 bool is64bit = Subtarget.isPPC64(); 10648 bool isLittleEndian = Subtarget.isLittleEndian(); 10649 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 10650 10651 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10652 MachineFunction *F = BB->getParent(); 10653 MachineFunction::iterator It = ++BB->getIterator(); 10654 10655 Register dest = MI.getOperand(0).getReg(); 10656 Register ptrA = MI.getOperand(1).getReg(); 10657 Register ptrB = MI.getOperand(2).getReg(); 10658 Register incr = MI.getOperand(3).getReg(); 10659 DebugLoc dl = MI.getDebugLoc(); 10660 10661 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10662 MachineBasicBlock *loop2MBB = 10663 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10664 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10665 F->insert(It, loopMBB); 10666 if (CmpOpcode) 10667 F->insert(It, loop2MBB); 10668 F->insert(It, exitMBB); 10669 exitMBB->splice(exitMBB->begin(), BB, 10670 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10671 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10672 10673 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10674 const TargetRegisterClass *RC = 10675 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10676 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 10677 10678 Register PtrReg = RegInfo.createVirtualRegister(RC); 10679 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 10680 Register ShiftReg = 10681 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 10682 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 10683 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 10684 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 10685 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 10686 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 10687 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 10688 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 10689 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 10690 Register Ptr1Reg; 10691 Register TmpReg = 10692 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 10693 10694 // thisMBB: 10695 // ... 10696 // fallthrough --> loopMBB 10697 BB->addSuccessor(loopMBB); 10698 10699 // The 4-byte load must be aligned, while a char or short may be 10700 // anywhere in the word. Hence all this nasty bookkeeping code. 10701 // add ptr1, ptrA, ptrB [copy if ptrA==0] 10702 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 10703 // xori shift, shift1, 24 [16] 10704 // rlwinm ptr, ptr1, 0, 0, 29 10705 // slw incr2, incr, shift 10706 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 10707 // slw mask, mask2, shift 10708 // loopMBB: 10709 // lwarx tmpDest, ptr 10710 // add tmp, tmpDest, incr2 10711 // andc tmp2, tmpDest, mask 10712 // and tmp3, tmp, mask 10713 // or tmp4, tmp3, tmp2 10714 // stwcx. tmp4, ptr 10715 // bne- loopMBB 10716 // fallthrough --> exitMBB 10717 // srw dest, tmpDest, shift 10718 if (ptrA != ZeroReg) { 10719 Ptr1Reg = RegInfo.createVirtualRegister(RC); 10720 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 10721 .addReg(ptrA) 10722 .addReg(ptrB); 10723 } else { 10724 Ptr1Reg = ptrB; 10725 } 10726 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 10727 // mode. 10728 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 10729 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 10730 .addImm(3) 10731 .addImm(27) 10732 .addImm(is8bit ? 28 : 27); 10733 if (!isLittleEndian) 10734 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 10735 .addReg(Shift1Reg) 10736 .addImm(is8bit ? 24 : 16); 10737 if (is64bit) 10738 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 10739 .addReg(Ptr1Reg) 10740 .addImm(0) 10741 .addImm(61); 10742 else 10743 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 10744 .addReg(Ptr1Reg) 10745 .addImm(0) 10746 .addImm(0) 10747 .addImm(29); 10748 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 10749 if (is8bit) 10750 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 10751 else { 10752 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 10753 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 10754 .addReg(Mask3Reg) 10755 .addImm(65535); 10756 } 10757 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 10758 .addReg(Mask2Reg) 10759 .addReg(ShiftReg); 10760 10761 BB = loopMBB; 10762 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 10763 .addReg(ZeroReg) 10764 .addReg(PtrReg); 10765 if (BinOpcode) 10766 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 10767 .addReg(Incr2Reg) 10768 .addReg(TmpDestReg); 10769 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 10770 .addReg(TmpDestReg) 10771 .addReg(MaskReg); 10772 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 10773 if (CmpOpcode) { 10774 // For unsigned comparisons, we can directly compare the shifted values. 10775 // For signed comparisons we shift and sign extend. 10776 Register SReg = RegInfo.createVirtualRegister(GPRC); 10777 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 10778 .addReg(TmpDestReg) 10779 .addReg(MaskReg); 10780 unsigned ValueReg = SReg; 10781 unsigned CmpReg = Incr2Reg; 10782 if (CmpOpcode == PPC::CMPW) { 10783 ValueReg = RegInfo.createVirtualRegister(GPRC); 10784 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 10785 .addReg(SReg) 10786 .addReg(ShiftReg); 10787 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 10788 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 10789 .addReg(ValueReg); 10790 ValueReg = ValueSReg; 10791 CmpReg = incr; 10792 } 10793 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10794 .addReg(CmpReg) 10795 .addReg(ValueReg); 10796 BuildMI(BB, dl, TII->get(PPC::BCC)) 10797 .addImm(CmpPred) 10798 .addReg(PPC::CR0) 10799 .addMBB(exitMBB); 10800 BB->addSuccessor(loop2MBB); 10801 BB->addSuccessor(exitMBB); 10802 BB = loop2MBB; 10803 } 10804 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 10805 BuildMI(BB, dl, TII->get(PPC::STWCX)) 10806 .addReg(Tmp4Reg) 10807 .addReg(ZeroReg) 10808 .addReg(PtrReg); 10809 BuildMI(BB, dl, TII->get(PPC::BCC)) 10810 .addImm(PPC::PRED_NE) 10811 .addReg(PPC::CR0) 10812 .addMBB(loopMBB); 10813 BB->addSuccessor(loopMBB); 10814 BB->addSuccessor(exitMBB); 10815 10816 // exitMBB: 10817 // ... 10818 BB = exitMBB; 10819 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 10820 .addReg(TmpDestReg) 10821 .addReg(ShiftReg); 10822 return BB; 10823 } 10824 10825 llvm::MachineBasicBlock * 10826 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 10827 MachineBasicBlock *MBB) const { 10828 DebugLoc DL = MI.getDebugLoc(); 10829 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10830 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10831 10832 MachineFunction *MF = MBB->getParent(); 10833 MachineRegisterInfo &MRI = MF->getRegInfo(); 10834 10835 const BasicBlock *BB = MBB->getBasicBlock(); 10836 MachineFunction::iterator I = ++MBB->getIterator(); 10837 10838 Register DstReg = MI.getOperand(0).getReg(); 10839 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 10840 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 10841 Register mainDstReg = MRI.createVirtualRegister(RC); 10842 Register restoreDstReg = MRI.createVirtualRegister(RC); 10843 10844 MVT PVT = getPointerTy(MF->getDataLayout()); 10845 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10846 "Invalid Pointer Size!"); 10847 // For v = setjmp(buf), we generate 10848 // 10849 // thisMBB: 10850 // SjLjSetup mainMBB 10851 // bl mainMBB 10852 // v_restore = 1 10853 // b sinkMBB 10854 // 10855 // mainMBB: 10856 // buf[LabelOffset] = LR 10857 // v_main = 0 10858 // 10859 // sinkMBB: 10860 // v = phi(main, restore) 10861 // 10862 10863 MachineBasicBlock *thisMBB = MBB; 10864 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 10865 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 10866 MF->insert(I, mainMBB); 10867 MF->insert(I, sinkMBB); 10868 10869 MachineInstrBuilder MIB; 10870 10871 // Transfer the remainder of BB and its successor edges to sinkMBB. 10872 sinkMBB->splice(sinkMBB->begin(), MBB, 10873 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 10874 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 10875 10876 // Note that the structure of the jmp_buf used here is not compatible 10877 // with that used by libc, and is not designed to be. Specifically, it 10878 // stores only those 'reserved' registers that LLVM does not otherwise 10879 // understand how to spill. Also, by convention, by the time this 10880 // intrinsic is called, Clang has already stored the frame address in the 10881 // first slot of the buffer and stack address in the third. Following the 10882 // X86 target code, we'll store the jump address in the second slot. We also 10883 // need to save the TOC pointer (R2) to handle jumps between shared 10884 // libraries, and that will be stored in the fourth slot. The thread 10885 // identifier (R13) is not affected. 10886 10887 // thisMBB: 10888 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10889 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10890 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10891 10892 // Prepare IP either in reg. 10893 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 10894 Register LabelReg = MRI.createVirtualRegister(PtrRC); 10895 Register BufReg = MI.getOperand(1).getReg(); 10896 10897 if (Subtarget.is64BitELFABI()) { 10898 setUsesTOCBasePtr(*MBB->getParent()); 10899 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 10900 .addReg(PPC::X2) 10901 .addImm(TOCOffset) 10902 .addReg(BufReg) 10903 .cloneMemRefs(MI); 10904 } 10905 10906 // Naked functions never have a base pointer, and so we use r1. For all 10907 // other functions, this decision must be delayed until during PEI. 10908 unsigned BaseReg; 10909 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 10910 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 10911 else 10912 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 10913 10914 MIB = BuildMI(*thisMBB, MI, DL, 10915 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 10916 .addReg(BaseReg) 10917 .addImm(BPOffset) 10918 .addReg(BufReg) 10919 .cloneMemRefs(MI); 10920 10921 // Setup 10922 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 10923 MIB.addRegMask(TRI->getNoPreservedMask()); 10924 10925 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 10926 10927 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 10928 .addMBB(mainMBB); 10929 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 10930 10931 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 10932 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 10933 10934 // mainMBB: 10935 // mainDstReg = 0 10936 MIB = 10937 BuildMI(mainMBB, DL, 10938 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 10939 10940 // Store IP 10941 if (Subtarget.isPPC64()) { 10942 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 10943 .addReg(LabelReg) 10944 .addImm(LabelOffset) 10945 .addReg(BufReg); 10946 } else { 10947 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 10948 .addReg(LabelReg) 10949 .addImm(LabelOffset) 10950 .addReg(BufReg); 10951 } 10952 MIB.cloneMemRefs(MI); 10953 10954 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 10955 mainMBB->addSuccessor(sinkMBB); 10956 10957 // sinkMBB: 10958 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 10959 TII->get(PPC::PHI), DstReg) 10960 .addReg(mainDstReg).addMBB(mainMBB) 10961 .addReg(restoreDstReg).addMBB(thisMBB); 10962 10963 MI.eraseFromParent(); 10964 return sinkMBB; 10965 } 10966 10967 MachineBasicBlock * 10968 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 10969 MachineBasicBlock *MBB) const { 10970 DebugLoc DL = MI.getDebugLoc(); 10971 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10972 10973 MachineFunction *MF = MBB->getParent(); 10974 MachineRegisterInfo &MRI = MF->getRegInfo(); 10975 10976 MVT PVT = getPointerTy(MF->getDataLayout()); 10977 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10978 "Invalid Pointer Size!"); 10979 10980 const TargetRegisterClass *RC = 10981 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10982 Register Tmp = MRI.createVirtualRegister(RC); 10983 // Since FP is only updated here but NOT referenced, it's treated as GPR. 10984 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 10985 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 10986 unsigned BP = 10987 (PVT == MVT::i64) 10988 ? PPC::X30 10989 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 10990 : PPC::R30); 10991 10992 MachineInstrBuilder MIB; 10993 10994 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10995 const int64_t SPOffset = 2 * PVT.getStoreSize(); 10996 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10997 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10998 10999 Register BufReg = MI.getOperand(0).getReg(); 11000 11001 // Reload FP (the jumped-to function may not have had a 11002 // frame pointer, and if so, then its r31 will be restored 11003 // as necessary). 11004 if (PVT == MVT::i64) { 11005 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11006 .addImm(0) 11007 .addReg(BufReg); 11008 } else { 11009 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11010 .addImm(0) 11011 .addReg(BufReg); 11012 } 11013 MIB.cloneMemRefs(MI); 11014 11015 // Reload IP 11016 if (PVT == MVT::i64) { 11017 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11018 .addImm(LabelOffset) 11019 .addReg(BufReg); 11020 } else { 11021 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11022 .addImm(LabelOffset) 11023 .addReg(BufReg); 11024 } 11025 MIB.cloneMemRefs(MI); 11026 11027 // Reload SP 11028 if (PVT == MVT::i64) { 11029 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11030 .addImm(SPOffset) 11031 .addReg(BufReg); 11032 } else { 11033 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11034 .addImm(SPOffset) 11035 .addReg(BufReg); 11036 } 11037 MIB.cloneMemRefs(MI); 11038 11039 // Reload BP 11040 if (PVT == MVT::i64) { 11041 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11042 .addImm(BPOffset) 11043 .addReg(BufReg); 11044 } else { 11045 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11046 .addImm(BPOffset) 11047 .addReg(BufReg); 11048 } 11049 MIB.cloneMemRefs(MI); 11050 11051 // Reload TOC 11052 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11053 setUsesTOCBasePtr(*MBB->getParent()); 11054 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11055 .addImm(TOCOffset) 11056 .addReg(BufReg) 11057 .cloneMemRefs(MI); 11058 } 11059 11060 // Jump 11061 BuildMI(*MBB, MI, DL, 11062 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11063 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11064 11065 MI.eraseFromParent(); 11066 return MBB; 11067 } 11068 11069 MachineBasicBlock * 11070 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11071 MachineBasicBlock *BB) const { 11072 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11073 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11074 if (Subtarget.is64BitELFABI() && 11075 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11076 // Call lowering should have added an r2 operand to indicate a dependence 11077 // on the TOC base pointer value. It can't however, because there is no 11078 // way to mark the dependence as implicit there, and so the stackmap code 11079 // will confuse it with a regular operand. Instead, add the dependence 11080 // here. 11081 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11082 } 11083 11084 return emitPatchPoint(MI, BB); 11085 } 11086 11087 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11088 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11089 return emitEHSjLjSetJmp(MI, BB); 11090 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11091 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11092 return emitEHSjLjLongJmp(MI, BB); 11093 } 11094 11095 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11096 11097 // To "insert" these instructions we actually have to insert their 11098 // control-flow patterns. 11099 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11100 MachineFunction::iterator It = ++BB->getIterator(); 11101 11102 MachineFunction *F = BB->getParent(); 11103 11104 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11105 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11106 MI.getOpcode() == PPC::SELECT_I8) { 11107 SmallVector<MachineOperand, 2> Cond; 11108 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11109 MI.getOpcode() == PPC::SELECT_CC_I8) 11110 Cond.push_back(MI.getOperand(4)); 11111 else 11112 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11113 Cond.push_back(MI.getOperand(1)); 11114 11115 DebugLoc dl = MI.getDebugLoc(); 11116 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11117 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11118 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 11119 MI.getOpcode() == PPC::SELECT_CC_F8 || 11120 MI.getOpcode() == PPC::SELECT_CC_F16 || 11121 MI.getOpcode() == PPC::SELECT_CC_QFRC || 11122 MI.getOpcode() == PPC::SELECT_CC_QSRC || 11123 MI.getOpcode() == PPC::SELECT_CC_QBRC || 11124 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11125 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11126 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11127 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11128 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11129 MI.getOpcode() == PPC::SELECT_CC_SPE || 11130 MI.getOpcode() == PPC::SELECT_F4 || 11131 MI.getOpcode() == PPC::SELECT_F8 || 11132 MI.getOpcode() == PPC::SELECT_F16 || 11133 MI.getOpcode() == PPC::SELECT_QFRC || 11134 MI.getOpcode() == PPC::SELECT_QSRC || 11135 MI.getOpcode() == PPC::SELECT_QBRC || 11136 MI.getOpcode() == PPC::SELECT_SPE || 11137 MI.getOpcode() == PPC::SELECT_SPE4 || 11138 MI.getOpcode() == PPC::SELECT_VRRC || 11139 MI.getOpcode() == PPC::SELECT_VSFRC || 11140 MI.getOpcode() == PPC::SELECT_VSSRC || 11141 MI.getOpcode() == PPC::SELECT_VSRC) { 11142 // The incoming instruction knows the destination vreg to set, the 11143 // condition code register to branch on, the true/false values to 11144 // select between, and a branch opcode to use. 11145 11146 // thisMBB: 11147 // ... 11148 // TrueVal = ... 11149 // cmpTY ccX, r1, r2 11150 // bCC copy1MBB 11151 // fallthrough --> copy0MBB 11152 MachineBasicBlock *thisMBB = BB; 11153 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 11154 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11155 DebugLoc dl = MI.getDebugLoc(); 11156 F->insert(It, copy0MBB); 11157 F->insert(It, sinkMBB); 11158 11159 // Transfer the remainder of BB and its successor edges to sinkMBB. 11160 sinkMBB->splice(sinkMBB->begin(), BB, 11161 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11162 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11163 11164 // Next, add the true and fallthrough blocks as its successors. 11165 BB->addSuccessor(copy0MBB); 11166 BB->addSuccessor(sinkMBB); 11167 11168 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 11169 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 11170 MI.getOpcode() == PPC::SELECT_F16 || 11171 MI.getOpcode() == PPC::SELECT_SPE4 || 11172 MI.getOpcode() == PPC::SELECT_SPE || 11173 MI.getOpcode() == PPC::SELECT_QFRC || 11174 MI.getOpcode() == PPC::SELECT_QSRC || 11175 MI.getOpcode() == PPC::SELECT_QBRC || 11176 MI.getOpcode() == PPC::SELECT_VRRC || 11177 MI.getOpcode() == PPC::SELECT_VSFRC || 11178 MI.getOpcode() == PPC::SELECT_VSSRC || 11179 MI.getOpcode() == PPC::SELECT_VSRC) { 11180 BuildMI(BB, dl, TII->get(PPC::BC)) 11181 .addReg(MI.getOperand(1).getReg()) 11182 .addMBB(sinkMBB); 11183 } else { 11184 unsigned SelectPred = MI.getOperand(4).getImm(); 11185 BuildMI(BB, dl, TII->get(PPC::BCC)) 11186 .addImm(SelectPred) 11187 .addReg(MI.getOperand(1).getReg()) 11188 .addMBB(sinkMBB); 11189 } 11190 11191 // copy0MBB: 11192 // %FalseValue = ... 11193 // # fallthrough to sinkMBB 11194 BB = copy0MBB; 11195 11196 // Update machine-CFG edges 11197 BB->addSuccessor(sinkMBB); 11198 11199 // sinkMBB: 11200 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 11201 // ... 11202 BB = sinkMBB; 11203 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 11204 .addReg(MI.getOperand(3).getReg()) 11205 .addMBB(copy0MBB) 11206 .addReg(MI.getOperand(2).getReg()) 11207 .addMBB(thisMBB); 11208 } else if (MI.getOpcode() == PPC::ReadTB) { 11209 // To read the 64-bit time-base register on a 32-bit target, we read the 11210 // two halves. Should the counter have wrapped while it was being read, we 11211 // need to try again. 11212 // ... 11213 // readLoop: 11214 // mfspr Rx,TBU # load from TBU 11215 // mfspr Ry,TB # load from TB 11216 // mfspr Rz,TBU # load from TBU 11217 // cmpw crX,Rx,Rz # check if 'old'='new' 11218 // bne readLoop # branch if they're not equal 11219 // ... 11220 11221 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 11222 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11223 DebugLoc dl = MI.getDebugLoc(); 11224 F->insert(It, readMBB); 11225 F->insert(It, sinkMBB); 11226 11227 // Transfer the remainder of BB and its successor edges to sinkMBB. 11228 sinkMBB->splice(sinkMBB->begin(), BB, 11229 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11230 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11231 11232 BB->addSuccessor(readMBB); 11233 BB = readMBB; 11234 11235 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11236 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11237 Register LoReg = MI.getOperand(0).getReg(); 11238 Register HiReg = MI.getOperand(1).getReg(); 11239 11240 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 11241 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 11242 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 11243 11244 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11245 11246 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 11247 .addReg(HiReg) 11248 .addReg(ReadAgainReg); 11249 BuildMI(BB, dl, TII->get(PPC::BCC)) 11250 .addImm(PPC::PRED_NE) 11251 .addReg(CmpReg) 11252 .addMBB(readMBB); 11253 11254 BB->addSuccessor(readMBB); 11255 BB->addSuccessor(sinkMBB); 11256 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 11257 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 11258 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 11259 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 11260 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 11261 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 11262 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 11263 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 11264 11265 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 11266 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 11267 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 11268 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 11269 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 11270 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 11271 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 11272 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 11273 11274 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 11275 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 11276 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 11277 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 11278 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 11279 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 11280 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 11281 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 11282 11283 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 11284 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 11285 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 11286 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 11287 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 11288 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 11289 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 11290 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 11291 11292 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 11293 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 11294 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 11295 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 11296 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 11297 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 11298 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 11299 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 11300 11301 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 11302 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 11303 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 11304 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 11305 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 11306 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 11307 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 11308 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 11309 11310 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 11311 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 11312 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 11313 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 11314 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 11315 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 11316 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 11317 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 11318 11319 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 11320 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 11321 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 11322 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 11323 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 11324 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 11325 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 11326 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 11327 11328 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 11329 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 11330 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 11331 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 11332 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 11333 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 11334 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 11335 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 11336 11337 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 11338 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 11339 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 11340 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 11341 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 11342 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 11343 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 11344 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 11345 11346 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 11347 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 11348 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 11349 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 11350 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 11351 BB = EmitAtomicBinary(MI, BB, 4, 0); 11352 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 11353 BB = EmitAtomicBinary(MI, BB, 8, 0); 11354 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 11355 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 11356 (Subtarget.hasPartwordAtomics() && 11357 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 11358 (Subtarget.hasPartwordAtomics() && 11359 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 11360 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 11361 11362 auto LoadMnemonic = PPC::LDARX; 11363 auto StoreMnemonic = PPC::STDCX; 11364 switch (MI.getOpcode()) { 11365 default: 11366 llvm_unreachable("Compare and swap of unknown size"); 11367 case PPC::ATOMIC_CMP_SWAP_I8: 11368 LoadMnemonic = PPC::LBARX; 11369 StoreMnemonic = PPC::STBCX; 11370 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11371 break; 11372 case PPC::ATOMIC_CMP_SWAP_I16: 11373 LoadMnemonic = PPC::LHARX; 11374 StoreMnemonic = PPC::STHCX; 11375 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11376 break; 11377 case PPC::ATOMIC_CMP_SWAP_I32: 11378 LoadMnemonic = PPC::LWARX; 11379 StoreMnemonic = PPC::STWCX; 11380 break; 11381 case PPC::ATOMIC_CMP_SWAP_I64: 11382 LoadMnemonic = PPC::LDARX; 11383 StoreMnemonic = PPC::STDCX; 11384 break; 11385 } 11386 Register dest = MI.getOperand(0).getReg(); 11387 Register ptrA = MI.getOperand(1).getReg(); 11388 Register ptrB = MI.getOperand(2).getReg(); 11389 Register oldval = MI.getOperand(3).getReg(); 11390 Register newval = MI.getOperand(4).getReg(); 11391 DebugLoc dl = MI.getDebugLoc(); 11392 11393 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11394 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11395 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11396 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11397 F->insert(It, loop1MBB); 11398 F->insert(It, loop2MBB); 11399 F->insert(It, midMBB); 11400 F->insert(It, exitMBB); 11401 exitMBB->splice(exitMBB->begin(), BB, 11402 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11403 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11404 11405 // thisMBB: 11406 // ... 11407 // fallthrough --> loopMBB 11408 BB->addSuccessor(loop1MBB); 11409 11410 // loop1MBB: 11411 // l[bhwd]arx dest, ptr 11412 // cmp[wd] dest, oldval 11413 // bne- midMBB 11414 // loop2MBB: 11415 // st[bhwd]cx. newval, ptr 11416 // bne- loopMBB 11417 // b exitBB 11418 // midMBB: 11419 // st[bhwd]cx. dest, ptr 11420 // exitBB: 11421 BB = loop1MBB; 11422 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 11423 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 11424 .addReg(oldval) 11425 .addReg(dest); 11426 BuildMI(BB, dl, TII->get(PPC::BCC)) 11427 .addImm(PPC::PRED_NE) 11428 .addReg(PPC::CR0) 11429 .addMBB(midMBB); 11430 BB->addSuccessor(loop2MBB); 11431 BB->addSuccessor(midMBB); 11432 11433 BB = loop2MBB; 11434 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11435 .addReg(newval) 11436 .addReg(ptrA) 11437 .addReg(ptrB); 11438 BuildMI(BB, dl, TII->get(PPC::BCC)) 11439 .addImm(PPC::PRED_NE) 11440 .addReg(PPC::CR0) 11441 .addMBB(loop1MBB); 11442 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11443 BB->addSuccessor(loop1MBB); 11444 BB->addSuccessor(exitMBB); 11445 11446 BB = midMBB; 11447 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11448 .addReg(dest) 11449 .addReg(ptrA) 11450 .addReg(ptrB); 11451 BB->addSuccessor(exitMBB); 11452 11453 // exitMBB: 11454 // ... 11455 BB = exitMBB; 11456 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 11457 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 11458 // We must use 64-bit registers for addresses when targeting 64-bit, 11459 // since we're actually doing arithmetic on them. Other registers 11460 // can be 32-bit. 11461 bool is64bit = Subtarget.isPPC64(); 11462 bool isLittleEndian = Subtarget.isLittleEndian(); 11463 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 11464 11465 Register dest = MI.getOperand(0).getReg(); 11466 Register ptrA = MI.getOperand(1).getReg(); 11467 Register ptrB = MI.getOperand(2).getReg(); 11468 Register oldval = MI.getOperand(3).getReg(); 11469 Register newval = MI.getOperand(4).getReg(); 11470 DebugLoc dl = MI.getDebugLoc(); 11471 11472 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11473 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11474 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11475 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11476 F->insert(It, loop1MBB); 11477 F->insert(It, loop2MBB); 11478 F->insert(It, midMBB); 11479 F->insert(It, exitMBB); 11480 exitMBB->splice(exitMBB->begin(), BB, 11481 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11482 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11483 11484 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11485 const TargetRegisterClass *RC = 11486 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11487 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11488 11489 Register PtrReg = RegInfo.createVirtualRegister(RC); 11490 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11491 Register ShiftReg = 11492 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11493 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 11494 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 11495 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 11496 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 11497 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11498 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11499 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11500 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11501 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11502 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11503 Register Ptr1Reg; 11504 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 11505 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11506 // thisMBB: 11507 // ... 11508 // fallthrough --> loopMBB 11509 BB->addSuccessor(loop1MBB); 11510 11511 // The 4-byte load must be aligned, while a char or short may be 11512 // anywhere in the word. Hence all this nasty bookkeeping code. 11513 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11514 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11515 // xori shift, shift1, 24 [16] 11516 // rlwinm ptr, ptr1, 0, 0, 29 11517 // slw newval2, newval, shift 11518 // slw oldval2, oldval,shift 11519 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11520 // slw mask, mask2, shift 11521 // and newval3, newval2, mask 11522 // and oldval3, oldval2, mask 11523 // loop1MBB: 11524 // lwarx tmpDest, ptr 11525 // and tmp, tmpDest, mask 11526 // cmpw tmp, oldval3 11527 // bne- midMBB 11528 // loop2MBB: 11529 // andc tmp2, tmpDest, mask 11530 // or tmp4, tmp2, newval3 11531 // stwcx. tmp4, ptr 11532 // bne- loop1MBB 11533 // b exitBB 11534 // midMBB: 11535 // stwcx. tmpDest, ptr 11536 // exitBB: 11537 // srw dest, tmpDest, shift 11538 if (ptrA != ZeroReg) { 11539 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11540 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11541 .addReg(ptrA) 11542 .addReg(ptrB); 11543 } else { 11544 Ptr1Reg = ptrB; 11545 } 11546 11547 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11548 // mode. 11549 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11550 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11551 .addImm(3) 11552 .addImm(27) 11553 .addImm(is8bit ? 28 : 27); 11554 if (!isLittleEndian) 11555 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11556 .addReg(Shift1Reg) 11557 .addImm(is8bit ? 24 : 16); 11558 if (is64bit) 11559 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11560 .addReg(Ptr1Reg) 11561 .addImm(0) 11562 .addImm(61); 11563 else 11564 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11565 .addReg(Ptr1Reg) 11566 .addImm(0) 11567 .addImm(0) 11568 .addImm(29); 11569 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 11570 .addReg(newval) 11571 .addReg(ShiftReg); 11572 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 11573 .addReg(oldval) 11574 .addReg(ShiftReg); 11575 if (is8bit) 11576 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11577 else { 11578 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11579 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11580 .addReg(Mask3Reg) 11581 .addImm(65535); 11582 } 11583 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11584 .addReg(Mask2Reg) 11585 .addReg(ShiftReg); 11586 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 11587 .addReg(NewVal2Reg) 11588 .addReg(MaskReg); 11589 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 11590 .addReg(OldVal2Reg) 11591 .addReg(MaskReg); 11592 11593 BB = loop1MBB; 11594 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11595 .addReg(ZeroReg) 11596 .addReg(PtrReg); 11597 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 11598 .addReg(TmpDestReg) 11599 .addReg(MaskReg); 11600 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 11601 .addReg(TmpReg) 11602 .addReg(OldVal3Reg); 11603 BuildMI(BB, dl, TII->get(PPC::BCC)) 11604 .addImm(PPC::PRED_NE) 11605 .addReg(PPC::CR0) 11606 .addMBB(midMBB); 11607 BB->addSuccessor(loop2MBB); 11608 BB->addSuccessor(midMBB); 11609 11610 BB = loop2MBB; 11611 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11612 .addReg(TmpDestReg) 11613 .addReg(MaskReg); 11614 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 11615 .addReg(Tmp2Reg) 11616 .addReg(NewVal3Reg); 11617 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11618 .addReg(Tmp4Reg) 11619 .addReg(ZeroReg) 11620 .addReg(PtrReg); 11621 BuildMI(BB, dl, TII->get(PPC::BCC)) 11622 .addImm(PPC::PRED_NE) 11623 .addReg(PPC::CR0) 11624 .addMBB(loop1MBB); 11625 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11626 BB->addSuccessor(loop1MBB); 11627 BB->addSuccessor(exitMBB); 11628 11629 BB = midMBB; 11630 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11631 .addReg(TmpDestReg) 11632 .addReg(ZeroReg) 11633 .addReg(PtrReg); 11634 BB->addSuccessor(exitMBB); 11635 11636 // exitMBB: 11637 // ... 11638 BB = exitMBB; 11639 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11640 .addReg(TmpReg) 11641 .addReg(ShiftReg); 11642 } else if (MI.getOpcode() == PPC::FADDrtz) { 11643 // This pseudo performs an FADD with rounding mode temporarily forced 11644 // to round-to-zero. We emit this via custom inserter since the FPSCR 11645 // is not modeled at the SelectionDAG level. 11646 Register Dest = MI.getOperand(0).getReg(); 11647 Register Src1 = MI.getOperand(1).getReg(); 11648 Register Src2 = MI.getOperand(2).getReg(); 11649 DebugLoc dl = MI.getDebugLoc(); 11650 11651 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11652 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11653 11654 // Save FPSCR value. 11655 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 11656 11657 // Set rounding mode to round-to-zero. 11658 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 11659 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 11660 11661 // Perform addition. 11662 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 11663 11664 // Restore FPSCR value. 11665 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 11666 } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 11667 MI.getOpcode() == PPC::ANDIo_1_GT_BIT || 11668 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 11669 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) { 11670 unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 11671 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) 11672 ? PPC::ANDI8o 11673 : PPC::ANDIo; 11674 bool IsEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 11675 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8); 11676 11677 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11678 Register Dest = RegInfo.createVirtualRegister( 11679 Opcode == PPC::ANDIo ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 11680 11681 DebugLoc Dl = MI.getDebugLoc(); 11682 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 11683 .addReg(MI.getOperand(1).getReg()) 11684 .addImm(1); 11685 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11686 MI.getOperand(0).getReg()) 11687 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 11688 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 11689 DebugLoc Dl = MI.getDebugLoc(); 11690 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11691 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11692 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 11693 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11694 MI.getOperand(0).getReg()) 11695 .addReg(CRReg); 11696 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 11697 DebugLoc Dl = MI.getDebugLoc(); 11698 unsigned Imm = MI.getOperand(1).getImm(); 11699 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 11700 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11701 MI.getOperand(0).getReg()) 11702 .addReg(PPC::CR0EQ); 11703 } else if (MI.getOpcode() == PPC::SETRNDi) { 11704 DebugLoc dl = MI.getDebugLoc(); 11705 Register OldFPSCRReg = MI.getOperand(0).getReg(); 11706 11707 // Save FPSCR value. 11708 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11709 11710 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 11711 // the following settings: 11712 // 00 Round to nearest 11713 // 01 Round to 0 11714 // 10 Round to +inf 11715 // 11 Round to -inf 11716 11717 // When the operand is immediate, using the two least significant bits of 11718 // the immediate to set the bits 62:63 of FPSCR. 11719 unsigned Mode = MI.getOperand(1).getImm(); 11720 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 11721 .addImm(31); 11722 11723 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 11724 .addImm(30); 11725 } else if (MI.getOpcode() == PPC::SETRND) { 11726 DebugLoc dl = MI.getDebugLoc(); 11727 11728 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 11729 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 11730 // If the target doesn't have DirectMove, we should use stack to do the 11731 // conversion, because the target doesn't have the instructions like mtvsrd 11732 // or mfvsrd to do this conversion directly. 11733 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 11734 if (Subtarget.hasDirectMove()) { 11735 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 11736 .addReg(SrcReg); 11737 } else { 11738 // Use stack to do the register copy. 11739 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 11740 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11741 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 11742 if (RC == &PPC::F8RCRegClass) { 11743 // Copy register from F8RCRegClass to G8RCRegclass. 11744 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 11745 "Unsupported RegClass."); 11746 11747 StoreOp = PPC::STFD; 11748 LoadOp = PPC::LD; 11749 } else { 11750 // Copy register from G8RCRegClass to F8RCRegclass. 11751 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 11752 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 11753 "Unsupported RegClass."); 11754 } 11755 11756 MachineFrameInfo &MFI = F->getFrameInfo(); 11757 int FrameIdx = MFI.CreateStackObject(8, 8, false); 11758 11759 MachineMemOperand *MMOStore = F->getMachineMemOperand( 11760 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 11761 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 11762 MFI.getObjectAlignment(FrameIdx)); 11763 11764 // Store the SrcReg into the stack. 11765 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 11766 .addReg(SrcReg) 11767 .addImm(0) 11768 .addFrameIndex(FrameIdx) 11769 .addMemOperand(MMOStore); 11770 11771 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 11772 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 11773 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 11774 MFI.getObjectAlignment(FrameIdx)); 11775 11776 // Load from the stack where SrcReg is stored, and save to DestReg, 11777 // so we have done the RegClass conversion from RegClass::SrcReg to 11778 // RegClass::DestReg. 11779 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 11780 .addImm(0) 11781 .addFrameIndex(FrameIdx) 11782 .addMemOperand(MMOLoad); 11783 } 11784 }; 11785 11786 Register OldFPSCRReg = MI.getOperand(0).getReg(); 11787 11788 // Save FPSCR value. 11789 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11790 11791 // When the operand is gprc register, use two least significant bits of the 11792 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 11793 // 11794 // copy OldFPSCRTmpReg, OldFPSCRReg 11795 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 11796 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 11797 // copy NewFPSCRReg, NewFPSCRTmpReg 11798 // mtfsf 255, NewFPSCRReg 11799 MachineOperand SrcOp = MI.getOperand(1); 11800 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11801 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11802 11803 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 11804 11805 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11806 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11807 11808 // The first operand of INSERT_SUBREG should be a register which has 11809 // subregisters, we only care about its RegClass, so we should use an 11810 // IMPLICIT_DEF register. 11811 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 11812 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 11813 .addReg(ImDefReg) 11814 .add(SrcOp) 11815 .addImm(1); 11816 11817 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11818 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 11819 .addReg(OldFPSCRTmpReg) 11820 .addReg(ExtSrcReg) 11821 .addImm(0) 11822 .addImm(62); 11823 11824 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11825 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 11826 11827 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 11828 // bits of FPSCR. 11829 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 11830 .addImm(255) 11831 .addReg(NewFPSCRReg) 11832 .addImm(0) 11833 .addImm(0); 11834 } else { 11835 llvm_unreachable("Unexpected instr type to insert"); 11836 } 11837 11838 MI.eraseFromParent(); // The pseudo instruction is gone now. 11839 return BB; 11840 } 11841 11842 //===----------------------------------------------------------------------===// 11843 // Target Optimization Hooks 11844 //===----------------------------------------------------------------------===// 11845 11846 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 11847 // For the estimates, convergence is quadratic, so we essentially double the 11848 // number of digits correct after every iteration. For both FRE and FRSQRTE, 11849 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 11850 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 11851 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 11852 if (VT.getScalarType() == MVT::f64) 11853 RefinementSteps++; 11854 return RefinementSteps; 11855 } 11856 11857 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 11858 int Enabled, int &RefinementSteps, 11859 bool &UseOneConstNR, 11860 bool Reciprocal) const { 11861 EVT VT = Operand.getValueType(); 11862 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 11863 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 11864 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 11865 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 11866 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 11867 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 11868 if (RefinementSteps == ReciprocalEstimate::Unspecified) 11869 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 11870 11871 // The Newton-Raphson computation with a single constant does not provide 11872 // enough accuracy on some CPUs. 11873 UseOneConstNR = !Subtarget.needsTwoConstNR(); 11874 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 11875 } 11876 return SDValue(); 11877 } 11878 11879 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 11880 int Enabled, 11881 int &RefinementSteps) const { 11882 EVT VT = Operand.getValueType(); 11883 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 11884 (VT == MVT::f64 && Subtarget.hasFRE()) || 11885 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 11886 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 11887 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 11888 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 11889 if (RefinementSteps == ReciprocalEstimate::Unspecified) 11890 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 11891 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 11892 } 11893 return SDValue(); 11894 } 11895 11896 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 11897 // Note: This functionality is used only when unsafe-fp-math is enabled, and 11898 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 11899 // enabled for division), this functionality is redundant with the default 11900 // combiner logic (once the division -> reciprocal/multiply transformation 11901 // has taken place). As a result, this matters more for older cores than for 11902 // newer ones. 11903 11904 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 11905 // reciprocal if there are two or more FDIVs (for embedded cores with only 11906 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 11907 switch (Subtarget.getCPUDirective()) { 11908 default: 11909 return 3; 11910 case PPC::DIR_440: 11911 case PPC::DIR_A2: 11912 case PPC::DIR_E500: 11913 case PPC::DIR_E500mc: 11914 case PPC::DIR_E5500: 11915 return 2; 11916 } 11917 } 11918 11919 // isConsecutiveLSLoc needs to work even if all adds have not yet been 11920 // collapsed, and so we need to look through chains of them. 11921 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 11922 int64_t& Offset, SelectionDAG &DAG) { 11923 if (DAG.isBaseWithConstantOffset(Loc)) { 11924 Base = Loc.getOperand(0); 11925 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 11926 11927 // The base might itself be a base plus an offset, and if so, accumulate 11928 // that as well. 11929 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 11930 } 11931 } 11932 11933 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 11934 unsigned Bytes, int Dist, 11935 SelectionDAG &DAG) { 11936 if (VT.getSizeInBits() / 8 != Bytes) 11937 return false; 11938 11939 SDValue BaseLoc = Base->getBasePtr(); 11940 if (Loc.getOpcode() == ISD::FrameIndex) { 11941 if (BaseLoc.getOpcode() != ISD::FrameIndex) 11942 return false; 11943 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 11944 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 11945 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 11946 int FS = MFI.getObjectSize(FI); 11947 int BFS = MFI.getObjectSize(BFI); 11948 if (FS != BFS || FS != (int)Bytes) return false; 11949 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 11950 } 11951 11952 SDValue Base1 = Loc, Base2 = BaseLoc; 11953 int64_t Offset1 = 0, Offset2 = 0; 11954 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 11955 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 11956 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 11957 return true; 11958 11959 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11960 const GlobalValue *GV1 = nullptr; 11961 const GlobalValue *GV2 = nullptr; 11962 Offset1 = 0; 11963 Offset2 = 0; 11964 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 11965 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 11966 if (isGA1 && isGA2 && GV1 == GV2) 11967 return Offset1 == (Offset2 + Dist*Bytes); 11968 return false; 11969 } 11970 11971 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 11972 // not enforce equality of the chain operands. 11973 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 11974 unsigned Bytes, int Dist, 11975 SelectionDAG &DAG) { 11976 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 11977 EVT VT = LS->getMemoryVT(); 11978 SDValue Loc = LS->getBasePtr(); 11979 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 11980 } 11981 11982 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 11983 EVT VT; 11984 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11985 default: return false; 11986 case Intrinsic::ppc_qpx_qvlfd: 11987 case Intrinsic::ppc_qpx_qvlfda: 11988 VT = MVT::v4f64; 11989 break; 11990 case Intrinsic::ppc_qpx_qvlfs: 11991 case Intrinsic::ppc_qpx_qvlfsa: 11992 VT = MVT::v4f32; 11993 break; 11994 case Intrinsic::ppc_qpx_qvlfcd: 11995 case Intrinsic::ppc_qpx_qvlfcda: 11996 VT = MVT::v2f64; 11997 break; 11998 case Intrinsic::ppc_qpx_qvlfcs: 11999 case Intrinsic::ppc_qpx_qvlfcsa: 12000 VT = MVT::v2f32; 12001 break; 12002 case Intrinsic::ppc_qpx_qvlfiwa: 12003 case Intrinsic::ppc_qpx_qvlfiwz: 12004 case Intrinsic::ppc_altivec_lvx: 12005 case Intrinsic::ppc_altivec_lvxl: 12006 case Intrinsic::ppc_vsx_lxvw4x: 12007 case Intrinsic::ppc_vsx_lxvw4x_be: 12008 VT = MVT::v4i32; 12009 break; 12010 case Intrinsic::ppc_vsx_lxvd2x: 12011 case Intrinsic::ppc_vsx_lxvd2x_be: 12012 VT = MVT::v2f64; 12013 break; 12014 case Intrinsic::ppc_altivec_lvebx: 12015 VT = MVT::i8; 12016 break; 12017 case Intrinsic::ppc_altivec_lvehx: 12018 VT = MVT::i16; 12019 break; 12020 case Intrinsic::ppc_altivec_lvewx: 12021 VT = MVT::i32; 12022 break; 12023 } 12024 12025 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12026 } 12027 12028 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12029 EVT VT; 12030 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12031 default: return false; 12032 case Intrinsic::ppc_qpx_qvstfd: 12033 case Intrinsic::ppc_qpx_qvstfda: 12034 VT = MVT::v4f64; 12035 break; 12036 case Intrinsic::ppc_qpx_qvstfs: 12037 case Intrinsic::ppc_qpx_qvstfsa: 12038 VT = MVT::v4f32; 12039 break; 12040 case Intrinsic::ppc_qpx_qvstfcd: 12041 case Intrinsic::ppc_qpx_qvstfcda: 12042 VT = MVT::v2f64; 12043 break; 12044 case Intrinsic::ppc_qpx_qvstfcs: 12045 case Intrinsic::ppc_qpx_qvstfcsa: 12046 VT = MVT::v2f32; 12047 break; 12048 case Intrinsic::ppc_qpx_qvstfiw: 12049 case Intrinsic::ppc_qpx_qvstfiwa: 12050 case Intrinsic::ppc_altivec_stvx: 12051 case Intrinsic::ppc_altivec_stvxl: 12052 case Intrinsic::ppc_vsx_stxvw4x: 12053 VT = MVT::v4i32; 12054 break; 12055 case Intrinsic::ppc_vsx_stxvd2x: 12056 VT = MVT::v2f64; 12057 break; 12058 case Intrinsic::ppc_vsx_stxvw4x_be: 12059 VT = MVT::v4i32; 12060 break; 12061 case Intrinsic::ppc_vsx_stxvd2x_be: 12062 VT = MVT::v2f64; 12063 break; 12064 case Intrinsic::ppc_altivec_stvebx: 12065 VT = MVT::i8; 12066 break; 12067 case Intrinsic::ppc_altivec_stvehx: 12068 VT = MVT::i16; 12069 break; 12070 case Intrinsic::ppc_altivec_stvewx: 12071 VT = MVT::i32; 12072 break; 12073 } 12074 12075 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12076 } 12077 12078 return false; 12079 } 12080 12081 // Return true is there is a nearyby consecutive load to the one provided 12082 // (regardless of alignment). We search up and down the chain, looking though 12083 // token factors and other loads (but nothing else). As a result, a true result 12084 // indicates that it is safe to create a new consecutive load adjacent to the 12085 // load provided. 12086 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12087 SDValue Chain = LD->getChain(); 12088 EVT VT = LD->getMemoryVT(); 12089 12090 SmallSet<SDNode *, 16> LoadRoots; 12091 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12092 SmallSet<SDNode *, 16> Visited; 12093 12094 // First, search up the chain, branching to follow all token-factor operands. 12095 // If we find a consecutive load, then we're done, otherwise, record all 12096 // nodes just above the top-level loads and token factors. 12097 while (!Queue.empty()) { 12098 SDNode *ChainNext = Queue.pop_back_val(); 12099 if (!Visited.insert(ChainNext).second) 12100 continue; 12101 12102 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12103 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12104 return true; 12105 12106 if (!Visited.count(ChainLD->getChain().getNode())) 12107 Queue.push_back(ChainLD->getChain().getNode()); 12108 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 12109 for (const SDUse &O : ChainNext->ops()) 12110 if (!Visited.count(O.getNode())) 12111 Queue.push_back(O.getNode()); 12112 } else 12113 LoadRoots.insert(ChainNext); 12114 } 12115 12116 // Second, search down the chain, starting from the top-level nodes recorded 12117 // in the first phase. These top-level nodes are the nodes just above all 12118 // loads and token factors. Starting with their uses, recursively look though 12119 // all loads (just the chain uses) and token factors to find a consecutive 12120 // load. 12121 Visited.clear(); 12122 Queue.clear(); 12123 12124 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 12125 IE = LoadRoots.end(); I != IE; ++I) { 12126 Queue.push_back(*I); 12127 12128 while (!Queue.empty()) { 12129 SDNode *LoadRoot = Queue.pop_back_val(); 12130 if (!Visited.insert(LoadRoot).second) 12131 continue; 12132 12133 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 12134 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12135 return true; 12136 12137 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 12138 UE = LoadRoot->use_end(); UI != UE; ++UI) 12139 if (((isa<MemSDNode>(*UI) && 12140 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 12141 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 12142 Queue.push_back(*UI); 12143 } 12144 } 12145 12146 return false; 12147 } 12148 12149 /// This function is called when we have proved that a SETCC node can be replaced 12150 /// by subtraction (and other supporting instructions) so that the result of 12151 /// comparison is kept in a GPR instead of CR. This function is purely for 12152 /// codegen purposes and has some flags to guide the codegen process. 12153 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 12154 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 12155 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12156 12157 // Zero extend the operands to the largest legal integer. Originally, they 12158 // must be of a strictly smaller size. 12159 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 12160 DAG.getConstant(Size, DL, MVT::i32)); 12161 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 12162 DAG.getConstant(Size, DL, MVT::i32)); 12163 12164 // Swap if needed. Depends on the condition code. 12165 if (Swap) 12166 std::swap(Op0, Op1); 12167 12168 // Subtract extended integers. 12169 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 12170 12171 // Move the sign bit to the least significant position and zero out the rest. 12172 // Now the least significant bit carries the result of original comparison. 12173 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 12174 DAG.getConstant(Size - 1, DL, MVT::i32)); 12175 auto Final = Shifted; 12176 12177 // Complement the result if needed. Based on the condition code. 12178 if (Complement) 12179 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 12180 DAG.getConstant(1, DL, MVT::i64)); 12181 12182 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 12183 } 12184 12185 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 12186 DAGCombinerInfo &DCI) const { 12187 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12188 12189 SelectionDAG &DAG = DCI.DAG; 12190 SDLoc DL(N); 12191 12192 // Size of integers being compared has a critical role in the following 12193 // analysis, so we prefer to do this when all types are legal. 12194 if (!DCI.isAfterLegalizeDAG()) 12195 return SDValue(); 12196 12197 // If all users of SETCC extend its value to a legal integer type 12198 // then we replace SETCC with a subtraction 12199 for (SDNode::use_iterator UI = N->use_begin(), 12200 UE = N->use_end(); UI != UE; ++UI) { 12201 if (UI->getOpcode() != ISD::ZERO_EXTEND) 12202 return SDValue(); 12203 } 12204 12205 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12206 auto OpSize = N->getOperand(0).getValueSizeInBits(); 12207 12208 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 12209 12210 if (OpSize < Size) { 12211 switch (CC) { 12212 default: break; 12213 case ISD::SETULT: 12214 return generateEquivalentSub(N, Size, false, false, DL, DAG); 12215 case ISD::SETULE: 12216 return generateEquivalentSub(N, Size, true, true, DL, DAG); 12217 case ISD::SETUGT: 12218 return generateEquivalentSub(N, Size, false, true, DL, DAG); 12219 case ISD::SETUGE: 12220 return generateEquivalentSub(N, Size, true, false, DL, DAG); 12221 } 12222 } 12223 12224 return SDValue(); 12225 } 12226 12227 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 12228 DAGCombinerInfo &DCI) const { 12229 SelectionDAG &DAG = DCI.DAG; 12230 SDLoc dl(N); 12231 12232 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 12233 // If we're tracking CR bits, we need to be careful that we don't have: 12234 // trunc(binary-ops(zext(x), zext(y))) 12235 // or 12236 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 12237 // such that we're unnecessarily moving things into GPRs when it would be 12238 // better to keep them in CR bits. 12239 12240 // Note that trunc here can be an actual i1 trunc, or can be the effective 12241 // truncation that comes from a setcc or select_cc. 12242 if (N->getOpcode() == ISD::TRUNCATE && 12243 N->getValueType(0) != MVT::i1) 12244 return SDValue(); 12245 12246 if (N->getOperand(0).getValueType() != MVT::i32 && 12247 N->getOperand(0).getValueType() != MVT::i64) 12248 return SDValue(); 12249 12250 if (N->getOpcode() == ISD::SETCC || 12251 N->getOpcode() == ISD::SELECT_CC) { 12252 // If we're looking at a comparison, then we need to make sure that the 12253 // high bits (all except for the first) don't matter the result. 12254 ISD::CondCode CC = 12255 cast<CondCodeSDNode>(N->getOperand( 12256 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 12257 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 12258 12259 if (ISD::isSignedIntSetCC(CC)) { 12260 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 12261 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 12262 return SDValue(); 12263 } else if (ISD::isUnsignedIntSetCC(CC)) { 12264 if (!DAG.MaskedValueIsZero(N->getOperand(0), 12265 APInt::getHighBitsSet(OpBits, OpBits-1)) || 12266 !DAG.MaskedValueIsZero(N->getOperand(1), 12267 APInt::getHighBitsSet(OpBits, OpBits-1))) 12268 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 12269 : SDValue()); 12270 } else { 12271 // This is neither a signed nor an unsigned comparison, just make sure 12272 // that the high bits are equal. 12273 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 12274 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 12275 12276 // We don't really care about what is known about the first bit (if 12277 // anything), so clear it in all masks prior to comparing them. 12278 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 12279 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 12280 12281 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 12282 return SDValue(); 12283 } 12284 } 12285 12286 // We now know that the higher-order bits are irrelevant, we just need to 12287 // make sure that all of the intermediate operations are bit operations, and 12288 // all inputs are extensions. 12289 if (N->getOperand(0).getOpcode() != ISD::AND && 12290 N->getOperand(0).getOpcode() != ISD::OR && 12291 N->getOperand(0).getOpcode() != ISD::XOR && 12292 N->getOperand(0).getOpcode() != ISD::SELECT && 12293 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 12294 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 12295 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 12296 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 12297 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 12298 return SDValue(); 12299 12300 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 12301 N->getOperand(1).getOpcode() != ISD::AND && 12302 N->getOperand(1).getOpcode() != ISD::OR && 12303 N->getOperand(1).getOpcode() != ISD::XOR && 12304 N->getOperand(1).getOpcode() != ISD::SELECT && 12305 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 12306 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 12307 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 12308 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 12309 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 12310 return SDValue(); 12311 12312 SmallVector<SDValue, 4> Inputs; 12313 SmallVector<SDValue, 8> BinOps, PromOps; 12314 SmallPtrSet<SDNode *, 16> Visited; 12315 12316 for (unsigned i = 0; i < 2; ++i) { 12317 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12318 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12319 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12320 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12321 isa<ConstantSDNode>(N->getOperand(i))) 12322 Inputs.push_back(N->getOperand(i)); 12323 else 12324 BinOps.push_back(N->getOperand(i)); 12325 12326 if (N->getOpcode() == ISD::TRUNCATE) 12327 break; 12328 } 12329 12330 // Visit all inputs, collect all binary operations (and, or, xor and 12331 // select) that are all fed by extensions. 12332 while (!BinOps.empty()) { 12333 SDValue BinOp = BinOps.back(); 12334 BinOps.pop_back(); 12335 12336 if (!Visited.insert(BinOp.getNode()).second) 12337 continue; 12338 12339 PromOps.push_back(BinOp); 12340 12341 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12342 // The condition of the select is not promoted. 12343 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12344 continue; 12345 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12346 continue; 12347 12348 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12349 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12350 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12351 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12352 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12353 Inputs.push_back(BinOp.getOperand(i)); 12354 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12355 BinOp.getOperand(i).getOpcode() == ISD::OR || 12356 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12357 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12358 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 12359 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12360 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12361 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12362 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 12363 BinOps.push_back(BinOp.getOperand(i)); 12364 } else { 12365 // We have an input that is not an extension or another binary 12366 // operation; we'll abort this transformation. 12367 return SDValue(); 12368 } 12369 } 12370 } 12371 12372 // Make sure that this is a self-contained cluster of operations (which 12373 // is not quite the same thing as saying that everything has only one 12374 // use). 12375 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12376 if (isa<ConstantSDNode>(Inputs[i])) 12377 continue; 12378 12379 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12380 UE = Inputs[i].getNode()->use_end(); 12381 UI != UE; ++UI) { 12382 SDNode *User = *UI; 12383 if (User != N && !Visited.count(User)) 12384 return SDValue(); 12385 12386 // Make sure that we're not going to promote the non-output-value 12387 // operand(s) or SELECT or SELECT_CC. 12388 // FIXME: Although we could sometimes handle this, and it does occur in 12389 // practice that one of the condition inputs to the select is also one of 12390 // the outputs, we currently can't deal with this. 12391 if (User->getOpcode() == ISD::SELECT) { 12392 if (User->getOperand(0) == Inputs[i]) 12393 return SDValue(); 12394 } else if (User->getOpcode() == ISD::SELECT_CC) { 12395 if (User->getOperand(0) == Inputs[i] || 12396 User->getOperand(1) == Inputs[i]) 12397 return SDValue(); 12398 } 12399 } 12400 } 12401 12402 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12403 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12404 UE = PromOps[i].getNode()->use_end(); 12405 UI != UE; ++UI) { 12406 SDNode *User = *UI; 12407 if (User != N && !Visited.count(User)) 12408 return SDValue(); 12409 12410 // Make sure that we're not going to promote the non-output-value 12411 // operand(s) or SELECT or SELECT_CC. 12412 // FIXME: Although we could sometimes handle this, and it does occur in 12413 // practice that one of the condition inputs to the select is also one of 12414 // the outputs, we currently can't deal with this. 12415 if (User->getOpcode() == ISD::SELECT) { 12416 if (User->getOperand(0) == PromOps[i]) 12417 return SDValue(); 12418 } else if (User->getOpcode() == ISD::SELECT_CC) { 12419 if (User->getOperand(0) == PromOps[i] || 12420 User->getOperand(1) == PromOps[i]) 12421 return SDValue(); 12422 } 12423 } 12424 } 12425 12426 // Replace all inputs with the extension operand. 12427 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12428 // Constants may have users outside the cluster of to-be-promoted nodes, 12429 // and so we need to replace those as we do the promotions. 12430 if (isa<ConstantSDNode>(Inputs[i])) 12431 continue; 12432 else 12433 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 12434 } 12435 12436 std::list<HandleSDNode> PromOpHandles; 12437 for (auto &PromOp : PromOps) 12438 PromOpHandles.emplace_back(PromOp); 12439 12440 // Replace all operations (these are all the same, but have a different 12441 // (i1) return type). DAG.getNode will validate that the types of 12442 // a binary operator match, so go through the list in reverse so that 12443 // we've likely promoted both operands first. Any intermediate truncations or 12444 // extensions disappear. 12445 while (!PromOpHandles.empty()) { 12446 SDValue PromOp = PromOpHandles.back().getValue(); 12447 PromOpHandles.pop_back(); 12448 12449 if (PromOp.getOpcode() == ISD::TRUNCATE || 12450 PromOp.getOpcode() == ISD::SIGN_EXTEND || 12451 PromOp.getOpcode() == ISD::ZERO_EXTEND || 12452 PromOp.getOpcode() == ISD::ANY_EXTEND) { 12453 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 12454 PromOp.getOperand(0).getValueType() != MVT::i1) { 12455 // The operand is not yet ready (see comment below). 12456 PromOpHandles.emplace_front(PromOp); 12457 continue; 12458 } 12459 12460 SDValue RepValue = PromOp.getOperand(0); 12461 if (isa<ConstantSDNode>(RepValue)) 12462 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 12463 12464 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 12465 continue; 12466 } 12467 12468 unsigned C; 12469 switch (PromOp.getOpcode()) { 12470 default: C = 0; break; 12471 case ISD::SELECT: C = 1; break; 12472 case ISD::SELECT_CC: C = 2; break; 12473 } 12474 12475 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12476 PromOp.getOperand(C).getValueType() != MVT::i1) || 12477 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12478 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 12479 // The to-be-promoted operands of this node have not yet been 12480 // promoted (this should be rare because we're going through the 12481 // list backward, but if one of the operands has several users in 12482 // this cluster of to-be-promoted nodes, it is possible). 12483 PromOpHandles.emplace_front(PromOp); 12484 continue; 12485 } 12486 12487 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12488 PromOp.getNode()->op_end()); 12489 12490 // If there are any constant inputs, make sure they're replaced now. 12491 for (unsigned i = 0; i < 2; ++i) 12492 if (isa<ConstantSDNode>(Ops[C+i])) 12493 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 12494 12495 DAG.ReplaceAllUsesOfValueWith(PromOp, 12496 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 12497 } 12498 12499 // Now we're left with the initial truncation itself. 12500 if (N->getOpcode() == ISD::TRUNCATE) 12501 return N->getOperand(0); 12502 12503 // Otherwise, this is a comparison. The operands to be compared have just 12504 // changed type (to i1), but everything else is the same. 12505 return SDValue(N, 0); 12506 } 12507 12508 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 12509 DAGCombinerInfo &DCI) const { 12510 SelectionDAG &DAG = DCI.DAG; 12511 SDLoc dl(N); 12512 12513 // If we're tracking CR bits, we need to be careful that we don't have: 12514 // zext(binary-ops(trunc(x), trunc(y))) 12515 // or 12516 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 12517 // such that we're unnecessarily moving things into CR bits that can more 12518 // efficiently stay in GPRs. Note that if we're not certain that the high 12519 // bits are set as required by the final extension, we still may need to do 12520 // some masking to get the proper behavior. 12521 12522 // This same functionality is important on PPC64 when dealing with 12523 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 12524 // the return values of functions. Because it is so similar, it is handled 12525 // here as well. 12526 12527 if (N->getValueType(0) != MVT::i32 && 12528 N->getValueType(0) != MVT::i64) 12529 return SDValue(); 12530 12531 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 12532 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 12533 return SDValue(); 12534 12535 if (N->getOperand(0).getOpcode() != ISD::AND && 12536 N->getOperand(0).getOpcode() != ISD::OR && 12537 N->getOperand(0).getOpcode() != ISD::XOR && 12538 N->getOperand(0).getOpcode() != ISD::SELECT && 12539 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 12540 return SDValue(); 12541 12542 SmallVector<SDValue, 4> Inputs; 12543 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 12544 SmallPtrSet<SDNode *, 16> Visited; 12545 12546 // Visit all inputs, collect all binary operations (and, or, xor and 12547 // select) that are all fed by truncations. 12548 while (!BinOps.empty()) { 12549 SDValue BinOp = BinOps.back(); 12550 BinOps.pop_back(); 12551 12552 if (!Visited.insert(BinOp.getNode()).second) 12553 continue; 12554 12555 PromOps.push_back(BinOp); 12556 12557 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12558 // The condition of the select is not promoted. 12559 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12560 continue; 12561 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12562 continue; 12563 12564 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12565 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12566 Inputs.push_back(BinOp.getOperand(i)); 12567 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12568 BinOp.getOperand(i).getOpcode() == ISD::OR || 12569 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12570 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12571 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 12572 BinOps.push_back(BinOp.getOperand(i)); 12573 } else { 12574 // We have an input that is not a truncation or another binary 12575 // operation; we'll abort this transformation. 12576 return SDValue(); 12577 } 12578 } 12579 } 12580 12581 // The operands of a select that must be truncated when the select is 12582 // promoted because the operand is actually part of the to-be-promoted set. 12583 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 12584 12585 // Make sure that this is a self-contained cluster of operations (which 12586 // is not quite the same thing as saying that everything has only one 12587 // use). 12588 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12589 if (isa<ConstantSDNode>(Inputs[i])) 12590 continue; 12591 12592 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12593 UE = Inputs[i].getNode()->use_end(); 12594 UI != UE; ++UI) { 12595 SDNode *User = *UI; 12596 if (User != N && !Visited.count(User)) 12597 return SDValue(); 12598 12599 // If we're going to promote the non-output-value operand(s) or SELECT or 12600 // SELECT_CC, record them for truncation. 12601 if (User->getOpcode() == ISD::SELECT) { 12602 if (User->getOperand(0) == Inputs[i]) 12603 SelectTruncOp[0].insert(std::make_pair(User, 12604 User->getOperand(0).getValueType())); 12605 } else if (User->getOpcode() == ISD::SELECT_CC) { 12606 if (User->getOperand(0) == Inputs[i]) 12607 SelectTruncOp[0].insert(std::make_pair(User, 12608 User->getOperand(0).getValueType())); 12609 if (User->getOperand(1) == Inputs[i]) 12610 SelectTruncOp[1].insert(std::make_pair(User, 12611 User->getOperand(1).getValueType())); 12612 } 12613 } 12614 } 12615 12616 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12617 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12618 UE = PromOps[i].getNode()->use_end(); 12619 UI != UE; ++UI) { 12620 SDNode *User = *UI; 12621 if (User != N && !Visited.count(User)) 12622 return SDValue(); 12623 12624 // If we're going to promote the non-output-value operand(s) or SELECT or 12625 // SELECT_CC, record them for truncation. 12626 if (User->getOpcode() == ISD::SELECT) { 12627 if (User->getOperand(0) == PromOps[i]) 12628 SelectTruncOp[0].insert(std::make_pair(User, 12629 User->getOperand(0).getValueType())); 12630 } else if (User->getOpcode() == ISD::SELECT_CC) { 12631 if (User->getOperand(0) == PromOps[i]) 12632 SelectTruncOp[0].insert(std::make_pair(User, 12633 User->getOperand(0).getValueType())); 12634 if (User->getOperand(1) == PromOps[i]) 12635 SelectTruncOp[1].insert(std::make_pair(User, 12636 User->getOperand(1).getValueType())); 12637 } 12638 } 12639 } 12640 12641 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 12642 bool ReallyNeedsExt = false; 12643 if (N->getOpcode() != ISD::ANY_EXTEND) { 12644 // If all of the inputs are not already sign/zero extended, then 12645 // we'll still need to do that at the end. 12646 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12647 if (isa<ConstantSDNode>(Inputs[i])) 12648 continue; 12649 12650 unsigned OpBits = 12651 Inputs[i].getOperand(0).getValueSizeInBits(); 12652 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 12653 12654 if ((N->getOpcode() == ISD::ZERO_EXTEND && 12655 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 12656 APInt::getHighBitsSet(OpBits, 12657 OpBits-PromBits))) || 12658 (N->getOpcode() == ISD::SIGN_EXTEND && 12659 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 12660 (OpBits-(PromBits-1)))) { 12661 ReallyNeedsExt = true; 12662 break; 12663 } 12664 } 12665 } 12666 12667 // Replace all inputs, either with the truncation operand, or a 12668 // truncation or extension to the final output type. 12669 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12670 // Constant inputs need to be replaced with the to-be-promoted nodes that 12671 // use them because they might have users outside of the cluster of 12672 // promoted nodes. 12673 if (isa<ConstantSDNode>(Inputs[i])) 12674 continue; 12675 12676 SDValue InSrc = Inputs[i].getOperand(0); 12677 if (Inputs[i].getValueType() == N->getValueType(0)) 12678 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 12679 else if (N->getOpcode() == ISD::SIGN_EXTEND) 12680 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12681 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 12682 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12683 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12684 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 12685 else 12686 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12687 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 12688 } 12689 12690 std::list<HandleSDNode> PromOpHandles; 12691 for (auto &PromOp : PromOps) 12692 PromOpHandles.emplace_back(PromOp); 12693 12694 // Replace all operations (these are all the same, but have a different 12695 // (promoted) return type). DAG.getNode will validate that the types of 12696 // a binary operator match, so go through the list in reverse so that 12697 // we've likely promoted both operands first. 12698 while (!PromOpHandles.empty()) { 12699 SDValue PromOp = PromOpHandles.back().getValue(); 12700 PromOpHandles.pop_back(); 12701 12702 unsigned C; 12703 switch (PromOp.getOpcode()) { 12704 default: C = 0; break; 12705 case ISD::SELECT: C = 1; break; 12706 case ISD::SELECT_CC: C = 2; break; 12707 } 12708 12709 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12710 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 12711 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12712 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 12713 // The to-be-promoted operands of this node have not yet been 12714 // promoted (this should be rare because we're going through the 12715 // list backward, but if one of the operands has several users in 12716 // this cluster of to-be-promoted nodes, it is possible). 12717 PromOpHandles.emplace_front(PromOp); 12718 continue; 12719 } 12720 12721 // For SELECT and SELECT_CC nodes, we do a similar check for any 12722 // to-be-promoted comparison inputs. 12723 if (PromOp.getOpcode() == ISD::SELECT || 12724 PromOp.getOpcode() == ISD::SELECT_CC) { 12725 if ((SelectTruncOp[0].count(PromOp.getNode()) && 12726 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 12727 (SelectTruncOp[1].count(PromOp.getNode()) && 12728 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 12729 PromOpHandles.emplace_front(PromOp); 12730 continue; 12731 } 12732 } 12733 12734 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12735 PromOp.getNode()->op_end()); 12736 12737 // If this node has constant inputs, then they'll need to be promoted here. 12738 for (unsigned i = 0; i < 2; ++i) { 12739 if (!isa<ConstantSDNode>(Ops[C+i])) 12740 continue; 12741 if (Ops[C+i].getValueType() == N->getValueType(0)) 12742 continue; 12743 12744 if (N->getOpcode() == ISD::SIGN_EXTEND) 12745 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12746 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12747 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12748 else 12749 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12750 } 12751 12752 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 12753 // truncate them again to the original value type. 12754 if (PromOp.getOpcode() == ISD::SELECT || 12755 PromOp.getOpcode() == ISD::SELECT_CC) { 12756 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 12757 if (SI0 != SelectTruncOp[0].end()) 12758 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 12759 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 12760 if (SI1 != SelectTruncOp[1].end()) 12761 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 12762 } 12763 12764 DAG.ReplaceAllUsesOfValueWith(PromOp, 12765 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 12766 } 12767 12768 // Now we're left with the initial extension itself. 12769 if (!ReallyNeedsExt) 12770 return N->getOperand(0); 12771 12772 // To zero extend, just mask off everything except for the first bit (in the 12773 // i1 case). 12774 if (N->getOpcode() == ISD::ZERO_EXTEND) 12775 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 12776 DAG.getConstant(APInt::getLowBitsSet( 12777 N->getValueSizeInBits(0), PromBits), 12778 dl, N->getValueType(0))); 12779 12780 assert(N->getOpcode() == ISD::SIGN_EXTEND && 12781 "Invalid extension type"); 12782 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 12783 SDValue ShiftCst = 12784 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 12785 return DAG.getNode( 12786 ISD::SRA, dl, N->getValueType(0), 12787 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 12788 ShiftCst); 12789 } 12790 12791 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 12792 DAGCombinerInfo &DCI) const { 12793 assert(N->getOpcode() == ISD::SETCC && 12794 "Should be called with a SETCC node"); 12795 12796 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12797 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 12798 SDValue LHS = N->getOperand(0); 12799 SDValue RHS = N->getOperand(1); 12800 12801 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 12802 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 12803 LHS.hasOneUse()) 12804 std::swap(LHS, RHS); 12805 12806 // x == 0-y --> x+y == 0 12807 // x != 0-y --> x+y != 0 12808 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 12809 RHS.hasOneUse()) { 12810 SDLoc DL(N); 12811 SelectionDAG &DAG = DCI.DAG; 12812 EVT VT = N->getValueType(0); 12813 EVT OpVT = LHS.getValueType(); 12814 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 12815 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 12816 } 12817 } 12818 12819 return DAGCombineTruncBoolExt(N, DCI); 12820 } 12821 12822 // Is this an extending load from an f32 to an f64? 12823 static bool isFPExtLoad(SDValue Op) { 12824 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 12825 return LD->getExtensionType() == ISD::EXTLOAD && 12826 Op.getValueType() == MVT::f64; 12827 return false; 12828 } 12829 12830 /// Reduces the number of fp-to-int conversion when building a vector. 12831 /// 12832 /// If this vector is built out of floating to integer conversions, 12833 /// transform it to a vector built out of floating point values followed by a 12834 /// single floating to integer conversion of the vector. 12835 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 12836 /// becomes (fptosi (build_vector ($A, $B, ...))) 12837 SDValue PPCTargetLowering:: 12838 combineElementTruncationToVectorTruncation(SDNode *N, 12839 DAGCombinerInfo &DCI) const { 12840 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12841 "Should be called with a BUILD_VECTOR node"); 12842 12843 SelectionDAG &DAG = DCI.DAG; 12844 SDLoc dl(N); 12845 12846 SDValue FirstInput = N->getOperand(0); 12847 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 12848 "The input operand must be an fp-to-int conversion."); 12849 12850 // This combine happens after legalization so the fp_to_[su]i nodes are 12851 // already converted to PPCSISD nodes. 12852 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 12853 if (FirstConversion == PPCISD::FCTIDZ || 12854 FirstConversion == PPCISD::FCTIDUZ || 12855 FirstConversion == PPCISD::FCTIWZ || 12856 FirstConversion == PPCISD::FCTIWUZ) { 12857 bool IsSplat = true; 12858 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 12859 FirstConversion == PPCISD::FCTIWUZ; 12860 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 12861 SmallVector<SDValue, 4> Ops; 12862 EVT TargetVT = N->getValueType(0); 12863 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 12864 SDValue NextOp = N->getOperand(i); 12865 if (NextOp.getOpcode() != PPCISD::MFVSR) 12866 return SDValue(); 12867 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 12868 if (NextConversion != FirstConversion) 12869 return SDValue(); 12870 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 12871 // This is not valid if the input was originally double precision. It is 12872 // also not profitable to do unless this is an extending load in which 12873 // case doing this combine will allow us to combine consecutive loads. 12874 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 12875 return SDValue(); 12876 if (N->getOperand(i) != FirstInput) 12877 IsSplat = false; 12878 } 12879 12880 // If this is a splat, we leave it as-is since there will be only a single 12881 // fp-to-int conversion followed by a splat of the integer. This is better 12882 // for 32-bit and smaller ints and neutral for 64-bit ints. 12883 if (IsSplat) 12884 return SDValue(); 12885 12886 // Now that we know we have the right type of node, get its operands 12887 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 12888 SDValue In = N->getOperand(i).getOperand(0); 12889 if (Is32Bit) { 12890 // For 32-bit values, we need to add an FP_ROUND node (if we made it 12891 // here, we know that all inputs are extending loads so this is safe). 12892 if (In.isUndef()) 12893 Ops.push_back(DAG.getUNDEF(SrcVT)); 12894 else { 12895 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 12896 MVT::f32, In.getOperand(0), 12897 DAG.getIntPtrConstant(1, dl)); 12898 Ops.push_back(Trunc); 12899 } 12900 } else 12901 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 12902 } 12903 12904 unsigned Opcode; 12905 if (FirstConversion == PPCISD::FCTIDZ || 12906 FirstConversion == PPCISD::FCTIWZ) 12907 Opcode = ISD::FP_TO_SINT; 12908 else 12909 Opcode = ISD::FP_TO_UINT; 12910 12911 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 12912 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 12913 return DAG.getNode(Opcode, dl, TargetVT, BV); 12914 } 12915 return SDValue(); 12916 } 12917 12918 /// Reduce the number of loads when building a vector. 12919 /// 12920 /// Building a vector out of multiple loads can be converted to a load 12921 /// of the vector type if the loads are consecutive. If the loads are 12922 /// consecutive but in descending order, a shuffle is added at the end 12923 /// to reorder the vector. 12924 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 12925 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12926 "Should be called with a BUILD_VECTOR node"); 12927 12928 SDLoc dl(N); 12929 12930 // Return early for non byte-sized type, as they can't be consecutive. 12931 if (!N->getValueType(0).getVectorElementType().isByteSized()) 12932 return SDValue(); 12933 12934 bool InputsAreConsecutiveLoads = true; 12935 bool InputsAreReverseConsecutive = true; 12936 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 12937 SDValue FirstInput = N->getOperand(0); 12938 bool IsRoundOfExtLoad = false; 12939 12940 if (FirstInput.getOpcode() == ISD::FP_ROUND && 12941 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 12942 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 12943 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 12944 } 12945 // Not a build vector of (possibly fp_rounded) loads. 12946 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 12947 N->getNumOperands() == 1) 12948 return SDValue(); 12949 12950 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 12951 // If any inputs are fp_round(extload), they all must be. 12952 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 12953 return SDValue(); 12954 12955 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 12956 N->getOperand(i); 12957 if (NextInput.getOpcode() != ISD::LOAD) 12958 return SDValue(); 12959 12960 SDValue PreviousInput = 12961 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 12962 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 12963 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 12964 12965 // If any inputs are fp_round(extload), they all must be. 12966 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 12967 return SDValue(); 12968 12969 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 12970 InputsAreConsecutiveLoads = false; 12971 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 12972 InputsAreReverseConsecutive = false; 12973 12974 // Exit early if the loads are neither consecutive nor reverse consecutive. 12975 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 12976 return SDValue(); 12977 } 12978 12979 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 12980 "The loads cannot be both consecutive and reverse consecutive."); 12981 12982 SDValue FirstLoadOp = 12983 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 12984 SDValue LastLoadOp = 12985 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 12986 N->getOperand(N->getNumOperands()-1); 12987 12988 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 12989 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 12990 if (InputsAreConsecutiveLoads) { 12991 assert(LD1 && "Input needs to be a LoadSDNode."); 12992 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 12993 LD1->getBasePtr(), LD1->getPointerInfo(), 12994 LD1->getAlignment()); 12995 } 12996 if (InputsAreReverseConsecutive) { 12997 assert(LDL && "Input needs to be a LoadSDNode."); 12998 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 12999 LDL->getBasePtr(), LDL->getPointerInfo(), 13000 LDL->getAlignment()); 13001 SmallVector<int, 16> Ops; 13002 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13003 Ops.push_back(i); 13004 13005 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13006 DAG.getUNDEF(N->getValueType(0)), Ops); 13007 } 13008 return SDValue(); 13009 } 13010 13011 // This function adds the required vector_shuffle needed to get 13012 // the elements of the vector extract in the correct position 13013 // as specified by the CorrectElems encoding. 13014 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13015 SDValue Input, uint64_t Elems, 13016 uint64_t CorrectElems) { 13017 SDLoc dl(N); 13018 13019 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13020 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13021 13022 // Knowing the element indices being extracted from the original 13023 // vector and the order in which they're being inserted, just put 13024 // them at element indices required for the instruction. 13025 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13026 if (DAG.getDataLayout().isLittleEndian()) 13027 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13028 else 13029 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13030 CorrectElems = CorrectElems >> 8; 13031 Elems = Elems >> 8; 13032 } 13033 13034 SDValue Shuffle = 13035 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13036 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13037 13038 EVT Ty = N->getValueType(0); 13039 SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle); 13040 return BV; 13041 } 13042 13043 // Look for build vector patterns where input operands come from sign 13044 // extended vector_extract elements of specific indices. If the correct indices 13045 // aren't used, add a vector shuffle to fix up the indices and create a new 13046 // PPCISD:SExtVElems node which selects the vector sign extend instructions 13047 // during instruction selection. 13048 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13049 // This array encodes the indices that the vector sign extend instructions 13050 // extract from when extending from one type to another for both BE and LE. 13051 // The right nibble of each byte corresponds to the LE incides. 13052 // and the left nibble of each byte corresponds to the BE incides. 13053 // For example: 0x3074B8FC byte->word 13054 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13055 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13056 // For example: 0x000070F8 byte->double word 13057 // For LE: the allowed indices are: 0x0,0x8 13058 // For BE: the allowed indices are: 0x7,0xF 13059 uint64_t TargetElems[] = { 13060 0x3074B8FC, // b->w 13061 0x000070F8, // b->d 13062 0x10325476, // h->w 13063 0x00003074, // h->d 13064 0x00001032, // w->d 13065 }; 13066 13067 uint64_t Elems = 0; 13068 int Index; 13069 SDValue Input; 13070 13071 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13072 if (!Op) 13073 return false; 13074 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13075 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13076 return false; 13077 13078 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13079 // of the right width. 13080 SDValue Extract = Op.getOperand(0); 13081 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13082 Extract = Extract.getOperand(0); 13083 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13084 return false; 13085 13086 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13087 if (!ExtOp) 13088 return false; 13089 13090 Index = ExtOp->getZExtValue(); 13091 if (Input && Input != Extract.getOperand(0)) 13092 return false; 13093 13094 if (!Input) 13095 Input = Extract.getOperand(0); 13096 13097 Elems = Elems << 8; 13098 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13099 Elems |= Index; 13100 13101 return true; 13102 }; 13103 13104 // If the build vector operands aren't sign extended vector extracts, 13105 // of the same input vector, then return. 13106 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13107 if (!isSExtOfVecExtract(N->getOperand(i))) { 13108 return SDValue(); 13109 } 13110 } 13111 13112 // If the vector extract indicies are not correct, add the appropriate 13113 // vector_shuffle. 13114 int TgtElemArrayIdx; 13115 int InputSize = Input.getValueType().getScalarSizeInBits(); 13116 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 13117 if (InputSize + OutputSize == 40) 13118 TgtElemArrayIdx = 0; 13119 else if (InputSize + OutputSize == 72) 13120 TgtElemArrayIdx = 1; 13121 else if (InputSize + OutputSize == 48) 13122 TgtElemArrayIdx = 2; 13123 else if (InputSize + OutputSize == 80) 13124 TgtElemArrayIdx = 3; 13125 else if (InputSize + OutputSize == 96) 13126 TgtElemArrayIdx = 4; 13127 else 13128 return SDValue(); 13129 13130 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 13131 CorrectElems = DAG.getDataLayout().isLittleEndian() 13132 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 13133 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 13134 if (Elems != CorrectElems) { 13135 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 13136 } 13137 13138 // Regular lowering will catch cases where a shuffle is not needed. 13139 return SDValue(); 13140 } 13141 13142 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 13143 DAGCombinerInfo &DCI) const { 13144 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13145 "Should be called with a BUILD_VECTOR node"); 13146 13147 SelectionDAG &DAG = DCI.DAG; 13148 SDLoc dl(N); 13149 13150 if (!Subtarget.hasVSX()) 13151 return SDValue(); 13152 13153 // The target independent DAG combiner will leave a build_vector of 13154 // float-to-int conversions intact. We can generate MUCH better code for 13155 // a float-to-int conversion of a vector of floats. 13156 SDValue FirstInput = N->getOperand(0); 13157 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 13158 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 13159 if (Reduced) 13160 return Reduced; 13161 } 13162 13163 // If we're building a vector out of consecutive loads, just load that 13164 // vector type. 13165 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 13166 if (Reduced) 13167 return Reduced; 13168 13169 // If we're building a vector out of extended elements from another vector 13170 // we have P9 vector integer extend instructions. The code assumes legal 13171 // input types (i.e. it can't handle things like v4i16) so do not run before 13172 // legalization. 13173 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 13174 Reduced = combineBVOfVecSExt(N, DAG); 13175 if (Reduced) 13176 return Reduced; 13177 } 13178 13179 13180 if (N->getValueType(0) != MVT::v2f64) 13181 return SDValue(); 13182 13183 // Looking for: 13184 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 13185 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 13186 FirstInput.getOpcode() != ISD::UINT_TO_FP) 13187 return SDValue(); 13188 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 13189 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 13190 return SDValue(); 13191 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 13192 return SDValue(); 13193 13194 SDValue Ext1 = FirstInput.getOperand(0); 13195 SDValue Ext2 = N->getOperand(1).getOperand(0); 13196 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 13197 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13198 return SDValue(); 13199 13200 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 13201 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 13202 if (!Ext1Op || !Ext2Op) 13203 return SDValue(); 13204 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 13205 Ext1.getOperand(0) != Ext2.getOperand(0)) 13206 return SDValue(); 13207 13208 int FirstElem = Ext1Op->getZExtValue(); 13209 int SecondElem = Ext2Op->getZExtValue(); 13210 int SubvecIdx; 13211 if (FirstElem == 0 && SecondElem == 1) 13212 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 13213 else if (FirstElem == 2 && SecondElem == 3) 13214 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 13215 else 13216 return SDValue(); 13217 13218 SDValue SrcVec = Ext1.getOperand(0); 13219 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 13220 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 13221 return DAG.getNode(NodeType, dl, MVT::v2f64, 13222 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 13223 } 13224 13225 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 13226 DAGCombinerInfo &DCI) const { 13227 assert((N->getOpcode() == ISD::SINT_TO_FP || 13228 N->getOpcode() == ISD::UINT_TO_FP) && 13229 "Need an int -> FP conversion node here"); 13230 13231 if (useSoftFloat() || !Subtarget.has64BitSupport()) 13232 return SDValue(); 13233 13234 SelectionDAG &DAG = DCI.DAG; 13235 SDLoc dl(N); 13236 SDValue Op(N, 0); 13237 13238 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 13239 // from the hardware. 13240 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 13241 return SDValue(); 13242 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 13243 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 13244 return SDValue(); 13245 13246 SDValue FirstOperand(Op.getOperand(0)); 13247 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 13248 (FirstOperand.getValueType() == MVT::i8 || 13249 FirstOperand.getValueType() == MVT::i16); 13250 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 13251 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 13252 bool DstDouble = Op.getValueType() == MVT::f64; 13253 unsigned ConvOp = Signed ? 13254 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 13255 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 13256 SDValue WidthConst = 13257 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 13258 dl, false); 13259 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 13260 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 13261 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 13262 DAG.getVTList(MVT::f64, MVT::Other), 13263 Ops, MVT::i8, LDN->getMemOperand()); 13264 13265 // For signed conversion, we need to sign-extend the value in the VSR 13266 if (Signed) { 13267 SDValue ExtOps[] = { Ld, WidthConst }; 13268 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 13269 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 13270 } else 13271 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 13272 } 13273 13274 13275 // For i32 intermediate values, unfortunately, the conversion functions 13276 // leave the upper 32 bits of the value are undefined. Within the set of 13277 // scalar instructions, we have no method for zero- or sign-extending the 13278 // value. Thus, we cannot handle i32 intermediate values here. 13279 if (Op.getOperand(0).getValueType() == MVT::i32) 13280 return SDValue(); 13281 13282 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 13283 "UINT_TO_FP is supported only with FPCVT"); 13284 13285 // If we have FCFIDS, then use it when converting to single-precision. 13286 // Otherwise, convert to double-precision and then round. 13287 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13288 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 13289 : PPCISD::FCFIDS) 13290 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 13291 : PPCISD::FCFID); 13292 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13293 ? MVT::f32 13294 : MVT::f64; 13295 13296 // If we're converting from a float, to an int, and back to a float again, 13297 // then we don't need the store/load pair at all. 13298 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 13299 Subtarget.hasFPCVT()) || 13300 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 13301 SDValue Src = Op.getOperand(0).getOperand(0); 13302 if (Src.getValueType() == MVT::f32) { 13303 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 13304 DCI.AddToWorklist(Src.getNode()); 13305 } else if (Src.getValueType() != MVT::f64) { 13306 // Make sure that we don't pick up a ppc_fp128 source value. 13307 return SDValue(); 13308 } 13309 13310 unsigned FCTOp = 13311 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 13312 PPCISD::FCTIDUZ; 13313 13314 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 13315 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 13316 13317 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 13318 FP = DAG.getNode(ISD::FP_ROUND, dl, 13319 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 13320 DCI.AddToWorklist(FP.getNode()); 13321 } 13322 13323 return FP; 13324 } 13325 13326 return SDValue(); 13327 } 13328 13329 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 13330 // builtins) into loads with swaps. 13331 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 13332 DAGCombinerInfo &DCI) const { 13333 SelectionDAG &DAG = DCI.DAG; 13334 SDLoc dl(N); 13335 SDValue Chain; 13336 SDValue Base; 13337 MachineMemOperand *MMO; 13338 13339 switch (N->getOpcode()) { 13340 default: 13341 llvm_unreachable("Unexpected opcode for little endian VSX load"); 13342 case ISD::LOAD: { 13343 LoadSDNode *LD = cast<LoadSDNode>(N); 13344 Chain = LD->getChain(); 13345 Base = LD->getBasePtr(); 13346 MMO = LD->getMemOperand(); 13347 // If the MMO suggests this isn't a load of a full vector, leave 13348 // things alone. For a built-in, we have to make the change for 13349 // correctness, so if there is a size problem that will be a bug. 13350 if (MMO->getSize() < 16) 13351 return SDValue(); 13352 break; 13353 } 13354 case ISD::INTRINSIC_W_CHAIN: { 13355 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13356 Chain = Intrin->getChain(); 13357 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 13358 // us what we want. Get operand 2 instead. 13359 Base = Intrin->getOperand(2); 13360 MMO = Intrin->getMemOperand(); 13361 break; 13362 } 13363 } 13364 13365 MVT VecTy = N->getValueType(0).getSimpleVT(); 13366 13367 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 13368 // aligned and the type is a vector with elements up to 4 bytes 13369 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 13370 && VecTy.getScalarSizeInBits() <= 32 ) { 13371 return SDValue(); 13372 } 13373 13374 SDValue LoadOps[] = { Chain, Base }; 13375 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 13376 DAG.getVTList(MVT::v2f64, MVT::Other), 13377 LoadOps, MVT::v2f64, MMO); 13378 13379 DCI.AddToWorklist(Load.getNode()); 13380 Chain = Load.getValue(1); 13381 SDValue Swap = DAG.getNode( 13382 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 13383 DCI.AddToWorklist(Swap.getNode()); 13384 13385 // Add a bitcast if the resulting load type doesn't match v2f64. 13386 if (VecTy != MVT::v2f64) { 13387 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 13388 DCI.AddToWorklist(N.getNode()); 13389 // Package {bitcast value, swap's chain} to match Load's shape. 13390 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 13391 N, Swap.getValue(1)); 13392 } 13393 13394 return Swap; 13395 } 13396 13397 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 13398 // builtins) into stores with swaps. 13399 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 13400 DAGCombinerInfo &DCI) const { 13401 SelectionDAG &DAG = DCI.DAG; 13402 SDLoc dl(N); 13403 SDValue Chain; 13404 SDValue Base; 13405 unsigned SrcOpnd; 13406 MachineMemOperand *MMO; 13407 13408 switch (N->getOpcode()) { 13409 default: 13410 llvm_unreachable("Unexpected opcode for little endian VSX store"); 13411 case ISD::STORE: { 13412 StoreSDNode *ST = cast<StoreSDNode>(N); 13413 Chain = ST->getChain(); 13414 Base = ST->getBasePtr(); 13415 MMO = ST->getMemOperand(); 13416 SrcOpnd = 1; 13417 // If the MMO suggests this isn't a store of a full vector, leave 13418 // things alone. For a built-in, we have to make the change for 13419 // correctness, so if there is a size problem that will be a bug. 13420 if (MMO->getSize() < 16) 13421 return SDValue(); 13422 break; 13423 } 13424 case ISD::INTRINSIC_VOID: { 13425 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13426 Chain = Intrin->getChain(); 13427 // Intrin->getBasePtr() oddly does not get what we want. 13428 Base = Intrin->getOperand(3); 13429 MMO = Intrin->getMemOperand(); 13430 SrcOpnd = 2; 13431 break; 13432 } 13433 } 13434 13435 SDValue Src = N->getOperand(SrcOpnd); 13436 MVT VecTy = Src.getValueType().getSimpleVT(); 13437 13438 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 13439 // aligned and the type is a vector with elements up to 4 bytes 13440 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 13441 && VecTy.getScalarSizeInBits() <= 32 ) { 13442 return SDValue(); 13443 } 13444 13445 // All stores are done as v2f64 and possible bit cast. 13446 if (VecTy != MVT::v2f64) { 13447 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 13448 DCI.AddToWorklist(Src.getNode()); 13449 } 13450 13451 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 13452 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 13453 DCI.AddToWorklist(Swap.getNode()); 13454 Chain = Swap.getValue(1); 13455 SDValue StoreOps[] = { Chain, Swap, Base }; 13456 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 13457 DAG.getVTList(MVT::Other), 13458 StoreOps, VecTy, MMO); 13459 DCI.AddToWorklist(Store.getNode()); 13460 return Store; 13461 } 13462 13463 // Handle DAG combine for STORE (FP_TO_INT F). 13464 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 13465 DAGCombinerInfo &DCI) const { 13466 13467 SelectionDAG &DAG = DCI.DAG; 13468 SDLoc dl(N); 13469 unsigned Opcode = N->getOperand(1).getOpcode(); 13470 13471 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 13472 && "Not a FP_TO_INT Instruction!"); 13473 13474 SDValue Val = N->getOperand(1).getOperand(0); 13475 EVT Op1VT = N->getOperand(1).getValueType(); 13476 EVT ResVT = Val.getValueType(); 13477 13478 // Floating point types smaller than 32 bits are not legal on Power. 13479 if (ResVT.getScalarSizeInBits() < 32) 13480 return SDValue(); 13481 13482 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 13483 bool ValidTypeForStoreFltAsInt = 13484 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 13485 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 13486 13487 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() || 13488 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 13489 return SDValue(); 13490 13491 // Extend f32 values to f64 13492 if (ResVT.getScalarSizeInBits() == 32) { 13493 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 13494 DCI.AddToWorklist(Val.getNode()); 13495 } 13496 13497 // Set signed or unsigned conversion opcode. 13498 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 13499 PPCISD::FP_TO_SINT_IN_VSR : 13500 PPCISD::FP_TO_UINT_IN_VSR; 13501 13502 Val = DAG.getNode(ConvOpcode, 13503 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 13504 DCI.AddToWorklist(Val.getNode()); 13505 13506 // Set number of bytes being converted. 13507 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 13508 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 13509 DAG.getIntPtrConstant(ByteSize, dl, false), 13510 DAG.getValueType(Op1VT) }; 13511 13512 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 13513 DAG.getVTList(MVT::Other), Ops, 13514 cast<StoreSDNode>(N)->getMemoryVT(), 13515 cast<StoreSDNode>(N)->getMemOperand()); 13516 13517 DCI.AddToWorklist(Val.getNode()); 13518 return Val; 13519 } 13520 13521 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 13522 LSBaseSDNode *LSBase, 13523 DAGCombinerInfo &DCI) const { 13524 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 13525 "Not a reverse memop pattern!"); 13526 13527 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 13528 auto Mask = SVN->getMask(); 13529 int i = 0; 13530 auto I = Mask.rbegin(); 13531 auto E = Mask.rend(); 13532 13533 for (; I != E; ++I) { 13534 if (*I != i) 13535 return false; 13536 i++; 13537 } 13538 return true; 13539 }; 13540 13541 SelectionDAG &DAG = DCI.DAG; 13542 EVT VT = SVN->getValueType(0); 13543 13544 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 13545 return SDValue(); 13546 13547 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 13548 // See comment in PPCVSXSwapRemoval.cpp. 13549 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 13550 if (!Subtarget.hasP9Vector()) 13551 return SDValue(); 13552 13553 if(!IsElementReverse(SVN)) 13554 return SDValue(); 13555 13556 if (LSBase->getOpcode() == ISD::LOAD) { 13557 SDLoc dl(SVN); 13558 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 13559 return DAG.getMemIntrinsicNode( 13560 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 13561 LSBase->getMemoryVT(), LSBase->getMemOperand()); 13562 } 13563 13564 if (LSBase->getOpcode() == ISD::STORE) { 13565 SDLoc dl(LSBase); 13566 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 13567 LSBase->getBasePtr()}; 13568 return DAG.getMemIntrinsicNode( 13569 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 13570 LSBase->getMemoryVT(), LSBase->getMemOperand()); 13571 } 13572 13573 llvm_unreachable("Expected a load or store node here"); 13574 } 13575 13576 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 13577 DAGCombinerInfo &DCI) const { 13578 SelectionDAG &DAG = DCI.DAG; 13579 SDLoc dl(N); 13580 switch (N->getOpcode()) { 13581 default: break; 13582 case ISD::ADD: 13583 return combineADD(N, DCI); 13584 case ISD::SHL: 13585 return combineSHL(N, DCI); 13586 case ISD::SRA: 13587 return combineSRA(N, DCI); 13588 case ISD::SRL: 13589 return combineSRL(N, DCI); 13590 case ISD::MUL: 13591 return combineMUL(N, DCI); 13592 case PPCISD::SHL: 13593 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 13594 return N->getOperand(0); 13595 break; 13596 case PPCISD::SRL: 13597 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 13598 return N->getOperand(0); 13599 break; 13600 case PPCISD::SRA: 13601 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 13602 if (C->isNullValue() || // 0 >>s V -> 0. 13603 C->isAllOnesValue()) // -1 >>s V -> -1. 13604 return N->getOperand(0); 13605 } 13606 break; 13607 case ISD::SIGN_EXTEND: 13608 case ISD::ZERO_EXTEND: 13609 case ISD::ANY_EXTEND: 13610 return DAGCombineExtBoolTrunc(N, DCI); 13611 case ISD::TRUNCATE: 13612 return combineTRUNCATE(N, DCI); 13613 case ISD::SETCC: 13614 if (SDValue CSCC = combineSetCC(N, DCI)) 13615 return CSCC; 13616 LLVM_FALLTHROUGH; 13617 case ISD::SELECT_CC: 13618 return DAGCombineTruncBoolExt(N, DCI); 13619 case ISD::SINT_TO_FP: 13620 case ISD::UINT_TO_FP: 13621 return combineFPToIntToFP(N, DCI); 13622 case ISD::VECTOR_SHUFFLE: 13623 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 13624 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 13625 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 13626 } 13627 break; 13628 case ISD::STORE: { 13629 13630 EVT Op1VT = N->getOperand(1).getValueType(); 13631 unsigned Opcode = N->getOperand(1).getOpcode(); 13632 13633 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 13634 SDValue Val= combineStoreFPToInt(N, DCI); 13635 if (Val) 13636 return Val; 13637 } 13638 13639 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 13640 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 13641 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 13642 if (Val) 13643 return Val; 13644 } 13645 13646 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 13647 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 13648 N->getOperand(1).getNode()->hasOneUse() && 13649 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 13650 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 13651 13652 // STBRX can only handle simple types and it makes no sense to store less 13653 // two bytes in byte-reversed order. 13654 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 13655 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 13656 break; 13657 13658 SDValue BSwapOp = N->getOperand(1).getOperand(0); 13659 // Do an any-extend to 32-bits if this is a half-word input. 13660 if (BSwapOp.getValueType() == MVT::i16) 13661 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 13662 13663 // If the type of BSWAP operand is wider than stored memory width 13664 // it need to be shifted to the right side before STBRX. 13665 if (Op1VT.bitsGT(mVT)) { 13666 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 13667 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 13668 DAG.getConstant(Shift, dl, MVT::i32)); 13669 // Need to truncate if this is a bswap of i64 stored as i32/i16. 13670 if (Op1VT == MVT::i64) 13671 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 13672 } 13673 13674 SDValue Ops[] = { 13675 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 13676 }; 13677 return 13678 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 13679 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 13680 cast<StoreSDNode>(N)->getMemOperand()); 13681 } 13682 13683 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 13684 // So it can increase the chance of CSE constant construction. 13685 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 13686 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 13687 // Need to sign-extended to 64-bits to handle negative values. 13688 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 13689 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 13690 MemVT.getSizeInBits()); 13691 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 13692 13693 // DAG.getTruncStore() can't be used here because it doesn't accept 13694 // the general (base + offset) addressing mode. 13695 // So we use UpdateNodeOperands and setTruncatingStore instead. 13696 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 13697 N->getOperand(3)); 13698 cast<StoreSDNode>(N)->setTruncatingStore(true); 13699 return SDValue(N, 0); 13700 } 13701 13702 // For little endian, VSX stores require generating xxswapd/lxvd2x. 13703 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 13704 if (Op1VT.isSimple()) { 13705 MVT StoreVT = Op1VT.getSimpleVT(); 13706 if (Subtarget.needsSwapsForVSXMemOps() && 13707 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 13708 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 13709 return expandVSXStoreForLE(N, DCI); 13710 } 13711 break; 13712 } 13713 case ISD::LOAD: { 13714 LoadSDNode *LD = cast<LoadSDNode>(N); 13715 EVT VT = LD->getValueType(0); 13716 13717 // For little endian, VSX loads require generating lxvd2x/xxswapd. 13718 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 13719 if (VT.isSimple()) { 13720 MVT LoadVT = VT.getSimpleVT(); 13721 if (Subtarget.needsSwapsForVSXMemOps() && 13722 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 13723 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 13724 return expandVSXLoadForLE(N, DCI); 13725 } 13726 13727 // We sometimes end up with a 64-bit integer load, from which we extract 13728 // two single-precision floating-point numbers. This happens with 13729 // std::complex<float>, and other similar structures, because of the way we 13730 // canonicalize structure copies. However, if we lack direct moves, 13731 // then the final bitcasts from the extracted integer values to the 13732 // floating-point numbers turn into store/load pairs. Even with direct moves, 13733 // just loading the two floating-point numbers is likely better. 13734 auto ReplaceTwoFloatLoad = [&]() { 13735 if (VT != MVT::i64) 13736 return false; 13737 13738 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 13739 LD->isVolatile()) 13740 return false; 13741 13742 // We're looking for a sequence like this: 13743 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 13744 // t16: i64 = srl t13, Constant:i32<32> 13745 // t17: i32 = truncate t16 13746 // t18: f32 = bitcast t17 13747 // t19: i32 = truncate t13 13748 // t20: f32 = bitcast t19 13749 13750 if (!LD->hasNUsesOfValue(2, 0)) 13751 return false; 13752 13753 auto UI = LD->use_begin(); 13754 while (UI.getUse().getResNo() != 0) ++UI; 13755 SDNode *Trunc = *UI++; 13756 while (UI.getUse().getResNo() != 0) ++UI; 13757 SDNode *RightShift = *UI; 13758 if (Trunc->getOpcode() != ISD::TRUNCATE) 13759 std::swap(Trunc, RightShift); 13760 13761 if (Trunc->getOpcode() != ISD::TRUNCATE || 13762 Trunc->getValueType(0) != MVT::i32 || 13763 !Trunc->hasOneUse()) 13764 return false; 13765 if (RightShift->getOpcode() != ISD::SRL || 13766 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 13767 RightShift->getConstantOperandVal(1) != 32 || 13768 !RightShift->hasOneUse()) 13769 return false; 13770 13771 SDNode *Trunc2 = *RightShift->use_begin(); 13772 if (Trunc2->getOpcode() != ISD::TRUNCATE || 13773 Trunc2->getValueType(0) != MVT::i32 || 13774 !Trunc2->hasOneUse()) 13775 return false; 13776 13777 SDNode *Bitcast = *Trunc->use_begin(); 13778 SDNode *Bitcast2 = *Trunc2->use_begin(); 13779 13780 if (Bitcast->getOpcode() != ISD::BITCAST || 13781 Bitcast->getValueType(0) != MVT::f32) 13782 return false; 13783 if (Bitcast2->getOpcode() != ISD::BITCAST || 13784 Bitcast2->getValueType(0) != MVT::f32) 13785 return false; 13786 13787 if (Subtarget.isLittleEndian()) 13788 std::swap(Bitcast, Bitcast2); 13789 13790 // Bitcast has the second float (in memory-layout order) and Bitcast2 13791 // has the first one. 13792 13793 SDValue BasePtr = LD->getBasePtr(); 13794 if (LD->isIndexed()) { 13795 assert(LD->getAddressingMode() == ISD::PRE_INC && 13796 "Non-pre-inc AM on PPC?"); 13797 BasePtr = 13798 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 13799 LD->getOffset()); 13800 } 13801 13802 auto MMOFlags = 13803 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 13804 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 13805 LD->getPointerInfo(), LD->getAlignment(), 13806 MMOFlags, LD->getAAInfo()); 13807 SDValue AddPtr = 13808 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 13809 BasePtr, DAG.getIntPtrConstant(4, dl)); 13810 SDValue FloatLoad2 = DAG.getLoad( 13811 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 13812 LD->getPointerInfo().getWithOffset(4), 13813 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 13814 13815 if (LD->isIndexed()) { 13816 // Note that DAGCombine should re-form any pre-increment load(s) from 13817 // what is produced here if that makes sense. 13818 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 13819 } 13820 13821 DCI.CombineTo(Bitcast2, FloatLoad); 13822 DCI.CombineTo(Bitcast, FloatLoad2); 13823 13824 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 13825 SDValue(FloatLoad2.getNode(), 1)); 13826 return true; 13827 }; 13828 13829 if (ReplaceTwoFloatLoad()) 13830 return SDValue(N, 0); 13831 13832 EVT MemVT = LD->getMemoryVT(); 13833 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 13834 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 13835 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 13836 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 13837 if (LD->isUnindexed() && VT.isVector() && 13838 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 13839 // P8 and later hardware should just use LOAD. 13840 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 13841 VT == MVT::v4i32 || VT == MVT::v4f32)) || 13842 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 13843 LD->getAlignment() >= ScalarABIAlignment)) && 13844 LD->getAlignment() < ABIAlignment) { 13845 // This is a type-legal unaligned Altivec or QPX load. 13846 SDValue Chain = LD->getChain(); 13847 SDValue Ptr = LD->getBasePtr(); 13848 bool isLittleEndian = Subtarget.isLittleEndian(); 13849 13850 // This implements the loading of unaligned vectors as described in 13851 // the venerable Apple Velocity Engine overview. Specifically: 13852 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 13853 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 13854 // 13855 // The general idea is to expand a sequence of one or more unaligned 13856 // loads into an alignment-based permutation-control instruction (lvsl 13857 // or lvsr), a series of regular vector loads (which always truncate 13858 // their input address to an aligned address), and a series of 13859 // permutations. The results of these permutations are the requested 13860 // loaded values. The trick is that the last "extra" load is not taken 13861 // from the address you might suspect (sizeof(vector) bytes after the 13862 // last requested load), but rather sizeof(vector) - 1 bytes after the 13863 // last requested vector. The point of this is to avoid a page fault if 13864 // the base address happened to be aligned. This works because if the 13865 // base address is aligned, then adding less than a full vector length 13866 // will cause the last vector in the sequence to be (re)loaded. 13867 // Otherwise, the next vector will be fetched as you might suspect was 13868 // necessary. 13869 13870 // We might be able to reuse the permutation generation from 13871 // a different base address offset from this one by an aligned amount. 13872 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 13873 // optimization later. 13874 Intrinsic::ID Intr, IntrLD, IntrPerm; 13875 MVT PermCntlTy, PermTy, LDTy; 13876 if (Subtarget.hasAltivec()) { 13877 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 13878 Intrinsic::ppc_altivec_lvsl; 13879 IntrLD = Intrinsic::ppc_altivec_lvx; 13880 IntrPerm = Intrinsic::ppc_altivec_vperm; 13881 PermCntlTy = MVT::v16i8; 13882 PermTy = MVT::v4i32; 13883 LDTy = MVT::v4i32; 13884 } else { 13885 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 13886 Intrinsic::ppc_qpx_qvlpcls; 13887 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 13888 Intrinsic::ppc_qpx_qvlfs; 13889 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 13890 PermCntlTy = MVT::v4f64; 13891 PermTy = MVT::v4f64; 13892 LDTy = MemVT.getSimpleVT(); 13893 } 13894 13895 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 13896 13897 // Create the new MMO for the new base load. It is like the original MMO, 13898 // but represents an area in memory almost twice the vector size centered 13899 // on the original address. If the address is unaligned, we might start 13900 // reading up to (sizeof(vector)-1) bytes below the address of the 13901 // original unaligned load. 13902 MachineFunction &MF = DAG.getMachineFunction(); 13903 MachineMemOperand *BaseMMO = 13904 MF.getMachineMemOperand(LD->getMemOperand(), 13905 -(long)MemVT.getStoreSize()+1, 13906 2*MemVT.getStoreSize()-1); 13907 13908 // Create the new base load. 13909 SDValue LDXIntID = 13910 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 13911 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 13912 SDValue BaseLoad = 13913 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 13914 DAG.getVTList(PermTy, MVT::Other), 13915 BaseLoadOps, LDTy, BaseMMO); 13916 13917 // Note that the value of IncOffset (which is provided to the next 13918 // load's pointer info offset value, and thus used to calculate the 13919 // alignment), and the value of IncValue (which is actually used to 13920 // increment the pointer value) are different! This is because we 13921 // require the next load to appear to be aligned, even though it 13922 // is actually offset from the base pointer by a lesser amount. 13923 int IncOffset = VT.getSizeInBits() / 8; 13924 int IncValue = IncOffset; 13925 13926 // Walk (both up and down) the chain looking for another load at the real 13927 // (aligned) offset (the alignment of the other load does not matter in 13928 // this case). If found, then do not use the offset reduction trick, as 13929 // that will prevent the loads from being later combined (as they would 13930 // otherwise be duplicates). 13931 if (!findConsecutiveLoad(LD, DAG)) 13932 --IncValue; 13933 13934 SDValue Increment = 13935 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 13936 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 13937 13938 MachineMemOperand *ExtraMMO = 13939 MF.getMachineMemOperand(LD->getMemOperand(), 13940 1, 2*MemVT.getStoreSize()-1); 13941 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 13942 SDValue ExtraLoad = 13943 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 13944 DAG.getVTList(PermTy, MVT::Other), 13945 ExtraLoadOps, LDTy, ExtraMMO); 13946 13947 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 13948 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 13949 13950 // Because vperm has a big-endian bias, we must reverse the order 13951 // of the input vectors and complement the permute control vector 13952 // when generating little endian code. We have already handled the 13953 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 13954 // and ExtraLoad here. 13955 SDValue Perm; 13956 if (isLittleEndian) 13957 Perm = BuildIntrinsicOp(IntrPerm, 13958 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 13959 else 13960 Perm = BuildIntrinsicOp(IntrPerm, 13961 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 13962 13963 if (VT != PermTy) 13964 Perm = Subtarget.hasAltivec() ? 13965 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 13966 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 13967 DAG.getTargetConstant(1, dl, MVT::i64)); 13968 // second argument is 1 because this rounding 13969 // is always exact. 13970 13971 // The output of the permutation is our loaded result, the TokenFactor is 13972 // our new chain. 13973 DCI.CombineTo(N, Perm, TF); 13974 return SDValue(N, 0); 13975 } 13976 } 13977 break; 13978 case ISD::INTRINSIC_WO_CHAIN: { 13979 bool isLittleEndian = Subtarget.isLittleEndian(); 13980 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 13981 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 13982 : Intrinsic::ppc_altivec_lvsl); 13983 if ((IID == Intr || 13984 IID == Intrinsic::ppc_qpx_qvlpcld || 13985 IID == Intrinsic::ppc_qpx_qvlpcls) && 13986 N->getOperand(1)->getOpcode() == ISD::ADD) { 13987 SDValue Add = N->getOperand(1); 13988 13989 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 13990 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 13991 13992 if (DAG.MaskedValueIsZero(Add->getOperand(1), 13993 APInt::getAllOnesValue(Bits /* alignment */) 13994 .zext(Add.getScalarValueSizeInBits()))) { 13995 SDNode *BasePtr = Add->getOperand(0).getNode(); 13996 for (SDNode::use_iterator UI = BasePtr->use_begin(), 13997 UE = BasePtr->use_end(); 13998 UI != UE; ++UI) { 13999 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14000 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 14001 // We've found another LVSL/LVSR, and this address is an aligned 14002 // multiple of that one. The results will be the same, so use the 14003 // one we've just found instead. 14004 14005 return SDValue(*UI, 0); 14006 } 14007 } 14008 } 14009 14010 if (isa<ConstantSDNode>(Add->getOperand(1))) { 14011 SDNode *BasePtr = Add->getOperand(0).getNode(); 14012 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14013 UE = BasePtr->use_end(); UI != UE; ++UI) { 14014 if (UI->getOpcode() == ISD::ADD && 14015 isa<ConstantSDNode>(UI->getOperand(1)) && 14016 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 14017 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 14018 (1ULL << Bits) == 0) { 14019 SDNode *OtherAdd = *UI; 14020 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 14021 VE = OtherAdd->use_end(); VI != VE; ++VI) { 14022 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14023 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 14024 return SDValue(*VI, 0); 14025 } 14026 } 14027 } 14028 } 14029 } 14030 } 14031 14032 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 14033 // Expose the vabsduw/h/b opportunity for down stream 14034 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 14035 (IID == Intrinsic::ppc_altivec_vmaxsw || 14036 IID == Intrinsic::ppc_altivec_vmaxsh || 14037 IID == Intrinsic::ppc_altivec_vmaxsb)) { 14038 SDValue V1 = N->getOperand(1); 14039 SDValue V2 = N->getOperand(2); 14040 if ((V1.getSimpleValueType() == MVT::v4i32 || 14041 V1.getSimpleValueType() == MVT::v8i16 || 14042 V1.getSimpleValueType() == MVT::v16i8) && 14043 V1.getSimpleValueType() == V2.getSimpleValueType()) { 14044 // (0-a, a) 14045 if (V1.getOpcode() == ISD::SUB && 14046 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 14047 V1.getOperand(1) == V2) { 14048 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 14049 } 14050 // (a, 0-a) 14051 if (V2.getOpcode() == ISD::SUB && 14052 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 14053 V2.getOperand(1) == V1) { 14054 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14055 } 14056 // (x-y, y-x) 14057 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 14058 V1.getOperand(0) == V2.getOperand(1) && 14059 V1.getOperand(1) == V2.getOperand(0)) { 14060 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14061 } 14062 } 14063 } 14064 } 14065 14066 break; 14067 case ISD::INTRINSIC_W_CHAIN: 14068 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14069 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14070 if (Subtarget.needsSwapsForVSXMemOps()) { 14071 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14072 default: 14073 break; 14074 case Intrinsic::ppc_vsx_lxvw4x: 14075 case Intrinsic::ppc_vsx_lxvd2x: 14076 return expandVSXLoadForLE(N, DCI); 14077 } 14078 } 14079 break; 14080 case ISD::INTRINSIC_VOID: 14081 // For little endian, VSX stores require generating xxswapd/stxvd2x. 14082 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14083 if (Subtarget.needsSwapsForVSXMemOps()) { 14084 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14085 default: 14086 break; 14087 case Intrinsic::ppc_vsx_stxvw4x: 14088 case Intrinsic::ppc_vsx_stxvd2x: 14089 return expandVSXStoreForLE(N, DCI); 14090 } 14091 } 14092 break; 14093 case ISD::BSWAP: 14094 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 14095 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 14096 N->getOperand(0).hasOneUse() && 14097 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 14098 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 14099 N->getValueType(0) == MVT::i64))) { 14100 SDValue Load = N->getOperand(0); 14101 LoadSDNode *LD = cast<LoadSDNode>(Load); 14102 // Create the byte-swapping load. 14103 SDValue Ops[] = { 14104 LD->getChain(), // Chain 14105 LD->getBasePtr(), // Ptr 14106 DAG.getValueType(N->getValueType(0)) // VT 14107 }; 14108 SDValue BSLoad = 14109 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 14110 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 14111 MVT::i64 : MVT::i32, MVT::Other), 14112 Ops, LD->getMemoryVT(), LD->getMemOperand()); 14113 14114 // If this is an i16 load, insert the truncate. 14115 SDValue ResVal = BSLoad; 14116 if (N->getValueType(0) == MVT::i16) 14117 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 14118 14119 // First, combine the bswap away. This makes the value produced by the 14120 // load dead. 14121 DCI.CombineTo(N, ResVal); 14122 14123 // Next, combine the load away, we give it a bogus result value but a real 14124 // chain result. The result value is dead because the bswap is dead. 14125 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 14126 14127 // Return N so it doesn't get rechecked! 14128 return SDValue(N, 0); 14129 } 14130 break; 14131 case PPCISD::VCMP: 14132 // If a VCMPo node already exists with exactly the same operands as this 14133 // node, use its result instead of this node (VCMPo computes both a CR6 and 14134 // a normal output). 14135 // 14136 if (!N->getOperand(0).hasOneUse() && 14137 !N->getOperand(1).hasOneUse() && 14138 !N->getOperand(2).hasOneUse()) { 14139 14140 // Scan all of the users of the LHS, looking for VCMPo's that match. 14141 SDNode *VCMPoNode = nullptr; 14142 14143 SDNode *LHSN = N->getOperand(0).getNode(); 14144 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 14145 UI != E; ++UI) 14146 if (UI->getOpcode() == PPCISD::VCMPo && 14147 UI->getOperand(1) == N->getOperand(1) && 14148 UI->getOperand(2) == N->getOperand(2) && 14149 UI->getOperand(0) == N->getOperand(0)) { 14150 VCMPoNode = *UI; 14151 break; 14152 } 14153 14154 // If there is no VCMPo node, or if the flag value has a single use, don't 14155 // transform this. 14156 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 14157 break; 14158 14159 // Look at the (necessarily single) use of the flag value. If it has a 14160 // chain, this transformation is more complex. Note that multiple things 14161 // could use the value result, which we should ignore. 14162 SDNode *FlagUser = nullptr; 14163 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 14164 FlagUser == nullptr; ++UI) { 14165 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 14166 SDNode *User = *UI; 14167 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 14168 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 14169 FlagUser = User; 14170 break; 14171 } 14172 } 14173 } 14174 14175 // If the user is a MFOCRF instruction, we know this is safe. 14176 // Otherwise we give up for right now. 14177 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 14178 return SDValue(VCMPoNode, 0); 14179 } 14180 break; 14181 case ISD::BRCOND: { 14182 SDValue Cond = N->getOperand(1); 14183 SDValue Target = N->getOperand(2); 14184 14185 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14186 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 14187 Intrinsic::loop_decrement) { 14188 14189 // We now need to make the intrinsic dead (it cannot be instruction 14190 // selected). 14191 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 14192 assert(Cond.getNode()->hasOneUse() && 14193 "Counter decrement has more than one use"); 14194 14195 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 14196 N->getOperand(0), Target); 14197 } 14198 } 14199 break; 14200 case ISD::BR_CC: { 14201 // If this is a branch on an altivec predicate comparison, lower this so 14202 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 14203 // lowering is done pre-legalize, because the legalizer lowers the predicate 14204 // compare down to code that is difficult to reassemble. 14205 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 14206 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 14207 14208 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 14209 // value. If so, pass-through the AND to get to the intrinsic. 14210 if (LHS.getOpcode() == ISD::AND && 14211 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 14212 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 14213 Intrinsic::loop_decrement && 14214 isa<ConstantSDNode>(LHS.getOperand(1)) && 14215 !isNullConstant(LHS.getOperand(1))) 14216 LHS = LHS.getOperand(0); 14217 14218 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14219 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 14220 Intrinsic::loop_decrement && 14221 isa<ConstantSDNode>(RHS)) { 14222 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 14223 "Counter decrement comparison is not EQ or NE"); 14224 14225 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14226 bool isBDNZ = (CC == ISD::SETEQ && Val) || 14227 (CC == ISD::SETNE && !Val); 14228 14229 // We now need to make the intrinsic dead (it cannot be instruction 14230 // selected). 14231 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 14232 assert(LHS.getNode()->hasOneUse() && 14233 "Counter decrement has more than one use"); 14234 14235 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 14236 N->getOperand(0), N->getOperand(4)); 14237 } 14238 14239 int CompareOpc; 14240 bool isDot; 14241 14242 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14243 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 14244 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 14245 assert(isDot && "Can't compare against a vector result!"); 14246 14247 // If this is a comparison against something other than 0/1, then we know 14248 // that the condition is never/always true. 14249 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14250 if (Val != 0 && Val != 1) { 14251 if (CC == ISD::SETEQ) // Cond never true, remove branch. 14252 return N->getOperand(0); 14253 // Always !=, turn it into an unconditional branch. 14254 return DAG.getNode(ISD::BR, dl, MVT::Other, 14255 N->getOperand(0), N->getOperand(4)); 14256 } 14257 14258 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 14259 14260 // Create the PPCISD altivec 'dot' comparison node. 14261 SDValue Ops[] = { 14262 LHS.getOperand(2), // LHS of compare 14263 LHS.getOperand(3), // RHS of compare 14264 DAG.getConstant(CompareOpc, dl, MVT::i32) 14265 }; 14266 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 14267 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 14268 14269 // Unpack the result based on how the target uses it. 14270 PPC::Predicate CompOpc; 14271 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 14272 default: // Can't happen, don't crash on invalid number though. 14273 case 0: // Branch on the value of the EQ bit of CR6. 14274 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 14275 break; 14276 case 1: // Branch on the inverted value of the EQ bit of CR6. 14277 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 14278 break; 14279 case 2: // Branch on the value of the LT bit of CR6. 14280 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 14281 break; 14282 case 3: // Branch on the inverted value of the LT bit of CR6. 14283 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 14284 break; 14285 } 14286 14287 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 14288 DAG.getConstant(CompOpc, dl, MVT::i32), 14289 DAG.getRegister(PPC::CR6, MVT::i32), 14290 N->getOperand(4), CompNode.getValue(1)); 14291 } 14292 break; 14293 } 14294 case ISD::BUILD_VECTOR: 14295 return DAGCombineBuildVector(N, DCI); 14296 case ISD::ABS: 14297 return combineABS(N, DCI); 14298 case ISD::VSELECT: 14299 return combineVSelect(N, DCI); 14300 } 14301 14302 return SDValue(); 14303 } 14304 14305 SDValue 14306 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 14307 SelectionDAG &DAG, 14308 SmallVectorImpl<SDNode *> &Created) const { 14309 // fold (sdiv X, pow2) 14310 EVT VT = N->getValueType(0); 14311 if (VT == MVT::i64 && !Subtarget.isPPC64()) 14312 return SDValue(); 14313 if ((VT != MVT::i32 && VT != MVT::i64) || 14314 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 14315 return SDValue(); 14316 14317 SDLoc DL(N); 14318 SDValue N0 = N->getOperand(0); 14319 14320 bool IsNegPow2 = (-Divisor).isPowerOf2(); 14321 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 14322 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 14323 14324 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 14325 Created.push_back(Op.getNode()); 14326 14327 if (IsNegPow2) { 14328 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 14329 Created.push_back(Op.getNode()); 14330 } 14331 14332 return Op; 14333 } 14334 14335 //===----------------------------------------------------------------------===// 14336 // Inline Assembly Support 14337 //===----------------------------------------------------------------------===// 14338 14339 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 14340 KnownBits &Known, 14341 const APInt &DemandedElts, 14342 const SelectionDAG &DAG, 14343 unsigned Depth) const { 14344 Known.resetAll(); 14345 switch (Op.getOpcode()) { 14346 default: break; 14347 case PPCISD::LBRX: { 14348 // lhbrx is known to have the top bits cleared out. 14349 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 14350 Known.Zero = 0xFFFF0000; 14351 break; 14352 } 14353 case ISD::INTRINSIC_WO_CHAIN: { 14354 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 14355 default: break; 14356 case Intrinsic::ppc_altivec_vcmpbfp_p: 14357 case Intrinsic::ppc_altivec_vcmpeqfp_p: 14358 case Intrinsic::ppc_altivec_vcmpequb_p: 14359 case Intrinsic::ppc_altivec_vcmpequh_p: 14360 case Intrinsic::ppc_altivec_vcmpequw_p: 14361 case Intrinsic::ppc_altivec_vcmpequd_p: 14362 case Intrinsic::ppc_altivec_vcmpgefp_p: 14363 case Intrinsic::ppc_altivec_vcmpgtfp_p: 14364 case Intrinsic::ppc_altivec_vcmpgtsb_p: 14365 case Intrinsic::ppc_altivec_vcmpgtsh_p: 14366 case Intrinsic::ppc_altivec_vcmpgtsw_p: 14367 case Intrinsic::ppc_altivec_vcmpgtsd_p: 14368 case Intrinsic::ppc_altivec_vcmpgtub_p: 14369 case Intrinsic::ppc_altivec_vcmpgtuh_p: 14370 case Intrinsic::ppc_altivec_vcmpgtuw_p: 14371 case Intrinsic::ppc_altivec_vcmpgtud_p: 14372 Known.Zero = ~1U; // All bits but the low one are known to be zero. 14373 break; 14374 } 14375 } 14376 } 14377 } 14378 14379 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 14380 switch (Subtarget.getCPUDirective()) { 14381 default: break; 14382 case PPC::DIR_970: 14383 case PPC::DIR_PWR4: 14384 case PPC::DIR_PWR5: 14385 case PPC::DIR_PWR5X: 14386 case PPC::DIR_PWR6: 14387 case PPC::DIR_PWR6X: 14388 case PPC::DIR_PWR7: 14389 case PPC::DIR_PWR8: 14390 case PPC::DIR_PWR9: 14391 case PPC::DIR_PWR_FUTURE: { 14392 if (!ML) 14393 break; 14394 14395 if (!DisableInnermostLoopAlign32) { 14396 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 14397 // so that we can decrease cache misses and branch-prediction misses. 14398 // Actual alignment of the loop will depend on the hotness check and other 14399 // logic in alignBlocks. 14400 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 14401 return Align(32); 14402 } 14403 14404 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 14405 14406 // For small loops (between 5 and 8 instructions), align to a 32-byte 14407 // boundary so that the entire loop fits in one instruction-cache line. 14408 uint64_t LoopSize = 0; 14409 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 14410 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 14411 LoopSize += TII->getInstSizeInBytes(*J); 14412 if (LoopSize > 32) 14413 break; 14414 } 14415 14416 if (LoopSize > 16 && LoopSize <= 32) 14417 return Align(32); 14418 14419 break; 14420 } 14421 } 14422 14423 return TargetLowering::getPrefLoopAlignment(ML); 14424 } 14425 14426 /// getConstraintType - Given a constraint, return the type of 14427 /// constraint it is for this target. 14428 PPCTargetLowering::ConstraintType 14429 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 14430 if (Constraint.size() == 1) { 14431 switch (Constraint[0]) { 14432 default: break; 14433 case 'b': 14434 case 'r': 14435 case 'f': 14436 case 'd': 14437 case 'v': 14438 case 'y': 14439 return C_RegisterClass; 14440 case 'Z': 14441 // FIXME: While Z does indicate a memory constraint, it specifically 14442 // indicates an r+r address (used in conjunction with the 'y' modifier 14443 // in the replacement string). Currently, we're forcing the base 14444 // register to be r0 in the asm printer (which is interpreted as zero) 14445 // and forming the complete address in the second register. This is 14446 // suboptimal. 14447 return C_Memory; 14448 } 14449 } else if (Constraint == "wc") { // individual CR bits. 14450 return C_RegisterClass; 14451 } else if (Constraint == "wa" || Constraint == "wd" || 14452 Constraint == "wf" || Constraint == "ws" || 14453 Constraint == "wi" || Constraint == "ww") { 14454 return C_RegisterClass; // VSX registers. 14455 } 14456 return TargetLowering::getConstraintType(Constraint); 14457 } 14458 14459 /// Examine constraint type and operand type and determine a weight value. 14460 /// This object must already have been set up with the operand type 14461 /// and the current alternative constraint selected. 14462 TargetLowering::ConstraintWeight 14463 PPCTargetLowering::getSingleConstraintMatchWeight( 14464 AsmOperandInfo &info, const char *constraint) const { 14465 ConstraintWeight weight = CW_Invalid; 14466 Value *CallOperandVal = info.CallOperandVal; 14467 // If we don't have a value, we can't do a match, 14468 // but allow it at the lowest weight. 14469 if (!CallOperandVal) 14470 return CW_Default; 14471 Type *type = CallOperandVal->getType(); 14472 14473 // Look at the constraint type. 14474 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 14475 return CW_Register; // an individual CR bit. 14476 else if ((StringRef(constraint) == "wa" || 14477 StringRef(constraint) == "wd" || 14478 StringRef(constraint) == "wf") && 14479 type->isVectorTy()) 14480 return CW_Register; 14481 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 14482 return CW_Register; // just hold 64-bit integers data. 14483 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 14484 return CW_Register; 14485 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 14486 return CW_Register; 14487 14488 switch (*constraint) { 14489 default: 14490 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 14491 break; 14492 case 'b': 14493 if (type->isIntegerTy()) 14494 weight = CW_Register; 14495 break; 14496 case 'f': 14497 if (type->isFloatTy()) 14498 weight = CW_Register; 14499 break; 14500 case 'd': 14501 if (type->isDoubleTy()) 14502 weight = CW_Register; 14503 break; 14504 case 'v': 14505 if (type->isVectorTy()) 14506 weight = CW_Register; 14507 break; 14508 case 'y': 14509 weight = CW_Register; 14510 break; 14511 case 'Z': 14512 weight = CW_Memory; 14513 break; 14514 } 14515 return weight; 14516 } 14517 14518 std::pair<unsigned, const TargetRegisterClass *> 14519 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 14520 StringRef Constraint, 14521 MVT VT) const { 14522 if (Constraint.size() == 1) { 14523 // GCC RS6000 Constraint Letters 14524 switch (Constraint[0]) { 14525 case 'b': // R1-R31 14526 if (VT == MVT::i64 && Subtarget.isPPC64()) 14527 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 14528 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 14529 case 'r': // R0-R31 14530 if (VT == MVT::i64 && Subtarget.isPPC64()) 14531 return std::make_pair(0U, &PPC::G8RCRegClass); 14532 return std::make_pair(0U, &PPC::GPRCRegClass); 14533 // 'd' and 'f' constraints are both defined to be "the floating point 14534 // registers", where one is for 32-bit and the other for 64-bit. We don't 14535 // really care overly much here so just give them all the same reg classes. 14536 case 'd': 14537 case 'f': 14538 if (Subtarget.hasSPE()) { 14539 if (VT == MVT::f32 || VT == MVT::i32) 14540 return std::make_pair(0U, &PPC::GPRCRegClass); 14541 if (VT == MVT::f64 || VT == MVT::i64) 14542 return std::make_pair(0U, &PPC::SPERCRegClass); 14543 } else { 14544 if (VT == MVT::f32 || VT == MVT::i32) 14545 return std::make_pair(0U, &PPC::F4RCRegClass); 14546 if (VT == MVT::f64 || VT == MVT::i64) 14547 return std::make_pair(0U, &PPC::F8RCRegClass); 14548 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 14549 return std::make_pair(0U, &PPC::QFRCRegClass); 14550 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 14551 return std::make_pair(0U, &PPC::QSRCRegClass); 14552 } 14553 break; 14554 case 'v': 14555 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 14556 return std::make_pair(0U, &PPC::QFRCRegClass); 14557 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 14558 return std::make_pair(0U, &PPC::QSRCRegClass); 14559 if (Subtarget.hasAltivec()) 14560 return std::make_pair(0U, &PPC::VRRCRegClass); 14561 break; 14562 case 'y': // crrc 14563 return std::make_pair(0U, &PPC::CRRCRegClass); 14564 } 14565 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 14566 // An individual CR bit. 14567 return std::make_pair(0U, &PPC::CRBITRCRegClass); 14568 } else if ((Constraint == "wa" || Constraint == "wd" || 14569 Constraint == "wf" || Constraint == "wi") && 14570 Subtarget.hasVSX()) { 14571 return std::make_pair(0U, &PPC::VSRCRegClass); 14572 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 14573 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 14574 return std::make_pair(0U, &PPC::VSSRCRegClass); 14575 else 14576 return std::make_pair(0U, &PPC::VSFRCRegClass); 14577 } 14578 14579 // If we name a VSX register, we can't defer to the base class because it 14580 // will not recognize the correct register (their names will be VSL{0-31} 14581 // and V{0-31} so they won't match). So we match them here. 14582 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 14583 int VSNum = atoi(Constraint.data() + 3); 14584 assert(VSNum >= 0 && VSNum <= 63 && 14585 "Attempted to access a vsr out of range"); 14586 if (VSNum < 32) 14587 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 14588 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 14589 } 14590 std::pair<unsigned, const TargetRegisterClass *> R = 14591 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 14592 14593 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 14594 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 14595 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 14596 // register. 14597 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 14598 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 14599 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 14600 PPC::GPRCRegClass.contains(R.first)) 14601 return std::make_pair(TRI->getMatchingSuperReg(R.first, 14602 PPC::sub_32, &PPC::G8RCRegClass), 14603 &PPC::G8RCRegClass); 14604 14605 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 14606 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 14607 R.first = PPC::CR0; 14608 R.second = &PPC::CRRCRegClass; 14609 } 14610 14611 return R; 14612 } 14613 14614 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 14615 /// vector. If it is invalid, don't add anything to Ops. 14616 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 14617 std::string &Constraint, 14618 std::vector<SDValue>&Ops, 14619 SelectionDAG &DAG) const { 14620 SDValue Result; 14621 14622 // Only support length 1 constraints. 14623 if (Constraint.length() > 1) return; 14624 14625 char Letter = Constraint[0]; 14626 switch (Letter) { 14627 default: break; 14628 case 'I': 14629 case 'J': 14630 case 'K': 14631 case 'L': 14632 case 'M': 14633 case 'N': 14634 case 'O': 14635 case 'P': { 14636 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 14637 if (!CST) return; // Must be an immediate to match. 14638 SDLoc dl(Op); 14639 int64_t Value = CST->getSExtValue(); 14640 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 14641 // numbers are printed as such. 14642 switch (Letter) { 14643 default: llvm_unreachable("Unknown constraint letter!"); 14644 case 'I': // "I" is a signed 16-bit constant. 14645 if (isInt<16>(Value)) 14646 Result = DAG.getTargetConstant(Value, dl, TCVT); 14647 break; 14648 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 14649 if (isShiftedUInt<16, 16>(Value)) 14650 Result = DAG.getTargetConstant(Value, dl, TCVT); 14651 break; 14652 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 14653 if (isShiftedInt<16, 16>(Value)) 14654 Result = DAG.getTargetConstant(Value, dl, TCVT); 14655 break; 14656 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 14657 if (isUInt<16>(Value)) 14658 Result = DAG.getTargetConstant(Value, dl, TCVT); 14659 break; 14660 case 'M': // "M" is a constant that is greater than 31. 14661 if (Value > 31) 14662 Result = DAG.getTargetConstant(Value, dl, TCVT); 14663 break; 14664 case 'N': // "N" is a positive constant that is an exact power of two. 14665 if (Value > 0 && isPowerOf2_64(Value)) 14666 Result = DAG.getTargetConstant(Value, dl, TCVT); 14667 break; 14668 case 'O': // "O" is the constant zero. 14669 if (Value == 0) 14670 Result = DAG.getTargetConstant(Value, dl, TCVT); 14671 break; 14672 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 14673 if (isInt<16>(-Value)) 14674 Result = DAG.getTargetConstant(Value, dl, TCVT); 14675 break; 14676 } 14677 break; 14678 } 14679 } 14680 14681 if (Result.getNode()) { 14682 Ops.push_back(Result); 14683 return; 14684 } 14685 14686 // Handle standard constraint letters. 14687 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 14688 } 14689 14690 // isLegalAddressingMode - Return true if the addressing mode represented 14691 // by AM is legal for this target, for a load/store of the specified type. 14692 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 14693 const AddrMode &AM, Type *Ty, 14694 unsigned AS, Instruction *I) const { 14695 // PPC does not allow r+i addressing modes for vectors! 14696 if (Ty->isVectorTy() && AM.BaseOffs != 0) 14697 return false; 14698 14699 // PPC allows a sign-extended 16-bit immediate field. 14700 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 14701 return false; 14702 14703 // No global is ever allowed as a base. 14704 if (AM.BaseGV) 14705 return false; 14706 14707 // PPC only support r+r, 14708 switch (AM.Scale) { 14709 case 0: // "r+i" or just "i", depending on HasBaseReg. 14710 break; 14711 case 1: 14712 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 14713 return false; 14714 // Otherwise we have r+r or r+i. 14715 break; 14716 case 2: 14717 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 14718 return false; 14719 // Allow 2*r as r+r. 14720 break; 14721 default: 14722 // No other scales are supported. 14723 return false; 14724 } 14725 14726 return true; 14727 } 14728 14729 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 14730 SelectionDAG &DAG) const { 14731 MachineFunction &MF = DAG.getMachineFunction(); 14732 MachineFrameInfo &MFI = MF.getFrameInfo(); 14733 MFI.setReturnAddressIsTaken(true); 14734 14735 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 14736 return SDValue(); 14737 14738 SDLoc dl(Op); 14739 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 14740 14741 // Make sure the function does not optimize away the store of the RA to 14742 // the stack. 14743 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 14744 FuncInfo->setLRStoreRequired(); 14745 bool isPPC64 = Subtarget.isPPC64(); 14746 auto PtrVT = getPointerTy(MF.getDataLayout()); 14747 14748 if (Depth > 0) { 14749 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 14750 SDValue Offset = 14751 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 14752 isPPC64 ? MVT::i64 : MVT::i32); 14753 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 14754 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 14755 MachinePointerInfo()); 14756 } 14757 14758 // Just load the return address off the stack. 14759 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 14760 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 14761 MachinePointerInfo()); 14762 } 14763 14764 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 14765 SelectionDAG &DAG) const { 14766 SDLoc dl(Op); 14767 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 14768 14769 MachineFunction &MF = DAG.getMachineFunction(); 14770 MachineFrameInfo &MFI = MF.getFrameInfo(); 14771 MFI.setFrameAddressIsTaken(true); 14772 14773 EVT PtrVT = getPointerTy(MF.getDataLayout()); 14774 bool isPPC64 = PtrVT == MVT::i64; 14775 14776 // Naked functions never have a frame pointer, and so we use r1. For all 14777 // other functions, this decision must be delayed until during PEI. 14778 unsigned FrameReg; 14779 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 14780 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 14781 else 14782 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 14783 14784 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 14785 PtrVT); 14786 while (Depth--) 14787 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 14788 FrameAddr, MachinePointerInfo()); 14789 return FrameAddr; 14790 } 14791 14792 // FIXME? Maybe this could be a TableGen attribute on some registers and 14793 // this table could be generated automatically from RegInfo. 14794 Register PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 14795 const MachineFunction &MF) const { 14796 bool isPPC64 = Subtarget.isPPC64(); 14797 bool IsDarwinABI = Subtarget.isDarwinABI(); 14798 14799 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 14800 (!isPPC64 && VT != MVT::i32)) 14801 report_fatal_error("Invalid register global variable type"); 14802 14803 bool is64Bit = isPPC64 && VT == MVT::i64; 14804 Register Reg = StringSwitch<Register>(RegName) 14805 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 14806 .Case("r2", (IsDarwinABI || isPPC64) ? Register() : PPC::R2) 14807 .Case("r13", (!isPPC64 && IsDarwinABI) ? Register() : 14808 (is64Bit ? PPC::X13 : PPC::R13)) 14809 .Default(Register()); 14810 14811 if (Reg) 14812 return Reg; 14813 report_fatal_error("Invalid register name global variable"); 14814 } 14815 14816 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 14817 // 32-bit SVR4 ABI access everything as got-indirect. 14818 if (Subtarget.is32BitELFABI()) 14819 return true; 14820 14821 // AIX accesses everything indirectly through the TOC, which is similar to 14822 // the GOT. 14823 if (Subtarget.isAIXABI()) 14824 return true; 14825 14826 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 14827 // If it is small or large code model, module locals are accessed 14828 // indirectly by loading their address from .toc/.got. 14829 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 14830 return true; 14831 14832 // JumpTable and BlockAddress are accessed as got-indirect. 14833 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 14834 return true; 14835 14836 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 14837 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 14838 14839 return false; 14840 } 14841 14842 bool 14843 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 14844 // The PowerPC target isn't yet aware of offsets. 14845 return false; 14846 } 14847 14848 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 14849 const CallInst &I, 14850 MachineFunction &MF, 14851 unsigned Intrinsic) const { 14852 switch (Intrinsic) { 14853 case Intrinsic::ppc_qpx_qvlfd: 14854 case Intrinsic::ppc_qpx_qvlfs: 14855 case Intrinsic::ppc_qpx_qvlfcd: 14856 case Intrinsic::ppc_qpx_qvlfcs: 14857 case Intrinsic::ppc_qpx_qvlfiwa: 14858 case Intrinsic::ppc_qpx_qvlfiwz: 14859 case Intrinsic::ppc_altivec_lvx: 14860 case Intrinsic::ppc_altivec_lvxl: 14861 case Intrinsic::ppc_altivec_lvebx: 14862 case Intrinsic::ppc_altivec_lvehx: 14863 case Intrinsic::ppc_altivec_lvewx: 14864 case Intrinsic::ppc_vsx_lxvd2x: 14865 case Intrinsic::ppc_vsx_lxvw4x: { 14866 EVT VT; 14867 switch (Intrinsic) { 14868 case Intrinsic::ppc_altivec_lvebx: 14869 VT = MVT::i8; 14870 break; 14871 case Intrinsic::ppc_altivec_lvehx: 14872 VT = MVT::i16; 14873 break; 14874 case Intrinsic::ppc_altivec_lvewx: 14875 VT = MVT::i32; 14876 break; 14877 case Intrinsic::ppc_vsx_lxvd2x: 14878 VT = MVT::v2f64; 14879 break; 14880 case Intrinsic::ppc_qpx_qvlfd: 14881 VT = MVT::v4f64; 14882 break; 14883 case Intrinsic::ppc_qpx_qvlfs: 14884 VT = MVT::v4f32; 14885 break; 14886 case Intrinsic::ppc_qpx_qvlfcd: 14887 VT = MVT::v2f64; 14888 break; 14889 case Intrinsic::ppc_qpx_qvlfcs: 14890 VT = MVT::v2f32; 14891 break; 14892 default: 14893 VT = MVT::v4i32; 14894 break; 14895 } 14896 14897 Info.opc = ISD::INTRINSIC_W_CHAIN; 14898 Info.memVT = VT; 14899 Info.ptrVal = I.getArgOperand(0); 14900 Info.offset = -VT.getStoreSize()+1; 14901 Info.size = 2*VT.getStoreSize()-1; 14902 Info.align = Align::None(); 14903 Info.flags = MachineMemOperand::MOLoad; 14904 return true; 14905 } 14906 case Intrinsic::ppc_qpx_qvlfda: 14907 case Intrinsic::ppc_qpx_qvlfsa: 14908 case Intrinsic::ppc_qpx_qvlfcda: 14909 case Intrinsic::ppc_qpx_qvlfcsa: 14910 case Intrinsic::ppc_qpx_qvlfiwaa: 14911 case Intrinsic::ppc_qpx_qvlfiwza: { 14912 EVT VT; 14913 switch (Intrinsic) { 14914 case Intrinsic::ppc_qpx_qvlfda: 14915 VT = MVT::v4f64; 14916 break; 14917 case Intrinsic::ppc_qpx_qvlfsa: 14918 VT = MVT::v4f32; 14919 break; 14920 case Intrinsic::ppc_qpx_qvlfcda: 14921 VT = MVT::v2f64; 14922 break; 14923 case Intrinsic::ppc_qpx_qvlfcsa: 14924 VT = MVT::v2f32; 14925 break; 14926 default: 14927 VT = MVT::v4i32; 14928 break; 14929 } 14930 14931 Info.opc = ISD::INTRINSIC_W_CHAIN; 14932 Info.memVT = VT; 14933 Info.ptrVal = I.getArgOperand(0); 14934 Info.offset = 0; 14935 Info.size = VT.getStoreSize(); 14936 Info.align = Align::None(); 14937 Info.flags = MachineMemOperand::MOLoad; 14938 return true; 14939 } 14940 case Intrinsic::ppc_qpx_qvstfd: 14941 case Intrinsic::ppc_qpx_qvstfs: 14942 case Intrinsic::ppc_qpx_qvstfcd: 14943 case Intrinsic::ppc_qpx_qvstfcs: 14944 case Intrinsic::ppc_qpx_qvstfiw: 14945 case Intrinsic::ppc_altivec_stvx: 14946 case Intrinsic::ppc_altivec_stvxl: 14947 case Intrinsic::ppc_altivec_stvebx: 14948 case Intrinsic::ppc_altivec_stvehx: 14949 case Intrinsic::ppc_altivec_stvewx: 14950 case Intrinsic::ppc_vsx_stxvd2x: 14951 case Intrinsic::ppc_vsx_stxvw4x: { 14952 EVT VT; 14953 switch (Intrinsic) { 14954 case Intrinsic::ppc_altivec_stvebx: 14955 VT = MVT::i8; 14956 break; 14957 case Intrinsic::ppc_altivec_stvehx: 14958 VT = MVT::i16; 14959 break; 14960 case Intrinsic::ppc_altivec_stvewx: 14961 VT = MVT::i32; 14962 break; 14963 case Intrinsic::ppc_vsx_stxvd2x: 14964 VT = MVT::v2f64; 14965 break; 14966 case Intrinsic::ppc_qpx_qvstfd: 14967 VT = MVT::v4f64; 14968 break; 14969 case Intrinsic::ppc_qpx_qvstfs: 14970 VT = MVT::v4f32; 14971 break; 14972 case Intrinsic::ppc_qpx_qvstfcd: 14973 VT = MVT::v2f64; 14974 break; 14975 case Intrinsic::ppc_qpx_qvstfcs: 14976 VT = MVT::v2f32; 14977 break; 14978 default: 14979 VT = MVT::v4i32; 14980 break; 14981 } 14982 14983 Info.opc = ISD::INTRINSIC_VOID; 14984 Info.memVT = VT; 14985 Info.ptrVal = I.getArgOperand(1); 14986 Info.offset = -VT.getStoreSize()+1; 14987 Info.size = 2*VT.getStoreSize()-1; 14988 Info.align = Align::None(); 14989 Info.flags = MachineMemOperand::MOStore; 14990 return true; 14991 } 14992 case Intrinsic::ppc_qpx_qvstfda: 14993 case Intrinsic::ppc_qpx_qvstfsa: 14994 case Intrinsic::ppc_qpx_qvstfcda: 14995 case Intrinsic::ppc_qpx_qvstfcsa: 14996 case Intrinsic::ppc_qpx_qvstfiwa: { 14997 EVT VT; 14998 switch (Intrinsic) { 14999 case Intrinsic::ppc_qpx_qvstfda: 15000 VT = MVT::v4f64; 15001 break; 15002 case Intrinsic::ppc_qpx_qvstfsa: 15003 VT = MVT::v4f32; 15004 break; 15005 case Intrinsic::ppc_qpx_qvstfcda: 15006 VT = MVT::v2f64; 15007 break; 15008 case Intrinsic::ppc_qpx_qvstfcsa: 15009 VT = MVT::v2f32; 15010 break; 15011 default: 15012 VT = MVT::v4i32; 15013 break; 15014 } 15015 15016 Info.opc = ISD::INTRINSIC_VOID; 15017 Info.memVT = VT; 15018 Info.ptrVal = I.getArgOperand(1); 15019 Info.offset = 0; 15020 Info.size = VT.getStoreSize(); 15021 Info.align = Align::None(); 15022 Info.flags = MachineMemOperand::MOStore; 15023 return true; 15024 } 15025 default: 15026 break; 15027 } 15028 15029 return false; 15030 } 15031 15032 /// getOptimalMemOpType - Returns the target specific optimal type for load 15033 /// and store operations as a result of memset, memcpy, and memmove 15034 /// lowering. If DstAlign is zero that means it's safe to destination 15035 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 15036 /// means there isn't a need to check it against alignment requirement, 15037 /// probably because the source does not need to be loaded. If 'IsMemset' is 15038 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 15039 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 15040 /// source is constant so it does not need to be loaded. 15041 /// It returns EVT::Other if the type should be determined using generic 15042 /// target-independent logic. 15043 EVT PPCTargetLowering::getOptimalMemOpType( 15044 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, 15045 bool ZeroMemset, bool MemcpyStrSrc, 15046 const AttributeList &FuncAttributes) const { 15047 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 15048 // When expanding a memset, require at least two QPX instructions to cover 15049 // the cost of loading the value to be stored from the constant pool. 15050 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 15051 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 15052 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) { 15053 return MVT::v4f64; 15054 } 15055 15056 // We should use Altivec/VSX loads and stores when available. For unaligned 15057 // addresses, unaligned VSX loads are only fast starting with the P8. 15058 if (Subtarget.hasAltivec() && Size >= 16 && 15059 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 15060 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 15061 return MVT::v4i32; 15062 } 15063 15064 if (Subtarget.isPPC64()) { 15065 return MVT::i64; 15066 } 15067 15068 return MVT::i32; 15069 } 15070 15071 /// Returns true if it is beneficial to convert a load of a constant 15072 /// to just the constant itself. 15073 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 15074 Type *Ty) const { 15075 assert(Ty->isIntegerTy()); 15076 15077 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 15078 return !(BitSize == 0 || BitSize > 64); 15079 } 15080 15081 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 15082 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 15083 return false; 15084 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 15085 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 15086 return NumBits1 == 64 && NumBits2 == 32; 15087 } 15088 15089 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 15090 if (!VT1.isInteger() || !VT2.isInteger()) 15091 return false; 15092 unsigned NumBits1 = VT1.getSizeInBits(); 15093 unsigned NumBits2 = VT2.getSizeInBits(); 15094 return NumBits1 == 64 && NumBits2 == 32; 15095 } 15096 15097 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 15098 // Generally speaking, zexts are not free, but they are free when they can be 15099 // folded with other operations. 15100 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 15101 EVT MemVT = LD->getMemoryVT(); 15102 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 15103 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 15104 (LD->getExtensionType() == ISD::NON_EXTLOAD || 15105 LD->getExtensionType() == ISD::ZEXTLOAD)) 15106 return true; 15107 } 15108 15109 // FIXME: Add other cases... 15110 // - 32-bit shifts with a zext to i64 15111 // - zext after ctlz, bswap, etc. 15112 // - zext after and by a constant mask 15113 15114 return TargetLowering::isZExtFree(Val, VT2); 15115 } 15116 15117 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 15118 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 15119 "invalid fpext types"); 15120 // Extending to float128 is not free. 15121 if (DestVT == MVT::f128) 15122 return false; 15123 return true; 15124 } 15125 15126 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 15127 return isInt<16>(Imm) || isUInt<16>(Imm); 15128 } 15129 15130 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 15131 return isInt<16>(Imm) || isUInt<16>(Imm); 15132 } 15133 15134 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 15135 unsigned, 15136 unsigned, 15137 MachineMemOperand::Flags, 15138 bool *Fast) const { 15139 if (DisablePPCUnaligned) 15140 return false; 15141 15142 // PowerPC supports unaligned memory access for simple non-vector types. 15143 // Although accessing unaligned addresses is not as efficient as accessing 15144 // aligned addresses, it is generally more efficient than manual expansion, 15145 // and generally only traps for software emulation when crossing page 15146 // boundaries. 15147 15148 if (!VT.isSimple()) 15149 return false; 15150 15151 if (VT.isFloatingPoint() && !Subtarget.allowsUnalignedFPAccess()) 15152 return false; 15153 15154 if (VT.getSimpleVT().isVector()) { 15155 if (Subtarget.hasVSX()) { 15156 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 15157 VT != MVT::v4f32 && VT != MVT::v4i32) 15158 return false; 15159 } else { 15160 return false; 15161 } 15162 } 15163 15164 if (VT == MVT::ppcf128) 15165 return false; 15166 15167 if (Fast) 15168 *Fast = true; 15169 15170 return true; 15171 } 15172 15173 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 15174 EVT VT) const { 15175 VT = VT.getScalarType(); 15176 15177 if (!VT.isSimple()) 15178 return false; 15179 15180 switch (VT.getSimpleVT().SimpleTy) { 15181 case MVT::f32: 15182 case MVT::f64: 15183 return true; 15184 case MVT::f128: 15185 return (EnableQuadPrecision && Subtarget.hasP9Vector()); 15186 default: 15187 break; 15188 } 15189 15190 return false; 15191 } 15192 15193 const MCPhysReg * 15194 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 15195 // LR is a callee-save register, but we must treat it as clobbered by any call 15196 // site. Hence we include LR in the scratch registers, which are in turn added 15197 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 15198 // to CTR, which is used by any indirect call. 15199 static const MCPhysReg ScratchRegs[] = { 15200 PPC::X12, PPC::LR8, PPC::CTR8, 0 15201 }; 15202 15203 return ScratchRegs; 15204 } 15205 15206 unsigned PPCTargetLowering::getExceptionPointerRegister( 15207 const Constant *PersonalityFn) const { 15208 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 15209 } 15210 15211 unsigned PPCTargetLowering::getExceptionSelectorRegister( 15212 const Constant *PersonalityFn) const { 15213 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 15214 } 15215 15216 bool 15217 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 15218 EVT VT , unsigned DefinedValues) const { 15219 if (VT == MVT::v2i64) 15220 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 15221 15222 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 15223 return true; 15224 15225 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 15226 } 15227 15228 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 15229 if (DisableILPPref || Subtarget.enableMachineScheduler()) 15230 return TargetLowering::getSchedulingPreference(N); 15231 15232 return Sched::ILP; 15233 } 15234 15235 // Create a fast isel object. 15236 FastISel * 15237 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 15238 const TargetLibraryInfo *LibInfo) const { 15239 return PPC::createFastISel(FuncInfo, LibInfo); 15240 } 15241 15242 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 15243 if (Subtarget.isDarwinABI()) return; 15244 if (!Subtarget.isPPC64()) return; 15245 15246 // Update IsSplitCSR in PPCFunctionInfo 15247 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 15248 PFI->setIsSplitCSR(true); 15249 } 15250 15251 void PPCTargetLowering::insertCopiesSplitCSR( 15252 MachineBasicBlock *Entry, 15253 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 15254 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 15255 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 15256 if (!IStart) 15257 return; 15258 15259 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 15260 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 15261 MachineBasicBlock::iterator MBBI = Entry->begin(); 15262 for (const MCPhysReg *I = IStart; *I; ++I) { 15263 const TargetRegisterClass *RC = nullptr; 15264 if (PPC::G8RCRegClass.contains(*I)) 15265 RC = &PPC::G8RCRegClass; 15266 else if (PPC::F8RCRegClass.contains(*I)) 15267 RC = &PPC::F8RCRegClass; 15268 else if (PPC::CRRCRegClass.contains(*I)) 15269 RC = &PPC::CRRCRegClass; 15270 else if (PPC::VRRCRegClass.contains(*I)) 15271 RC = &PPC::VRRCRegClass; 15272 else 15273 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 15274 15275 Register NewVR = MRI->createVirtualRegister(RC); 15276 // Create copy from CSR to a virtual register. 15277 // FIXME: this currently does not emit CFI pseudo-instructions, it works 15278 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 15279 // nounwind. If we want to generalize this later, we may need to emit 15280 // CFI pseudo-instructions. 15281 assert(Entry->getParent()->getFunction().hasFnAttribute( 15282 Attribute::NoUnwind) && 15283 "Function should be nounwind in insertCopiesSplitCSR!"); 15284 Entry->addLiveIn(*I); 15285 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 15286 .addReg(*I); 15287 15288 // Insert the copy-back instructions right before the terminator. 15289 for (auto *Exit : Exits) 15290 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 15291 TII->get(TargetOpcode::COPY), *I) 15292 .addReg(NewVR); 15293 } 15294 } 15295 15296 // Override to enable LOAD_STACK_GUARD lowering on Linux. 15297 bool PPCTargetLowering::useLoadStackGuardNode() const { 15298 if (!Subtarget.isTargetLinux()) 15299 return TargetLowering::useLoadStackGuardNode(); 15300 return true; 15301 } 15302 15303 // Override to disable global variable loading on Linux. 15304 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 15305 if (!Subtarget.isTargetLinux()) 15306 return TargetLowering::insertSSPDeclarations(M); 15307 } 15308 15309 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 15310 bool ForCodeSize) const { 15311 if (!VT.isSimple() || !Subtarget.hasVSX()) 15312 return false; 15313 15314 switch(VT.getSimpleVT().SimpleTy) { 15315 default: 15316 // For FP types that are currently not supported by PPC backend, return 15317 // false. Examples: f16, f80. 15318 return false; 15319 case MVT::f32: 15320 case MVT::f64: 15321 case MVT::ppcf128: 15322 return Imm.isPosZero(); 15323 } 15324 } 15325 15326 // For vector shift operation op, fold 15327 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 15328 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 15329 SelectionDAG &DAG) { 15330 SDValue N0 = N->getOperand(0); 15331 SDValue N1 = N->getOperand(1); 15332 EVT VT = N0.getValueType(); 15333 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 15334 unsigned Opcode = N->getOpcode(); 15335 unsigned TargetOpcode; 15336 15337 switch (Opcode) { 15338 default: 15339 llvm_unreachable("Unexpected shift operation"); 15340 case ISD::SHL: 15341 TargetOpcode = PPCISD::SHL; 15342 break; 15343 case ISD::SRL: 15344 TargetOpcode = PPCISD::SRL; 15345 break; 15346 case ISD::SRA: 15347 TargetOpcode = PPCISD::SRA; 15348 break; 15349 } 15350 15351 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 15352 N1->getOpcode() == ISD::AND) 15353 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 15354 if (Mask->getZExtValue() == OpSizeInBits - 1) 15355 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 15356 15357 return SDValue(); 15358 } 15359 15360 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 15361 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15362 return Value; 15363 15364 SDValue N0 = N->getOperand(0); 15365 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 15366 if (!Subtarget.isISA3_0() || 15367 N0.getOpcode() != ISD::SIGN_EXTEND || 15368 N0.getOperand(0).getValueType() != MVT::i32 || 15369 CN1 == nullptr || N->getValueType(0) != MVT::i64) 15370 return SDValue(); 15371 15372 // We can't save an operation here if the value is already extended, and 15373 // the existing shift is easier to combine. 15374 SDValue ExtsSrc = N0.getOperand(0); 15375 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 15376 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 15377 return SDValue(); 15378 15379 SDLoc DL(N0); 15380 SDValue ShiftBy = SDValue(CN1, 0); 15381 // We want the shift amount to be i32 on the extswli, but the shift could 15382 // have an i64. 15383 if (ShiftBy.getValueType() == MVT::i64) 15384 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 15385 15386 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 15387 ShiftBy); 15388 } 15389 15390 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 15391 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15392 return Value; 15393 15394 return SDValue(); 15395 } 15396 15397 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 15398 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15399 return Value; 15400 15401 return SDValue(); 15402 } 15403 15404 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 15405 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 15406 // When C is zero, the equation (addi Z, -C) can be simplified to Z 15407 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 15408 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 15409 const PPCSubtarget &Subtarget) { 15410 if (!Subtarget.isPPC64()) 15411 return SDValue(); 15412 15413 SDValue LHS = N->getOperand(0); 15414 SDValue RHS = N->getOperand(1); 15415 15416 auto isZextOfCompareWithConstant = [](SDValue Op) { 15417 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 15418 Op.getValueType() != MVT::i64) 15419 return false; 15420 15421 SDValue Cmp = Op.getOperand(0); 15422 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 15423 Cmp.getOperand(0).getValueType() != MVT::i64) 15424 return false; 15425 15426 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 15427 int64_t NegConstant = 0 - Constant->getSExtValue(); 15428 // Due to the limitations of the addi instruction, 15429 // -C is required to be [-32768, 32767]. 15430 return isInt<16>(NegConstant); 15431 } 15432 15433 return false; 15434 }; 15435 15436 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 15437 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 15438 15439 // If there is a pattern, canonicalize a zext operand to the RHS. 15440 if (LHSHasPattern && !RHSHasPattern) 15441 std::swap(LHS, RHS); 15442 else if (!LHSHasPattern && !RHSHasPattern) 15443 return SDValue(); 15444 15445 SDLoc DL(N); 15446 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 15447 SDValue Cmp = RHS.getOperand(0); 15448 SDValue Z = Cmp.getOperand(0); 15449 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 15450 15451 assert(Constant && "Constant Should not be a null pointer."); 15452 int64_t NegConstant = 0 - Constant->getSExtValue(); 15453 15454 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 15455 default: break; 15456 case ISD::SETNE: { 15457 // when C == 0 15458 // --> addze X, (addic Z, -1).carry 15459 // / 15460 // add X, (zext(setne Z, C))-- 15461 // \ when -32768 <= -C <= 32767 && C != 0 15462 // --> addze X, (addic (addi Z, -C), -1).carry 15463 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15464 DAG.getConstant(NegConstant, DL, MVT::i64)); 15465 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15466 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15467 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 15468 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15469 SDValue(Addc.getNode(), 1)); 15470 } 15471 case ISD::SETEQ: { 15472 // when C == 0 15473 // --> addze X, (subfic Z, 0).carry 15474 // / 15475 // add X, (zext(sete Z, C))-- 15476 // \ when -32768 <= -C <= 32767 && C != 0 15477 // --> addze X, (subfic (addi Z, -C), 0).carry 15478 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15479 DAG.getConstant(NegConstant, DL, MVT::i64)); 15480 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15481 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15482 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 15483 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15484 SDValue(Subc.getNode(), 1)); 15485 } 15486 } 15487 15488 return SDValue(); 15489 } 15490 15491 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 15492 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 15493 return Value; 15494 15495 return SDValue(); 15496 } 15497 15498 // Detect TRUNCATE operations on bitcasts of float128 values. 15499 // What we are looking for here is the situtation where we extract a subset 15500 // of bits from a 128 bit float. 15501 // This can be of two forms: 15502 // 1) BITCAST of f128 feeding TRUNCATE 15503 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 15504 // The reason this is required is because we do not have a legal i128 type 15505 // and so we want to prevent having to store the f128 and then reload part 15506 // of it. 15507 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 15508 DAGCombinerInfo &DCI) const { 15509 // If we are using CRBits then try that first. 15510 if (Subtarget.useCRBits()) { 15511 // Check if CRBits did anything and return that if it did. 15512 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 15513 return CRTruncValue; 15514 } 15515 15516 SDLoc dl(N); 15517 SDValue Op0 = N->getOperand(0); 15518 15519 // Looking for a truncate of i128 to i64. 15520 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 15521 return SDValue(); 15522 15523 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 15524 15525 // SRL feeding TRUNCATE. 15526 if (Op0.getOpcode() == ISD::SRL) { 15527 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 15528 // The right shift has to be by 64 bits. 15529 if (!ConstNode || ConstNode->getZExtValue() != 64) 15530 return SDValue(); 15531 15532 // Switch the element number to extract. 15533 EltToExtract = EltToExtract ? 0 : 1; 15534 // Update Op0 past the SRL. 15535 Op0 = Op0.getOperand(0); 15536 } 15537 15538 // BITCAST feeding a TRUNCATE possibly via SRL. 15539 if (Op0.getOpcode() == ISD::BITCAST && 15540 Op0.getValueType() == MVT::i128 && 15541 Op0.getOperand(0).getValueType() == MVT::f128) { 15542 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 15543 return DCI.DAG.getNode( 15544 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 15545 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 15546 } 15547 return SDValue(); 15548 } 15549 15550 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 15551 SelectionDAG &DAG = DCI.DAG; 15552 15553 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 15554 if (!ConstOpOrElement) 15555 return SDValue(); 15556 15557 // An imul is usually smaller than the alternative sequence for legal type. 15558 if (DAG.getMachineFunction().getFunction().hasMinSize() && 15559 isOperationLegal(ISD::MUL, N->getValueType(0))) 15560 return SDValue(); 15561 15562 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 15563 switch (this->Subtarget.getCPUDirective()) { 15564 default: 15565 // TODO: enhance the condition for subtarget before pwr8 15566 return false; 15567 case PPC::DIR_PWR8: 15568 // type mul add shl 15569 // scalar 4 1 1 15570 // vector 7 2 2 15571 return true; 15572 case PPC::DIR_PWR9: 15573 case PPC::DIR_PWR_FUTURE: 15574 // type mul add shl 15575 // scalar 5 2 2 15576 // vector 7 2 2 15577 15578 // The cycle RATIO of related operations are showed as a table above. 15579 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 15580 // scalar and vector type. For 2 instrs patterns, add/sub + shl 15581 // are 4, it is always profitable; but for 3 instrs patterns 15582 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 15583 // So we should only do it for vector type. 15584 return IsAddOne && IsNeg ? VT.isVector() : true; 15585 } 15586 }; 15587 15588 EVT VT = N->getValueType(0); 15589 SDLoc DL(N); 15590 15591 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 15592 bool IsNeg = MulAmt.isNegative(); 15593 APInt MulAmtAbs = MulAmt.abs(); 15594 15595 if ((MulAmtAbs - 1).isPowerOf2()) { 15596 // (mul x, 2^N + 1) => (add (shl x, N), x) 15597 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 15598 15599 if (!IsProfitable(IsNeg, true, VT)) 15600 return SDValue(); 15601 15602 SDValue Op0 = N->getOperand(0); 15603 SDValue Op1 = 15604 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 15605 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 15606 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 15607 15608 if (!IsNeg) 15609 return Res; 15610 15611 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 15612 } else if ((MulAmtAbs + 1).isPowerOf2()) { 15613 // (mul x, 2^N - 1) => (sub (shl x, N), x) 15614 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 15615 15616 if (!IsProfitable(IsNeg, false, VT)) 15617 return SDValue(); 15618 15619 SDValue Op0 = N->getOperand(0); 15620 SDValue Op1 = 15621 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 15622 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 15623 15624 if (!IsNeg) 15625 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 15626 else 15627 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 15628 15629 } else { 15630 return SDValue(); 15631 } 15632 } 15633 15634 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 15635 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 15636 if (!Subtarget.is64BitELFABI()) 15637 return false; 15638 15639 // If not a tail call then no need to proceed. 15640 if (!CI->isTailCall()) 15641 return false; 15642 15643 // If tail calls are disabled for the caller then we are done. 15644 const Function *Caller = CI->getParent()->getParent(); 15645 auto Attr = Caller->getFnAttribute("disable-tail-calls"); 15646 if (Attr.getValueAsString() == "true") 15647 return false; 15648 15649 // If sibling calls have been disabled and tail-calls aren't guaranteed 15650 // there is no reason to duplicate. 15651 auto &TM = getTargetMachine(); 15652 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 15653 return false; 15654 15655 // Can't tail call a function called indirectly, or if it has variadic args. 15656 const Function *Callee = CI->getCalledFunction(); 15657 if (!Callee || Callee->isVarArg()) 15658 return false; 15659 15660 // Make sure the callee and caller calling conventions are eligible for tco. 15661 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 15662 CI->getCallingConv())) 15663 return false; 15664 15665 // If the function is local then we have a good chance at tail-calling it 15666 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 15667 } 15668 15669 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 15670 if (!Subtarget.hasVSX()) 15671 return false; 15672 if (Subtarget.hasP9Vector() && VT == MVT::f128) 15673 return true; 15674 return VT == MVT::f32 || VT == MVT::f64 || 15675 VT == MVT::v4f32 || VT == MVT::v2f64; 15676 } 15677 15678 bool PPCTargetLowering:: 15679 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 15680 const Value *Mask = AndI.getOperand(1); 15681 // If the mask is suitable for andi. or andis. we should sink the and. 15682 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 15683 // Can't handle constants wider than 64-bits. 15684 if (CI->getBitWidth() > 64) 15685 return false; 15686 int64_t ConstVal = CI->getZExtValue(); 15687 return isUInt<16>(ConstVal) || 15688 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 15689 } 15690 15691 // For non-constant masks, we can always use the record-form and. 15692 return true; 15693 } 15694 15695 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 15696 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 15697 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 15698 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 15699 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 15700 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 15701 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 15702 assert(Subtarget.hasP9Altivec() && 15703 "Only combine this when P9 altivec supported!"); 15704 EVT VT = N->getValueType(0); 15705 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 15706 return SDValue(); 15707 15708 SelectionDAG &DAG = DCI.DAG; 15709 SDLoc dl(N); 15710 if (N->getOperand(0).getOpcode() == ISD::SUB) { 15711 // Even for signed integers, if it's known to be positive (as signed 15712 // integer) due to zero-extended inputs. 15713 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 15714 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 15715 if ((SubOpcd0 == ISD::ZERO_EXTEND || 15716 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 15717 (SubOpcd1 == ISD::ZERO_EXTEND || 15718 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 15719 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 15720 N->getOperand(0)->getOperand(0), 15721 N->getOperand(0)->getOperand(1), 15722 DAG.getTargetConstant(0, dl, MVT::i32)); 15723 } 15724 15725 // For type v4i32, it can be optimized with xvnegsp + vabsduw 15726 if (N->getOperand(0).getValueType() == MVT::v4i32 && 15727 N->getOperand(0).hasOneUse()) { 15728 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 15729 N->getOperand(0)->getOperand(0), 15730 N->getOperand(0)->getOperand(1), 15731 DAG.getTargetConstant(1, dl, MVT::i32)); 15732 } 15733 } 15734 15735 return SDValue(); 15736 } 15737 15738 // For type v4i32/v8ii16/v16i8, transform 15739 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 15740 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 15741 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 15742 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 15743 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 15744 DAGCombinerInfo &DCI) const { 15745 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 15746 assert(Subtarget.hasP9Altivec() && 15747 "Only combine this when P9 altivec supported!"); 15748 15749 SelectionDAG &DAG = DCI.DAG; 15750 SDLoc dl(N); 15751 SDValue Cond = N->getOperand(0); 15752 SDValue TrueOpnd = N->getOperand(1); 15753 SDValue FalseOpnd = N->getOperand(2); 15754 EVT VT = N->getOperand(1).getValueType(); 15755 15756 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 15757 FalseOpnd.getOpcode() != ISD::SUB) 15758 return SDValue(); 15759 15760 // ABSD only available for type v4i32/v8i16/v16i8 15761 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 15762 return SDValue(); 15763 15764 // At least to save one more dependent computation 15765 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 15766 return SDValue(); 15767 15768 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 15769 15770 // Can only handle unsigned comparison here 15771 switch (CC) { 15772 default: 15773 return SDValue(); 15774 case ISD::SETUGT: 15775 case ISD::SETUGE: 15776 break; 15777 case ISD::SETULT: 15778 case ISD::SETULE: 15779 std::swap(TrueOpnd, FalseOpnd); 15780 break; 15781 } 15782 15783 SDValue CmpOpnd1 = Cond.getOperand(0); 15784 SDValue CmpOpnd2 = Cond.getOperand(1); 15785 15786 // SETCC CmpOpnd1 CmpOpnd2 cond 15787 // TrueOpnd = CmpOpnd1 - CmpOpnd2 15788 // FalseOpnd = CmpOpnd2 - CmpOpnd1 15789 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 15790 TrueOpnd.getOperand(1) == CmpOpnd2 && 15791 FalseOpnd.getOperand(0) == CmpOpnd2 && 15792 FalseOpnd.getOperand(1) == CmpOpnd1) { 15793 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 15794 CmpOpnd1, CmpOpnd2, 15795 DAG.getTargetConstant(0, dl, MVT::i32)); 15796 } 15797 15798 return SDValue(); 15799 } 15800