1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSectionXCOFF.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
122 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
123 
124 STATISTIC(NumTailCalls, "Number of tail calls");
125 STATISTIC(NumSiblingCalls, "Number of sibling calls");
126 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
127 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
128 
129 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
130 
131 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
132 
133 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word";
134 
135 // FIXME: Remove this once the bug has been fixed!
136 extern cl::opt<bool> ANDIGlueBug;
137 
138 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
139                                      const PPCSubtarget &STI)
140     : TargetLowering(TM), Subtarget(STI) {
141   // Initialize map that relates the PPC addressing modes to the computed flags
142   // of a load/store instruction. The map is used to determine the optimal
143   // addressing mode when selecting load and stores.
144   initializeAddrModeMap();
145   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
146   // arguments are at least 4/8 bytes aligned.
147   bool isPPC64 = Subtarget.isPPC64();
148   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
149 
150   // Set up the register classes.
151   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
152   if (!useSoftFloat()) {
153     if (hasSPE()) {
154       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
155       // EFPU2 APU only supports f32
156       if (!Subtarget.hasEFPU2())
157         addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
158     } else {
159       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
160       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
161     }
162   }
163 
164   // Match BITREVERSE to customized fast code sequence in the td file.
165   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
166   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
167 
168   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
169   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
170 
171   // Custom lower inline assembly to check for special registers.
172   setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
173   setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom);
174 
175   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
176   for (MVT VT : MVT::integer_valuetypes()) {
177     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
178     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
179   }
180 
181   if (Subtarget.isISA3_0()) {
182     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
183     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
184     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
185     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
186   } else {
187     // No extending loads from f16 or HW conversions back and forth.
188     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
189     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
190     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
191     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
192     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
193     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
194     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
195     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
196   }
197 
198   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
199 
200   // PowerPC has pre-inc load and store's.
201   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
202   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
203   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
204   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
205   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
206   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
207   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
208   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
209   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
210   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
211   if (!Subtarget.hasSPE()) {
212     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
213     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
214     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
215     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
216   }
217 
218   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
219   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
220   for (MVT VT : ScalarIntVTs) {
221     setOperationAction(ISD::ADDC, VT, Legal);
222     setOperationAction(ISD::ADDE, VT, Legal);
223     setOperationAction(ISD::SUBC, VT, Legal);
224     setOperationAction(ISD::SUBE, VT, Legal);
225   }
226 
227   if (Subtarget.useCRBits()) {
228     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
229 
230     if (isPPC64 || Subtarget.hasFPCVT()) {
231       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote);
232       AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1,
233                         isPPC64 ? MVT::i64 : MVT::i32);
234       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote);
235       AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1,
236                         isPPC64 ? MVT::i64 : MVT::i32);
237 
238       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
239       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
240                          isPPC64 ? MVT::i64 : MVT::i32);
241       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
242       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
243                         isPPC64 ? MVT::i64 : MVT::i32);
244 
245       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote);
246       AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1,
247                         isPPC64 ? MVT::i64 : MVT::i32);
248       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote);
249       AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1,
250                         isPPC64 ? MVT::i64 : MVT::i32);
251 
252       setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
253       AddPromotedToType(ISD::FP_TO_SINT, MVT::i1,
254                         isPPC64 ? MVT::i64 : MVT::i32);
255       setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
256       AddPromotedToType(ISD::FP_TO_UINT, MVT::i1,
257                         isPPC64 ? MVT::i64 : MVT::i32);
258     } else {
259       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom);
260       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom);
261       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
262       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
263     }
264 
265     // PowerPC does not support direct load/store of condition registers.
266     setOperationAction(ISD::LOAD, MVT::i1, Custom);
267     setOperationAction(ISD::STORE, MVT::i1, Custom);
268 
269     // FIXME: Remove this once the ANDI glue bug is fixed:
270     if (ANDIGlueBug)
271       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
272 
273     for (MVT VT : MVT::integer_valuetypes()) {
274       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
275       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
276       setTruncStoreAction(VT, MVT::i1, Expand);
277     }
278 
279     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
280   }
281 
282   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
283   // PPC (the libcall is not available).
284   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
285   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
286   setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom);
287   setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom);
288 
289   // We do not currently implement these libm ops for PowerPC.
290   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
291   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
292   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
293   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
294   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
295   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
296 
297   // PowerPC has no SREM/UREM instructions unless we are on P9
298   // On P9 we may use a hardware instruction to compute the remainder.
299   // When the result of both the remainder and the division is required it is
300   // more efficient to compute the remainder from the result of the division
301   // rather than use the remainder instruction. The instructions are legalized
302   // directly because the DivRemPairsPass performs the transformation at the IR
303   // level.
304   if (Subtarget.isISA3_0()) {
305     setOperationAction(ISD::SREM, MVT::i32, Legal);
306     setOperationAction(ISD::UREM, MVT::i32, Legal);
307     setOperationAction(ISD::SREM, MVT::i64, Legal);
308     setOperationAction(ISD::UREM, MVT::i64, Legal);
309   } else {
310     setOperationAction(ISD::SREM, MVT::i32, Expand);
311     setOperationAction(ISD::UREM, MVT::i32, Expand);
312     setOperationAction(ISD::SREM, MVT::i64, Expand);
313     setOperationAction(ISD::UREM, MVT::i64, Expand);
314   }
315 
316   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
317   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
318   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
319   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
320   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
321   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
322   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
323   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
324   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
325 
326   // Handle constrained floating-point operations of scalar.
327   // TODO: Handle SPE specific operation.
328   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
329   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
330   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
331   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
332   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
333 
334   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
335   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
336   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
337   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
338 
339   if (!Subtarget.hasSPE()) {
340     setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
341     setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
342   }
343 
344   if (Subtarget.hasVSX()) {
345     setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal);
346     setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal);
347   }
348 
349   if (Subtarget.hasFSQRT()) {
350     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
351     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
352   }
353 
354   if (Subtarget.hasFPRND()) {
355     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
356     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
357     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
358     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
359 
360     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
361     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
362     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
363     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
364   }
365 
366   // We don't support sin/cos/sqrt/fmod/pow
367   setOperationAction(ISD::FSIN , MVT::f64, Expand);
368   setOperationAction(ISD::FCOS , MVT::f64, Expand);
369   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
370   setOperationAction(ISD::FREM , MVT::f64, Expand);
371   setOperationAction(ISD::FPOW , MVT::f64, Expand);
372   setOperationAction(ISD::FSIN , MVT::f32, Expand);
373   setOperationAction(ISD::FCOS , MVT::f32, Expand);
374   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
375   setOperationAction(ISD::FREM , MVT::f32, Expand);
376   setOperationAction(ISD::FPOW , MVT::f32, Expand);
377   if (Subtarget.hasSPE()) {
378     setOperationAction(ISD::FMA  , MVT::f64, Expand);
379     setOperationAction(ISD::FMA  , MVT::f32, Expand);
380   } else {
381     setOperationAction(ISD::FMA  , MVT::f64, Legal);
382     setOperationAction(ISD::FMA  , MVT::f32, Legal);
383   }
384 
385   if (Subtarget.hasSPE())
386     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
387 
388   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
389 
390   // If we're enabling GP optimizations, use hardware square root
391   if (!Subtarget.hasFSQRT() &&
392       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
393         Subtarget.hasFRE()))
394     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
395 
396   if (!Subtarget.hasFSQRT() &&
397       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
398         Subtarget.hasFRES()))
399     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
400 
401   if (Subtarget.hasFCPSGN()) {
402     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
403     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
404   } else {
405     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
406     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
407   }
408 
409   if (Subtarget.hasFPRND()) {
410     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
411     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
412     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
413     setOperationAction(ISD::FROUND, MVT::f64, Legal);
414 
415     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
416     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
417     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
418     setOperationAction(ISD::FROUND, MVT::f32, Legal);
419   }
420 
421   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
422   // to speed up scalar BSWAP64.
423   // CTPOP or CTTZ were introduced in P8/P9 respectively
424   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
425   if (Subtarget.hasP9Vector() && Subtarget.isPPC64())
426     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
427   else
428     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
429   if (Subtarget.isISA3_0()) {
430     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
431     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
432   } else {
433     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
434     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
435   }
436 
437   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
438     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
439     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
440   } else {
441     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
442     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
443   }
444 
445   // PowerPC does not have ROTR
446   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
447   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
448 
449   if (!Subtarget.useCRBits()) {
450     // PowerPC does not have Select
451     setOperationAction(ISD::SELECT, MVT::i32, Expand);
452     setOperationAction(ISD::SELECT, MVT::i64, Expand);
453     setOperationAction(ISD::SELECT, MVT::f32, Expand);
454     setOperationAction(ISD::SELECT, MVT::f64, Expand);
455   }
456 
457   // PowerPC wants to turn select_cc of FP into fsel when possible.
458   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
459   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
460 
461   // PowerPC wants to optimize integer setcc a bit
462   if (!Subtarget.useCRBits())
463     setOperationAction(ISD::SETCC, MVT::i32, Custom);
464 
465   if (Subtarget.hasFPU()) {
466     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
467     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
468     setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal);
469 
470     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
471     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
472     setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal);
473   }
474 
475   // PowerPC does not have BRCOND which requires SetCC
476   if (!Subtarget.useCRBits())
477     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
478 
479   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
480 
481   if (Subtarget.hasSPE()) {
482     // SPE has built-in conversions
483     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
484     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
485     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
486     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
487     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
488     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
489 
490     // SPE supports signaling compare of f32/f64.
491     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
492     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
493   } else {
494     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
495     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
496     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
497 
498     // PowerPC does not have [U|S]INT_TO_FP
499     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand);
500     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand);
501     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
502     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
503   }
504 
505   if (Subtarget.hasDirectMove() && isPPC64) {
506     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
507     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
508     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
509     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
510     if (TM.Options.UnsafeFPMath) {
511       setOperationAction(ISD::LRINT, MVT::f64, Legal);
512       setOperationAction(ISD::LRINT, MVT::f32, Legal);
513       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
514       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
515       setOperationAction(ISD::LROUND, MVT::f64, Legal);
516       setOperationAction(ISD::LROUND, MVT::f32, Legal);
517       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
518       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
519     }
520   } else {
521     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
522     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
523     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
524     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
525   }
526 
527   // We cannot sextinreg(i1).  Expand to shifts.
528   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
529 
530   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
531   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
532   // support continuation, user-level threading, and etc.. As a result, no
533   // other SjLj exception interfaces are implemented and please don't build
534   // your own exception handling based on them.
535   // LLVM/Clang supports zero-cost DWARF exception handling.
536   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
537   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
538 
539   // We want to legalize GlobalAddress and ConstantPool nodes into the
540   // appropriate instructions to materialize the address.
541   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
542   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
543   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
544   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
545   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
546   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
547   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
548   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
549   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
550   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
551 
552   // TRAP is legal.
553   setOperationAction(ISD::TRAP, MVT::Other, Legal);
554 
555   // TRAMPOLINE is custom lowered.
556   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
557   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
558 
559   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
560   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
561 
562   if (Subtarget.is64BitELFABI()) {
563     // VAARG always uses double-word chunks, so promote anything smaller.
564     setOperationAction(ISD::VAARG, MVT::i1, Promote);
565     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
566     setOperationAction(ISD::VAARG, MVT::i8, Promote);
567     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
568     setOperationAction(ISD::VAARG, MVT::i16, Promote);
569     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
570     setOperationAction(ISD::VAARG, MVT::i32, Promote);
571     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
572     setOperationAction(ISD::VAARG, MVT::Other, Expand);
573   } else if (Subtarget.is32BitELFABI()) {
574     // VAARG is custom lowered with the 32-bit SVR4 ABI.
575     setOperationAction(ISD::VAARG, MVT::Other, Custom);
576     setOperationAction(ISD::VAARG, MVT::i64, Custom);
577   } else
578     setOperationAction(ISD::VAARG, MVT::Other, Expand);
579 
580   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
581   if (Subtarget.is32BitELFABI())
582     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
583   else
584     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
585 
586   // Use the default implementation.
587   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
588   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
589   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
590   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
591   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
592   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
593   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
594   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
595   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
596 
597   // We want to custom lower some of our intrinsics.
598   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
599 
600   // To handle counter-based loop conditions.
601   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
602 
603   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
604   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
605   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
606   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
607 
608   // Comparisons that require checking two conditions.
609   if (Subtarget.hasSPE()) {
610     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
611     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
612     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
613     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
614   }
615   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
616   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
617   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
618   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
619   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
620   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
621   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
622   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
623   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
624   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
625   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
626   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
627 
628   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
629   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
630 
631   if (Subtarget.has64BitSupport()) {
632     // They also have instructions for converting between i64 and fp.
633     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
634     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand);
635     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
636     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
637     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
638     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
639     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
640     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
641     // This is just the low 32 bits of a (signed) fp->i64 conversion.
642     // We cannot do this with Promote because i64 is not a legal type.
643     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
644     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
645 
646     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) {
647       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
648       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
649     }
650   } else {
651     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
652     if (Subtarget.hasSPE()) {
653       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
654       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
655     } else {
656       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand);
657       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
658     }
659   }
660 
661   // With the instructions enabled under FPCVT, we can do everything.
662   if (Subtarget.hasFPCVT()) {
663     if (Subtarget.has64BitSupport()) {
664       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
665       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
666       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
667       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
668       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
669       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
670       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
671       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
672     }
673 
674     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
675     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
676     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
677     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
678     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
679     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
680     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
681     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
682   }
683 
684   if (Subtarget.use64BitRegs()) {
685     // 64-bit PowerPC implementations can support i64 types directly
686     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
687     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
688     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
689     // 64-bit PowerPC wants to expand i128 shifts itself.
690     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
691     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
692     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
693   } else {
694     // 32-bit PowerPC wants to expand i64 shifts itself.
695     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
696     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
697     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
698   }
699 
700   // PowerPC has better expansions for funnel shifts than the generic
701   // TargetLowering::expandFunnelShift.
702   if (Subtarget.has64BitSupport()) {
703     setOperationAction(ISD::FSHL, MVT::i64, Custom);
704     setOperationAction(ISD::FSHR, MVT::i64, Custom);
705   }
706   setOperationAction(ISD::FSHL, MVT::i32, Custom);
707   setOperationAction(ISD::FSHR, MVT::i32, Custom);
708 
709   if (Subtarget.hasVSX()) {
710     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
711     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
712     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
713     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
714   }
715 
716   if (Subtarget.hasAltivec()) {
717     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
718       setOperationAction(ISD::SADDSAT, VT, Legal);
719       setOperationAction(ISD::SSUBSAT, VT, Legal);
720       setOperationAction(ISD::UADDSAT, VT, Legal);
721       setOperationAction(ISD::USUBSAT, VT, Legal);
722     }
723     // First set operation action for all vector types to expand. Then we
724     // will selectively turn on ones that can be effectively codegen'd.
725     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
726       // add/sub are legal for all supported vector VT's.
727       setOperationAction(ISD::ADD, VT, Legal);
728       setOperationAction(ISD::SUB, VT, Legal);
729 
730       // For v2i64, these are only valid with P8Vector. This is corrected after
731       // the loop.
732       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
733         setOperationAction(ISD::SMAX, VT, Legal);
734         setOperationAction(ISD::SMIN, VT, Legal);
735         setOperationAction(ISD::UMAX, VT, Legal);
736         setOperationAction(ISD::UMIN, VT, Legal);
737       }
738       else {
739         setOperationAction(ISD::SMAX, VT, Expand);
740         setOperationAction(ISD::SMIN, VT, Expand);
741         setOperationAction(ISD::UMAX, VT, Expand);
742         setOperationAction(ISD::UMIN, VT, Expand);
743       }
744 
745       if (Subtarget.hasVSX()) {
746         setOperationAction(ISD::FMAXNUM, VT, Legal);
747         setOperationAction(ISD::FMINNUM, VT, Legal);
748       }
749 
750       // Vector instructions introduced in P8
751       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
752         setOperationAction(ISD::CTPOP, VT, Legal);
753         setOperationAction(ISD::CTLZ, VT, Legal);
754       }
755       else {
756         setOperationAction(ISD::CTPOP, VT, Expand);
757         setOperationAction(ISD::CTLZ, VT, Expand);
758       }
759 
760       // Vector instructions introduced in P9
761       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
762         setOperationAction(ISD::CTTZ, VT, Legal);
763       else
764         setOperationAction(ISD::CTTZ, VT, Expand);
765 
766       // We promote all shuffles to v16i8.
767       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
768       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
769 
770       // We promote all non-typed operations to v4i32.
771       setOperationAction(ISD::AND   , VT, Promote);
772       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
773       setOperationAction(ISD::OR    , VT, Promote);
774       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
775       setOperationAction(ISD::XOR   , VT, Promote);
776       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
777       setOperationAction(ISD::LOAD  , VT, Promote);
778       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
779       setOperationAction(ISD::SELECT, VT, Promote);
780       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
781       setOperationAction(ISD::VSELECT, VT, Legal);
782       setOperationAction(ISD::SELECT_CC, VT, Promote);
783       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
784       setOperationAction(ISD::STORE, VT, Promote);
785       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
786 
787       // No other operations are legal.
788       setOperationAction(ISD::MUL , VT, Expand);
789       setOperationAction(ISD::SDIV, VT, Expand);
790       setOperationAction(ISD::SREM, VT, Expand);
791       setOperationAction(ISD::UDIV, VT, Expand);
792       setOperationAction(ISD::UREM, VT, Expand);
793       setOperationAction(ISD::FDIV, VT, Expand);
794       setOperationAction(ISD::FREM, VT, Expand);
795       setOperationAction(ISD::FNEG, VT, Expand);
796       setOperationAction(ISD::FSQRT, VT, Expand);
797       setOperationAction(ISD::FLOG, VT, Expand);
798       setOperationAction(ISD::FLOG10, VT, Expand);
799       setOperationAction(ISD::FLOG2, VT, Expand);
800       setOperationAction(ISD::FEXP, VT, Expand);
801       setOperationAction(ISD::FEXP2, VT, Expand);
802       setOperationAction(ISD::FSIN, VT, Expand);
803       setOperationAction(ISD::FCOS, VT, Expand);
804       setOperationAction(ISD::FABS, VT, Expand);
805       setOperationAction(ISD::FFLOOR, VT, Expand);
806       setOperationAction(ISD::FCEIL,  VT, Expand);
807       setOperationAction(ISD::FTRUNC, VT, Expand);
808       setOperationAction(ISD::FRINT,  VT, Expand);
809       setOperationAction(ISD::FNEARBYINT, VT, Expand);
810       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
811       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
812       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
813       setOperationAction(ISD::MULHU, VT, Expand);
814       setOperationAction(ISD::MULHS, VT, Expand);
815       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
816       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
817       setOperationAction(ISD::UDIVREM, VT, Expand);
818       setOperationAction(ISD::SDIVREM, VT, Expand);
819       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
820       setOperationAction(ISD::FPOW, VT, Expand);
821       setOperationAction(ISD::BSWAP, VT, Expand);
822       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
823       setOperationAction(ISD::ROTL, VT, Expand);
824       setOperationAction(ISD::ROTR, VT, Expand);
825 
826       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
827         setTruncStoreAction(VT, InnerVT, Expand);
828         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
829         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
830         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
831       }
832     }
833     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
834     if (!Subtarget.hasP8Vector()) {
835       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
836       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
837       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
838       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
839     }
840 
841     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
842     // with merges, splats, etc.
843     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
844 
845     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
846     // are cheap, so handle them before they get expanded to scalar.
847     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
848     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
849     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
850     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
851     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
852 
853     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
854     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
855     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
856     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
857     setOperationAction(ISD::SELECT, MVT::v4i32,
858                        Subtarget.useCRBits() ? Legal : Expand);
859     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
860     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
861     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
862     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
863     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
864     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
865     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
866     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
867     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
868     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
869     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
870     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
871     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
872 
873     // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
874     setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
875     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
876     if (Subtarget.hasAltivec())
877       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
878         setOperationAction(ISD::ROTL, VT, Legal);
879     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
880     if (Subtarget.hasP8Altivec())
881       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
882 
883     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
884     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
885     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
886     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
887 
888     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
889     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
890 
891     if (Subtarget.hasVSX()) {
892       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
893       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
894       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
895     }
896 
897     if (Subtarget.hasP8Altivec())
898       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
899     else
900       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
901 
902     if (Subtarget.isISA3_1()) {
903       setOperationAction(ISD::MUL, MVT::v2i64, Legal);
904       setOperationAction(ISD::MULHS, MVT::v2i64, Legal);
905       setOperationAction(ISD::MULHU, MVT::v2i64, Legal);
906       setOperationAction(ISD::MULHS, MVT::v4i32, Legal);
907       setOperationAction(ISD::MULHU, MVT::v4i32, Legal);
908       setOperationAction(ISD::UDIV, MVT::v2i64, Legal);
909       setOperationAction(ISD::SDIV, MVT::v2i64, Legal);
910       setOperationAction(ISD::UDIV, MVT::v4i32, Legal);
911       setOperationAction(ISD::SDIV, MVT::v4i32, Legal);
912       setOperationAction(ISD::UREM, MVT::v2i64, Legal);
913       setOperationAction(ISD::SREM, MVT::v2i64, Legal);
914       setOperationAction(ISD::UREM, MVT::v4i32, Legal);
915       setOperationAction(ISD::SREM, MVT::v4i32, Legal);
916       setOperationAction(ISD::UREM, MVT::v1i128, Legal);
917       setOperationAction(ISD::SREM, MVT::v1i128, Legal);
918       setOperationAction(ISD::UDIV, MVT::v1i128, Legal);
919       setOperationAction(ISD::SDIV, MVT::v1i128, Legal);
920       setOperationAction(ISD::ROTL, MVT::v1i128, Legal);
921     }
922 
923     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
924     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
925 
926     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
927     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
928 
929     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
930     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
931     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
932     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
933 
934     // Altivec does not contain unordered floating-point compare instructions
935     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
936     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
937     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
938     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
939 
940     if (Subtarget.hasVSX()) {
941       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
942       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
943       if (Subtarget.hasP8Vector()) {
944         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
945         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
946       }
947       if (Subtarget.hasDirectMove() && isPPC64) {
948         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
949         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
950         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
951         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
952         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
953         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
954         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
955         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
956       }
957       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
958 
959       // The nearbyint variants are not allowed to raise the inexact exception
960       // so we can only code-gen them with unsafe math.
961       if (TM.Options.UnsafeFPMath) {
962         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
963         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
964       }
965 
966       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
967       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
968       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
969       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
970       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
971       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
972       setOperationAction(ISD::FROUND, MVT::f64, Legal);
973       setOperationAction(ISD::FRINT, MVT::f64, Legal);
974 
975       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
976       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
977       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
978       setOperationAction(ISD::FROUND, MVT::f32, Legal);
979       setOperationAction(ISD::FRINT, MVT::f32, Legal);
980 
981       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
982       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
983 
984       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
985       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
986 
987       // Share the Altivec comparison restrictions.
988       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
989       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
990       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
991       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
992 
993       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
994       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
995 
996       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
997 
998       if (Subtarget.hasP8Vector())
999         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
1000 
1001       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
1002 
1003       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
1004       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
1005       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
1006 
1007       if (Subtarget.hasP8Altivec()) {
1008         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
1009         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
1010         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
1011 
1012         // 128 bit shifts can be accomplished via 3 instructions for SHL and
1013         // SRL, but not for SRA because of the instructions available:
1014         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
1015         // doing
1016         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
1017         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
1018         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1019 
1020         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
1021       }
1022       else {
1023         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
1024         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
1025         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
1026 
1027         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
1028 
1029         // VSX v2i64 only supports non-arithmetic operations.
1030         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
1031         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
1032       }
1033 
1034       if (Subtarget.isISA3_1())
1035         setOperationAction(ISD::SETCC, MVT::v1i128, Legal);
1036       else
1037         setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
1038 
1039       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
1040       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
1041       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
1042       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
1043 
1044       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
1045 
1046       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
1047       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
1048       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
1049       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
1050       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
1051       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
1052       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
1053       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
1054 
1055       // Custom handling for partial vectors of integers converted to
1056       // floating point. We already have optimal handling for v2i32 through
1057       // the DAG combine, so those aren't necessary.
1058       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom);
1059       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom);
1060       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom);
1061       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom);
1062       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom);
1063       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom);
1064       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom);
1065       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom);
1066       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
1067       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
1068       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
1069       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
1070       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
1071       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
1072       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
1073       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
1074 
1075       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
1076       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
1077       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
1078       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
1079       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1080       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
1081 
1082       if (Subtarget.hasDirectMove())
1083         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
1084       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
1085 
1086       // Handle constrained floating-point operations of vector.
1087       // The predictor is `hasVSX` because altivec instruction has
1088       // no exception but VSX vector instruction has.
1089       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
1090       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
1091       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
1092       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
1093       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
1094       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
1095       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
1096       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
1097       setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
1098       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
1099       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
1100       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
1101       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
1102 
1103       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
1104       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
1105       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
1106       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
1107       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
1108       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
1109       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
1110       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
1111       setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
1112       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
1113       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
1114       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
1115       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
1116 
1117       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
1118       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1119 
1120       for (MVT FPT : MVT::fp_valuetypes())
1121         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1122 
1123       // Expand the SELECT to SELECT_CC
1124       setOperationAction(ISD::SELECT, MVT::f128, Expand);
1125 
1126       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1127       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1128 
1129       // No implementation for these ops for PowerPC.
1130       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1131       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1132       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1133       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1134       setOperationAction(ISD::FREM, MVT::f128, Expand);
1135     }
1136 
1137     if (Subtarget.hasP8Altivec()) {
1138       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
1139       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
1140     }
1141 
1142     if (Subtarget.hasP9Vector()) {
1143       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1144       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1145 
1146       // 128 bit shifts can be accomplished via 3 instructions for SHL and
1147       // SRL, but not for SRA because of the instructions available:
1148       // VS{RL} and VS{RL}O.
1149       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1150       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1151       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1152 
1153       setOperationAction(ISD::FADD, MVT::f128, Legal);
1154       setOperationAction(ISD::FSUB, MVT::f128, Legal);
1155       setOperationAction(ISD::FDIV, MVT::f128, Legal);
1156       setOperationAction(ISD::FMUL, MVT::f128, Legal);
1157       setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1158 
1159       setOperationAction(ISD::FMA, MVT::f128, Legal);
1160       setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1161       setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1162       setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1163       setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1164       setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1165       setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1166 
1167       setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1168       setOperationAction(ISD::FRINT, MVT::f128, Legal);
1169       setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1170       setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1171       setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1172       setOperationAction(ISD::FROUND, MVT::f128, Legal);
1173 
1174       setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1175       setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1176       setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1177 
1178       // Handle constrained floating-point operations of fp128
1179       setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1180       setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1181       setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1182       setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1183       setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1184       setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1185       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1186       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1187       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1188       setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1189       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1190       setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1191       setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
1192       setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1193       setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1194       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1195       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1196       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1197       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1198       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1199     } else if (Subtarget.hasVSX()) {
1200       setOperationAction(ISD::LOAD, MVT::f128, Promote);
1201       setOperationAction(ISD::STORE, MVT::f128, Promote);
1202 
1203       AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32);
1204       AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32);
1205 
1206       // Set FADD/FSUB as libcall to avoid the legalizer to expand the
1207       // fp_to_uint and int_to_fp.
1208       setOperationAction(ISD::FADD, MVT::f128, LibCall);
1209       setOperationAction(ISD::FSUB, MVT::f128, LibCall);
1210 
1211       setOperationAction(ISD::FMUL, MVT::f128, Expand);
1212       setOperationAction(ISD::FDIV, MVT::f128, Expand);
1213       setOperationAction(ISD::FNEG, MVT::f128, Expand);
1214       setOperationAction(ISD::FABS, MVT::f128, Expand);
1215       setOperationAction(ISD::FSQRT, MVT::f128, Expand);
1216       setOperationAction(ISD::FMA, MVT::f128, Expand);
1217       setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
1218 
1219       // Expand the fp_extend if the target type is fp128.
1220       setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand);
1221       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand);
1222 
1223       // Expand the fp_round if the source type is fp128.
1224       for (MVT VT : {MVT::f32, MVT::f64}) {
1225         setOperationAction(ISD::FP_ROUND, VT, Custom);
1226         setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom);
1227       }
1228 
1229       setOperationAction(ISD::SETCC, MVT::f128, Custom);
1230       setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom);
1231       setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom);
1232       setOperationAction(ISD::BR_CC, MVT::f128, Expand);
1233 
1234       // Lower following f128 select_cc pattern:
1235       // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE
1236       setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
1237 
1238       // We need to handle f128 SELECT_CC with integer result type.
1239       setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1240       setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand);
1241     }
1242 
1243     if (Subtarget.hasP9Altivec()) {
1244       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1245       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1246 
1247       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1248       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1249       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1250       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1251       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1252       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1253       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1254     }
1255 
1256     if (Subtarget.isISA3_1())
1257       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
1258   }
1259 
1260   if (Subtarget.pairedVectorMemops()) {
1261     addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass);
1262     setOperationAction(ISD::LOAD, MVT::v256i1, Custom);
1263     setOperationAction(ISD::STORE, MVT::v256i1, Custom);
1264   }
1265   if (Subtarget.hasMMA()) {
1266     addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass);
1267     setOperationAction(ISD::LOAD, MVT::v512i1, Custom);
1268     setOperationAction(ISD::STORE, MVT::v512i1, Custom);
1269     setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom);
1270   }
1271 
1272   if (Subtarget.has64BitSupport())
1273     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1274 
1275   if (Subtarget.isISA3_1())
1276     setOperationAction(ISD::SRA, MVT::v1i128, Legal);
1277 
1278   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1279 
1280   if (!isPPC64) {
1281     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1282     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1283   }
1284 
1285   setBooleanContents(ZeroOrOneBooleanContent);
1286 
1287   if (Subtarget.hasAltivec()) {
1288     // Altivec instructions set fields to all zeros or all ones.
1289     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1290   }
1291 
1292   if (!isPPC64) {
1293     // These libcalls are not available in 32-bit.
1294     setLibcallName(RTLIB::SHL_I128, nullptr);
1295     setLibcallName(RTLIB::SRL_I128, nullptr);
1296     setLibcallName(RTLIB::SRA_I128, nullptr);
1297   }
1298 
1299   if (!isPPC64)
1300     setMaxAtomicSizeInBitsSupported(32);
1301 
1302   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1303 
1304   // We have target-specific dag combine patterns for the following nodes:
1305   setTargetDAGCombine(ISD::ADD);
1306   setTargetDAGCombine(ISD::SHL);
1307   setTargetDAGCombine(ISD::SRA);
1308   setTargetDAGCombine(ISD::SRL);
1309   setTargetDAGCombine(ISD::MUL);
1310   setTargetDAGCombine(ISD::FMA);
1311   setTargetDAGCombine(ISD::SINT_TO_FP);
1312   setTargetDAGCombine(ISD::BUILD_VECTOR);
1313   if (Subtarget.hasFPCVT())
1314     setTargetDAGCombine(ISD::UINT_TO_FP);
1315   setTargetDAGCombine(ISD::LOAD);
1316   setTargetDAGCombine(ISD::STORE);
1317   setTargetDAGCombine(ISD::BR_CC);
1318   if (Subtarget.useCRBits())
1319     setTargetDAGCombine(ISD::BRCOND);
1320   setTargetDAGCombine(ISD::BSWAP);
1321   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1322   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1323   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1324 
1325   setTargetDAGCombine(ISD::SIGN_EXTEND);
1326   setTargetDAGCombine(ISD::ZERO_EXTEND);
1327   setTargetDAGCombine(ISD::ANY_EXTEND);
1328 
1329   setTargetDAGCombine(ISD::TRUNCATE);
1330   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1331 
1332 
1333   if (Subtarget.useCRBits()) {
1334     setTargetDAGCombine(ISD::TRUNCATE);
1335     setTargetDAGCombine(ISD::SETCC);
1336     setTargetDAGCombine(ISD::SELECT_CC);
1337   }
1338 
1339   if (Subtarget.hasP9Altivec()) {
1340     setTargetDAGCombine(ISD::ABS);
1341     setTargetDAGCombine(ISD::VSELECT);
1342   }
1343 
1344   setLibcallName(RTLIB::LOG_F128, "logf128");
1345   setLibcallName(RTLIB::LOG2_F128, "log2f128");
1346   setLibcallName(RTLIB::LOG10_F128, "log10f128");
1347   setLibcallName(RTLIB::EXP_F128, "expf128");
1348   setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1349   setLibcallName(RTLIB::SIN_F128, "sinf128");
1350   setLibcallName(RTLIB::COS_F128, "cosf128");
1351   setLibcallName(RTLIB::POW_F128, "powf128");
1352   setLibcallName(RTLIB::FMIN_F128, "fminf128");
1353   setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1354   setLibcallName(RTLIB::REM_F128, "fmodf128");
1355   setLibcallName(RTLIB::SQRT_F128, "sqrtf128");
1356   setLibcallName(RTLIB::CEIL_F128, "ceilf128");
1357   setLibcallName(RTLIB::FLOOR_F128, "floorf128");
1358   setLibcallName(RTLIB::TRUNC_F128, "truncf128");
1359   setLibcallName(RTLIB::ROUND_F128, "roundf128");
1360   setLibcallName(RTLIB::LROUND_F128, "lroundf128");
1361   setLibcallName(RTLIB::LLROUND_F128, "llroundf128");
1362   setLibcallName(RTLIB::RINT_F128, "rintf128");
1363   setLibcallName(RTLIB::LRINT_F128, "lrintf128");
1364   setLibcallName(RTLIB::LLRINT_F128, "llrintf128");
1365   setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128");
1366   setLibcallName(RTLIB::FMA_F128, "fmaf128");
1367 
1368   // With 32 condition bits, we don't need to sink (and duplicate) compares
1369   // aggressively in CodeGenPrep.
1370   if (Subtarget.useCRBits()) {
1371     setHasMultipleConditionRegisters();
1372     setJumpIsExpensive();
1373   }
1374 
1375   setMinFunctionAlignment(Align(4));
1376 
1377   switch (Subtarget.getCPUDirective()) {
1378   default: break;
1379   case PPC::DIR_970:
1380   case PPC::DIR_A2:
1381   case PPC::DIR_E500:
1382   case PPC::DIR_E500mc:
1383   case PPC::DIR_E5500:
1384   case PPC::DIR_PWR4:
1385   case PPC::DIR_PWR5:
1386   case PPC::DIR_PWR5X:
1387   case PPC::DIR_PWR6:
1388   case PPC::DIR_PWR6X:
1389   case PPC::DIR_PWR7:
1390   case PPC::DIR_PWR8:
1391   case PPC::DIR_PWR9:
1392   case PPC::DIR_PWR10:
1393   case PPC::DIR_PWR_FUTURE:
1394     setPrefLoopAlignment(Align(16));
1395     setPrefFunctionAlignment(Align(16));
1396     break;
1397   }
1398 
1399   if (Subtarget.enableMachineScheduler())
1400     setSchedulingPreference(Sched::Source);
1401   else
1402     setSchedulingPreference(Sched::Hybrid);
1403 
1404   computeRegisterProperties(STI.getRegisterInfo());
1405 
1406   // The Freescale cores do better with aggressive inlining of memcpy and
1407   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1408   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1409       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1410     MaxStoresPerMemset = 32;
1411     MaxStoresPerMemsetOptSize = 16;
1412     MaxStoresPerMemcpy = 32;
1413     MaxStoresPerMemcpyOptSize = 8;
1414     MaxStoresPerMemmove = 32;
1415     MaxStoresPerMemmoveOptSize = 8;
1416   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1417     // The A2 also benefits from (very) aggressive inlining of memcpy and
1418     // friends. The overhead of a the function call, even when warm, can be
1419     // over one hundred cycles.
1420     MaxStoresPerMemset = 128;
1421     MaxStoresPerMemcpy = 128;
1422     MaxStoresPerMemmove = 128;
1423     MaxLoadsPerMemcmp = 128;
1424   } else {
1425     MaxLoadsPerMemcmp = 8;
1426     MaxLoadsPerMemcmpOptSize = 4;
1427   }
1428 
1429   IsStrictFPEnabled = true;
1430 
1431   // Let the subtarget (CPU) decide if a predictable select is more expensive
1432   // than the corresponding branch. This information is used in CGP to decide
1433   // when to convert selects into branches.
1434   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1435 }
1436 
1437 // *********************************** NOTE ************************************
1438 // For selecting load and store instructions, the addressing modes are defined
1439 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD
1440 // patterns to match the load the store instructions.
1441 //
1442 // The TD definitions for the addressing modes correspond to their respective
1443 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely
1444 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the
1445 // address mode flags of a particular node. Afterwards, the computed address
1446 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal
1447 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement
1448 // accordingly, based on the preferred addressing mode.
1449 //
1450 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode.
1451 // MemOpFlags contains all the possible flags that can be used to compute the
1452 // optimal addressing mode for load and store instructions.
1453 // AddrMode contains all the possible load and store addressing modes available
1454 // on Power (such as DForm, DSForm, DQForm, XForm, etc.)
1455 //
1456 // When adding new load and store instructions, it is possible that new address
1457 // flags may need to be added into MemOpFlags, and a new addressing mode will
1458 // need to be added to AddrMode. An entry of the new addressing mode (consisting
1459 // of the minimal and main distinguishing address flags for the new load/store
1460 // instructions) will need to be added into initializeAddrModeMap() below.
1461 // Finally, when adding new addressing modes, the getAddrModeForFlags() will
1462 // need to be updated to account for selecting the optimal addressing mode.
1463 // *****************************************************************************
1464 /// Initialize the map that relates the different addressing modes of the load
1465 /// and store instructions to a set of flags. This ensures the load/store
1466 /// instruction is correctly matched during instruction selection.
1467 void PPCTargetLowering::initializeAddrModeMap() {
1468   AddrModesMap[PPC::AM_DForm] = {
1469       // LWZ, STW
1470       PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt,
1471       PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt,
1472       PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
1473       PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
1474       // LBZ, LHZ, STB, STH
1475       PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
1476       PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
1477       PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
1478       PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
1479       // LHA
1480       PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
1481       PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
1482       PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
1483       PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
1484       // LFS, LFD, STFS, STFD
1485       PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1486       PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1487       PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1488       PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1489   };
1490   AddrModesMap[PPC::AM_DSForm] = {
1491       // LWA
1492       PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt,
1493       PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
1494       PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
1495       // LD, STD
1496       PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt,
1497       PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt,
1498       PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt,
1499       // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64
1500       PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1501       PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1502       PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1503   };
1504   AddrModesMap[PPC::AM_DQForm] = {
1505       // LXV, STXV
1506       PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1507       PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1508       PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1509       PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector256 | PPC::MOF_SubtargetP10,
1510       PPC::MOF_NotAddNorCst | PPC::MOF_Vector256 | PPC::MOF_SubtargetP10,
1511       PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector256 | PPC::MOF_SubtargetP10,
1512   };
1513 }
1514 
1515 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1516 /// the desired ByVal argument alignment.
1517 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1518   if (MaxAlign == MaxMaxAlign)
1519     return;
1520   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1521     if (MaxMaxAlign >= 32 &&
1522         VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
1523       MaxAlign = Align(32);
1524     else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1525              MaxAlign < 16)
1526       MaxAlign = Align(16);
1527   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1528     Align EltAlign;
1529     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1530     if (EltAlign > MaxAlign)
1531       MaxAlign = EltAlign;
1532   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1533     for (auto *EltTy : STy->elements()) {
1534       Align EltAlign;
1535       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1536       if (EltAlign > MaxAlign)
1537         MaxAlign = EltAlign;
1538       if (MaxAlign == MaxMaxAlign)
1539         break;
1540     }
1541   }
1542 }
1543 
1544 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1545 /// function arguments in the caller parameter area.
1546 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1547                                                   const DataLayout &DL) const {
1548   // 16byte and wider vectors are passed on 16byte boundary.
1549   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1550   Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1551   if (Subtarget.hasAltivec())
1552     getMaxByValAlign(Ty, Alignment, Align(16));
1553   return Alignment.value();
1554 }
1555 
1556 bool PPCTargetLowering::useSoftFloat() const {
1557   return Subtarget.useSoftFloat();
1558 }
1559 
1560 bool PPCTargetLowering::hasSPE() const {
1561   return Subtarget.hasSPE();
1562 }
1563 
1564 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1565   return VT.isScalarInteger();
1566 }
1567 
1568 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1569   switch ((PPCISD::NodeType)Opcode) {
1570   case PPCISD::FIRST_NUMBER:    break;
1571   case PPCISD::FSEL:            return "PPCISD::FSEL";
1572   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1573   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1574   case PPCISD::FCFID:           return "PPCISD::FCFID";
1575   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1576   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1577   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1578   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1579   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1580   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1581   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1582   case PPCISD::FP_TO_UINT_IN_VSR:
1583                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1584   case PPCISD::FP_TO_SINT_IN_VSR:
1585                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1586   case PPCISD::FRE:             return "PPCISD::FRE";
1587   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1588   case PPCISD::FTSQRT:
1589     return "PPCISD::FTSQRT";
1590   case PPCISD::FSQRT:
1591     return "PPCISD::FSQRT";
1592   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1593   case PPCISD::VPERM:           return "PPCISD::VPERM";
1594   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1595   case PPCISD::XXSPLTI_SP_TO_DP:
1596     return "PPCISD::XXSPLTI_SP_TO_DP";
1597   case PPCISD::XXSPLTI32DX:
1598     return "PPCISD::XXSPLTI32DX";
1599   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1600   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1601   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1602   case PPCISD::CMPB:            return "PPCISD::CMPB";
1603   case PPCISD::Hi:              return "PPCISD::Hi";
1604   case PPCISD::Lo:              return "PPCISD::Lo";
1605   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1606   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1607   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1608   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1609   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1610   case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
1611   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1612   case PPCISD::SRL:             return "PPCISD::SRL";
1613   case PPCISD::SRA:             return "PPCISD::SRA";
1614   case PPCISD::SHL:             return "PPCISD::SHL";
1615   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1616   case PPCISD::CALL:            return "PPCISD::CALL";
1617   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1618   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1619   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1620   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1621   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1622   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1623   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1624   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1625   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1626   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1627   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1628   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1629   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1630   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1631   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1632   case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1633     return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1634   case PPCISD::ANDI_rec_1_EQ_BIT:
1635     return "PPCISD::ANDI_rec_1_EQ_BIT";
1636   case PPCISD::ANDI_rec_1_GT_BIT:
1637     return "PPCISD::ANDI_rec_1_GT_BIT";
1638   case PPCISD::VCMP:            return "PPCISD::VCMP";
1639   case PPCISD::VCMP_rec:        return "PPCISD::VCMP_rec";
1640   case PPCISD::LBRX:            return "PPCISD::LBRX";
1641   case PPCISD::STBRX:           return "PPCISD::STBRX";
1642   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1643   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1644   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1645   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1646   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1647   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1648   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1649   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1650   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1651   case PPCISD::ST_VSR_SCAL_INT:
1652                                 return "PPCISD::ST_VSR_SCAL_INT";
1653   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1654   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1655   case PPCISD::BDZ:             return "PPCISD::BDZ";
1656   case PPCISD::MFFS:            return "PPCISD::MFFS";
1657   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1658   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1659   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1660   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1661   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1662   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1663   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1664   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1665   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1666   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1667   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1668   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1669   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1670   case PPCISD::TLSGD_AIX:       return "PPCISD::TLSGD_AIX";
1671   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1672   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1673   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1674   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1675   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1676   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1677   case PPCISD::PADDI_DTPREL:
1678     return "PPCISD::PADDI_DTPREL";
1679   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1680   case PPCISD::SC:              return "PPCISD::SC";
1681   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1682   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1683   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1684   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1685   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1686   case PPCISD::VABSD:           return "PPCISD::VABSD";
1687   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1688   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1689   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1690   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1691   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1692   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1693   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1694   case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR:
1695     return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR";
1696   case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR:
1697     return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR";
1698   case PPCISD::ACC_BUILD:       return "PPCISD::ACC_BUILD";
1699   case PPCISD::PAIR_BUILD:      return "PPCISD::PAIR_BUILD";
1700   case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG";
1701   case PPCISD::XXMFACC:         return "PPCISD::XXMFACC";
1702   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1703   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1704   case PPCISD::STRICT_FADDRTZ:
1705     return "PPCISD::STRICT_FADDRTZ";
1706   case PPCISD::STRICT_FCTIDZ:
1707     return "PPCISD::STRICT_FCTIDZ";
1708   case PPCISD::STRICT_FCTIWZ:
1709     return "PPCISD::STRICT_FCTIWZ";
1710   case PPCISD::STRICT_FCTIDUZ:
1711     return "PPCISD::STRICT_FCTIDUZ";
1712   case PPCISD::STRICT_FCTIWUZ:
1713     return "PPCISD::STRICT_FCTIWUZ";
1714   case PPCISD::STRICT_FCFID:
1715     return "PPCISD::STRICT_FCFID";
1716   case PPCISD::STRICT_FCFIDU:
1717     return "PPCISD::STRICT_FCFIDU";
1718   case PPCISD::STRICT_FCFIDS:
1719     return "PPCISD::STRICT_FCFIDS";
1720   case PPCISD::STRICT_FCFIDUS:
1721     return "PPCISD::STRICT_FCFIDUS";
1722   case PPCISD::LXVRZX:          return "PPCISD::LXVRZX";
1723   }
1724   return nullptr;
1725 }
1726 
1727 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1728                                           EVT VT) const {
1729   if (!VT.isVector())
1730     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1731 
1732   return VT.changeVectorElementTypeToInteger();
1733 }
1734 
1735 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1736   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1737   return true;
1738 }
1739 
1740 //===----------------------------------------------------------------------===//
1741 // Node matching predicates, for use by the tblgen matching code.
1742 //===----------------------------------------------------------------------===//
1743 
1744 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1745 static bool isFloatingPointZero(SDValue Op) {
1746   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1747     return CFP->getValueAPF().isZero();
1748   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1749     // Maybe this has already been legalized into the constant pool?
1750     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1751       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1752         return CFP->getValueAPF().isZero();
1753   }
1754   return false;
1755 }
1756 
1757 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1758 /// true if Op is undef or if it matches the specified value.
1759 static bool isConstantOrUndef(int Op, int Val) {
1760   return Op < 0 || Op == Val;
1761 }
1762 
1763 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1764 /// VPKUHUM instruction.
1765 /// The ShuffleKind distinguishes between big-endian operations with
1766 /// two different inputs (0), either-endian operations with two identical
1767 /// inputs (1), and little-endian operations with two different inputs (2).
1768 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1769 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1770                                SelectionDAG &DAG) {
1771   bool IsLE = DAG.getDataLayout().isLittleEndian();
1772   if (ShuffleKind == 0) {
1773     if (IsLE)
1774       return false;
1775     for (unsigned i = 0; i != 16; ++i)
1776       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1777         return false;
1778   } else if (ShuffleKind == 2) {
1779     if (!IsLE)
1780       return false;
1781     for (unsigned i = 0; i != 16; ++i)
1782       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1783         return false;
1784   } else if (ShuffleKind == 1) {
1785     unsigned j = IsLE ? 0 : 1;
1786     for (unsigned i = 0; i != 8; ++i)
1787       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1788           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1789         return false;
1790   }
1791   return true;
1792 }
1793 
1794 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1795 /// VPKUWUM instruction.
1796 /// The ShuffleKind distinguishes between big-endian operations with
1797 /// two different inputs (0), either-endian operations with two identical
1798 /// inputs (1), and little-endian operations with two different inputs (2).
1799 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1800 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1801                                SelectionDAG &DAG) {
1802   bool IsLE = DAG.getDataLayout().isLittleEndian();
1803   if (ShuffleKind == 0) {
1804     if (IsLE)
1805       return false;
1806     for (unsigned i = 0; i != 16; i += 2)
1807       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1808           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1809         return false;
1810   } else if (ShuffleKind == 2) {
1811     if (!IsLE)
1812       return false;
1813     for (unsigned i = 0; i != 16; i += 2)
1814       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1815           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1816         return false;
1817   } else if (ShuffleKind == 1) {
1818     unsigned j = IsLE ? 0 : 2;
1819     for (unsigned i = 0; i != 8; i += 2)
1820       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1821           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1822           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1823           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1824         return false;
1825   }
1826   return true;
1827 }
1828 
1829 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1830 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1831 /// current subtarget.
1832 ///
1833 /// The ShuffleKind distinguishes between big-endian operations with
1834 /// two different inputs (0), either-endian operations with two identical
1835 /// inputs (1), and little-endian operations with two different inputs (2).
1836 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1837 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1838                                SelectionDAG &DAG) {
1839   const PPCSubtarget& Subtarget =
1840       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1841   if (!Subtarget.hasP8Vector())
1842     return false;
1843 
1844   bool IsLE = DAG.getDataLayout().isLittleEndian();
1845   if (ShuffleKind == 0) {
1846     if (IsLE)
1847       return false;
1848     for (unsigned i = 0; i != 16; i += 4)
1849       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1850           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1851           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1852           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1853         return false;
1854   } else if (ShuffleKind == 2) {
1855     if (!IsLE)
1856       return false;
1857     for (unsigned i = 0; i != 16; i += 4)
1858       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1859           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1860           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1861           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1862         return false;
1863   } else if (ShuffleKind == 1) {
1864     unsigned j = IsLE ? 0 : 4;
1865     for (unsigned i = 0; i != 8; i += 4)
1866       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1867           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1868           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1869           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1870           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1871           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1872           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1873           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1874         return false;
1875   }
1876   return true;
1877 }
1878 
1879 /// isVMerge - Common function, used to match vmrg* shuffles.
1880 ///
1881 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1882                      unsigned LHSStart, unsigned RHSStart) {
1883   if (N->getValueType(0) != MVT::v16i8)
1884     return false;
1885   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1886          "Unsupported merge size!");
1887 
1888   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1889     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1890       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1891                              LHSStart+j+i*UnitSize) ||
1892           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1893                              RHSStart+j+i*UnitSize))
1894         return false;
1895     }
1896   return true;
1897 }
1898 
1899 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1900 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1901 /// The ShuffleKind distinguishes between big-endian merges with two
1902 /// different inputs (0), either-endian merges with two identical inputs (1),
1903 /// and little-endian merges with two different inputs (2).  For the latter,
1904 /// the input operands are swapped (see PPCInstrAltivec.td).
1905 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1906                              unsigned ShuffleKind, SelectionDAG &DAG) {
1907   if (DAG.getDataLayout().isLittleEndian()) {
1908     if (ShuffleKind == 1) // unary
1909       return isVMerge(N, UnitSize, 0, 0);
1910     else if (ShuffleKind == 2) // swapped
1911       return isVMerge(N, UnitSize, 0, 16);
1912     else
1913       return false;
1914   } else {
1915     if (ShuffleKind == 1) // unary
1916       return isVMerge(N, UnitSize, 8, 8);
1917     else if (ShuffleKind == 0) // normal
1918       return isVMerge(N, UnitSize, 8, 24);
1919     else
1920       return false;
1921   }
1922 }
1923 
1924 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1925 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1926 /// The ShuffleKind distinguishes between big-endian merges with two
1927 /// different inputs (0), either-endian merges with two identical inputs (1),
1928 /// and little-endian merges with two different inputs (2).  For the latter,
1929 /// the input operands are swapped (see PPCInstrAltivec.td).
1930 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1931                              unsigned ShuffleKind, SelectionDAG &DAG) {
1932   if (DAG.getDataLayout().isLittleEndian()) {
1933     if (ShuffleKind == 1) // unary
1934       return isVMerge(N, UnitSize, 8, 8);
1935     else if (ShuffleKind == 2) // swapped
1936       return isVMerge(N, UnitSize, 8, 24);
1937     else
1938       return false;
1939   } else {
1940     if (ShuffleKind == 1) // unary
1941       return isVMerge(N, UnitSize, 0, 0);
1942     else if (ShuffleKind == 0) // normal
1943       return isVMerge(N, UnitSize, 0, 16);
1944     else
1945       return false;
1946   }
1947 }
1948 
1949 /**
1950  * Common function used to match vmrgew and vmrgow shuffles
1951  *
1952  * The indexOffset determines whether to look for even or odd words in
1953  * the shuffle mask. This is based on the of the endianness of the target
1954  * machine.
1955  *   - Little Endian:
1956  *     - Use offset of 0 to check for odd elements
1957  *     - Use offset of 4 to check for even elements
1958  *   - Big Endian:
1959  *     - Use offset of 0 to check for even elements
1960  *     - Use offset of 4 to check for odd elements
1961  * A detailed description of the vector element ordering for little endian and
1962  * big endian can be found at
1963  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1964  * Targeting your applications - what little endian and big endian IBM XL C/C++
1965  * compiler differences mean to you
1966  *
1967  * The mask to the shuffle vector instruction specifies the indices of the
1968  * elements from the two input vectors to place in the result. The elements are
1969  * numbered in array-access order, starting with the first vector. These vectors
1970  * are always of type v16i8, thus each vector will contain 16 elements of size
1971  * 8. More info on the shuffle vector can be found in the
1972  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1973  * Language Reference.
1974  *
1975  * The RHSStartValue indicates whether the same input vectors are used (unary)
1976  * or two different input vectors are used, based on the following:
1977  *   - If the instruction uses the same vector for both inputs, the range of the
1978  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1979  *     be 0.
1980  *   - If the instruction has two different vectors then the range of the
1981  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1982  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1983  *     to 31 specify elements in the second vector).
1984  *
1985  * \param[in] N The shuffle vector SD Node to analyze
1986  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1987  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1988  * vector to the shuffle_vector instruction
1989  * \return true iff this shuffle vector represents an even or odd word merge
1990  */
1991 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1992                      unsigned RHSStartValue) {
1993   if (N->getValueType(0) != MVT::v16i8)
1994     return false;
1995 
1996   for (unsigned i = 0; i < 2; ++i)
1997     for (unsigned j = 0; j < 4; ++j)
1998       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1999                              i*RHSStartValue+j+IndexOffset) ||
2000           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
2001                              i*RHSStartValue+j+IndexOffset+8))
2002         return false;
2003   return true;
2004 }
2005 
2006 /**
2007  * Determine if the specified shuffle mask is suitable for the vmrgew or
2008  * vmrgow instructions.
2009  *
2010  * \param[in] N The shuffle vector SD Node to analyze
2011  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
2012  * \param[in] ShuffleKind Identify the type of merge:
2013  *   - 0 = big-endian merge with two different inputs;
2014  *   - 1 = either-endian merge with two identical inputs;
2015  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
2016  *     little-endian merges).
2017  * \param[in] DAG The current SelectionDAG
2018  * \return true iff this shuffle mask
2019  */
2020 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
2021                               unsigned ShuffleKind, SelectionDAG &DAG) {
2022   if (DAG.getDataLayout().isLittleEndian()) {
2023     unsigned indexOffset = CheckEven ? 4 : 0;
2024     if (ShuffleKind == 1) // Unary
2025       return isVMerge(N, indexOffset, 0);
2026     else if (ShuffleKind == 2) // swapped
2027       return isVMerge(N, indexOffset, 16);
2028     else
2029       return false;
2030   }
2031   else {
2032     unsigned indexOffset = CheckEven ? 0 : 4;
2033     if (ShuffleKind == 1) // Unary
2034       return isVMerge(N, indexOffset, 0);
2035     else if (ShuffleKind == 0) // Normal
2036       return isVMerge(N, indexOffset, 16);
2037     else
2038       return false;
2039   }
2040   return false;
2041 }
2042 
2043 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
2044 /// amount, otherwise return -1.
2045 /// The ShuffleKind distinguishes between big-endian operations with two
2046 /// different inputs (0), either-endian operations with two identical inputs
2047 /// (1), and little-endian operations with two different inputs (2).  For the
2048 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
2049 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
2050                              SelectionDAG &DAG) {
2051   if (N->getValueType(0) != MVT::v16i8)
2052     return -1;
2053 
2054   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2055 
2056   // Find the first non-undef value in the shuffle mask.
2057   unsigned i;
2058   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
2059     /*search*/;
2060 
2061   if (i == 16) return -1;  // all undef.
2062 
2063   // Otherwise, check to see if the rest of the elements are consecutively
2064   // numbered from this value.
2065   unsigned ShiftAmt = SVOp->getMaskElt(i);
2066   if (ShiftAmt < i) return -1;
2067 
2068   ShiftAmt -= i;
2069   bool isLE = DAG.getDataLayout().isLittleEndian();
2070 
2071   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
2072     // Check the rest of the elements to see if they are consecutive.
2073     for (++i; i != 16; ++i)
2074       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2075         return -1;
2076   } else if (ShuffleKind == 1) {
2077     // Check the rest of the elements to see if they are consecutive.
2078     for (++i; i != 16; ++i)
2079       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
2080         return -1;
2081   } else
2082     return -1;
2083 
2084   if (isLE)
2085     ShiftAmt = 16 - ShiftAmt;
2086 
2087   return ShiftAmt;
2088 }
2089 
2090 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
2091 /// specifies a splat of a single element that is suitable for input to
2092 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
2093 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
2094   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
2095          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
2096 
2097   // The consecutive indices need to specify an element, not part of two
2098   // different elements.  So abandon ship early if this isn't the case.
2099   if (N->getMaskElt(0) % EltSize != 0)
2100     return false;
2101 
2102   // This is a splat operation if each element of the permute is the same, and
2103   // if the value doesn't reference the second vector.
2104   unsigned ElementBase = N->getMaskElt(0);
2105 
2106   // FIXME: Handle UNDEF elements too!
2107   if (ElementBase >= 16)
2108     return false;
2109 
2110   // Check that the indices are consecutive, in the case of a multi-byte element
2111   // splatted with a v16i8 mask.
2112   for (unsigned i = 1; i != EltSize; ++i)
2113     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
2114       return false;
2115 
2116   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
2117     if (N->getMaskElt(i) < 0) continue;
2118     for (unsigned j = 0; j != EltSize; ++j)
2119       if (N->getMaskElt(i+j) != N->getMaskElt(j))
2120         return false;
2121   }
2122   return true;
2123 }
2124 
2125 /// Check that the mask is shuffling N byte elements. Within each N byte
2126 /// element of the mask, the indices could be either in increasing or
2127 /// decreasing order as long as they are consecutive.
2128 /// \param[in] N the shuffle vector SD Node to analyze
2129 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
2130 /// Word/DoubleWord/QuadWord).
2131 /// \param[in] StepLen the delta indices number among the N byte element, if
2132 /// the mask is in increasing/decreasing order then it is 1/-1.
2133 /// \return true iff the mask is shuffling N byte elements.
2134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
2135                                    int StepLen) {
2136   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
2137          "Unexpected element width.");
2138   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
2139 
2140   unsigned NumOfElem = 16 / Width;
2141   unsigned MaskVal[16]; //  Width is never greater than 16
2142   for (unsigned i = 0; i < NumOfElem; ++i) {
2143     MaskVal[0] = N->getMaskElt(i * Width);
2144     if ((StepLen == 1) && (MaskVal[0] % Width)) {
2145       return false;
2146     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
2147       return false;
2148     }
2149 
2150     for (unsigned int j = 1; j < Width; ++j) {
2151       MaskVal[j] = N->getMaskElt(i * Width + j);
2152       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
2153         return false;
2154       }
2155     }
2156   }
2157 
2158   return true;
2159 }
2160 
2161 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2162                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
2163   if (!isNByteElemShuffleMask(N, 4, 1))
2164     return false;
2165 
2166   // Now we look at mask elements 0,4,8,12
2167   unsigned M0 = N->getMaskElt(0) / 4;
2168   unsigned M1 = N->getMaskElt(4) / 4;
2169   unsigned M2 = N->getMaskElt(8) / 4;
2170   unsigned M3 = N->getMaskElt(12) / 4;
2171   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
2172   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
2173 
2174   // Below, let H and L be arbitrary elements of the shuffle mask
2175   // where H is in the range [4,7] and L is in the range [0,3].
2176   // H, 1, 2, 3 or L, 5, 6, 7
2177   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
2178       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
2179     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
2180     InsertAtByte = IsLE ? 12 : 0;
2181     Swap = M0 < 4;
2182     return true;
2183   }
2184   // 0, H, 2, 3 or 4, L, 6, 7
2185   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
2186       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
2187     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
2188     InsertAtByte = IsLE ? 8 : 4;
2189     Swap = M1 < 4;
2190     return true;
2191   }
2192   // 0, 1, H, 3 or 4, 5, L, 7
2193   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
2194       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
2195     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
2196     InsertAtByte = IsLE ? 4 : 8;
2197     Swap = M2 < 4;
2198     return true;
2199   }
2200   // 0, 1, 2, H or 4, 5, 6, L
2201   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
2202       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
2203     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
2204     InsertAtByte = IsLE ? 0 : 12;
2205     Swap = M3 < 4;
2206     return true;
2207   }
2208 
2209   // If both vector operands for the shuffle are the same vector, the mask will
2210   // contain only elements from the first one and the second one will be undef.
2211   if (N->getOperand(1).isUndef()) {
2212     ShiftElts = 0;
2213     Swap = true;
2214     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2215     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
2216       InsertAtByte = IsLE ? 12 : 0;
2217       return true;
2218     }
2219     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2220       InsertAtByte = IsLE ? 8 : 4;
2221       return true;
2222     }
2223     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2224       InsertAtByte = IsLE ? 4 : 8;
2225       return true;
2226     }
2227     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2228       InsertAtByte = IsLE ? 0 : 12;
2229       return true;
2230     }
2231   }
2232 
2233   return false;
2234 }
2235 
2236 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2237                                bool &Swap, bool IsLE) {
2238   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2239   // Ensure each byte index of the word is consecutive.
2240   if (!isNByteElemShuffleMask(N, 4, 1))
2241     return false;
2242 
2243   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2244   unsigned M0 = N->getMaskElt(0) / 4;
2245   unsigned M1 = N->getMaskElt(4) / 4;
2246   unsigned M2 = N->getMaskElt(8) / 4;
2247   unsigned M3 = N->getMaskElt(12) / 4;
2248 
2249   // If both vector operands for the shuffle are the same vector, the mask will
2250   // contain only elements from the first one and the second one will be undef.
2251   if (N->getOperand(1).isUndef()) {
2252     assert(M0 < 4 && "Indexing into an undef vector?");
2253     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2254       return false;
2255 
2256     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2257     Swap = false;
2258     return true;
2259   }
2260 
2261   // Ensure each word index of the ShuffleVector Mask is consecutive.
2262   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2263     return false;
2264 
2265   if (IsLE) {
2266     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2267       // Input vectors don't need to be swapped if the leading element
2268       // of the result is one of the 3 left elements of the second vector
2269       // (or if there is no shift to be done at all).
2270       Swap = false;
2271       ShiftElts = (8 - M0) % 8;
2272     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2273       // Input vectors need to be swapped if the leading element
2274       // of the result is one of the 3 left elements of the first vector
2275       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2276       Swap = true;
2277       ShiftElts = (4 - M0) % 4;
2278     }
2279 
2280     return true;
2281   } else {                                          // BE
2282     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2283       // Input vectors don't need to be swapped if the leading element
2284       // of the result is one of the 4 elements of the first vector.
2285       Swap = false;
2286       ShiftElts = M0;
2287     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2288       // Input vectors need to be swapped if the leading element
2289       // of the result is one of the 4 elements of the right vector.
2290       Swap = true;
2291       ShiftElts = M0 - 4;
2292     }
2293 
2294     return true;
2295   }
2296 }
2297 
2298 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2299   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2300 
2301   if (!isNByteElemShuffleMask(N, Width, -1))
2302     return false;
2303 
2304   for (int i = 0; i < 16; i += Width)
2305     if (N->getMaskElt(i) != i + Width - 1)
2306       return false;
2307 
2308   return true;
2309 }
2310 
2311 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2312   return isXXBRShuffleMaskHelper(N, 2);
2313 }
2314 
2315 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2316   return isXXBRShuffleMaskHelper(N, 4);
2317 }
2318 
2319 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2320   return isXXBRShuffleMaskHelper(N, 8);
2321 }
2322 
2323 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2324   return isXXBRShuffleMaskHelper(N, 16);
2325 }
2326 
2327 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2328 /// if the inputs to the instruction should be swapped and set \p DM to the
2329 /// value for the immediate.
2330 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2331 /// AND element 0 of the result comes from the first input (LE) or second input
2332 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2333 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2334 /// mask.
2335 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2336                                bool &Swap, bool IsLE) {
2337   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2338 
2339   // Ensure each byte index of the double word is consecutive.
2340   if (!isNByteElemShuffleMask(N, 8, 1))
2341     return false;
2342 
2343   unsigned M0 = N->getMaskElt(0) / 8;
2344   unsigned M1 = N->getMaskElt(8) / 8;
2345   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2346 
2347   // If both vector operands for the shuffle are the same vector, the mask will
2348   // contain only elements from the first one and the second one will be undef.
2349   if (N->getOperand(1).isUndef()) {
2350     if ((M0 | M1) < 2) {
2351       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2352       Swap = false;
2353       return true;
2354     } else
2355       return false;
2356   }
2357 
2358   if (IsLE) {
2359     if (M0 > 1 && M1 < 2) {
2360       Swap = false;
2361     } else if (M0 < 2 && M1 > 1) {
2362       M0 = (M0 + 2) % 4;
2363       M1 = (M1 + 2) % 4;
2364       Swap = true;
2365     } else
2366       return false;
2367 
2368     // Note: if control flow comes here that means Swap is already set above
2369     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2370     return true;
2371   } else { // BE
2372     if (M0 < 2 && M1 > 1) {
2373       Swap = false;
2374     } else if (M0 > 1 && M1 < 2) {
2375       M0 = (M0 + 2) % 4;
2376       M1 = (M1 + 2) % 4;
2377       Swap = true;
2378     } else
2379       return false;
2380 
2381     // Note: if control flow comes here that means Swap is already set above
2382     DM = (M0 << 1) + (M1 & 1);
2383     return true;
2384   }
2385 }
2386 
2387 
2388 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2389 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2390 /// elements are counted from the left of the vector register).
2391 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2392                                          SelectionDAG &DAG) {
2393   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2394   assert(isSplatShuffleMask(SVOp, EltSize));
2395   if (DAG.getDataLayout().isLittleEndian())
2396     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2397   else
2398     return SVOp->getMaskElt(0) / EltSize;
2399 }
2400 
2401 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2402 /// by using a vspltis[bhw] instruction of the specified element size, return
2403 /// the constant being splatted.  The ByteSize field indicates the number of
2404 /// bytes of each element [124] -> [bhw].
2405 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2406   SDValue OpVal(nullptr, 0);
2407 
2408   // If ByteSize of the splat is bigger than the element size of the
2409   // build_vector, then we have a case where we are checking for a splat where
2410   // multiple elements of the buildvector are folded together into a single
2411   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2412   unsigned EltSize = 16/N->getNumOperands();
2413   if (EltSize < ByteSize) {
2414     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2415     SDValue UniquedVals[4];
2416     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2417 
2418     // See if all of the elements in the buildvector agree across.
2419     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2420       if (N->getOperand(i).isUndef()) continue;
2421       // If the element isn't a constant, bail fully out.
2422       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2423 
2424       if (!UniquedVals[i&(Multiple-1)].getNode())
2425         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2426       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2427         return SDValue();  // no match.
2428     }
2429 
2430     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2431     // either constant or undef values that are identical for each chunk.  See
2432     // if these chunks can form into a larger vspltis*.
2433 
2434     // Check to see if all of the leading entries are either 0 or -1.  If
2435     // neither, then this won't fit into the immediate field.
2436     bool LeadingZero = true;
2437     bool LeadingOnes = true;
2438     for (unsigned i = 0; i != Multiple-1; ++i) {
2439       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2440 
2441       LeadingZero &= isNullConstant(UniquedVals[i]);
2442       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2443     }
2444     // Finally, check the least significant entry.
2445     if (LeadingZero) {
2446       if (!UniquedVals[Multiple-1].getNode())
2447         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2448       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2449       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2450         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2451     }
2452     if (LeadingOnes) {
2453       if (!UniquedVals[Multiple-1].getNode())
2454         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2455       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2456       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2457         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2458     }
2459 
2460     return SDValue();
2461   }
2462 
2463   // Check to see if this buildvec has a single non-undef value in its elements.
2464   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2465     if (N->getOperand(i).isUndef()) continue;
2466     if (!OpVal.getNode())
2467       OpVal = N->getOperand(i);
2468     else if (OpVal != N->getOperand(i))
2469       return SDValue();
2470   }
2471 
2472   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2473 
2474   unsigned ValSizeInBytes = EltSize;
2475   uint64_t Value = 0;
2476   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2477     Value = CN->getZExtValue();
2478   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2479     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2480     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2481   }
2482 
2483   // If the splat value is larger than the element value, then we can never do
2484   // this splat.  The only case that we could fit the replicated bits into our
2485   // immediate field for would be zero, and we prefer to use vxor for it.
2486   if (ValSizeInBytes < ByteSize) return SDValue();
2487 
2488   // If the element value is larger than the splat value, check if it consists
2489   // of a repeated bit pattern of size ByteSize.
2490   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2491     return SDValue();
2492 
2493   // Properly sign extend the value.
2494   int MaskVal = SignExtend32(Value, ByteSize * 8);
2495 
2496   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2497   if (MaskVal == 0) return SDValue();
2498 
2499   // Finally, if this value fits in a 5 bit sext field, return it
2500   if (SignExtend32<5>(MaskVal) == MaskVal)
2501     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2502   return SDValue();
2503 }
2504 
2505 //===----------------------------------------------------------------------===//
2506 //  Addressing Mode Selection
2507 //===----------------------------------------------------------------------===//
2508 
2509 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2510 /// or 64-bit immediate, and if the value can be accurately represented as a
2511 /// sign extension from a 16-bit value.  If so, this returns true and the
2512 /// immediate.
2513 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2514   if (!isa<ConstantSDNode>(N))
2515     return false;
2516 
2517   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2518   if (N->getValueType(0) == MVT::i32)
2519     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2520   else
2521     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2522 }
2523 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2524   return isIntS16Immediate(Op.getNode(), Imm);
2525 }
2526 
2527 /// Used when computing address flags for selecting loads and stores.
2528 /// If we have an OR, check if the LHS and RHS are provably disjoint.
2529 /// An OR of two provably disjoint values is equivalent to an ADD.
2530 /// Most PPC load/store instructions compute the effective address as a sum,
2531 /// so doing this conversion is useful.
2532 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) {
2533   if (N.getOpcode() != ISD::OR)
2534     return false;
2535   KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2536   if (!LHSKnown.Zero.getBoolValue())
2537     return false;
2538   KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2539   return (~(LHSKnown.Zero | RHSKnown.Zero) == 0);
2540 }
2541 
2542 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2543 /// be represented as an indexed [r+r] operation.
2544 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2545                                                SDValue &Index,
2546                                                SelectionDAG &DAG) const {
2547   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2548       UI != E; ++UI) {
2549     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2550       if (Memop->getMemoryVT() == MVT::f64) {
2551           Base = N.getOperand(0);
2552           Index = N.getOperand(1);
2553           return true;
2554       }
2555     }
2556   }
2557   return false;
2558 }
2559 
2560 /// isIntS34Immediate - This method tests if value of node given can be
2561 /// accurately represented as a sign extension from a 34-bit value.  If so,
2562 /// this returns true and the immediate.
2563 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) {
2564   if (!isa<ConstantSDNode>(N))
2565     return false;
2566 
2567   Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2568   return isInt<34>(Imm);
2569 }
2570 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) {
2571   return isIntS34Immediate(Op.getNode(), Imm);
2572 }
2573 
2574 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2575 /// can be represented as an indexed [r+r] operation.  Returns false if it
2576 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2577 /// non-zero and N can be represented by a base register plus a signed 16-bit
2578 /// displacement, make a more precise judgement by checking (displacement % \p
2579 /// EncodingAlignment).
2580 bool PPCTargetLowering::SelectAddressRegReg(
2581     SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
2582     MaybeAlign EncodingAlignment) const {
2583   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2584   // a [pc+imm].
2585   if (SelectAddressPCRel(N, Base))
2586     return false;
2587 
2588   int16_t Imm = 0;
2589   if (N.getOpcode() == ISD::ADD) {
2590     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2591     // SPE load/store can only handle 8-bit offsets.
2592     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2593         return true;
2594     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2595         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2596       return false; // r+i
2597     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2598       return false;    // r+i
2599 
2600     Base = N.getOperand(0);
2601     Index = N.getOperand(1);
2602     return true;
2603   } else if (N.getOpcode() == ISD::OR) {
2604     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2605         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2606       return false; // r+i can fold it if we can.
2607 
2608     // If this is an or of disjoint bitfields, we can codegen this as an add
2609     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2610     // disjoint.
2611     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2612 
2613     if (LHSKnown.Zero.getBoolValue()) {
2614       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2615       // If all of the bits are known zero on the LHS or RHS, the add won't
2616       // carry.
2617       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2618         Base = N.getOperand(0);
2619         Index = N.getOperand(1);
2620         return true;
2621       }
2622     }
2623   }
2624 
2625   return false;
2626 }
2627 
2628 // If we happen to be doing an i64 load or store into a stack slot that has
2629 // less than a 4-byte alignment, then the frame-index elimination may need to
2630 // use an indexed load or store instruction (because the offset may not be a
2631 // multiple of 4). The extra register needed to hold the offset comes from the
2632 // register scavenger, and it is possible that the scavenger will need to use
2633 // an emergency spill slot. As a result, we need to make sure that a spill slot
2634 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2635 // stack slot.
2636 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2637   // FIXME: This does not handle the LWA case.
2638   if (VT != MVT::i64)
2639     return;
2640 
2641   // NOTE: We'll exclude negative FIs here, which come from argument
2642   // lowering, because there are no known test cases triggering this problem
2643   // using packed structures (or similar). We can remove this exclusion if
2644   // we find such a test case. The reason why this is so test-case driven is
2645   // because this entire 'fixup' is only to prevent crashes (from the
2646   // register scavenger) on not-really-valid inputs. For example, if we have:
2647   //   %a = alloca i1
2648   //   %b = bitcast i1* %a to i64*
2649   //   store i64* a, i64 b
2650   // then the store should really be marked as 'align 1', but is not. If it
2651   // were marked as 'align 1' then the indexed form would have been
2652   // instruction-selected initially, and the problem this 'fixup' is preventing
2653   // won't happen regardless.
2654   if (FrameIdx < 0)
2655     return;
2656 
2657   MachineFunction &MF = DAG.getMachineFunction();
2658   MachineFrameInfo &MFI = MF.getFrameInfo();
2659 
2660   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2661     return;
2662 
2663   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2664   FuncInfo->setHasNonRISpills();
2665 }
2666 
2667 /// Returns true if the address N can be represented by a base register plus
2668 /// a signed 16-bit displacement [r+imm], and if it is not better
2669 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2670 /// displacements that are multiples of that value.
2671 bool PPCTargetLowering::SelectAddressRegImm(
2672     SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
2673     MaybeAlign EncodingAlignment) const {
2674   // FIXME dl should come from parent load or store, not from address
2675   SDLoc dl(N);
2676 
2677   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2678   // a [pc+imm].
2679   if (SelectAddressPCRel(N, Base))
2680     return false;
2681 
2682   // If this can be more profitably realized as r+r, fail.
2683   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2684     return false;
2685 
2686   if (N.getOpcode() == ISD::ADD) {
2687     int16_t imm = 0;
2688     if (isIntS16Immediate(N.getOperand(1), imm) &&
2689         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2690       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2691       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2692         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2693         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2694       } else {
2695         Base = N.getOperand(0);
2696       }
2697       return true; // [r+i]
2698     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2699       // Match LOAD (ADD (X, Lo(G))).
2700       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2701              && "Cannot handle constant offsets yet!");
2702       Disp = N.getOperand(1).getOperand(0);  // The global address.
2703       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2704              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2705              Disp.getOpcode() == ISD::TargetConstantPool ||
2706              Disp.getOpcode() == ISD::TargetJumpTable);
2707       Base = N.getOperand(0);
2708       return true;  // [&g+r]
2709     }
2710   } else if (N.getOpcode() == ISD::OR) {
2711     int16_t imm = 0;
2712     if (isIntS16Immediate(N.getOperand(1), imm) &&
2713         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2714       // If this is an or of disjoint bitfields, we can codegen this as an add
2715       // (for better address arithmetic) if the LHS and RHS of the OR are
2716       // provably disjoint.
2717       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2718 
2719       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2720         // If all of the bits are known zero on the LHS or RHS, the add won't
2721         // carry.
2722         if (FrameIndexSDNode *FI =
2723               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2724           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2725           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2726         } else {
2727           Base = N.getOperand(0);
2728         }
2729         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2730         return true;
2731       }
2732     }
2733   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2734     // Loading from a constant address.
2735 
2736     // If this address fits entirely in a 16-bit sext immediate field, codegen
2737     // this as "d, 0"
2738     int16_t Imm;
2739     if (isIntS16Immediate(CN, Imm) &&
2740         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
2741       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2742       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2743                              CN->getValueType(0));
2744       return true;
2745     }
2746 
2747     // Handle 32-bit sext immediates with LIS + addr mode.
2748     if ((CN->getValueType(0) == MVT::i32 ||
2749          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2750         (!EncodingAlignment ||
2751          isAligned(*EncodingAlignment, CN->getZExtValue()))) {
2752       int Addr = (int)CN->getZExtValue();
2753 
2754       // Otherwise, break this down into an LIS + disp.
2755       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2756 
2757       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2758                                    MVT::i32);
2759       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2760       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2761       return true;
2762     }
2763   }
2764 
2765   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2766   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2767     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2768     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2769   } else
2770     Base = N;
2771   return true;      // [r+0]
2772 }
2773 
2774 /// Similar to the 16-bit case but for instructions that take a 34-bit
2775 /// displacement field (prefixed loads/stores).
2776 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp,
2777                                               SDValue &Base,
2778                                               SelectionDAG &DAG) const {
2779   // Only on 64-bit targets.
2780   if (N.getValueType() != MVT::i64)
2781     return false;
2782 
2783   SDLoc dl(N);
2784   int64_t Imm = 0;
2785 
2786   if (N.getOpcode() == ISD::ADD) {
2787     if (!isIntS34Immediate(N.getOperand(1), Imm))
2788       return false;
2789     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2790     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2791       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2792     else
2793       Base = N.getOperand(0);
2794     return true;
2795   }
2796 
2797   if (N.getOpcode() == ISD::OR) {
2798     if (!isIntS34Immediate(N.getOperand(1), Imm))
2799       return false;
2800     // If this is an or of disjoint bitfields, we can codegen this as an add
2801     // (for better address arithmetic) if the LHS and RHS of the OR are
2802     // provably disjoint.
2803     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2804     if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL)
2805       return false;
2806     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2807       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2808     else
2809       Base = N.getOperand(0);
2810     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2811     return true;
2812   }
2813 
2814   if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const.
2815     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2816     Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
2817     return true;
2818   }
2819 
2820   return false;
2821 }
2822 
2823 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2824 /// represented as an indexed [r+r] operation.
2825 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2826                                                 SDValue &Index,
2827                                                 SelectionDAG &DAG) const {
2828   // Check to see if we can easily represent this as an [r+r] address.  This
2829   // will fail if it thinks that the address is more profitably represented as
2830   // reg+imm, e.g. where imm = 0.
2831   if (SelectAddressRegReg(N, Base, Index, DAG))
2832     return true;
2833 
2834   // If the address is the result of an add, we will utilize the fact that the
2835   // address calculation includes an implicit add.  However, we can reduce
2836   // register pressure if we do not materialize a constant just for use as the
2837   // index register.  We only get rid of the add if it is not an add of a
2838   // value and a 16-bit signed constant and both have a single use.
2839   int16_t imm = 0;
2840   if (N.getOpcode() == ISD::ADD &&
2841       (!isIntS16Immediate(N.getOperand(1), imm) ||
2842        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2843     Base = N.getOperand(0);
2844     Index = N.getOperand(1);
2845     return true;
2846   }
2847 
2848   // Otherwise, do it the hard way, using R0 as the base register.
2849   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2850                          N.getValueType());
2851   Index = N;
2852   return true;
2853 }
2854 
2855 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2856   Ty *PCRelCand = dyn_cast<Ty>(N);
2857   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2858 }
2859 
2860 /// Returns true if this address is a PC Relative address.
2861 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2862 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2863 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2864   // This is a materialize PC Relative node. Always select this as PC Relative.
2865   Base = N;
2866   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2867     return true;
2868   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2869       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2870       isValidPCRelNode<JumpTableSDNode>(N) ||
2871       isValidPCRelNode<BlockAddressSDNode>(N))
2872     return true;
2873   return false;
2874 }
2875 
2876 /// Returns true if we should use a direct load into vector instruction
2877 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2878 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2879 
2880   // If there are any other uses other than scalar to vector, then we should
2881   // keep it as a scalar load -> direct move pattern to prevent multiple
2882   // loads.
2883   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2884   if (!LD)
2885     return false;
2886 
2887   EVT MemVT = LD->getMemoryVT();
2888   if (!MemVT.isSimple())
2889     return false;
2890   switch(MemVT.getSimpleVT().SimpleTy) {
2891   case MVT::i64:
2892     break;
2893   case MVT::i32:
2894     if (!ST.hasP8Vector())
2895       return false;
2896     break;
2897   case MVT::i16:
2898   case MVT::i8:
2899     if (!ST.hasP9Vector())
2900       return false;
2901     break;
2902   default:
2903     return false;
2904   }
2905 
2906   SDValue LoadedVal(N, 0);
2907   if (!LoadedVal.hasOneUse())
2908     return false;
2909 
2910   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2911        UI != UE; ++UI)
2912     if (UI.getUse().get().getResNo() == 0 &&
2913         UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
2914         UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
2915       return false;
2916 
2917   return true;
2918 }
2919 
2920 /// getPreIndexedAddressParts - returns true by value, base pointer and
2921 /// offset pointer and addressing mode by reference if the node's address
2922 /// can be legally represented as pre-indexed load / store address.
2923 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2924                                                   SDValue &Offset,
2925                                                   ISD::MemIndexedMode &AM,
2926                                                   SelectionDAG &DAG) const {
2927   if (DisablePPCPreinc) return false;
2928 
2929   bool isLoad = true;
2930   SDValue Ptr;
2931   EVT VT;
2932   unsigned Alignment;
2933   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2934     Ptr = LD->getBasePtr();
2935     VT = LD->getMemoryVT();
2936     Alignment = LD->getAlignment();
2937   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2938     Ptr = ST->getBasePtr();
2939     VT  = ST->getMemoryVT();
2940     Alignment = ST->getAlignment();
2941     isLoad = false;
2942   } else
2943     return false;
2944 
2945   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2946   // instructions because we can fold these into a more efficient instruction
2947   // instead, (such as LXSD).
2948   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2949     return false;
2950   }
2951 
2952   // PowerPC doesn't have preinc load/store instructions for vectors
2953   if (VT.isVector())
2954     return false;
2955 
2956   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2957     // Common code will reject creating a pre-inc form if the base pointer
2958     // is a frame index, or if N is a store and the base pointer is either
2959     // the same as or a predecessor of the value being stored.  Check for
2960     // those situations here, and try with swapped Base/Offset instead.
2961     bool Swap = false;
2962 
2963     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2964       Swap = true;
2965     else if (!isLoad) {
2966       SDValue Val = cast<StoreSDNode>(N)->getValue();
2967       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2968         Swap = true;
2969     }
2970 
2971     if (Swap)
2972       std::swap(Base, Offset);
2973 
2974     AM = ISD::PRE_INC;
2975     return true;
2976   }
2977 
2978   // LDU/STU can only handle immediates that are a multiple of 4.
2979   if (VT != MVT::i64) {
2980     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None))
2981       return false;
2982   } else {
2983     // LDU/STU need an address with at least 4-byte alignment.
2984     if (Alignment < 4)
2985       return false;
2986 
2987     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
2988       return false;
2989   }
2990 
2991   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2992     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2993     // sext i32 to i64 when addr mode is r+i.
2994     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2995         LD->getExtensionType() == ISD::SEXTLOAD &&
2996         isa<ConstantSDNode>(Offset))
2997       return false;
2998   }
2999 
3000   AM = ISD::PRE_INC;
3001   return true;
3002 }
3003 
3004 //===----------------------------------------------------------------------===//
3005 //  LowerOperation implementation
3006 //===----------------------------------------------------------------------===//
3007 
3008 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
3009 /// and LoOpFlags to the target MO flags.
3010 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
3011                                unsigned &HiOpFlags, unsigned &LoOpFlags,
3012                                const GlobalValue *GV = nullptr) {
3013   HiOpFlags = PPCII::MO_HA;
3014   LoOpFlags = PPCII::MO_LO;
3015 
3016   // Don't use the pic base if not in PIC relocation model.
3017   if (IsPIC) {
3018     HiOpFlags |= PPCII::MO_PIC_FLAG;
3019     LoOpFlags |= PPCII::MO_PIC_FLAG;
3020   }
3021 }
3022 
3023 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
3024                              SelectionDAG &DAG) {
3025   SDLoc DL(HiPart);
3026   EVT PtrVT = HiPart.getValueType();
3027   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
3028 
3029   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
3030   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
3031 
3032   // With PIC, the first instruction is actually "GR+hi(&G)".
3033   if (isPIC)
3034     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
3035                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
3036 
3037   // Generate non-pic code that has direct accesses to the constant pool.
3038   // The address of the global is just (hi(&g)+lo(&g)).
3039   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
3040 }
3041 
3042 static void setUsesTOCBasePtr(MachineFunction &MF) {
3043   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3044   FuncInfo->setUsesTOCBasePtr();
3045 }
3046 
3047 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
3048   setUsesTOCBasePtr(DAG.getMachineFunction());
3049 }
3050 
3051 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
3052                                        SDValue GA) const {
3053   const bool Is64Bit = Subtarget.isPPC64();
3054   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
3055   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
3056                         : Subtarget.isAIXABI()
3057                               ? DAG.getRegister(PPC::R2, VT)
3058                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
3059   SDValue Ops[] = { GA, Reg };
3060   return DAG.getMemIntrinsicNode(
3061       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
3062       MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
3063       MachineMemOperand::MOLoad);
3064 }
3065 
3066 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
3067                                              SelectionDAG &DAG) const {
3068   EVT PtrVT = Op.getValueType();
3069   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3070   const Constant *C = CP->getConstVal();
3071 
3072   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3073   // The actual address of the GlobalValue is stored in the TOC.
3074   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3075     if (Subtarget.isUsingPCRelativeCalls()) {
3076       SDLoc DL(CP);
3077       EVT Ty = getPointerTy(DAG.getDataLayout());
3078       SDValue ConstPool = DAG.getTargetConstantPool(
3079           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
3080       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
3081     }
3082     setUsesTOCBasePtr(DAG);
3083     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
3084     return getTOCEntry(DAG, SDLoc(CP), GA);
3085   }
3086 
3087   unsigned MOHiFlag, MOLoFlag;
3088   bool IsPIC = isPositionIndependent();
3089   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3090 
3091   if (IsPIC && Subtarget.isSVR4ABI()) {
3092     SDValue GA =
3093         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
3094     return getTOCEntry(DAG, SDLoc(CP), GA);
3095   }
3096 
3097   SDValue CPIHi =
3098       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
3099   SDValue CPILo =
3100       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
3101   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
3102 }
3103 
3104 // For 64-bit PowerPC, prefer the more compact relative encodings.
3105 // This trades 32 bits per jump table entry for one or two instructions
3106 // on the jump site.
3107 unsigned PPCTargetLowering::getJumpTableEncoding() const {
3108   if (isJumpTableRelative())
3109     return MachineJumpTableInfo::EK_LabelDifference32;
3110 
3111   return TargetLowering::getJumpTableEncoding();
3112 }
3113 
3114 bool PPCTargetLowering::isJumpTableRelative() const {
3115   if (UseAbsoluteJumpTables)
3116     return false;
3117   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
3118     return true;
3119   return TargetLowering::isJumpTableRelative();
3120 }
3121 
3122 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
3123                                                     SelectionDAG &DAG) const {
3124   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3125     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3126 
3127   switch (getTargetMachine().getCodeModel()) {
3128   case CodeModel::Small:
3129   case CodeModel::Medium:
3130     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3131   default:
3132     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
3133                        getPointerTy(DAG.getDataLayout()));
3134   }
3135 }
3136 
3137 const MCExpr *
3138 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
3139                                                 unsigned JTI,
3140                                                 MCContext &Ctx) const {
3141   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3142     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3143 
3144   switch (getTargetMachine().getCodeModel()) {
3145   case CodeModel::Small:
3146   case CodeModel::Medium:
3147     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3148   default:
3149     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
3150   }
3151 }
3152 
3153 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
3154   EVT PtrVT = Op.getValueType();
3155   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3156 
3157   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3158   if (Subtarget.isUsingPCRelativeCalls()) {
3159     SDLoc DL(JT);
3160     EVT Ty = getPointerTy(DAG.getDataLayout());
3161     SDValue GA =
3162         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
3163     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3164     return MatAddr;
3165   }
3166 
3167   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3168   // The actual address of the GlobalValue is stored in the TOC.
3169   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3170     setUsesTOCBasePtr(DAG);
3171     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3172     return getTOCEntry(DAG, SDLoc(JT), GA);
3173   }
3174 
3175   unsigned MOHiFlag, MOLoFlag;
3176   bool IsPIC = isPositionIndependent();
3177   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3178 
3179   if (IsPIC && Subtarget.isSVR4ABI()) {
3180     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3181                                         PPCII::MO_PIC_FLAG);
3182     return getTOCEntry(DAG, SDLoc(GA), GA);
3183   }
3184 
3185   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
3186   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
3187   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
3188 }
3189 
3190 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
3191                                              SelectionDAG &DAG) const {
3192   EVT PtrVT = Op.getValueType();
3193   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
3194   const BlockAddress *BA = BASDN->getBlockAddress();
3195 
3196   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3197   if (Subtarget.isUsingPCRelativeCalls()) {
3198     SDLoc DL(BASDN);
3199     EVT Ty = getPointerTy(DAG.getDataLayout());
3200     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
3201                                            PPCII::MO_PCREL_FLAG);
3202     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3203     return MatAddr;
3204   }
3205 
3206   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3207   // The actual BlockAddress is stored in the TOC.
3208   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3209     setUsesTOCBasePtr(DAG);
3210     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
3211     return getTOCEntry(DAG, SDLoc(BASDN), GA);
3212   }
3213 
3214   // 32-bit position-independent ELF stores the BlockAddress in the .got.
3215   if (Subtarget.is32BitELFABI() && isPositionIndependent())
3216     return getTOCEntry(
3217         DAG, SDLoc(BASDN),
3218         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
3219 
3220   unsigned MOHiFlag, MOLoFlag;
3221   bool IsPIC = isPositionIndependent();
3222   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3223   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
3224   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
3225   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
3226 }
3227 
3228 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
3229                                               SelectionDAG &DAG) const {
3230   if (Subtarget.isAIXABI())
3231     return LowerGlobalTLSAddressAIX(Op, DAG);
3232 
3233   return LowerGlobalTLSAddressLinux(Op, DAG);
3234 }
3235 
3236 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op,
3237                                                     SelectionDAG &DAG) const {
3238   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3239 
3240   if (DAG.getTarget().useEmulatedTLS())
3241     report_fatal_error("Emulated TLS is not yet supported on AIX");
3242 
3243   SDLoc dl(GA);
3244   const GlobalValue *GV = GA->getGlobal();
3245   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3246 
3247   // The general-dynamic model is the only access model supported for now, so
3248   // all the GlobalTLSAddress nodes are lowered with this model.
3249   // We need to generate two TOC entries, one for the variable offset, one for
3250   // the region handle. The global address for the TOC entry of the region
3251   // handle is created with the MO_TLSGDM_FLAG flag and the global address
3252   // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG.
3253   SDValue VariableOffsetTGA =
3254       DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG);
3255   SDValue RegionHandleTGA =
3256       DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG);
3257   SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA);
3258   SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA);
3259   return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset,
3260                      RegionHandle);
3261 }
3262 
3263 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op,
3264                                                       SelectionDAG &DAG) const {
3265   // FIXME: TLS addresses currently use medium model code sequences,
3266   // which is the most useful form.  Eventually support for small and
3267   // large models could be added if users need it, at the cost of
3268   // additional complexity.
3269   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3270   if (DAG.getTarget().useEmulatedTLS())
3271     return LowerToTLSEmulatedModel(GA, DAG);
3272 
3273   SDLoc dl(GA);
3274   const GlobalValue *GV = GA->getGlobal();
3275   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3276   bool is64bit = Subtarget.isPPC64();
3277   const Module *M = DAG.getMachineFunction().getFunction().getParent();
3278   PICLevel::Level picLevel = M->getPICLevel();
3279 
3280   const TargetMachine &TM = getTargetMachine();
3281   TLSModel::Model Model = TM.getTLSModel(GV);
3282 
3283   if (Model == TLSModel::LocalExec) {
3284     if (Subtarget.isUsingPCRelativeCalls()) {
3285       SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64);
3286       SDValue TGA = DAG.getTargetGlobalAddress(
3287           GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG));
3288       SDValue MatAddr =
3289           DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA);
3290       return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr);
3291     }
3292 
3293     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3294                                                PPCII::MO_TPREL_HA);
3295     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3296                                                PPCII::MO_TPREL_LO);
3297     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
3298                              : DAG.getRegister(PPC::R2, MVT::i32);
3299 
3300     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3301     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3302   }
3303 
3304   if (Model == TLSModel::InitialExec) {
3305     bool IsPCRel = Subtarget.isUsingPCRelativeCalls();
3306     SDValue TGA = DAG.getTargetGlobalAddress(
3307         GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0);
3308     SDValue TGATLS = DAG.getTargetGlobalAddress(
3309         GV, dl, PtrVT, 0,
3310         IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS);
3311     SDValue TPOffset;
3312     if (IsPCRel) {
3313       SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA);
3314       TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel,
3315                              MachinePointerInfo());
3316     } else {
3317       SDValue GOTPtr;
3318       if (is64bit) {
3319         setUsesTOCBasePtr(DAG);
3320         SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3321         GOTPtr =
3322             DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA);
3323       } else {
3324         if (!TM.isPositionIndependent())
3325           GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3326         else if (picLevel == PICLevel::SmallPIC)
3327           GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3328         else
3329           GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3330       }
3331       TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr);
3332     }
3333     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3334   }
3335 
3336   if (Model == TLSModel::GeneralDynamic) {
3337     if (Subtarget.isUsingPCRelativeCalls()) {
3338       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3339                                                PPCII::MO_GOT_TLSGD_PCREL_FLAG);
3340       return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3341     }
3342 
3343     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3344     SDValue GOTPtr;
3345     if (is64bit) {
3346       setUsesTOCBasePtr(DAG);
3347       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3348       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3349                                    GOTReg, TGA);
3350     } else {
3351       if (picLevel == PICLevel::SmallPIC)
3352         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3353       else
3354         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3355     }
3356     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3357                        GOTPtr, TGA, TGA);
3358   }
3359 
3360   if (Model == TLSModel::LocalDynamic) {
3361     if (Subtarget.isUsingPCRelativeCalls()) {
3362       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3363                                                PPCII::MO_GOT_TLSLD_PCREL_FLAG);
3364       SDValue MatPCRel =
3365           DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3366       return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA);
3367     }
3368 
3369     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3370     SDValue GOTPtr;
3371     if (is64bit) {
3372       setUsesTOCBasePtr(DAG);
3373       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3374       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3375                            GOTReg, TGA);
3376     } else {
3377       if (picLevel == PICLevel::SmallPIC)
3378         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3379       else
3380         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3381     }
3382     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3383                                   PtrVT, GOTPtr, TGA, TGA);
3384     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3385                                       PtrVT, TLSAddr, TGA);
3386     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3387   }
3388 
3389   llvm_unreachable("Unknown TLS model!");
3390 }
3391 
3392 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3393                                               SelectionDAG &DAG) const {
3394   EVT PtrVT = Op.getValueType();
3395   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3396   SDLoc DL(GSDN);
3397   const GlobalValue *GV = GSDN->getGlobal();
3398 
3399   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3400   // The actual address of the GlobalValue is stored in the TOC.
3401   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3402     if (Subtarget.isUsingPCRelativeCalls()) {
3403       EVT Ty = getPointerTy(DAG.getDataLayout());
3404       if (isAccessedAsGotIndirect(Op)) {
3405         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3406                                                 PPCII::MO_PCREL_FLAG |
3407                                                     PPCII::MO_GOT_FLAG);
3408         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3409         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3410                                    MachinePointerInfo());
3411         return Load;
3412       } else {
3413         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3414                                                 PPCII::MO_PCREL_FLAG);
3415         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3416       }
3417     }
3418     setUsesTOCBasePtr(DAG);
3419     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3420     return getTOCEntry(DAG, DL, GA);
3421   }
3422 
3423   unsigned MOHiFlag, MOLoFlag;
3424   bool IsPIC = isPositionIndependent();
3425   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3426 
3427   if (IsPIC && Subtarget.isSVR4ABI()) {
3428     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3429                                             GSDN->getOffset(),
3430                                             PPCII::MO_PIC_FLAG);
3431     return getTOCEntry(DAG, DL, GA);
3432   }
3433 
3434   SDValue GAHi =
3435     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3436   SDValue GALo =
3437     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3438 
3439   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3440 }
3441 
3442 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3443   bool IsStrict = Op->isStrictFPOpcode();
3444   ISD::CondCode CC =
3445       cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get();
3446   SDValue LHS = Op.getOperand(IsStrict ? 1 : 0);
3447   SDValue RHS = Op.getOperand(IsStrict ? 2 : 1);
3448   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
3449   EVT LHSVT = LHS.getValueType();
3450   SDLoc dl(Op);
3451 
3452   // Soften the setcc with libcall if it is fp128.
3453   if (LHSVT == MVT::f128) {
3454     assert(!Subtarget.hasP9Vector() &&
3455            "SETCC for f128 is already legal under Power9!");
3456     softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain,
3457                         Op->getOpcode() == ISD::STRICT_FSETCCS);
3458     if (RHS.getNode())
3459       LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS,
3460                         DAG.getCondCode(CC));
3461     if (IsStrict)
3462       return DAG.getMergeValues({LHS, Chain}, dl);
3463     return LHS;
3464   }
3465 
3466   assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!");
3467 
3468   if (Op.getValueType() == MVT::v2i64) {
3469     // When the operands themselves are v2i64 values, we need to do something
3470     // special because VSX has no underlying comparison operations for these.
3471     if (LHS.getValueType() == MVT::v2i64) {
3472       // Equality can be handled by casting to the legal type for Altivec
3473       // comparisons, everything else needs to be expanded.
3474       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3475         return DAG.getNode(
3476             ISD::BITCAST, dl, MVT::v2i64,
3477             DAG.getSetCC(dl, MVT::v4i32,
3478                          DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS),
3479                          DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC));
3480       }
3481 
3482       return SDValue();
3483     }
3484 
3485     // We handle most of these in the usual way.
3486     return Op;
3487   }
3488 
3489   // If we're comparing for equality to zero, expose the fact that this is
3490   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3491   // fold the new nodes.
3492   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3493     return V;
3494 
3495   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
3496     // Leave comparisons against 0 and -1 alone for now, since they're usually
3497     // optimized.  FIXME: revisit this when we can custom lower all setcc
3498     // optimizations.
3499     if (C->isAllOnesValue() || C->isNullValue())
3500       return SDValue();
3501   }
3502 
3503   // If we have an integer seteq/setne, turn it into a compare against zero
3504   // by xor'ing the rhs with the lhs, which is faster than setting a
3505   // condition register, reading it back out, and masking the correct bit.  The
3506   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3507   // the result to other bit-twiddling opportunities.
3508   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3509     EVT VT = Op.getValueType();
3510     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS);
3511     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3512   }
3513   return SDValue();
3514 }
3515 
3516 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3517   SDNode *Node = Op.getNode();
3518   EVT VT = Node->getValueType(0);
3519   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3520   SDValue InChain = Node->getOperand(0);
3521   SDValue VAListPtr = Node->getOperand(1);
3522   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3523   SDLoc dl(Node);
3524 
3525   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3526 
3527   // gpr_index
3528   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3529                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3530   InChain = GprIndex.getValue(1);
3531 
3532   if (VT == MVT::i64) {
3533     // Check if GprIndex is even
3534     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3535                                  DAG.getConstant(1, dl, MVT::i32));
3536     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3537                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3538     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3539                                           DAG.getConstant(1, dl, MVT::i32));
3540     // Align GprIndex to be even if it isn't
3541     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3542                            GprIndex);
3543   }
3544 
3545   // fpr index is 1 byte after gpr
3546   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3547                                DAG.getConstant(1, dl, MVT::i32));
3548 
3549   // fpr
3550   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3551                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3552   InChain = FprIndex.getValue(1);
3553 
3554   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3555                                        DAG.getConstant(8, dl, MVT::i32));
3556 
3557   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3558                                         DAG.getConstant(4, dl, MVT::i32));
3559 
3560   // areas
3561   SDValue OverflowArea =
3562       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3563   InChain = OverflowArea.getValue(1);
3564 
3565   SDValue RegSaveArea =
3566       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3567   InChain = RegSaveArea.getValue(1);
3568 
3569   // select overflow_area if index > 8
3570   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3571                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3572 
3573   // adjustment constant gpr_index * 4/8
3574   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3575                                     VT.isInteger() ? GprIndex : FprIndex,
3576                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3577                                                     MVT::i32));
3578 
3579   // OurReg = RegSaveArea + RegConstant
3580   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3581                                RegConstant);
3582 
3583   // Floating types are 32 bytes into RegSaveArea
3584   if (VT.isFloatingPoint())
3585     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3586                          DAG.getConstant(32, dl, MVT::i32));
3587 
3588   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3589   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3590                                    VT.isInteger() ? GprIndex : FprIndex,
3591                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3592                                                    MVT::i32));
3593 
3594   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3595                               VT.isInteger() ? VAListPtr : FprPtr,
3596                               MachinePointerInfo(SV), MVT::i8);
3597 
3598   // determine if we should load from reg_save_area or overflow_area
3599   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3600 
3601   // increase overflow_area by 4/8 if gpr/fpr > 8
3602   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3603                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3604                                           dl, MVT::i32));
3605 
3606   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3607                              OverflowAreaPlusN);
3608 
3609   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3610                               MachinePointerInfo(), MVT::i32);
3611 
3612   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3613 }
3614 
3615 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3616   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3617 
3618   // We have to copy the entire va_list struct:
3619   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3620   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3621                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3622                        false, true, false, MachinePointerInfo(),
3623                        MachinePointerInfo());
3624 }
3625 
3626 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3627                                                   SelectionDAG &DAG) const {
3628   if (Subtarget.isAIXABI())
3629     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3630 
3631   return Op.getOperand(0);
3632 }
3633 
3634 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
3635   MachineFunction &MF = DAG.getMachineFunction();
3636   PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>();
3637 
3638   assert((Op.getOpcode() == ISD::INLINEASM ||
3639           Op.getOpcode() == ISD::INLINEASM_BR) &&
3640          "Expecting Inline ASM node.");
3641 
3642   // If an LR store is already known to be required then there is not point in
3643   // checking this ASM as well.
3644   if (MFI.isLRStoreRequired())
3645     return Op;
3646 
3647   // Inline ASM nodes have an optional last operand that is an incoming Flag of
3648   // type MVT::Glue. We want to ignore this last operand if that is the case.
3649   unsigned NumOps = Op.getNumOperands();
3650   if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue)
3651     --NumOps;
3652 
3653   // Check all operands that may contain the LR.
3654   for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
3655     unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
3656     unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
3657     ++i; // Skip the ID value.
3658 
3659     switch (InlineAsm::getKind(Flags)) {
3660     default:
3661       llvm_unreachable("Bad flags!");
3662     case InlineAsm::Kind_RegUse:
3663     case InlineAsm::Kind_Imm:
3664     case InlineAsm::Kind_Mem:
3665       i += NumVals;
3666       break;
3667     case InlineAsm::Kind_Clobber:
3668     case InlineAsm::Kind_RegDef:
3669     case InlineAsm::Kind_RegDefEarlyClobber: {
3670       for (; NumVals; --NumVals, ++i) {
3671         Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
3672         if (Reg != PPC::LR && Reg != PPC::LR8)
3673           continue;
3674         MFI.setLRStoreRequired();
3675         return Op;
3676       }
3677       break;
3678     }
3679     }
3680   }
3681 
3682   return Op;
3683 }
3684 
3685 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3686                                                 SelectionDAG &DAG) const {
3687   if (Subtarget.isAIXABI())
3688     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3689 
3690   SDValue Chain = Op.getOperand(0);
3691   SDValue Trmp = Op.getOperand(1); // trampoline
3692   SDValue FPtr = Op.getOperand(2); // nested function
3693   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3694   SDLoc dl(Op);
3695 
3696   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3697   bool isPPC64 = (PtrVT == MVT::i64);
3698   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3699 
3700   TargetLowering::ArgListTy Args;
3701   TargetLowering::ArgListEntry Entry;
3702 
3703   Entry.Ty = IntPtrTy;
3704   Entry.Node = Trmp; Args.push_back(Entry);
3705 
3706   // TrampSize == (isPPC64 ? 48 : 40);
3707   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3708                                isPPC64 ? MVT::i64 : MVT::i32);
3709   Args.push_back(Entry);
3710 
3711   Entry.Node = FPtr; Args.push_back(Entry);
3712   Entry.Node = Nest; Args.push_back(Entry);
3713 
3714   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3715   TargetLowering::CallLoweringInfo CLI(DAG);
3716   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3717       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3718       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3719 
3720   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3721   return CallResult.second;
3722 }
3723 
3724 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3725   MachineFunction &MF = DAG.getMachineFunction();
3726   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3727   EVT PtrVT = getPointerTy(MF.getDataLayout());
3728 
3729   SDLoc dl(Op);
3730 
3731   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3732     // vastart just stores the address of the VarArgsFrameIndex slot into the
3733     // memory location argument.
3734     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3735     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3736     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3737                         MachinePointerInfo(SV));
3738   }
3739 
3740   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3741   // We suppose the given va_list is already allocated.
3742   //
3743   // typedef struct {
3744   //  char gpr;     /* index into the array of 8 GPRs
3745   //                 * stored in the register save area
3746   //                 * gpr=0 corresponds to r3,
3747   //                 * gpr=1 to r4, etc.
3748   //                 */
3749   //  char fpr;     /* index into the array of 8 FPRs
3750   //                 * stored in the register save area
3751   //                 * fpr=0 corresponds to f1,
3752   //                 * fpr=1 to f2, etc.
3753   //                 */
3754   //  char *overflow_arg_area;
3755   //                /* location on stack that holds
3756   //                 * the next overflow argument
3757   //                 */
3758   //  char *reg_save_area;
3759   //               /* where r3:r10 and f1:f8 (if saved)
3760   //                * are stored
3761   //                */
3762   // } va_list[1];
3763 
3764   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3765   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3766   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3767                                             PtrVT);
3768   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3769                                  PtrVT);
3770 
3771   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3772   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3773 
3774   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3775   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3776 
3777   uint64_t FPROffset = 1;
3778   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3779 
3780   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3781 
3782   // Store first byte : number of int regs
3783   SDValue firstStore =
3784       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3785                         MachinePointerInfo(SV), MVT::i8);
3786   uint64_t nextOffset = FPROffset;
3787   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3788                                   ConstFPROffset);
3789 
3790   // Store second byte : number of float regs
3791   SDValue secondStore =
3792       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3793                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3794   nextOffset += StackOffset;
3795   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3796 
3797   // Store second word : arguments given on stack
3798   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3799                                     MachinePointerInfo(SV, nextOffset));
3800   nextOffset += FrameOffset;
3801   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3802 
3803   // Store third word : arguments given in registers
3804   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3805                       MachinePointerInfo(SV, nextOffset));
3806 }
3807 
3808 /// FPR - The set of FP registers that should be allocated for arguments
3809 /// on Darwin and AIX.
3810 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3811                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3812                                 PPC::F11, PPC::F12, PPC::F13};
3813 
3814 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3815 /// the stack.
3816 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3817                                        unsigned PtrByteSize) {
3818   unsigned ArgSize = ArgVT.getStoreSize();
3819   if (Flags.isByVal())
3820     ArgSize = Flags.getByValSize();
3821 
3822   // Round up to multiples of the pointer size, except for array members,
3823   // which are always packed.
3824   if (!Flags.isInConsecutiveRegs())
3825     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3826 
3827   return ArgSize;
3828 }
3829 
3830 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3831 /// on the stack.
3832 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3833                                          ISD::ArgFlagsTy Flags,
3834                                          unsigned PtrByteSize) {
3835   Align Alignment(PtrByteSize);
3836 
3837   // Altivec parameters are padded to a 16 byte boundary.
3838   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3839       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3840       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3841       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3842     Alignment = Align(16);
3843 
3844   // ByVal parameters are aligned as requested.
3845   if (Flags.isByVal()) {
3846     auto BVAlign = Flags.getNonZeroByValAlign();
3847     if (BVAlign > PtrByteSize) {
3848       if (BVAlign.value() % PtrByteSize != 0)
3849         llvm_unreachable(
3850             "ByVal alignment is not a multiple of the pointer size");
3851 
3852       Alignment = BVAlign;
3853     }
3854   }
3855 
3856   // Array members are always packed to their original alignment.
3857   if (Flags.isInConsecutiveRegs()) {
3858     // If the array member was split into multiple registers, the first
3859     // needs to be aligned to the size of the full type.  (Except for
3860     // ppcf128, which is only aligned as its f64 components.)
3861     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3862       Alignment = Align(OrigVT.getStoreSize());
3863     else
3864       Alignment = Align(ArgVT.getStoreSize());
3865   }
3866 
3867   return Alignment;
3868 }
3869 
3870 /// CalculateStackSlotUsed - Return whether this argument will use its
3871 /// stack slot (instead of being passed in registers).  ArgOffset,
3872 /// AvailableFPRs, and AvailableVRs must hold the current argument
3873 /// position, and will be updated to account for this argument.
3874 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags,
3875                                    unsigned PtrByteSize, unsigned LinkageSize,
3876                                    unsigned ParamAreaSize, unsigned &ArgOffset,
3877                                    unsigned &AvailableFPRs,
3878                                    unsigned &AvailableVRs) {
3879   bool UseMemory = false;
3880 
3881   // Respect alignment of argument on the stack.
3882   Align Alignment =
3883       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3884   ArgOffset = alignTo(ArgOffset, Alignment);
3885   // If there's no space left in the argument save area, we must
3886   // use memory (this check also catches zero-sized arguments).
3887   if (ArgOffset >= LinkageSize + ParamAreaSize)
3888     UseMemory = true;
3889 
3890   // Allocate argument on the stack.
3891   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3892   if (Flags.isInConsecutiveRegsLast())
3893     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3894   // If we overran the argument save area, we must use memory
3895   // (this check catches arguments passed partially in memory)
3896   if (ArgOffset > LinkageSize + ParamAreaSize)
3897     UseMemory = true;
3898 
3899   // However, if the argument is actually passed in an FPR or a VR,
3900   // we don't use memory after all.
3901   if (!Flags.isByVal()) {
3902     if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
3903       if (AvailableFPRs > 0) {
3904         --AvailableFPRs;
3905         return false;
3906       }
3907     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3908         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3909         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3910         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3911       if (AvailableVRs > 0) {
3912         --AvailableVRs;
3913         return false;
3914       }
3915   }
3916 
3917   return UseMemory;
3918 }
3919 
3920 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3921 /// ensure minimum alignment required for target.
3922 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3923                                      unsigned NumBytes) {
3924   return alignTo(NumBytes, Lowering->getStackAlign());
3925 }
3926 
3927 SDValue PPCTargetLowering::LowerFormalArguments(
3928     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3929     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3930     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3931   if (Subtarget.isAIXABI())
3932     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3933                                     InVals);
3934   if (Subtarget.is64BitELFABI())
3935     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3936                                        InVals);
3937   assert(Subtarget.is32BitELFABI());
3938   return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3939                                      InVals);
3940 }
3941 
3942 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3943     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3944     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3945     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3946 
3947   // 32-bit SVR4 ABI Stack Frame Layout:
3948   //              +-----------------------------------+
3949   //        +-->  |            Back chain             |
3950   //        |     +-----------------------------------+
3951   //        |     | Floating-point register save area |
3952   //        |     +-----------------------------------+
3953   //        |     |    General register save area     |
3954   //        |     +-----------------------------------+
3955   //        |     |          CR save word             |
3956   //        |     +-----------------------------------+
3957   //        |     |         VRSAVE save word          |
3958   //        |     +-----------------------------------+
3959   //        |     |         Alignment padding         |
3960   //        |     +-----------------------------------+
3961   //        |     |     Vector register save area     |
3962   //        |     +-----------------------------------+
3963   //        |     |       Local variable space        |
3964   //        |     +-----------------------------------+
3965   //        |     |        Parameter list area        |
3966   //        |     +-----------------------------------+
3967   //        |     |           LR save word            |
3968   //        |     +-----------------------------------+
3969   // SP-->  +---  |            Back chain             |
3970   //              +-----------------------------------+
3971   //
3972   // Specifications:
3973   //   System V Application Binary Interface PowerPC Processor Supplement
3974   //   AltiVec Technology Programming Interface Manual
3975 
3976   MachineFunction &MF = DAG.getMachineFunction();
3977   MachineFrameInfo &MFI = MF.getFrameInfo();
3978   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3979 
3980   EVT PtrVT = getPointerTy(MF.getDataLayout());
3981   // Potential tail calls could cause overwriting of argument stack slots.
3982   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3983                        (CallConv == CallingConv::Fast));
3984   const Align PtrAlign(4);
3985 
3986   // Assign locations to all of the incoming arguments.
3987   SmallVector<CCValAssign, 16> ArgLocs;
3988   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3989                  *DAG.getContext());
3990 
3991   // Reserve space for the linkage area on the stack.
3992   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3993   CCInfo.AllocateStack(LinkageSize, PtrAlign);
3994   if (useSoftFloat())
3995     CCInfo.PreAnalyzeFormalArguments(Ins);
3996 
3997   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3998   CCInfo.clearWasPPCF128();
3999 
4000   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4001     CCValAssign &VA = ArgLocs[i];
4002 
4003     // Arguments stored in registers.
4004     if (VA.isRegLoc()) {
4005       const TargetRegisterClass *RC;
4006       EVT ValVT = VA.getValVT();
4007 
4008       switch (ValVT.getSimpleVT().SimpleTy) {
4009         default:
4010           llvm_unreachable("ValVT not supported by formal arguments Lowering");
4011         case MVT::i1:
4012         case MVT::i32:
4013           RC = &PPC::GPRCRegClass;
4014           break;
4015         case MVT::f32:
4016           if (Subtarget.hasP8Vector())
4017             RC = &PPC::VSSRCRegClass;
4018           else if (Subtarget.hasSPE())
4019             RC = &PPC::GPRCRegClass;
4020           else
4021             RC = &PPC::F4RCRegClass;
4022           break;
4023         case MVT::f64:
4024           if (Subtarget.hasVSX())
4025             RC = &PPC::VSFRCRegClass;
4026           else if (Subtarget.hasSPE())
4027             // SPE passes doubles in GPR pairs.
4028             RC = &PPC::GPRCRegClass;
4029           else
4030             RC = &PPC::F8RCRegClass;
4031           break;
4032         case MVT::v16i8:
4033         case MVT::v8i16:
4034         case MVT::v4i32:
4035           RC = &PPC::VRRCRegClass;
4036           break;
4037         case MVT::v4f32:
4038           RC = &PPC::VRRCRegClass;
4039           break;
4040         case MVT::v2f64:
4041         case MVT::v2i64:
4042           RC = &PPC::VRRCRegClass;
4043           break;
4044       }
4045 
4046       SDValue ArgValue;
4047       // Transform the arguments stored in physical registers into
4048       // virtual ones.
4049       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
4050         assert(i + 1 < e && "No second half of double precision argument");
4051         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
4052         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
4053         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
4054         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
4055         if (!Subtarget.isLittleEndian())
4056           std::swap (ArgValueLo, ArgValueHi);
4057         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
4058                                ArgValueHi);
4059       } else {
4060         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
4061         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
4062                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
4063         if (ValVT == MVT::i1)
4064           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
4065       }
4066 
4067       InVals.push_back(ArgValue);
4068     } else {
4069       // Argument stored in memory.
4070       assert(VA.isMemLoc());
4071 
4072       // Get the extended size of the argument type in stack
4073       unsigned ArgSize = VA.getLocVT().getStoreSize();
4074       // Get the actual size of the argument type
4075       unsigned ObjSize = VA.getValVT().getStoreSize();
4076       unsigned ArgOffset = VA.getLocMemOffset();
4077       // Stack objects in PPC32 are right justified.
4078       ArgOffset += ArgSize - ObjSize;
4079       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
4080 
4081       // Create load nodes to retrieve arguments from the stack.
4082       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4083       InVals.push_back(
4084           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
4085     }
4086   }
4087 
4088   // Assign locations to all of the incoming aggregate by value arguments.
4089   // Aggregates passed by value are stored in the local variable space of the
4090   // caller's stack frame, right above the parameter list area.
4091   SmallVector<CCValAssign, 16> ByValArgLocs;
4092   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4093                       ByValArgLocs, *DAG.getContext());
4094 
4095   // Reserve stack space for the allocations in CCInfo.
4096   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
4097 
4098   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
4099 
4100   // Area that is at least reserved in the caller of this function.
4101   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
4102   MinReservedArea = std::max(MinReservedArea, LinkageSize);
4103 
4104   // Set the size that is at least reserved in caller of this function.  Tail
4105   // call optimized function's reserved stack space needs to be aligned so that
4106   // taking the difference between two stack areas will result in an aligned
4107   // stack.
4108   MinReservedArea =
4109       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4110   FuncInfo->setMinReservedArea(MinReservedArea);
4111 
4112   SmallVector<SDValue, 8> MemOps;
4113 
4114   // If the function takes variable number of arguments, make a frame index for
4115   // the start of the first vararg value... for expansion of llvm.va_start.
4116   if (isVarArg) {
4117     static const MCPhysReg GPArgRegs[] = {
4118       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4119       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4120     };
4121     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
4122 
4123     static const MCPhysReg FPArgRegs[] = {
4124       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
4125       PPC::F8
4126     };
4127     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
4128 
4129     if (useSoftFloat() || hasSPE())
4130        NumFPArgRegs = 0;
4131 
4132     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
4133     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
4134 
4135     // Make room for NumGPArgRegs and NumFPArgRegs.
4136     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
4137                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
4138 
4139     FuncInfo->setVarArgsStackOffset(
4140       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4141                             CCInfo.getNextStackOffset(), true));
4142 
4143     FuncInfo->setVarArgsFrameIndex(
4144         MFI.CreateStackObject(Depth, Align(8), false));
4145     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4146 
4147     // The fixed integer arguments of a variadic function are stored to the
4148     // VarArgsFrameIndex on the stack so that they may be loaded by
4149     // dereferencing the result of va_next.
4150     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
4151       // Get an existing live-in vreg, or add a new one.
4152       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
4153       if (!VReg)
4154         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
4155 
4156       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4157       SDValue Store =
4158           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4159       MemOps.push_back(Store);
4160       // Increment the address by four for the next argument to store
4161       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4162       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4163     }
4164 
4165     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
4166     // is set.
4167     // The double arguments are stored to the VarArgsFrameIndex
4168     // on the stack.
4169     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
4170       // Get an existing live-in vreg, or add a new one.
4171       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
4172       if (!VReg)
4173         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
4174 
4175       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
4176       SDValue Store =
4177           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4178       MemOps.push_back(Store);
4179       // Increment the address by eight for the next argument to store
4180       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
4181                                          PtrVT);
4182       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4183     }
4184   }
4185 
4186   if (!MemOps.empty())
4187     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4188 
4189   return Chain;
4190 }
4191 
4192 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4193 // value to MVT::i64 and then truncate to the correct register size.
4194 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
4195                                              EVT ObjectVT, SelectionDAG &DAG,
4196                                              SDValue ArgVal,
4197                                              const SDLoc &dl) const {
4198   if (Flags.isSExt())
4199     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
4200                          DAG.getValueType(ObjectVT));
4201   else if (Flags.isZExt())
4202     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
4203                          DAG.getValueType(ObjectVT));
4204 
4205   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
4206 }
4207 
4208 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
4209     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4210     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4211     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4212   // TODO: add description of PPC stack frame format, or at least some docs.
4213   //
4214   bool isELFv2ABI = Subtarget.isELFv2ABI();
4215   bool isLittleEndian = Subtarget.isLittleEndian();
4216   MachineFunction &MF = DAG.getMachineFunction();
4217   MachineFrameInfo &MFI = MF.getFrameInfo();
4218   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4219 
4220   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
4221          "fastcc not supported on varargs functions");
4222 
4223   EVT PtrVT = getPointerTy(MF.getDataLayout());
4224   // Potential tail calls could cause overwriting of argument stack slots.
4225   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4226                        (CallConv == CallingConv::Fast));
4227   unsigned PtrByteSize = 8;
4228   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4229 
4230   static const MCPhysReg GPR[] = {
4231     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4232     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4233   };
4234   static const MCPhysReg VR[] = {
4235     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4236     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4237   };
4238 
4239   const unsigned Num_GPR_Regs = array_lengthof(GPR);
4240   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4241   const unsigned Num_VR_Regs  = array_lengthof(VR);
4242 
4243   // Do a first pass over the arguments to determine whether the ABI
4244   // guarantees that our caller has allocated the parameter save area
4245   // on its stack frame.  In the ELFv1 ABI, this is always the case;
4246   // in the ELFv2 ABI, it is true if this is a vararg function or if
4247   // any parameter is located in a stack slot.
4248 
4249   bool HasParameterArea = !isELFv2ABI || isVarArg;
4250   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
4251   unsigned NumBytes = LinkageSize;
4252   unsigned AvailableFPRs = Num_FPR_Regs;
4253   unsigned AvailableVRs = Num_VR_Regs;
4254   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
4255     if (Ins[i].Flags.isNest())
4256       continue;
4257 
4258     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
4259                                PtrByteSize, LinkageSize, ParamAreaSize,
4260                                NumBytes, AvailableFPRs, AvailableVRs))
4261       HasParameterArea = true;
4262   }
4263 
4264   // Add DAG nodes to load the arguments or copy them out of registers.  On
4265   // entry to a function on PPC, the arguments start after the linkage area,
4266   // although the first ones are often in registers.
4267 
4268   unsigned ArgOffset = LinkageSize;
4269   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4270   SmallVector<SDValue, 8> MemOps;
4271   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4272   unsigned CurArgIdx = 0;
4273   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4274     SDValue ArgVal;
4275     bool needsLoad = false;
4276     EVT ObjectVT = Ins[ArgNo].VT;
4277     EVT OrigVT = Ins[ArgNo].ArgVT;
4278     unsigned ObjSize = ObjectVT.getStoreSize();
4279     unsigned ArgSize = ObjSize;
4280     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4281     if (Ins[ArgNo].isOrigArg()) {
4282       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4283       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4284     }
4285     // We re-align the argument offset for each argument, except when using the
4286     // fast calling convention, when we need to make sure we do that only when
4287     // we'll actually use a stack slot.
4288     unsigned CurArgOffset;
4289     Align Alignment;
4290     auto ComputeArgOffset = [&]() {
4291       /* Respect alignment of argument on the stack.  */
4292       Alignment =
4293           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
4294       ArgOffset = alignTo(ArgOffset, Alignment);
4295       CurArgOffset = ArgOffset;
4296     };
4297 
4298     if (CallConv != CallingConv::Fast) {
4299       ComputeArgOffset();
4300 
4301       /* Compute GPR index associated with argument offset.  */
4302       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4303       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
4304     }
4305 
4306     // FIXME the codegen can be much improved in some cases.
4307     // We do not have to keep everything in memory.
4308     if (Flags.isByVal()) {
4309       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4310 
4311       if (CallConv == CallingConv::Fast)
4312         ComputeArgOffset();
4313 
4314       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4315       ObjSize = Flags.getByValSize();
4316       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4317       // Empty aggregate parameters do not take up registers.  Examples:
4318       //   struct { } a;
4319       //   union  { } b;
4320       //   int c[0];
4321       // etc.  However, we have to provide a place-holder in InVals, so
4322       // pretend we have an 8-byte item at the current address for that
4323       // purpose.
4324       if (!ObjSize) {
4325         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4326         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4327         InVals.push_back(FIN);
4328         continue;
4329       }
4330 
4331       // Create a stack object covering all stack doublewords occupied
4332       // by the argument.  If the argument is (fully or partially) on
4333       // the stack, or if the argument is fully in registers but the
4334       // caller has allocated the parameter save anyway, we can refer
4335       // directly to the caller's stack frame.  Otherwise, create a
4336       // local copy in our own frame.
4337       int FI;
4338       if (HasParameterArea ||
4339           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
4340         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
4341       else
4342         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
4343       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4344 
4345       // Handle aggregates smaller than 8 bytes.
4346       if (ObjSize < PtrByteSize) {
4347         // The value of the object is its address, which differs from the
4348         // address of the enclosing doubleword on big-endian systems.
4349         SDValue Arg = FIN;
4350         if (!isLittleEndian) {
4351           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
4352           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
4353         }
4354         InVals.push_back(Arg);
4355 
4356         if (GPR_idx != Num_GPR_Regs) {
4357           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4358           FuncInfo->addLiveInAttr(VReg, Flags);
4359           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4360           SDValue Store;
4361 
4362           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
4363             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
4364                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
4365             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
4366                                       MachinePointerInfo(&*FuncArg), ObjType);
4367           } else {
4368             // For sizes that don't fit a truncating store (3, 5, 6, 7),
4369             // store the whole register as-is to the parameter save area
4370             // slot.
4371             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4372                                  MachinePointerInfo(&*FuncArg));
4373           }
4374 
4375           MemOps.push_back(Store);
4376         }
4377         // Whether we copied from a register or not, advance the offset
4378         // into the parameter save area by a full doubleword.
4379         ArgOffset += PtrByteSize;
4380         continue;
4381       }
4382 
4383       // The value of the object is its address, which is the address of
4384       // its first stack doubleword.
4385       InVals.push_back(FIN);
4386 
4387       // Store whatever pieces of the object are in registers to memory.
4388       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4389         if (GPR_idx == Num_GPR_Regs)
4390           break;
4391 
4392         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4393         FuncInfo->addLiveInAttr(VReg, Flags);
4394         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4395         SDValue Addr = FIN;
4396         if (j) {
4397           SDValue Off = DAG.getConstant(j, dl, PtrVT);
4398           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4399         }
4400         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
4401                                      MachinePointerInfo(&*FuncArg, j));
4402         MemOps.push_back(Store);
4403         ++GPR_idx;
4404       }
4405       ArgOffset += ArgSize;
4406       continue;
4407     }
4408 
4409     switch (ObjectVT.getSimpleVT().SimpleTy) {
4410     default: llvm_unreachable("Unhandled argument type!");
4411     case MVT::i1:
4412     case MVT::i32:
4413     case MVT::i64:
4414       if (Flags.isNest()) {
4415         // The 'nest' parameter, if any, is passed in R11.
4416         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4417         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4418 
4419         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4420           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4421 
4422         break;
4423       }
4424 
4425       // These can be scalar arguments or elements of an integer array type
4426       // passed directly.  Clang may use those instead of "byval" aggregate
4427       // types to avoid forcing arguments to memory unnecessarily.
4428       if (GPR_idx != Num_GPR_Regs) {
4429         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4430         FuncInfo->addLiveInAttr(VReg, Flags);
4431         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4432 
4433         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4434           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4435           // value to MVT::i64 and then truncate to the correct register size.
4436           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4437       } else {
4438         if (CallConv == CallingConv::Fast)
4439           ComputeArgOffset();
4440 
4441         needsLoad = true;
4442         ArgSize = PtrByteSize;
4443       }
4444       if (CallConv != CallingConv::Fast || needsLoad)
4445         ArgOffset += 8;
4446       break;
4447 
4448     case MVT::f32:
4449     case MVT::f64:
4450       // These can be scalar arguments or elements of a float array type
4451       // passed directly.  The latter are used to implement ELFv2 homogenous
4452       // float aggregates.
4453       if (FPR_idx != Num_FPR_Regs) {
4454         unsigned VReg;
4455 
4456         if (ObjectVT == MVT::f32)
4457           VReg = MF.addLiveIn(FPR[FPR_idx],
4458                               Subtarget.hasP8Vector()
4459                                   ? &PPC::VSSRCRegClass
4460                                   : &PPC::F4RCRegClass);
4461         else
4462           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4463                                                 ? &PPC::VSFRCRegClass
4464                                                 : &PPC::F8RCRegClass);
4465 
4466         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4467         ++FPR_idx;
4468       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4469         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4470         // once we support fp <-> gpr moves.
4471 
4472         // This can only ever happen in the presence of f32 array types,
4473         // since otherwise we never run out of FPRs before running out
4474         // of GPRs.
4475         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4476         FuncInfo->addLiveInAttr(VReg, Flags);
4477         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4478 
4479         if (ObjectVT == MVT::f32) {
4480           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4481             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4482                                  DAG.getConstant(32, dl, MVT::i32));
4483           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4484         }
4485 
4486         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4487       } else {
4488         if (CallConv == CallingConv::Fast)
4489           ComputeArgOffset();
4490 
4491         needsLoad = true;
4492       }
4493 
4494       // When passing an array of floats, the array occupies consecutive
4495       // space in the argument area; only round up to the next doubleword
4496       // at the end of the array.  Otherwise, each float takes 8 bytes.
4497       if (CallConv != CallingConv::Fast || needsLoad) {
4498         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4499         ArgOffset += ArgSize;
4500         if (Flags.isInConsecutiveRegsLast())
4501           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4502       }
4503       break;
4504     case MVT::v4f32:
4505     case MVT::v4i32:
4506     case MVT::v8i16:
4507     case MVT::v16i8:
4508     case MVT::v2f64:
4509     case MVT::v2i64:
4510     case MVT::v1i128:
4511     case MVT::f128:
4512       // These can be scalar arguments or elements of a vector array type
4513       // passed directly.  The latter are used to implement ELFv2 homogenous
4514       // vector aggregates.
4515       if (VR_idx != Num_VR_Regs) {
4516         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4517         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4518         ++VR_idx;
4519       } else {
4520         if (CallConv == CallingConv::Fast)
4521           ComputeArgOffset();
4522         needsLoad = true;
4523       }
4524       if (CallConv != CallingConv::Fast || needsLoad)
4525         ArgOffset += 16;
4526       break;
4527     }
4528 
4529     // We need to load the argument to a virtual register if we determined
4530     // above that we ran out of physical registers of the appropriate type.
4531     if (needsLoad) {
4532       if (ObjSize < ArgSize && !isLittleEndian)
4533         CurArgOffset += ArgSize - ObjSize;
4534       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4535       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4536       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4537     }
4538 
4539     InVals.push_back(ArgVal);
4540   }
4541 
4542   // Area that is at least reserved in the caller of this function.
4543   unsigned MinReservedArea;
4544   if (HasParameterArea)
4545     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4546   else
4547     MinReservedArea = LinkageSize;
4548 
4549   // Set the size that is at least reserved in caller of this function.  Tail
4550   // call optimized functions' reserved stack space needs to be aligned so that
4551   // taking the difference between two stack areas will result in an aligned
4552   // stack.
4553   MinReservedArea =
4554       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4555   FuncInfo->setMinReservedArea(MinReservedArea);
4556 
4557   // If the function takes variable number of arguments, make a frame index for
4558   // the start of the first vararg value... for expansion of llvm.va_start.
4559   // On ELFv2ABI spec, it writes:
4560   // C programs that are intended to be *portable* across different compilers
4561   // and architectures must use the header file <stdarg.h> to deal with variable
4562   // argument lists.
4563   if (isVarArg && MFI.hasVAStart()) {
4564     int Depth = ArgOffset;
4565 
4566     FuncInfo->setVarArgsFrameIndex(
4567       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4568     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4569 
4570     // If this function is vararg, store any remaining integer argument regs
4571     // to their spots on the stack so that they may be loaded by dereferencing
4572     // the result of va_next.
4573     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4574          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4575       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4576       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4577       SDValue Store =
4578           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4579       MemOps.push_back(Store);
4580       // Increment the address by four for the next argument to store
4581       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4582       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4583     }
4584   }
4585 
4586   if (!MemOps.empty())
4587     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4588 
4589   return Chain;
4590 }
4591 
4592 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4593 /// adjusted to accommodate the arguments for the tailcall.
4594 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4595                                    unsigned ParamSize) {
4596 
4597   if (!isTailCall) return 0;
4598 
4599   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4600   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4601   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4602   // Remember only if the new adjustment is bigger.
4603   if (SPDiff < FI->getTailCallSPDelta())
4604     FI->setTailCallSPDelta(SPDiff);
4605 
4606   return SPDiff;
4607 }
4608 
4609 static bool isFunctionGlobalAddress(SDValue Callee);
4610 
4611 static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
4612                               const TargetMachine &TM) {
4613   // It does not make sense to call callsShareTOCBase() with a caller that
4614   // is PC Relative since PC Relative callers do not have a TOC.
4615 #ifndef NDEBUG
4616   const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
4617   assert(!STICaller->isUsingPCRelativeCalls() &&
4618          "PC Relative callers do not have a TOC and cannot share a TOC Base");
4619 #endif
4620 
4621   // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4622   // don't have enough information to determine if the caller and callee share
4623   // the same  TOC base, so we have to pessimistically assume they don't for
4624   // correctness.
4625   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4626   if (!G)
4627     return false;
4628 
4629   const GlobalValue *GV = G->getGlobal();
4630 
4631   // If the callee is preemptable, then the static linker will use a plt-stub
4632   // which saves the toc to the stack, and needs a nop after the call
4633   // instruction to convert to a toc-restore.
4634   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4635     return false;
4636 
4637   // Functions with PC Relative enabled may clobber the TOC in the same DSO.
4638   // We may need a TOC restore in the situation where the caller requires a
4639   // valid TOC but the callee is PC Relative and does not.
4640   const Function *F = dyn_cast<Function>(GV);
4641   const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);
4642 
4643   // If we have an Alias we can try to get the function from there.
4644   if (Alias) {
4645     const GlobalObject *GlobalObj = Alias->getBaseObject();
4646     F = dyn_cast<Function>(GlobalObj);
4647   }
4648 
4649   // If we still have no valid function pointer we do not have enough
4650   // information to determine if the callee uses PC Relative calls so we must
4651   // assume that it does.
4652   if (!F)
4653     return false;
4654 
4655   // If the callee uses PC Relative we cannot guarantee that the callee won't
4656   // clobber the TOC of the caller and so we must assume that the two
4657   // functions do not share a TOC base.
4658   const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
4659   if (STICallee->isUsingPCRelativeCalls())
4660     return false;
4661 
4662   // If the GV is not a strong definition then we need to assume it can be
4663   // replaced by another function at link time. The function that replaces
4664   // it may not share the same TOC as the caller since the callee may be
4665   // replaced by a PC Relative version of the same function.
4666   if (!GV->isStrongDefinitionForLinker())
4667     return false;
4668 
4669   // The medium and large code models are expected to provide a sufficiently
4670   // large TOC to provide all data addressing needs of a module with a
4671   // single TOC.
4672   if (CodeModel::Medium == TM.getCodeModel() ||
4673       CodeModel::Large == TM.getCodeModel())
4674     return true;
4675 
4676   // Any explicitly-specified sections and section prefixes must also match.
4677   // Also, if we're using -ffunction-sections, then each function is always in
4678   // a different section (the same is true for COMDAT functions).
4679   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4680       GV->getSection() != Caller->getSection())
4681     return false;
4682   if (const auto *F = dyn_cast<Function>(GV)) {
4683     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4684       return false;
4685   }
4686 
4687   return true;
4688 }
4689 
4690 static bool
4691 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4692                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4693   assert(Subtarget.is64BitELFABI());
4694 
4695   const unsigned PtrByteSize = 8;
4696   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4697 
4698   static const MCPhysReg GPR[] = {
4699     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4700     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4701   };
4702   static const MCPhysReg VR[] = {
4703     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4704     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4705   };
4706 
4707   const unsigned NumGPRs = array_lengthof(GPR);
4708   const unsigned NumFPRs = 13;
4709   const unsigned NumVRs = array_lengthof(VR);
4710   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4711 
4712   unsigned NumBytes = LinkageSize;
4713   unsigned AvailableFPRs = NumFPRs;
4714   unsigned AvailableVRs = NumVRs;
4715 
4716   for (const ISD::OutputArg& Param : Outs) {
4717     if (Param.Flags.isNest()) continue;
4718 
4719     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize,
4720                                LinkageSize, ParamAreaSize, NumBytes,
4721                                AvailableFPRs, AvailableVRs))
4722       return true;
4723   }
4724   return false;
4725 }
4726 
4727 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4728   if (CB.arg_size() != CallerFn->arg_size())
4729     return false;
4730 
4731   auto CalleeArgIter = CB.arg_begin();
4732   auto CalleeArgEnd = CB.arg_end();
4733   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4734 
4735   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4736     const Value* CalleeArg = *CalleeArgIter;
4737     const Value* CallerArg = &(*CallerArgIter);
4738     if (CalleeArg == CallerArg)
4739       continue;
4740 
4741     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4742     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4743     //      }
4744     // 1st argument of callee is undef and has the same type as caller.
4745     if (CalleeArg->getType() == CallerArg->getType() &&
4746         isa<UndefValue>(CalleeArg))
4747       continue;
4748 
4749     return false;
4750   }
4751 
4752   return true;
4753 }
4754 
4755 // Returns true if TCO is possible between the callers and callees
4756 // calling conventions.
4757 static bool
4758 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4759                                     CallingConv::ID CalleeCC) {
4760   // Tail calls are possible with fastcc and ccc.
4761   auto isTailCallableCC  = [] (CallingConv::ID CC){
4762       return  CC == CallingConv::C || CC == CallingConv::Fast;
4763   };
4764   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4765     return false;
4766 
4767   // We can safely tail call both fastcc and ccc callees from a c calling
4768   // convention caller. If the caller is fastcc, we may have less stack space
4769   // than a non-fastcc caller with the same signature so disable tail-calls in
4770   // that case.
4771   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4772 }
4773 
4774 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4775     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4776     const SmallVectorImpl<ISD::OutputArg> &Outs,
4777     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4778   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4779 
4780   if (DisableSCO && !TailCallOpt) return false;
4781 
4782   // Variadic argument functions are not supported.
4783   if (isVarArg) return false;
4784 
4785   auto &Caller = DAG.getMachineFunction().getFunction();
4786   // Check that the calling conventions are compatible for tco.
4787   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4788     return false;
4789 
4790   // Caller contains any byval parameter is not supported.
4791   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4792     return false;
4793 
4794   // Callee contains any byval parameter is not supported, too.
4795   // Note: This is a quick work around, because in some cases, e.g.
4796   // caller's stack size > callee's stack size, we are still able to apply
4797   // sibling call optimization. For example, gcc is able to do SCO for caller1
4798   // in the following example, but not for caller2.
4799   //   struct test {
4800   //     long int a;
4801   //     char ary[56];
4802   //   } gTest;
4803   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4804   //     b->a = v.a;
4805   //     return 0;
4806   //   }
4807   //   void caller1(struct test a, struct test c, struct test *b) {
4808   //     callee(gTest, b); }
4809   //   void caller2(struct test *b) { callee(gTest, b); }
4810   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4811     return false;
4812 
4813   // If callee and caller use different calling conventions, we cannot pass
4814   // parameters on stack since offsets for the parameter area may be different.
4815   if (Caller.getCallingConv() != CalleeCC &&
4816       needStackSlotPassParameters(Subtarget, Outs))
4817     return false;
4818 
4819   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4820   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4821   // callee potentially have different TOC bases then we cannot tail call since
4822   // we need to restore the TOC pointer after the call.
4823   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4824   // We cannot guarantee this for indirect calls or calls to external functions.
4825   // When PC-Relative addressing is used, the concept of the TOC is no longer
4826   // applicable so this check is not required.
4827   // Check first for indirect calls.
4828   if (!Subtarget.isUsingPCRelativeCalls() &&
4829       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4830     return false;
4831 
4832   // Check if we share the TOC base.
4833   if (!Subtarget.isUsingPCRelativeCalls() &&
4834       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4835     return false;
4836 
4837   // TCO allows altering callee ABI, so we don't have to check further.
4838   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4839     return true;
4840 
4841   if (DisableSCO) return false;
4842 
4843   // If callee use the same argument list that caller is using, then we can
4844   // apply SCO on this case. If it is not, then we need to check if callee needs
4845   // stack for passing arguments.
4846   // PC Relative tail calls may not have a CallBase.
4847   // If there is no CallBase we cannot verify if we have the same argument
4848   // list so assume that we don't have the same argument list.
4849   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4850       needStackSlotPassParameters(Subtarget, Outs))
4851     return false;
4852   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4853     return false;
4854 
4855   return true;
4856 }
4857 
4858 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4859 /// for tail call optimization. Targets which want to do tail call
4860 /// optimization should implement this function.
4861 bool
4862 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4863                                                      CallingConv::ID CalleeCC,
4864                                                      bool isVarArg,
4865                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4866                                                      SelectionDAG& DAG) const {
4867   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4868     return false;
4869 
4870   // Variable argument functions are not supported.
4871   if (isVarArg)
4872     return false;
4873 
4874   MachineFunction &MF = DAG.getMachineFunction();
4875   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4876   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4877     // Functions containing by val parameters are not supported.
4878     for (unsigned i = 0; i != Ins.size(); i++) {
4879        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4880        if (Flags.isByVal()) return false;
4881     }
4882 
4883     // Non-PIC/GOT tail calls are supported.
4884     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4885       return true;
4886 
4887     // At the moment we can only do local tail calls (in same module, hidden
4888     // or protected) if we are generating PIC.
4889     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4890       return G->getGlobal()->hasHiddenVisibility()
4891           || G->getGlobal()->hasProtectedVisibility();
4892   }
4893 
4894   return false;
4895 }
4896 
4897 /// isCallCompatibleAddress - Return the immediate to use if the specified
4898 /// 32-bit value is representable in the immediate field of a BxA instruction.
4899 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4900   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4901   if (!C) return nullptr;
4902 
4903   int Addr = C->getZExtValue();
4904   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4905       SignExtend32<26>(Addr) != Addr)
4906     return nullptr;  // Top 6 bits have to be sext of immediate.
4907 
4908   return DAG
4909       .getConstant(
4910           (int)C->getZExtValue() >> 2, SDLoc(Op),
4911           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4912       .getNode();
4913 }
4914 
4915 namespace {
4916 
4917 struct TailCallArgumentInfo {
4918   SDValue Arg;
4919   SDValue FrameIdxOp;
4920   int FrameIdx = 0;
4921 
4922   TailCallArgumentInfo() = default;
4923 };
4924 
4925 } // end anonymous namespace
4926 
4927 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4928 static void StoreTailCallArgumentsToStackSlot(
4929     SelectionDAG &DAG, SDValue Chain,
4930     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4931     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4932   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4933     SDValue Arg = TailCallArgs[i].Arg;
4934     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4935     int FI = TailCallArgs[i].FrameIdx;
4936     // Store relative to framepointer.
4937     MemOpChains.push_back(DAG.getStore(
4938         Chain, dl, Arg, FIN,
4939         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4940   }
4941 }
4942 
4943 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4944 /// the appropriate stack slot for the tail call optimized function call.
4945 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4946                                              SDValue OldRetAddr, SDValue OldFP,
4947                                              int SPDiff, const SDLoc &dl) {
4948   if (SPDiff) {
4949     // Calculate the new stack slot for the return address.
4950     MachineFunction &MF = DAG.getMachineFunction();
4951     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4952     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4953     bool isPPC64 = Subtarget.isPPC64();
4954     int SlotSize = isPPC64 ? 8 : 4;
4955     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4956     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4957                                                          NewRetAddrLoc, true);
4958     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4959     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4960     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4961                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4962   }
4963   return Chain;
4964 }
4965 
4966 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4967 /// the position of the argument.
4968 static void
4969 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4970                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4971                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4972   int Offset = ArgOffset + SPDiff;
4973   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4974   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4975   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4976   SDValue FIN = DAG.getFrameIndex(FI, VT);
4977   TailCallArgumentInfo Info;
4978   Info.Arg = Arg;
4979   Info.FrameIdxOp = FIN;
4980   Info.FrameIdx = FI;
4981   TailCallArguments.push_back(Info);
4982 }
4983 
4984 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4985 /// stack slot. Returns the chain as result and the loaded frame pointers in
4986 /// LROpOut/FPOpout. Used when tail calling.
4987 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4988     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4989     SDValue &FPOpOut, const SDLoc &dl) const {
4990   if (SPDiff) {
4991     // Load the LR and FP stack slot for later adjusting.
4992     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4993     LROpOut = getReturnAddrFrameIndex(DAG);
4994     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4995     Chain = SDValue(LROpOut.getNode(), 1);
4996   }
4997   return Chain;
4998 }
4999 
5000 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
5001 /// by "Src" to address "Dst" of size "Size".  Alignment information is
5002 /// specified by the specific parameter attribute. The copy will be passed as
5003 /// a byval function parameter.
5004 /// Sometimes what we are copying is the end of a larger object, the part that
5005 /// does not fit in registers.
5006 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
5007                                          SDValue Chain, ISD::ArgFlagsTy Flags,
5008                                          SelectionDAG &DAG, const SDLoc &dl) {
5009   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
5010   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
5011                        Flags.getNonZeroByValAlign(), false, false, false,
5012                        MachinePointerInfo(), MachinePointerInfo());
5013 }
5014 
5015 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
5016 /// tail calls.
5017 static void LowerMemOpCallTo(
5018     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
5019     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
5020     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
5021     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
5022   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5023   if (!isTailCall) {
5024     if (isVector) {
5025       SDValue StackPtr;
5026       if (isPPC64)
5027         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5028       else
5029         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5030       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5031                            DAG.getConstant(ArgOffset, dl, PtrVT));
5032     }
5033     MemOpChains.push_back(
5034         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5035     // Calculate and remember argument location.
5036   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
5037                                   TailCallArguments);
5038 }
5039 
5040 static void
5041 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
5042                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
5043                 SDValue FPOp,
5044                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
5045   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
5046   // might overwrite each other in case of tail call optimization.
5047   SmallVector<SDValue, 8> MemOpChains2;
5048   // Do not flag preceding copytoreg stuff together with the following stuff.
5049   InFlag = SDValue();
5050   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
5051                                     MemOpChains2, dl);
5052   if (!MemOpChains2.empty())
5053     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
5054 
5055   // Store the return address to the appropriate stack slot.
5056   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
5057 
5058   // Emit callseq_end just before tailcall node.
5059   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5060                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
5061   InFlag = Chain.getValue(1);
5062 }
5063 
5064 // Is this global address that of a function that can be called by name? (as
5065 // opposed to something that must hold a descriptor for an indirect call).
5066 static bool isFunctionGlobalAddress(SDValue Callee) {
5067   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5068     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
5069         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
5070       return false;
5071 
5072     return G->getGlobal()->getValueType()->isFunctionTy();
5073   }
5074 
5075   return false;
5076 }
5077 
5078 SDValue PPCTargetLowering::LowerCallResult(
5079     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5080     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5081     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5082   SmallVector<CCValAssign, 16> RVLocs;
5083   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5084                     *DAG.getContext());
5085 
5086   CCRetInfo.AnalyzeCallResult(
5087       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5088                ? RetCC_PPC_Cold
5089                : RetCC_PPC);
5090 
5091   // Copy all of the result registers out of their specified physreg.
5092   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5093     CCValAssign &VA = RVLocs[i];
5094     assert(VA.isRegLoc() && "Can only return in registers!");
5095 
5096     SDValue Val;
5097 
5098     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5099       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5100                                       InFlag);
5101       Chain = Lo.getValue(1);
5102       InFlag = Lo.getValue(2);
5103       VA = RVLocs[++i]; // skip ahead to next loc
5104       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5105                                       InFlag);
5106       Chain = Hi.getValue(1);
5107       InFlag = Hi.getValue(2);
5108       if (!Subtarget.isLittleEndian())
5109         std::swap (Lo, Hi);
5110       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5111     } else {
5112       Val = DAG.getCopyFromReg(Chain, dl,
5113                                VA.getLocReg(), VA.getLocVT(), InFlag);
5114       Chain = Val.getValue(1);
5115       InFlag = Val.getValue(2);
5116     }
5117 
5118     switch (VA.getLocInfo()) {
5119     default: llvm_unreachable("Unknown loc info!");
5120     case CCValAssign::Full: break;
5121     case CCValAssign::AExt:
5122       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5123       break;
5124     case CCValAssign::ZExt:
5125       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5126                         DAG.getValueType(VA.getValVT()));
5127       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5128       break;
5129     case CCValAssign::SExt:
5130       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5131                         DAG.getValueType(VA.getValVT()));
5132       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5133       break;
5134     }
5135 
5136     InVals.push_back(Val);
5137   }
5138 
5139   return Chain;
5140 }
5141 
5142 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5143                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5144   // PatchPoint calls are not indirect.
5145   if (isPatchPoint)
5146     return false;
5147 
5148   if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee))
5149     return false;
5150 
5151   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5152   // becuase the immediate function pointer points to a descriptor instead of
5153   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5154   // pointer immediate points to the global entry point, while the BLA would
5155   // need to jump to the local entry point (see rL211174).
5156   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5157       isBLACompatibleAddress(Callee, DAG))
5158     return false;
5159 
5160   return true;
5161 }
5162 
5163 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
5164 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
5165   return Subtarget.isAIXABI() ||
5166          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
5167 }
5168 
5169 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5170                               const Function &Caller,
5171                               const SDValue &Callee,
5172                               const PPCSubtarget &Subtarget,
5173                               const TargetMachine &TM) {
5174   if (CFlags.IsTailCall)
5175     return PPCISD::TC_RETURN;
5176 
5177   // This is a call through a function pointer.
5178   if (CFlags.IsIndirect) {
5179     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5180     // indirect calls. The save of the caller's TOC pointer to the stack will be
5181     // inserted into the DAG as part of call lowering. The restore of the TOC
5182     // pointer is modeled by using a pseudo instruction for the call opcode that
5183     // represents the 2 instruction sequence of an indirect branch and link,
5184     // immediately followed by a load of the TOC pointer from the the stack save
5185     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5186     // as it is not saved or used.
5187     return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5188                                                : PPCISD::BCTRL;
5189   }
5190 
5191   if (Subtarget.isUsingPCRelativeCalls()) {
5192     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5193     return PPCISD::CALL_NOTOC;
5194   }
5195 
5196   // The ABIs that maintain a TOC pointer accross calls need to have a nop
5197   // immediately following the call instruction if the caller and callee may
5198   // have different TOC bases. At link time if the linker determines the calls
5199   // may not share a TOC base, the call is redirected to a trampoline inserted
5200   // by the linker. The trampoline will (among other things) save the callers
5201   // TOC pointer at an ABI designated offset in the linkage area and the linker
5202   // will rewrite the nop to be a load of the TOC pointer from the linkage area
5203   // into gpr2.
5204   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5205     return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5206                                                   : PPCISD::CALL_NOP;
5207 
5208   return PPCISD::CALL;
5209 }
5210 
5211 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5212                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5213   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5214     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5215       return SDValue(Dest, 0);
5216 
5217   // Returns true if the callee is local, and false otherwise.
5218   auto isLocalCallee = [&]() {
5219     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5220     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5221     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5222 
5223     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5224            !dyn_cast_or_null<GlobalIFunc>(GV);
5225   };
5226 
5227   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5228   // a static relocation model causes some versions of GNU LD (2.17.50, at
5229   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5230   // built with secure-PLT.
5231   bool UsePlt =
5232       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5233       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5234 
5235   const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) {
5236     const TargetMachine &TM = Subtarget.getTargetMachine();
5237     const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering();
5238     MCSymbolXCOFF *S =
5239         cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM));
5240 
5241     MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5242     return DAG.getMCSymbol(S, PtrVT);
5243   };
5244 
5245   if (isFunctionGlobalAddress(Callee)) {
5246     const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5247 
5248     if (Subtarget.isAIXABI()) {
5249       assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5250       return getAIXFuncEntryPointSymbolSDNode(GV);
5251     }
5252     return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5253                                       UsePlt ? PPCII::MO_PLT : 0);
5254   }
5255 
5256   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5257     const char *SymName = S->getSymbol();
5258     if (Subtarget.isAIXABI()) {
5259       // If there exists a user-declared function whose name is the same as the
5260       // ExternalSymbol's, then we pick up the user-declared version.
5261       const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5262       if (const Function *F =
5263               dyn_cast_or_null<Function>(Mod->getNamedValue(SymName)))
5264         return getAIXFuncEntryPointSymbolSDNode(F);
5265 
5266       // On AIX, direct function calls reference the symbol for the function's
5267       // entry point, which is named by prepending a "." before the function's
5268       // C-linkage name. A Qualname is returned here because an external
5269       // function entry point is a csect with XTY_ER property.
5270       const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) {
5271         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5272         MCSectionXCOFF *Sec = Context.getXCOFFSection(
5273             (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(),
5274             XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER));
5275         return Sec->getQualNameSymbol();
5276       };
5277 
5278       SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data();
5279     }
5280     return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5281                                        UsePlt ? PPCII::MO_PLT : 0);
5282   }
5283 
5284   // No transformation needed.
5285   assert(Callee.getNode() && "What no callee?");
5286   return Callee;
5287 }
5288 
5289 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5290   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5291          "Expected a CALLSEQ_STARTSDNode.");
5292 
5293   // The last operand is the chain, except when the node has glue. If the node
5294   // has glue, then the last operand is the glue, and the chain is the second
5295   // last operand.
5296   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5297   if (LastValue.getValueType() != MVT::Glue)
5298     return LastValue;
5299 
5300   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5301 }
5302 
5303 // Creates the node that moves a functions address into the count register
5304 // to prepare for an indirect call instruction.
5305 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5306                                 SDValue &Glue, SDValue &Chain,
5307                                 const SDLoc &dl) {
5308   SDValue MTCTROps[] = {Chain, Callee, Glue};
5309   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5310   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5311                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5312   // The glue is the second value produced.
5313   Glue = Chain.getValue(1);
5314 }
5315 
5316 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5317                                           SDValue &Glue, SDValue &Chain,
5318                                           SDValue CallSeqStart,
5319                                           const CallBase *CB, const SDLoc &dl,
5320                                           bool hasNest,
5321                                           const PPCSubtarget &Subtarget) {
5322   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5323   // entry point, but to the function descriptor (the function entry point
5324   // address is part of the function descriptor though).
5325   // The function descriptor is a three doubleword structure with the
5326   // following fields: function entry point, TOC base address and
5327   // environment pointer.
5328   // Thus for a call through a function pointer, the following actions need
5329   // to be performed:
5330   //   1. Save the TOC of the caller in the TOC save area of its stack
5331   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5332   //   2. Load the address of the function entry point from the function
5333   //      descriptor.
5334   //   3. Load the TOC of the callee from the function descriptor into r2.
5335   //   4. Load the environment pointer from the function descriptor into
5336   //      r11.
5337   //   5. Branch to the function entry point address.
5338   //   6. On return of the callee, the TOC of the caller needs to be
5339   //      restored (this is done in FinishCall()).
5340   //
5341   // The loads are scheduled at the beginning of the call sequence, and the
5342   // register copies are flagged together to ensure that no other
5343   // operations can be scheduled in between. E.g. without flagging the
5344   // copies together, a TOC access in the caller could be scheduled between
5345   // the assignment of the callee TOC and the branch to the callee, which leads
5346   // to incorrect code.
5347 
5348   // Start by loading the function address from the descriptor.
5349   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5350   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5351                       ? (MachineMemOperand::MODereferenceable |
5352                          MachineMemOperand::MOInvariant)
5353                       : MachineMemOperand::MONone;
5354 
5355   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5356 
5357   // Registers used in building the DAG.
5358   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5359   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5360 
5361   // Offsets of descriptor members.
5362   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5363   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5364 
5365   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5366   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5367 
5368   // One load for the functions entry point address.
5369   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5370                                     Alignment, MMOFlags);
5371 
5372   // One for loading the TOC anchor for the module that contains the called
5373   // function.
5374   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5375   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5376   SDValue TOCPtr =
5377       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5378                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5379 
5380   // One for loading the environment pointer.
5381   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5382   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5383   SDValue LoadEnvPtr =
5384       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5385                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5386 
5387 
5388   // Then copy the newly loaded TOC anchor to the TOC pointer.
5389   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5390   Chain = TOCVal.getValue(0);
5391   Glue = TOCVal.getValue(1);
5392 
5393   // If the function call has an explicit 'nest' parameter, it takes the
5394   // place of the environment pointer.
5395   assert((!hasNest || !Subtarget.isAIXABI()) &&
5396          "Nest parameter is not supported on AIX.");
5397   if (!hasNest) {
5398     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5399     Chain = EnvVal.getValue(0);
5400     Glue = EnvVal.getValue(1);
5401   }
5402 
5403   // The rest of the indirect call sequence is the same as the non-descriptor
5404   // DAG.
5405   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5406 }
5407 
5408 static void
5409 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5410                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5411                   SelectionDAG &DAG,
5412                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5413                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5414                   const PPCSubtarget &Subtarget) {
5415   const bool IsPPC64 = Subtarget.isPPC64();
5416   // MVT for a general purpose register.
5417   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5418 
5419   // First operand is always the chain.
5420   Ops.push_back(Chain);
5421 
5422   // If it's a direct call pass the callee as the second operand.
5423   if (!CFlags.IsIndirect)
5424     Ops.push_back(Callee);
5425   else {
5426     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5427 
5428     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5429     // on the stack (this would have been done in `LowerCall_64SVR4` or
5430     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5431     // represents both the indirect branch and a load that restores the TOC
5432     // pointer from the linkage area. The operand for the TOC restore is an add
5433     // of the TOC save offset to the stack pointer. This must be the second
5434     // operand: after the chain input but before any other variadic arguments.
5435     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5436     // saved or used.
5437     if (isTOCSaveRestoreRequired(Subtarget)) {
5438       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5439 
5440       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5441       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5442       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5443       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5444       Ops.push_back(AddTOC);
5445     }
5446 
5447     // Add the register used for the environment pointer.
5448     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5449       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5450                                     RegVT));
5451 
5452 
5453     // Add CTR register as callee so a bctr can be emitted later.
5454     if (CFlags.IsTailCall)
5455       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5456   }
5457 
5458   // If this is a tail call add stack pointer delta.
5459   if (CFlags.IsTailCall)
5460     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5461 
5462   // Add argument registers to the end of the list so that they are known live
5463   // into the call.
5464   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5465     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5466                                   RegsToPass[i].second.getValueType()));
5467 
5468   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5469   // no way to mark dependencies as implicit here.
5470   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5471   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5472        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5473     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5474 
5475   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5476   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5477     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5478 
5479   // Add a register mask operand representing the call-preserved registers.
5480   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5481   const uint32_t *Mask =
5482       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5483   assert(Mask && "Missing call preserved mask for calling convention");
5484   Ops.push_back(DAG.getRegisterMask(Mask));
5485 
5486   // If the glue is valid, it is the last operand.
5487   if (Glue.getNode())
5488     Ops.push_back(Glue);
5489 }
5490 
5491 SDValue PPCTargetLowering::FinishCall(
5492     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5493     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5494     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5495     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5496     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5497 
5498   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5499       Subtarget.isAIXABI())
5500     setUsesTOCBasePtr(DAG);
5501 
5502   unsigned CallOpc =
5503       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5504                     Subtarget, DAG.getTarget());
5505 
5506   if (!CFlags.IsIndirect)
5507     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5508   else if (Subtarget.usesFunctionDescriptors())
5509     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5510                                   dl, CFlags.HasNest, Subtarget);
5511   else
5512     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5513 
5514   // Build the operand list for the call instruction.
5515   SmallVector<SDValue, 8> Ops;
5516   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5517                     SPDiff, Subtarget);
5518 
5519   // Emit tail call.
5520   if (CFlags.IsTailCall) {
5521     // Indirect tail call when using PC Relative calls do not have the same
5522     // constraints.
5523     assert(((Callee.getOpcode() == ISD::Register &&
5524              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5525             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5526             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5527             isa<ConstantSDNode>(Callee) ||
5528             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5529            "Expecting a global address, external symbol, absolute value, "
5530            "register or an indirect tail call when PC Relative calls are "
5531            "used.");
5532     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5533     assert(CallOpc == PPCISD::TC_RETURN &&
5534            "Unexpected call opcode for a tail call.");
5535     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5536     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5537   }
5538 
5539   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5540   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5541   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5542   Glue = Chain.getValue(1);
5543 
5544   // When performing tail call optimization the callee pops its arguments off
5545   // the stack. Account for this here so these bytes can be pushed back on in
5546   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5547   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5548                          getTargetMachine().Options.GuaranteedTailCallOpt)
5549                             ? NumBytes
5550                             : 0;
5551 
5552   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5553                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5554                              Glue, dl);
5555   Glue = Chain.getValue(1);
5556 
5557   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5558                          DAG, InVals);
5559 }
5560 
5561 SDValue
5562 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5563                              SmallVectorImpl<SDValue> &InVals) const {
5564   SelectionDAG &DAG                     = CLI.DAG;
5565   SDLoc &dl                             = CLI.DL;
5566   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5567   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5568   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5569   SDValue Chain                         = CLI.Chain;
5570   SDValue Callee                        = CLI.Callee;
5571   bool &isTailCall                      = CLI.IsTailCall;
5572   CallingConv::ID CallConv              = CLI.CallConv;
5573   bool isVarArg                         = CLI.IsVarArg;
5574   bool isPatchPoint                     = CLI.IsPatchPoint;
5575   const CallBase *CB                    = CLI.CB;
5576 
5577   if (isTailCall) {
5578     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5579       isTailCall = false;
5580     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5581       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5582           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5583     else
5584       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5585                                                      Ins, DAG);
5586     if (isTailCall) {
5587       ++NumTailCalls;
5588       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5589         ++NumSiblingCalls;
5590 
5591       // PC Relative calls no longer guarantee that the callee is a Global
5592       // Address Node. The callee could be an indirect tail call in which
5593       // case the SDValue for the callee could be a load (to load the address
5594       // of a function pointer) or it may be a register copy (to move the
5595       // address of the callee from a function parameter into a virtual
5596       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5597       assert((Subtarget.isUsingPCRelativeCalls() ||
5598               isa<GlobalAddressSDNode>(Callee)) &&
5599              "Callee should be an llvm::Function object.");
5600 
5601       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5602                         << "\nTCO callee: ");
5603       LLVM_DEBUG(Callee.dump());
5604     }
5605   }
5606 
5607   if (!isTailCall && CB && CB->isMustTailCall())
5608     report_fatal_error("failed to perform tail call elimination on a call "
5609                        "site marked musttail");
5610 
5611   // When long calls (i.e. indirect calls) are always used, calls are always
5612   // made via function pointer. If we have a function name, first translate it
5613   // into a pointer.
5614   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5615       !isTailCall)
5616     Callee = LowerGlobalAddress(Callee, DAG);
5617 
5618   CallFlags CFlags(
5619       CallConv, isTailCall, isVarArg, isPatchPoint,
5620       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5621       // hasNest
5622       Subtarget.is64BitELFABI() &&
5623           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5624       CLI.NoMerge);
5625 
5626   if (Subtarget.isAIXABI())
5627     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5628                          InVals, CB);
5629 
5630   assert(Subtarget.isSVR4ABI());
5631   if (Subtarget.isPPC64())
5632     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5633                             InVals, CB);
5634   return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5635                           InVals, CB);
5636 }
5637 
5638 SDValue PPCTargetLowering::LowerCall_32SVR4(
5639     SDValue Chain, SDValue Callee, CallFlags CFlags,
5640     const SmallVectorImpl<ISD::OutputArg> &Outs,
5641     const SmallVectorImpl<SDValue> &OutVals,
5642     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5643     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5644     const CallBase *CB) const {
5645   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5646   // of the 32-bit SVR4 ABI stack frame layout.
5647 
5648   const CallingConv::ID CallConv = CFlags.CallConv;
5649   const bool IsVarArg = CFlags.IsVarArg;
5650   const bool IsTailCall = CFlags.IsTailCall;
5651 
5652   assert((CallConv == CallingConv::C ||
5653           CallConv == CallingConv::Cold ||
5654           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5655 
5656   const Align PtrAlign(4);
5657 
5658   MachineFunction &MF = DAG.getMachineFunction();
5659 
5660   // Mark this function as potentially containing a function that contains a
5661   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5662   // and restoring the callers stack pointer in this functions epilog. This is
5663   // done because by tail calling the called function might overwrite the value
5664   // in this function's (MF) stack pointer stack slot 0(SP).
5665   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5666       CallConv == CallingConv::Fast)
5667     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5668 
5669   // Count how many bytes are to be pushed on the stack, including the linkage
5670   // area, parameter list area and the part of the local variable space which
5671   // contains copies of aggregates which are passed by value.
5672 
5673   // Assign locations to all of the outgoing arguments.
5674   SmallVector<CCValAssign, 16> ArgLocs;
5675   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5676 
5677   // Reserve space for the linkage area on the stack.
5678   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5679                        PtrAlign);
5680   if (useSoftFloat())
5681     CCInfo.PreAnalyzeCallOperands(Outs);
5682 
5683   if (IsVarArg) {
5684     // Handle fixed and variable vector arguments differently.
5685     // Fixed vector arguments go into registers as long as registers are
5686     // available. Variable vector arguments always go into memory.
5687     unsigned NumArgs = Outs.size();
5688 
5689     for (unsigned i = 0; i != NumArgs; ++i) {
5690       MVT ArgVT = Outs[i].VT;
5691       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5692       bool Result;
5693 
5694       if (Outs[i].IsFixed) {
5695         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5696                                CCInfo);
5697       } else {
5698         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5699                                       ArgFlags, CCInfo);
5700       }
5701 
5702       if (Result) {
5703 #ifndef NDEBUG
5704         errs() << "Call operand #" << i << " has unhandled type "
5705              << EVT(ArgVT).getEVTString() << "\n";
5706 #endif
5707         llvm_unreachable(nullptr);
5708       }
5709     }
5710   } else {
5711     // All arguments are treated the same.
5712     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5713   }
5714   CCInfo.clearWasPPCF128();
5715 
5716   // Assign locations to all of the outgoing aggregate by value arguments.
5717   SmallVector<CCValAssign, 16> ByValArgLocs;
5718   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5719 
5720   // Reserve stack space for the allocations in CCInfo.
5721   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5722 
5723   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5724 
5725   // Size of the linkage area, parameter list area and the part of the local
5726   // space variable where copies of aggregates which are passed by value are
5727   // stored.
5728   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5729 
5730   // Calculate by how many bytes the stack has to be adjusted in case of tail
5731   // call optimization.
5732   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5733 
5734   // Adjust the stack pointer for the new arguments...
5735   // These operations are automatically eliminated by the prolog/epilog pass
5736   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5737   SDValue CallSeqStart = Chain;
5738 
5739   // Load the return address and frame pointer so it can be moved somewhere else
5740   // later.
5741   SDValue LROp, FPOp;
5742   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5743 
5744   // Set up a copy of the stack pointer for use loading and storing any
5745   // arguments that may not fit in the registers available for argument
5746   // passing.
5747   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5748 
5749   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5750   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5751   SmallVector<SDValue, 8> MemOpChains;
5752 
5753   bool seenFloatArg = false;
5754   // Walk the register/memloc assignments, inserting copies/loads.
5755   // i - Tracks the index into the list of registers allocated for the call
5756   // RealArgIdx - Tracks the index into the list of actual function arguments
5757   // j - Tracks the index into the list of byval arguments
5758   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5759        i != e;
5760        ++i, ++RealArgIdx) {
5761     CCValAssign &VA = ArgLocs[i];
5762     SDValue Arg = OutVals[RealArgIdx];
5763     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5764 
5765     if (Flags.isByVal()) {
5766       // Argument is an aggregate which is passed by value, thus we need to
5767       // create a copy of it in the local variable space of the current stack
5768       // frame (which is the stack frame of the caller) and pass the address of
5769       // this copy to the callee.
5770       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5771       CCValAssign &ByValVA = ByValArgLocs[j++];
5772       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5773 
5774       // Memory reserved in the local variable space of the callers stack frame.
5775       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5776 
5777       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5778       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5779                            StackPtr, PtrOff);
5780 
5781       // Create a copy of the argument in the local area of the current
5782       // stack frame.
5783       SDValue MemcpyCall =
5784         CreateCopyOfByValArgument(Arg, PtrOff,
5785                                   CallSeqStart.getNode()->getOperand(0),
5786                                   Flags, DAG, dl);
5787 
5788       // This must go outside the CALLSEQ_START..END.
5789       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5790                                                      SDLoc(MemcpyCall));
5791       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5792                              NewCallSeqStart.getNode());
5793       Chain = CallSeqStart = NewCallSeqStart;
5794 
5795       // Pass the address of the aggregate copy on the stack either in a
5796       // physical register or in the parameter list area of the current stack
5797       // frame to the callee.
5798       Arg = PtrOff;
5799     }
5800 
5801     // When useCRBits() is true, there can be i1 arguments.
5802     // It is because getRegisterType(MVT::i1) => MVT::i1,
5803     // and for other integer types getRegisterType() => MVT::i32.
5804     // Extend i1 and ensure callee will get i32.
5805     if (Arg.getValueType() == MVT::i1)
5806       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5807                         dl, MVT::i32, Arg);
5808 
5809     if (VA.isRegLoc()) {
5810       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5811       // Put argument in a physical register.
5812       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5813         bool IsLE = Subtarget.isLittleEndian();
5814         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5815                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5816         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5817         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5818                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5819         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5820                              SVal.getValue(0)));
5821       } else
5822         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5823     } else {
5824       // Put argument in the parameter list area of the current stack frame.
5825       assert(VA.isMemLoc());
5826       unsigned LocMemOffset = VA.getLocMemOffset();
5827 
5828       if (!IsTailCall) {
5829         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5830         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5831                              StackPtr, PtrOff);
5832 
5833         MemOpChains.push_back(
5834             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5835       } else {
5836         // Calculate and remember argument location.
5837         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5838                                  TailCallArguments);
5839       }
5840     }
5841   }
5842 
5843   if (!MemOpChains.empty())
5844     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5845 
5846   // Build a sequence of copy-to-reg nodes chained together with token chain
5847   // and flag operands which copy the outgoing args into the appropriate regs.
5848   SDValue InFlag;
5849   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5850     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5851                              RegsToPass[i].second, InFlag);
5852     InFlag = Chain.getValue(1);
5853   }
5854 
5855   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5856   // registers.
5857   if (IsVarArg) {
5858     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5859     SDValue Ops[] = { Chain, InFlag };
5860 
5861     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5862                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5863 
5864     InFlag = Chain.getValue(1);
5865   }
5866 
5867   if (IsTailCall)
5868     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5869                     TailCallArguments);
5870 
5871   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5872                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5873 }
5874 
5875 // Copy an argument into memory, being careful to do this outside the
5876 // call sequence for the call to which the argument belongs.
5877 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5878     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5879     SelectionDAG &DAG, const SDLoc &dl) const {
5880   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5881                         CallSeqStart.getNode()->getOperand(0),
5882                         Flags, DAG, dl);
5883   // The MEMCPY must go outside the CALLSEQ_START..END.
5884   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5885   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5886                                                  SDLoc(MemcpyCall));
5887   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5888                          NewCallSeqStart.getNode());
5889   return NewCallSeqStart;
5890 }
5891 
5892 SDValue PPCTargetLowering::LowerCall_64SVR4(
5893     SDValue Chain, SDValue Callee, CallFlags CFlags,
5894     const SmallVectorImpl<ISD::OutputArg> &Outs,
5895     const SmallVectorImpl<SDValue> &OutVals,
5896     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5897     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5898     const CallBase *CB) const {
5899   bool isELFv2ABI = Subtarget.isELFv2ABI();
5900   bool isLittleEndian = Subtarget.isLittleEndian();
5901   unsigned NumOps = Outs.size();
5902   bool IsSibCall = false;
5903   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5904 
5905   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5906   unsigned PtrByteSize = 8;
5907 
5908   MachineFunction &MF = DAG.getMachineFunction();
5909 
5910   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5911     IsSibCall = true;
5912 
5913   // Mark this function as potentially containing a function that contains a
5914   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5915   // and restoring the callers stack pointer in this functions epilog. This is
5916   // done because by tail calling the called function might overwrite the value
5917   // in this function's (MF) stack pointer stack slot 0(SP).
5918   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5919     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5920 
5921   assert(!(IsFastCall && CFlags.IsVarArg) &&
5922          "fastcc not supported on varargs functions");
5923 
5924   // Count how many bytes are to be pushed on the stack, including the linkage
5925   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5926   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5927   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5928   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5929   unsigned NumBytes = LinkageSize;
5930   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5931 
5932   static const MCPhysReg GPR[] = {
5933     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5934     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5935   };
5936   static const MCPhysReg VR[] = {
5937     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5938     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5939   };
5940 
5941   const unsigned NumGPRs = array_lengthof(GPR);
5942   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5943   const unsigned NumVRs  = array_lengthof(VR);
5944 
5945   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5946   // can be passed to the callee in registers.
5947   // For the fast calling convention, there is another check below.
5948   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5949   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
5950   if (!HasParameterArea) {
5951     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5952     unsigned AvailableFPRs = NumFPRs;
5953     unsigned AvailableVRs = NumVRs;
5954     unsigned NumBytesTmp = NumBytes;
5955     for (unsigned i = 0; i != NumOps; ++i) {
5956       if (Outs[i].Flags.isNest()) continue;
5957       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5958                                  PtrByteSize, LinkageSize, ParamAreaSize,
5959                                  NumBytesTmp, AvailableFPRs, AvailableVRs))
5960         HasParameterArea = true;
5961     }
5962   }
5963 
5964   // When using the fast calling convention, we don't provide backing for
5965   // arguments that will be in registers.
5966   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5967 
5968   // Avoid allocating parameter area for fastcc functions if all the arguments
5969   // can be passed in the registers.
5970   if (IsFastCall)
5971     HasParameterArea = false;
5972 
5973   // Add up all the space actually used.
5974   for (unsigned i = 0; i != NumOps; ++i) {
5975     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5976     EVT ArgVT = Outs[i].VT;
5977     EVT OrigVT = Outs[i].ArgVT;
5978 
5979     if (Flags.isNest())
5980       continue;
5981 
5982     if (IsFastCall) {
5983       if (Flags.isByVal()) {
5984         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5985         if (NumGPRsUsed > NumGPRs)
5986           HasParameterArea = true;
5987       } else {
5988         switch (ArgVT.getSimpleVT().SimpleTy) {
5989         default: llvm_unreachable("Unexpected ValueType for argument!");
5990         case MVT::i1:
5991         case MVT::i32:
5992         case MVT::i64:
5993           if (++NumGPRsUsed <= NumGPRs)
5994             continue;
5995           break;
5996         case MVT::v4i32:
5997         case MVT::v8i16:
5998         case MVT::v16i8:
5999         case MVT::v2f64:
6000         case MVT::v2i64:
6001         case MVT::v1i128:
6002         case MVT::f128:
6003           if (++NumVRsUsed <= NumVRs)
6004             continue;
6005           break;
6006         case MVT::v4f32:
6007           if (++NumVRsUsed <= NumVRs)
6008             continue;
6009           break;
6010         case MVT::f32:
6011         case MVT::f64:
6012           if (++NumFPRsUsed <= NumFPRs)
6013             continue;
6014           break;
6015         }
6016         HasParameterArea = true;
6017       }
6018     }
6019 
6020     /* Respect alignment of argument on the stack.  */
6021     auto Alignement =
6022         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6023     NumBytes = alignTo(NumBytes, Alignement);
6024 
6025     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6026     if (Flags.isInConsecutiveRegsLast())
6027       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6028   }
6029 
6030   unsigned NumBytesActuallyUsed = NumBytes;
6031 
6032   // In the old ELFv1 ABI,
6033   // the prolog code of the callee may store up to 8 GPR argument registers to
6034   // the stack, allowing va_start to index over them in memory if its varargs.
6035   // Because we cannot tell if this is needed on the caller side, we have to
6036   // conservatively assume that it is needed.  As such, make sure we have at
6037   // least enough stack space for the caller to store the 8 GPRs.
6038   // In the ELFv2 ABI, we allocate the parameter area iff a callee
6039   // really requires memory operands, e.g. a vararg function.
6040   if (HasParameterArea)
6041     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6042   else
6043     NumBytes = LinkageSize;
6044 
6045   // Tail call needs the stack to be aligned.
6046   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6047     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6048 
6049   int SPDiff = 0;
6050 
6051   // Calculate by how many bytes the stack has to be adjusted in case of tail
6052   // call optimization.
6053   if (!IsSibCall)
6054     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6055 
6056   // To protect arguments on the stack from being clobbered in a tail call,
6057   // force all the loads to happen before doing any other lowering.
6058   if (CFlags.IsTailCall)
6059     Chain = DAG.getStackArgumentTokenFactor(Chain);
6060 
6061   // Adjust the stack pointer for the new arguments...
6062   // These operations are automatically eliminated by the prolog/epilog pass
6063   if (!IsSibCall)
6064     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6065   SDValue CallSeqStart = Chain;
6066 
6067   // Load the return address and frame pointer so it can be move somewhere else
6068   // later.
6069   SDValue LROp, FPOp;
6070   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6071 
6072   // Set up a copy of the stack pointer for use loading and storing any
6073   // arguments that may not fit in the registers available for argument
6074   // passing.
6075   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6076 
6077   // Figure out which arguments are going to go in registers, and which in
6078   // memory.  Also, if this is a vararg function, floating point operations
6079   // must be stored to our stack, and loaded into integer regs as well, if
6080   // any integer regs are available for argument passing.
6081   unsigned ArgOffset = LinkageSize;
6082 
6083   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6084   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6085 
6086   SmallVector<SDValue, 8> MemOpChains;
6087   for (unsigned i = 0; i != NumOps; ++i) {
6088     SDValue Arg = OutVals[i];
6089     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6090     EVT ArgVT = Outs[i].VT;
6091     EVT OrigVT = Outs[i].ArgVT;
6092 
6093     // PtrOff will be used to store the current argument to the stack if a
6094     // register cannot be found for it.
6095     SDValue PtrOff;
6096 
6097     // We re-align the argument offset for each argument, except when using the
6098     // fast calling convention, when we need to make sure we do that only when
6099     // we'll actually use a stack slot.
6100     auto ComputePtrOff = [&]() {
6101       /* Respect alignment of argument on the stack.  */
6102       auto Alignment =
6103           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6104       ArgOffset = alignTo(ArgOffset, Alignment);
6105 
6106       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6107 
6108       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6109     };
6110 
6111     if (!IsFastCall) {
6112       ComputePtrOff();
6113 
6114       /* Compute GPR index associated with argument offset.  */
6115       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6116       GPR_idx = std::min(GPR_idx, NumGPRs);
6117     }
6118 
6119     // Promote integers to 64-bit values.
6120     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6121       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6122       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6123       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6124     }
6125 
6126     // FIXME memcpy is used way more than necessary.  Correctness first.
6127     // Note: "by value" is code for passing a structure by value, not
6128     // basic types.
6129     if (Flags.isByVal()) {
6130       // Note: Size includes alignment padding, so
6131       //   struct x { short a; char b; }
6132       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6133       // These are the proper values we need for right-justifying the
6134       // aggregate in a parameter register.
6135       unsigned Size = Flags.getByValSize();
6136 
6137       // An empty aggregate parameter takes up no storage and no
6138       // registers.
6139       if (Size == 0)
6140         continue;
6141 
6142       if (IsFastCall)
6143         ComputePtrOff();
6144 
6145       // All aggregates smaller than 8 bytes must be passed right-justified.
6146       if (Size==1 || Size==2 || Size==4) {
6147         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6148         if (GPR_idx != NumGPRs) {
6149           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6150                                         MachinePointerInfo(), VT);
6151           MemOpChains.push_back(Load.getValue(1));
6152           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6153 
6154           ArgOffset += PtrByteSize;
6155           continue;
6156         }
6157       }
6158 
6159       if (GPR_idx == NumGPRs && Size < 8) {
6160         SDValue AddPtr = PtrOff;
6161         if (!isLittleEndian) {
6162           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6163                                           PtrOff.getValueType());
6164           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6165         }
6166         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6167                                                           CallSeqStart,
6168                                                           Flags, DAG, dl);
6169         ArgOffset += PtrByteSize;
6170         continue;
6171       }
6172       // Copy entire object into memory.  There are cases where gcc-generated
6173       // code assumes it is there, even if it could be put entirely into
6174       // registers.  (This is not what the doc says.)
6175 
6176       // FIXME: The above statement is likely due to a misunderstanding of the
6177       // documents.  All arguments must be copied into the parameter area BY
6178       // THE CALLEE in the event that the callee takes the address of any
6179       // formal argument.  That has not yet been implemented.  However, it is
6180       // reasonable to use the stack area as a staging area for the register
6181       // load.
6182 
6183       // Skip this for small aggregates, as we will use the same slot for a
6184       // right-justified copy, below.
6185       if (Size >= 8)
6186         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6187                                                           CallSeqStart,
6188                                                           Flags, DAG, dl);
6189 
6190       // When a register is available, pass a small aggregate right-justified.
6191       if (Size < 8 && GPR_idx != NumGPRs) {
6192         // The easiest way to get this right-justified in a register
6193         // is to copy the structure into the rightmost portion of a
6194         // local variable slot, then load the whole slot into the
6195         // register.
6196         // FIXME: The memcpy seems to produce pretty awful code for
6197         // small aggregates, particularly for packed ones.
6198         // FIXME: It would be preferable to use the slot in the
6199         // parameter save area instead of a new local variable.
6200         SDValue AddPtr = PtrOff;
6201         if (!isLittleEndian) {
6202           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6203           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6204         }
6205         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6206                                                           CallSeqStart,
6207                                                           Flags, DAG, dl);
6208 
6209         // Load the slot into the register.
6210         SDValue Load =
6211             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6212         MemOpChains.push_back(Load.getValue(1));
6213         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6214 
6215         // Done with this argument.
6216         ArgOffset += PtrByteSize;
6217         continue;
6218       }
6219 
6220       // For aggregates larger than PtrByteSize, copy the pieces of the
6221       // object that fit into registers from the parameter save area.
6222       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6223         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6224         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6225         if (GPR_idx != NumGPRs) {
6226           SDValue Load =
6227               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6228           MemOpChains.push_back(Load.getValue(1));
6229           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6230           ArgOffset += PtrByteSize;
6231         } else {
6232           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6233           break;
6234         }
6235       }
6236       continue;
6237     }
6238 
6239     switch (Arg.getSimpleValueType().SimpleTy) {
6240     default: llvm_unreachable("Unexpected ValueType for argument!");
6241     case MVT::i1:
6242     case MVT::i32:
6243     case MVT::i64:
6244       if (Flags.isNest()) {
6245         // The 'nest' parameter, if any, is passed in R11.
6246         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6247         break;
6248       }
6249 
6250       // These can be scalar arguments or elements of an integer array type
6251       // passed directly.  Clang may use those instead of "byval" aggregate
6252       // types to avoid forcing arguments to memory unnecessarily.
6253       if (GPR_idx != NumGPRs) {
6254         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6255       } else {
6256         if (IsFastCall)
6257           ComputePtrOff();
6258 
6259         assert(HasParameterArea &&
6260                "Parameter area must exist to pass an argument in memory.");
6261         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6262                          true, CFlags.IsTailCall, false, MemOpChains,
6263                          TailCallArguments, dl);
6264         if (IsFastCall)
6265           ArgOffset += PtrByteSize;
6266       }
6267       if (!IsFastCall)
6268         ArgOffset += PtrByteSize;
6269       break;
6270     case MVT::f32:
6271     case MVT::f64: {
6272       // These can be scalar arguments or elements of a float array type
6273       // passed directly.  The latter are used to implement ELFv2 homogenous
6274       // float aggregates.
6275 
6276       // Named arguments go into FPRs first, and once they overflow, the
6277       // remaining arguments go into GPRs and then the parameter save area.
6278       // Unnamed arguments for vararg functions always go to GPRs and
6279       // then the parameter save area.  For now, put all arguments to vararg
6280       // routines always in both locations (FPR *and* GPR or stack slot).
6281       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6282       bool NeededLoad = false;
6283 
6284       // First load the argument into the next available FPR.
6285       if (FPR_idx != NumFPRs)
6286         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6287 
6288       // Next, load the argument into GPR or stack slot if needed.
6289       if (!NeedGPROrStack)
6290         ;
6291       else if (GPR_idx != NumGPRs && !IsFastCall) {
6292         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6293         // once we support fp <-> gpr moves.
6294 
6295         // In the non-vararg case, this can only ever happen in the
6296         // presence of f32 array types, since otherwise we never run
6297         // out of FPRs before running out of GPRs.
6298         SDValue ArgVal;
6299 
6300         // Double values are always passed in a single GPR.
6301         if (Arg.getValueType() != MVT::f32) {
6302           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6303 
6304         // Non-array float values are extended and passed in a GPR.
6305         } else if (!Flags.isInConsecutiveRegs()) {
6306           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6307           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6308 
6309         // If we have an array of floats, we collect every odd element
6310         // together with its predecessor into one GPR.
6311         } else if (ArgOffset % PtrByteSize != 0) {
6312           SDValue Lo, Hi;
6313           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6314           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6315           if (!isLittleEndian)
6316             std::swap(Lo, Hi);
6317           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6318 
6319         // The final element, if even, goes into the first half of a GPR.
6320         } else if (Flags.isInConsecutiveRegsLast()) {
6321           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6322           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6323           if (!isLittleEndian)
6324             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6325                                  DAG.getConstant(32, dl, MVT::i32));
6326 
6327         // Non-final even elements are skipped; they will be handled
6328         // together the with subsequent argument on the next go-around.
6329         } else
6330           ArgVal = SDValue();
6331 
6332         if (ArgVal.getNode())
6333           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6334       } else {
6335         if (IsFastCall)
6336           ComputePtrOff();
6337 
6338         // Single-precision floating-point values are mapped to the
6339         // second (rightmost) word of the stack doubleword.
6340         if (Arg.getValueType() == MVT::f32 &&
6341             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6342           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6343           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6344         }
6345 
6346         assert(HasParameterArea &&
6347                "Parameter area must exist to pass an argument in memory.");
6348         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6349                          true, CFlags.IsTailCall, false, MemOpChains,
6350                          TailCallArguments, dl);
6351 
6352         NeededLoad = true;
6353       }
6354       // When passing an array of floats, the array occupies consecutive
6355       // space in the argument area; only round up to the next doubleword
6356       // at the end of the array.  Otherwise, each float takes 8 bytes.
6357       if (!IsFastCall || NeededLoad) {
6358         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6359                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6360         if (Flags.isInConsecutiveRegsLast())
6361           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6362       }
6363       break;
6364     }
6365     case MVT::v4f32:
6366     case MVT::v4i32:
6367     case MVT::v8i16:
6368     case MVT::v16i8:
6369     case MVT::v2f64:
6370     case MVT::v2i64:
6371     case MVT::v1i128:
6372     case MVT::f128:
6373       // These can be scalar arguments or elements of a vector array type
6374       // passed directly.  The latter are used to implement ELFv2 homogenous
6375       // vector aggregates.
6376 
6377       // For a varargs call, named arguments go into VRs or on the stack as
6378       // usual; unnamed arguments always go to the stack or the corresponding
6379       // GPRs when within range.  For now, we always put the value in both
6380       // locations (or even all three).
6381       if (CFlags.IsVarArg) {
6382         assert(HasParameterArea &&
6383                "Parameter area must exist if we have a varargs call.");
6384         // We could elide this store in the case where the object fits
6385         // entirely in R registers.  Maybe later.
6386         SDValue Store =
6387             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6388         MemOpChains.push_back(Store);
6389         if (VR_idx != NumVRs) {
6390           SDValue Load =
6391               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6392           MemOpChains.push_back(Load.getValue(1));
6393           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6394         }
6395         ArgOffset += 16;
6396         for (unsigned i=0; i<16; i+=PtrByteSize) {
6397           if (GPR_idx == NumGPRs)
6398             break;
6399           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6400                                    DAG.getConstant(i, dl, PtrVT));
6401           SDValue Load =
6402               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6403           MemOpChains.push_back(Load.getValue(1));
6404           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6405         }
6406         break;
6407       }
6408 
6409       // Non-varargs Altivec params go into VRs or on the stack.
6410       if (VR_idx != NumVRs) {
6411         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6412       } else {
6413         if (IsFastCall)
6414           ComputePtrOff();
6415 
6416         assert(HasParameterArea &&
6417                "Parameter area must exist to pass an argument in memory.");
6418         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6419                          true, CFlags.IsTailCall, true, MemOpChains,
6420                          TailCallArguments, dl);
6421         if (IsFastCall)
6422           ArgOffset += 16;
6423       }
6424 
6425       if (!IsFastCall)
6426         ArgOffset += 16;
6427       break;
6428     }
6429   }
6430 
6431   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6432          "mismatch in size of parameter area");
6433   (void)NumBytesActuallyUsed;
6434 
6435   if (!MemOpChains.empty())
6436     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6437 
6438   // Check if this is an indirect call (MTCTR/BCTRL).
6439   // See prepareDescriptorIndirectCall and buildCallOperands for more
6440   // information about calls through function pointers in the 64-bit SVR4 ABI.
6441   if (CFlags.IsIndirect) {
6442     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6443     // caller in the TOC save area.
6444     if (isTOCSaveRestoreRequired(Subtarget)) {
6445       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6446       // Load r2 into a virtual register and store it to the TOC save area.
6447       setUsesTOCBasePtr(DAG);
6448       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6449       // TOC save area offset.
6450       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6451       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6452       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6453       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6454                            MachinePointerInfo::getStack(
6455                                DAG.getMachineFunction(), TOCSaveOffset));
6456     }
6457     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6458     // This does not mean the MTCTR instruction must use R12; it's easier
6459     // to model this as an extra parameter, so do that.
6460     if (isELFv2ABI && !CFlags.IsPatchPoint)
6461       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6462   }
6463 
6464   // Build a sequence of copy-to-reg nodes chained together with token chain
6465   // and flag operands which copy the outgoing args into the appropriate regs.
6466   SDValue InFlag;
6467   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6468     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6469                              RegsToPass[i].second, InFlag);
6470     InFlag = Chain.getValue(1);
6471   }
6472 
6473   if (CFlags.IsTailCall && !IsSibCall)
6474     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6475                     TailCallArguments);
6476 
6477   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6478                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6479 }
6480 
6481 // Returns true when the shadow of a general purpose argument register
6482 // in the parameter save area is aligned to at least 'RequiredAlign'.
6483 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) {
6484   assert(RequiredAlign.value() <= 16 &&
6485          "Required alignment greater than stack alignment.");
6486   switch (Reg) {
6487   default:
6488     report_fatal_error("called on invalid register.");
6489   case PPC::R5:
6490   case PPC::R9:
6491   case PPC::X3:
6492   case PPC::X5:
6493   case PPC::X7:
6494   case PPC::X9:
6495     // These registers are 16 byte aligned which is the most strict aligment
6496     // we can support.
6497     return true;
6498   case PPC::R3:
6499   case PPC::R7:
6500   case PPC::X4:
6501   case PPC::X6:
6502   case PPC::X8:
6503   case PPC::X10:
6504     // The shadow of these registers in the PSA is 8 byte aligned.
6505     return RequiredAlign <= 8;
6506   case PPC::R4:
6507   case PPC::R6:
6508   case PPC::R8:
6509   case PPC::R10:
6510     return RequiredAlign <= 4;
6511   }
6512 }
6513 
6514 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6515                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6516                    CCState &S) {
6517   AIXCCState &State = static_cast<AIXCCState &>(S);
6518   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6519       State.getMachineFunction().getSubtarget());
6520   const bool IsPPC64 = Subtarget.isPPC64();
6521   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
6522   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6523 
6524   if (ValVT == MVT::f128)
6525     report_fatal_error("f128 is unimplemented on AIX.");
6526 
6527   if (ArgFlags.isNest())
6528     report_fatal_error("Nest arguments are unimplemented.");
6529 
6530   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6531                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6532                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6533   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6534                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6535                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6536 
6537   static const MCPhysReg VR[] = {// Vector registers.
6538                                  PPC::V2,  PPC::V3,  PPC::V4,  PPC::V5,
6539                                  PPC::V6,  PPC::V7,  PPC::V8,  PPC::V9,
6540                                  PPC::V10, PPC::V11, PPC::V12, PPC::V13};
6541 
6542   if (ArgFlags.isByVal()) {
6543     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
6544       report_fatal_error("Pass-by-value arguments with alignment greater than "
6545                          "register width are not supported.");
6546 
6547     const unsigned ByValSize = ArgFlags.getByValSize();
6548 
6549     // An empty aggregate parameter takes up no storage and no registers,
6550     // but needs a MemLoc for a stack slot for the formal arguments side.
6551     if (ByValSize == 0) {
6552       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6553                                        State.getNextStackOffset(), RegVT,
6554                                        LocInfo));
6555       return false;
6556     }
6557 
6558     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
6559     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
6560     for (const unsigned E = Offset + StackSize; Offset < E;
6561          Offset += PtrAlign.value()) {
6562       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6563         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6564       else {
6565         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6566                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
6567                                          LocInfo));
6568         break;
6569       }
6570     }
6571     return false;
6572   }
6573 
6574   // Arguments always reserve parameter save area.
6575   switch (ValVT.SimpleTy) {
6576   default:
6577     report_fatal_error("Unhandled value type for argument.");
6578   case MVT::i64:
6579     // i64 arguments should have been split to i32 for PPC32.
6580     assert(IsPPC64 && "PPC32 should have split i64 values.");
6581     LLVM_FALLTHROUGH;
6582   case MVT::i1:
6583   case MVT::i32: {
6584     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
6585     // AIX integer arguments are always passed in register width.
6586     if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits())
6587       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6588                                   : CCValAssign::LocInfo::ZExt;
6589     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6590       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6591     else
6592       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
6593 
6594     return false;
6595   }
6596   case MVT::f32:
6597   case MVT::f64: {
6598     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6599     const unsigned StoreSize = LocVT.getStoreSize();
6600     // Floats are always 4-byte aligned in the PSA on AIX.
6601     // This includes f64 in 64-bit mode for ABI compatibility.
6602     const unsigned Offset =
6603         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
6604     unsigned FReg = State.AllocateReg(FPR);
6605     if (FReg)
6606       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
6607 
6608     // Reserve and initialize GPRs or initialize the PSA as required.
6609     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
6610       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6611         assert(FReg && "An FPR should be available when a GPR is reserved.");
6612         if (State.isVarArg()) {
6613           // Successfully reserved GPRs are only initialized for vararg calls.
6614           // Custom handling is required for:
6615           //   f64 in PPC32 needs to be split into 2 GPRs.
6616           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6617           State.addLoc(
6618               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6619         }
6620       } else {
6621         // If there are insufficient GPRs, the PSA needs to be initialized.
6622         // Initialization occurs even if an FPR was initialized for
6623         // compatibility with the AIX XL compiler. The full memory for the
6624         // argument will be initialized even if a prior word is saved in GPR.
6625         // A custom memLoc is used when the argument also passes in FPR so
6626         // that the callee handling can skip over it easily.
6627         State.addLoc(
6628             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
6629                                              LocInfo)
6630                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6631         break;
6632       }
6633     }
6634 
6635     return false;
6636   }
6637   case MVT::v4f32:
6638   case MVT::v4i32:
6639   case MVT::v8i16:
6640   case MVT::v16i8:
6641   case MVT::v2i64:
6642   case MVT::v2f64:
6643   case MVT::v1i128: {
6644     const unsigned VecSize = 16;
6645     const Align VecAlign(VecSize);
6646 
6647     if (!State.isVarArg()) {
6648       // If there are vector registers remaining we don't consume any stack
6649       // space.
6650       if (unsigned VReg = State.AllocateReg(VR)) {
6651         State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6652         return false;
6653       }
6654       // Vectors passed on the stack do not shadow GPRs or FPRs even though they
6655       // might be allocated in the portion of the PSA that is shadowed by the
6656       // GPRs.
6657       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6658       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6659       return false;
6660     }
6661 
6662     const unsigned PtrSize = IsPPC64 ? 8 : 4;
6663     ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32;
6664 
6665     unsigned NextRegIndex = State.getFirstUnallocated(GPRs);
6666     // Burn any underaligned registers and their shadowed stack space until
6667     // we reach the required alignment.
6668     while (NextRegIndex != GPRs.size() &&
6669            !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) {
6670       // Shadow allocate register and its stack shadow.
6671       unsigned Reg = State.AllocateReg(GPRs);
6672       State.AllocateStack(PtrSize, PtrAlign);
6673       assert(Reg && "Allocating register unexpectedly failed.");
6674       (void)Reg;
6675       NextRegIndex = State.getFirstUnallocated(GPRs);
6676     }
6677 
6678     // Vectors that are passed as fixed arguments are handled differently.
6679     // They are passed in VRs if any are available (unlike arguments passed
6680     // through ellipses) and shadow GPRs (unlike arguments to non-vaarg
6681     // functions)
6682     if (State.isFixed(ValNo)) {
6683       if (unsigned VReg = State.AllocateReg(VR)) {
6684         State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6685         // Shadow allocate GPRs and stack space even though we pass in a VR.
6686         for (unsigned I = 0; I != VecSize; I += PtrSize)
6687           State.AllocateReg(GPRs);
6688         State.AllocateStack(VecSize, VecAlign);
6689         return false;
6690       }
6691       // No vector registers remain so pass on the stack.
6692       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6693       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6694       return false;
6695     }
6696 
6697     // If all GPRS are consumed then we pass the argument fully on the stack.
6698     if (NextRegIndex == GPRs.size()) {
6699       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6700       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6701       return false;
6702     }
6703 
6704     // Corner case for 32-bit codegen. We have 2 registers to pass the first
6705     // half of the argument, and then need to pass the remaining half on the
6706     // stack.
6707     if (GPRs[NextRegIndex] == PPC::R9) {
6708       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6709       State.addLoc(
6710           CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6711 
6712       const unsigned FirstReg = State.AllocateReg(PPC::R9);
6713       const unsigned SecondReg = State.AllocateReg(PPC::R10);
6714       assert(FirstReg && SecondReg &&
6715              "Allocating R9 or R10 unexpectedly failed.");
6716       State.addLoc(
6717           CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo));
6718       State.addLoc(
6719           CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo));
6720       return false;
6721     }
6722 
6723     // We have enough GPRs to fully pass the vector argument, and we have
6724     // already consumed any underaligned registers. Start with the custom
6725     // MemLoc and then the custom RegLocs.
6726     const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6727     State.addLoc(
6728         CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6729     for (unsigned I = 0; I != VecSize; I += PtrSize) {
6730       const unsigned Reg = State.AllocateReg(GPRs);
6731       assert(Reg && "Failed to allocated register for vararg vector argument");
6732       State.addLoc(
6733           CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6734     }
6735     return false;
6736   }
6737   }
6738   return true;
6739 }
6740 
6741 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6742                                                     bool IsPPC64) {
6743   assert((IsPPC64 || SVT != MVT::i64) &&
6744          "i64 should have been split for 32-bit codegen.");
6745 
6746   switch (SVT) {
6747   default:
6748     report_fatal_error("Unexpected value type for formal argument");
6749   case MVT::i1:
6750   case MVT::i32:
6751   case MVT::i64:
6752     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6753   case MVT::f32:
6754     return &PPC::F4RCRegClass;
6755   case MVT::f64:
6756     return &PPC::F8RCRegClass;
6757   case MVT::v4f32:
6758   case MVT::v4i32:
6759   case MVT::v8i16:
6760   case MVT::v16i8:
6761   case MVT::v2i64:
6762   case MVT::v2f64:
6763   case MVT::v1i128:
6764     return &PPC::VRRCRegClass;
6765   }
6766 }
6767 
6768 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6769                                         SelectionDAG &DAG, SDValue ArgValue,
6770                                         MVT LocVT, const SDLoc &dl) {
6771   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
6772   assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits());
6773 
6774   if (Flags.isSExt())
6775     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
6776                            DAG.getValueType(ValVT));
6777   else if (Flags.isZExt())
6778     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
6779                            DAG.getValueType(ValVT));
6780 
6781   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
6782 }
6783 
6784 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
6785   const unsigned LASize = FL->getLinkageSize();
6786 
6787   if (PPC::GPRCRegClass.contains(Reg)) {
6788     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
6789            "Reg must be a valid argument register!");
6790     return LASize + 4 * (Reg - PPC::R3);
6791   }
6792 
6793   if (PPC::G8RCRegClass.contains(Reg)) {
6794     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
6795            "Reg must be a valid argument register!");
6796     return LASize + 8 * (Reg - PPC::X3);
6797   }
6798 
6799   llvm_unreachable("Only general purpose registers expected.");
6800 }
6801 
6802 //   AIX ABI Stack Frame Layout:
6803 //
6804 //   Low Memory +--------------------------------------------+
6805 //   SP   +---> | Back chain                                 | ---+
6806 //        |     +--------------------------------------------+    |
6807 //        |     | Saved Condition Register                   |    |
6808 //        |     +--------------------------------------------+    |
6809 //        |     | Saved Linkage Register                     |    |
6810 //        |     +--------------------------------------------+    | Linkage Area
6811 //        |     | Reserved for compilers                     |    |
6812 //        |     +--------------------------------------------+    |
6813 //        |     | Reserved for binders                       |    |
6814 //        |     +--------------------------------------------+    |
6815 //        |     | Saved TOC pointer                          | ---+
6816 //        |     +--------------------------------------------+
6817 //        |     | Parameter save area                        |
6818 //        |     +--------------------------------------------+
6819 //        |     | Alloca space                               |
6820 //        |     +--------------------------------------------+
6821 //        |     | Local variable space                       |
6822 //        |     +--------------------------------------------+
6823 //        |     | Float/int conversion temporary             |
6824 //        |     +--------------------------------------------+
6825 //        |     | Save area for AltiVec registers            |
6826 //        |     +--------------------------------------------+
6827 //        |     | AltiVec alignment padding                  |
6828 //        |     +--------------------------------------------+
6829 //        |     | Save area for VRSAVE register              |
6830 //        |     +--------------------------------------------+
6831 //        |     | Save area for General Purpose registers    |
6832 //        |     +--------------------------------------------+
6833 //        |     | Save area for Floating Point registers     |
6834 //        |     +--------------------------------------------+
6835 //        +---- | Back chain                                 |
6836 // High Memory  +--------------------------------------------+
6837 //
6838 //  Specifications:
6839 //  AIX 7.2 Assembler Language Reference
6840 //  Subroutine linkage convention
6841 
6842 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
6843     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
6844     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6845     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
6846 
6847   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
6848           CallConv == CallingConv::Fast) &&
6849          "Unexpected calling convention!");
6850 
6851   if (getTargetMachine().Options.GuaranteedTailCallOpt)
6852     report_fatal_error("Tail call support is unimplemented on AIX.");
6853 
6854   if (useSoftFloat())
6855     report_fatal_error("Soft float support is unimplemented on AIX.");
6856 
6857   const PPCSubtarget &Subtarget =
6858       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
6859 
6860   const bool IsPPC64 = Subtarget.isPPC64();
6861   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6862 
6863   // Assign locations to all of the incoming arguments.
6864   SmallVector<CCValAssign, 16> ArgLocs;
6865   MachineFunction &MF = DAG.getMachineFunction();
6866   MachineFrameInfo &MFI = MF.getFrameInfo();
6867   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
6868   AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
6869 
6870   const EVT PtrVT = getPointerTy(MF.getDataLayout());
6871   // Reserve space for the linkage area on the stack.
6872   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6873   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
6874   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
6875 
6876   SmallVector<SDValue, 8> MemOps;
6877 
6878   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
6879     CCValAssign &VA = ArgLocs[I++];
6880     MVT LocVT = VA.getLocVT();
6881     MVT ValVT = VA.getValVT();
6882     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
6883     // For compatibility with the AIX XL compiler, the float args in the
6884     // parameter save area are initialized even if the argument is available
6885     // in register.  The caller is required to initialize both the register
6886     // and memory, however, the callee can choose to expect it in either.
6887     // The memloc is dismissed here because the argument is retrieved from
6888     // the register.
6889     if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint())
6890       continue;
6891 
6892     auto HandleMemLoc = [&]() {
6893       const unsigned LocSize = LocVT.getStoreSize();
6894       const unsigned ValSize = ValVT.getStoreSize();
6895       assert((ValSize <= LocSize) &&
6896              "Object size is larger than size of MemLoc");
6897       int CurArgOffset = VA.getLocMemOffset();
6898       // Objects are right-justified because AIX is big-endian.
6899       if (LocSize > ValSize)
6900         CurArgOffset += LocSize - ValSize;
6901       // Potential tail calls could cause overwriting of argument stack slots.
6902       const bool IsImmutable =
6903           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
6904             (CallConv == CallingConv::Fast));
6905       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
6906       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6907       SDValue ArgValue =
6908           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
6909       InVals.push_back(ArgValue);
6910     };
6911 
6912     // Vector arguments to VaArg functions are passed both on the stack, and
6913     // in any available GPRs. Load the value from the stack and add the GPRs
6914     // as live ins.
6915     if (VA.isMemLoc() && VA.needsCustom()) {
6916       assert(ValVT.isVector() && "Unexpected Custom MemLoc type.");
6917       assert(isVarArg && "Only use custom memloc for vararg.");
6918       // ValNo of the custom MemLoc, so we can compare it to the ValNo of the
6919       // matching custom RegLocs.
6920       const unsigned OriginalValNo = VA.getValNo();
6921       (void)OriginalValNo;
6922 
6923       auto HandleCustomVecRegLoc = [&]() {
6924         assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
6925                "Missing custom RegLoc.");
6926         VA = ArgLocs[I++];
6927         assert(VA.getValVT().isVector() &&
6928                "Unexpected Val type for custom RegLoc.");
6929         assert(VA.getValNo() == OriginalValNo &&
6930                "ValNo mismatch between custom MemLoc and RegLoc.");
6931         MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy;
6932         MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
6933       };
6934 
6935       HandleMemLoc();
6936       // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
6937       // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
6938       // R10.
6939       HandleCustomVecRegLoc();
6940       HandleCustomVecRegLoc();
6941 
6942       // If we are targeting 32-bit, there might be 2 extra custom RegLocs if
6943       // we passed the vector in R5, R6, R7 and R8.
6944       if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) {
6945         assert(!IsPPC64 &&
6946                "Only 2 custom RegLocs expected for 64-bit codegen.");
6947         HandleCustomVecRegLoc();
6948         HandleCustomVecRegLoc();
6949       }
6950 
6951       continue;
6952     }
6953 
6954     if (VA.isRegLoc()) {
6955       if (VA.getValVT().isScalarInteger())
6956         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
6957       else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) {
6958         switch (VA.getValVT().SimpleTy) {
6959         default:
6960           report_fatal_error("Unhandled value type for argument.");
6961         case MVT::f32:
6962           FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint);
6963           break;
6964         case MVT::f64:
6965           FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint);
6966           break;
6967         }
6968       } else if (VA.getValVT().isVector()) {
6969         switch (VA.getValVT().SimpleTy) {
6970         default:
6971           report_fatal_error("Unhandled value type for argument.");
6972         case MVT::v16i8:
6973           FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar);
6974           break;
6975         case MVT::v8i16:
6976           FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort);
6977           break;
6978         case MVT::v4i32:
6979         case MVT::v2i64:
6980         case MVT::v1i128:
6981           FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt);
6982           break;
6983         case MVT::v4f32:
6984         case MVT::v2f64:
6985           FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat);
6986           break;
6987         }
6988       }
6989     }
6990 
6991     if (Flags.isByVal() && VA.isMemLoc()) {
6992       const unsigned Size =
6993           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
6994                   PtrByteSize);
6995       const int FI = MF.getFrameInfo().CreateFixedObject(
6996           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
6997           /* IsAliased */ true);
6998       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6999       InVals.push_back(FIN);
7000 
7001       continue;
7002     }
7003 
7004     if (Flags.isByVal()) {
7005       assert(VA.isRegLoc() && "MemLocs should already be handled.");
7006 
7007       const MCPhysReg ArgReg = VA.getLocReg();
7008       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
7009 
7010       if (Flags.getNonZeroByValAlign() > PtrByteSize)
7011         report_fatal_error("Over aligned byvals not supported yet.");
7012 
7013       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
7014       const int FI = MF.getFrameInfo().CreateFixedObject(
7015           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
7016           /* IsAliased */ true);
7017       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7018       InVals.push_back(FIN);
7019 
7020       // Add live ins for all the RegLocs for the same ByVal.
7021       const TargetRegisterClass *RegClass =
7022           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7023 
7024       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
7025                                                unsigned Offset) {
7026         const unsigned VReg = MF.addLiveIn(PhysReg, RegClass);
7027         // Since the callers side has left justified the aggregate in the
7028         // register, we can simply store the entire register into the stack
7029         // slot.
7030         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7031         // The store to the fixedstack object is needed becuase accessing a
7032         // field of the ByVal will use a gep and load. Ideally we will optimize
7033         // to extracting the value from the register directly, and elide the
7034         // stores when the arguments address is not taken, but that will need to
7035         // be future work.
7036         SDValue Store = DAG.getStore(
7037             CopyFrom.getValue(1), dl, CopyFrom,
7038             DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)),
7039             MachinePointerInfo::getFixedStack(MF, FI, Offset));
7040 
7041         MemOps.push_back(Store);
7042       };
7043 
7044       unsigned Offset = 0;
7045       HandleRegLoc(VA.getLocReg(), Offset);
7046       Offset += PtrByteSize;
7047       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
7048            Offset += PtrByteSize) {
7049         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7050                "RegLocs should be for ByVal argument.");
7051 
7052         const CCValAssign RL = ArgLocs[I++];
7053         HandleRegLoc(RL.getLocReg(), Offset);
7054         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
7055       }
7056 
7057       if (Offset != StackSize) {
7058         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7059                "Expected MemLoc for remaining bytes.");
7060         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
7061         // Consume the MemLoc.The InVal has already been emitted, so nothing
7062         // more needs to be done.
7063         ++I;
7064       }
7065 
7066       continue;
7067     }
7068 
7069     if (VA.isRegLoc() && !VA.needsCustom()) {
7070       MVT::SimpleValueType SVT = ValVT.SimpleTy;
7071       unsigned VReg =
7072           MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
7073       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7074       if (ValVT.isScalarInteger() &&
7075           (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) {
7076         ArgValue =
7077             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7078       }
7079       InVals.push_back(ArgValue);
7080       continue;
7081     }
7082     if (VA.isMemLoc()) {
7083       HandleMemLoc();
7084       continue;
7085     }
7086   }
7087 
7088   // On AIX a minimum of 8 words is saved to the parameter save area.
7089   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7090   // Area that is at least reserved in the caller of this function.
7091   unsigned CallerReservedArea =
7092       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
7093 
7094   // Set the size that is at least reserved in caller of this function. Tail
7095   // call optimized function's reserved stack space needs to be aligned so
7096   // that taking the difference between two stack areas will result in an
7097   // aligned stack.
7098   CallerReservedArea =
7099       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7100   FuncInfo->setMinReservedArea(CallerReservedArea);
7101 
7102   if (isVarArg) {
7103     FuncInfo->setVarArgsFrameIndex(
7104         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
7105     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
7106 
7107     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7108                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7109 
7110     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7111                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7112     const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
7113 
7114     // The fixed integer arguments of a variadic function are stored to the
7115     // VarArgsFrameIndex on the stack so that they may be loaded by
7116     // dereferencing the result of va_next.
7117     for (unsigned GPRIndex =
7118              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
7119          GPRIndex < NumGPArgRegs; ++GPRIndex) {
7120 
7121       const unsigned VReg =
7122           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7123                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7124 
7125       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
7126       SDValue Store =
7127           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
7128       MemOps.push_back(Store);
7129       // Increment the address for the next argument to store.
7130       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
7131       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
7132     }
7133   }
7134 
7135   if (!MemOps.empty())
7136     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
7137 
7138   return Chain;
7139 }
7140 
7141 SDValue PPCTargetLowering::LowerCall_AIX(
7142     SDValue Chain, SDValue Callee, CallFlags CFlags,
7143     const SmallVectorImpl<ISD::OutputArg> &Outs,
7144     const SmallVectorImpl<SDValue> &OutVals,
7145     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7146     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7147     const CallBase *CB) const {
7148   // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
7149   // AIX ABI stack frame layout.
7150 
7151   assert((CFlags.CallConv == CallingConv::C ||
7152           CFlags.CallConv == CallingConv::Cold ||
7153           CFlags.CallConv == CallingConv::Fast) &&
7154          "Unexpected calling convention!");
7155 
7156   if (CFlags.IsPatchPoint)
7157     report_fatal_error("This call type is unimplemented on AIX.");
7158 
7159   const PPCSubtarget& Subtarget =
7160       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7161 
7162   MachineFunction &MF = DAG.getMachineFunction();
7163   SmallVector<CCValAssign, 16> ArgLocs;
7164   AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7165                     *DAG.getContext());
7166 
7167   // Reserve space for the linkage save area (LSA) on the stack.
7168   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7169   //   [SP][CR][LR][2 x reserved][TOC].
7170   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7171   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7172   const bool IsPPC64 = Subtarget.isPPC64();
7173   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7174   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7175   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7176   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7177 
7178   // The prolog code of the callee may store up to 8 GPR argument registers to
7179   // the stack, allowing va_start to index over them in memory if the callee
7180   // is variadic.
7181   // Because we cannot tell if this is needed on the caller side, we have to
7182   // conservatively assume that it is needed.  As such, make sure we have at
7183   // least enough stack space for the caller to store the 8 GPRs.
7184   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7185   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7186                                      CCInfo.getNextStackOffset());
7187 
7188   // Adjust the stack pointer for the new arguments...
7189   // These operations are automatically eliminated by the prolog/epilog pass.
7190   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7191   SDValue CallSeqStart = Chain;
7192 
7193   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7194   SmallVector<SDValue, 8> MemOpChains;
7195 
7196   // Set up a copy of the stack pointer for loading and storing any
7197   // arguments that may not fit in the registers available for argument
7198   // passing.
7199   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7200                                    : DAG.getRegister(PPC::R1, MVT::i32);
7201 
7202   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7203     const unsigned ValNo = ArgLocs[I].getValNo();
7204     SDValue Arg = OutVals[ValNo];
7205     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
7206 
7207     if (Flags.isByVal()) {
7208       const unsigned ByValSize = Flags.getByValSize();
7209 
7210       // Nothing to do for zero-sized ByVals on the caller side.
7211       if (!ByValSize) {
7212         ++I;
7213         continue;
7214       }
7215 
7216       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7217         return DAG.getExtLoad(
7218             ISD::ZEXTLOAD, dl, PtrVT, Chain,
7219             (LoadOffset != 0)
7220                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7221                 : Arg,
7222             MachinePointerInfo(), VT);
7223       };
7224 
7225       unsigned LoadOffset = 0;
7226 
7227       // Initialize registers, which are fully occupied by the by-val argument.
7228       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7229         SDValue Load = GetLoad(PtrVT, LoadOffset);
7230         MemOpChains.push_back(Load.getValue(1));
7231         LoadOffset += PtrByteSize;
7232         const CCValAssign &ByValVA = ArgLocs[I++];
7233         assert(ByValVA.getValNo() == ValNo &&
7234                "Unexpected location for pass-by-value argument.");
7235         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7236       }
7237 
7238       if (LoadOffset == ByValSize)
7239         continue;
7240 
7241       // There must be one more loc to handle the remainder.
7242       assert(ArgLocs[I].getValNo() == ValNo &&
7243              "Expected additional location for by-value argument.");
7244 
7245       if (ArgLocs[I].isMemLoc()) {
7246         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7247         const CCValAssign &ByValVA = ArgLocs[I++];
7248         ISD::ArgFlagsTy MemcpyFlags = Flags;
7249         // Only memcpy the bytes that don't pass in register.
7250         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7251         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7252             (LoadOffset != 0)
7253                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7254                 : Arg,
7255             DAG.getObjectPtrOffset(dl, StackPtr,
7256                                    TypeSize::Fixed(ByValVA.getLocMemOffset())),
7257             CallSeqStart, MemcpyFlags, DAG, dl);
7258         continue;
7259       }
7260 
7261       // Initialize the final register residue.
7262       // Any residue that occupies the final by-val arg register must be
7263       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7264       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7265       // 2 and 1 byte loads.
7266       const unsigned ResidueBytes = ByValSize % PtrByteSize;
7267       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7268              "Unexpected register residue for by-value argument.");
7269       SDValue ResidueVal;
7270       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7271         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
7272         const MVT VT =
7273             N == 1 ? MVT::i8
7274                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7275         SDValue Load = GetLoad(VT, LoadOffset);
7276         MemOpChains.push_back(Load.getValue(1));
7277         LoadOffset += N;
7278         Bytes += N;
7279 
7280         // By-val arguments are passed left-justfied in register.
7281         // Every load here needs to be shifted, otherwise a full register load
7282         // should have been used.
7283         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7284                "Unexpected load emitted during handling of pass-by-value "
7285                "argument.");
7286         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7287         EVT ShiftAmountTy =
7288             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7289         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7290         SDValue ShiftedLoad =
7291             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7292         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7293                                               ShiftedLoad)
7294                                 : ShiftedLoad;
7295       }
7296 
7297       const CCValAssign &ByValVA = ArgLocs[I++];
7298       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7299       continue;
7300     }
7301 
7302     CCValAssign &VA = ArgLocs[I++];
7303     const MVT LocVT = VA.getLocVT();
7304     const MVT ValVT = VA.getValVT();
7305 
7306     switch (VA.getLocInfo()) {
7307     default:
7308       report_fatal_error("Unexpected argument extension type.");
7309     case CCValAssign::Full:
7310       break;
7311     case CCValAssign::ZExt:
7312       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7313       break;
7314     case CCValAssign::SExt:
7315       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7316       break;
7317     }
7318 
7319     if (VA.isRegLoc() && !VA.needsCustom()) {
7320       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7321       continue;
7322     }
7323 
7324     // Vector arguments passed to VarArg functions need custom handling when
7325     // they are passed (at least partially) in GPRs.
7326     if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) {
7327       assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args.");
7328       // Store value to its stack slot.
7329       SDValue PtrOff =
7330           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7331       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7332       SDValue Store =
7333           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
7334       MemOpChains.push_back(Store);
7335       const unsigned OriginalValNo = VA.getValNo();
7336       // Then load the GPRs from the stack
7337       unsigned LoadOffset = 0;
7338       auto HandleCustomVecRegLoc = [&]() {
7339         assert(I != E && "Unexpected end of CCvalAssigns.");
7340         assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7341                "Expected custom RegLoc.");
7342         CCValAssign RegVA = ArgLocs[I++];
7343         assert(RegVA.getValNo() == OriginalValNo &&
7344                "Custom MemLoc ValNo and custom RegLoc ValNo must match.");
7345         SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
7346                                   DAG.getConstant(LoadOffset, dl, PtrVT));
7347         SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo());
7348         MemOpChains.push_back(Load.getValue(1));
7349         RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load));
7350         LoadOffset += PtrByteSize;
7351       };
7352 
7353       // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
7354       // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
7355       // R10.
7356       HandleCustomVecRegLoc();
7357       HandleCustomVecRegLoc();
7358 
7359       if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7360           ArgLocs[I].getValNo() == OriginalValNo) {
7361         assert(!IsPPC64 &&
7362                "Only 2 custom RegLocs expected for 64-bit codegen.");
7363         HandleCustomVecRegLoc();
7364         HandleCustomVecRegLoc();
7365       }
7366 
7367       continue;
7368     }
7369 
7370     if (VA.isMemLoc()) {
7371       SDValue PtrOff =
7372           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7373       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7374       MemOpChains.push_back(
7375           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7376 
7377       continue;
7378     }
7379 
7380     if (!ValVT.isFloatingPoint())
7381       report_fatal_error(
7382           "Unexpected register handling for calling convention.");
7383 
7384     // Custom handling is used for GPR initializations for vararg float
7385     // arguments.
7386     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7387            LocVT.isInteger() &&
7388            "Custom register handling only expected for VarArg.");
7389 
7390     SDValue ArgAsInt =
7391         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7392 
7393     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7394       // f32 in 32-bit GPR
7395       // f64 in 64-bit GPR
7396       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7397     else if (Arg.getValueType().getFixedSizeInBits() <
7398              LocVT.getFixedSizeInBits())
7399       // f32 in 64-bit GPR.
7400       RegsToPass.push_back(std::make_pair(
7401           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7402     else {
7403       // f64 in two 32-bit GPRs
7404       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7405       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7406              "Unexpected custom register for argument!");
7407       CCValAssign &GPR1 = VA;
7408       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7409                                      DAG.getConstant(32, dl, MVT::i8));
7410       RegsToPass.push_back(std::make_pair(
7411           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7412 
7413       if (I != E) {
7414         // If only 1 GPR was available, there will only be one custom GPR and
7415         // the argument will also pass in memory.
7416         CCValAssign &PeekArg = ArgLocs[I];
7417         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7418           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7419           CCValAssign &GPR2 = ArgLocs[I++];
7420           RegsToPass.push_back(std::make_pair(
7421               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7422         }
7423       }
7424     }
7425   }
7426 
7427   if (!MemOpChains.empty())
7428     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7429 
7430   // For indirect calls, we need to save the TOC base to the stack for
7431   // restoration after the call.
7432   if (CFlags.IsIndirect) {
7433     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7434     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7435     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7436     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7437     const unsigned TOCSaveOffset =
7438         Subtarget.getFrameLowering()->getTOCSaveOffset();
7439 
7440     setUsesTOCBasePtr(DAG);
7441     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7442     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7443     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7444     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7445     Chain = DAG.getStore(
7446         Val.getValue(1), dl, Val, AddPtr,
7447         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7448   }
7449 
7450   // Build a sequence of copy-to-reg nodes chained together with token chain
7451   // and flag operands which copy the outgoing args into the appropriate regs.
7452   SDValue InFlag;
7453   for (auto Reg : RegsToPass) {
7454     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7455     InFlag = Chain.getValue(1);
7456   }
7457 
7458   const int SPDiff = 0;
7459   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7460                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7461 }
7462 
7463 bool
7464 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7465                                   MachineFunction &MF, bool isVarArg,
7466                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7467                                   LLVMContext &Context) const {
7468   SmallVector<CCValAssign, 16> RVLocs;
7469   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7470   return CCInfo.CheckReturn(
7471       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7472                 ? RetCC_PPC_Cold
7473                 : RetCC_PPC);
7474 }
7475 
7476 SDValue
7477 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7478                                bool isVarArg,
7479                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7480                                const SmallVectorImpl<SDValue> &OutVals,
7481                                const SDLoc &dl, SelectionDAG &DAG) const {
7482   SmallVector<CCValAssign, 16> RVLocs;
7483   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7484                  *DAG.getContext());
7485   CCInfo.AnalyzeReturn(Outs,
7486                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7487                            ? RetCC_PPC_Cold
7488                            : RetCC_PPC);
7489 
7490   SDValue Flag;
7491   SmallVector<SDValue, 4> RetOps(1, Chain);
7492 
7493   // Copy the result values into the output registers.
7494   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7495     CCValAssign &VA = RVLocs[i];
7496     assert(VA.isRegLoc() && "Can only return in registers!");
7497 
7498     SDValue Arg = OutVals[RealResIdx];
7499 
7500     switch (VA.getLocInfo()) {
7501     default: llvm_unreachable("Unknown loc info!");
7502     case CCValAssign::Full: break;
7503     case CCValAssign::AExt:
7504       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7505       break;
7506     case CCValAssign::ZExt:
7507       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7508       break;
7509     case CCValAssign::SExt:
7510       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7511       break;
7512     }
7513     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7514       bool isLittleEndian = Subtarget.isLittleEndian();
7515       // Legalize ret f64 -> ret 2 x i32.
7516       SDValue SVal =
7517           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7518                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7519       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7520       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7521       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7522                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7523       Flag = Chain.getValue(1);
7524       VA = RVLocs[++i]; // skip ahead to next loc
7525       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7526     } else
7527       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7528     Flag = Chain.getValue(1);
7529     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7530   }
7531 
7532   RetOps[0] = Chain;  // Update chain.
7533 
7534   // Add the flag if we have it.
7535   if (Flag.getNode())
7536     RetOps.push_back(Flag);
7537 
7538   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7539 }
7540 
7541 SDValue
7542 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7543                                                 SelectionDAG &DAG) const {
7544   SDLoc dl(Op);
7545 
7546   // Get the correct type for integers.
7547   EVT IntVT = Op.getValueType();
7548 
7549   // Get the inputs.
7550   SDValue Chain = Op.getOperand(0);
7551   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7552   // Build a DYNAREAOFFSET node.
7553   SDValue Ops[2] = {Chain, FPSIdx};
7554   SDVTList VTs = DAG.getVTList(IntVT);
7555   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7556 }
7557 
7558 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7559                                              SelectionDAG &DAG) const {
7560   // When we pop the dynamic allocation we need to restore the SP link.
7561   SDLoc dl(Op);
7562 
7563   // Get the correct type for pointers.
7564   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7565 
7566   // Construct the stack pointer operand.
7567   bool isPPC64 = Subtarget.isPPC64();
7568   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7569   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7570 
7571   // Get the operands for the STACKRESTORE.
7572   SDValue Chain = Op.getOperand(0);
7573   SDValue SaveSP = Op.getOperand(1);
7574 
7575   // Load the old link SP.
7576   SDValue LoadLinkSP =
7577       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7578 
7579   // Restore the stack pointer.
7580   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7581 
7582   // Store the old link SP.
7583   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7584 }
7585 
7586 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7587   MachineFunction &MF = DAG.getMachineFunction();
7588   bool isPPC64 = Subtarget.isPPC64();
7589   EVT PtrVT = getPointerTy(MF.getDataLayout());
7590 
7591   // Get current frame pointer save index.  The users of this index will be
7592   // primarily DYNALLOC instructions.
7593   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7594   int RASI = FI->getReturnAddrSaveIndex();
7595 
7596   // If the frame pointer save index hasn't been defined yet.
7597   if (!RASI) {
7598     // Find out what the fix offset of the frame pointer save area.
7599     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7600     // Allocate the frame index for frame pointer save area.
7601     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7602     // Save the result.
7603     FI->setReturnAddrSaveIndex(RASI);
7604   }
7605   return DAG.getFrameIndex(RASI, PtrVT);
7606 }
7607 
7608 SDValue
7609 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7610   MachineFunction &MF = DAG.getMachineFunction();
7611   bool isPPC64 = Subtarget.isPPC64();
7612   EVT PtrVT = getPointerTy(MF.getDataLayout());
7613 
7614   // Get current frame pointer save index.  The users of this index will be
7615   // primarily DYNALLOC instructions.
7616   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7617   int FPSI = FI->getFramePointerSaveIndex();
7618 
7619   // If the frame pointer save index hasn't been defined yet.
7620   if (!FPSI) {
7621     // Find out what the fix offset of the frame pointer save area.
7622     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7623     // Allocate the frame index for frame pointer save area.
7624     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7625     // Save the result.
7626     FI->setFramePointerSaveIndex(FPSI);
7627   }
7628   return DAG.getFrameIndex(FPSI, PtrVT);
7629 }
7630 
7631 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7632                                                    SelectionDAG &DAG) const {
7633   MachineFunction &MF = DAG.getMachineFunction();
7634   // Get the inputs.
7635   SDValue Chain = Op.getOperand(0);
7636   SDValue Size  = Op.getOperand(1);
7637   SDLoc dl(Op);
7638 
7639   // Get the correct type for pointers.
7640   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7641   // Negate the size.
7642   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7643                                 DAG.getConstant(0, dl, PtrVT), Size);
7644   // Construct a node for the frame pointer save index.
7645   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7646   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7647   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7648   if (hasInlineStackProbe(MF))
7649     return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
7650   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7651 }
7652 
7653 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7654                                                      SelectionDAG &DAG) const {
7655   MachineFunction &MF = DAG.getMachineFunction();
7656 
7657   bool isPPC64 = Subtarget.isPPC64();
7658   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7659 
7660   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7661   return DAG.getFrameIndex(FI, PtrVT);
7662 }
7663 
7664 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7665                                                SelectionDAG &DAG) const {
7666   SDLoc DL(Op);
7667   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7668                      DAG.getVTList(MVT::i32, MVT::Other),
7669                      Op.getOperand(0), Op.getOperand(1));
7670 }
7671 
7672 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7673                                                 SelectionDAG &DAG) const {
7674   SDLoc DL(Op);
7675   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7676                      Op.getOperand(0), Op.getOperand(1));
7677 }
7678 
7679 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7680   if (Op.getValueType().isVector())
7681     return LowerVectorLoad(Op, DAG);
7682 
7683   assert(Op.getValueType() == MVT::i1 &&
7684          "Custom lowering only for i1 loads");
7685 
7686   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7687 
7688   SDLoc dl(Op);
7689   LoadSDNode *LD = cast<LoadSDNode>(Op);
7690 
7691   SDValue Chain = LD->getChain();
7692   SDValue BasePtr = LD->getBasePtr();
7693   MachineMemOperand *MMO = LD->getMemOperand();
7694 
7695   SDValue NewLD =
7696       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7697                      BasePtr, MVT::i8, MMO);
7698   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7699 
7700   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7701   return DAG.getMergeValues(Ops, dl);
7702 }
7703 
7704 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7705   if (Op.getOperand(1).getValueType().isVector())
7706     return LowerVectorStore(Op, DAG);
7707 
7708   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7709          "Custom lowering only for i1 stores");
7710 
7711   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7712 
7713   SDLoc dl(Op);
7714   StoreSDNode *ST = cast<StoreSDNode>(Op);
7715 
7716   SDValue Chain = ST->getChain();
7717   SDValue BasePtr = ST->getBasePtr();
7718   SDValue Value = ST->getValue();
7719   MachineMemOperand *MMO = ST->getMemOperand();
7720 
7721   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7722                       Value);
7723   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7724 }
7725 
7726 // FIXME: Remove this once the ANDI glue bug is fixed:
7727 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7728   assert(Op.getValueType() == MVT::i1 &&
7729          "Custom lowering only for i1 results");
7730 
7731   SDLoc DL(Op);
7732   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7733 }
7734 
7735 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7736                                                SelectionDAG &DAG) const {
7737 
7738   // Implements a vector truncate that fits in a vector register as a shuffle.
7739   // We want to legalize vector truncates down to where the source fits in
7740   // a vector register (and target is therefore smaller than vector register
7741   // size).  At that point legalization will try to custom lower the sub-legal
7742   // result and get here - where we can contain the truncate as a single target
7743   // operation.
7744 
7745   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7746   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7747   //
7748   // We will implement it for big-endian ordering as this (where x denotes
7749   // undefined):
7750   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7751   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7752   //
7753   // The same operation in little-endian ordering will be:
7754   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7755   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7756 
7757   EVT TrgVT = Op.getValueType();
7758   assert(TrgVT.isVector() && "Vector type expected.");
7759   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7760   EVT EltVT = TrgVT.getVectorElementType();
7761   if (!isOperationCustom(Op.getOpcode(), TrgVT) ||
7762       TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) ||
7763       !isPowerOf2_32(EltVT.getSizeInBits()))
7764     return SDValue();
7765 
7766   SDValue N1 = Op.getOperand(0);
7767   EVT SrcVT = N1.getValueType();
7768   unsigned SrcSize = SrcVT.getSizeInBits();
7769   if (SrcSize > 256 ||
7770       !isPowerOf2_32(SrcVT.getVectorNumElements()) ||
7771       !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits()))
7772     return SDValue();
7773   if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2)
7774     return SDValue();
7775 
7776   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7777   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7778 
7779   SDLoc DL(Op);
7780   SDValue Op1, Op2;
7781   if (SrcSize == 256) {
7782     EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout());
7783     EVT SplitVT =
7784         N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
7785     unsigned SplitNumElts = SplitVT.getVectorNumElements();
7786     Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7787                       DAG.getConstant(0, DL, VecIdxTy));
7788     Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7789                       DAG.getConstant(SplitNumElts, DL, VecIdxTy));
7790   }
7791   else {
7792     Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7793     Op2 = DAG.getUNDEF(WideVT);
7794   }
7795 
7796   // First list the elements we want to keep.
7797   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7798   SmallVector<int, 16> ShuffV;
7799   if (Subtarget.isLittleEndian())
7800     for (unsigned i = 0; i < TrgNumElts; ++i)
7801       ShuffV.push_back(i * SizeMult);
7802   else
7803     for (unsigned i = 1; i <= TrgNumElts; ++i)
7804       ShuffV.push_back(i * SizeMult - 1);
7805 
7806   // Populate the remaining elements with undefs.
7807   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7808     // ShuffV.push_back(i + WideNumElts);
7809     ShuffV.push_back(WideNumElts + 1);
7810 
7811   Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1);
7812   Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2);
7813   return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV);
7814 }
7815 
7816 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7817 /// possible.
7818 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7819   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7820   EVT ResVT = Op.getValueType();
7821   EVT CmpVT = Op.getOperand(0).getValueType();
7822   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7823   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7824   SDLoc dl(Op);
7825 
7826   // Without power9-vector, we don't have native instruction for f128 comparison.
7827   // Following transformation to libcall is needed for setcc:
7828   // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE
7829   if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) {
7830     SDValue Z = DAG.getSetCC(
7831         dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT),
7832         LHS, RHS, CC);
7833     SDValue Zero = DAG.getConstant(0, dl, Z.getValueType());
7834     return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE);
7835   }
7836 
7837   // Not FP, or using SPE? Not a fsel.
7838   if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() ||
7839       Subtarget.hasSPE())
7840     return Op;
7841 
7842   SDNodeFlags Flags = Op.getNode()->getFlags();
7843 
7844   // We have xsmaxcdp/xsmincdp which are OK to emit even in the
7845   // presence of infinities.
7846   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7847     switch (CC) {
7848     default:
7849       break;
7850     case ISD::SETOGT:
7851     case ISD::SETGT:
7852       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
7853     case ISD::SETOLT:
7854     case ISD::SETLT:
7855       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
7856     }
7857   }
7858 
7859   // We might be able to do better than this under some circumstances, but in
7860   // general, fsel-based lowering of select is a finite-math-only optimization.
7861   // For more information, see section F.3 of the 2.06 ISA specification.
7862   // With ISA 3.0
7863   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
7864       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
7865     return Op;
7866 
7867   // If the RHS of the comparison is a 0.0, we don't need to do the
7868   // subtraction at all.
7869   SDValue Sel1;
7870   if (isFloatingPointZero(RHS))
7871     switch (CC) {
7872     default: break;       // SETUO etc aren't handled by fsel.
7873     case ISD::SETNE:
7874       std::swap(TV, FV);
7875       LLVM_FALLTHROUGH;
7876     case ISD::SETEQ:
7877       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7878         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7879       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7880       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7881         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7882       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7883                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7884     case ISD::SETULT:
7885     case ISD::SETLT:
7886       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7887       LLVM_FALLTHROUGH;
7888     case ISD::SETOGE:
7889     case ISD::SETGE:
7890       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7891         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7892       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7893     case ISD::SETUGT:
7894     case ISD::SETGT:
7895       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7896       LLVM_FALLTHROUGH;
7897     case ISD::SETOLE:
7898     case ISD::SETLE:
7899       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7900         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7901       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7902                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7903     }
7904 
7905   SDValue Cmp;
7906   switch (CC) {
7907   default: break;       // SETUO etc aren't handled by fsel.
7908   case ISD::SETNE:
7909     std::swap(TV, FV);
7910     LLVM_FALLTHROUGH;
7911   case ISD::SETEQ:
7912     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7913     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7914       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7915     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7916     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7917       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7918     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7919                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7920   case ISD::SETULT:
7921   case ISD::SETLT:
7922     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7923     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7924       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7925     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7926   case ISD::SETOGE:
7927   case ISD::SETGE:
7928     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7929     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7930       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7931     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7932   case ISD::SETUGT:
7933   case ISD::SETGT:
7934     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7935     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7936       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7937     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7938   case ISD::SETOLE:
7939   case ISD::SETLE:
7940     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7941     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7942       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7943     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7944   }
7945   return Op;
7946 }
7947 
7948 static unsigned getPPCStrictOpcode(unsigned Opc) {
7949   switch (Opc) {
7950   default:
7951     llvm_unreachable("No strict version of this opcode!");
7952   case PPCISD::FCTIDZ:
7953     return PPCISD::STRICT_FCTIDZ;
7954   case PPCISD::FCTIWZ:
7955     return PPCISD::STRICT_FCTIWZ;
7956   case PPCISD::FCTIDUZ:
7957     return PPCISD::STRICT_FCTIDUZ;
7958   case PPCISD::FCTIWUZ:
7959     return PPCISD::STRICT_FCTIWUZ;
7960   case PPCISD::FCFID:
7961     return PPCISD::STRICT_FCFID;
7962   case PPCISD::FCFIDU:
7963     return PPCISD::STRICT_FCFIDU;
7964   case PPCISD::FCFIDS:
7965     return PPCISD::STRICT_FCFIDS;
7966   case PPCISD::FCFIDUS:
7967     return PPCISD::STRICT_FCFIDUS;
7968   }
7969 }
7970 
7971 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG,
7972                               const PPCSubtarget &Subtarget) {
7973   SDLoc dl(Op);
7974   bool IsStrict = Op->isStrictFPOpcode();
7975   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
7976                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
7977 
7978   // TODO: Any other flags to propagate?
7979   SDNodeFlags Flags;
7980   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
7981 
7982   // For strict nodes, source is the second operand.
7983   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
7984   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
7985   assert(Src.getValueType().isFloatingPoint());
7986   if (Src.getValueType() == MVT::f32) {
7987     if (IsStrict) {
7988       Src =
7989           DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
7990                       DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags);
7991       Chain = Src.getValue(1);
7992     } else
7993       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7994   }
7995   SDValue Conv;
7996   unsigned Opc = ISD::DELETED_NODE;
7997   switch (Op.getSimpleValueType().SimpleTy) {
7998   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7999   case MVT::i32:
8000     Opc = IsSigned ? PPCISD::FCTIWZ
8001                    : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ);
8002     break;
8003   case MVT::i64:
8004     assert((IsSigned || Subtarget.hasFPCVT()) &&
8005            "i64 FP_TO_UINT is supported only with FPCVT");
8006     Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ;
8007   }
8008   if (IsStrict) {
8009     Opc = getPPCStrictOpcode(Opc);
8010     Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other),
8011                        {Chain, Src}, Flags);
8012   } else {
8013     Conv = DAG.getNode(Opc, dl, MVT::f64, Src);
8014   }
8015   return Conv;
8016 }
8017 
8018 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
8019                                                SelectionDAG &DAG,
8020                                                const SDLoc &dl) const {
8021   SDValue Tmp = convertFPToInt(Op, DAG, Subtarget);
8022   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8023                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8024   bool IsStrict = Op->isStrictFPOpcode();
8025 
8026   // Convert the FP value to an int value through memory.
8027   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
8028                   (IsSigned || Subtarget.hasFPCVT());
8029   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
8030   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
8031   MachinePointerInfo MPI =
8032       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
8033 
8034   // Emit a store to the stack slot.
8035   SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode();
8036   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
8037   if (i32Stack) {
8038     MachineFunction &MF = DAG.getMachineFunction();
8039     Alignment = Align(4);
8040     MachineMemOperand *MMO =
8041         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
8042     SDValue Ops[] = { Chain, Tmp, FIPtr };
8043     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8044               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
8045   } else
8046     Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment);
8047 
8048   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
8049   // add in a bias on big endian.
8050   if (Op.getValueType() == MVT::i32 && !i32Stack) {
8051     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
8052                         DAG.getConstant(4, dl, FIPtr.getValueType()));
8053     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
8054   }
8055 
8056   RLI.Chain = Chain;
8057   RLI.Ptr = FIPtr;
8058   RLI.MPI = MPI;
8059   RLI.Alignment = Alignment;
8060 }
8061 
8062 /// Custom lowers floating point to integer conversions to use
8063 /// the direct move instructions available in ISA 2.07 to avoid the
8064 /// need for load/store combinations.
8065 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
8066                                                     SelectionDAG &DAG,
8067                                                     const SDLoc &dl) const {
8068   SDValue Conv = convertFPToInt(Op, DAG, Subtarget);
8069   SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv);
8070   if (Op->isStrictFPOpcode())
8071     return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl);
8072   else
8073     return Mov;
8074 }
8075 
8076 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
8077                                           const SDLoc &dl) const {
8078   bool IsStrict = Op->isStrictFPOpcode();
8079   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8080                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8081   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8082   EVT SrcVT = Src.getValueType();
8083   EVT DstVT = Op.getValueType();
8084 
8085   // FP to INT conversions are legal for f128.
8086   if (SrcVT == MVT::f128)
8087     return Subtarget.hasP9Vector() ? Op : SDValue();
8088 
8089   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8090   // PPC (the libcall is not available).
8091   if (SrcVT == MVT::ppcf128) {
8092     if (DstVT == MVT::i32) {
8093       // TODO: Conservatively pass only nofpexcept flag here. Need to check and
8094       // set other fast-math flags to FP operations in both strict and
8095       // non-strict cases. (FP_TO_SINT, FSUB)
8096       SDNodeFlags Flags;
8097       Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8098 
8099       if (IsSigned) {
8100         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8101                                  DAG.getIntPtrConstant(0, dl));
8102         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8103                                  DAG.getIntPtrConstant(1, dl));
8104 
8105         // Add the two halves of the long double in round-to-zero mode, and use
8106         // a smaller FP_TO_SINT.
8107         if (IsStrict) {
8108           SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl,
8109                                     DAG.getVTList(MVT::f64, MVT::Other),
8110                                     {Op.getOperand(0), Lo, Hi}, Flags);
8111           return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8112                              DAG.getVTList(MVT::i32, MVT::Other),
8113                              {Res.getValue(1), Res}, Flags);
8114         } else {
8115           SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8116           return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
8117         }
8118       } else {
8119         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8120         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
8121         SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8122         SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT);
8123         if (IsStrict) {
8124           // Sel = Src < 0x80000000
8125           // FltOfs = select Sel, 0.0, 0x80000000
8126           // IntOfs = select Sel, 0, 0x80000000
8127           // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8128           SDValue Chain = Op.getOperand(0);
8129           EVT SetCCVT =
8130               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8131           EVT DstSetCCVT =
8132               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8133           SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8134                                      Chain, true);
8135           Chain = Sel.getValue(1);
8136 
8137           SDValue FltOfs = DAG.getSelect(
8138               dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8139           Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8140 
8141           SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl,
8142                                     DAG.getVTList(SrcVT, MVT::Other),
8143                                     {Chain, Src, FltOfs}, Flags);
8144           Chain = Val.getValue(1);
8145           SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8146                                      DAG.getVTList(DstVT, MVT::Other),
8147                                      {Chain, Val}, Flags);
8148           Chain = SInt.getValue(1);
8149           SDValue IntOfs = DAG.getSelect(
8150               dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask);
8151           SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8152           return DAG.getMergeValues({Result, Chain}, dl);
8153         } else {
8154           // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8155           // FIXME: generated code sucks.
8156           SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst);
8157           True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
8158           True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask);
8159           SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src);
8160           return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE);
8161         }
8162       }
8163     }
8164 
8165     return SDValue();
8166   }
8167 
8168   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
8169     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
8170 
8171   ReuseLoadInfo RLI;
8172   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8173 
8174   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8175                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8176 }
8177 
8178 // We're trying to insert a regular store, S, and then a load, L. If the
8179 // incoming value, O, is a load, we might just be able to have our load use the
8180 // address used by O. However, we don't know if anything else will store to
8181 // that address before we can load from it. To prevent this situation, we need
8182 // to insert our load, L, into the chain as a peer of O. To do this, we give L
8183 // the same chain operand as O, we create a token factor from the chain results
8184 // of O and L, and we replace all uses of O's chain result with that token
8185 // factor (see spliceIntoChain below for this last part).
8186 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
8187                                             ReuseLoadInfo &RLI,
8188                                             SelectionDAG &DAG,
8189                                             ISD::LoadExtType ET) const {
8190   // Conservatively skip reusing for constrained FP nodes.
8191   if (Op->isStrictFPOpcode())
8192     return false;
8193 
8194   SDLoc dl(Op);
8195   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
8196                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
8197   if (ET == ISD::NON_EXTLOAD &&
8198       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
8199       isOperationLegalOrCustom(Op.getOpcode(),
8200                                Op.getOperand(0).getValueType())) {
8201 
8202     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8203     return true;
8204   }
8205 
8206   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
8207   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
8208       LD->isNonTemporal())
8209     return false;
8210   if (LD->getMemoryVT() != MemVT)
8211     return false;
8212 
8213   // If the result of the load is an illegal type, then we can't build a
8214   // valid chain for reuse since the legalised loads and token factor node that
8215   // ties the legalised loads together uses a different output chain then the
8216   // illegal load.
8217   if (!isTypeLegal(LD->getValueType(0)))
8218     return false;
8219 
8220   RLI.Ptr = LD->getBasePtr();
8221   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8222     assert(LD->getAddressingMode() == ISD::PRE_INC &&
8223            "Non-pre-inc AM on PPC?");
8224     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8225                           LD->getOffset());
8226   }
8227 
8228   RLI.Chain = LD->getChain();
8229   RLI.MPI = LD->getPointerInfo();
8230   RLI.IsDereferenceable = LD->isDereferenceable();
8231   RLI.IsInvariant = LD->isInvariant();
8232   RLI.Alignment = LD->getAlign();
8233   RLI.AAInfo = LD->getAAInfo();
8234   RLI.Ranges = LD->getRanges();
8235 
8236   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8237   return true;
8238 }
8239 
8240 // Given the head of the old chain, ResChain, insert a token factor containing
8241 // it and NewResChain, and make users of ResChain now be users of that token
8242 // factor.
8243 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8244 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8245                                         SDValue NewResChain,
8246                                         SelectionDAG &DAG) const {
8247   if (!ResChain)
8248     return;
8249 
8250   SDLoc dl(NewResChain);
8251 
8252   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8253                            NewResChain, DAG.getUNDEF(MVT::Other));
8254   assert(TF.getNode() != NewResChain.getNode() &&
8255          "A new TF really is required here");
8256 
8257   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8258   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8259 }
8260 
8261 /// Analyze profitability of direct move
8262 /// prefer float load to int load plus direct move
8263 /// when there is no integer use of int load
8264 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8265   SDNode *Origin = Op.getOperand(0).getNode();
8266   if (Origin->getOpcode() != ISD::LOAD)
8267     return true;
8268 
8269   // If there is no LXSIBZX/LXSIHZX, like Power8,
8270   // prefer direct move if the memory size is 1 or 2 bytes.
8271   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8272   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8273     return true;
8274 
8275   for (SDNode::use_iterator UI = Origin->use_begin(),
8276                             UE = Origin->use_end();
8277        UI != UE; ++UI) {
8278 
8279     // Only look at the users of the loaded value.
8280     if (UI.getUse().get().getResNo() != 0)
8281       continue;
8282 
8283     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8284         UI->getOpcode() != ISD::UINT_TO_FP &&
8285         UI->getOpcode() != ISD::STRICT_SINT_TO_FP &&
8286         UI->getOpcode() != ISD::STRICT_UINT_TO_FP)
8287       return true;
8288   }
8289 
8290   return false;
8291 }
8292 
8293 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG,
8294                               const PPCSubtarget &Subtarget,
8295                               SDValue Chain = SDValue()) {
8296   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8297                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8298   SDLoc dl(Op);
8299 
8300   // TODO: Any other flags to propagate?
8301   SDNodeFlags Flags;
8302   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8303 
8304   // If we have FCFIDS, then use it when converting to single-precision.
8305   // Otherwise, convert to double-precision and then round.
8306   bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT();
8307   unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS)
8308                               : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU);
8309   EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64;
8310   if (Op->isStrictFPOpcode()) {
8311     if (!Chain)
8312       Chain = Op.getOperand(0);
8313     return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl,
8314                        DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags);
8315   } else
8316     return DAG.getNode(ConvOpc, dl, ConvTy, Src);
8317 }
8318 
8319 /// Custom lowers integer to floating point conversions to use
8320 /// the direct move instructions available in ISA 2.07 to avoid the
8321 /// need for load/store combinations.
8322 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8323                                                     SelectionDAG &DAG,
8324                                                     const SDLoc &dl) const {
8325   assert((Op.getValueType() == MVT::f32 ||
8326           Op.getValueType() == MVT::f64) &&
8327          "Invalid floating point type as target of conversion");
8328   assert(Subtarget.hasFPCVT() &&
8329          "Int to FP conversions with direct moves require FPCVT");
8330   SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0);
8331   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8332   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP ||
8333                 Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8334   unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA;
8335   SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src);
8336   return convertIntToFP(Op, Mov, DAG, Subtarget);
8337 }
8338 
8339 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8340 
8341   EVT VecVT = Vec.getValueType();
8342   assert(VecVT.isVector() && "Expected a vector type.");
8343   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8344 
8345   EVT EltVT = VecVT.getVectorElementType();
8346   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8347   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8348 
8349   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8350   SmallVector<SDValue, 16> Ops(NumConcat);
8351   Ops[0] = Vec;
8352   SDValue UndefVec = DAG.getUNDEF(VecVT);
8353   for (unsigned i = 1; i < NumConcat; ++i)
8354     Ops[i] = UndefVec;
8355 
8356   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8357 }
8358 
8359 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8360                                                 const SDLoc &dl) const {
8361   bool IsStrict = Op->isStrictFPOpcode();
8362   unsigned Opc = Op.getOpcode();
8363   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8364   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP ||
8365           Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) &&
8366          "Unexpected conversion type");
8367   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8368          "Supports conversions to v2f64/v4f32 only.");
8369 
8370   // TODO: Any other flags to propagate?
8371   SDNodeFlags Flags;
8372   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8373 
8374   bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP;
8375   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8376 
8377   SDValue Wide = widenVec(DAG, Src, dl);
8378   EVT WideVT = Wide.getValueType();
8379   unsigned WideNumElts = WideVT.getVectorNumElements();
8380   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8381 
8382   SmallVector<int, 16> ShuffV;
8383   for (unsigned i = 0; i < WideNumElts; ++i)
8384     ShuffV.push_back(i + WideNumElts);
8385 
8386   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8387   int SaveElts = FourEltRes ? 4 : 2;
8388   if (Subtarget.isLittleEndian())
8389     for (int i = 0; i < SaveElts; i++)
8390       ShuffV[i * Stride] = i;
8391   else
8392     for (int i = 1; i <= SaveElts; i++)
8393       ShuffV[i * Stride - 1] = i - 1;
8394 
8395   SDValue ShuffleSrc2 =
8396       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8397   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8398 
8399   SDValue Extend;
8400   if (SignedConv) {
8401     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8402     EVT ExtVT = Src.getValueType();
8403     if (Subtarget.hasP9Altivec())
8404       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8405                                IntermediateVT.getVectorNumElements());
8406 
8407     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8408                          DAG.getValueType(ExtVT));
8409   } else
8410     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8411 
8412   if (IsStrict)
8413     return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
8414                        {Op.getOperand(0), Extend}, Flags);
8415 
8416   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8417 }
8418 
8419 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8420                                           SelectionDAG &DAG) const {
8421   SDLoc dl(Op);
8422   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8423                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8424   bool IsStrict = Op->isStrictFPOpcode();
8425   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8426   SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
8427 
8428   // TODO: Any other flags to propagate?
8429   SDNodeFlags Flags;
8430   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8431 
8432   EVT InVT = Src.getValueType();
8433   EVT OutVT = Op.getValueType();
8434   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8435       isOperationCustom(Op.getOpcode(), InVT))
8436     return LowerINT_TO_FPVector(Op, DAG, dl);
8437 
8438   // Conversions to f128 are legal.
8439   if (Op.getValueType() == MVT::f128)
8440     return Subtarget.hasP9Vector() ? Op : SDValue();
8441 
8442   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8443   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8444     return SDValue();
8445 
8446   if (Src.getValueType() == MVT::i1) {
8447     SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src,
8448                               DAG.getConstantFP(1.0, dl, Op.getValueType()),
8449                               DAG.getConstantFP(0.0, dl, Op.getValueType()));
8450     if (IsStrict)
8451       return DAG.getMergeValues({Sel, Chain}, dl);
8452     else
8453       return Sel;
8454   }
8455 
8456   // If we have direct moves, we can do all the conversion, skip the store/load
8457   // however, without FPCVT we can't do most conversions.
8458   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8459       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8460     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8461 
8462   assert((IsSigned || Subtarget.hasFPCVT()) &&
8463          "UINT_TO_FP is supported only with FPCVT");
8464 
8465   if (Src.getValueType() == MVT::i64) {
8466     SDValue SINT = Src;
8467     // When converting to single-precision, we actually need to convert
8468     // to double-precision first and then round to single-precision.
8469     // To avoid double-rounding effects during that operation, we have
8470     // to prepare the input operand.  Bits that might be truncated when
8471     // converting to double-precision are replaced by a bit that won't
8472     // be lost at this stage, but is below the single-precision rounding
8473     // position.
8474     //
8475     // However, if -enable-unsafe-fp-math is in effect, accept double
8476     // rounding to avoid the extra overhead.
8477     if (Op.getValueType() == MVT::f32 &&
8478         !Subtarget.hasFPCVT() &&
8479         !DAG.getTarget().Options.UnsafeFPMath) {
8480 
8481       // Twiddle input to make sure the low 11 bits are zero.  (If this
8482       // is the case, we are guaranteed the value will fit into the 53 bit
8483       // mantissa of an IEEE double-precision value without rounding.)
8484       // If any of those low 11 bits were not zero originally, make sure
8485       // bit 12 (value 2048) is set instead, so that the final rounding
8486       // to single-precision gets the correct result.
8487       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8488                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8489       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8490                           Round, DAG.getConstant(2047, dl, MVT::i64));
8491       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8492       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8493                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8494 
8495       // However, we cannot use that value unconditionally: if the magnitude
8496       // of the input value is small, the bit-twiddling we did above might
8497       // end up visibly changing the output.  Fortunately, in that case, we
8498       // don't need to twiddle bits since the original input will convert
8499       // exactly to double-precision floating-point already.  Therefore,
8500       // construct a conditional to use the original value if the top 11
8501       // bits are all sign-bit copies, and use the rounded value computed
8502       // above otherwise.
8503       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8504                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8505       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8506                          Cond, DAG.getConstant(1, dl, MVT::i64));
8507       Cond = DAG.getSetCC(
8508           dl,
8509           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8510           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8511 
8512       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8513     }
8514 
8515     ReuseLoadInfo RLI;
8516     SDValue Bits;
8517 
8518     MachineFunction &MF = DAG.getMachineFunction();
8519     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8520       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8521                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8522       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8523     } else if (Subtarget.hasLFIWAX() &&
8524                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8525       MachineMemOperand *MMO =
8526         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8527                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8528       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8529       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8530                                      DAG.getVTList(MVT::f64, MVT::Other),
8531                                      Ops, MVT::i32, MMO);
8532       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8533     } else if (Subtarget.hasFPCVT() &&
8534                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8535       MachineMemOperand *MMO =
8536         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8537                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8538       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8539       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8540                                      DAG.getVTList(MVT::f64, MVT::Other),
8541                                      Ops, MVT::i32, MMO);
8542       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8543     } else if (((Subtarget.hasLFIWAX() &&
8544                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8545                 (Subtarget.hasFPCVT() &&
8546                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8547                SINT.getOperand(0).getValueType() == MVT::i32) {
8548       MachineFrameInfo &MFI = MF.getFrameInfo();
8549       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8550 
8551       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8552       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8553 
8554       SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx,
8555                                    MachinePointerInfo::getFixedStack(
8556                                        DAG.getMachineFunction(), FrameIdx));
8557       Chain = Store;
8558 
8559       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8560              "Expected an i32 store");
8561 
8562       RLI.Ptr = FIdx;
8563       RLI.Chain = Chain;
8564       RLI.MPI =
8565           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8566       RLI.Alignment = Align(4);
8567 
8568       MachineMemOperand *MMO =
8569         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8570                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8571       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8572       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8573                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8574                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8575                                      Ops, MVT::i32, MMO);
8576       Chain = Bits.getValue(1);
8577     } else
8578       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8579 
8580     SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain);
8581     if (IsStrict)
8582       Chain = FP.getValue(1);
8583 
8584     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8585       if (IsStrict)
8586         FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8587                          DAG.getVTList(MVT::f32, MVT::Other),
8588                          {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8589       else
8590         FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8591                          DAG.getIntPtrConstant(0, dl));
8592     }
8593     return FP;
8594   }
8595 
8596   assert(Src.getValueType() == MVT::i32 &&
8597          "Unhandled INT_TO_FP type in custom expander!");
8598   // Since we only generate this in 64-bit mode, we can take advantage of
8599   // 64-bit registers.  In particular, sign extend the input value into the
8600   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8601   // then lfd it and fcfid it.
8602   MachineFunction &MF = DAG.getMachineFunction();
8603   MachineFrameInfo &MFI = MF.getFrameInfo();
8604   EVT PtrVT = getPointerTy(MF.getDataLayout());
8605 
8606   SDValue Ld;
8607   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8608     ReuseLoadInfo RLI;
8609     bool ReusingLoad;
8610     if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) {
8611       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8612       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8613 
8614       SDValue Store = DAG.getStore(Chain, dl, Src, FIdx,
8615                                    MachinePointerInfo::getFixedStack(
8616                                        DAG.getMachineFunction(), FrameIdx));
8617       Chain = Store;
8618 
8619       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8620              "Expected an i32 store");
8621 
8622       RLI.Ptr = FIdx;
8623       RLI.Chain = Chain;
8624       RLI.MPI =
8625           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8626       RLI.Alignment = Align(4);
8627     }
8628 
8629     MachineMemOperand *MMO =
8630       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8631                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8632     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8633     Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl,
8634                                  DAG.getVTList(MVT::f64, MVT::Other), Ops,
8635                                  MVT::i32, MMO);
8636     Chain = Ld.getValue(1);
8637     if (ReusingLoad)
8638       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8639   } else {
8640     assert(Subtarget.isPPC64() &&
8641            "i32->FP without LFIWAX supported only on PPC64");
8642 
8643     int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
8644     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8645 
8646     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src);
8647 
8648     // STD the extended value into the stack slot.
8649     SDValue Store = DAG.getStore(
8650         Chain, dl, Ext64, FIdx,
8651         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8652     Chain = Store;
8653 
8654     // Load the value as a double.
8655     Ld = DAG.getLoad(
8656         MVT::f64, dl, Chain, FIdx,
8657         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8658     Chain = Ld.getValue(1);
8659   }
8660 
8661   // FCFID it and return it.
8662   SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain);
8663   if (IsStrict)
8664     Chain = FP.getValue(1);
8665   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8666     if (IsStrict)
8667       FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8668                        DAG.getVTList(MVT::f32, MVT::Other),
8669                        {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8670     else
8671       FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8672                        DAG.getIntPtrConstant(0, dl));
8673   }
8674   return FP;
8675 }
8676 
8677 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8678                                             SelectionDAG &DAG) const {
8679   SDLoc dl(Op);
8680   /*
8681    The rounding mode is in bits 30:31 of FPSR, and has the following
8682    settings:
8683      00 Round to nearest
8684      01 Round to 0
8685      10 Round to +inf
8686      11 Round to -inf
8687 
8688   FLT_ROUNDS, on the other hand, expects the following:
8689     -1 Undefined
8690      0 Round to 0
8691      1 Round to nearest
8692      2 Round to +inf
8693      3 Round to -inf
8694 
8695   To perform the conversion, we do:
8696     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8697   */
8698 
8699   MachineFunction &MF = DAG.getMachineFunction();
8700   EVT VT = Op.getValueType();
8701   EVT PtrVT = getPointerTy(MF.getDataLayout());
8702 
8703   // Save FP Control Word to register
8704   SDValue Chain = Op.getOperand(0);
8705   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8706   Chain = MFFS.getValue(1);
8707 
8708   SDValue CWD;
8709   if (isTypeLegal(MVT::i64)) {
8710     CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
8711                       DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS));
8712   } else {
8713     // Save FP register to stack slot
8714     int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
8715     SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8716     Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8717 
8718     // Load FP Control Word from low 32 bits of stack slot.
8719     assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) &&
8720            "Stack slot adjustment is valid only on big endian subtargets!");
8721     SDValue Four = DAG.getConstant(4, dl, PtrVT);
8722     SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8723     CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8724     Chain = CWD.getValue(1);
8725   }
8726 
8727   // Transform as necessary
8728   SDValue CWD1 =
8729     DAG.getNode(ISD::AND, dl, MVT::i32,
8730                 CWD, DAG.getConstant(3, dl, MVT::i32));
8731   SDValue CWD2 =
8732     DAG.getNode(ISD::SRL, dl, MVT::i32,
8733                 DAG.getNode(ISD::AND, dl, MVT::i32,
8734                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8735                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8736                             DAG.getConstant(3, dl, MVT::i32)),
8737                 DAG.getConstant(1, dl, MVT::i32));
8738 
8739   SDValue RetVal =
8740     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8741 
8742   RetVal =
8743       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8744                   dl, VT, RetVal);
8745 
8746   return DAG.getMergeValues({RetVal, Chain}, dl);
8747 }
8748 
8749 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8750   EVT VT = Op.getValueType();
8751   unsigned BitWidth = VT.getSizeInBits();
8752   SDLoc dl(Op);
8753   assert(Op.getNumOperands() == 3 &&
8754          VT == Op.getOperand(1).getValueType() &&
8755          "Unexpected SHL!");
8756 
8757   // Expand into a bunch of logical ops.  Note that these ops
8758   // depend on the PPC behavior for oversized shift amounts.
8759   SDValue Lo = Op.getOperand(0);
8760   SDValue Hi = Op.getOperand(1);
8761   SDValue Amt = Op.getOperand(2);
8762   EVT AmtVT = Amt.getValueType();
8763 
8764   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8765                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8766   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8767   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8768   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8769   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8770                              DAG.getConstant(-BitWidth, dl, AmtVT));
8771   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8772   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8773   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8774   SDValue OutOps[] = { OutLo, OutHi };
8775   return DAG.getMergeValues(OutOps, dl);
8776 }
8777 
8778 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8779   EVT VT = Op.getValueType();
8780   SDLoc dl(Op);
8781   unsigned BitWidth = VT.getSizeInBits();
8782   assert(Op.getNumOperands() == 3 &&
8783          VT == Op.getOperand(1).getValueType() &&
8784          "Unexpected SRL!");
8785 
8786   // Expand into a bunch of logical ops.  Note that these ops
8787   // depend on the PPC behavior for oversized shift amounts.
8788   SDValue Lo = Op.getOperand(0);
8789   SDValue Hi = Op.getOperand(1);
8790   SDValue Amt = Op.getOperand(2);
8791   EVT AmtVT = Amt.getValueType();
8792 
8793   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8794                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8795   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8796   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8797   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8798   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8799                              DAG.getConstant(-BitWidth, dl, AmtVT));
8800   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8801   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8802   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8803   SDValue OutOps[] = { OutLo, OutHi };
8804   return DAG.getMergeValues(OutOps, dl);
8805 }
8806 
8807 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8808   SDLoc dl(Op);
8809   EVT VT = Op.getValueType();
8810   unsigned BitWidth = VT.getSizeInBits();
8811   assert(Op.getNumOperands() == 3 &&
8812          VT == Op.getOperand(1).getValueType() &&
8813          "Unexpected SRA!");
8814 
8815   // Expand into a bunch of logical ops, followed by a select_cc.
8816   SDValue Lo = Op.getOperand(0);
8817   SDValue Hi = Op.getOperand(1);
8818   SDValue Amt = Op.getOperand(2);
8819   EVT AmtVT = Amt.getValueType();
8820 
8821   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8822                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8823   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8824   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8825   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8826   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8827                              DAG.getConstant(-BitWidth, dl, AmtVT));
8828   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8829   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8830   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8831                                   Tmp4, Tmp6, ISD::SETLE);
8832   SDValue OutOps[] = { OutLo, OutHi };
8833   return DAG.getMergeValues(OutOps, dl);
8834 }
8835 
8836 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op,
8837                                             SelectionDAG &DAG) const {
8838   SDLoc dl(Op);
8839   EVT VT = Op.getValueType();
8840   unsigned BitWidth = VT.getSizeInBits();
8841 
8842   bool IsFSHL = Op.getOpcode() == ISD::FSHL;
8843   SDValue X = Op.getOperand(0);
8844   SDValue Y = Op.getOperand(1);
8845   SDValue Z = Op.getOperand(2);
8846   EVT AmtVT = Z.getValueType();
8847 
8848   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
8849   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
8850   // This is simpler than TargetLowering::expandFunnelShift because we can rely
8851   // on PowerPC shift by BW being well defined.
8852   Z = DAG.getNode(ISD::AND, dl, AmtVT, Z,
8853                   DAG.getConstant(BitWidth - 1, dl, AmtVT));
8854   SDValue SubZ =
8855       DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z);
8856   X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ);
8857   Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z);
8858   return DAG.getNode(ISD::OR, dl, VT, X, Y);
8859 }
8860 
8861 //===----------------------------------------------------------------------===//
8862 // Vector related lowering.
8863 //
8864 
8865 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
8866 /// element size of SplatSize. Cast the result to VT.
8867 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
8868                                       SelectionDAG &DAG, const SDLoc &dl) {
8869   static const MVT VTys[] = { // canonical VT to use for each size.
8870     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8871   };
8872 
8873   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8874 
8875   // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
8876   if (Val == ((1LLU << (SplatSize * 8)) - 1)) {
8877     SplatSize = 1;
8878     Val = 0xFF;
8879   }
8880 
8881   EVT CanonicalVT = VTys[SplatSize-1];
8882 
8883   // Build a canonical splat for this value.
8884   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8885 }
8886 
8887 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8888 /// specified intrinsic ID.
8889 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8890                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8891   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8892   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8893                      DAG.getConstant(IID, dl, MVT::i32), Op);
8894 }
8895 
8896 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8897 /// specified intrinsic ID.
8898 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8899                                 SelectionDAG &DAG, const SDLoc &dl,
8900                                 EVT DestVT = MVT::Other) {
8901   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8902   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8903                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8904 }
8905 
8906 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8907 /// specified intrinsic ID.
8908 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8909                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8910                                 EVT DestVT = MVT::Other) {
8911   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8912   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8913                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8914 }
8915 
8916 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8917 /// amount.  The result has the specified value type.
8918 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8919                            SelectionDAG &DAG, const SDLoc &dl) {
8920   // Force LHS/RHS to be the right type.
8921   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8922   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8923 
8924   int Ops[16];
8925   for (unsigned i = 0; i != 16; ++i)
8926     Ops[i] = i + Amt;
8927   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8928   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8929 }
8930 
8931 /// Do we have an efficient pattern in a .td file for this node?
8932 ///
8933 /// \param V - pointer to the BuildVectorSDNode being matched
8934 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8935 ///
8936 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8937 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8938 /// the opposite is true (expansion is beneficial) are:
8939 /// - The node builds a vector out of integers that are not 32 or 64-bits
8940 /// - The node builds a vector out of constants
8941 /// - The node is a "load-and-splat"
8942 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8943 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8944                                             bool HasDirectMove,
8945                                             bool HasP8Vector) {
8946   EVT VecVT = V->getValueType(0);
8947   bool RightType = VecVT == MVT::v2f64 ||
8948     (HasP8Vector && VecVT == MVT::v4f32) ||
8949     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
8950   if (!RightType)
8951     return false;
8952 
8953   bool IsSplat = true;
8954   bool IsLoad = false;
8955   SDValue Op0 = V->getOperand(0);
8956 
8957   // This function is called in a block that confirms the node is not a constant
8958   // splat. So a constant BUILD_VECTOR here means the vector is built out of
8959   // different constants.
8960   if (V->isConstant())
8961     return false;
8962   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
8963     if (V->getOperand(i).isUndef())
8964       return false;
8965     // We want to expand nodes that represent load-and-splat even if the
8966     // loaded value is a floating point truncation or conversion to int.
8967     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
8968         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
8969          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8970         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
8971          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8972         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
8973          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
8974       IsLoad = true;
8975     // If the operands are different or the input is not a load and has more
8976     // uses than just this BV node, then it isn't a splat.
8977     if (V->getOperand(i) != Op0 ||
8978         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
8979       IsSplat = false;
8980   }
8981   return !(IsSplat && IsLoad);
8982 }
8983 
8984 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
8985 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
8986 
8987   SDLoc dl(Op);
8988   SDValue Op0 = Op->getOperand(0);
8989 
8990   if ((Op.getValueType() != MVT::f128) ||
8991       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
8992       (Op0.getOperand(0).getValueType() != MVT::i64) ||
8993       (Op0.getOperand(1).getValueType() != MVT::i64))
8994     return SDValue();
8995 
8996   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
8997                      Op0.getOperand(1));
8998 }
8999 
9000 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
9001   const SDValue *InputLoad = &Op;
9002   if (InputLoad->getOpcode() == ISD::BITCAST)
9003     InputLoad = &InputLoad->getOperand(0);
9004   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
9005       InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
9006     IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
9007     InputLoad = &InputLoad->getOperand(0);
9008   }
9009   if (InputLoad->getOpcode() != ISD::LOAD)
9010     return nullptr;
9011   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9012   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
9013 }
9014 
9015 // Convert the argument APFloat to a single precision APFloat if there is no
9016 // loss in information during the conversion to single precision APFloat and the
9017 // resulting number is not a denormal number. Return true if successful.
9018 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
9019   APFloat APFloatToConvert = ArgAPFloat;
9020   bool LosesInfo = true;
9021   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9022                            &LosesInfo);
9023   bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
9024   if (Success)
9025     ArgAPFloat = APFloatToConvert;
9026   return Success;
9027 }
9028 
9029 // Bitcast the argument APInt to a double and convert it to a single precision
9030 // APFloat, bitcast the APFloat to an APInt and assign it to the original
9031 // argument if there is no loss in information during the conversion from
9032 // double to single precision APFloat and the resulting number is not a denormal
9033 // number. Return true if successful.
9034 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
9035   double DpValue = ArgAPInt.bitsToDouble();
9036   APFloat APFloatDp(DpValue);
9037   bool Success = convertToNonDenormSingle(APFloatDp);
9038   if (Success)
9039     ArgAPInt = APFloatDp.bitcastToAPInt();
9040   return Success;
9041 }
9042 
9043 // Nondestructive check for convertTonNonDenormSingle.
9044 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) {
9045   // Only convert if it loses info, since XXSPLTIDP should
9046   // handle the other case.
9047   APFloat APFloatToConvert = ArgAPFloat;
9048   bool LosesInfo = true;
9049   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9050                            &LosesInfo);
9051 
9052   return (!LosesInfo && !APFloatToConvert.isDenormal());
9053 }
9054 
9055 // If this is a case we can't handle, return null and let the default
9056 // expansion code take care of it.  If we CAN select this case, and if it
9057 // selects to a single instruction, return Op.  Otherwise, if we can codegen
9058 // this case more efficiently than a constant pool load, lower it to the
9059 // sequence of ops that should be used.
9060 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
9061                                              SelectionDAG &DAG) const {
9062   SDLoc dl(Op);
9063   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9064   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
9065 
9066   // Check if this is a splat of a constant value.
9067   APInt APSplatBits, APSplatUndef;
9068   unsigned SplatBitSize;
9069   bool HasAnyUndefs;
9070   bool BVNIsConstantSplat =
9071       BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
9072                            HasAnyUndefs, 0, !Subtarget.isLittleEndian());
9073 
9074   // If it is a splat of a double, check if we can shrink it to a 32 bit
9075   // non-denormal float which when converted back to double gives us the same
9076   // double. This is to exploit the XXSPLTIDP instruction.
9077   // If we lose precision, we use XXSPLTI32DX.
9078   if (BVNIsConstantSplat && (SplatBitSize == 64) &&
9079       Subtarget.hasPrefixInstrs()) {
9080     // Check the type first to short-circuit so we don't modify APSplatBits if
9081     // this block isn't executed.
9082     if ((Op->getValueType(0) == MVT::v2f64) &&
9083         convertToNonDenormSingle(APSplatBits)) {
9084       SDValue SplatNode = DAG.getNode(
9085           PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
9086           DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
9087       return DAG.getBitcast(Op.getValueType(), SplatNode);
9088     } else {
9089       // We may lose precision, so we have to use XXSPLTI32DX.
9090 
9091       uint32_t Hi =
9092           (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32);
9093       uint32_t Lo =
9094           (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF);
9095       SDValue SplatNode = DAG.getUNDEF(MVT::v2i64);
9096 
9097       if (!Hi || !Lo)
9098         // If either load is 0, then we should generate XXLXOR to set to 0.
9099         SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64);
9100 
9101       if (Hi)
9102         SplatNode = DAG.getNode(
9103             PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
9104             DAG.getTargetConstant(0, dl, MVT::i32),
9105             DAG.getTargetConstant(Hi, dl, MVT::i32));
9106 
9107       if (Lo)
9108         SplatNode =
9109             DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
9110                         DAG.getTargetConstant(1, dl, MVT::i32),
9111                         DAG.getTargetConstant(Lo, dl, MVT::i32));
9112 
9113       return DAG.getBitcast(Op.getValueType(), SplatNode);
9114     }
9115   }
9116 
9117   if (!BVNIsConstantSplat || SplatBitSize > 32) {
9118 
9119     bool IsPermutedLoad = false;
9120     const SDValue *InputLoad =
9121         getNormalLoadInput(Op.getOperand(0), IsPermutedLoad);
9122     // Handle load-and-splat patterns as we have instructions that will do this
9123     // in one go.
9124     if (InputLoad && DAG.isSplatValue(Op, true)) {
9125       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9126 
9127       // We have handling for 4 and 8 byte elements.
9128       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
9129 
9130       // Checking for a single use of this load, we have to check for vector
9131       // width (128 bits) / ElementSize uses (since each operand of the
9132       // BUILD_VECTOR is a separate use of the value.
9133       unsigned NumUsesOfInputLD = 128 / ElementSize;
9134       for (SDValue BVInOp : Op->ops())
9135         if (BVInOp.isUndef())
9136           NumUsesOfInputLD--;
9137       assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?");
9138       if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) &&
9139           ((Subtarget.hasVSX() && ElementSize == 64) ||
9140            (Subtarget.hasP9Vector() && ElementSize == 32))) {
9141         SDValue Ops[] = {
9142           LD->getChain(),    // Chain
9143           LD->getBasePtr(),  // Ptr
9144           DAG.getValueType(Op.getValueType()) // VT
9145         };
9146         SDValue LdSplt = DAG.getMemIntrinsicNode(
9147             PPCISD::LD_SPLAT, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
9148             Ops, LD->getMemoryVT(), LD->getMemOperand());
9149         // Replace all uses of the output chain of the original load with the
9150         // output chain of the new load.
9151         DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1),
9152                                       LdSplt.getValue(1));
9153         return LdSplt;
9154       }
9155     }
9156 
9157     // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to
9158     // 32-bits can be lowered to VSX instructions under certain conditions.
9159     // Without VSX, there is no pattern more efficient than expanding the node.
9160     if (Subtarget.hasVSX() && Subtarget.isPPC64() &&
9161         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
9162                                         Subtarget.hasP8Vector()))
9163       return Op;
9164     return SDValue();
9165   }
9166 
9167   uint64_t SplatBits = APSplatBits.getZExtValue();
9168   uint64_t SplatUndef = APSplatUndef.getZExtValue();
9169   unsigned SplatSize = SplatBitSize / 8;
9170 
9171   // First, handle single instruction cases.
9172 
9173   // All zeros?
9174   if (SplatBits == 0) {
9175     // Canonicalize all zero vectors to be v4i32.
9176     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
9177       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
9178       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
9179     }
9180     return Op;
9181   }
9182 
9183   // We have XXSPLTIW for constant splats four bytes wide.
9184   // Given vector length is a multiple of 4, 2-byte splats can be replaced
9185   // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
9186   // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
9187   // turned into a 4-byte splat of 0xABABABAB.
9188   if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
9189     return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2,
9190                                   Op.getValueType(), DAG, dl);
9191 
9192   if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
9193     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9194                                   dl);
9195 
9196   // We have XXSPLTIB for constant splats one byte wide.
9197   if (Subtarget.hasP9Vector() && SplatSize == 1)
9198     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9199                                   dl);
9200 
9201   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
9202   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
9203                     (32-SplatBitSize));
9204   if (SextVal >= -16 && SextVal <= 15)
9205     return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
9206                                   dl);
9207 
9208   // Two instruction sequences.
9209 
9210   // If this value is in the range [-32,30] and is even, use:
9211   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
9212   // If this value is in the range [17,31] and is odd, use:
9213   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
9214   // If this value is in the range [-31,-17] and is odd, use:
9215   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
9216   // Note the last two are three-instruction sequences.
9217   if (SextVal >= -32 && SextVal <= 31) {
9218     // To avoid having these optimizations undone by constant folding,
9219     // we convert to a pseudo that will be expanded later into one of
9220     // the above forms.
9221     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
9222     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
9223               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
9224     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
9225     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
9226     if (VT == Op.getValueType())
9227       return RetVal;
9228     else
9229       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
9230   }
9231 
9232   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
9233   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
9234   // for fneg/fabs.
9235   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9236     // Make -1 and vspltisw -1:
9237     SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
9238 
9239     // Make the VSLW intrinsic, computing 0x8000_0000.
9240     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
9241                                    OnesV, DAG, dl);
9242 
9243     // xor by OnesV to invert it.
9244     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
9245     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9246   }
9247 
9248   // Check to see if this is a wide variety of vsplti*, binop self cases.
9249   static const signed char SplatCsts[] = {
9250     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9251     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9252   };
9253 
9254   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
9255     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9256     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9257     int i = SplatCsts[idx];
9258 
9259     // Figure out what shift amount will be used by altivec if shifted by i in
9260     // this splat size.
9261     unsigned TypeShiftAmt = i & (SplatBitSize-1);
9262 
9263     // vsplti + shl self.
9264     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9265       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9266       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9267         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9268         Intrinsic::ppc_altivec_vslw
9269       };
9270       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9271       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9272     }
9273 
9274     // vsplti + srl self.
9275     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9276       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9277       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9278         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9279         Intrinsic::ppc_altivec_vsrw
9280       };
9281       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9282       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9283     }
9284 
9285     // vsplti + rol self.
9286     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9287                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9288       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9289       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9290         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9291         Intrinsic::ppc_altivec_vrlw
9292       };
9293       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9294       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9295     }
9296 
9297     // t = vsplti c, result = vsldoi t, t, 1
9298     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9299       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9300       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9301       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9302     }
9303     // t = vsplti c, result = vsldoi t, t, 2
9304     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9305       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9306       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9307       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9308     }
9309     // t = vsplti c, result = vsldoi t, t, 3
9310     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9311       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9312       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9313       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9314     }
9315   }
9316 
9317   return SDValue();
9318 }
9319 
9320 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9321 /// the specified operations to build the shuffle.
9322 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9323                                       SDValue RHS, SelectionDAG &DAG,
9324                                       const SDLoc &dl) {
9325   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9326   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9327   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9328 
9329   enum {
9330     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9331     OP_VMRGHW,
9332     OP_VMRGLW,
9333     OP_VSPLTISW0,
9334     OP_VSPLTISW1,
9335     OP_VSPLTISW2,
9336     OP_VSPLTISW3,
9337     OP_VSLDOI4,
9338     OP_VSLDOI8,
9339     OP_VSLDOI12
9340   };
9341 
9342   if (OpNum == OP_COPY) {
9343     if (LHSID == (1*9+2)*9+3) return LHS;
9344     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9345     return RHS;
9346   }
9347 
9348   SDValue OpLHS, OpRHS;
9349   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9350   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9351 
9352   int ShufIdxs[16];
9353   switch (OpNum) {
9354   default: llvm_unreachable("Unknown i32 permute!");
9355   case OP_VMRGHW:
9356     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9357     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9358     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9359     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9360     break;
9361   case OP_VMRGLW:
9362     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9363     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9364     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9365     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9366     break;
9367   case OP_VSPLTISW0:
9368     for (unsigned i = 0; i != 16; ++i)
9369       ShufIdxs[i] = (i&3)+0;
9370     break;
9371   case OP_VSPLTISW1:
9372     for (unsigned i = 0; i != 16; ++i)
9373       ShufIdxs[i] = (i&3)+4;
9374     break;
9375   case OP_VSPLTISW2:
9376     for (unsigned i = 0; i != 16; ++i)
9377       ShufIdxs[i] = (i&3)+8;
9378     break;
9379   case OP_VSPLTISW3:
9380     for (unsigned i = 0; i != 16; ++i)
9381       ShufIdxs[i] = (i&3)+12;
9382     break;
9383   case OP_VSLDOI4:
9384     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9385   case OP_VSLDOI8:
9386     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9387   case OP_VSLDOI12:
9388     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9389   }
9390   EVT VT = OpLHS.getValueType();
9391   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9392   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9393   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9394   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9395 }
9396 
9397 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9398 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9399 /// SDValue.
9400 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9401                                            SelectionDAG &DAG) const {
9402   const unsigned BytesInVector = 16;
9403   bool IsLE = Subtarget.isLittleEndian();
9404   SDLoc dl(N);
9405   SDValue V1 = N->getOperand(0);
9406   SDValue V2 = N->getOperand(1);
9407   unsigned ShiftElts = 0, InsertAtByte = 0;
9408   bool Swap = false;
9409 
9410   // Shifts required to get the byte we want at element 7.
9411   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9412                                    0, 15, 14, 13, 12, 11, 10, 9};
9413   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9414                                 1, 2,  3,  4,  5,  6,  7,  8};
9415 
9416   ArrayRef<int> Mask = N->getMask();
9417   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9418 
9419   // For each mask element, find out if we're just inserting something
9420   // from V2 into V1 or vice versa.
9421   // Possible permutations inserting an element from V2 into V1:
9422   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9423   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9424   //   ...
9425   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9426   // Inserting from V1 into V2 will be similar, except mask range will be
9427   // [16,31].
9428 
9429   bool FoundCandidate = false;
9430   // If both vector operands for the shuffle are the same vector, the mask
9431   // will contain only elements from the first one and the second one will be
9432   // undef.
9433   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9434   // Go through the mask of half-words to find an element that's being moved
9435   // from one vector to the other.
9436   for (unsigned i = 0; i < BytesInVector; ++i) {
9437     unsigned CurrentElement = Mask[i];
9438     // If 2nd operand is undefined, we should only look for element 7 in the
9439     // Mask.
9440     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9441       continue;
9442 
9443     bool OtherElementsInOrder = true;
9444     // Examine the other elements in the Mask to see if they're in original
9445     // order.
9446     for (unsigned j = 0; j < BytesInVector; ++j) {
9447       if (j == i)
9448         continue;
9449       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9450       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9451       // in which we always assume we're always picking from the 1st operand.
9452       int MaskOffset =
9453           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9454       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9455         OtherElementsInOrder = false;
9456         break;
9457       }
9458     }
9459     // If other elements are in original order, we record the number of shifts
9460     // we need to get the element we want into element 7. Also record which byte
9461     // in the vector we should insert into.
9462     if (OtherElementsInOrder) {
9463       // If 2nd operand is undefined, we assume no shifts and no swapping.
9464       if (V2.isUndef()) {
9465         ShiftElts = 0;
9466         Swap = false;
9467       } else {
9468         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9469         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9470                          : BigEndianShifts[CurrentElement & 0xF];
9471         Swap = CurrentElement < BytesInVector;
9472       }
9473       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9474       FoundCandidate = true;
9475       break;
9476     }
9477   }
9478 
9479   if (!FoundCandidate)
9480     return SDValue();
9481 
9482   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9483   // optionally with VECSHL if shift is required.
9484   if (Swap)
9485     std::swap(V1, V2);
9486   if (V2.isUndef())
9487     V2 = V1;
9488   if (ShiftElts) {
9489     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9490                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9491     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9492                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9493   }
9494   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9495                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9496 }
9497 
9498 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9499 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9500 /// SDValue.
9501 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9502                                            SelectionDAG &DAG) const {
9503   const unsigned NumHalfWords = 8;
9504   const unsigned BytesInVector = NumHalfWords * 2;
9505   // Check that the shuffle is on half-words.
9506   if (!isNByteElemShuffleMask(N, 2, 1))
9507     return SDValue();
9508 
9509   bool IsLE = Subtarget.isLittleEndian();
9510   SDLoc dl(N);
9511   SDValue V1 = N->getOperand(0);
9512   SDValue V2 = N->getOperand(1);
9513   unsigned ShiftElts = 0, InsertAtByte = 0;
9514   bool Swap = false;
9515 
9516   // Shifts required to get the half-word we want at element 3.
9517   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9518   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9519 
9520   uint32_t Mask = 0;
9521   uint32_t OriginalOrderLow = 0x1234567;
9522   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9523   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9524   // 32-bit space, only need 4-bit nibbles per element.
9525   for (unsigned i = 0; i < NumHalfWords; ++i) {
9526     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9527     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9528   }
9529 
9530   // For each mask element, find out if we're just inserting something
9531   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9532   // from V2 into V1:
9533   //   X, 1, 2, 3, 4, 5, 6, 7
9534   //   0, X, 2, 3, 4, 5, 6, 7
9535   //   0, 1, X, 3, 4, 5, 6, 7
9536   //   0, 1, 2, X, 4, 5, 6, 7
9537   //   0, 1, 2, 3, X, 5, 6, 7
9538   //   0, 1, 2, 3, 4, X, 6, 7
9539   //   0, 1, 2, 3, 4, 5, X, 7
9540   //   0, 1, 2, 3, 4, 5, 6, X
9541   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9542 
9543   bool FoundCandidate = false;
9544   // Go through the mask of half-words to find an element that's being moved
9545   // from one vector to the other.
9546   for (unsigned i = 0; i < NumHalfWords; ++i) {
9547     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9548     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9549     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9550     uint32_t TargetOrder = 0x0;
9551 
9552     // If both vector operands for the shuffle are the same vector, the mask
9553     // will contain only elements from the first one and the second one will be
9554     // undef.
9555     if (V2.isUndef()) {
9556       ShiftElts = 0;
9557       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9558       TargetOrder = OriginalOrderLow;
9559       Swap = false;
9560       // Skip if not the correct element or mask of other elements don't equal
9561       // to our expected order.
9562       if (MaskOneElt == VINSERTHSrcElem &&
9563           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9564         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9565         FoundCandidate = true;
9566         break;
9567       }
9568     } else { // If both operands are defined.
9569       // Target order is [8,15] if the current mask is between [0,7].
9570       TargetOrder =
9571           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9572       // Skip if mask of other elements don't equal our expected order.
9573       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9574         // We only need the last 3 bits for the number of shifts.
9575         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9576                          : BigEndianShifts[MaskOneElt & 0x7];
9577         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9578         Swap = MaskOneElt < NumHalfWords;
9579         FoundCandidate = true;
9580         break;
9581       }
9582     }
9583   }
9584 
9585   if (!FoundCandidate)
9586     return SDValue();
9587 
9588   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9589   // optionally with VECSHL if shift is required.
9590   if (Swap)
9591     std::swap(V1, V2);
9592   if (V2.isUndef())
9593     V2 = V1;
9594   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9595   if (ShiftElts) {
9596     // Double ShiftElts because we're left shifting on v16i8 type.
9597     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9598                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9599     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9600     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9601                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9602     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9603   }
9604   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9605   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9606                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9607   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9608 }
9609 
9610 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
9611 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
9612 /// return the default SDValue.
9613 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
9614                                               SelectionDAG &DAG) const {
9615   // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
9616   // to v16i8. Peek through the bitcasts to get the actual operands.
9617   SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
9618   SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
9619 
9620   auto ShuffleMask = SVN->getMask();
9621   SDValue VecShuffle(SVN, 0);
9622   SDLoc DL(SVN);
9623 
9624   // Check that we have a four byte shuffle.
9625   if (!isNByteElemShuffleMask(SVN, 4, 1))
9626     return SDValue();
9627 
9628   // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
9629   if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
9630     std::swap(LHS, RHS);
9631     VecShuffle = DAG.getCommutedVectorShuffle(*SVN);
9632     ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask();
9633   }
9634 
9635   // Ensure that the RHS is a vector of constants.
9636   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
9637   if (!BVN)
9638     return SDValue();
9639 
9640   // Check if RHS is a splat of 4-bytes (or smaller).
9641   APInt APSplatValue, APSplatUndef;
9642   unsigned SplatBitSize;
9643   bool HasAnyUndefs;
9644   if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
9645                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9646       SplatBitSize > 32)
9647     return SDValue();
9648 
9649   // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
9650   // The instruction splats a constant C into two words of the source vector
9651   // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
9652   // Thus we check that the shuffle mask is the equivalent  of
9653   // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
9654   // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
9655   // within each word are consecutive, so we only need to check the first byte.
9656   SDValue Index;
9657   bool IsLE = Subtarget.isLittleEndian();
9658   if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
9659       (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
9660        ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
9661     Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
9662   else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
9663            (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
9664             ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
9665     Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
9666   else
9667     return SDValue();
9668 
9669   // If the splat is narrower than 32-bits, we need to get the 32-bit value
9670   // for XXSPLTI32DX.
9671   unsigned SplatVal = APSplatValue.getZExtValue();
9672   for (; SplatBitSize < 32; SplatBitSize <<= 1)
9673     SplatVal |= (SplatVal << SplatBitSize);
9674 
9675   SDValue SplatNode = DAG.getNode(
9676       PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
9677       Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
9678   return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
9679 }
9680 
9681 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9682 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9683 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9684 /// i.e (or (shl x, C1), (srl x, 128-C1)).
9685 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9686   assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9687   assert(Op.getValueType() == MVT::v1i128 &&
9688          "Only set v1i128 as custom, other type shouldn't reach here!");
9689   SDLoc dl(Op);
9690   SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9691   SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9692   unsigned SHLAmt = N1.getConstantOperandVal(0);
9693   if (SHLAmt % 8 == 0) {
9694     SmallVector<int, 16> Mask(16, 0);
9695     std::iota(Mask.begin(), Mask.end(), 0);
9696     std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9697     if (SDValue Shuffle =
9698             DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9699                                  DAG.getUNDEF(MVT::v16i8), Mask))
9700       return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
9701   }
9702   SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
9703   SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
9704                               DAG.getConstant(SHLAmt, dl, MVT::i32));
9705   SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
9706                               DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
9707   SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
9708   return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
9709 }
9710 
9711 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9712 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9713 /// return the code it can be lowered into.  Worst case, it can always be
9714 /// lowered into a vperm.
9715 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9716                                                SelectionDAG &DAG) const {
9717   SDLoc dl(Op);
9718   SDValue V1 = Op.getOperand(0);
9719   SDValue V2 = Op.getOperand(1);
9720   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9721 
9722   // Any nodes that were combined in the target-independent combiner prior
9723   // to vector legalization will not be sent to the target combine. Try to
9724   // combine it here.
9725   if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
9726     if (!isa<ShuffleVectorSDNode>(NewShuffle))
9727       return NewShuffle;
9728     Op = NewShuffle;
9729     SVOp = cast<ShuffleVectorSDNode>(Op);
9730     V1 = Op.getOperand(0);
9731     V2 = Op.getOperand(1);
9732   }
9733   EVT VT = Op.getValueType();
9734   bool isLittleEndian = Subtarget.isLittleEndian();
9735 
9736   unsigned ShiftElts, InsertAtByte;
9737   bool Swap = false;
9738 
9739   // If this is a load-and-splat, we can do that with a single instruction
9740   // in some cases. However if the load has multiple uses, we don't want to
9741   // combine it because that will just produce multiple loads.
9742   bool IsPermutedLoad = false;
9743   const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
9744   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9745       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9746       InputLoad->hasOneUse()) {
9747     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9748     int SplatIdx =
9749       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9750 
9751     // The splat index for permuted loads will be in the left half of the vector
9752     // which is strictly wider than the loaded value by 8 bytes. So we need to
9753     // adjust the splat index to point to the correct address in memory.
9754     if (IsPermutedLoad) {
9755       assert((isLittleEndian || IsFourByte) &&
9756              "Unexpected size for permuted load on big endian target");
9757       SplatIdx += IsFourByte ? 2 : 1;
9758       assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
9759              "Splat of a value outside of the loaded memory");
9760     }
9761 
9762     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9763     // For 4-byte load-and-splat, we need Power9.
9764     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9765       uint64_t Offset = 0;
9766       if (IsFourByte)
9767         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9768       else
9769         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9770 
9771       // If the width of the load is the same as the width of the splat,
9772       // loading with an offset would load the wrong memory.
9773       if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64))
9774         Offset = 0;
9775 
9776       SDValue BasePtr = LD->getBasePtr();
9777       if (Offset != 0)
9778         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9779                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9780       SDValue Ops[] = {
9781         LD->getChain(),    // Chain
9782         BasePtr,           // BasePtr
9783         DAG.getValueType(Op.getValueType()) // VT
9784       };
9785       SDVTList VTL =
9786         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9787       SDValue LdSplt =
9788         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9789                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9790       DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1));
9791       if (LdSplt.getValueType() != SVOp->getValueType(0))
9792         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9793       return LdSplt;
9794     }
9795   }
9796   if (Subtarget.hasP9Vector() &&
9797       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9798                            isLittleEndian)) {
9799     if (Swap)
9800       std::swap(V1, V2);
9801     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9802     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9803     if (ShiftElts) {
9804       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9805                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9806       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9807                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9808       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9809     }
9810     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9811                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9812     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9813   }
9814 
9815   if (Subtarget.hasPrefixInstrs()) {
9816     SDValue SplatInsertNode;
9817     if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
9818       return SplatInsertNode;
9819   }
9820 
9821   if (Subtarget.hasP9Altivec()) {
9822     SDValue NewISDNode;
9823     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9824       return NewISDNode;
9825 
9826     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9827       return NewISDNode;
9828   }
9829 
9830   if (Subtarget.hasVSX() &&
9831       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9832     if (Swap)
9833       std::swap(V1, V2);
9834     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9835     SDValue Conv2 =
9836         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9837 
9838     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9839                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9840     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9841   }
9842 
9843   if (Subtarget.hasVSX() &&
9844     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9845     if (Swap)
9846       std::swap(V1, V2);
9847     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9848     SDValue Conv2 =
9849         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9850 
9851     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9852                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9853     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9854   }
9855 
9856   if (Subtarget.hasP9Vector()) {
9857      if (PPC::isXXBRHShuffleMask(SVOp)) {
9858       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9859       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9860       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9861     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9862       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9863       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9864       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9865     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9866       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9867       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9868       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9869     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9870       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9871       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9872       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9873     }
9874   }
9875 
9876   if (Subtarget.hasVSX()) {
9877     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9878       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9879 
9880       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9881       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9882                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9883       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9884     }
9885 
9886     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9887     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9888       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9889       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9890       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9891     }
9892   }
9893 
9894   // Cases that are handled by instructions that take permute immediates
9895   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9896   // selected by the instruction selector.
9897   if (V2.isUndef()) {
9898     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9899         PPC::isSplatShuffleMask(SVOp, 2) ||
9900         PPC::isSplatShuffleMask(SVOp, 4) ||
9901         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9902         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9903         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9904         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9905         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9906         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9907         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9908         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9909         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9910         (Subtarget.hasP8Altivec() && (
9911          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9912          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9913          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9914       return Op;
9915     }
9916   }
9917 
9918   // Altivec has a variety of "shuffle immediates" that take two vector inputs
9919   // and produce a fixed permutation.  If any of these match, do not lower to
9920   // VPERM.
9921   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
9922   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9923       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9924       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
9925       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9926       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9927       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9928       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9929       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9930       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9931       (Subtarget.hasP8Altivec() && (
9932        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9933        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
9934        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
9935     return Op;
9936 
9937   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
9938   // perfect shuffle table to emit an optimal matching sequence.
9939   ArrayRef<int> PermMask = SVOp->getMask();
9940 
9941   unsigned PFIndexes[4];
9942   bool isFourElementShuffle = true;
9943   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
9944     unsigned EltNo = 8;   // Start out undef.
9945     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
9946       if (PermMask[i*4+j] < 0)
9947         continue;   // Undef, ignore it.
9948 
9949       unsigned ByteSource = PermMask[i*4+j];
9950       if ((ByteSource & 3) != j) {
9951         isFourElementShuffle = false;
9952         break;
9953       }
9954 
9955       if (EltNo == 8) {
9956         EltNo = ByteSource/4;
9957       } else if (EltNo != ByteSource/4) {
9958         isFourElementShuffle = false;
9959         break;
9960       }
9961     }
9962     PFIndexes[i] = EltNo;
9963   }
9964 
9965   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
9966   // perfect shuffle vector to determine if it is cost effective to do this as
9967   // discrete instructions, or whether we should use a vperm.
9968   // For now, we skip this for little endian until such time as we have a
9969   // little-endian perfect shuffle table.
9970   if (isFourElementShuffle && !isLittleEndian) {
9971     // Compute the index in the perfect shuffle table.
9972     unsigned PFTableIndex =
9973       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
9974 
9975     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
9976     unsigned Cost  = (PFEntry >> 30);
9977 
9978     // Determining when to avoid vperm is tricky.  Many things affect the cost
9979     // of vperm, particularly how many times the perm mask needs to be computed.
9980     // For example, if the perm mask can be hoisted out of a loop or is already
9981     // used (perhaps because there are multiple permutes with the same shuffle
9982     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
9983     // the loop requires an extra register.
9984     //
9985     // As a compromise, we only emit discrete instructions if the shuffle can be
9986     // generated in 3 or fewer operations.  When we have loop information
9987     // available, if this block is within a loop, we should avoid using vperm
9988     // for 3-operation perms and use a constant pool load instead.
9989     if (Cost < 3)
9990       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
9991   }
9992 
9993   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
9994   // vector that will get spilled to the constant pool.
9995   if (V2.isUndef()) V2 = V1;
9996 
9997   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
9998   // that it is in input element units, not in bytes.  Convert now.
9999 
10000   // For little endian, the order of the input vectors is reversed, and
10001   // the permutation mask is complemented with respect to 31.  This is
10002   // necessary to produce proper semantics with the big-endian-biased vperm
10003   // instruction.
10004   EVT EltVT = V1.getValueType().getVectorElementType();
10005   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
10006 
10007   SmallVector<SDValue, 16> ResultMask;
10008   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
10009     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
10010 
10011     for (unsigned j = 0; j != BytesPerElement; ++j)
10012       if (isLittleEndian)
10013         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
10014                                              dl, MVT::i32));
10015       else
10016         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
10017                                              MVT::i32));
10018   }
10019 
10020   ShufflesHandledWithVPERM++;
10021   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
10022   LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
10023   LLVM_DEBUG(SVOp->dump());
10024   LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
10025   LLVM_DEBUG(VPermMask.dump());
10026 
10027   if (isLittleEndian)
10028     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10029                        V2, V1, VPermMask);
10030   else
10031     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10032                        V1, V2, VPermMask);
10033 }
10034 
10035 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
10036 /// vector comparison.  If it is, return true and fill in Opc/isDot with
10037 /// information about the intrinsic.
10038 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
10039                                  bool &isDot, const PPCSubtarget &Subtarget) {
10040   unsigned IntrinsicID =
10041       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
10042   CompareOpc = -1;
10043   isDot = false;
10044   switch (IntrinsicID) {
10045   default:
10046     return false;
10047   // Comparison predicates.
10048   case Intrinsic::ppc_altivec_vcmpbfp_p:
10049     CompareOpc = 966;
10050     isDot = true;
10051     break;
10052   case Intrinsic::ppc_altivec_vcmpeqfp_p:
10053     CompareOpc = 198;
10054     isDot = true;
10055     break;
10056   case Intrinsic::ppc_altivec_vcmpequb_p:
10057     CompareOpc = 6;
10058     isDot = true;
10059     break;
10060   case Intrinsic::ppc_altivec_vcmpequh_p:
10061     CompareOpc = 70;
10062     isDot = true;
10063     break;
10064   case Intrinsic::ppc_altivec_vcmpequw_p:
10065     CompareOpc = 134;
10066     isDot = true;
10067     break;
10068   case Intrinsic::ppc_altivec_vcmpequd_p:
10069     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10070       CompareOpc = 199;
10071       isDot = true;
10072     } else
10073       return false;
10074     break;
10075   case Intrinsic::ppc_altivec_vcmpneb_p:
10076   case Intrinsic::ppc_altivec_vcmpneh_p:
10077   case Intrinsic::ppc_altivec_vcmpnew_p:
10078   case Intrinsic::ppc_altivec_vcmpnezb_p:
10079   case Intrinsic::ppc_altivec_vcmpnezh_p:
10080   case Intrinsic::ppc_altivec_vcmpnezw_p:
10081     if (Subtarget.hasP9Altivec()) {
10082       switch (IntrinsicID) {
10083       default:
10084         llvm_unreachable("Unknown comparison intrinsic.");
10085       case Intrinsic::ppc_altivec_vcmpneb_p:
10086         CompareOpc = 7;
10087         break;
10088       case Intrinsic::ppc_altivec_vcmpneh_p:
10089         CompareOpc = 71;
10090         break;
10091       case Intrinsic::ppc_altivec_vcmpnew_p:
10092         CompareOpc = 135;
10093         break;
10094       case Intrinsic::ppc_altivec_vcmpnezb_p:
10095         CompareOpc = 263;
10096         break;
10097       case Intrinsic::ppc_altivec_vcmpnezh_p:
10098         CompareOpc = 327;
10099         break;
10100       case Intrinsic::ppc_altivec_vcmpnezw_p:
10101         CompareOpc = 391;
10102         break;
10103       }
10104       isDot = true;
10105     } else
10106       return false;
10107     break;
10108   case Intrinsic::ppc_altivec_vcmpgefp_p:
10109     CompareOpc = 454;
10110     isDot = true;
10111     break;
10112   case Intrinsic::ppc_altivec_vcmpgtfp_p:
10113     CompareOpc = 710;
10114     isDot = true;
10115     break;
10116   case Intrinsic::ppc_altivec_vcmpgtsb_p:
10117     CompareOpc = 774;
10118     isDot = true;
10119     break;
10120   case Intrinsic::ppc_altivec_vcmpgtsh_p:
10121     CompareOpc = 838;
10122     isDot = true;
10123     break;
10124   case Intrinsic::ppc_altivec_vcmpgtsw_p:
10125     CompareOpc = 902;
10126     isDot = true;
10127     break;
10128   case Intrinsic::ppc_altivec_vcmpgtsd_p:
10129     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10130       CompareOpc = 967;
10131       isDot = true;
10132     } else
10133       return false;
10134     break;
10135   case Intrinsic::ppc_altivec_vcmpgtub_p:
10136     CompareOpc = 518;
10137     isDot = true;
10138     break;
10139   case Intrinsic::ppc_altivec_vcmpgtuh_p:
10140     CompareOpc = 582;
10141     isDot = true;
10142     break;
10143   case Intrinsic::ppc_altivec_vcmpgtuw_p:
10144     CompareOpc = 646;
10145     isDot = true;
10146     break;
10147   case Intrinsic::ppc_altivec_vcmpgtud_p:
10148     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10149       CompareOpc = 711;
10150       isDot = true;
10151     } else
10152       return false;
10153     break;
10154 
10155   case Intrinsic::ppc_altivec_vcmpequq:
10156   case Intrinsic::ppc_altivec_vcmpgtsq:
10157   case Intrinsic::ppc_altivec_vcmpgtuq:
10158     if (!Subtarget.isISA3_1())
10159       return false;
10160     switch (IntrinsicID) {
10161     default:
10162       llvm_unreachable("Unknown comparison intrinsic.");
10163     case Intrinsic::ppc_altivec_vcmpequq:
10164       CompareOpc = 455;
10165       break;
10166     case Intrinsic::ppc_altivec_vcmpgtsq:
10167       CompareOpc = 903;
10168       break;
10169     case Intrinsic::ppc_altivec_vcmpgtuq:
10170       CompareOpc = 647;
10171       break;
10172     }
10173     break;
10174 
10175   // VSX predicate comparisons use the same infrastructure
10176   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10177   case Intrinsic::ppc_vsx_xvcmpgedp_p:
10178   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10179   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10180   case Intrinsic::ppc_vsx_xvcmpgesp_p:
10181   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10182     if (Subtarget.hasVSX()) {
10183       switch (IntrinsicID) {
10184       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10185         CompareOpc = 99;
10186         break;
10187       case Intrinsic::ppc_vsx_xvcmpgedp_p:
10188         CompareOpc = 115;
10189         break;
10190       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10191         CompareOpc = 107;
10192         break;
10193       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10194         CompareOpc = 67;
10195         break;
10196       case Intrinsic::ppc_vsx_xvcmpgesp_p:
10197         CompareOpc = 83;
10198         break;
10199       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10200         CompareOpc = 75;
10201         break;
10202       }
10203       isDot = true;
10204     } else
10205       return false;
10206     break;
10207 
10208   // Normal Comparisons.
10209   case Intrinsic::ppc_altivec_vcmpbfp:
10210     CompareOpc = 966;
10211     break;
10212   case Intrinsic::ppc_altivec_vcmpeqfp:
10213     CompareOpc = 198;
10214     break;
10215   case Intrinsic::ppc_altivec_vcmpequb:
10216     CompareOpc = 6;
10217     break;
10218   case Intrinsic::ppc_altivec_vcmpequh:
10219     CompareOpc = 70;
10220     break;
10221   case Intrinsic::ppc_altivec_vcmpequw:
10222     CompareOpc = 134;
10223     break;
10224   case Intrinsic::ppc_altivec_vcmpequd:
10225     if (Subtarget.hasP8Altivec())
10226       CompareOpc = 199;
10227     else
10228       return false;
10229     break;
10230   case Intrinsic::ppc_altivec_vcmpneb:
10231   case Intrinsic::ppc_altivec_vcmpneh:
10232   case Intrinsic::ppc_altivec_vcmpnew:
10233   case Intrinsic::ppc_altivec_vcmpnezb:
10234   case Intrinsic::ppc_altivec_vcmpnezh:
10235   case Intrinsic::ppc_altivec_vcmpnezw:
10236     if (Subtarget.hasP9Altivec())
10237       switch (IntrinsicID) {
10238       default:
10239         llvm_unreachable("Unknown comparison intrinsic.");
10240       case Intrinsic::ppc_altivec_vcmpneb:
10241         CompareOpc = 7;
10242         break;
10243       case Intrinsic::ppc_altivec_vcmpneh:
10244         CompareOpc = 71;
10245         break;
10246       case Intrinsic::ppc_altivec_vcmpnew:
10247         CompareOpc = 135;
10248         break;
10249       case Intrinsic::ppc_altivec_vcmpnezb:
10250         CompareOpc = 263;
10251         break;
10252       case Intrinsic::ppc_altivec_vcmpnezh:
10253         CompareOpc = 327;
10254         break;
10255       case Intrinsic::ppc_altivec_vcmpnezw:
10256         CompareOpc = 391;
10257         break;
10258       }
10259     else
10260       return false;
10261     break;
10262   case Intrinsic::ppc_altivec_vcmpgefp:
10263     CompareOpc = 454;
10264     break;
10265   case Intrinsic::ppc_altivec_vcmpgtfp:
10266     CompareOpc = 710;
10267     break;
10268   case Intrinsic::ppc_altivec_vcmpgtsb:
10269     CompareOpc = 774;
10270     break;
10271   case Intrinsic::ppc_altivec_vcmpgtsh:
10272     CompareOpc = 838;
10273     break;
10274   case Intrinsic::ppc_altivec_vcmpgtsw:
10275     CompareOpc = 902;
10276     break;
10277   case Intrinsic::ppc_altivec_vcmpgtsd:
10278     if (Subtarget.hasP8Altivec())
10279       CompareOpc = 967;
10280     else
10281       return false;
10282     break;
10283   case Intrinsic::ppc_altivec_vcmpgtub:
10284     CompareOpc = 518;
10285     break;
10286   case Intrinsic::ppc_altivec_vcmpgtuh:
10287     CompareOpc = 582;
10288     break;
10289   case Intrinsic::ppc_altivec_vcmpgtuw:
10290     CompareOpc = 646;
10291     break;
10292   case Intrinsic::ppc_altivec_vcmpgtud:
10293     if (Subtarget.hasP8Altivec())
10294       CompareOpc = 711;
10295     else
10296       return false;
10297     break;
10298   case Intrinsic::ppc_altivec_vcmpequq_p:
10299   case Intrinsic::ppc_altivec_vcmpgtsq_p:
10300   case Intrinsic::ppc_altivec_vcmpgtuq_p:
10301     if (!Subtarget.isISA3_1())
10302       return false;
10303     switch (IntrinsicID) {
10304     default:
10305       llvm_unreachable("Unknown comparison intrinsic.");
10306     case Intrinsic::ppc_altivec_vcmpequq_p:
10307       CompareOpc = 455;
10308       break;
10309     case Intrinsic::ppc_altivec_vcmpgtsq_p:
10310       CompareOpc = 903;
10311       break;
10312     case Intrinsic::ppc_altivec_vcmpgtuq_p:
10313       CompareOpc = 647;
10314       break;
10315     }
10316     isDot = true;
10317     break;
10318   }
10319   return true;
10320 }
10321 
10322 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10323 /// lower, do it, otherwise return null.
10324 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10325                                                    SelectionDAG &DAG) const {
10326   unsigned IntrinsicID =
10327     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10328 
10329   SDLoc dl(Op);
10330 
10331   switch (IntrinsicID) {
10332   case Intrinsic::thread_pointer:
10333     // Reads the thread pointer register, used for __builtin_thread_pointer.
10334     if (Subtarget.isPPC64())
10335       return DAG.getRegister(PPC::X13, MVT::i64);
10336     return DAG.getRegister(PPC::R2, MVT::i32);
10337 
10338   case Intrinsic::ppc_mma_disassemble_acc:
10339   case Intrinsic::ppc_vsx_disassemble_pair: {
10340     int NumVecs = 2;
10341     SDValue WideVec = Op.getOperand(1);
10342     if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) {
10343       NumVecs = 4;
10344       WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec);
10345     }
10346     SmallVector<SDValue, 4> RetOps;
10347     for (int VecNo = 0; VecNo < NumVecs; VecNo++) {
10348       SDValue Extract = DAG.getNode(
10349           PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec,
10350           DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo
10351                                                      : VecNo,
10352                           dl, getPointerTy(DAG.getDataLayout())));
10353       RetOps.push_back(Extract);
10354     }
10355     return DAG.getMergeValues(RetOps, dl);
10356   }
10357   }
10358 
10359   // If this is a lowered altivec predicate compare, CompareOpc is set to the
10360   // opcode number of the comparison.
10361   int CompareOpc;
10362   bool isDot;
10363   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10364     return SDValue();    // Don't custom lower most intrinsics.
10365 
10366   // If this is a non-dot comparison, make the VCMP node and we are done.
10367   if (!isDot) {
10368     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10369                               Op.getOperand(1), Op.getOperand(2),
10370                               DAG.getConstant(CompareOpc, dl, MVT::i32));
10371     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10372   }
10373 
10374   // Create the PPCISD altivec 'dot' comparison node.
10375   SDValue Ops[] = {
10376     Op.getOperand(2),  // LHS
10377     Op.getOperand(3),  // RHS
10378     DAG.getConstant(CompareOpc, dl, MVT::i32)
10379   };
10380   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10381   SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
10382 
10383   // Now that we have the comparison, emit a copy from the CR to a GPR.
10384   // This is flagged to the above dot comparison.
10385   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10386                                 DAG.getRegister(PPC::CR6, MVT::i32),
10387                                 CompNode.getValue(1));
10388 
10389   // Unpack the result based on how the target uses it.
10390   unsigned BitNo;   // Bit # of CR6.
10391   bool InvertBit;   // Invert result?
10392   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
10393   default:  // Can't happen, don't crash on invalid number though.
10394   case 0:   // Return the value of the EQ bit of CR6.
10395     BitNo = 0; InvertBit = false;
10396     break;
10397   case 1:   // Return the inverted value of the EQ bit of CR6.
10398     BitNo = 0; InvertBit = true;
10399     break;
10400   case 2:   // Return the value of the LT bit of CR6.
10401     BitNo = 2; InvertBit = false;
10402     break;
10403   case 3:   // Return the inverted value of the LT bit of CR6.
10404     BitNo = 2; InvertBit = true;
10405     break;
10406   }
10407 
10408   // Shift the bit into the low position.
10409   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10410                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10411   // Isolate the bit.
10412   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10413                       DAG.getConstant(1, dl, MVT::i32));
10414 
10415   // If we are supposed to, toggle the bit.
10416   if (InvertBit)
10417     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10418                         DAG.getConstant(1, dl, MVT::i32));
10419   return Flags;
10420 }
10421 
10422 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10423                                                SelectionDAG &DAG) const {
10424   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10425   // the beginning of the argument list.
10426   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10427   SDLoc DL(Op);
10428   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
10429   case Intrinsic::ppc_cfence: {
10430     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10431     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
10432     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
10433                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
10434                                                   Op.getOperand(ArgStart + 1)),
10435                                       Op.getOperand(0)),
10436                    0);
10437   }
10438   default:
10439     break;
10440   }
10441   return SDValue();
10442 }
10443 
10444 // Lower scalar BSWAP64 to xxbrd.
10445 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
10446   SDLoc dl(Op);
10447   if (!Subtarget.isPPC64())
10448     return Op;
10449   // MTVSRDD
10450   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
10451                    Op.getOperand(0));
10452   // XXBRD
10453   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
10454   // MFVSRD
10455   int VectorIndex = 0;
10456   if (Subtarget.isLittleEndian())
10457     VectorIndex = 1;
10458   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
10459                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
10460   return Op;
10461 }
10462 
10463 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10464 // compared to a value that is atomically loaded (atomic loads zero-extend).
10465 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
10466                                                 SelectionDAG &DAG) const {
10467   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
10468          "Expecting an atomic compare-and-swap here.");
10469   SDLoc dl(Op);
10470   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10471   EVT MemVT = AtomicNode->getMemoryVT();
10472   if (MemVT.getSizeInBits() >= 32)
10473     return Op;
10474 
10475   SDValue CmpOp = Op.getOperand(2);
10476   // If this is already correctly zero-extended, leave it alone.
10477   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10478   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10479     return Op;
10480 
10481   // Clear the high bits of the compare operand.
10482   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10483   SDValue NewCmpOp =
10484     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10485                 DAG.getConstant(MaskVal, dl, MVT::i32));
10486 
10487   // Replace the existing compare operand with the properly zero-extended one.
10488   SmallVector<SDValue, 4> Ops;
10489   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10490     Ops.push_back(AtomicNode->getOperand(i));
10491   Ops[2] = NewCmpOp;
10492   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10493   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10494   auto NodeTy =
10495     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10496   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10497 }
10498 
10499 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10500                                                  SelectionDAG &DAG) const {
10501   SDLoc dl(Op);
10502   // Create a stack slot that is 16-byte aligned.
10503   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10504   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10505   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10506   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10507 
10508   // Store the input value into Value#0 of the stack slot.
10509   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10510                                MachinePointerInfo());
10511   // Load it out.
10512   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10513 }
10514 
10515 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10516                                                   SelectionDAG &DAG) const {
10517   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10518          "Should only be called for ISD::INSERT_VECTOR_ELT");
10519 
10520   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10521 
10522   EVT VT = Op.getValueType();
10523   SDLoc dl(Op);
10524   SDValue V1 = Op.getOperand(0);
10525   SDValue V2 = Op.getOperand(1);
10526   SDValue V3 = Op.getOperand(2);
10527 
10528   if (VT == MVT::v2f64 && C)
10529     return Op;
10530 
10531   if (Subtarget.isISA3_1()) {
10532     if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64())
10533       return SDValue();
10534     // On P10, we have legal lowering for constant and variable indices for
10535     // integer vectors.
10536     if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
10537         VT == MVT::v2i64)
10538       return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3);
10539     // For f32 and f64 vectors, we have legal lowering for variable indices.
10540     // For f32 we also have legal lowering when the element is loaded from
10541     // memory.
10542     if (VT == MVT::v4f32 || VT == MVT::v2f64) {
10543       if (!C || (VT == MVT::v4f32 && dyn_cast<LoadSDNode>(V2)))
10544         return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3);
10545       return Op;
10546     }
10547   }
10548 
10549   // Before P10, we have legal lowering for constant indices but not for
10550   // variable ones.
10551   if (!C)
10552     return SDValue();
10553 
10554   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10555   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10556     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10557     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10558     unsigned InsertAtElement = C->getZExtValue();
10559     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10560     if (Subtarget.isLittleEndian()) {
10561       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10562     }
10563     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10564                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10565   }
10566   return Op;
10567 }
10568 
10569 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
10570                                            SelectionDAG &DAG) const {
10571   SDLoc dl(Op);
10572   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
10573   SDValue LoadChain = LN->getChain();
10574   SDValue BasePtr = LN->getBasePtr();
10575   EVT VT = Op.getValueType();
10576 
10577   if (VT != MVT::v256i1 && VT != MVT::v512i1)
10578     return Op;
10579 
10580   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10581   // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in
10582   // 2 or 4 vsx registers.
10583   assert((VT != MVT::v512i1 || Subtarget.hasMMA()) &&
10584          "Type unsupported without MMA");
10585   assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10586          "Type unsupported without paired vector support");
10587   Align Alignment = LN->getAlign();
10588   SmallVector<SDValue, 4> Loads;
10589   SmallVector<SDValue, 4> LoadChains;
10590   unsigned NumVecs = VT.getSizeInBits() / 128;
10591   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10592     SDValue Load =
10593         DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr,
10594                     LN->getPointerInfo().getWithOffset(Idx * 16),
10595                     commonAlignment(Alignment, Idx * 16),
10596                     LN->getMemOperand()->getFlags(), LN->getAAInfo());
10597     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10598                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10599     Loads.push_back(Load);
10600     LoadChains.push_back(Load.getValue(1));
10601   }
10602   if (Subtarget.isLittleEndian()) {
10603     std::reverse(Loads.begin(), Loads.end());
10604     std::reverse(LoadChains.begin(), LoadChains.end());
10605   }
10606   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10607   SDValue Value =
10608       DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD,
10609                   dl, VT, Loads);
10610   SDValue RetOps[] = {Value, TF};
10611   return DAG.getMergeValues(RetOps, dl);
10612 }
10613 
10614 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10615                                             SelectionDAG &DAG) const {
10616   SDLoc dl(Op);
10617   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10618   SDValue StoreChain = SN->getChain();
10619   SDValue BasePtr = SN->getBasePtr();
10620   SDValue Value = SN->getValue();
10621   EVT StoreVT = Value.getValueType();
10622 
10623   if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1)
10624     return Op;
10625 
10626   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10627   // Here we create 2 or 4 v16i8 stores to store the pair or accumulator
10628   // underlying registers individually.
10629   assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) &&
10630          "Type unsupported without MMA");
10631   assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10632          "Type unsupported without paired vector support");
10633   Align Alignment = SN->getAlign();
10634   SmallVector<SDValue, 4> Stores;
10635   unsigned NumVecs = 2;
10636   if (StoreVT == MVT::v512i1) {
10637     Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value);
10638     NumVecs = 4;
10639   }
10640   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10641     unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx;
10642     SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value,
10643                               DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout())));
10644     SDValue Store =
10645         DAG.getStore(StoreChain, dl, Elt, BasePtr,
10646                      SN->getPointerInfo().getWithOffset(Idx * 16),
10647                      commonAlignment(Alignment, Idx * 16),
10648                      SN->getMemOperand()->getFlags(), SN->getAAInfo());
10649     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10650                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10651     Stores.push_back(Store);
10652   }
10653   SDValue TF = DAG.getTokenFactor(dl, Stores);
10654   return TF;
10655 }
10656 
10657 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10658   SDLoc dl(Op);
10659   if (Op.getValueType() == MVT::v4i32) {
10660     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10661 
10662     SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
10663     // +16 as shift amt.
10664     SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
10665     SDValue RHSSwap =   // = vrlw RHS, 16
10666       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10667 
10668     // Shrinkify inputs to v8i16.
10669     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10670     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10671     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10672 
10673     // Low parts multiplied together, generating 32-bit results (we ignore the
10674     // top parts).
10675     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10676                                         LHS, RHS, DAG, dl, MVT::v4i32);
10677 
10678     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10679                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10680     // Shift the high parts up 16 bits.
10681     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10682                               Neg16, DAG, dl);
10683     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10684   } else if (Op.getValueType() == MVT::v16i8) {
10685     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10686     bool isLittleEndian = Subtarget.isLittleEndian();
10687 
10688     // Multiply the even 8-bit parts, producing 16-bit sums.
10689     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10690                                            LHS, RHS, DAG, dl, MVT::v8i16);
10691     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10692 
10693     // Multiply the odd 8-bit parts, producing 16-bit sums.
10694     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10695                                           LHS, RHS, DAG, dl, MVT::v8i16);
10696     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10697 
10698     // Merge the results together.  Because vmuleub and vmuloub are
10699     // instructions with a big-endian bias, we must reverse the
10700     // element numbering and reverse the meaning of "odd" and "even"
10701     // when generating little endian code.
10702     int Ops[16];
10703     for (unsigned i = 0; i != 8; ++i) {
10704       if (isLittleEndian) {
10705         Ops[i*2  ] = 2*i;
10706         Ops[i*2+1] = 2*i+16;
10707       } else {
10708         Ops[i*2  ] = 2*i+1;
10709         Ops[i*2+1] = 2*i+1+16;
10710       }
10711     }
10712     if (isLittleEndian)
10713       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10714     else
10715       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10716   } else {
10717     llvm_unreachable("Unknown mul to lower!");
10718   }
10719 }
10720 
10721 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
10722   bool IsStrict = Op->isStrictFPOpcode();
10723   if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 &&
10724       !Subtarget.hasP9Vector())
10725     return SDValue();
10726 
10727   return Op;
10728 }
10729 
10730 // Custom lowering for fpext vf32 to v2f64
10731 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10732 
10733   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10734          "Should only be called for ISD::FP_EXTEND");
10735 
10736   // FIXME: handle extends from half precision float vectors on P9.
10737   // We only want to custom lower an extend from v2f32 to v2f64.
10738   if (Op.getValueType() != MVT::v2f64 ||
10739       Op.getOperand(0).getValueType() != MVT::v2f32)
10740     return SDValue();
10741 
10742   SDLoc dl(Op);
10743   SDValue Op0 = Op.getOperand(0);
10744 
10745   switch (Op0.getOpcode()) {
10746   default:
10747     return SDValue();
10748   case ISD::EXTRACT_SUBVECTOR: {
10749     assert(Op0.getNumOperands() == 2 &&
10750            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10751            "Node should have 2 operands with second one being a constant!");
10752 
10753     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10754       return SDValue();
10755 
10756     // Custom lower is only done for high or low doubleword.
10757     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10758     if (Idx % 2 != 0)
10759       return SDValue();
10760 
10761     // Since input is v4f32, at this point Idx is either 0 or 2.
10762     // Shift to get the doubleword position we want.
10763     int DWord = Idx >> 1;
10764 
10765     // High and low word positions are different on little endian.
10766     if (Subtarget.isLittleEndian())
10767       DWord ^= 0x1;
10768 
10769     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10770                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10771   }
10772   case ISD::FADD:
10773   case ISD::FMUL:
10774   case ISD::FSUB: {
10775     SDValue NewLoad[2];
10776     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10777       // Ensure both input are loads.
10778       SDValue LdOp = Op0.getOperand(i);
10779       if (LdOp.getOpcode() != ISD::LOAD)
10780         return SDValue();
10781       // Generate new load node.
10782       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10783       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10784       NewLoad[i] = DAG.getMemIntrinsicNode(
10785           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10786           LD->getMemoryVT(), LD->getMemOperand());
10787     }
10788     SDValue NewOp =
10789         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10790                     NewLoad[1], Op0.getNode()->getFlags());
10791     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10792                        DAG.getConstant(0, dl, MVT::i32));
10793   }
10794   case ISD::LOAD: {
10795     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10796     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10797     SDValue NewLd = DAG.getMemIntrinsicNode(
10798         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10799         LD->getMemoryVT(), LD->getMemOperand());
10800     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10801                        DAG.getConstant(0, dl, MVT::i32));
10802   }
10803   }
10804   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10805 }
10806 
10807 /// LowerOperation - Provide custom lowering hooks for some operations.
10808 ///
10809 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10810   switch (Op.getOpcode()) {
10811   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10812   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10813   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10814   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10815   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10816   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10817   case ISD::STRICT_FSETCC:
10818   case ISD::STRICT_FSETCCS:
10819   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10820   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10821   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10822 
10823   case ISD::INLINEASM:
10824   case ISD::INLINEASM_BR:       return LowerINLINEASM(Op, DAG);
10825   // Variable argument lowering.
10826   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10827   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10828   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10829 
10830   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10831   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10832   case ISD::GET_DYNAMIC_AREA_OFFSET:
10833     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10834 
10835   // Exception handling lowering.
10836   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
10837   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
10838   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
10839 
10840   case ISD::LOAD:               return LowerLOAD(Op, DAG);
10841   case ISD::STORE:              return LowerSTORE(Op, DAG);
10842   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
10843   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
10844   case ISD::STRICT_FP_TO_UINT:
10845   case ISD::STRICT_FP_TO_SINT:
10846   case ISD::FP_TO_UINT:
10847   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
10848   case ISD::STRICT_UINT_TO_FP:
10849   case ISD::STRICT_SINT_TO_FP:
10850   case ISD::UINT_TO_FP:
10851   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
10852   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10853 
10854   // Lower 64-bit shifts.
10855   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
10856   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
10857   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
10858 
10859   case ISD::FSHL:               return LowerFunnelShift(Op, DAG);
10860   case ISD::FSHR:               return LowerFunnelShift(Op, DAG);
10861 
10862   // Vector-related lowering.
10863   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10864   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10865   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10866   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10867   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10868   case ISD::MUL:                return LowerMUL(Op, DAG);
10869   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
10870   case ISD::STRICT_FP_ROUND:
10871   case ISD::FP_ROUND:
10872     return LowerFP_ROUND(Op, DAG);
10873   case ISD::ROTL:               return LowerROTL(Op, DAG);
10874 
10875   // For counter-based loop handling.
10876   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
10877 
10878   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10879 
10880   // Frame & Return address.
10881   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10882   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10883 
10884   case ISD::INTRINSIC_VOID:
10885     return LowerINTRINSIC_VOID(Op, DAG);
10886   case ISD::BSWAP:
10887     return LowerBSWAP(Op, DAG);
10888   case ISD::ATOMIC_CMP_SWAP:
10889     return LowerATOMIC_CMP_SWAP(Op, DAG);
10890   }
10891 }
10892 
10893 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10894                                            SmallVectorImpl<SDValue>&Results,
10895                                            SelectionDAG &DAG) const {
10896   SDLoc dl(N);
10897   switch (N->getOpcode()) {
10898   default:
10899     llvm_unreachable("Do not know how to custom type legalize this operation!");
10900   case ISD::READCYCLECOUNTER: {
10901     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10902     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
10903 
10904     Results.push_back(
10905         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
10906     Results.push_back(RTB.getValue(2));
10907     break;
10908   }
10909   case ISD::INTRINSIC_W_CHAIN: {
10910     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
10911         Intrinsic::loop_decrement)
10912       break;
10913 
10914     assert(N->getValueType(0) == MVT::i1 &&
10915            "Unexpected result type for CTR decrement intrinsic");
10916     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
10917                                  N->getValueType(0));
10918     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
10919     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
10920                                  N->getOperand(1));
10921 
10922     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
10923     Results.push_back(NewInt.getValue(1));
10924     break;
10925   }
10926   case ISD::VAARG: {
10927     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
10928       return;
10929 
10930     EVT VT = N->getValueType(0);
10931 
10932     if (VT == MVT::i64) {
10933       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
10934 
10935       Results.push_back(NewNode);
10936       Results.push_back(NewNode.getValue(1));
10937     }
10938     return;
10939   }
10940   case ISD::STRICT_FP_TO_SINT:
10941   case ISD::STRICT_FP_TO_UINT:
10942   case ISD::FP_TO_SINT:
10943   case ISD::FP_TO_UINT:
10944     // LowerFP_TO_INT() can only handle f32 and f64.
10945     if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() ==
10946         MVT::ppcf128)
10947       return;
10948     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
10949     return;
10950   case ISD::TRUNCATE: {
10951     if (!N->getValueType(0).isVector())
10952       return;
10953     SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG);
10954     if (Lowered)
10955       Results.push_back(Lowered);
10956     return;
10957   }
10958   case ISD::FSHL:
10959   case ISD::FSHR:
10960     // Don't handle funnel shifts here.
10961     return;
10962   case ISD::BITCAST:
10963     // Don't handle bitcast here.
10964     return;
10965   case ISD::FP_EXTEND:
10966     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
10967     if (Lowered)
10968       Results.push_back(Lowered);
10969     return;
10970   }
10971 }
10972 
10973 //===----------------------------------------------------------------------===//
10974 //  Other Lowering Code
10975 //===----------------------------------------------------------------------===//
10976 
10977 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) {
10978   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10979   Function *Func = Intrinsic::getDeclaration(M, Id);
10980   return Builder.CreateCall(Func, {});
10981 }
10982 
10983 // The mappings for emitLeading/TrailingFence is taken from
10984 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
10985 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
10986                                                  Instruction *Inst,
10987                                                  AtomicOrdering Ord) const {
10988   if (Ord == AtomicOrdering::SequentiallyConsistent)
10989     return callIntrinsic(Builder, Intrinsic::ppc_sync);
10990   if (isReleaseOrStronger(Ord))
10991     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10992   return nullptr;
10993 }
10994 
10995 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
10996                                                   Instruction *Inst,
10997                                                   AtomicOrdering Ord) const {
10998   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
10999     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
11000     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
11001     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
11002     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
11003       return Builder.CreateCall(
11004           Intrinsic::getDeclaration(
11005               Builder.GetInsertBlock()->getParent()->getParent(),
11006               Intrinsic::ppc_cfence, {Inst->getType()}),
11007           {Inst});
11008     // FIXME: Can use isync for rmw operation.
11009     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11010   }
11011   return nullptr;
11012 }
11013 
11014 MachineBasicBlock *
11015 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
11016                                     unsigned AtomicSize,
11017                                     unsigned BinOpcode,
11018                                     unsigned CmpOpcode,
11019                                     unsigned CmpPred) const {
11020   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11021   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11022 
11023   auto LoadMnemonic = PPC::LDARX;
11024   auto StoreMnemonic = PPC::STDCX;
11025   switch (AtomicSize) {
11026   default:
11027     llvm_unreachable("Unexpected size of atomic entity");
11028   case 1:
11029     LoadMnemonic = PPC::LBARX;
11030     StoreMnemonic = PPC::STBCX;
11031     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11032     break;
11033   case 2:
11034     LoadMnemonic = PPC::LHARX;
11035     StoreMnemonic = PPC::STHCX;
11036     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11037     break;
11038   case 4:
11039     LoadMnemonic = PPC::LWARX;
11040     StoreMnemonic = PPC::STWCX;
11041     break;
11042   case 8:
11043     LoadMnemonic = PPC::LDARX;
11044     StoreMnemonic = PPC::STDCX;
11045     break;
11046   }
11047 
11048   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11049   MachineFunction *F = BB->getParent();
11050   MachineFunction::iterator It = ++BB->getIterator();
11051 
11052   Register dest = MI.getOperand(0).getReg();
11053   Register ptrA = MI.getOperand(1).getReg();
11054   Register ptrB = MI.getOperand(2).getReg();
11055   Register incr = MI.getOperand(3).getReg();
11056   DebugLoc dl = MI.getDebugLoc();
11057 
11058   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11059   MachineBasicBlock *loop2MBB =
11060     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11061   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11062   F->insert(It, loopMBB);
11063   if (CmpOpcode)
11064     F->insert(It, loop2MBB);
11065   F->insert(It, exitMBB);
11066   exitMBB->splice(exitMBB->begin(), BB,
11067                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11068   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11069 
11070   MachineRegisterInfo &RegInfo = F->getRegInfo();
11071   Register TmpReg = (!BinOpcode) ? incr :
11072     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
11073                                            : &PPC::GPRCRegClass);
11074 
11075   //  thisMBB:
11076   //   ...
11077   //   fallthrough --> loopMBB
11078   BB->addSuccessor(loopMBB);
11079 
11080   //  loopMBB:
11081   //   l[wd]arx dest, ptr
11082   //   add r0, dest, incr
11083   //   st[wd]cx. r0, ptr
11084   //   bne- loopMBB
11085   //   fallthrough --> exitMBB
11086 
11087   // For max/min...
11088   //  loopMBB:
11089   //   l[wd]arx dest, ptr
11090   //   cmpl?[wd] incr, dest
11091   //   bgt exitMBB
11092   //  loop2MBB:
11093   //   st[wd]cx. dest, ptr
11094   //   bne- loopMBB
11095   //   fallthrough --> exitMBB
11096 
11097   BB = loopMBB;
11098   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
11099     .addReg(ptrA).addReg(ptrB);
11100   if (BinOpcode)
11101     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
11102   if (CmpOpcode) {
11103     // Signed comparisons of byte or halfword values must be sign-extended.
11104     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
11105       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11106       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
11107               ExtReg).addReg(dest);
11108       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11109         .addReg(incr).addReg(ExtReg);
11110     } else
11111       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11112         .addReg(incr).addReg(dest);
11113 
11114     BuildMI(BB, dl, TII->get(PPC::BCC))
11115       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
11116     BB->addSuccessor(loop2MBB);
11117     BB->addSuccessor(exitMBB);
11118     BB = loop2MBB;
11119   }
11120   BuildMI(BB, dl, TII->get(StoreMnemonic))
11121     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
11122   BuildMI(BB, dl, TII->get(PPC::BCC))
11123     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
11124   BB->addSuccessor(loopMBB);
11125   BB->addSuccessor(exitMBB);
11126 
11127   //  exitMBB:
11128   //   ...
11129   BB = exitMBB;
11130   return BB;
11131 }
11132 
11133 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) {
11134   switch(MI.getOpcode()) {
11135   default:
11136     return false;
11137   case PPC::COPY:
11138     return TII->isSignExtended(MI);
11139   case PPC::LHA:
11140   case PPC::LHA8:
11141   case PPC::LHAU:
11142   case PPC::LHAU8:
11143   case PPC::LHAUX:
11144   case PPC::LHAUX8:
11145   case PPC::LHAX:
11146   case PPC::LHAX8:
11147   case PPC::LWA:
11148   case PPC::LWAUX:
11149   case PPC::LWAX:
11150   case PPC::LWAX_32:
11151   case PPC::LWA_32:
11152   case PPC::PLHA:
11153   case PPC::PLHA8:
11154   case PPC::PLHA8pc:
11155   case PPC::PLHApc:
11156   case PPC::PLWA:
11157   case PPC::PLWA8:
11158   case PPC::PLWA8pc:
11159   case PPC::PLWApc:
11160   case PPC::EXTSB:
11161   case PPC::EXTSB8:
11162   case PPC::EXTSB8_32_64:
11163   case PPC::EXTSB8_rec:
11164   case PPC::EXTSB_rec:
11165   case PPC::EXTSH:
11166   case PPC::EXTSH8:
11167   case PPC::EXTSH8_32_64:
11168   case PPC::EXTSH8_rec:
11169   case PPC::EXTSH_rec:
11170   case PPC::EXTSW:
11171   case PPC::EXTSWSLI:
11172   case PPC::EXTSWSLI_32_64:
11173   case PPC::EXTSWSLI_32_64_rec:
11174   case PPC::EXTSWSLI_rec:
11175   case PPC::EXTSW_32:
11176   case PPC::EXTSW_32_64:
11177   case PPC::EXTSW_32_64_rec:
11178   case PPC::EXTSW_rec:
11179   case PPC::SRAW:
11180   case PPC::SRAWI:
11181   case PPC::SRAWI_rec:
11182   case PPC::SRAW_rec:
11183     return true;
11184   }
11185   return false;
11186 }
11187 
11188 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
11189     MachineInstr &MI, MachineBasicBlock *BB,
11190     bool is8bit, // operation
11191     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
11192   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11193   const PPCInstrInfo *TII = Subtarget.getInstrInfo();
11194 
11195   // If this is a signed comparison and the value being compared is not known
11196   // to be sign extended, sign extend it here.
11197   DebugLoc dl = MI.getDebugLoc();
11198   MachineFunction *F = BB->getParent();
11199   MachineRegisterInfo &RegInfo = F->getRegInfo();
11200   Register incr = MI.getOperand(3).getReg();
11201   bool IsSignExtended = Register::isVirtualRegister(incr) &&
11202     isSignExtended(*RegInfo.getVRegDef(incr), TII);
11203 
11204   if (CmpOpcode == PPC::CMPW && !IsSignExtended) {
11205     Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11206     BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg)
11207         .addReg(MI.getOperand(3).getReg());
11208     MI.getOperand(3).setReg(ValueReg);
11209   }
11210   // If we support part-word atomic mnemonics, just use them
11211   if (Subtarget.hasPartwordAtomics())
11212     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
11213                             CmpPred);
11214 
11215   // In 64 bit mode we have to use 64 bits for addresses, even though the
11216   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
11217   // registers without caring whether they're 32 or 64, but here we're
11218   // doing actual arithmetic on the addresses.
11219   bool is64bit = Subtarget.isPPC64();
11220   bool isLittleEndian = Subtarget.isLittleEndian();
11221   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11222 
11223   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11224   MachineFunction::iterator It = ++BB->getIterator();
11225 
11226   Register dest = MI.getOperand(0).getReg();
11227   Register ptrA = MI.getOperand(1).getReg();
11228   Register ptrB = MI.getOperand(2).getReg();
11229 
11230   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11231   MachineBasicBlock *loop2MBB =
11232       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11233   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11234   F->insert(It, loopMBB);
11235   if (CmpOpcode)
11236     F->insert(It, loop2MBB);
11237   F->insert(It, exitMBB);
11238   exitMBB->splice(exitMBB->begin(), BB,
11239                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11240   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11241 
11242   const TargetRegisterClass *RC =
11243       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11244   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11245 
11246   Register PtrReg = RegInfo.createVirtualRegister(RC);
11247   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11248   Register ShiftReg =
11249       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11250   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
11251   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11252   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11253   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11254   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11255   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
11256   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11257   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11258   Register SrwDestReg = RegInfo.createVirtualRegister(GPRC);
11259   Register Ptr1Reg;
11260   Register TmpReg =
11261       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
11262 
11263   //  thisMBB:
11264   //   ...
11265   //   fallthrough --> loopMBB
11266   BB->addSuccessor(loopMBB);
11267 
11268   // The 4-byte load must be aligned, while a char or short may be
11269   // anywhere in the word.  Hence all this nasty bookkeeping code.
11270   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11271   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11272   //   xori shift, shift1, 24 [16]
11273   //   rlwinm ptr, ptr1, 0, 0, 29
11274   //   slw incr2, incr, shift
11275   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11276   //   slw mask, mask2, shift
11277   //  loopMBB:
11278   //   lwarx tmpDest, ptr
11279   //   add tmp, tmpDest, incr2
11280   //   andc tmp2, tmpDest, mask
11281   //   and tmp3, tmp, mask
11282   //   or tmp4, tmp3, tmp2
11283   //   stwcx. tmp4, ptr
11284   //   bne- loopMBB
11285   //   fallthrough --> exitMBB
11286   //   srw SrwDest, tmpDest, shift
11287   //   rlwinm SrwDest, SrwDest, 0, 24 [16], 31
11288   if (ptrA != ZeroReg) {
11289     Ptr1Reg = RegInfo.createVirtualRegister(RC);
11290     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11291         .addReg(ptrA)
11292         .addReg(ptrB);
11293   } else {
11294     Ptr1Reg = ptrB;
11295   }
11296   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11297   // mode.
11298   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11299       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11300       .addImm(3)
11301       .addImm(27)
11302       .addImm(is8bit ? 28 : 27);
11303   if (!isLittleEndian)
11304     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11305         .addReg(Shift1Reg)
11306         .addImm(is8bit ? 24 : 16);
11307   if (is64bit)
11308     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11309         .addReg(Ptr1Reg)
11310         .addImm(0)
11311         .addImm(61);
11312   else
11313     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11314         .addReg(Ptr1Reg)
11315         .addImm(0)
11316         .addImm(0)
11317         .addImm(29);
11318   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
11319   if (is8bit)
11320     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11321   else {
11322     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11323     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11324         .addReg(Mask3Reg)
11325         .addImm(65535);
11326   }
11327   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11328       .addReg(Mask2Reg)
11329       .addReg(ShiftReg);
11330 
11331   BB = loopMBB;
11332   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11333       .addReg(ZeroReg)
11334       .addReg(PtrReg);
11335   if (BinOpcode)
11336     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
11337         .addReg(Incr2Reg)
11338         .addReg(TmpDestReg);
11339   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11340       .addReg(TmpDestReg)
11341       .addReg(MaskReg);
11342   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
11343   if (CmpOpcode) {
11344     // For unsigned comparisons, we can directly compare the shifted values.
11345     // For signed comparisons we shift and sign extend.
11346     Register SReg = RegInfo.createVirtualRegister(GPRC);
11347     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
11348         .addReg(TmpDestReg)
11349         .addReg(MaskReg);
11350     unsigned ValueReg = SReg;
11351     unsigned CmpReg = Incr2Reg;
11352     if (CmpOpcode == PPC::CMPW) {
11353       ValueReg = RegInfo.createVirtualRegister(GPRC);
11354       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
11355           .addReg(SReg)
11356           .addReg(ShiftReg);
11357       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
11358       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
11359           .addReg(ValueReg);
11360       ValueReg = ValueSReg;
11361       CmpReg = incr;
11362     }
11363     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11364         .addReg(CmpReg)
11365         .addReg(ValueReg);
11366     BuildMI(BB, dl, TII->get(PPC::BCC))
11367         .addImm(CmpPred)
11368         .addReg(PPC::CR0)
11369         .addMBB(exitMBB);
11370     BB->addSuccessor(loop2MBB);
11371     BB->addSuccessor(exitMBB);
11372     BB = loop2MBB;
11373   }
11374   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
11375   BuildMI(BB, dl, TII->get(PPC::STWCX))
11376       .addReg(Tmp4Reg)
11377       .addReg(ZeroReg)
11378       .addReg(PtrReg);
11379   BuildMI(BB, dl, TII->get(PPC::BCC))
11380       .addImm(PPC::PRED_NE)
11381       .addReg(PPC::CR0)
11382       .addMBB(loopMBB);
11383   BB->addSuccessor(loopMBB);
11384   BB->addSuccessor(exitMBB);
11385 
11386   //  exitMBB:
11387   //   ...
11388   BB = exitMBB;
11389   // Since the shift amount is not a constant, we need to clear
11390   // the upper bits with a separate RLWINM.
11391   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest)
11392       .addReg(SrwDestReg)
11393       .addImm(0)
11394       .addImm(is8bit ? 24 : 16)
11395       .addImm(31);
11396   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg)
11397       .addReg(TmpDestReg)
11398       .addReg(ShiftReg);
11399   return BB;
11400 }
11401 
11402 llvm::MachineBasicBlock *
11403 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
11404                                     MachineBasicBlock *MBB) const {
11405   DebugLoc DL = MI.getDebugLoc();
11406   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11407   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11408 
11409   MachineFunction *MF = MBB->getParent();
11410   MachineRegisterInfo &MRI = MF->getRegInfo();
11411 
11412   const BasicBlock *BB = MBB->getBasicBlock();
11413   MachineFunction::iterator I = ++MBB->getIterator();
11414 
11415   Register DstReg = MI.getOperand(0).getReg();
11416   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
11417   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
11418   Register mainDstReg = MRI.createVirtualRegister(RC);
11419   Register restoreDstReg = MRI.createVirtualRegister(RC);
11420 
11421   MVT PVT = getPointerTy(MF->getDataLayout());
11422   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11423          "Invalid Pointer Size!");
11424   // For v = setjmp(buf), we generate
11425   //
11426   // thisMBB:
11427   //  SjLjSetup mainMBB
11428   //  bl mainMBB
11429   //  v_restore = 1
11430   //  b sinkMBB
11431   //
11432   // mainMBB:
11433   //  buf[LabelOffset] = LR
11434   //  v_main = 0
11435   //
11436   // sinkMBB:
11437   //  v = phi(main, restore)
11438   //
11439 
11440   MachineBasicBlock *thisMBB = MBB;
11441   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
11442   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
11443   MF->insert(I, mainMBB);
11444   MF->insert(I, sinkMBB);
11445 
11446   MachineInstrBuilder MIB;
11447 
11448   // Transfer the remainder of BB and its successor edges to sinkMBB.
11449   sinkMBB->splice(sinkMBB->begin(), MBB,
11450                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11451   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
11452 
11453   // Note that the structure of the jmp_buf used here is not compatible
11454   // with that used by libc, and is not designed to be. Specifically, it
11455   // stores only those 'reserved' registers that LLVM does not otherwise
11456   // understand how to spill. Also, by convention, by the time this
11457   // intrinsic is called, Clang has already stored the frame address in the
11458   // first slot of the buffer and stack address in the third. Following the
11459   // X86 target code, we'll store the jump address in the second slot. We also
11460   // need to save the TOC pointer (R2) to handle jumps between shared
11461   // libraries, and that will be stored in the fourth slot. The thread
11462   // identifier (R13) is not affected.
11463 
11464   // thisMBB:
11465   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11466   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11467   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11468 
11469   // Prepare IP either in reg.
11470   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11471   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11472   Register BufReg = MI.getOperand(1).getReg();
11473 
11474   if (Subtarget.is64BitELFABI()) {
11475     setUsesTOCBasePtr(*MBB->getParent());
11476     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11477               .addReg(PPC::X2)
11478               .addImm(TOCOffset)
11479               .addReg(BufReg)
11480               .cloneMemRefs(MI);
11481   }
11482 
11483   // Naked functions never have a base pointer, and so we use r1. For all
11484   // other functions, this decision must be delayed until during PEI.
11485   unsigned BaseReg;
11486   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11487     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11488   else
11489     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11490 
11491   MIB = BuildMI(*thisMBB, MI, DL,
11492                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11493             .addReg(BaseReg)
11494             .addImm(BPOffset)
11495             .addReg(BufReg)
11496             .cloneMemRefs(MI);
11497 
11498   // Setup
11499   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11500   MIB.addRegMask(TRI->getNoPreservedMask());
11501 
11502   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11503 
11504   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11505           .addMBB(mainMBB);
11506   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11507 
11508   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11509   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11510 
11511   // mainMBB:
11512   //  mainDstReg = 0
11513   MIB =
11514       BuildMI(mainMBB, DL,
11515               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11516 
11517   // Store IP
11518   if (Subtarget.isPPC64()) {
11519     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11520             .addReg(LabelReg)
11521             .addImm(LabelOffset)
11522             .addReg(BufReg);
11523   } else {
11524     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11525             .addReg(LabelReg)
11526             .addImm(LabelOffset)
11527             .addReg(BufReg);
11528   }
11529   MIB.cloneMemRefs(MI);
11530 
11531   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11532   mainMBB->addSuccessor(sinkMBB);
11533 
11534   // sinkMBB:
11535   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11536           TII->get(PPC::PHI), DstReg)
11537     .addReg(mainDstReg).addMBB(mainMBB)
11538     .addReg(restoreDstReg).addMBB(thisMBB);
11539 
11540   MI.eraseFromParent();
11541   return sinkMBB;
11542 }
11543 
11544 MachineBasicBlock *
11545 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11546                                      MachineBasicBlock *MBB) const {
11547   DebugLoc DL = MI.getDebugLoc();
11548   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11549 
11550   MachineFunction *MF = MBB->getParent();
11551   MachineRegisterInfo &MRI = MF->getRegInfo();
11552 
11553   MVT PVT = getPointerTy(MF->getDataLayout());
11554   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11555          "Invalid Pointer Size!");
11556 
11557   const TargetRegisterClass *RC =
11558     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11559   Register Tmp = MRI.createVirtualRegister(RC);
11560   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11561   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11562   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11563   unsigned BP =
11564       (PVT == MVT::i64)
11565           ? PPC::X30
11566           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11567                                                               : PPC::R30);
11568 
11569   MachineInstrBuilder MIB;
11570 
11571   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11572   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11573   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11574   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11575 
11576   Register BufReg = MI.getOperand(0).getReg();
11577 
11578   // Reload FP (the jumped-to function may not have had a
11579   // frame pointer, and if so, then its r31 will be restored
11580   // as necessary).
11581   if (PVT == MVT::i64) {
11582     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11583             .addImm(0)
11584             .addReg(BufReg);
11585   } else {
11586     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11587             .addImm(0)
11588             .addReg(BufReg);
11589   }
11590   MIB.cloneMemRefs(MI);
11591 
11592   // Reload IP
11593   if (PVT == MVT::i64) {
11594     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11595             .addImm(LabelOffset)
11596             .addReg(BufReg);
11597   } else {
11598     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11599             .addImm(LabelOffset)
11600             .addReg(BufReg);
11601   }
11602   MIB.cloneMemRefs(MI);
11603 
11604   // Reload SP
11605   if (PVT == MVT::i64) {
11606     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11607             .addImm(SPOffset)
11608             .addReg(BufReg);
11609   } else {
11610     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11611             .addImm(SPOffset)
11612             .addReg(BufReg);
11613   }
11614   MIB.cloneMemRefs(MI);
11615 
11616   // Reload BP
11617   if (PVT == MVT::i64) {
11618     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11619             .addImm(BPOffset)
11620             .addReg(BufReg);
11621   } else {
11622     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11623             .addImm(BPOffset)
11624             .addReg(BufReg);
11625   }
11626   MIB.cloneMemRefs(MI);
11627 
11628   // Reload TOC
11629   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11630     setUsesTOCBasePtr(*MBB->getParent());
11631     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11632               .addImm(TOCOffset)
11633               .addReg(BufReg)
11634               .cloneMemRefs(MI);
11635   }
11636 
11637   // Jump
11638   BuildMI(*MBB, MI, DL,
11639           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11640   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11641 
11642   MI.eraseFromParent();
11643   return MBB;
11644 }
11645 
11646 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
11647   // If the function specifically requests inline stack probes, emit them.
11648   if (MF.getFunction().hasFnAttribute("probe-stack"))
11649     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
11650            "inline-asm";
11651   return false;
11652 }
11653 
11654 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const {
11655   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
11656   unsigned StackAlign = TFI->getStackAlignment();
11657   assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
11658          "Unexpected stack alignment");
11659   // The default stack probe size is 4096 if the function has no
11660   // stack-probe-size attribute.
11661   unsigned StackProbeSize = 4096;
11662   const Function &Fn = MF.getFunction();
11663   if (Fn.hasFnAttribute("stack-probe-size"))
11664     Fn.getFnAttribute("stack-probe-size")
11665         .getValueAsString()
11666         .getAsInteger(0, StackProbeSize);
11667   // Round down to the stack alignment.
11668   StackProbeSize &= ~(StackAlign - 1);
11669   return StackProbeSize ? StackProbeSize : StackAlign;
11670 }
11671 
11672 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
11673 // into three phases. In the first phase, it uses pseudo instruction
11674 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
11675 // FinalStackPtr. In the second phase, it generates a loop for probing blocks.
11676 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
11677 // MaxCallFrameSize so that it can calculate correct data area pointer.
11678 MachineBasicBlock *
11679 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
11680                                     MachineBasicBlock *MBB) const {
11681   const bool isPPC64 = Subtarget.isPPC64();
11682   MachineFunction *MF = MBB->getParent();
11683   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11684   DebugLoc DL = MI.getDebugLoc();
11685   const unsigned ProbeSize = getStackProbeSize(*MF);
11686   const BasicBlock *ProbedBB = MBB->getBasicBlock();
11687   MachineRegisterInfo &MRI = MF->getRegInfo();
11688   // The CFG of probing stack looks as
11689   //         +-----+
11690   //         | MBB |
11691   //         +--+--+
11692   //            |
11693   //       +----v----+
11694   //  +--->+ TestMBB +---+
11695   //  |    +----+----+   |
11696   //  |         |        |
11697   //  |   +-----v----+   |
11698   //  +---+ BlockMBB |   |
11699   //      +----------+   |
11700   //                     |
11701   //       +---------+   |
11702   //       | TailMBB +<--+
11703   //       +---------+
11704   // In MBB, calculate previous frame pointer and final stack pointer.
11705   // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
11706   // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
11707   // TailMBB is spliced via \p MI.
11708   MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
11709   MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
11710   MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
11711 
11712   MachineFunction::iterator MBBIter = ++MBB->getIterator();
11713   MF->insert(MBBIter, TestMBB);
11714   MF->insert(MBBIter, BlockMBB);
11715   MF->insert(MBBIter, TailMBB);
11716 
11717   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
11718   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11719 
11720   Register DstReg = MI.getOperand(0).getReg();
11721   Register NegSizeReg = MI.getOperand(1).getReg();
11722   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
11723   Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11724   Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11725   Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11726 
11727   // Since value of NegSizeReg might be realigned in prologepilog, insert a
11728   // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
11729   // NegSize.
11730   unsigned ProbeOpc;
11731   if (!MRI.hasOneNonDBGUse(NegSizeReg))
11732     ProbeOpc =
11733         isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
11734   else
11735     // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
11736     // and NegSizeReg will be allocated in the same phyreg to avoid
11737     // redundant copy when NegSizeReg has only one use which is current MI and
11738     // will be replaced by PREPARE_PROBED_ALLOCA then.
11739     ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
11740                        : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
11741   BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
11742       .addDef(ActualNegSizeReg)
11743       .addReg(NegSizeReg)
11744       .add(MI.getOperand(2))
11745       .add(MI.getOperand(3));
11746 
11747   // Calculate final stack pointer, which equals to SP + ActualNegSize.
11748   BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
11749           FinalStackPtr)
11750       .addReg(SPReg)
11751       .addReg(ActualNegSizeReg);
11752 
11753   // Materialize a scratch register for update.
11754   int64_t NegProbeSize = -(int64_t)ProbeSize;
11755   assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
11756   Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11757   if (!isInt<16>(NegProbeSize)) {
11758     Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11759     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
11760         .addImm(NegProbeSize >> 16);
11761     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
11762             ScratchReg)
11763         .addReg(TempReg)
11764         .addImm(NegProbeSize & 0xFFFF);
11765   } else
11766     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
11767         .addImm(NegProbeSize);
11768 
11769   {
11770     // Probing leading residual part.
11771     Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11772     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
11773         .addReg(ActualNegSizeReg)
11774         .addReg(ScratchReg);
11775     Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11776     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
11777         .addReg(Div)
11778         .addReg(ScratchReg);
11779     Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11780     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
11781         .addReg(Mul)
11782         .addReg(ActualNegSizeReg);
11783     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11784         .addReg(FramePointer)
11785         .addReg(SPReg)
11786         .addReg(NegMod);
11787   }
11788 
11789   {
11790     // Remaining part should be multiple of ProbeSize.
11791     Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
11792     BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
11793         .addReg(SPReg)
11794         .addReg(FinalStackPtr);
11795     BuildMI(TestMBB, DL, TII->get(PPC::BCC))
11796         .addImm(PPC::PRED_EQ)
11797         .addReg(CmpResult)
11798         .addMBB(TailMBB);
11799     TestMBB->addSuccessor(BlockMBB);
11800     TestMBB->addSuccessor(TailMBB);
11801   }
11802 
11803   {
11804     // Touch the block.
11805     // |P...|P...|P...
11806     BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11807         .addReg(FramePointer)
11808         .addReg(SPReg)
11809         .addReg(ScratchReg);
11810     BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
11811     BlockMBB->addSuccessor(TestMBB);
11812   }
11813 
11814   // Calculation of MaxCallFrameSize is deferred to prologepilog, use
11815   // DYNAREAOFFSET pseudo instruction to get the future result.
11816   Register MaxCallFrameSizeReg =
11817       MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11818   BuildMI(TailMBB, DL,
11819           TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
11820           MaxCallFrameSizeReg)
11821       .add(MI.getOperand(2))
11822       .add(MI.getOperand(3));
11823   BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
11824       .addReg(SPReg)
11825       .addReg(MaxCallFrameSizeReg);
11826 
11827   // Splice instructions after MI to TailMBB.
11828   TailMBB->splice(TailMBB->end(), MBB,
11829                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11830   TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
11831   MBB->addSuccessor(TestMBB);
11832 
11833   // Delete the pseudo instruction.
11834   MI.eraseFromParent();
11835 
11836   ++NumDynamicAllocaProbed;
11837   return TailMBB;
11838 }
11839 
11840 MachineBasicBlock *
11841 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11842                                                MachineBasicBlock *BB) const {
11843   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11844       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11845     if (Subtarget.is64BitELFABI() &&
11846         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
11847         !Subtarget.isUsingPCRelativeCalls()) {
11848       // Call lowering should have added an r2 operand to indicate a dependence
11849       // on the TOC base pointer value. It can't however, because there is no
11850       // way to mark the dependence as implicit there, and so the stackmap code
11851       // will confuse it with a regular operand. Instead, add the dependence
11852       // here.
11853       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11854     }
11855 
11856     return emitPatchPoint(MI, BB);
11857   }
11858 
11859   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11860       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11861     return emitEHSjLjSetJmp(MI, BB);
11862   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11863              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11864     return emitEHSjLjLongJmp(MI, BB);
11865   }
11866 
11867   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11868 
11869   // To "insert" these instructions we actually have to insert their
11870   // control-flow patterns.
11871   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11872   MachineFunction::iterator It = ++BB->getIterator();
11873 
11874   MachineFunction *F = BB->getParent();
11875 
11876   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11877       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11878       MI.getOpcode() == PPC::SELECT_I8) {
11879     SmallVector<MachineOperand, 2> Cond;
11880     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11881         MI.getOpcode() == PPC::SELECT_CC_I8)
11882       Cond.push_back(MI.getOperand(4));
11883     else
11884       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11885     Cond.push_back(MI.getOperand(1));
11886 
11887     DebugLoc dl = MI.getDebugLoc();
11888     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11889                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11890   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11891              MI.getOpcode() == PPC::SELECT_CC_F8 ||
11892              MI.getOpcode() == PPC::SELECT_CC_F16 ||
11893              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11894              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11895              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11896              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11897              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11898              MI.getOpcode() == PPC::SELECT_CC_SPE ||
11899              MI.getOpcode() == PPC::SELECT_F4 ||
11900              MI.getOpcode() == PPC::SELECT_F8 ||
11901              MI.getOpcode() == PPC::SELECT_F16 ||
11902              MI.getOpcode() == PPC::SELECT_SPE ||
11903              MI.getOpcode() == PPC::SELECT_SPE4 ||
11904              MI.getOpcode() == PPC::SELECT_VRRC ||
11905              MI.getOpcode() == PPC::SELECT_VSFRC ||
11906              MI.getOpcode() == PPC::SELECT_VSSRC ||
11907              MI.getOpcode() == PPC::SELECT_VSRC) {
11908     // The incoming instruction knows the destination vreg to set, the
11909     // condition code register to branch on, the true/false values to
11910     // select between, and a branch opcode to use.
11911 
11912     //  thisMBB:
11913     //  ...
11914     //   TrueVal = ...
11915     //   cmpTY ccX, r1, r2
11916     //   bCC copy1MBB
11917     //   fallthrough --> copy0MBB
11918     MachineBasicBlock *thisMBB = BB;
11919     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11920     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11921     DebugLoc dl = MI.getDebugLoc();
11922     F->insert(It, copy0MBB);
11923     F->insert(It, sinkMBB);
11924 
11925     // Transfer the remainder of BB and its successor edges to sinkMBB.
11926     sinkMBB->splice(sinkMBB->begin(), BB,
11927                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11928     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11929 
11930     // Next, add the true and fallthrough blocks as its successors.
11931     BB->addSuccessor(copy0MBB);
11932     BB->addSuccessor(sinkMBB);
11933 
11934     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
11935         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
11936         MI.getOpcode() == PPC::SELECT_F16 ||
11937         MI.getOpcode() == PPC::SELECT_SPE4 ||
11938         MI.getOpcode() == PPC::SELECT_SPE ||
11939         MI.getOpcode() == PPC::SELECT_VRRC ||
11940         MI.getOpcode() == PPC::SELECT_VSFRC ||
11941         MI.getOpcode() == PPC::SELECT_VSSRC ||
11942         MI.getOpcode() == PPC::SELECT_VSRC) {
11943       BuildMI(BB, dl, TII->get(PPC::BC))
11944           .addReg(MI.getOperand(1).getReg())
11945           .addMBB(sinkMBB);
11946     } else {
11947       unsigned SelectPred = MI.getOperand(4).getImm();
11948       BuildMI(BB, dl, TII->get(PPC::BCC))
11949           .addImm(SelectPred)
11950           .addReg(MI.getOperand(1).getReg())
11951           .addMBB(sinkMBB);
11952     }
11953 
11954     //  copy0MBB:
11955     //   %FalseValue = ...
11956     //   # fallthrough to sinkMBB
11957     BB = copy0MBB;
11958 
11959     // Update machine-CFG edges
11960     BB->addSuccessor(sinkMBB);
11961 
11962     //  sinkMBB:
11963     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11964     //  ...
11965     BB = sinkMBB;
11966     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
11967         .addReg(MI.getOperand(3).getReg())
11968         .addMBB(copy0MBB)
11969         .addReg(MI.getOperand(2).getReg())
11970         .addMBB(thisMBB);
11971   } else if (MI.getOpcode() == PPC::ReadTB) {
11972     // To read the 64-bit time-base register on a 32-bit target, we read the
11973     // two halves. Should the counter have wrapped while it was being read, we
11974     // need to try again.
11975     // ...
11976     // readLoop:
11977     // mfspr Rx,TBU # load from TBU
11978     // mfspr Ry,TB  # load from TB
11979     // mfspr Rz,TBU # load from TBU
11980     // cmpw crX,Rx,Rz # check if 'old'='new'
11981     // bne readLoop   # branch if they're not equal
11982     // ...
11983 
11984     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
11985     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11986     DebugLoc dl = MI.getDebugLoc();
11987     F->insert(It, readMBB);
11988     F->insert(It, sinkMBB);
11989 
11990     // Transfer the remainder of BB and its successor edges to sinkMBB.
11991     sinkMBB->splice(sinkMBB->begin(), BB,
11992                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11993     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11994 
11995     BB->addSuccessor(readMBB);
11996     BB = readMBB;
11997 
11998     MachineRegisterInfo &RegInfo = F->getRegInfo();
11999     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
12000     Register LoReg = MI.getOperand(0).getReg();
12001     Register HiReg = MI.getOperand(1).getReg();
12002 
12003     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
12004     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
12005     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
12006 
12007     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12008 
12009     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
12010         .addReg(HiReg)
12011         .addReg(ReadAgainReg);
12012     BuildMI(BB, dl, TII->get(PPC::BCC))
12013         .addImm(PPC::PRED_NE)
12014         .addReg(CmpReg)
12015         .addMBB(readMBB);
12016 
12017     BB->addSuccessor(readMBB);
12018     BB->addSuccessor(sinkMBB);
12019   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
12020     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
12021   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
12022     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
12023   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
12024     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
12025   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
12026     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
12027 
12028   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
12029     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
12030   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
12031     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
12032   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
12033     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
12034   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
12035     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
12036 
12037   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
12038     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
12039   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
12040     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
12041   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
12042     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
12043   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
12044     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
12045 
12046   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
12047     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
12048   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
12049     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
12050   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
12051     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
12052   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
12053     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
12054 
12055   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
12056     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
12057   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
12058     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
12059   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
12060     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
12061   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
12062     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
12063 
12064   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
12065     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
12066   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
12067     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
12068   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
12069     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
12070   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
12071     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
12072 
12073   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
12074     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
12075   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
12076     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
12077   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
12078     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
12079   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
12080     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
12081 
12082   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
12083     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
12084   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
12085     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
12086   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
12087     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
12088   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
12089     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
12090 
12091   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
12092     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
12093   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
12094     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
12095   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
12096     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
12097   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
12098     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
12099 
12100   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
12101     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
12102   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
12103     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
12104   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
12105     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
12106   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
12107     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
12108 
12109   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
12110     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
12111   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
12112     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
12113   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
12114     BB = EmitAtomicBinary(MI, BB, 4, 0);
12115   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
12116     BB = EmitAtomicBinary(MI, BB, 8, 0);
12117   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
12118            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
12119            (Subtarget.hasPartwordAtomics() &&
12120             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
12121            (Subtarget.hasPartwordAtomics() &&
12122             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
12123     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
12124 
12125     auto LoadMnemonic = PPC::LDARX;
12126     auto StoreMnemonic = PPC::STDCX;
12127     switch (MI.getOpcode()) {
12128     default:
12129       llvm_unreachable("Compare and swap of unknown size");
12130     case PPC::ATOMIC_CMP_SWAP_I8:
12131       LoadMnemonic = PPC::LBARX;
12132       StoreMnemonic = PPC::STBCX;
12133       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12134       break;
12135     case PPC::ATOMIC_CMP_SWAP_I16:
12136       LoadMnemonic = PPC::LHARX;
12137       StoreMnemonic = PPC::STHCX;
12138       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12139       break;
12140     case PPC::ATOMIC_CMP_SWAP_I32:
12141       LoadMnemonic = PPC::LWARX;
12142       StoreMnemonic = PPC::STWCX;
12143       break;
12144     case PPC::ATOMIC_CMP_SWAP_I64:
12145       LoadMnemonic = PPC::LDARX;
12146       StoreMnemonic = PPC::STDCX;
12147       break;
12148     }
12149     Register dest = MI.getOperand(0).getReg();
12150     Register ptrA = MI.getOperand(1).getReg();
12151     Register ptrB = MI.getOperand(2).getReg();
12152     Register oldval = MI.getOperand(3).getReg();
12153     Register newval = MI.getOperand(4).getReg();
12154     DebugLoc dl = MI.getDebugLoc();
12155 
12156     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12157     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12158     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12159     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12160     F->insert(It, loop1MBB);
12161     F->insert(It, loop2MBB);
12162     F->insert(It, midMBB);
12163     F->insert(It, exitMBB);
12164     exitMBB->splice(exitMBB->begin(), BB,
12165                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12166     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12167 
12168     //  thisMBB:
12169     //   ...
12170     //   fallthrough --> loopMBB
12171     BB->addSuccessor(loop1MBB);
12172 
12173     // loop1MBB:
12174     //   l[bhwd]arx dest, ptr
12175     //   cmp[wd] dest, oldval
12176     //   bne- midMBB
12177     // loop2MBB:
12178     //   st[bhwd]cx. newval, ptr
12179     //   bne- loopMBB
12180     //   b exitBB
12181     // midMBB:
12182     //   st[bhwd]cx. dest, ptr
12183     // exitBB:
12184     BB = loop1MBB;
12185     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
12186     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
12187         .addReg(oldval)
12188         .addReg(dest);
12189     BuildMI(BB, dl, TII->get(PPC::BCC))
12190         .addImm(PPC::PRED_NE)
12191         .addReg(PPC::CR0)
12192         .addMBB(midMBB);
12193     BB->addSuccessor(loop2MBB);
12194     BB->addSuccessor(midMBB);
12195 
12196     BB = loop2MBB;
12197     BuildMI(BB, dl, TII->get(StoreMnemonic))
12198         .addReg(newval)
12199         .addReg(ptrA)
12200         .addReg(ptrB);
12201     BuildMI(BB, dl, TII->get(PPC::BCC))
12202         .addImm(PPC::PRED_NE)
12203         .addReg(PPC::CR0)
12204         .addMBB(loop1MBB);
12205     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12206     BB->addSuccessor(loop1MBB);
12207     BB->addSuccessor(exitMBB);
12208 
12209     BB = midMBB;
12210     BuildMI(BB, dl, TII->get(StoreMnemonic))
12211         .addReg(dest)
12212         .addReg(ptrA)
12213         .addReg(ptrB);
12214     BB->addSuccessor(exitMBB);
12215 
12216     //  exitMBB:
12217     //   ...
12218     BB = exitMBB;
12219   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
12220              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
12221     // We must use 64-bit registers for addresses when targeting 64-bit,
12222     // since we're actually doing arithmetic on them.  Other registers
12223     // can be 32-bit.
12224     bool is64bit = Subtarget.isPPC64();
12225     bool isLittleEndian = Subtarget.isLittleEndian();
12226     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
12227 
12228     Register dest = MI.getOperand(0).getReg();
12229     Register ptrA = MI.getOperand(1).getReg();
12230     Register ptrB = MI.getOperand(2).getReg();
12231     Register oldval = MI.getOperand(3).getReg();
12232     Register newval = MI.getOperand(4).getReg();
12233     DebugLoc dl = MI.getDebugLoc();
12234 
12235     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12236     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12237     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12238     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12239     F->insert(It, loop1MBB);
12240     F->insert(It, loop2MBB);
12241     F->insert(It, midMBB);
12242     F->insert(It, exitMBB);
12243     exitMBB->splice(exitMBB->begin(), BB,
12244                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12245     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12246 
12247     MachineRegisterInfo &RegInfo = F->getRegInfo();
12248     const TargetRegisterClass *RC =
12249         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
12250     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12251 
12252     Register PtrReg = RegInfo.createVirtualRegister(RC);
12253     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
12254     Register ShiftReg =
12255         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
12256     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
12257     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
12258     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
12259     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
12260     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
12261     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
12262     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
12263     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
12264     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
12265     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
12266     Register Ptr1Reg;
12267     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
12268     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
12269     //  thisMBB:
12270     //   ...
12271     //   fallthrough --> loopMBB
12272     BB->addSuccessor(loop1MBB);
12273 
12274     // The 4-byte load must be aligned, while a char or short may be
12275     // anywhere in the word.  Hence all this nasty bookkeeping code.
12276     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
12277     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
12278     //   xori shift, shift1, 24 [16]
12279     //   rlwinm ptr, ptr1, 0, 0, 29
12280     //   slw newval2, newval, shift
12281     //   slw oldval2, oldval,shift
12282     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
12283     //   slw mask, mask2, shift
12284     //   and newval3, newval2, mask
12285     //   and oldval3, oldval2, mask
12286     // loop1MBB:
12287     //   lwarx tmpDest, ptr
12288     //   and tmp, tmpDest, mask
12289     //   cmpw tmp, oldval3
12290     //   bne- midMBB
12291     // loop2MBB:
12292     //   andc tmp2, tmpDest, mask
12293     //   or tmp4, tmp2, newval3
12294     //   stwcx. tmp4, ptr
12295     //   bne- loop1MBB
12296     //   b exitBB
12297     // midMBB:
12298     //   stwcx. tmpDest, ptr
12299     // exitBB:
12300     //   srw dest, tmpDest, shift
12301     if (ptrA != ZeroReg) {
12302       Ptr1Reg = RegInfo.createVirtualRegister(RC);
12303       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
12304           .addReg(ptrA)
12305           .addReg(ptrB);
12306     } else {
12307       Ptr1Reg = ptrB;
12308     }
12309 
12310     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
12311     // mode.
12312     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
12313         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
12314         .addImm(3)
12315         .addImm(27)
12316         .addImm(is8bit ? 28 : 27);
12317     if (!isLittleEndian)
12318       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
12319           .addReg(Shift1Reg)
12320           .addImm(is8bit ? 24 : 16);
12321     if (is64bit)
12322       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
12323           .addReg(Ptr1Reg)
12324           .addImm(0)
12325           .addImm(61);
12326     else
12327       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
12328           .addReg(Ptr1Reg)
12329           .addImm(0)
12330           .addImm(0)
12331           .addImm(29);
12332     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
12333         .addReg(newval)
12334         .addReg(ShiftReg);
12335     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
12336         .addReg(oldval)
12337         .addReg(ShiftReg);
12338     if (is8bit)
12339       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
12340     else {
12341       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
12342       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
12343           .addReg(Mask3Reg)
12344           .addImm(65535);
12345     }
12346     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
12347         .addReg(Mask2Reg)
12348         .addReg(ShiftReg);
12349     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
12350         .addReg(NewVal2Reg)
12351         .addReg(MaskReg);
12352     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
12353         .addReg(OldVal2Reg)
12354         .addReg(MaskReg);
12355 
12356     BB = loop1MBB;
12357     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
12358         .addReg(ZeroReg)
12359         .addReg(PtrReg);
12360     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
12361         .addReg(TmpDestReg)
12362         .addReg(MaskReg);
12363     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
12364         .addReg(TmpReg)
12365         .addReg(OldVal3Reg);
12366     BuildMI(BB, dl, TII->get(PPC::BCC))
12367         .addImm(PPC::PRED_NE)
12368         .addReg(PPC::CR0)
12369         .addMBB(midMBB);
12370     BB->addSuccessor(loop2MBB);
12371     BB->addSuccessor(midMBB);
12372 
12373     BB = loop2MBB;
12374     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
12375         .addReg(TmpDestReg)
12376         .addReg(MaskReg);
12377     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
12378         .addReg(Tmp2Reg)
12379         .addReg(NewVal3Reg);
12380     BuildMI(BB, dl, TII->get(PPC::STWCX))
12381         .addReg(Tmp4Reg)
12382         .addReg(ZeroReg)
12383         .addReg(PtrReg);
12384     BuildMI(BB, dl, TII->get(PPC::BCC))
12385         .addImm(PPC::PRED_NE)
12386         .addReg(PPC::CR0)
12387         .addMBB(loop1MBB);
12388     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12389     BB->addSuccessor(loop1MBB);
12390     BB->addSuccessor(exitMBB);
12391 
12392     BB = midMBB;
12393     BuildMI(BB, dl, TII->get(PPC::STWCX))
12394         .addReg(TmpDestReg)
12395         .addReg(ZeroReg)
12396         .addReg(PtrReg);
12397     BB->addSuccessor(exitMBB);
12398 
12399     //  exitMBB:
12400     //   ...
12401     BB = exitMBB;
12402     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
12403         .addReg(TmpReg)
12404         .addReg(ShiftReg);
12405   } else if (MI.getOpcode() == PPC::FADDrtz) {
12406     // This pseudo performs an FADD with rounding mode temporarily forced
12407     // to round-to-zero.  We emit this via custom inserter since the FPSCR
12408     // is not modeled at the SelectionDAG level.
12409     Register Dest = MI.getOperand(0).getReg();
12410     Register Src1 = MI.getOperand(1).getReg();
12411     Register Src2 = MI.getOperand(2).getReg();
12412     DebugLoc dl = MI.getDebugLoc();
12413 
12414     MachineRegisterInfo &RegInfo = F->getRegInfo();
12415     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12416 
12417     // Save FPSCR value.
12418     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
12419 
12420     // Set rounding mode to round-to-zero.
12421     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1))
12422         .addImm(31)
12423         .addReg(PPC::RM, RegState::ImplicitDefine);
12424 
12425     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0))
12426         .addImm(30)
12427         .addReg(PPC::RM, RegState::ImplicitDefine);
12428 
12429     // Perform addition.
12430     auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest)
12431                    .addReg(Src1)
12432                    .addReg(Src2);
12433     if (MI.getFlag(MachineInstr::NoFPExcept))
12434       MIB.setMIFlag(MachineInstr::NoFPExcept);
12435 
12436     // Restore FPSCR value.
12437     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
12438   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12439              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
12440              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12441              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
12442     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12443                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
12444                           ? PPC::ANDI8_rec
12445                           : PPC::ANDI_rec;
12446     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12447                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
12448 
12449     MachineRegisterInfo &RegInfo = F->getRegInfo();
12450     Register Dest = RegInfo.createVirtualRegister(
12451         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
12452 
12453     DebugLoc Dl = MI.getDebugLoc();
12454     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
12455         .addReg(MI.getOperand(1).getReg())
12456         .addImm(1);
12457     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12458             MI.getOperand(0).getReg())
12459         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
12460   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
12461     DebugLoc Dl = MI.getDebugLoc();
12462     MachineRegisterInfo &RegInfo = F->getRegInfo();
12463     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12464     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
12465     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12466             MI.getOperand(0).getReg())
12467         .addReg(CRReg);
12468   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
12469     DebugLoc Dl = MI.getDebugLoc();
12470     unsigned Imm = MI.getOperand(1).getImm();
12471     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
12472     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12473             MI.getOperand(0).getReg())
12474         .addReg(PPC::CR0EQ);
12475   } else if (MI.getOpcode() == PPC::SETRNDi) {
12476     DebugLoc dl = MI.getDebugLoc();
12477     Register OldFPSCRReg = MI.getOperand(0).getReg();
12478 
12479     // Save FPSCR value.
12480     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12481 
12482     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
12483     // the following settings:
12484     //   00 Round to nearest
12485     //   01 Round to 0
12486     //   10 Round to +inf
12487     //   11 Round to -inf
12488 
12489     // When the operand is immediate, using the two least significant bits of
12490     // the immediate to set the bits 62:63 of FPSCR.
12491     unsigned Mode = MI.getOperand(1).getImm();
12492     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
12493         .addImm(31)
12494         .addReg(PPC::RM, RegState::ImplicitDefine);
12495 
12496     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
12497         .addImm(30)
12498         .addReg(PPC::RM, RegState::ImplicitDefine);
12499   } else if (MI.getOpcode() == PPC::SETRND) {
12500     DebugLoc dl = MI.getDebugLoc();
12501 
12502     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
12503     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
12504     // If the target doesn't have DirectMove, we should use stack to do the
12505     // conversion, because the target doesn't have the instructions like mtvsrd
12506     // or mfvsrd to do this conversion directly.
12507     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
12508       if (Subtarget.hasDirectMove()) {
12509         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
12510           .addReg(SrcReg);
12511       } else {
12512         // Use stack to do the register copy.
12513         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
12514         MachineRegisterInfo &RegInfo = F->getRegInfo();
12515         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
12516         if (RC == &PPC::F8RCRegClass) {
12517           // Copy register from F8RCRegClass to G8RCRegclass.
12518           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
12519                  "Unsupported RegClass.");
12520 
12521           StoreOp = PPC::STFD;
12522           LoadOp = PPC::LD;
12523         } else {
12524           // Copy register from G8RCRegClass to F8RCRegclass.
12525           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
12526                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
12527                  "Unsupported RegClass.");
12528         }
12529 
12530         MachineFrameInfo &MFI = F->getFrameInfo();
12531         int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
12532 
12533         MachineMemOperand *MMOStore = F->getMachineMemOperand(
12534             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12535             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
12536             MFI.getObjectAlign(FrameIdx));
12537 
12538         // Store the SrcReg into the stack.
12539         BuildMI(*BB, MI, dl, TII->get(StoreOp))
12540           .addReg(SrcReg)
12541           .addImm(0)
12542           .addFrameIndex(FrameIdx)
12543           .addMemOperand(MMOStore);
12544 
12545         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
12546             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12547             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
12548             MFI.getObjectAlign(FrameIdx));
12549 
12550         // Load from the stack where SrcReg is stored, and save to DestReg,
12551         // so we have done the RegClass conversion from RegClass::SrcReg to
12552         // RegClass::DestReg.
12553         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
12554           .addImm(0)
12555           .addFrameIndex(FrameIdx)
12556           .addMemOperand(MMOLoad);
12557       }
12558     };
12559 
12560     Register OldFPSCRReg = MI.getOperand(0).getReg();
12561 
12562     // Save FPSCR value.
12563     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12564 
12565     // When the operand is gprc register, use two least significant bits of the
12566     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12567     //
12568     // copy OldFPSCRTmpReg, OldFPSCRReg
12569     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12570     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12571     // copy NewFPSCRReg, NewFPSCRTmpReg
12572     // mtfsf 255, NewFPSCRReg
12573     MachineOperand SrcOp = MI.getOperand(1);
12574     MachineRegisterInfo &RegInfo = F->getRegInfo();
12575     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12576 
12577     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12578 
12579     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12580     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12581 
12582     // The first operand of INSERT_SUBREG should be a register which has
12583     // subregisters, we only care about its RegClass, so we should use an
12584     // IMPLICIT_DEF register.
12585     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12586     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12587       .addReg(ImDefReg)
12588       .add(SrcOp)
12589       .addImm(1);
12590 
12591     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12592     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12593       .addReg(OldFPSCRTmpReg)
12594       .addReg(ExtSrcReg)
12595       .addImm(0)
12596       .addImm(62);
12597 
12598     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12599     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12600 
12601     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12602     // bits of FPSCR.
12603     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12604       .addImm(255)
12605       .addReg(NewFPSCRReg)
12606       .addImm(0)
12607       .addImm(0);
12608   } else if (MI.getOpcode() == PPC::SETFLM) {
12609     DebugLoc Dl = MI.getDebugLoc();
12610 
12611     // Result of setflm is previous FPSCR content, so we need to save it first.
12612     Register OldFPSCRReg = MI.getOperand(0).getReg();
12613     BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg);
12614 
12615     // Put bits in 32:63 to FPSCR.
12616     Register NewFPSCRReg = MI.getOperand(1).getReg();
12617     BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF))
12618         .addImm(255)
12619         .addReg(NewFPSCRReg)
12620         .addImm(0)
12621         .addImm(0);
12622   } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
12623              MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
12624     return emitProbedAlloca(MI, BB);
12625   } else {
12626     llvm_unreachable("Unexpected instr type to insert");
12627   }
12628 
12629   MI.eraseFromParent(); // The pseudo instruction is gone now.
12630   return BB;
12631 }
12632 
12633 //===----------------------------------------------------------------------===//
12634 // Target Optimization Hooks
12635 //===----------------------------------------------------------------------===//
12636 
12637 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
12638   // For the estimates, convergence is quadratic, so we essentially double the
12639   // number of digits correct after every iteration. For both FRE and FRSQRTE,
12640   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
12641   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
12642   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
12643   if (VT.getScalarType() == MVT::f64)
12644     RefinementSteps++;
12645   return RefinementSteps;
12646 }
12647 
12648 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
12649                                             const DenormalMode &Mode) const {
12650   // We only have VSX Vector Test for software Square Root.
12651   EVT VT = Op.getValueType();
12652   if (!isTypeLegal(MVT::i1) ||
12653       (VT != MVT::f64 &&
12654        ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())))
12655     return TargetLowering::getSqrtInputTest(Op, DAG, Mode);
12656 
12657   SDLoc DL(Op);
12658   // The output register of FTSQRT is CR field.
12659   SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op);
12660   // ftsqrt BF,FRB
12661   // Let e_b be the unbiased exponent of the double-precision
12662   // floating-point operand in register FRB.
12663   // fe_flag is set to 1 if either of the following conditions occurs.
12664   //   - The double-precision floating-point operand in register FRB is a zero,
12665   //     a NaN, or an infinity, or a negative value.
12666   //   - e_b is less than or equal to -970.
12667   // Otherwise fe_flag is set to 0.
12668   // Both VSX and non-VSX versions would set EQ bit in the CR if the number is
12669   // not eligible for iteration. (zero/negative/infinity/nan or unbiased
12670   // exponent is less than -970)
12671   SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32);
12672   return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1,
12673                                     FTSQRT, SRIdxVal),
12674                  0);
12675 }
12676 
12677 SDValue
12678 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op,
12679                                                SelectionDAG &DAG) const {
12680   // We only have VSX Vector Square Root.
12681   EVT VT = Op.getValueType();
12682   if (VT != MVT::f64 &&
12683       ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))
12684     return TargetLowering::getSqrtResultForDenormInput(Op, DAG);
12685 
12686   return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op);
12687 }
12688 
12689 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
12690                                            int Enabled, int &RefinementSteps,
12691                                            bool &UseOneConstNR,
12692                                            bool Reciprocal) const {
12693   EVT VT = Operand.getValueType();
12694   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
12695       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
12696       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12697       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12698     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12699       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12700 
12701     // The Newton-Raphson computation with a single constant does not provide
12702     // enough accuracy on some CPUs.
12703     UseOneConstNR = !Subtarget.needsTwoConstNR();
12704     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
12705   }
12706   return SDValue();
12707 }
12708 
12709 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
12710                                             int Enabled,
12711                                             int &RefinementSteps) const {
12712   EVT VT = Operand.getValueType();
12713   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
12714       (VT == MVT::f64 && Subtarget.hasFRE()) ||
12715       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12716       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12717     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12718       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12719     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
12720   }
12721   return SDValue();
12722 }
12723 
12724 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12725   // Note: This functionality is used only when unsafe-fp-math is enabled, and
12726   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
12727   // enabled for division), this functionality is redundant with the default
12728   // combiner logic (once the division -> reciprocal/multiply transformation
12729   // has taken place). As a result, this matters more for older cores than for
12730   // newer ones.
12731 
12732   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12733   // reciprocal if there are two or more FDIVs (for embedded cores with only
12734   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
12735   switch (Subtarget.getCPUDirective()) {
12736   default:
12737     return 3;
12738   case PPC::DIR_440:
12739   case PPC::DIR_A2:
12740   case PPC::DIR_E500:
12741   case PPC::DIR_E500mc:
12742   case PPC::DIR_E5500:
12743     return 2;
12744   }
12745 }
12746 
12747 // isConsecutiveLSLoc needs to work even if all adds have not yet been
12748 // collapsed, and so we need to look through chains of them.
12749 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
12750                                      int64_t& Offset, SelectionDAG &DAG) {
12751   if (DAG.isBaseWithConstantOffset(Loc)) {
12752     Base = Loc.getOperand(0);
12753     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
12754 
12755     // The base might itself be a base plus an offset, and if so, accumulate
12756     // that as well.
12757     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
12758   }
12759 }
12760 
12761 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
12762                             unsigned Bytes, int Dist,
12763                             SelectionDAG &DAG) {
12764   if (VT.getSizeInBits() / 8 != Bytes)
12765     return false;
12766 
12767   SDValue BaseLoc = Base->getBasePtr();
12768   if (Loc.getOpcode() == ISD::FrameIndex) {
12769     if (BaseLoc.getOpcode() != ISD::FrameIndex)
12770       return false;
12771     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
12772     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
12773     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
12774     int FS  = MFI.getObjectSize(FI);
12775     int BFS = MFI.getObjectSize(BFI);
12776     if (FS != BFS || FS != (int)Bytes) return false;
12777     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12778   }
12779 
12780   SDValue Base1 = Loc, Base2 = BaseLoc;
12781   int64_t Offset1 = 0, Offset2 = 0;
12782   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12783   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12784   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12785     return true;
12786 
12787   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12788   const GlobalValue *GV1 = nullptr;
12789   const GlobalValue *GV2 = nullptr;
12790   Offset1 = 0;
12791   Offset2 = 0;
12792   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12793   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12794   if (isGA1 && isGA2 && GV1 == GV2)
12795     return Offset1 == (Offset2 + Dist*Bytes);
12796   return false;
12797 }
12798 
12799 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12800 // not enforce equality of the chain operands.
12801 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12802                             unsigned Bytes, int Dist,
12803                             SelectionDAG &DAG) {
12804   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12805     EVT VT = LS->getMemoryVT();
12806     SDValue Loc = LS->getBasePtr();
12807     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12808   }
12809 
12810   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12811     EVT VT;
12812     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12813     default: return false;
12814     case Intrinsic::ppc_altivec_lvx:
12815     case Intrinsic::ppc_altivec_lvxl:
12816     case Intrinsic::ppc_vsx_lxvw4x:
12817     case Intrinsic::ppc_vsx_lxvw4x_be:
12818       VT = MVT::v4i32;
12819       break;
12820     case Intrinsic::ppc_vsx_lxvd2x:
12821     case Intrinsic::ppc_vsx_lxvd2x_be:
12822       VT = MVT::v2f64;
12823       break;
12824     case Intrinsic::ppc_altivec_lvebx:
12825       VT = MVT::i8;
12826       break;
12827     case Intrinsic::ppc_altivec_lvehx:
12828       VT = MVT::i16;
12829       break;
12830     case Intrinsic::ppc_altivec_lvewx:
12831       VT = MVT::i32;
12832       break;
12833     }
12834 
12835     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12836   }
12837 
12838   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12839     EVT VT;
12840     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12841     default: return false;
12842     case Intrinsic::ppc_altivec_stvx:
12843     case Intrinsic::ppc_altivec_stvxl:
12844     case Intrinsic::ppc_vsx_stxvw4x:
12845       VT = MVT::v4i32;
12846       break;
12847     case Intrinsic::ppc_vsx_stxvd2x:
12848       VT = MVT::v2f64;
12849       break;
12850     case Intrinsic::ppc_vsx_stxvw4x_be:
12851       VT = MVT::v4i32;
12852       break;
12853     case Intrinsic::ppc_vsx_stxvd2x_be:
12854       VT = MVT::v2f64;
12855       break;
12856     case Intrinsic::ppc_altivec_stvebx:
12857       VT = MVT::i8;
12858       break;
12859     case Intrinsic::ppc_altivec_stvehx:
12860       VT = MVT::i16;
12861       break;
12862     case Intrinsic::ppc_altivec_stvewx:
12863       VT = MVT::i32;
12864       break;
12865     }
12866 
12867     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12868   }
12869 
12870   return false;
12871 }
12872 
12873 // Return true is there is a nearyby consecutive load to the one provided
12874 // (regardless of alignment). We search up and down the chain, looking though
12875 // token factors and other loads (but nothing else). As a result, a true result
12876 // indicates that it is safe to create a new consecutive load adjacent to the
12877 // load provided.
12878 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
12879   SDValue Chain = LD->getChain();
12880   EVT VT = LD->getMemoryVT();
12881 
12882   SmallSet<SDNode *, 16> LoadRoots;
12883   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
12884   SmallSet<SDNode *, 16> Visited;
12885 
12886   // First, search up the chain, branching to follow all token-factor operands.
12887   // If we find a consecutive load, then we're done, otherwise, record all
12888   // nodes just above the top-level loads and token factors.
12889   while (!Queue.empty()) {
12890     SDNode *ChainNext = Queue.pop_back_val();
12891     if (!Visited.insert(ChainNext).second)
12892       continue;
12893 
12894     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
12895       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12896         return true;
12897 
12898       if (!Visited.count(ChainLD->getChain().getNode()))
12899         Queue.push_back(ChainLD->getChain().getNode());
12900     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
12901       for (const SDUse &O : ChainNext->ops())
12902         if (!Visited.count(O.getNode()))
12903           Queue.push_back(O.getNode());
12904     } else
12905       LoadRoots.insert(ChainNext);
12906   }
12907 
12908   // Second, search down the chain, starting from the top-level nodes recorded
12909   // in the first phase. These top-level nodes are the nodes just above all
12910   // loads and token factors. Starting with their uses, recursively look though
12911   // all loads (just the chain uses) and token factors to find a consecutive
12912   // load.
12913   Visited.clear();
12914   Queue.clear();
12915 
12916   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
12917        IE = LoadRoots.end(); I != IE; ++I) {
12918     Queue.push_back(*I);
12919 
12920     while (!Queue.empty()) {
12921       SDNode *LoadRoot = Queue.pop_back_val();
12922       if (!Visited.insert(LoadRoot).second)
12923         continue;
12924 
12925       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
12926         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12927           return true;
12928 
12929       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
12930            UE = LoadRoot->use_end(); UI != UE; ++UI)
12931         if (((isa<MemSDNode>(*UI) &&
12932             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
12933             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
12934           Queue.push_back(*UI);
12935     }
12936   }
12937 
12938   return false;
12939 }
12940 
12941 /// This function is called when we have proved that a SETCC node can be replaced
12942 /// by subtraction (and other supporting instructions) so that the result of
12943 /// comparison is kept in a GPR instead of CR. This function is purely for
12944 /// codegen purposes and has some flags to guide the codegen process.
12945 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
12946                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
12947   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12948 
12949   // Zero extend the operands to the largest legal integer. Originally, they
12950   // must be of a strictly smaller size.
12951   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
12952                          DAG.getConstant(Size, DL, MVT::i32));
12953   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
12954                          DAG.getConstant(Size, DL, MVT::i32));
12955 
12956   // Swap if needed. Depends on the condition code.
12957   if (Swap)
12958     std::swap(Op0, Op1);
12959 
12960   // Subtract extended integers.
12961   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
12962 
12963   // Move the sign bit to the least significant position and zero out the rest.
12964   // Now the least significant bit carries the result of original comparison.
12965   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
12966                              DAG.getConstant(Size - 1, DL, MVT::i32));
12967   auto Final = Shifted;
12968 
12969   // Complement the result if needed. Based on the condition code.
12970   if (Complement)
12971     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
12972                         DAG.getConstant(1, DL, MVT::i64));
12973 
12974   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
12975 }
12976 
12977 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
12978                                                   DAGCombinerInfo &DCI) const {
12979   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12980 
12981   SelectionDAG &DAG = DCI.DAG;
12982   SDLoc DL(N);
12983 
12984   // Size of integers being compared has a critical role in the following
12985   // analysis, so we prefer to do this when all types are legal.
12986   if (!DCI.isAfterLegalizeDAG())
12987     return SDValue();
12988 
12989   // If all users of SETCC extend its value to a legal integer type
12990   // then we replace SETCC with a subtraction
12991   for (SDNode::use_iterator UI = N->use_begin(),
12992        UE = N->use_end(); UI != UE; ++UI) {
12993     if (UI->getOpcode() != ISD::ZERO_EXTEND)
12994       return SDValue();
12995   }
12996 
12997   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12998   auto OpSize = N->getOperand(0).getValueSizeInBits();
12999 
13000   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
13001 
13002   if (OpSize < Size) {
13003     switch (CC) {
13004     default: break;
13005     case ISD::SETULT:
13006       return generateEquivalentSub(N, Size, false, false, DL, DAG);
13007     case ISD::SETULE:
13008       return generateEquivalentSub(N, Size, true, true, DL, DAG);
13009     case ISD::SETUGT:
13010       return generateEquivalentSub(N, Size, false, true, DL, DAG);
13011     case ISD::SETUGE:
13012       return generateEquivalentSub(N, Size, true, false, DL, DAG);
13013     }
13014   }
13015 
13016   return SDValue();
13017 }
13018 
13019 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
13020                                                   DAGCombinerInfo &DCI) const {
13021   SelectionDAG &DAG = DCI.DAG;
13022   SDLoc dl(N);
13023 
13024   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
13025   // If we're tracking CR bits, we need to be careful that we don't have:
13026   //   trunc(binary-ops(zext(x), zext(y)))
13027   // or
13028   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
13029   // such that we're unnecessarily moving things into GPRs when it would be
13030   // better to keep them in CR bits.
13031 
13032   // Note that trunc here can be an actual i1 trunc, or can be the effective
13033   // truncation that comes from a setcc or select_cc.
13034   if (N->getOpcode() == ISD::TRUNCATE &&
13035       N->getValueType(0) != MVT::i1)
13036     return SDValue();
13037 
13038   if (N->getOperand(0).getValueType() != MVT::i32 &&
13039       N->getOperand(0).getValueType() != MVT::i64)
13040     return SDValue();
13041 
13042   if (N->getOpcode() == ISD::SETCC ||
13043       N->getOpcode() == ISD::SELECT_CC) {
13044     // If we're looking at a comparison, then we need to make sure that the
13045     // high bits (all except for the first) don't matter the result.
13046     ISD::CondCode CC =
13047       cast<CondCodeSDNode>(N->getOperand(
13048         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
13049     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
13050 
13051     if (ISD::isSignedIntSetCC(CC)) {
13052       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
13053           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
13054         return SDValue();
13055     } else if (ISD::isUnsignedIntSetCC(CC)) {
13056       if (!DAG.MaskedValueIsZero(N->getOperand(0),
13057                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
13058           !DAG.MaskedValueIsZero(N->getOperand(1),
13059                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
13060         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
13061                                              : SDValue());
13062     } else {
13063       // This is neither a signed nor an unsigned comparison, just make sure
13064       // that the high bits are equal.
13065       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
13066       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
13067 
13068       // We don't really care about what is known about the first bit (if
13069       // anything), so pretend that it is known zero for both to ensure they can
13070       // be compared as constants.
13071       Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0);
13072       Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0);
13073 
13074       if (!Op1Known.isConstant() || !Op2Known.isConstant() ||
13075           Op1Known.getConstant() != Op2Known.getConstant())
13076         return SDValue();
13077     }
13078   }
13079 
13080   // We now know that the higher-order bits are irrelevant, we just need to
13081   // make sure that all of the intermediate operations are bit operations, and
13082   // all inputs are extensions.
13083   if (N->getOperand(0).getOpcode() != ISD::AND &&
13084       N->getOperand(0).getOpcode() != ISD::OR  &&
13085       N->getOperand(0).getOpcode() != ISD::XOR &&
13086       N->getOperand(0).getOpcode() != ISD::SELECT &&
13087       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
13088       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
13089       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
13090       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
13091       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
13092     return SDValue();
13093 
13094   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
13095       N->getOperand(1).getOpcode() != ISD::AND &&
13096       N->getOperand(1).getOpcode() != ISD::OR  &&
13097       N->getOperand(1).getOpcode() != ISD::XOR &&
13098       N->getOperand(1).getOpcode() != ISD::SELECT &&
13099       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
13100       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
13101       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
13102       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
13103       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
13104     return SDValue();
13105 
13106   SmallVector<SDValue, 4> Inputs;
13107   SmallVector<SDValue, 8> BinOps, PromOps;
13108   SmallPtrSet<SDNode *, 16> Visited;
13109 
13110   for (unsigned i = 0; i < 2; ++i) {
13111     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13112           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13113           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13114           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13115         isa<ConstantSDNode>(N->getOperand(i)))
13116       Inputs.push_back(N->getOperand(i));
13117     else
13118       BinOps.push_back(N->getOperand(i));
13119 
13120     if (N->getOpcode() == ISD::TRUNCATE)
13121       break;
13122   }
13123 
13124   // Visit all inputs, collect all binary operations (and, or, xor and
13125   // select) that are all fed by extensions.
13126   while (!BinOps.empty()) {
13127     SDValue BinOp = BinOps.pop_back_val();
13128 
13129     if (!Visited.insert(BinOp.getNode()).second)
13130       continue;
13131 
13132     PromOps.push_back(BinOp);
13133 
13134     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13135       // The condition of the select is not promoted.
13136       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13137         continue;
13138       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13139         continue;
13140 
13141       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13142             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13143             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13144            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13145           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13146         Inputs.push_back(BinOp.getOperand(i));
13147       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13148                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13149                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13150                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13151                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
13152                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13153                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13154                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13155                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
13156         BinOps.push_back(BinOp.getOperand(i));
13157       } else {
13158         // We have an input that is not an extension or another binary
13159         // operation; we'll abort this transformation.
13160         return SDValue();
13161       }
13162     }
13163   }
13164 
13165   // Make sure that this is a self-contained cluster of operations (which
13166   // is not quite the same thing as saying that everything has only one
13167   // use).
13168   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13169     if (isa<ConstantSDNode>(Inputs[i]))
13170       continue;
13171 
13172     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
13173                               UE = Inputs[i].getNode()->use_end();
13174          UI != UE; ++UI) {
13175       SDNode *User = *UI;
13176       if (User != N && !Visited.count(User))
13177         return SDValue();
13178 
13179       // Make sure that we're not going to promote the non-output-value
13180       // operand(s) or SELECT or SELECT_CC.
13181       // FIXME: Although we could sometimes handle this, and it does occur in
13182       // practice that one of the condition inputs to the select is also one of
13183       // the outputs, we currently can't deal with this.
13184       if (User->getOpcode() == ISD::SELECT) {
13185         if (User->getOperand(0) == Inputs[i])
13186           return SDValue();
13187       } else if (User->getOpcode() == ISD::SELECT_CC) {
13188         if (User->getOperand(0) == Inputs[i] ||
13189             User->getOperand(1) == Inputs[i])
13190           return SDValue();
13191       }
13192     }
13193   }
13194 
13195   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13196     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
13197                               UE = PromOps[i].getNode()->use_end();
13198          UI != UE; ++UI) {
13199       SDNode *User = *UI;
13200       if (User != N && !Visited.count(User))
13201         return SDValue();
13202 
13203       // Make sure that we're not going to promote the non-output-value
13204       // operand(s) or SELECT or SELECT_CC.
13205       // FIXME: Although we could sometimes handle this, and it does occur in
13206       // practice that one of the condition inputs to the select is also one of
13207       // the outputs, we currently can't deal with this.
13208       if (User->getOpcode() == ISD::SELECT) {
13209         if (User->getOperand(0) == PromOps[i])
13210           return SDValue();
13211       } else if (User->getOpcode() == ISD::SELECT_CC) {
13212         if (User->getOperand(0) == PromOps[i] ||
13213             User->getOperand(1) == PromOps[i])
13214           return SDValue();
13215       }
13216     }
13217   }
13218 
13219   // Replace all inputs with the extension operand.
13220   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13221     // Constants may have users outside the cluster of to-be-promoted nodes,
13222     // and so we need to replace those as we do the promotions.
13223     if (isa<ConstantSDNode>(Inputs[i]))
13224       continue;
13225     else
13226       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
13227   }
13228 
13229   std::list<HandleSDNode> PromOpHandles;
13230   for (auto &PromOp : PromOps)
13231     PromOpHandles.emplace_back(PromOp);
13232 
13233   // Replace all operations (these are all the same, but have a different
13234   // (i1) return type). DAG.getNode will validate that the types of
13235   // a binary operator match, so go through the list in reverse so that
13236   // we've likely promoted both operands first. Any intermediate truncations or
13237   // extensions disappear.
13238   while (!PromOpHandles.empty()) {
13239     SDValue PromOp = PromOpHandles.back().getValue();
13240     PromOpHandles.pop_back();
13241 
13242     if (PromOp.getOpcode() == ISD::TRUNCATE ||
13243         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
13244         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
13245         PromOp.getOpcode() == ISD::ANY_EXTEND) {
13246       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
13247           PromOp.getOperand(0).getValueType() != MVT::i1) {
13248         // The operand is not yet ready (see comment below).
13249         PromOpHandles.emplace_front(PromOp);
13250         continue;
13251       }
13252 
13253       SDValue RepValue = PromOp.getOperand(0);
13254       if (isa<ConstantSDNode>(RepValue))
13255         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
13256 
13257       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
13258       continue;
13259     }
13260 
13261     unsigned C;
13262     switch (PromOp.getOpcode()) {
13263     default:             C = 0; break;
13264     case ISD::SELECT:    C = 1; break;
13265     case ISD::SELECT_CC: C = 2; break;
13266     }
13267 
13268     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13269          PromOp.getOperand(C).getValueType() != MVT::i1) ||
13270         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13271          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
13272       // The to-be-promoted operands of this node have not yet been
13273       // promoted (this should be rare because we're going through the
13274       // list backward, but if one of the operands has several users in
13275       // this cluster of to-be-promoted nodes, it is possible).
13276       PromOpHandles.emplace_front(PromOp);
13277       continue;
13278     }
13279 
13280     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13281                                 PromOp.getNode()->op_end());
13282 
13283     // If there are any constant inputs, make sure they're replaced now.
13284     for (unsigned i = 0; i < 2; ++i)
13285       if (isa<ConstantSDNode>(Ops[C+i]))
13286         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
13287 
13288     DAG.ReplaceAllUsesOfValueWith(PromOp,
13289       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
13290   }
13291 
13292   // Now we're left with the initial truncation itself.
13293   if (N->getOpcode() == ISD::TRUNCATE)
13294     return N->getOperand(0);
13295 
13296   // Otherwise, this is a comparison. The operands to be compared have just
13297   // changed type (to i1), but everything else is the same.
13298   return SDValue(N, 0);
13299 }
13300 
13301 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
13302                                                   DAGCombinerInfo &DCI) const {
13303   SelectionDAG &DAG = DCI.DAG;
13304   SDLoc dl(N);
13305 
13306   // If we're tracking CR bits, we need to be careful that we don't have:
13307   //   zext(binary-ops(trunc(x), trunc(y)))
13308   // or
13309   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
13310   // such that we're unnecessarily moving things into CR bits that can more
13311   // efficiently stay in GPRs. Note that if we're not certain that the high
13312   // bits are set as required by the final extension, we still may need to do
13313   // some masking to get the proper behavior.
13314 
13315   // This same functionality is important on PPC64 when dealing with
13316   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
13317   // the return values of functions. Because it is so similar, it is handled
13318   // here as well.
13319 
13320   if (N->getValueType(0) != MVT::i32 &&
13321       N->getValueType(0) != MVT::i64)
13322     return SDValue();
13323 
13324   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
13325         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
13326     return SDValue();
13327 
13328   if (N->getOperand(0).getOpcode() != ISD::AND &&
13329       N->getOperand(0).getOpcode() != ISD::OR  &&
13330       N->getOperand(0).getOpcode() != ISD::XOR &&
13331       N->getOperand(0).getOpcode() != ISD::SELECT &&
13332       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
13333     return SDValue();
13334 
13335   SmallVector<SDValue, 4> Inputs;
13336   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
13337   SmallPtrSet<SDNode *, 16> Visited;
13338 
13339   // Visit all inputs, collect all binary operations (and, or, xor and
13340   // select) that are all fed by truncations.
13341   while (!BinOps.empty()) {
13342     SDValue BinOp = BinOps.pop_back_val();
13343 
13344     if (!Visited.insert(BinOp.getNode()).second)
13345       continue;
13346 
13347     PromOps.push_back(BinOp);
13348 
13349     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13350       // The condition of the select is not promoted.
13351       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13352         continue;
13353       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13354         continue;
13355 
13356       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13357           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13358         Inputs.push_back(BinOp.getOperand(i));
13359       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13360                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13361                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13362                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13363                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
13364         BinOps.push_back(BinOp.getOperand(i));
13365       } else {
13366         // We have an input that is not a truncation or another binary
13367         // operation; we'll abort this transformation.
13368         return SDValue();
13369       }
13370     }
13371   }
13372 
13373   // The operands of a select that must be truncated when the select is
13374   // promoted because the operand is actually part of the to-be-promoted set.
13375   DenseMap<SDNode *, EVT> SelectTruncOp[2];
13376 
13377   // Make sure that this is a self-contained cluster of operations (which
13378   // is not quite the same thing as saying that everything has only one
13379   // use).
13380   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13381     if (isa<ConstantSDNode>(Inputs[i]))
13382       continue;
13383 
13384     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
13385                               UE = Inputs[i].getNode()->use_end();
13386          UI != UE; ++UI) {
13387       SDNode *User = *UI;
13388       if (User != N && !Visited.count(User))
13389         return SDValue();
13390 
13391       // If we're going to promote the non-output-value operand(s) or SELECT or
13392       // SELECT_CC, record them for truncation.
13393       if (User->getOpcode() == ISD::SELECT) {
13394         if (User->getOperand(0) == Inputs[i])
13395           SelectTruncOp[0].insert(std::make_pair(User,
13396                                     User->getOperand(0).getValueType()));
13397       } else if (User->getOpcode() == ISD::SELECT_CC) {
13398         if (User->getOperand(0) == Inputs[i])
13399           SelectTruncOp[0].insert(std::make_pair(User,
13400                                     User->getOperand(0).getValueType()));
13401         if (User->getOperand(1) == Inputs[i])
13402           SelectTruncOp[1].insert(std::make_pair(User,
13403                                     User->getOperand(1).getValueType()));
13404       }
13405     }
13406   }
13407 
13408   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13409     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
13410                               UE = PromOps[i].getNode()->use_end();
13411          UI != UE; ++UI) {
13412       SDNode *User = *UI;
13413       if (User != N && !Visited.count(User))
13414         return SDValue();
13415 
13416       // If we're going to promote the non-output-value operand(s) or SELECT or
13417       // SELECT_CC, record them for truncation.
13418       if (User->getOpcode() == ISD::SELECT) {
13419         if (User->getOperand(0) == PromOps[i])
13420           SelectTruncOp[0].insert(std::make_pair(User,
13421                                     User->getOperand(0).getValueType()));
13422       } else if (User->getOpcode() == ISD::SELECT_CC) {
13423         if (User->getOperand(0) == PromOps[i])
13424           SelectTruncOp[0].insert(std::make_pair(User,
13425                                     User->getOperand(0).getValueType()));
13426         if (User->getOperand(1) == PromOps[i])
13427           SelectTruncOp[1].insert(std::make_pair(User,
13428                                     User->getOperand(1).getValueType()));
13429       }
13430     }
13431   }
13432 
13433   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
13434   bool ReallyNeedsExt = false;
13435   if (N->getOpcode() != ISD::ANY_EXTEND) {
13436     // If all of the inputs are not already sign/zero extended, then
13437     // we'll still need to do that at the end.
13438     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13439       if (isa<ConstantSDNode>(Inputs[i]))
13440         continue;
13441 
13442       unsigned OpBits =
13443         Inputs[i].getOperand(0).getValueSizeInBits();
13444       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
13445 
13446       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
13447            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
13448                                   APInt::getHighBitsSet(OpBits,
13449                                                         OpBits-PromBits))) ||
13450           (N->getOpcode() == ISD::SIGN_EXTEND &&
13451            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
13452              (OpBits-(PromBits-1)))) {
13453         ReallyNeedsExt = true;
13454         break;
13455       }
13456     }
13457   }
13458 
13459   // Replace all inputs, either with the truncation operand, or a
13460   // truncation or extension to the final output type.
13461   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13462     // Constant inputs need to be replaced with the to-be-promoted nodes that
13463     // use them because they might have users outside of the cluster of
13464     // promoted nodes.
13465     if (isa<ConstantSDNode>(Inputs[i]))
13466       continue;
13467 
13468     SDValue InSrc = Inputs[i].getOperand(0);
13469     if (Inputs[i].getValueType() == N->getValueType(0))
13470       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
13471     else if (N->getOpcode() == ISD::SIGN_EXTEND)
13472       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13473         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
13474     else if (N->getOpcode() == ISD::ZERO_EXTEND)
13475       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13476         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
13477     else
13478       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13479         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
13480   }
13481 
13482   std::list<HandleSDNode> PromOpHandles;
13483   for (auto &PromOp : PromOps)
13484     PromOpHandles.emplace_back(PromOp);
13485 
13486   // Replace all operations (these are all the same, but have a different
13487   // (promoted) return type). DAG.getNode will validate that the types of
13488   // a binary operator match, so go through the list in reverse so that
13489   // we've likely promoted both operands first.
13490   while (!PromOpHandles.empty()) {
13491     SDValue PromOp = PromOpHandles.back().getValue();
13492     PromOpHandles.pop_back();
13493 
13494     unsigned C;
13495     switch (PromOp.getOpcode()) {
13496     default:             C = 0; break;
13497     case ISD::SELECT:    C = 1; break;
13498     case ISD::SELECT_CC: C = 2; break;
13499     }
13500 
13501     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13502          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
13503         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13504          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
13505       // The to-be-promoted operands of this node have not yet been
13506       // promoted (this should be rare because we're going through the
13507       // list backward, but if one of the operands has several users in
13508       // this cluster of to-be-promoted nodes, it is possible).
13509       PromOpHandles.emplace_front(PromOp);
13510       continue;
13511     }
13512 
13513     // For SELECT and SELECT_CC nodes, we do a similar check for any
13514     // to-be-promoted comparison inputs.
13515     if (PromOp.getOpcode() == ISD::SELECT ||
13516         PromOp.getOpcode() == ISD::SELECT_CC) {
13517       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
13518            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
13519           (SelectTruncOp[1].count(PromOp.getNode()) &&
13520            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
13521         PromOpHandles.emplace_front(PromOp);
13522         continue;
13523       }
13524     }
13525 
13526     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13527                                 PromOp.getNode()->op_end());
13528 
13529     // If this node has constant inputs, then they'll need to be promoted here.
13530     for (unsigned i = 0; i < 2; ++i) {
13531       if (!isa<ConstantSDNode>(Ops[C+i]))
13532         continue;
13533       if (Ops[C+i].getValueType() == N->getValueType(0))
13534         continue;
13535 
13536       if (N->getOpcode() == ISD::SIGN_EXTEND)
13537         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13538       else if (N->getOpcode() == ISD::ZERO_EXTEND)
13539         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13540       else
13541         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13542     }
13543 
13544     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
13545     // truncate them again to the original value type.
13546     if (PromOp.getOpcode() == ISD::SELECT ||
13547         PromOp.getOpcode() == ISD::SELECT_CC) {
13548       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
13549       if (SI0 != SelectTruncOp[0].end())
13550         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
13551       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
13552       if (SI1 != SelectTruncOp[1].end())
13553         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
13554     }
13555 
13556     DAG.ReplaceAllUsesOfValueWith(PromOp,
13557       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
13558   }
13559 
13560   // Now we're left with the initial extension itself.
13561   if (!ReallyNeedsExt)
13562     return N->getOperand(0);
13563 
13564   // To zero extend, just mask off everything except for the first bit (in the
13565   // i1 case).
13566   if (N->getOpcode() == ISD::ZERO_EXTEND)
13567     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
13568                        DAG.getConstant(APInt::getLowBitsSet(
13569                                          N->getValueSizeInBits(0), PromBits),
13570                                        dl, N->getValueType(0)));
13571 
13572   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
13573          "Invalid extension type");
13574   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
13575   SDValue ShiftCst =
13576       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
13577   return DAG.getNode(
13578       ISD::SRA, dl, N->getValueType(0),
13579       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
13580       ShiftCst);
13581 }
13582 
13583 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
13584                                         DAGCombinerInfo &DCI) const {
13585   assert(N->getOpcode() == ISD::SETCC &&
13586          "Should be called with a SETCC node");
13587 
13588   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13589   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13590     SDValue LHS = N->getOperand(0);
13591     SDValue RHS = N->getOperand(1);
13592 
13593     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13594     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13595         LHS.hasOneUse())
13596       std::swap(LHS, RHS);
13597 
13598     // x == 0-y --> x+y == 0
13599     // x != 0-y --> x+y != 0
13600     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13601         RHS.hasOneUse()) {
13602       SDLoc DL(N);
13603       SelectionDAG &DAG = DCI.DAG;
13604       EVT VT = N->getValueType(0);
13605       EVT OpVT = LHS.getValueType();
13606       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13607       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13608     }
13609   }
13610 
13611   return DAGCombineTruncBoolExt(N, DCI);
13612 }
13613 
13614 // Is this an extending load from an f32 to an f64?
13615 static bool isFPExtLoad(SDValue Op) {
13616   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13617     return LD->getExtensionType() == ISD::EXTLOAD &&
13618       Op.getValueType() == MVT::f64;
13619   return false;
13620 }
13621 
13622 /// Reduces the number of fp-to-int conversion when building a vector.
13623 ///
13624 /// If this vector is built out of floating to integer conversions,
13625 /// transform it to a vector built out of floating point values followed by a
13626 /// single floating to integer conversion of the vector.
13627 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
13628 /// becomes (fptosi (build_vector ($A, $B, ...)))
13629 SDValue PPCTargetLowering::
13630 combineElementTruncationToVectorTruncation(SDNode *N,
13631                                            DAGCombinerInfo &DCI) const {
13632   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13633          "Should be called with a BUILD_VECTOR node");
13634 
13635   SelectionDAG &DAG = DCI.DAG;
13636   SDLoc dl(N);
13637 
13638   SDValue FirstInput = N->getOperand(0);
13639   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
13640          "The input operand must be an fp-to-int conversion.");
13641 
13642   // This combine happens after legalization so the fp_to_[su]i nodes are
13643   // already converted to PPCSISD nodes.
13644   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
13645   if (FirstConversion == PPCISD::FCTIDZ ||
13646       FirstConversion == PPCISD::FCTIDUZ ||
13647       FirstConversion == PPCISD::FCTIWZ ||
13648       FirstConversion == PPCISD::FCTIWUZ) {
13649     bool IsSplat = true;
13650     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
13651       FirstConversion == PPCISD::FCTIWUZ;
13652     EVT SrcVT = FirstInput.getOperand(0).getValueType();
13653     SmallVector<SDValue, 4> Ops;
13654     EVT TargetVT = N->getValueType(0);
13655     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13656       SDValue NextOp = N->getOperand(i);
13657       if (NextOp.getOpcode() != PPCISD::MFVSR)
13658         return SDValue();
13659       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
13660       if (NextConversion != FirstConversion)
13661         return SDValue();
13662       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13663       // This is not valid if the input was originally double precision. It is
13664       // also not profitable to do unless this is an extending load in which
13665       // case doing this combine will allow us to combine consecutive loads.
13666       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
13667         return SDValue();
13668       if (N->getOperand(i) != FirstInput)
13669         IsSplat = false;
13670     }
13671 
13672     // If this is a splat, we leave it as-is since there will be only a single
13673     // fp-to-int conversion followed by a splat of the integer. This is better
13674     // for 32-bit and smaller ints and neutral for 64-bit ints.
13675     if (IsSplat)
13676       return SDValue();
13677 
13678     // Now that we know we have the right type of node, get its operands
13679     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13680       SDValue In = N->getOperand(i).getOperand(0);
13681       if (Is32Bit) {
13682         // For 32-bit values, we need to add an FP_ROUND node (if we made it
13683         // here, we know that all inputs are extending loads so this is safe).
13684         if (In.isUndef())
13685           Ops.push_back(DAG.getUNDEF(SrcVT));
13686         else {
13687           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13688                                       MVT::f32, In.getOperand(0),
13689                                       DAG.getIntPtrConstant(1, dl));
13690           Ops.push_back(Trunc);
13691         }
13692       } else
13693         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13694     }
13695 
13696     unsigned Opcode;
13697     if (FirstConversion == PPCISD::FCTIDZ ||
13698         FirstConversion == PPCISD::FCTIWZ)
13699       Opcode = ISD::FP_TO_SINT;
13700     else
13701       Opcode = ISD::FP_TO_UINT;
13702 
13703     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13704     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13705     return DAG.getNode(Opcode, dl, TargetVT, BV);
13706   }
13707   return SDValue();
13708 }
13709 
13710 /// Reduce the number of loads when building a vector.
13711 ///
13712 /// Building a vector out of multiple loads can be converted to a load
13713 /// of the vector type if the loads are consecutive. If the loads are
13714 /// consecutive but in descending order, a shuffle is added at the end
13715 /// to reorder the vector.
13716 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13717   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13718          "Should be called with a BUILD_VECTOR node");
13719 
13720   SDLoc dl(N);
13721 
13722   // Return early for non byte-sized type, as they can't be consecutive.
13723   if (!N->getValueType(0).getVectorElementType().isByteSized())
13724     return SDValue();
13725 
13726   bool InputsAreConsecutiveLoads = true;
13727   bool InputsAreReverseConsecutive = true;
13728   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13729   SDValue FirstInput = N->getOperand(0);
13730   bool IsRoundOfExtLoad = false;
13731 
13732   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13733       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13734     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13735     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13736   }
13737   // Not a build vector of (possibly fp_rounded) loads.
13738   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13739       N->getNumOperands() == 1)
13740     return SDValue();
13741 
13742   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13743     // If any inputs are fp_round(extload), they all must be.
13744     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13745       return SDValue();
13746 
13747     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13748       N->getOperand(i);
13749     if (NextInput.getOpcode() != ISD::LOAD)
13750       return SDValue();
13751 
13752     SDValue PreviousInput =
13753       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13754     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13755     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13756 
13757     // If any inputs are fp_round(extload), they all must be.
13758     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13759       return SDValue();
13760 
13761     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13762       InputsAreConsecutiveLoads = false;
13763     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13764       InputsAreReverseConsecutive = false;
13765 
13766     // Exit early if the loads are neither consecutive nor reverse consecutive.
13767     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13768       return SDValue();
13769   }
13770 
13771   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13772          "The loads cannot be both consecutive and reverse consecutive.");
13773 
13774   SDValue FirstLoadOp =
13775     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13776   SDValue LastLoadOp =
13777     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13778                        N->getOperand(N->getNumOperands()-1);
13779 
13780   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
13781   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
13782   if (InputsAreConsecutiveLoads) {
13783     assert(LD1 && "Input needs to be a LoadSDNode.");
13784     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
13785                        LD1->getBasePtr(), LD1->getPointerInfo(),
13786                        LD1->getAlignment());
13787   }
13788   if (InputsAreReverseConsecutive) {
13789     assert(LDL && "Input needs to be a LoadSDNode.");
13790     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
13791                                LDL->getBasePtr(), LDL->getPointerInfo(),
13792                                LDL->getAlignment());
13793     SmallVector<int, 16> Ops;
13794     for (int i = N->getNumOperands() - 1; i >= 0; i--)
13795       Ops.push_back(i);
13796 
13797     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
13798                                 DAG.getUNDEF(N->getValueType(0)), Ops);
13799   }
13800   return SDValue();
13801 }
13802 
13803 // This function adds the required vector_shuffle needed to get
13804 // the elements of the vector extract in the correct position
13805 // as specified by the CorrectElems encoding.
13806 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
13807                                       SDValue Input, uint64_t Elems,
13808                                       uint64_t CorrectElems) {
13809   SDLoc dl(N);
13810 
13811   unsigned NumElems = Input.getValueType().getVectorNumElements();
13812   SmallVector<int, 16> ShuffleMask(NumElems, -1);
13813 
13814   // Knowing the element indices being extracted from the original
13815   // vector and the order in which they're being inserted, just put
13816   // them at element indices required for the instruction.
13817   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13818     if (DAG.getDataLayout().isLittleEndian())
13819       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13820     else
13821       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13822     CorrectElems = CorrectElems >> 8;
13823     Elems = Elems >> 8;
13824   }
13825 
13826   SDValue Shuffle =
13827       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13828                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13829 
13830   EVT VT = N->getValueType(0);
13831   SDValue Conv = DAG.getBitcast(VT, Shuffle);
13832 
13833   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
13834                                Input.getValueType().getVectorElementType(),
13835                                VT.getVectorNumElements());
13836   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
13837                      DAG.getValueType(ExtVT));
13838 }
13839 
13840 // Look for build vector patterns where input operands come from sign
13841 // extended vector_extract elements of specific indices. If the correct indices
13842 // aren't used, add a vector shuffle to fix up the indices and create
13843 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
13844 // during instruction selection.
13845 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13846   // This array encodes the indices that the vector sign extend instructions
13847   // extract from when extending from one type to another for both BE and LE.
13848   // The right nibble of each byte corresponds to the LE incides.
13849   // and the left nibble of each byte corresponds to the BE incides.
13850   // For example: 0x3074B8FC  byte->word
13851   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13852   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13853   // For example: 0x000070F8  byte->double word
13854   // For LE: the allowed indices are: 0x0,0x8
13855   // For BE: the allowed indices are: 0x7,0xF
13856   uint64_t TargetElems[] = {
13857       0x3074B8FC, // b->w
13858       0x000070F8, // b->d
13859       0x10325476, // h->w
13860       0x00003074, // h->d
13861       0x00001032, // w->d
13862   };
13863 
13864   uint64_t Elems = 0;
13865   int Index;
13866   SDValue Input;
13867 
13868   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13869     if (!Op)
13870       return false;
13871     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13872         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13873       return false;
13874 
13875     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13876     // of the right width.
13877     SDValue Extract = Op.getOperand(0);
13878     if (Extract.getOpcode() == ISD::ANY_EXTEND)
13879       Extract = Extract.getOperand(0);
13880     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13881       return false;
13882 
13883     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
13884     if (!ExtOp)
13885       return false;
13886 
13887     Index = ExtOp->getZExtValue();
13888     if (Input && Input != Extract.getOperand(0))
13889       return false;
13890 
13891     if (!Input)
13892       Input = Extract.getOperand(0);
13893 
13894     Elems = Elems << 8;
13895     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
13896     Elems |= Index;
13897 
13898     return true;
13899   };
13900 
13901   // If the build vector operands aren't sign extended vector extracts,
13902   // of the same input vector, then return.
13903   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13904     if (!isSExtOfVecExtract(N->getOperand(i))) {
13905       return SDValue();
13906     }
13907   }
13908 
13909   // If the vector extract indicies are not correct, add the appropriate
13910   // vector_shuffle.
13911   int TgtElemArrayIdx;
13912   int InputSize = Input.getValueType().getScalarSizeInBits();
13913   int OutputSize = N->getValueType(0).getScalarSizeInBits();
13914   if (InputSize + OutputSize == 40)
13915     TgtElemArrayIdx = 0;
13916   else if (InputSize + OutputSize == 72)
13917     TgtElemArrayIdx = 1;
13918   else if (InputSize + OutputSize == 48)
13919     TgtElemArrayIdx = 2;
13920   else if (InputSize + OutputSize == 80)
13921     TgtElemArrayIdx = 3;
13922   else if (InputSize + OutputSize == 96)
13923     TgtElemArrayIdx = 4;
13924   else
13925     return SDValue();
13926 
13927   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
13928   CorrectElems = DAG.getDataLayout().isLittleEndian()
13929                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
13930                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
13931   if (Elems != CorrectElems) {
13932     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
13933   }
13934 
13935   // Regular lowering will catch cases where a shuffle is not needed.
13936   return SDValue();
13937 }
13938 
13939 // Look for the pattern of a load from a narrow width to i128, feeding
13940 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node
13941 // (LXVRZX). This node represents a zero extending load that will be matched
13942 // to the Load VSX Vector Rightmost instructions.
13943 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) {
13944   SDLoc DL(N);
13945 
13946   // This combine is only eligible for a BUILD_VECTOR of v1i128.
13947   if (N->getValueType(0) != MVT::v1i128)
13948     return SDValue();
13949 
13950   SDValue Operand = N->getOperand(0);
13951   // Proceed with the transformation if the operand to the BUILD_VECTOR
13952   // is a load instruction.
13953   if (Operand.getOpcode() != ISD::LOAD)
13954     return SDValue();
13955 
13956   auto *LD = cast<LoadSDNode>(Operand);
13957   EVT MemoryType = LD->getMemoryVT();
13958 
13959   // This transformation is only valid if the we are loading either a byte,
13960   // halfword, word, or doubleword.
13961   bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 ||
13962                      MemoryType == MVT::i32 || MemoryType == MVT::i64;
13963 
13964   // Ensure that the load from the narrow width is being zero extended to i128.
13965   if (!ValidLDType ||
13966       (LD->getExtensionType() != ISD::ZEXTLOAD &&
13967        LD->getExtensionType() != ISD::EXTLOAD))
13968     return SDValue();
13969 
13970   SDValue LoadOps[] = {
13971       LD->getChain(), LD->getBasePtr(),
13972       DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)};
13973 
13974   return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL,
13975                                  DAG.getVTList(MVT::v1i128, MVT::Other),
13976                                  LoadOps, MemoryType, LD->getMemOperand());
13977 }
13978 
13979 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
13980                                                  DAGCombinerInfo &DCI) const {
13981   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13982          "Should be called with a BUILD_VECTOR node");
13983 
13984   SelectionDAG &DAG = DCI.DAG;
13985   SDLoc dl(N);
13986 
13987   if (!Subtarget.hasVSX())
13988     return SDValue();
13989 
13990   // The target independent DAG combiner will leave a build_vector of
13991   // float-to-int conversions intact. We can generate MUCH better code for
13992   // a float-to-int conversion of a vector of floats.
13993   SDValue FirstInput = N->getOperand(0);
13994   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
13995     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
13996     if (Reduced)
13997       return Reduced;
13998   }
13999 
14000   // If we're building a vector out of consecutive loads, just load that
14001   // vector type.
14002   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
14003   if (Reduced)
14004     return Reduced;
14005 
14006   // If we're building a vector out of extended elements from another vector
14007   // we have P9 vector integer extend instructions. The code assumes legal
14008   // input types (i.e. it can't handle things like v4i16) so do not run before
14009   // legalization.
14010   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
14011     Reduced = combineBVOfVecSExt(N, DAG);
14012     if (Reduced)
14013       return Reduced;
14014   }
14015 
14016   // On Power10, the Load VSX Vector Rightmost instructions can be utilized
14017   // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR
14018   // is a load from <valid narrow width> to i128.
14019   if (Subtarget.isISA3_1()) {
14020     SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG);
14021     if (BVOfZLoad)
14022       return BVOfZLoad;
14023   }
14024 
14025   if (N->getValueType(0) != MVT::v2f64)
14026     return SDValue();
14027 
14028   // Looking for:
14029   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
14030   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
14031       FirstInput.getOpcode() != ISD::UINT_TO_FP)
14032     return SDValue();
14033   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
14034       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
14035     return SDValue();
14036   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
14037     return SDValue();
14038 
14039   SDValue Ext1 = FirstInput.getOperand(0);
14040   SDValue Ext2 = N->getOperand(1).getOperand(0);
14041   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
14042      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14043     return SDValue();
14044 
14045   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
14046   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
14047   if (!Ext1Op || !Ext2Op)
14048     return SDValue();
14049   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
14050       Ext1.getOperand(0) != Ext2.getOperand(0))
14051     return SDValue();
14052 
14053   int FirstElem = Ext1Op->getZExtValue();
14054   int SecondElem = Ext2Op->getZExtValue();
14055   int SubvecIdx;
14056   if (FirstElem == 0 && SecondElem == 1)
14057     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
14058   else if (FirstElem == 2 && SecondElem == 3)
14059     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
14060   else
14061     return SDValue();
14062 
14063   SDValue SrcVec = Ext1.getOperand(0);
14064   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
14065     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
14066   return DAG.getNode(NodeType, dl, MVT::v2f64,
14067                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
14068 }
14069 
14070 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
14071                                               DAGCombinerInfo &DCI) const {
14072   assert((N->getOpcode() == ISD::SINT_TO_FP ||
14073           N->getOpcode() == ISD::UINT_TO_FP) &&
14074          "Need an int -> FP conversion node here");
14075 
14076   if (useSoftFloat() || !Subtarget.has64BitSupport())
14077     return SDValue();
14078 
14079   SelectionDAG &DAG = DCI.DAG;
14080   SDLoc dl(N);
14081   SDValue Op(N, 0);
14082 
14083   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
14084   // from the hardware.
14085   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
14086     return SDValue();
14087   if (!Op.getOperand(0).getValueType().isSimple())
14088     return SDValue();
14089   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
14090       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
14091     return SDValue();
14092 
14093   SDValue FirstOperand(Op.getOperand(0));
14094   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
14095     (FirstOperand.getValueType() == MVT::i8 ||
14096      FirstOperand.getValueType() == MVT::i16);
14097   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
14098     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
14099     bool DstDouble = Op.getValueType() == MVT::f64;
14100     unsigned ConvOp = Signed ?
14101       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
14102       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
14103     SDValue WidthConst =
14104       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
14105                             dl, false);
14106     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
14107     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
14108     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
14109                                          DAG.getVTList(MVT::f64, MVT::Other),
14110                                          Ops, MVT::i8, LDN->getMemOperand());
14111 
14112     // For signed conversion, we need to sign-extend the value in the VSR
14113     if (Signed) {
14114       SDValue ExtOps[] = { Ld, WidthConst };
14115       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
14116       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
14117     } else
14118       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
14119   }
14120 
14121 
14122   // For i32 intermediate values, unfortunately, the conversion functions
14123   // leave the upper 32 bits of the value are undefined. Within the set of
14124   // scalar instructions, we have no method for zero- or sign-extending the
14125   // value. Thus, we cannot handle i32 intermediate values here.
14126   if (Op.getOperand(0).getValueType() == MVT::i32)
14127     return SDValue();
14128 
14129   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
14130          "UINT_TO_FP is supported only with FPCVT");
14131 
14132   // If we have FCFIDS, then use it when converting to single-precision.
14133   // Otherwise, convert to double-precision and then round.
14134   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14135                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
14136                                                             : PPCISD::FCFIDS)
14137                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
14138                                                             : PPCISD::FCFID);
14139   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14140                   ? MVT::f32
14141                   : MVT::f64;
14142 
14143   // If we're converting from a float, to an int, and back to a float again,
14144   // then we don't need the store/load pair at all.
14145   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
14146        Subtarget.hasFPCVT()) ||
14147       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
14148     SDValue Src = Op.getOperand(0).getOperand(0);
14149     if (Src.getValueType() == MVT::f32) {
14150       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
14151       DCI.AddToWorklist(Src.getNode());
14152     } else if (Src.getValueType() != MVT::f64) {
14153       // Make sure that we don't pick up a ppc_fp128 source value.
14154       return SDValue();
14155     }
14156 
14157     unsigned FCTOp =
14158       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
14159                                                         PPCISD::FCTIDUZ;
14160 
14161     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
14162     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
14163 
14164     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
14165       FP = DAG.getNode(ISD::FP_ROUND, dl,
14166                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
14167       DCI.AddToWorklist(FP.getNode());
14168     }
14169 
14170     return FP;
14171   }
14172 
14173   return SDValue();
14174 }
14175 
14176 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
14177 // builtins) into loads with swaps.
14178 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
14179                                               DAGCombinerInfo &DCI) const {
14180   SelectionDAG &DAG = DCI.DAG;
14181   SDLoc dl(N);
14182   SDValue Chain;
14183   SDValue Base;
14184   MachineMemOperand *MMO;
14185 
14186   switch (N->getOpcode()) {
14187   default:
14188     llvm_unreachable("Unexpected opcode for little endian VSX load");
14189   case ISD::LOAD: {
14190     LoadSDNode *LD = cast<LoadSDNode>(N);
14191     Chain = LD->getChain();
14192     Base = LD->getBasePtr();
14193     MMO = LD->getMemOperand();
14194     // If the MMO suggests this isn't a load of a full vector, leave
14195     // things alone.  For a built-in, we have to make the change for
14196     // correctness, so if there is a size problem that will be a bug.
14197     if (MMO->getSize() < 16)
14198       return SDValue();
14199     break;
14200   }
14201   case ISD::INTRINSIC_W_CHAIN: {
14202     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14203     Chain = Intrin->getChain();
14204     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
14205     // us what we want. Get operand 2 instead.
14206     Base = Intrin->getOperand(2);
14207     MMO = Intrin->getMemOperand();
14208     break;
14209   }
14210   }
14211 
14212   MVT VecTy = N->getValueType(0).getSimpleVT();
14213 
14214   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
14215   // aligned and the type is a vector with elements up to 4 bytes
14216   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14217       VecTy.getScalarSizeInBits() <= 32) {
14218     return SDValue();
14219   }
14220 
14221   SDValue LoadOps[] = { Chain, Base };
14222   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
14223                                          DAG.getVTList(MVT::v2f64, MVT::Other),
14224                                          LoadOps, MVT::v2f64, MMO);
14225 
14226   DCI.AddToWorklist(Load.getNode());
14227   Chain = Load.getValue(1);
14228   SDValue Swap = DAG.getNode(
14229       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
14230   DCI.AddToWorklist(Swap.getNode());
14231 
14232   // Add a bitcast if the resulting load type doesn't match v2f64.
14233   if (VecTy != MVT::v2f64) {
14234     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
14235     DCI.AddToWorklist(N.getNode());
14236     // Package {bitcast value, swap's chain} to match Load's shape.
14237     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
14238                        N, Swap.getValue(1));
14239   }
14240 
14241   return Swap;
14242 }
14243 
14244 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
14245 // builtins) into stores with swaps.
14246 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
14247                                                DAGCombinerInfo &DCI) const {
14248   SelectionDAG &DAG = DCI.DAG;
14249   SDLoc dl(N);
14250   SDValue Chain;
14251   SDValue Base;
14252   unsigned SrcOpnd;
14253   MachineMemOperand *MMO;
14254 
14255   switch (N->getOpcode()) {
14256   default:
14257     llvm_unreachable("Unexpected opcode for little endian VSX store");
14258   case ISD::STORE: {
14259     StoreSDNode *ST = cast<StoreSDNode>(N);
14260     Chain = ST->getChain();
14261     Base = ST->getBasePtr();
14262     MMO = ST->getMemOperand();
14263     SrcOpnd = 1;
14264     // If the MMO suggests this isn't a store of a full vector, leave
14265     // things alone.  For a built-in, we have to make the change for
14266     // correctness, so if there is a size problem that will be a bug.
14267     if (MMO->getSize() < 16)
14268       return SDValue();
14269     break;
14270   }
14271   case ISD::INTRINSIC_VOID: {
14272     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14273     Chain = Intrin->getChain();
14274     // Intrin->getBasePtr() oddly does not get what we want.
14275     Base = Intrin->getOperand(3);
14276     MMO = Intrin->getMemOperand();
14277     SrcOpnd = 2;
14278     break;
14279   }
14280   }
14281 
14282   SDValue Src = N->getOperand(SrcOpnd);
14283   MVT VecTy = Src.getValueType().getSimpleVT();
14284 
14285   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
14286   // aligned and the type is a vector with elements up to 4 bytes
14287   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14288       VecTy.getScalarSizeInBits() <= 32) {
14289     return SDValue();
14290   }
14291 
14292   // All stores are done as v2f64 and possible bit cast.
14293   if (VecTy != MVT::v2f64) {
14294     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
14295     DCI.AddToWorklist(Src.getNode());
14296   }
14297 
14298   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
14299                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
14300   DCI.AddToWorklist(Swap.getNode());
14301   Chain = Swap.getValue(1);
14302   SDValue StoreOps[] = { Chain, Swap, Base };
14303   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
14304                                           DAG.getVTList(MVT::Other),
14305                                           StoreOps, VecTy, MMO);
14306   DCI.AddToWorklist(Store.getNode());
14307   return Store;
14308 }
14309 
14310 // Handle DAG combine for STORE (FP_TO_INT F).
14311 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
14312                                                DAGCombinerInfo &DCI) const {
14313 
14314   SelectionDAG &DAG = DCI.DAG;
14315   SDLoc dl(N);
14316   unsigned Opcode = N->getOperand(1).getOpcode();
14317 
14318   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
14319          && "Not a FP_TO_INT Instruction!");
14320 
14321   SDValue Val = N->getOperand(1).getOperand(0);
14322   EVT Op1VT = N->getOperand(1).getValueType();
14323   EVT ResVT = Val.getValueType();
14324 
14325   if (!isTypeLegal(ResVT))
14326     return SDValue();
14327 
14328   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
14329   bool ValidTypeForStoreFltAsInt =
14330         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
14331          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
14332 
14333   if (ResVT == MVT::f128 && !Subtarget.hasP9Vector())
14334     return SDValue();
14335 
14336   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
14337       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
14338     return SDValue();
14339 
14340   // Extend f32 values to f64
14341   if (ResVT.getScalarSizeInBits() == 32) {
14342     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
14343     DCI.AddToWorklist(Val.getNode());
14344   }
14345 
14346   // Set signed or unsigned conversion opcode.
14347   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
14348                           PPCISD::FP_TO_SINT_IN_VSR :
14349                           PPCISD::FP_TO_UINT_IN_VSR;
14350 
14351   Val = DAG.getNode(ConvOpcode,
14352                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
14353   DCI.AddToWorklist(Val.getNode());
14354 
14355   // Set number of bytes being converted.
14356   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
14357   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
14358                     DAG.getIntPtrConstant(ByteSize, dl, false),
14359                     DAG.getValueType(Op1VT) };
14360 
14361   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
14362           DAG.getVTList(MVT::Other), Ops,
14363           cast<StoreSDNode>(N)->getMemoryVT(),
14364           cast<StoreSDNode>(N)->getMemOperand());
14365 
14366   DCI.AddToWorklist(Val.getNode());
14367   return Val;
14368 }
14369 
14370 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
14371   // Check that the source of the element keeps flipping
14372   // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
14373   bool PrevElemFromFirstVec = Mask[0] < NumElts;
14374   for (int i = 1, e = Mask.size(); i < e; i++) {
14375     if (PrevElemFromFirstVec && Mask[i] < NumElts)
14376       return false;
14377     if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
14378       return false;
14379     PrevElemFromFirstVec = !PrevElemFromFirstVec;
14380   }
14381   return true;
14382 }
14383 
14384 static bool isSplatBV(SDValue Op) {
14385   if (Op.getOpcode() != ISD::BUILD_VECTOR)
14386     return false;
14387   SDValue FirstOp;
14388 
14389   // Find first non-undef input.
14390   for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
14391     FirstOp = Op.getOperand(i);
14392     if (!FirstOp.isUndef())
14393       break;
14394   }
14395 
14396   // All inputs are undef or the same as the first non-undef input.
14397   for (int i = 1, e = Op.getNumOperands(); i < e; i++)
14398     if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
14399       return false;
14400   return true;
14401 }
14402 
14403 static SDValue isScalarToVec(SDValue Op) {
14404   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14405     return Op;
14406   if (Op.getOpcode() != ISD::BITCAST)
14407     return SDValue();
14408   Op = Op.getOperand(0);
14409   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14410     return Op;
14411   return SDValue();
14412 }
14413 
14414 // Fix up the shuffle mask to account for the fact that the result of
14415 // scalar_to_vector is not in lane zero. This just takes all values in
14416 // the ranges specified by the min/max indices and adds the number of
14417 // elements required to ensure each element comes from the respective
14418 // position in the valid lane.
14419 // On little endian, that's just the corresponding element in the other
14420 // half of the vector. On big endian, it is in the same half but right
14421 // justified rather than left justified in that half.
14422 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
14423                                             int LHSMaxIdx, int RHSMinIdx,
14424                                             int RHSMaxIdx, int HalfVec,
14425                                             unsigned ValidLaneWidth,
14426                                             const PPCSubtarget &Subtarget) {
14427   for (int i = 0, e = ShuffV.size(); i < e; i++) {
14428     int Idx = ShuffV[i];
14429     if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
14430       ShuffV[i] +=
14431           Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth;
14432   }
14433 }
14434 
14435 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
14436 // the original is:
14437 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
14438 // In such a case, just change the shuffle mask to extract the element
14439 // from the permuted index.
14440 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG,
14441                                const PPCSubtarget &Subtarget) {
14442   SDLoc dl(OrigSToV);
14443   EVT VT = OrigSToV.getValueType();
14444   assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
14445          "Expecting a SCALAR_TO_VECTOR here");
14446   SDValue Input = OrigSToV.getOperand(0);
14447 
14448   if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14449     ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
14450     SDValue OrigVector = Input.getOperand(0);
14451 
14452     // Can't handle non-const element indices or different vector types
14453     // for the input to the extract and the output of the scalar_to_vector.
14454     if (Idx && VT == OrigVector.getValueType()) {
14455       unsigned NumElts = VT.getVectorNumElements();
14456       assert(
14457           NumElts > 1 &&
14458           "Cannot produce a permuted scalar_to_vector for one element vector");
14459       SmallVector<int, 16> NewMask(NumElts, -1);
14460       unsigned ResultInElt = NumElts / 2;
14461       ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1;
14462       NewMask[ResultInElt] = Idx->getZExtValue();
14463       return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
14464     }
14465   }
14466   return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
14467                      OrigSToV.getOperand(0));
14468 }
14469 
14470 // On little endian subtargets, combine shuffles such as:
14471 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
14472 // into:
14473 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
14474 // because the latter can be matched to a single instruction merge.
14475 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
14476 // to put the value into element zero. Adjust the shuffle mask so that the
14477 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
14478 // On big endian targets, this is still useful for SCALAR_TO_VECTOR
14479 // nodes with elements smaller than doubleword because all the ways
14480 // of getting scalar data into a vector register put the value in the
14481 // rightmost element of the left half of the vector.
14482 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
14483                                                 SelectionDAG &DAG) const {
14484   SDValue LHS = SVN->getOperand(0);
14485   SDValue RHS = SVN->getOperand(1);
14486   auto Mask = SVN->getMask();
14487   int NumElts = LHS.getValueType().getVectorNumElements();
14488   SDValue Res(SVN, 0);
14489   SDLoc dl(SVN);
14490   bool IsLittleEndian = Subtarget.isLittleEndian();
14491 
14492   // On little endian targets, do these combines on all VSX targets since
14493   // canonical shuffles match efficient permutes. On big endian targets,
14494   // this is only useful for targets with direct moves.
14495   if (!Subtarget.hasDirectMove() && !(IsLittleEndian && Subtarget.hasVSX()))
14496     return Res;
14497 
14498   // If this is not a shuffle of a shuffle and the first element comes from
14499   // the second vector, canonicalize to the commuted form. This will make it
14500   // more likely to match one of the single instruction patterns.
14501   if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14502       RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
14503     std::swap(LHS, RHS);
14504     Res = DAG.getCommutedVectorShuffle(*SVN);
14505     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14506   }
14507 
14508   // Adjust the shuffle mask if either input vector comes from a
14509   // SCALAR_TO_VECTOR and keep the respective input vector in permuted
14510   // form (to prevent the need for a swap).
14511   SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
14512   SDValue SToVLHS = isScalarToVec(LHS);
14513   SDValue SToVRHS = isScalarToVec(RHS);
14514   if (SToVLHS || SToVRHS) {
14515     int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
14516                             : SToVRHS.getValueType().getVectorNumElements();
14517     int NumEltsOut = ShuffV.size();
14518     unsigned InElemSizeInBits =
14519         SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits()
14520                 : SToVRHS.getValueType().getScalarSizeInBits();
14521     unsigned OutElemSizeInBits = SToVLHS
14522                                      ? LHS.getValueType().getScalarSizeInBits()
14523                                      : RHS.getValueType().getScalarSizeInBits();
14524 
14525     // The width of the "valid lane" (i.e. the lane that contains the value that
14526     // is vectorized) needs to be expressed in terms of the number of elements
14527     // of the shuffle. It is thereby the ratio of the values before and after
14528     // any bitcast.
14529     unsigned ValidLaneWidth = InElemSizeInBits / OutElemSizeInBits;
14530 
14531     // Initially assume that neither input is permuted. These will be adjusted
14532     // accordingly if either input is.
14533     int LHSMaxIdx = -1;
14534     int RHSMinIdx = -1;
14535     int RHSMaxIdx = -1;
14536     int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
14537 
14538     // Get the permuted scalar to vector nodes for the source(s) that come from
14539     // ISD::SCALAR_TO_VECTOR.
14540     // On big endian systems, this only makes sense for element sizes smaller
14541     // than 64 bits since for 64-bit elements, all instructions already put
14542     // the value into element zero.
14543     if (SToVLHS) {
14544       if (!IsLittleEndian && InElemSizeInBits >= 64)
14545         return Res;
14546       // Set up the values for the shuffle vector fixup.
14547       LHSMaxIdx = NumEltsOut / NumEltsIn;
14548       SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget);
14549       if (SToVLHS.getValueType() != LHS.getValueType())
14550         SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
14551       LHS = SToVLHS;
14552     }
14553     if (SToVRHS) {
14554       if (!IsLittleEndian && InElemSizeInBits >= 64)
14555         return Res;
14556       RHSMinIdx = NumEltsOut;
14557       RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
14558       SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget);
14559       if (SToVRHS.getValueType() != RHS.getValueType())
14560         SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
14561       RHS = SToVRHS;
14562     }
14563 
14564     // Fix up the shuffle mask to reflect where the desired element actually is.
14565     // The minimum and maximum indices that correspond to element zero for both
14566     // the LHS and RHS are computed and will control which shuffle mask entries
14567     // are to be changed. For example, if the RHS is permuted, any shuffle mask
14568     // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted.
14569     fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
14570                                     HalfVec, ValidLaneWidth, Subtarget);
14571     Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14572 
14573     // We may have simplified away the shuffle. We won't be able to do anything
14574     // further with it here.
14575     if (!isa<ShuffleVectorSDNode>(Res))
14576       return Res;
14577     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14578   }
14579 
14580   SDValue TheSplat = IsLittleEndian ? RHS : LHS;
14581   // The common case after we commuted the shuffle is that the RHS is a splat
14582   // and we have elements coming in from the splat at indices that are not
14583   // conducive to using a merge.
14584   // Example:
14585   // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
14586   if (!isSplatBV(TheSplat))
14587     return Res;
14588 
14589   // We are looking for a mask such that all even elements are from
14590   // one vector and all odd elements from the other.
14591   if (!isAlternatingShuffMask(Mask, NumElts))
14592     return Res;
14593 
14594   // Adjust the mask so we are pulling in the same index from the splat
14595   // as the index from the interesting vector in consecutive elements.
14596   if (IsLittleEndian) {
14597     // Example (even elements from first vector):
14598     // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
14599     if (Mask[0] < NumElts)
14600       for (int i = 1, e = Mask.size(); i < e; i += 2)
14601         ShuffV[i] = (ShuffV[i - 1] + NumElts);
14602     // Example (odd elements from first vector):
14603     // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
14604     else
14605       for (int i = 0, e = Mask.size(); i < e; i += 2)
14606         ShuffV[i] = (ShuffV[i + 1] + NumElts);
14607   } else {
14608     // Example (even elements from first vector):
14609     // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1
14610     if (Mask[0] < NumElts)
14611       for (int i = 0, e = Mask.size(); i < e; i += 2)
14612         ShuffV[i] = ShuffV[i + 1] - NumElts;
14613     // Example (odd elements from first vector):
14614     // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1
14615     else
14616       for (int i = 1, e = Mask.size(); i < e; i += 2)
14617         ShuffV[i] = ShuffV[i - 1] - NumElts;
14618   }
14619 
14620   // If the RHS has undefs, we need to remove them since we may have created
14621   // a shuffle that adds those instead of the splat value.
14622   SDValue SplatVal =
14623       cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue();
14624   TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal);
14625 
14626   if (IsLittleEndian)
14627     RHS = TheSplat;
14628   else
14629     LHS = TheSplat;
14630   return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14631 }
14632 
14633 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
14634                                                 LSBaseSDNode *LSBase,
14635                                                 DAGCombinerInfo &DCI) const {
14636   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
14637         "Not a reverse memop pattern!");
14638 
14639   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
14640     auto Mask = SVN->getMask();
14641     int i = 0;
14642     auto I = Mask.rbegin();
14643     auto E = Mask.rend();
14644 
14645     for (; I != E; ++I) {
14646       if (*I != i)
14647         return false;
14648       i++;
14649     }
14650     return true;
14651   };
14652 
14653   SelectionDAG &DAG = DCI.DAG;
14654   EVT VT = SVN->getValueType(0);
14655 
14656   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14657     return SDValue();
14658 
14659   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
14660   // See comment in PPCVSXSwapRemoval.cpp.
14661   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
14662   if (!Subtarget.hasP9Vector())
14663     return SDValue();
14664 
14665   if(!IsElementReverse(SVN))
14666     return SDValue();
14667 
14668   if (LSBase->getOpcode() == ISD::LOAD) {
14669     // If the load return value 0 has more than one user except the
14670     // shufflevector instruction, it is not profitable to replace the
14671     // shufflevector with a reverse load.
14672     for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end();
14673          UI != UE; ++UI)
14674       if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE)
14675         return SDValue();
14676 
14677     SDLoc dl(LSBase);
14678     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
14679     return DAG.getMemIntrinsicNode(
14680         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
14681         LSBase->getMemoryVT(), LSBase->getMemOperand());
14682   }
14683 
14684   if (LSBase->getOpcode() == ISD::STORE) {
14685     // If there are other uses of the shuffle, the swap cannot be avoided.
14686     // Forcing the use of an X-Form (since swapped stores only have
14687     // X-Forms) without removing the swap is unprofitable.
14688     if (!SVN->hasOneUse())
14689       return SDValue();
14690 
14691     SDLoc dl(LSBase);
14692     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
14693                           LSBase->getBasePtr()};
14694     return DAG.getMemIntrinsicNode(
14695         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
14696         LSBase->getMemoryVT(), LSBase->getMemOperand());
14697   }
14698 
14699   llvm_unreachable("Expected a load or store node here");
14700 }
14701 
14702 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
14703                                              DAGCombinerInfo &DCI) const {
14704   SelectionDAG &DAG = DCI.DAG;
14705   SDLoc dl(N);
14706   switch (N->getOpcode()) {
14707   default: break;
14708   case ISD::ADD:
14709     return combineADD(N, DCI);
14710   case ISD::SHL:
14711     return combineSHL(N, DCI);
14712   case ISD::SRA:
14713     return combineSRA(N, DCI);
14714   case ISD::SRL:
14715     return combineSRL(N, DCI);
14716   case ISD::MUL:
14717     return combineMUL(N, DCI);
14718   case ISD::FMA:
14719   case PPCISD::FNMSUB:
14720     return combineFMALike(N, DCI);
14721   case PPCISD::SHL:
14722     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
14723         return N->getOperand(0);
14724     break;
14725   case PPCISD::SRL:
14726     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
14727         return N->getOperand(0);
14728     break;
14729   case PPCISD::SRA:
14730     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
14731       if (C->isNullValue() ||   //  0 >>s V -> 0.
14732           C->isAllOnesValue())    // -1 >>s V -> -1.
14733         return N->getOperand(0);
14734     }
14735     break;
14736   case ISD::SIGN_EXTEND:
14737   case ISD::ZERO_EXTEND:
14738   case ISD::ANY_EXTEND:
14739     return DAGCombineExtBoolTrunc(N, DCI);
14740   case ISD::TRUNCATE:
14741     return combineTRUNCATE(N, DCI);
14742   case ISD::SETCC:
14743     if (SDValue CSCC = combineSetCC(N, DCI))
14744       return CSCC;
14745     LLVM_FALLTHROUGH;
14746   case ISD::SELECT_CC:
14747     return DAGCombineTruncBoolExt(N, DCI);
14748   case ISD::SINT_TO_FP:
14749   case ISD::UINT_TO_FP:
14750     return combineFPToIntToFP(N, DCI);
14751   case ISD::VECTOR_SHUFFLE:
14752     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
14753       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
14754       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
14755     }
14756     return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
14757   case ISD::STORE: {
14758 
14759     EVT Op1VT = N->getOperand(1).getValueType();
14760     unsigned Opcode = N->getOperand(1).getOpcode();
14761 
14762     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
14763       SDValue Val= combineStoreFPToInt(N, DCI);
14764       if (Val)
14765         return Val;
14766     }
14767 
14768     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
14769       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
14770       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
14771       if (Val)
14772         return Val;
14773     }
14774 
14775     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
14776     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
14777         N->getOperand(1).getNode()->hasOneUse() &&
14778         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
14779          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
14780 
14781       // STBRX can only handle simple types and it makes no sense to store less
14782       // two bytes in byte-reversed order.
14783       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
14784       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
14785         break;
14786 
14787       SDValue BSwapOp = N->getOperand(1).getOperand(0);
14788       // Do an any-extend to 32-bits if this is a half-word input.
14789       if (BSwapOp.getValueType() == MVT::i16)
14790         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
14791 
14792       // If the type of BSWAP operand is wider than stored memory width
14793       // it need to be shifted to the right side before STBRX.
14794       if (Op1VT.bitsGT(mVT)) {
14795         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
14796         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
14797                               DAG.getConstant(Shift, dl, MVT::i32));
14798         // Need to truncate if this is a bswap of i64 stored as i32/i16.
14799         if (Op1VT == MVT::i64)
14800           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
14801       }
14802 
14803       SDValue Ops[] = {
14804         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
14805       };
14806       return
14807         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
14808                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
14809                                 cast<StoreSDNode>(N)->getMemOperand());
14810     }
14811 
14812     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
14813     // So it can increase the chance of CSE constant construction.
14814     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
14815         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
14816       // Need to sign-extended to 64-bits to handle negative values.
14817       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
14818       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
14819                                     MemVT.getSizeInBits());
14820       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
14821 
14822       // DAG.getTruncStore() can't be used here because it doesn't accept
14823       // the general (base + offset) addressing mode.
14824       // So we use UpdateNodeOperands and setTruncatingStore instead.
14825       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
14826                              N->getOperand(3));
14827       cast<StoreSDNode>(N)->setTruncatingStore(true);
14828       return SDValue(N, 0);
14829     }
14830 
14831     // For little endian, VSX stores require generating xxswapd/lxvd2x.
14832     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14833     if (Op1VT.isSimple()) {
14834       MVT StoreVT = Op1VT.getSimpleVT();
14835       if (Subtarget.needsSwapsForVSXMemOps() &&
14836           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
14837            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
14838         return expandVSXStoreForLE(N, DCI);
14839     }
14840     break;
14841   }
14842   case ISD::LOAD: {
14843     LoadSDNode *LD = cast<LoadSDNode>(N);
14844     EVT VT = LD->getValueType(0);
14845 
14846     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14847     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14848     if (VT.isSimple()) {
14849       MVT LoadVT = VT.getSimpleVT();
14850       if (Subtarget.needsSwapsForVSXMemOps() &&
14851           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
14852            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
14853         return expandVSXLoadForLE(N, DCI);
14854     }
14855 
14856     // We sometimes end up with a 64-bit integer load, from which we extract
14857     // two single-precision floating-point numbers. This happens with
14858     // std::complex<float>, and other similar structures, because of the way we
14859     // canonicalize structure copies. However, if we lack direct moves,
14860     // then the final bitcasts from the extracted integer values to the
14861     // floating-point numbers turn into store/load pairs. Even with direct moves,
14862     // just loading the two floating-point numbers is likely better.
14863     auto ReplaceTwoFloatLoad = [&]() {
14864       if (VT != MVT::i64)
14865         return false;
14866 
14867       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
14868           LD->isVolatile())
14869         return false;
14870 
14871       //  We're looking for a sequence like this:
14872       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
14873       //      t16: i64 = srl t13, Constant:i32<32>
14874       //    t17: i32 = truncate t16
14875       //  t18: f32 = bitcast t17
14876       //    t19: i32 = truncate t13
14877       //  t20: f32 = bitcast t19
14878 
14879       if (!LD->hasNUsesOfValue(2, 0))
14880         return false;
14881 
14882       auto UI = LD->use_begin();
14883       while (UI.getUse().getResNo() != 0) ++UI;
14884       SDNode *Trunc = *UI++;
14885       while (UI.getUse().getResNo() != 0) ++UI;
14886       SDNode *RightShift = *UI;
14887       if (Trunc->getOpcode() != ISD::TRUNCATE)
14888         std::swap(Trunc, RightShift);
14889 
14890       if (Trunc->getOpcode() != ISD::TRUNCATE ||
14891           Trunc->getValueType(0) != MVT::i32 ||
14892           !Trunc->hasOneUse())
14893         return false;
14894       if (RightShift->getOpcode() != ISD::SRL ||
14895           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
14896           RightShift->getConstantOperandVal(1) != 32 ||
14897           !RightShift->hasOneUse())
14898         return false;
14899 
14900       SDNode *Trunc2 = *RightShift->use_begin();
14901       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
14902           Trunc2->getValueType(0) != MVT::i32 ||
14903           !Trunc2->hasOneUse())
14904         return false;
14905 
14906       SDNode *Bitcast = *Trunc->use_begin();
14907       SDNode *Bitcast2 = *Trunc2->use_begin();
14908 
14909       if (Bitcast->getOpcode() != ISD::BITCAST ||
14910           Bitcast->getValueType(0) != MVT::f32)
14911         return false;
14912       if (Bitcast2->getOpcode() != ISD::BITCAST ||
14913           Bitcast2->getValueType(0) != MVT::f32)
14914         return false;
14915 
14916       if (Subtarget.isLittleEndian())
14917         std::swap(Bitcast, Bitcast2);
14918 
14919       // Bitcast has the second float (in memory-layout order) and Bitcast2
14920       // has the first one.
14921 
14922       SDValue BasePtr = LD->getBasePtr();
14923       if (LD->isIndexed()) {
14924         assert(LD->getAddressingMode() == ISD::PRE_INC &&
14925                "Non-pre-inc AM on PPC?");
14926         BasePtr =
14927           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
14928                       LD->getOffset());
14929       }
14930 
14931       auto MMOFlags =
14932           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
14933       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
14934                                       LD->getPointerInfo(), LD->getAlignment(),
14935                                       MMOFlags, LD->getAAInfo());
14936       SDValue AddPtr =
14937         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
14938                     BasePtr, DAG.getIntPtrConstant(4, dl));
14939       SDValue FloatLoad2 = DAG.getLoad(
14940           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
14941           LD->getPointerInfo().getWithOffset(4),
14942           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
14943 
14944       if (LD->isIndexed()) {
14945         // Note that DAGCombine should re-form any pre-increment load(s) from
14946         // what is produced here if that makes sense.
14947         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
14948       }
14949 
14950       DCI.CombineTo(Bitcast2, FloatLoad);
14951       DCI.CombineTo(Bitcast, FloatLoad2);
14952 
14953       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
14954                                     SDValue(FloatLoad2.getNode(), 1));
14955       return true;
14956     };
14957 
14958     if (ReplaceTwoFloatLoad())
14959       return SDValue(N, 0);
14960 
14961     EVT MemVT = LD->getMemoryVT();
14962     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
14963     Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
14964     if (LD->isUnindexed() && VT.isVector() &&
14965         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
14966           // P8 and later hardware should just use LOAD.
14967           !Subtarget.hasP8Vector() &&
14968           (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
14969            VT == MVT::v4f32))) &&
14970         LD->getAlign() < ABIAlignment) {
14971       // This is a type-legal unaligned Altivec load.
14972       SDValue Chain = LD->getChain();
14973       SDValue Ptr = LD->getBasePtr();
14974       bool isLittleEndian = Subtarget.isLittleEndian();
14975 
14976       // This implements the loading of unaligned vectors as described in
14977       // the venerable Apple Velocity Engine overview. Specifically:
14978       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
14979       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
14980       //
14981       // The general idea is to expand a sequence of one or more unaligned
14982       // loads into an alignment-based permutation-control instruction (lvsl
14983       // or lvsr), a series of regular vector loads (which always truncate
14984       // their input address to an aligned address), and a series of
14985       // permutations.  The results of these permutations are the requested
14986       // loaded values.  The trick is that the last "extra" load is not taken
14987       // from the address you might suspect (sizeof(vector) bytes after the
14988       // last requested load), but rather sizeof(vector) - 1 bytes after the
14989       // last requested vector. The point of this is to avoid a page fault if
14990       // the base address happened to be aligned. This works because if the
14991       // base address is aligned, then adding less than a full vector length
14992       // will cause the last vector in the sequence to be (re)loaded.
14993       // Otherwise, the next vector will be fetched as you might suspect was
14994       // necessary.
14995 
14996       // We might be able to reuse the permutation generation from
14997       // a different base address offset from this one by an aligned amount.
14998       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
14999       // optimization later.
15000       Intrinsic::ID Intr, IntrLD, IntrPerm;
15001       MVT PermCntlTy, PermTy, LDTy;
15002       Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15003                             : Intrinsic::ppc_altivec_lvsl;
15004       IntrLD = Intrinsic::ppc_altivec_lvx;
15005       IntrPerm = Intrinsic::ppc_altivec_vperm;
15006       PermCntlTy = MVT::v16i8;
15007       PermTy = MVT::v4i32;
15008       LDTy = MVT::v4i32;
15009 
15010       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
15011 
15012       // Create the new MMO for the new base load. It is like the original MMO,
15013       // but represents an area in memory almost twice the vector size centered
15014       // on the original address. If the address is unaligned, we might start
15015       // reading up to (sizeof(vector)-1) bytes below the address of the
15016       // original unaligned load.
15017       MachineFunction &MF = DAG.getMachineFunction();
15018       MachineMemOperand *BaseMMO =
15019         MF.getMachineMemOperand(LD->getMemOperand(),
15020                                 -(long)MemVT.getStoreSize()+1,
15021                                 2*MemVT.getStoreSize()-1);
15022 
15023       // Create the new base load.
15024       SDValue LDXIntID =
15025           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
15026       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
15027       SDValue BaseLoad =
15028         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15029                                 DAG.getVTList(PermTy, MVT::Other),
15030                                 BaseLoadOps, LDTy, BaseMMO);
15031 
15032       // Note that the value of IncOffset (which is provided to the next
15033       // load's pointer info offset value, and thus used to calculate the
15034       // alignment), and the value of IncValue (which is actually used to
15035       // increment the pointer value) are different! This is because we
15036       // require the next load to appear to be aligned, even though it
15037       // is actually offset from the base pointer by a lesser amount.
15038       int IncOffset = VT.getSizeInBits() / 8;
15039       int IncValue = IncOffset;
15040 
15041       // Walk (both up and down) the chain looking for another load at the real
15042       // (aligned) offset (the alignment of the other load does not matter in
15043       // this case). If found, then do not use the offset reduction trick, as
15044       // that will prevent the loads from being later combined (as they would
15045       // otherwise be duplicates).
15046       if (!findConsecutiveLoad(LD, DAG))
15047         --IncValue;
15048 
15049       SDValue Increment =
15050           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
15051       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15052 
15053       MachineMemOperand *ExtraMMO =
15054         MF.getMachineMemOperand(LD->getMemOperand(),
15055                                 1, 2*MemVT.getStoreSize()-1);
15056       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
15057       SDValue ExtraLoad =
15058         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15059                                 DAG.getVTList(PermTy, MVT::Other),
15060                                 ExtraLoadOps, LDTy, ExtraMMO);
15061 
15062       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15063         BaseLoad.getValue(1), ExtraLoad.getValue(1));
15064 
15065       // Because vperm has a big-endian bias, we must reverse the order
15066       // of the input vectors and complement the permute control vector
15067       // when generating little endian code.  We have already handled the
15068       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
15069       // and ExtraLoad here.
15070       SDValue Perm;
15071       if (isLittleEndian)
15072         Perm = BuildIntrinsicOp(IntrPerm,
15073                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
15074       else
15075         Perm = BuildIntrinsicOp(IntrPerm,
15076                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
15077 
15078       if (VT != PermTy)
15079         Perm = Subtarget.hasAltivec()
15080                    ? DAG.getNode(ISD::BITCAST, dl, VT, Perm)
15081                    : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm,
15082                                  DAG.getTargetConstant(1, dl, MVT::i64));
15083                                // second argument is 1 because this rounding
15084                                // is always exact.
15085 
15086       // The output of the permutation is our loaded result, the TokenFactor is
15087       // our new chain.
15088       DCI.CombineTo(N, Perm, TF);
15089       return SDValue(N, 0);
15090     }
15091     }
15092     break;
15093     case ISD::INTRINSIC_WO_CHAIN: {
15094       bool isLittleEndian = Subtarget.isLittleEndian();
15095       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
15096       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15097                                            : Intrinsic::ppc_altivec_lvsl);
15098       if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) {
15099         SDValue Add = N->getOperand(1);
15100 
15101         int Bits = 4 /* 16 byte alignment */;
15102 
15103         if (DAG.MaskedValueIsZero(Add->getOperand(1),
15104                                   APInt::getAllOnesValue(Bits /* alignment */)
15105                                       .zext(Add.getScalarValueSizeInBits()))) {
15106           SDNode *BasePtr = Add->getOperand(0).getNode();
15107           for (SDNode::use_iterator UI = BasePtr->use_begin(),
15108                                     UE = BasePtr->use_end();
15109                UI != UE; ++UI) {
15110             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15111                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
15112                     IID) {
15113               // We've found another LVSL/LVSR, and this address is an aligned
15114               // multiple of that one. The results will be the same, so use the
15115               // one we've just found instead.
15116 
15117               return SDValue(*UI, 0);
15118             }
15119           }
15120         }
15121 
15122         if (isa<ConstantSDNode>(Add->getOperand(1))) {
15123           SDNode *BasePtr = Add->getOperand(0).getNode();
15124           for (SDNode::use_iterator UI = BasePtr->use_begin(),
15125                UE = BasePtr->use_end(); UI != UE; ++UI) {
15126             if (UI->getOpcode() == ISD::ADD &&
15127                 isa<ConstantSDNode>(UI->getOperand(1)) &&
15128                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
15129                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
15130                 (1ULL << Bits) == 0) {
15131               SDNode *OtherAdd = *UI;
15132               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
15133                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
15134                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15135                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
15136                   return SDValue(*VI, 0);
15137                 }
15138               }
15139             }
15140           }
15141         }
15142       }
15143 
15144       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
15145       // Expose the vabsduw/h/b opportunity for down stream
15146       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
15147           (IID == Intrinsic::ppc_altivec_vmaxsw ||
15148            IID == Intrinsic::ppc_altivec_vmaxsh ||
15149            IID == Intrinsic::ppc_altivec_vmaxsb)) {
15150         SDValue V1 = N->getOperand(1);
15151         SDValue V2 = N->getOperand(2);
15152         if ((V1.getSimpleValueType() == MVT::v4i32 ||
15153              V1.getSimpleValueType() == MVT::v8i16 ||
15154              V1.getSimpleValueType() == MVT::v16i8) &&
15155             V1.getSimpleValueType() == V2.getSimpleValueType()) {
15156           // (0-a, a)
15157           if (V1.getOpcode() == ISD::SUB &&
15158               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
15159               V1.getOperand(1) == V2) {
15160             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
15161           }
15162           // (a, 0-a)
15163           if (V2.getOpcode() == ISD::SUB &&
15164               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
15165               V2.getOperand(1) == V1) {
15166             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15167           }
15168           // (x-y, y-x)
15169           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
15170               V1.getOperand(0) == V2.getOperand(1) &&
15171               V1.getOperand(1) == V2.getOperand(0)) {
15172             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15173           }
15174         }
15175       }
15176     }
15177 
15178     break;
15179   case ISD::INTRINSIC_W_CHAIN:
15180     // For little endian, VSX loads require generating lxvd2x/xxswapd.
15181     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
15182     if (Subtarget.needsSwapsForVSXMemOps()) {
15183       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15184       default:
15185         break;
15186       case Intrinsic::ppc_vsx_lxvw4x:
15187       case Intrinsic::ppc_vsx_lxvd2x:
15188         return expandVSXLoadForLE(N, DCI);
15189       }
15190     }
15191     break;
15192   case ISD::INTRINSIC_VOID:
15193     // For little endian, VSX stores require generating xxswapd/stxvd2x.
15194     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
15195     if (Subtarget.needsSwapsForVSXMemOps()) {
15196       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15197       default:
15198         break;
15199       case Intrinsic::ppc_vsx_stxvw4x:
15200       case Intrinsic::ppc_vsx_stxvd2x:
15201         return expandVSXStoreForLE(N, DCI);
15202       }
15203     }
15204     break;
15205   case ISD::BSWAP:
15206     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
15207     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
15208         N->getOperand(0).hasOneUse() &&
15209         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
15210          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
15211           N->getValueType(0) == MVT::i64))) {
15212       SDValue Load = N->getOperand(0);
15213       LoadSDNode *LD = cast<LoadSDNode>(Load);
15214       // Create the byte-swapping load.
15215       SDValue Ops[] = {
15216         LD->getChain(),    // Chain
15217         LD->getBasePtr(),  // Ptr
15218         DAG.getValueType(N->getValueType(0)) // VT
15219       };
15220       SDValue BSLoad =
15221         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
15222                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
15223                                               MVT::i64 : MVT::i32, MVT::Other),
15224                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
15225 
15226       // If this is an i16 load, insert the truncate.
15227       SDValue ResVal = BSLoad;
15228       if (N->getValueType(0) == MVT::i16)
15229         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
15230 
15231       // First, combine the bswap away.  This makes the value produced by the
15232       // load dead.
15233       DCI.CombineTo(N, ResVal);
15234 
15235       // Next, combine the load away, we give it a bogus result value but a real
15236       // chain result.  The result value is dead because the bswap is dead.
15237       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
15238 
15239       // Return N so it doesn't get rechecked!
15240       return SDValue(N, 0);
15241     }
15242     break;
15243   case PPCISD::VCMP:
15244     // If a VCMP_rec node already exists with exactly the same operands as this
15245     // node, use its result instead of this node (VCMP_rec computes both a CR6
15246     // and a normal output).
15247     //
15248     if (!N->getOperand(0).hasOneUse() &&
15249         !N->getOperand(1).hasOneUse() &&
15250         !N->getOperand(2).hasOneUse()) {
15251 
15252       // Scan all of the users of the LHS, looking for VCMP_rec's that match.
15253       SDNode *VCMPrecNode = nullptr;
15254 
15255       SDNode *LHSN = N->getOperand(0).getNode();
15256       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
15257            UI != E; ++UI)
15258         if (UI->getOpcode() == PPCISD::VCMP_rec &&
15259             UI->getOperand(1) == N->getOperand(1) &&
15260             UI->getOperand(2) == N->getOperand(2) &&
15261             UI->getOperand(0) == N->getOperand(0)) {
15262           VCMPrecNode = *UI;
15263           break;
15264         }
15265 
15266       // If there is no VCMP_rec node, or if the flag value has a single use,
15267       // don't transform this.
15268       if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1))
15269         break;
15270 
15271       // Look at the (necessarily single) use of the flag value.  If it has a
15272       // chain, this transformation is more complex.  Note that multiple things
15273       // could use the value result, which we should ignore.
15274       SDNode *FlagUser = nullptr;
15275       for (SDNode::use_iterator UI = VCMPrecNode->use_begin();
15276            FlagUser == nullptr; ++UI) {
15277         assert(UI != VCMPrecNode->use_end() && "Didn't find user!");
15278         SDNode *User = *UI;
15279         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
15280           if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) {
15281             FlagUser = User;
15282             break;
15283           }
15284         }
15285       }
15286 
15287       // If the user is a MFOCRF instruction, we know this is safe.
15288       // Otherwise we give up for right now.
15289       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
15290         return SDValue(VCMPrecNode, 0);
15291     }
15292     break;
15293   case ISD::BRCOND: {
15294     SDValue Cond = N->getOperand(1);
15295     SDValue Target = N->getOperand(2);
15296 
15297     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15298         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
15299           Intrinsic::loop_decrement) {
15300 
15301       // We now need to make the intrinsic dead (it cannot be instruction
15302       // selected).
15303       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
15304       assert(Cond.getNode()->hasOneUse() &&
15305              "Counter decrement has more than one use");
15306 
15307       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
15308                          N->getOperand(0), Target);
15309     }
15310   }
15311   break;
15312   case ISD::BR_CC: {
15313     // If this is a branch on an altivec predicate comparison, lower this so
15314     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
15315     // lowering is done pre-legalize, because the legalizer lowers the predicate
15316     // compare down to code that is difficult to reassemble.
15317     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
15318     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
15319 
15320     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
15321     // value. If so, pass-through the AND to get to the intrinsic.
15322     if (LHS.getOpcode() == ISD::AND &&
15323         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15324         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
15325           Intrinsic::loop_decrement &&
15326         isa<ConstantSDNode>(LHS.getOperand(1)) &&
15327         !isNullConstant(LHS.getOperand(1)))
15328       LHS = LHS.getOperand(0);
15329 
15330     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15331         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
15332           Intrinsic::loop_decrement &&
15333         isa<ConstantSDNode>(RHS)) {
15334       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
15335              "Counter decrement comparison is not EQ or NE");
15336 
15337       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15338       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
15339                     (CC == ISD::SETNE && !Val);
15340 
15341       // We now need to make the intrinsic dead (it cannot be instruction
15342       // selected).
15343       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
15344       assert(LHS.getNode()->hasOneUse() &&
15345              "Counter decrement has more than one use");
15346 
15347       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
15348                          N->getOperand(0), N->getOperand(4));
15349     }
15350 
15351     int CompareOpc;
15352     bool isDot;
15353 
15354     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15355         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
15356         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
15357       assert(isDot && "Can't compare against a vector result!");
15358 
15359       // If this is a comparison against something other than 0/1, then we know
15360       // that the condition is never/always true.
15361       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15362       if (Val != 0 && Val != 1) {
15363         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
15364           return N->getOperand(0);
15365         // Always !=, turn it into an unconditional branch.
15366         return DAG.getNode(ISD::BR, dl, MVT::Other,
15367                            N->getOperand(0), N->getOperand(4));
15368       }
15369 
15370       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
15371 
15372       // Create the PPCISD altivec 'dot' comparison node.
15373       SDValue Ops[] = {
15374         LHS.getOperand(2),  // LHS of compare
15375         LHS.getOperand(3),  // RHS of compare
15376         DAG.getConstant(CompareOpc, dl, MVT::i32)
15377       };
15378       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
15379       SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
15380 
15381       // Unpack the result based on how the target uses it.
15382       PPC::Predicate CompOpc;
15383       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
15384       default:  // Can't happen, don't crash on invalid number though.
15385       case 0:   // Branch on the value of the EQ bit of CR6.
15386         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
15387         break;
15388       case 1:   // Branch on the inverted value of the EQ bit of CR6.
15389         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
15390         break;
15391       case 2:   // Branch on the value of the LT bit of CR6.
15392         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
15393         break;
15394       case 3:   // Branch on the inverted value of the LT bit of CR6.
15395         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
15396         break;
15397       }
15398 
15399       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
15400                          DAG.getConstant(CompOpc, dl, MVT::i32),
15401                          DAG.getRegister(PPC::CR6, MVT::i32),
15402                          N->getOperand(4), CompNode.getValue(1));
15403     }
15404     break;
15405   }
15406   case ISD::BUILD_VECTOR:
15407     return DAGCombineBuildVector(N, DCI);
15408   case ISD::ABS:
15409     return combineABS(N, DCI);
15410   case ISD::VSELECT:
15411     return combineVSelect(N, DCI);
15412   }
15413 
15414   return SDValue();
15415 }
15416 
15417 SDValue
15418 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
15419                                  SelectionDAG &DAG,
15420                                  SmallVectorImpl<SDNode *> &Created) const {
15421   // fold (sdiv X, pow2)
15422   EVT VT = N->getValueType(0);
15423   if (VT == MVT::i64 && !Subtarget.isPPC64())
15424     return SDValue();
15425   if ((VT != MVT::i32 && VT != MVT::i64) ||
15426       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
15427     return SDValue();
15428 
15429   SDLoc DL(N);
15430   SDValue N0 = N->getOperand(0);
15431 
15432   bool IsNegPow2 = (-Divisor).isPowerOf2();
15433   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
15434   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
15435 
15436   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
15437   Created.push_back(Op.getNode());
15438 
15439   if (IsNegPow2) {
15440     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
15441     Created.push_back(Op.getNode());
15442   }
15443 
15444   return Op;
15445 }
15446 
15447 //===----------------------------------------------------------------------===//
15448 // Inline Assembly Support
15449 //===----------------------------------------------------------------------===//
15450 
15451 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
15452                                                       KnownBits &Known,
15453                                                       const APInt &DemandedElts,
15454                                                       const SelectionDAG &DAG,
15455                                                       unsigned Depth) const {
15456   Known.resetAll();
15457   switch (Op.getOpcode()) {
15458   default: break;
15459   case PPCISD::LBRX: {
15460     // lhbrx is known to have the top bits cleared out.
15461     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
15462       Known.Zero = 0xFFFF0000;
15463     break;
15464   }
15465   case ISD::INTRINSIC_WO_CHAIN: {
15466     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
15467     default: break;
15468     case Intrinsic::ppc_altivec_vcmpbfp_p:
15469     case Intrinsic::ppc_altivec_vcmpeqfp_p:
15470     case Intrinsic::ppc_altivec_vcmpequb_p:
15471     case Intrinsic::ppc_altivec_vcmpequh_p:
15472     case Intrinsic::ppc_altivec_vcmpequw_p:
15473     case Intrinsic::ppc_altivec_vcmpequd_p:
15474     case Intrinsic::ppc_altivec_vcmpequq_p:
15475     case Intrinsic::ppc_altivec_vcmpgefp_p:
15476     case Intrinsic::ppc_altivec_vcmpgtfp_p:
15477     case Intrinsic::ppc_altivec_vcmpgtsb_p:
15478     case Intrinsic::ppc_altivec_vcmpgtsh_p:
15479     case Intrinsic::ppc_altivec_vcmpgtsw_p:
15480     case Intrinsic::ppc_altivec_vcmpgtsd_p:
15481     case Intrinsic::ppc_altivec_vcmpgtsq_p:
15482     case Intrinsic::ppc_altivec_vcmpgtub_p:
15483     case Intrinsic::ppc_altivec_vcmpgtuh_p:
15484     case Intrinsic::ppc_altivec_vcmpgtuw_p:
15485     case Intrinsic::ppc_altivec_vcmpgtud_p:
15486     case Intrinsic::ppc_altivec_vcmpgtuq_p:
15487       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
15488       break;
15489     }
15490   }
15491   }
15492 }
15493 
15494 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
15495   switch (Subtarget.getCPUDirective()) {
15496   default: break;
15497   case PPC::DIR_970:
15498   case PPC::DIR_PWR4:
15499   case PPC::DIR_PWR5:
15500   case PPC::DIR_PWR5X:
15501   case PPC::DIR_PWR6:
15502   case PPC::DIR_PWR6X:
15503   case PPC::DIR_PWR7:
15504   case PPC::DIR_PWR8:
15505   case PPC::DIR_PWR9:
15506   case PPC::DIR_PWR10:
15507   case PPC::DIR_PWR_FUTURE: {
15508     if (!ML)
15509       break;
15510 
15511     if (!DisableInnermostLoopAlign32) {
15512       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
15513       // so that we can decrease cache misses and branch-prediction misses.
15514       // Actual alignment of the loop will depend on the hotness check and other
15515       // logic in alignBlocks.
15516       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
15517         return Align(32);
15518     }
15519 
15520     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
15521 
15522     // For small loops (between 5 and 8 instructions), align to a 32-byte
15523     // boundary so that the entire loop fits in one instruction-cache line.
15524     uint64_t LoopSize = 0;
15525     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
15526       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
15527         LoopSize += TII->getInstSizeInBytes(*J);
15528         if (LoopSize > 32)
15529           break;
15530       }
15531 
15532     if (LoopSize > 16 && LoopSize <= 32)
15533       return Align(32);
15534 
15535     break;
15536   }
15537   }
15538 
15539   return TargetLowering::getPrefLoopAlignment(ML);
15540 }
15541 
15542 /// getConstraintType - Given a constraint, return the type of
15543 /// constraint it is for this target.
15544 PPCTargetLowering::ConstraintType
15545 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
15546   if (Constraint.size() == 1) {
15547     switch (Constraint[0]) {
15548     default: break;
15549     case 'b':
15550     case 'r':
15551     case 'f':
15552     case 'd':
15553     case 'v':
15554     case 'y':
15555       return C_RegisterClass;
15556     case 'Z':
15557       // FIXME: While Z does indicate a memory constraint, it specifically
15558       // indicates an r+r address (used in conjunction with the 'y' modifier
15559       // in the replacement string). Currently, we're forcing the base
15560       // register to be r0 in the asm printer (which is interpreted as zero)
15561       // and forming the complete address in the second register. This is
15562       // suboptimal.
15563       return C_Memory;
15564     }
15565   } else if (Constraint == "wc") { // individual CR bits.
15566     return C_RegisterClass;
15567   } else if (Constraint == "wa" || Constraint == "wd" ||
15568              Constraint == "wf" || Constraint == "ws" ||
15569              Constraint == "wi" || Constraint == "ww") {
15570     return C_RegisterClass; // VSX registers.
15571   }
15572   return TargetLowering::getConstraintType(Constraint);
15573 }
15574 
15575 /// Examine constraint type and operand type and determine a weight value.
15576 /// This object must already have been set up with the operand type
15577 /// and the current alternative constraint selected.
15578 TargetLowering::ConstraintWeight
15579 PPCTargetLowering::getSingleConstraintMatchWeight(
15580     AsmOperandInfo &info, const char *constraint) const {
15581   ConstraintWeight weight = CW_Invalid;
15582   Value *CallOperandVal = info.CallOperandVal;
15583     // If we don't have a value, we can't do a match,
15584     // but allow it at the lowest weight.
15585   if (!CallOperandVal)
15586     return CW_Default;
15587   Type *type = CallOperandVal->getType();
15588 
15589   // Look at the constraint type.
15590   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
15591     return CW_Register; // an individual CR bit.
15592   else if ((StringRef(constraint) == "wa" ||
15593             StringRef(constraint) == "wd" ||
15594             StringRef(constraint) == "wf") &&
15595            type->isVectorTy())
15596     return CW_Register;
15597   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
15598     return CW_Register; // just hold 64-bit integers data.
15599   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
15600     return CW_Register;
15601   else if (StringRef(constraint) == "ww" && type->isFloatTy())
15602     return CW_Register;
15603 
15604   switch (*constraint) {
15605   default:
15606     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15607     break;
15608   case 'b':
15609     if (type->isIntegerTy())
15610       weight = CW_Register;
15611     break;
15612   case 'f':
15613     if (type->isFloatTy())
15614       weight = CW_Register;
15615     break;
15616   case 'd':
15617     if (type->isDoubleTy())
15618       weight = CW_Register;
15619     break;
15620   case 'v':
15621     if (type->isVectorTy())
15622       weight = CW_Register;
15623     break;
15624   case 'y':
15625     weight = CW_Register;
15626     break;
15627   case 'Z':
15628     weight = CW_Memory;
15629     break;
15630   }
15631   return weight;
15632 }
15633 
15634 std::pair<unsigned, const TargetRegisterClass *>
15635 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
15636                                                 StringRef Constraint,
15637                                                 MVT VT) const {
15638   if (Constraint.size() == 1) {
15639     // GCC RS6000 Constraint Letters
15640     switch (Constraint[0]) {
15641     case 'b':   // R1-R31
15642       if (VT == MVT::i64 && Subtarget.isPPC64())
15643         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
15644       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
15645     case 'r':   // R0-R31
15646       if (VT == MVT::i64 && Subtarget.isPPC64())
15647         return std::make_pair(0U, &PPC::G8RCRegClass);
15648       return std::make_pair(0U, &PPC::GPRCRegClass);
15649     // 'd' and 'f' constraints are both defined to be "the floating point
15650     // registers", where one is for 32-bit and the other for 64-bit. We don't
15651     // really care overly much here so just give them all the same reg classes.
15652     case 'd':
15653     case 'f':
15654       if (Subtarget.hasSPE()) {
15655         if (VT == MVT::f32 || VT == MVT::i32)
15656           return std::make_pair(0U, &PPC::GPRCRegClass);
15657         if (VT == MVT::f64 || VT == MVT::i64)
15658           return std::make_pair(0U, &PPC::SPERCRegClass);
15659       } else {
15660         if (VT == MVT::f32 || VT == MVT::i32)
15661           return std::make_pair(0U, &PPC::F4RCRegClass);
15662         if (VT == MVT::f64 || VT == MVT::i64)
15663           return std::make_pair(0U, &PPC::F8RCRegClass);
15664       }
15665       break;
15666     case 'v':
15667       if (Subtarget.hasAltivec())
15668         return std::make_pair(0U, &PPC::VRRCRegClass);
15669       break;
15670     case 'y':   // crrc
15671       return std::make_pair(0U, &PPC::CRRCRegClass);
15672     }
15673   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
15674     // An individual CR bit.
15675     return std::make_pair(0U, &PPC::CRBITRCRegClass);
15676   } else if ((Constraint == "wa" || Constraint == "wd" ||
15677              Constraint == "wf" || Constraint == "wi") &&
15678              Subtarget.hasVSX()) {
15679     // A VSX register for either a scalar (FP) or vector. There is no
15680     // support for single precision scalars on subtargets prior to Power8.
15681     if (VT.isVector())
15682       return std::make_pair(0U, &PPC::VSRCRegClass);
15683     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15684       return std::make_pair(0U, &PPC::VSSRCRegClass);
15685     return std::make_pair(0U, &PPC::VSFRCRegClass);
15686   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
15687     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15688       return std::make_pair(0U, &PPC::VSSRCRegClass);
15689     else
15690       return std::make_pair(0U, &PPC::VSFRCRegClass);
15691   } else if (Constraint == "lr") {
15692     if (VT == MVT::i64)
15693       return std::make_pair(0U, &PPC::LR8RCRegClass);
15694     else
15695       return std::make_pair(0U, &PPC::LRRCRegClass);
15696   }
15697 
15698   // Handle special cases of physical registers that are not properly handled
15699   // by the base class.
15700   if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') {
15701     // If we name a VSX register, we can't defer to the base class because it
15702     // will not recognize the correct register (their names will be VSL{0-31}
15703     // and V{0-31} so they won't match). So we match them here.
15704     if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
15705       int VSNum = atoi(Constraint.data() + 3);
15706       assert(VSNum >= 0 && VSNum <= 63 &&
15707              "Attempted to access a vsr out of range");
15708       if (VSNum < 32)
15709         return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
15710       return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
15711     }
15712 
15713     // For float registers, we can't defer to the base class as it will match
15714     // the SPILLTOVSRRC class.
15715     if (Constraint.size() > 3 && Constraint[1] == 'f') {
15716       int RegNum = atoi(Constraint.data() + 2);
15717       if (RegNum > 31 || RegNum < 0)
15718         report_fatal_error("Invalid floating point register number");
15719       if (VT == MVT::f32 || VT == MVT::i32)
15720         return Subtarget.hasSPE()
15721                    ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass)
15722                    : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass);
15723       if (VT == MVT::f64 || VT == MVT::i64)
15724         return Subtarget.hasSPE()
15725                    ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass)
15726                    : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass);
15727     }
15728   }
15729 
15730   std::pair<unsigned, const TargetRegisterClass *> R =
15731       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
15732 
15733   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
15734   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
15735   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
15736   // register.
15737   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
15738   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
15739   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
15740       PPC::GPRCRegClass.contains(R.first))
15741     return std::make_pair(TRI->getMatchingSuperReg(R.first,
15742                             PPC::sub_32, &PPC::G8RCRegClass),
15743                           &PPC::G8RCRegClass);
15744 
15745   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
15746   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
15747     R.first = PPC::CR0;
15748     R.second = &PPC::CRRCRegClass;
15749   }
15750   // FIXME: This warning should ideally be emitted in the front end.
15751   const auto &TM = getTargetMachine();
15752   if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) {
15753     if (((R.first >= PPC::V20 && R.first <= PPC::V31) ||
15754          (R.first >= PPC::VF20 && R.first <= PPC::VF31)) &&
15755         (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass))
15756       errs() << "warning: vector registers 20 to 32 are reserved in the "
15757                 "default AIX AltiVec ABI and cannot be used\n";
15758   }
15759 
15760   return R;
15761 }
15762 
15763 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15764 /// vector.  If it is invalid, don't add anything to Ops.
15765 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15766                                                      std::string &Constraint,
15767                                                      std::vector<SDValue>&Ops,
15768                                                      SelectionDAG &DAG) const {
15769   SDValue Result;
15770 
15771   // Only support length 1 constraints.
15772   if (Constraint.length() > 1) return;
15773 
15774   char Letter = Constraint[0];
15775   switch (Letter) {
15776   default: break;
15777   case 'I':
15778   case 'J':
15779   case 'K':
15780   case 'L':
15781   case 'M':
15782   case 'N':
15783   case 'O':
15784   case 'P': {
15785     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
15786     if (!CST) return; // Must be an immediate to match.
15787     SDLoc dl(Op);
15788     int64_t Value = CST->getSExtValue();
15789     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
15790                          // numbers are printed as such.
15791     switch (Letter) {
15792     default: llvm_unreachable("Unknown constraint letter!");
15793     case 'I':  // "I" is a signed 16-bit constant.
15794       if (isInt<16>(Value))
15795         Result = DAG.getTargetConstant(Value, dl, TCVT);
15796       break;
15797     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
15798       if (isShiftedUInt<16, 16>(Value))
15799         Result = DAG.getTargetConstant(Value, dl, TCVT);
15800       break;
15801     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
15802       if (isShiftedInt<16, 16>(Value))
15803         Result = DAG.getTargetConstant(Value, dl, TCVT);
15804       break;
15805     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
15806       if (isUInt<16>(Value))
15807         Result = DAG.getTargetConstant(Value, dl, TCVT);
15808       break;
15809     case 'M':  // "M" is a constant that is greater than 31.
15810       if (Value > 31)
15811         Result = DAG.getTargetConstant(Value, dl, TCVT);
15812       break;
15813     case 'N':  // "N" is a positive constant that is an exact power of two.
15814       if (Value > 0 && isPowerOf2_64(Value))
15815         Result = DAG.getTargetConstant(Value, dl, TCVT);
15816       break;
15817     case 'O':  // "O" is the constant zero.
15818       if (Value == 0)
15819         Result = DAG.getTargetConstant(Value, dl, TCVT);
15820       break;
15821     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
15822       if (isInt<16>(-Value))
15823         Result = DAG.getTargetConstant(Value, dl, TCVT);
15824       break;
15825     }
15826     break;
15827   }
15828   }
15829 
15830   if (Result.getNode()) {
15831     Ops.push_back(Result);
15832     return;
15833   }
15834 
15835   // Handle standard constraint letters.
15836   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15837 }
15838 
15839 // isLegalAddressingMode - Return true if the addressing mode represented
15840 // by AM is legal for this target, for a load/store of the specified type.
15841 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
15842                                               const AddrMode &AM, Type *Ty,
15843                                               unsigned AS,
15844                                               Instruction *I) const {
15845   // Vector type r+i form is supported since power9 as DQ form. We don't check
15846   // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC,
15847   // imm form is preferred and the offset can be adjusted to use imm form later
15848   // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and
15849   // max offset to check legal addressing mode, we should be a little aggressive
15850   // to contain other offsets for that LSRUse.
15851   if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector())
15852     return false;
15853 
15854   // PPC allows a sign-extended 16-bit immediate field.
15855   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
15856     return false;
15857 
15858   // No global is ever allowed as a base.
15859   if (AM.BaseGV)
15860     return false;
15861 
15862   // PPC only support r+r,
15863   switch (AM.Scale) {
15864   case 0:  // "r+i" or just "i", depending on HasBaseReg.
15865     break;
15866   case 1:
15867     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
15868       return false;
15869     // Otherwise we have r+r or r+i.
15870     break;
15871   case 2:
15872     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
15873       return false;
15874     // Allow 2*r as r+r.
15875     break;
15876   default:
15877     // No other scales are supported.
15878     return false;
15879   }
15880 
15881   return true;
15882 }
15883 
15884 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
15885                                            SelectionDAG &DAG) const {
15886   MachineFunction &MF = DAG.getMachineFunction();
15887   MachineFrameInfo &MFI = MF.getFrameInfo();
15888   MFI.setReturnAddressIsTaken(true);
15889 
15890   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
15891     return SDValue();
15892 
15893   SDLoc dl(Op);
15894   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15895 
15896   // Make sure the function does not optimize away the store of the RA to
15897   // the stack.
15898   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
15899   FuncInfo->setLRStoreRequired();
15900   bool isPPC64 = Subtarget.isPPC64();
15901   auto PtrVT = getPointerTy(MF.getDataLayout());
15902 
15903   if (Depth > 0) {
15904     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
15905     SDValue Offset =
15906         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
15907                         isPPC64 ? MVT::i64 : MVT::i32);
15908     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
15909                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
15910                        MachinePointerInfo());
15911   }
15912 
15913   // Just load the return address off the stack.
15914   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
15915   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
15916                      MachinePointerInfo());
15917 }
15918 
15919 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
15920                                           SelectionDAG &DAG) const {
15921   SDLoc dl(Op);
15922   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15923 
15924   MachineFunction &MF = DAG.getMachineFunction();
15925   MachineFrameInfo &MFI = MF.getFrameInfo();
15926   MFI.setFrameAddressIsTaken(true);
15927 
15928   EVT PtrVT = getPointerTy(MF.getDataLayout());
15929   bool isPPC64 = PtrVT == MVT::i64;
15930 
15931   // Naked functions never have a frame pointer, and so we use r1. For all
15932   // other functions, this decision must be delayed until during PEI.
15933   unsigned FrameReg;
15934   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
15935     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
15936   else
15937     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
15938 
15939   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
15940                                          PtrVT);
15941   while (Depth--)
15942     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
15943                             FrameAddr, MachinePointerInfo());
15944   return FrameAddr;
15945 }
15946 
15947 // FIXME? Maybe this could be a TableGen attribute on some registers and
15948 // this table could be generated automatically from RegInfo.
15949 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
15950                                               const MachineFunction &MF) const {
15951   bool isPPC64 = Subtarget.isPPC64();
15952 
15953   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
15954   if (!is64Bit && VT != LLT::scalar(32))
15955     report_fatal_error("Invalid register global variable type");
15956 
15957   Register Reg = StringSwitch<Register>(RegName)
15958                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
15959                      .Case("r2", isPPC64 ? Register() : PPC::R2)
15960                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
15961                      .Default(Register());
15962 
15963   if (Reg)
15964     return Reg;
15965   report_fatal_error("Invalid register name global variable");
15966 }
15967 
15968 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
15969   // 32-bit SVR4 ABI access everything as got-indirect.
15970   if (Subtarget.is32BitELFABI())
15971     return true;
15972 
15973   // AIX accesses everything indirectly through the TOC, which is similar to
15974   // the GOT.
15975   if (Subtarget.isAIXABI())
15976     return true;
15977 
15978   CodeModel::Model CModel = getTargetMachine().getCodeModel();
15979   // If it is small or large code model, module locals are accessed
15980   // indirectly by loading their address from .toc/.got.
15981   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
15982     return true;
15983 
15984   // JumpTable and BlockAddress are accessed as got-indirect.
15985   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
15986     return true;
15987 
15988   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
15989     return Subtarget.isGVIndirectSymbol(G->getGlobal());
15990 
15991   return false;
15992 }
15993 
15994 bool
15995 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
15996   // The PowerPC target isn't yet aware of offsets.
15997   return false;
15998 }
15999 
16000 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
16001                                            const CallInst &I,
16002                                            MachineFunction &MF,
16003                                            unsigned Intrinsic) const {
16004   switch (Intrinsic) {
16005   case Intrinsic::ppc_altivec_lvx:
16006   case Intrinsic::ppc_altivec_lvxl:
16007   case Intrinsic::ppc_altivec_lvebx:
16008   case Intrinsic::ppc_altivec_lvehx:
16009   case Intrinsic::ppc_altivec_lvewx:
16010   case Intrinsic::ppc_vsx_lxvd2x:
16011   case Intrinsic::ppc_vsx_lxvw4x:
16012   case Intrinsic::ppc_vsx_lxvd2x_be:
16013   case Intrinsic::ppc_vsx_lxvw4x_be:
16014   case Intrinsic::ppc_vsx_lxvl:
16015   case Intrinsic::ppc_vsx_lxvll: {
16016     EVT VT;
16017     switch (Intrinsic) {
16018     case Intrinsic::ppc_altivec_lvebx:
16019       VT = MVT::i8;
16020       break;
16021     case Intrinsic::ppc_altivec_lvehx:
16022       VT = MVT::i16;
16023       break;
16024     case Intrinsic::ppc_altivec_lvewx:
16025       VT = MVT::i32;
16026       break;
16027     case Intrinsic::ppc_vsx_lxvd2x:
16028     case Intrinsic::ppc_vsx_lxvd2x_be:
16029       VT = MVT::v2f64;
16030       break;
16031     default:
16032       VT = MVT::v4i32;
16033       break;
16034     }
16035 
16036     Info.opc = ISD::INTRINSIC_W_CHAIN;
16037     Info.memVT = VT;
16038     Info.ptrVal = I.getArgOperand(0);
16039     Info.offset = -VT.getStoreSize()+1;
16040     Info.size = 2*VT.getStoreSize()-1;
16041     Info.align = Align(1);
16042     Info.flags = MachineMemOperand::MOLoad;
16043     return true;
16044   }
16045   case Intrinsic::ppc_altivec_stvx:
16046   case Intrinsic::ppc_altivec_stvxl:
16047   case Intrinsic::ppc_altivec_stvebx:
16048   case Intrinsic::ppc_altivec_stvehx:
16049   case Intrinsic::ppc_altivec_stvewx:
16050   case Intrinsic::ppc_vsx_stxvd2x:
16051   case Intrinsic::ppc_vsx_stxvw4x:
16052   case Intrinsic::ppc_vsx_stxvd2x_be:
16053   case Intrinsic::ppc_vsx_stxvw4x_be:
16054   case Intrinsic::ppc_vsx_stxvl:
16055   case Intrinsic::ppc_vsx_stxvll: {
16056     EVT VT;
16057     switch (Intrinsic) {
16058     case Intrinsic::ppc_altivec_stvebx:
16059       VT = MVT::i8;
16060       break;
16061     case Intrinsic::ppc_altivec_stvehx:
16062       VT = MVT::i16;
16063       break;
16064     case Intrinsic::ppc_altivec_stvewx:
16065       VT = MVT::i32;
16066       break;
16067     case Intrinsic::ppc_vsx_stxvd2x:
16068     case Intrinsic::ppc_vsx_stxvd2x_be:
16069       VT = MVT::v2f64;
16070       break;
16071     default:
16072       VT = MVT::v4i32;
16073       break;
16074     }
16075 
16076     Info.opc = ISD::INTRINSIC_VOID;
16077     Info.memVT = VT;
16078     Info.ptrVal = I.getArgOperand(1);
16079     Info.offset = -VT.getStoreSize()+1;
16080     Info.size = 2*VT.getStoreSize()-1;
16081     Info.align = Align(1);
16082     Info.flags = MachineMemOperand::MOStore;
16083     return true;
16084   }
16085   default:
16086     break;
16087   }
16088 
16089   return false;
16090 }
16091 
16092 /// It returns EVT::Other if the type should be determined using generic
16093 /// target-independent logic.
16094 EVT PPCTargetLowering::getOptimalMemOpType(
16095     const MemOp &Op, const AttributeList &FuncAttributes) const {
16096   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
16097     // We should use Altivec/VSX loads and stores when available. For unaligned
16098     // addresses, unaligned VSX loads are only fast starting with the P8.
16099     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
16100         (Op.isAligned(Align(16)) ||
16101          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
16102       return MVT::v4i32;
16103   }
16104 
16105   if (Subtarget.isPPC64()) {
16106     return MVT::i64;
16107   }
16108 
16109   return MVT::i32;
16110 }
16111 
16112 /// Returns true if it is beneficial to convert a load of a constant
16113 /// to just the constant itself.
16114 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
16115                                                           Type *Ty) const {
16116   assert(Ty->isIntegerTy());
16117 
16118   unsigned BitSize = Ty->getPrimitiveSizeInBits();
16119   return !(BitSize == 0 || BitSize > 64);
16120 }
16121 
16122 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
16123   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
16124     return false;
16125   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
16126   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
16127   return NumBits1 == 64 && NumBits2 == 32;
16128 }
16129 
16130 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
16131   if (!VT1.isInteger() || !VT2.isInteger())
16132     return false;
16133   unsigned NumBits1 = VT1.getSizeInBits();
16134   unsigned NumBits2 = VT2.getSizeInBits();
16135   return NumBits1 == 64 && NumBits2 == 32;
16136 }
16137 
16138 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
16139   // Generally speaking, zexts are not free, but they are free when they can be
16140   // folded with other operations.
16141   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
16142     EVT MemVT = LD->getMemoryVT();
16143     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
16144          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
16145         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
16146          LD->getExtensionType() == ISD::ZEXTLOAD))
16147       return true;
16148   }
16149 
16150   // FIXME: Add other cases...
16151   //  - 32-bit shifts with a zext to i64
16152   //  - zext after ctlz, bswap, etc.
16153   //  - zext after and by a constant mask
16154 
16155   return TargetLowering::isZExtFree(Val, VT2);
16156 }
16157 
16158 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
16159   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
16160          "invalid fpext types");
16161   // Extending to float128 is not free.
16162   if (DestVT == MVT::f128)
16163     return false;
16164   return true;
16165 }
16166 
16167 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
16168   return isInt<16>(Imm) || isUInt<16>(Imm);
16169 }
16170 
16171 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
16172   return isInt<16>(Imm) || isUInt<16>(Imm);
16173 }
16174 
16175 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align,
16176                                                        MachineMemOperand::Flags,
16177                                                        bool *Fast) const {
16178   if (DisablePPCUnaligned)
16179     return false;
16180 
16181   // PowerPC supports unaligned memory access for simple non-vector types.
16182   // Although accessing unaligned addresses is not as efficient as accessing
16183   // aligned addresses, it is generally more efficient than manual expansion,
16184   // and generally only traps for software emulation when crossing page
16185   // boundaries.
16186 
16187   if (!VT.isSimple())
16188     return false;
16189 
16190   if (VT.isFloatingPoint() && !VT.isVector() &&
16191       !Subtarget.allowsUnalignedFPAccess())
16192     return false;
16193 
16194   if (VT.getSimpleVT().isVector()) {
16195     if (Subtarget.hasVSX()) {
16196       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
16197           VT != MVT::v4f32 && VT != MVT::v4i32)
16198         return false;
16199     } else {
16200       return false;
16201     }
16202   }
16203 
16204   if (VT == MVT::ppcf128)
16205     return false;
16206 
16207   if (Fast)
16208     *Fast = true;
16209 
16210   return true;
16211 }
16212 
16213 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
16214                                                SDValue C) const {
16215   // Check integral scalar types.
16216   if (!VT.isScalarInteger())
16217     return false;
16218   if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
16219     if (!ConstNode->getAPIntValue().isSignedIntN(64))
16220       return false;
16221     // This transformation will generate >= 2 operations. But the following
16222     // cases will generate <= 2 instructions during ISEL. So exclude them.
16223     // 1. If the constant multiplier fits 16 bits, it can be handled by one
16224     // HW instruction, ie. MULLI
16225     // 2. If the multiplier after shifted fits 16 bits, an extra shift
16226     // instruction is needed than case 1, ie. MULLI and RLDICR
16227     int64_t Imm = ConstNode->getSExtValue();
16228     unsigned Shift = countTrailingZeros<uint64_t>(Imm);
16229     Imm >>= Shift;
16230     if (isInt<16>(Imm))
16231       return false;
16232     uint64_t UImm = static_cast<uint64_t>(Imm);
16233     if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) ||
16234         isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm))
16235       return true;
16236   }
16237   return false;
16238 }
16239 
16240 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
16241                                                    EVT VT) const {
16242   return isFMAFasterThanFMulAndFAdd(
16243       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
16244 }
16245 
16246 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
16247                                                    Type *Ty) const {
16248   switch (Ty->getScalarType()->getTypeID()) {
16249   case Type::FloatTyID:
16250   case Type::DoubleTyID:
16251     return true;
16252   case Type::FP128TyID:
16253     return Subtarget.hasP9Vector();
16254   default:
16255     return false;
16256   }
16257 }
16258 
16259 // FIXME: add more patterns which are not profitable to hoist.
16260 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
16261   if (!I->hasOneUse())
16262     return true;
16263 
16264   Instruction *User = I->user_back();
16265   assert(User && "A single use instruction with no uses.");
16266 
16267   switch (I->getOpcode()) {
16268   case Instruction::FMul: {
16269     // Don't break FMA, PowerPC prefers FMA.
16270     if (User->getOpcode() != Instruction::FSub &&
16271         User->getOpcode() != Instruction::FAdd)
16272       return true;
16273 
16274     const TargetOptions &Options = getTargetMachine().Options;
16275     const Function *F = I->getFunction();
16276     const DataLayout &DL = F->getParent()->getDataLayout();
16277     Type *Ty = User->getOperand(0)->getType();
16278 
16279     return !(
16280         isFMAFasterThanFMulAndFAdd(*F, Ty) &&
16281         isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
16282         (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
16283   }
16284   case Instruction::Load: {
16285     // Don't break "store (load float*)" pattern, this pattern will be combined
16286     // to "store (load int32)" in later InstCombine pass. See function
16287     // combineLoadToOperationType. On PowerPC, loading a float point takes more
16288     // cycles than loading a 32 bit integer.
16289     LoadInst *LI = cast<LoadInst>(I);
16290     // For the loads that combineLoadToOperationType does nothing, like
16291     // ordered load, it should be profitable to hoist them.
16292     // For swifterror load, it can only be used for pointer to pointer type, so
16293     // later type check should get rid of this case.
16294     if (!LI->isUnordered())
16295       return true;
16296 
16297     if (User->getOpcode() != Instruction::Store)
16298       return true;
16299 
16300     if (I->getType()->getTypeID() != Type::FloatTyID)
16301       return true;
16302 
16303     return false;
16304   }
16305   default:
16306     return true;
16307   }
16308   return true;
16309 }
16310 
16311 const MCPhysReg *
16312 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
16313   // LR is a callee-save register, but we must treat it as clobbered by any call
16314   // site. Hence we include LR in the scratch registers, which are in turn added
16315   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
16316   // to CTR, which is used by any indirect call.
16317   static const MCPhysReg ScratchRegs[] = {
16318     PPC::X12, PPC::LR8, PPC::CTR8, 0
16319   };
16320 
16321   return ScratchRegs;
16322 }
16323 
16324 Register PPCTargetLowering::getExceptionPointerRegister(
16325     const Constant *PersonalityFn) const {
16326   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
16327 }
16328 
16329 Register PPCTargetLowering::getExceptionSelectorRegister(
16330     const Constant *PersonalityFn) const {
16331   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
16332 }
16333 
16334 bool
16335 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
16336                      EVT VT , unsigned DefinedValues) const {
16337   if (VT == MVT::v2i64)
16338     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
16339 
16340   if (Subtarget.hasVSX())
16341     return true;
16342 
16343   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
16344 }
16345 
16346 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
16347   if (DisableILPPref || Subtarget.enableMachineScheduler())
16348     return TargetLowering::getSchedulingPreference(N);
16349 
16350   return Sched::ILP;
16351 }
16352 
16353 // Create a fast isel object.
16354 FastISel *
16355 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
16356                                   const TargetLibraryInfo *LibInfo) const {
16357   return PPC::createFastISel(FuncInfo, LibInfo);
16358 }
16359 
16360 // 'Inverted' means the FMA opcode after negating one multiplicand.
16361 // For example, (fma -a b c) = (fnmsub a b c)
16362 static unsigned invertFMAOpcode(unsigned Opc) {
16363   switch (Opc) {
16364   default:
16365     llvm_unreachable("Invalid FMA opcode for PowerPC!");
16366   case ISD::FMA:
16367     return PPCISD::FNMSUB;
16368   case PPCISD::FNMSUB:
16369     return ISD::FMA;
16370   }
16371 }
16372 
16373 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
16374                                                 bool LegalOps, bool OptForSize,
16375                                                 NegatibleCost &Cost,
16376                                                 unsigned Depth) const {
16377   if (Depth > SelectionDAG::MaxRecursionDepth)
16378     return SDValue();
16379 
16380   unsigned Opc = Op.getOpcode();
16381   EVT VT = Op.getValueType();
16382   SDNodeFlags Flags = Op.getNode()->getFlags();
16383 
16384   switch (Opc) {
16385   case PPCISD::FNMSUB:
16386     if (!Op.hasOneUse() || !isTypeLegal(VT))
16387       break;
16388 
16389     const TargetOptions &Options = getTargetMachine().Options;
16390     SDValue N0 = Op.getOperand(0);
16391     SDValue N1 = Op.getOperand(1);
16392     SDValue N2 = Op.getOperand(2);
16393     SDLoc Loc(Op);
16394 
16395     NegatibleCost N2Cost = NegatibleCost::Expensive;
16396     SDValue NegN2 =
16397         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
16398 
16399     if (!NegN2)
16400       return SDValue();
16401 
16402     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
16403     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
16404     // These transformations may change sign of zeroes. For example,
16405     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
16406     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
16407       // Try and choose the cheaper one to negate.
16408       NegatibleCost N0Cost = NegatibleCost::Expensive;
16409       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
16410                                            N0Cost, Depth + 1);
16411 
16412       NegatibleCost N1Cost = NegatibleCost::Expensive;
16413       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
16414                                            N1Cost, Depth + 1);
16415 
16416       if (NegN0 && N0Cost <= N1Cost) {
16417         Cost = std::min(N0Cost, N2Cost);
16418         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
16419       } else if (NegN1) {
16420         Cost = std::min(N1Cost, N2Cost);
16421         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
16422       }
16423     }
16424 
16425     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
16426     if (isOperationLegal(ISD::FMA, VT)) {
16427       Cost = N2Cost;
16428       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
16429     }
16430 
16431     break;
16432   }
16433 
16434   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
16435                                               Cost, Depth);
16436 }
16437 
16438 // Override to enable LOAD_STACK_GUARD lowering on Linux.
16439 bool PPCTargetLowering::useLoadStackGuardNode() const {
16440   if (!Subtarget.isTargetLinux())
16441     return TargetLowering::useLoadStackGuardNode();
16442   return true;
16443 }
16444 
16445 // Override to disable global variable loading on Linux and insert AIX canary
16446 // word declaration.
16447 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
16448   if (Subtarget.isAIXABI()) {
16449     M.getOrInsertGlobal(AIXSSPCanaryWordName,
16450                         Type::getInt8PtrTy(M.getContext()));
16451     return;
16452   }
16453   if (!Subtarget.isTargetLinux())
16454     return TargetLowering::insertSSPDeclarations(M);
16455 }
16456 
16457 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const {
16458   if (Subtarget.isAIXABI())
16459     return M.getGlobalVariable(AIXSSPCanaryWordName);
16460   return TargetLowering::getSDagStackGuard(M);
16461 }
16462 
16463 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
16464                                      bool ForCodeSize) const {
16465   if (!VT.isSimple() || !Subtarget.hasVSX())
16466     return false;
16467 
16468   switch(VT.getSimpleVT().SimpleTy) {
16469   default:
16470     // For FP types that are currently not supported by PPC backend, return
16471     // false. Examples: f16, f80.
16472     return false;
16473   case MVT::f32:
16474   case MVT::f64:
16475     if (Subtarget.hasPrefixInstrs()) {
16476       // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP.
16477       return true;
16478     }
16479     LLVM_FALLTHROUGH;
16480   case MVT::ppcf128:
16481     return Imm.isPosZero();
16482   }
16483 }
16484 
16485 // For vector shift operation op, fold
16486 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
16487 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
16488                                   SelectionDAG &DAG) {
16489   SDValue N0 = N->getOperand(0);
16490   SDValue N1 = N->getOperand(1);
16491   EVT VT = N0.getValueType();
16492   unsigned OpSizeInBits = VT.getScalarSizeInBits();
16493   unsigned Opcode = N->getOpcode();
16494   unsigned TargetOpcode;
16495 
16496   switch (Opcode) {
16497   default:
16498     llvm_unreachable("Unexpected shift operation");
16499   case ISD::SHL:
16500     TargetOpcode = PPCISD::SHL;
16501     break;
16502   case ISD::SRL:
16503     TargetOpcode = PPCISD::SRL;
16504     break;
16505   case ISD::SRA:
16506     TargetOpcode = PPCISD::SRA;
16507     break;
16508   }
16509 
16510   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
16511       N1->getOpcode() == ISD::AND)
16512     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
16513       if (Mask->getZExtValue() == OpSizeInBits - 1)
16514         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
16515 
16516   return SDValue();
16517 }
16518 
16519 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
16520   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16521     return Value;
16522 
16523   SDValue N0 = N->getOperand(0);
16524   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
16525   if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() ||
16526       N0.getOpcode() != ISD::SIGN_EXTEND ||
16527       N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr ||
16528       N->getValueType(0) != MVT::i64)
16529     return SDValue();
16530 
16531   // We can't save an operation here if the value is already extended, and
16532   // the existing shift is easier to combine.
16533   SDValue ExtsSrc = N0.getOperand(0);
16534   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
16535       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
16536     return SDValue();
16537 
16538   SDLoc DL(N0);
16539   SDValue ShiftBy = SDValue(CN1, 0);
16540   // We want the shift amount to be i32 on the extswli, but the shift could
16541   // have an i64.
16542   if (ShiftBy.getValueType() == MVT::i64)
16543     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
16544 
16545   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
16546                          ShiftBy);
16547 }
16548 
16549 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
16550   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16551     return Value;
16552 
16553   return SDValue();
16554 }
16555 
16556 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
16557   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16558     return Value;
16559 
16560   return SDValue();
16561 }
16562 
16563 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
16564 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
16565 // When C is zero, the equation (addi Z, -C) can be simplified to Z
16566 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
16567 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
16568                                  const PPCSubtarget &Subtarget) {
16569   if (!Subtarget.isPPC64())
16570     return SDValue();
16571 
16572   SDValue LHS = N->getOperand(0);
16573   SDValue RHS = N->getOperand(1);
16574 
16575   auto isZextOfCompareWithConstant = [](SDValue Op) {
16576     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
16577         Op.getValueType() != MVT::i64)
16578       return false;
16579 
16580     SDValue Cmp = Op.getOperand(0);
16581     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
16582         Cmp.getOperand(0).getValueType() != MVT::i64)
16583       return false;
16584 
16585     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
16586       int64_t NegConstant = 0 - Constant->getSExtValue();
16587       // Due to the limitations of the addi instruction,
16588       // -C is required to be [-32768, 32767].
16589       return isInt<16>(NegConstant);
16590     }
16591 
16592     return false;
16593   };
16594 
16595   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
16596   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
16597 
16598   // If there is a pattern, canonicalize a zext operand to the RHS.
16599   if (LHSHasPattern && !RHSHasPattern)
16600     std::swap(LHS, RHS);
16601   else if (!LHSHasPattern && !RHSHasPattern)
16602     return SDValue();
16603 
16604   SDLoc DL(N);
16605   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
16606   SDValue Cmp = RHS.getOperand(0);
16607   SDValue Z = Cmp.getOperand(0);
16608   auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1));
16609   int64_t NegConstant = 0 - Constant->getSExtValue();
16610 
16611   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
16612   default: break;
16613   case ISD::SETNE: {
16614     //                                 when C == 0
16615     //                             --> addze X, (addic Z, -1).carry
16616     //                            /
16617     // add X, (zext(setne Z, C))--
16618     //                            \    when -32768 <= -C <= 32767 && C != 0
16619     //                             --> addze X, (addic (addi Z, -C), -1).carry
16620     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16621                               DAG.getConstant(NegConstant, DL, MVT::i64));
16622     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16623     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16624                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
16625     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16626                        SDValue(Addc.getNode(), 1));
16627     }
16628   case ISD::SETEQ: {
16629     //                                 when C == 0
16630     //                             --> addze X, (subfic Z, 0).carry
16631     //                            /
16632     // add X, (zext(sete  Z, C))--
16633     //                            \    when -32768 <= -C <= 32767 && C != 0
16634     //                             --> addze X, (subfic (addi Z, -C), 0).carry
16635     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16636                               DAG.getConstant(NegConstant, DL, MVT::i64));
16637     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16638     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16639                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
16640     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16641                        SDValue(Subc.getNode(), 1));
16642     }
16643   }
16644 
16645   return SDValue();
16646 }
16647 
16648 // Transform
16649 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
16650 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
16651 // In this case both C1 and C2 must be known constants.
16652 // C1+C2 must fit into a 34 bit signed integer.
16653 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
16654                                           const PPCSubtarget &Subtarget) {
16655   if (!Subtarget.isUsingPCRelativeCalls())
16656     return SDValue();
16657 
16658   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
16659   // If we find that node try to cast the Global Address and the Constant.
16660   SDValue LHS = N->getOperand(0);
16661   SDValue RHS = N->getOperand(1);
16662 
16663   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16664     std::swap(LHS, RHS);
16665 
16666   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16667     return SDValue();
16668 
16669   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
16670   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
16671   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
16672 
16673   // Check that both casts succeeded.
16674   if (!GSDN || !ConstNode)
16675     return SDValue();
16676 
16677   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
16678   SDLoc DL(GSDN);
16679 
16680   // The signed int offset needs to fit in 34 bits.
16681   if (!isInt<34>(NewOffset))
16682     return SDValue();
16683 
16684   // The new global address is a copy of the old global address except
16685   // that it has the updated Offset.
16686   SDValue GA =
16687       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
16688                                  NewOffset, GSDN->getTargetFlags());
16689   SDValue MatPCRel =
16690       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
16691   return MatPCRel;
16692 }
16693 
16694 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
16695   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
16696     return Value;
16697 
16698   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
16699     return Value;
16700 
16701   return SDValue();
16702 }
16703 
16704 // Detect TRUNCATE operations on bitcasts of float128 values.
16705 // What we are looking for here is the situtation where we extract a subset
16706 // of bits from a 128 bit float.
16707 // This can be of two forms:
16708 // 1) BITCAST of f128 feeding TRUNCATE
16709 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
16710 // The reason this is required is because we do not have a legal i128 type
16711 // and so we want to prevent having to store the f128 and then reload part
16712 // of it.
16713 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
16714                                            DAGCombinerInfo &DCI) const {
16715   // If we are using CRBits then try that first.
16716   if (Subtarget.useCRBits()) {
16717     // Check if CRBits did anything and return that if it did.
16718     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
16719       return CRTruncValue;
16720   }
16721 
16722   SDLoc dl(N);
16723   SDValue Op0 = N->getOperand(0);
16724 
16725   // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
16726   if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
16727     EVT VT = N->getValueType(0);
16728     if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16729       return SDValue();
16730     SDValue Sub = Op0.getOperand(0);
16731     if (Sub.getOpcode() == ISD::SUB) {
16732       SDValue SubOp0 = Sub.getOperand(0);
16733       SDValue SubOp1 = Sub.getOperand(1);
16734       if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
16735           (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
16736         return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
16737                                SubOp1.getOperand(0),
16738                                DCI.DAG.getTargetConstant(0, dl, MVT::i32));
16739       }
16740     }
16741   }
16742 
16743   // Looking for a truncate of i128 to i64.
16744   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
16745     return SDValue();
16746 
16747   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
16748 
16749   // SRL feeding TRUNCATE.
16750   if (Op0.getOpcode() == ISD::SRL) {
16751     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
16752     // The right shift has to be by 64 bits.
16753     if (!ConstNode || ConstNode->getZExtValue() != 64)
16754       return SDValue();
16755 
16756     // Switch the element number to extract.
16757     EltToExtract = EltToExtract ? 0 : 1;
16758     // Update Op0 past the SRL.
16759     Op0 = Op0.getOperand(0);
16760   }
16761 
16762   // BITCAST feeding a TRUNCATE possibly via SRL.
16763   if (Op0.getOpcode() == ISD::BITCAST &&
16764       Op0.getValueType() == MVT::i128 &&
16765       Op0.getOperand(0).getValueType() == MVT::f128) {
16766     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
16767     return DCI.DAG.getNode(
16768         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
16769         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
16770   }
16771   return SDValue();
16772 }
16773 
16774 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
16775   SelectionDAG &DAG = DCI.DAG;
16776 
16777   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
16778   if (!ConstOpOrElement)
16779     return SDValue();
16780 
16781   // An imul is usually smaller than the alternative sequence for legal type.
16782   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
16783       isOperationLegal(ISD::MUL, N->getValueType(0)))
16784     return SDValue();
16785 
16786   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
16787     switch (this->Subtarget.getCPUDirective()) {
16788     default:
16789       // TODO: enhance the condition for subtarget before pwr8
16790       return false;
16791     case PPC::DIR_PWR8:
16792       //  type        mul     add    shl
16793       // scalar        4       1      1
16794       // vector        7       2      2
16795       return true;
16796     case PPC::DIR_PWR9:
16797     case PPC::DIR_PWR10:
16798     case PPC::DIR_PWR_FUTURE:
16799       //  type        mul     add    shl
16800       // scalar        5       2      2
16801       // vector        7       2      2
16802 
16803       // The cycle RATIO of related operations are showed as a table above.
16804       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
16805       // scalar and vector type. For 2 instrs patterns, add/sub + shl
16806       // are 4, it is always profitable; but for 3 instrs patterns
16807       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
16808       // So we should only do it for vector type.
16809       return IsAddOne && IsNeg ? VT.isVector() : true;
16810     }
16811   };
16812 
16813   EVT VT = N->getValueType(0);
16814   SDLoc DL(N);
16815 
16816   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
16817   bool IsNeg = MulAmt.isNegative();
16818   APInt MulAmtAbs = MulAmt.abs();
16819 
16820   if ((MulAmtAbs - 1).isPowerOf2()) {
16821     // (mul x, 2^N + 1) => (add (shl x, N), x)
16822     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
16823 
16824     if (!IsProfitable(IsNeg, true, VT))
16825       return SDValue();
16826 
16827     SDValue Op0 = N->getOperand(0);
16828     SDValue Op1 =
16829         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16830                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
16831     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
16832 
16833     if (!IsNeg)
16834       return Res;
16835 
16836     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
16837   } else if ((MulAmtAbs + 1).isPowerOf2()) {
16838     // (mul x, 2^N - 1) => (sub (shl x, N), x)
16839     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
16840 
16841     if (!IsProfitable(IsNeg, false, VT))
16842       return SDValue();
16843 
16844     SDValue Op0 = N->getOperand(0);
16845     SDValue Op1 =
16846         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16847                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
16848 
16849     if (!IsNeg)
16850       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
16851     else
16852       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
16853 
16854   } else {
16855     return SDValue();
16856   }
16857 }
16858 
16859 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
16860 // in combiner since we need to check SD flags and other subtarget features.
16861 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
16862                                           DAGCombinerInfo &DCI) const {
16863   SDValue N0 = N->getOperand(0);
16864   SDValue N1 = N->getOperand(1);
16865   SDValue N2 = N->getOperand(2);
16866   SDNodeFlags Flags = N->getFlags();
16867   EVT VT = N->getValueType(0);
16868   SelectionDAG &DAG = DCI.DAG;
16869   const TargetOptions &Options = getTargetMachine().Options;
16870   unsigned Opc = N->getOpcode();
16871   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
16872   bool LegalOps = !DCI.isBeforeLegalizeOps();
16873   SDLoc Loc(N);
16874 
16875   if (!isOperationLegal(ISD::FMA, VT))
16876     return SDValue();
16877 
16878   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
16879   // since (fnmsub a b c)=-0 while c-ab=+0.
16880   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
16881     return SDValue();
16882 
16883   // (fma (fneg a) b c) => (fnmsub a b c)
16884   // (fnmsub (fneg a) b c) => (fma a b c)
16885   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
16886     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
16887 
16888   // (fma a (fneg b) c) => (fnmsub a b c)
16889   // (fnmsub a (fneg b) c) => (fma a b c)
16890   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
16891     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
16892 
16893   return SDValue();
16894 }
16895 
16896 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
16897   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
16898   if (!Subtarget.is64BitELFABI())
16899     return false;
16900 
16901   // If not a tail call then no need to proceed.
16902   if (!CI->isTailCall())
16903     return false;
16904 
16905   // If sibling calls have been disabled and tail-calls aren't guaranteed
16906   // there is no reason to duplicate.
16907   auto &TM = getTargetMachine();
16908   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
16909     return false;
16910 
16911   // Can't tail call a function called indirectly, or if it has variadic args.
16912   const Function *Callee = CI->getCalledFunction();
16913   if (!Callee || Callee->isVarArg())
16914     return false;
16915 
16916   // Make sure the callee and caller calling conventions are eligible for tco.
16917   const Function *Caller = CI->getParent()->getParent();
16918   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
16919                                            CI->getCallingConv()))
16920       return false;
16921 
16922   // If the function is local then we have a good chance at tail-calling it
16923   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
16924 }
16925 
16926 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
16927   if (!Subtarget.hasVSX())
16928     return false;
16929   if (Subtarget.hasP9Vector() && VT == MVT::f128)
16930     return true;
16931   return VT == MVT::f32 || VT == MVT::f64 ||
16932     VT == MVT::v4f32 || VT == MVT::v2f64;
16933 }
16934 
16935 bool PPCTargetLowering::
16936 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
16937   const Value *Mask = AndI.getOperand(1);
16938   // If the mask is suitable for andi. or andis. we should sink the and.
16939   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
16940     // Can't handle constants wider than 64-bits.
16941     if (CI->getBitWidth() > 64)
16942       return false;
16943     int64_t ConstVal = CI->getZExtValue();
16944     return isUInt<16>(ConstVal) ||
16945       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
16946   }
16947 
16948   // For non-constant masks, we can always use the record-form and.
16949   return true;
16950 }
16951 
16952 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
16953 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
16954 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
16955 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
16956 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
16957 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
16958   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
16959   assert(Subtarget.hasP9Altivec() &&
16960          "Only combine this when P9 altivec supported!");
16961   EVT VT = N->getValueType(0);
16962   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16963     return SDValue();
16964 
16965   SelectionDAG &DAG = DCI.DAG;
16966   SDLoc dl(N);
16967   if (N->getOperand(0).getOpcode() == ISD::SUB) {
16968     // Even for signed integers, if it's known to be positive (as signed
16969     // integer) due to zero-extended inputs.
16970     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
16971     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
16972     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
16973          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
16974         (SubOpcd1 == ISD::ZERO_EXTEND ||
16975          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
16976       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16977                          N->getOperand(0)->getOperand(0),
16978                          N->getOperand(0)->getOperand(1),
16979                          DAG.getTargetConstant(0, dl, MVT::i32));
16980     }
16981 
16982     // For type v4i32, it can be optimized with xvnegsp + vabsduw
16983     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
16984         N->getOperand(0).hasOneUse()) {
16985       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16986                          N->getOperand(0)->getOperand(0),
16987                          N->getOperand(0)->getOperand(1),
16988                          DAG.getTargetConstant(1, dl, MVT::i32));
16989     }
16990   }
16991 
16992   return SDValue();
16993 }
16994 
16995 // For type v4i32/v8ii16/v16i8, transform
16996 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
16997 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
16998 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
16999 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
17000 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
17001                                           DAGCombinerInfo &DCI) const {
17002   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
17003   assert(Subtarget.hasP9Altivec() &&
17004          "Only combine this when P9 altivec supported!");
17005 
17006   SelectionDAG &DAG = DCI.DAG;
17007   SDLoc dl(N);
17008   SDValue Cond = N->getOperand(0);
17009   SDValue TrueOpnd = N->getOperand(1);
17010   SDValue FalseOpnd = N->getOperand(2);
17011   EVT VT = N->getOperand(1).getValueType();
17012 
17013   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
17014       FalseOpnd.getOpcode() != ISD::SUB)
17015     return SDValue();
17016 
17017   // ABSD only available for type v4i32/v8i16/v16i8
17018   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17019     return SDValue();
17020 
17021   // At least to save one more dependent computation
17022   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
17023     return SDValue();
17024 
17025   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
17026 
17027   // Can only handle unsigned comparison here
17028   switch (CC) {
17029   default:
17030     return SDValue();
17031   case ISD::SETUGT:
17032   case ISD::SETUGE:
17033     break;
17034   case ISD::SETULT:
17035   case ISD::SETULE:
17036     std::swap(TrueOpnd, FalseOpnd);
17037     break;
17038   }
17039 
17040   SDValue CmpOpnd1 = Cond.getOperand(0);
17041   SDValue CmpOpnd2 = Cond.getOperand(1);
17042 
17043   // SETCC CmpOpnd1 CmpOpnd2 cond
17044   // TrueOpnd = CmpOpnd1 - CmpOpnd2
17045   // FalseOpnd = CmpOpnd2 - CmpOpnd1
17046   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
17047       TrueOpnd.getOperand(1) == CmpOpnd2 &&
17048       FalseOpnd.getOperand(0) == CmpOpnd2 &&
17049       FalseOpnd.getOperand(1) == CmpOpnd1) {
17050     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
17051                        CmpOpnd1, CmpOpnd2,
17052                        DAG.getTargetConstant(0, dl, MVT::i32));
17053   }
17054 
17055   return SDValue();
17056 }
17057 
17058 /// getAddrModeForFlags - Based on the set of address flags, select the most
17059 /// optimal instruction format to match by.
17060 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const {
17061   // This is not a node we should be handling here.
17062   if (Flags == PPC::MOF_None)
17063     return PPC::AM_None;
17064   // Unaligned D-Forms are tried first, followed by the aligned D-Forms.
17065   for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm))
17066     if ((Flags & FlagSet) == FlagSet)
17067       return PPC::AM_DForm;
17068   for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm))
17069     if ((Flags & FlagSet) == FlagSet)
17070       return PPC::AM_DSForm;
17071   for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm))
17072     if ((Flags & FlagSet) == FlagSet)
17073       return PPC::AM_DQForm;
17074   // If no other forms are selected, return an X-Form as it is the most
17075   // general addressing mode.
17076   return PPC::AM_XForm;
17077 }
17078 
17079 /// Set alignment flags based on whether or not the Frame Index is aligned.
17080 /// Utilized when computing flags for address computation when selecting
17081 /// load and store instructions.
17082 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet,
17083                                SelectionDAG &DAG) {
17084   bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR));
17085   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N);
17086   if (!FI)
17087     return;
17088   const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
17089   unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value();
17090   // If this is (add $FI, $S16Imm), the alignment flags are already set
17091   // based on the immediate. We just need to clear the alignment flags
17092   // if the FI alignment is weaker.
17093   if ((FrameIndexAlign % 4) != 0)
17094     FlagSet &= ~PPC::MOF_RPlusSImm16Mult4;
17095   if ((FrameIndexAlign % 16) != 0)
17096     FlagSet &= ~PPC::MOF_RPlusSImm16Mult16;
17097   // If the address is a plain FrameIndex, set alignment flags based on
17098   // FI alignment.
17099   if (!IsAdd) {
17100     if ((FrameIndexAlign % 4) == 0)
17101       FlagSet |= PPC::MOF_RPlusSImm16Mult4;
17102     if ((FrameIndexAlign % 16) == 0)
17103       FlagSet |= PPC::MOF_RPlusSImm16Mult16;
17104   }
17105 }
17106 
17107 /// Given a node, compute flags that are used for address computation when
17108 /// selecting load and store instructions. The flags computed are stored in
17109 /// FlagSet. This function takes into account whether the node is a constant,
17110 /// an ADD, OR, or a constant, and computes the address flags accordingly.
17111 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet,
17112                                               SelectionDAG &DAG) {
17113   // Set the alignment flags for the node depending on if the node is
17114   // 4-byte or 16-byte aligned.
17115   auto SetAlignFlagsForImm = [&](uint64_t Imm) {
17116     if ((Imm & 0x3) == 0)
17117       FlagSet |= PPC::MOF_RPlusSImm16Mult4;
17118     if ((Imm & 0xf) == 0)
17119       FlagSet |= PPC::MOF_RPlusSImm16Mult16;
17120   };
17121 
17122   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
17123     // All 32-bit constants can be computed as LIS + Disp.
17124     const APInt &ConstImm = CN->getAPIntValue();
17125     if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants.
17126       FlagSet |= PPC::MOF_AddrIsSImm32;
17127       SetAlignFlagsForImm(ConstImm.getZExtValue());
17128       setAlignFlagsForFI(N, FlagSet, DAG);
17129     }
17130     if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants.
17131       FlagSet |= PPC::MOF_RPlusSImm34;
17132     else // Let constant materialization handle large constants.
17133       FlagSet |= PPC::MOF_NotAddNorCst;
17134   } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) {
17135     // This address can be represented as an addition of:
17136     // - Register + Imm16 (possibly a multiple of 4/16)
17137     // - Register + Imm34
17138     // - Register + PPCISD::Lo
17139     // - Register + Register
17140     // In any case, we won't have to match this as Base + Zero.
17141     SDValue RHS = N.getOperand(1);
17142     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) {
17143       const APInt &ConstImm = CN->getAPIntValue();
17144       if (ConstImm.isSignedIntN(16)) {
17145         FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates.
17146         SetAlignFlagsForImm(ConstImm.getZExtValue());
17147         setAlignFlagsForFI(N, FlagSet, DAG);
17148       }
17149       if (ConstImm.isSignedIntN(34))
17150         FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates.
17151       else
17152         FlagSet |= PPC::MOF_RPlusR; // Register.
17153     } else if (RHS.getOpcode() == PPCISD::Lo &&
17154                !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue())
17155       FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo.
17156     else
17157       FlagSet |= PPC::MOF_RPlusR;
17158   } else { // The address computation is not a constant or an addition.
17159     setAlignFlagsForFI(N, FlagSet, DAG);
17160     FlagSet |= PPC::MOF_NotAddNorCst;
17161   }
17162 }
17163 
17164 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute
17165 /// the address flags of the load/store instruction that is to be matched.
17166 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N,
17167                                            SelectionDAG &DAG) const {
17168   unsigned FlagSet = PPC::MOF_None;
17169 
17170   // Compute subtarget flags.
17171   if (!Subtarget.hasP9Vector())
17172     FlagSet |= PPC::MOF_SubtargetBeforeP9;
17173   else {
17174     FlagSet |= PPC::MOF_SubtargetP9;
17175     if (Subtarget.hasPrefixInstrs())
17176       FlagSet |= PPC::MOF_SubtargetP10;
17177   }
17178   if (Subtarget.hasSPE())
17179     FlagSet |= PPC::MOF_SubtargetSPE;
17180 
17181   // Mark this as something we don't want to handle here if it is atomic
17182   // or pre-increment instruction.
17183   if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent))
17184     if (LSB->isIndexed())
17185       return PPC::MOF_None;
17186 
17187   // Compute in-memory type flags. This is based on if there are scalars,
17188   // floats or vectors.
17189   const MemSDNode *MN = dyn_cast<MemSDNode>(Parent);
17190   assert(MN && "Parent should be a MemSDNode!");
17191   EVT MemVT = MN->getMemoryVT();
17192   unsigned Size = MemVT.getSizeInBits();
17193   if (MemVT.isScalarInteger()) {
17194     assert(Size <= 64 && "Not expecting scalar integers larger than 8 bytes!");
17195     if (Size < 32)
17196       FlagSet |= PPC::MOF_SubWordInt;
17197     else if (Size == 32)
17198       FlagSet |= PPC::MOF_WordInt;
17199     else
17200       FlagSet |= PPC::MOF_DoubleWordInt;
17201   } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors.
17202     if (Size == 128)
17203       FlagSet |= PPC::MOF_Vector;
17204     else if (Size == 256)
17205       FlagSet |= PPC::MOF_Vector256;
17206     else
17207       llvm_unreachable("Not expecting illegal vectors!");
17208   } else { // Floating point type: can be scalar, f128 or vector types.
17209     if (Size == 32 || Size == 64)
17210       FlagSet |= PPC::MOF_ScalarFloat;
17211     else if (MemVT == MVT::f128 || MemVT.isVector())
17212       FlagSet |= PPC::MOF_Vector;
17213     else
17214       llvm_unreachable("Not expecting illegal scalar floats!");
17215   }
17216 
17217   // Compute flags for address computation.
17218   computeFlagsForAddressComputation(N, FlagSet, DAG);
17219 
17220   // Compute type extension flags.
17221   if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) {
17222     switch (LN->getExtensionType()) {
17223     case ISD::SEXTLOAD:
17224       FlagSet |= PPC::MOF_SExt;
17225       break;
17226     case ISD::EXTLOAD:
17227     case ISD::ZEXTLOAD:
17228       FlagSet |= PPC::MOF_ZExt;
17229       break;
17230     case ISD::NON_EXTLOAD:
17231       FlagSet |= PPC::MOF_NoExt;
17232       break;
17233     }
17234   } else
17235     FlagSet |= PPC::MOF_NoExt;
17236 
17237   // For integers, no extension is the same as zero extension.
17238   // We set the extension mode to zero extension so we don't have
17239   // to add separate entries in AddrModesMap for loads and stores.
17240   if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) {
17241     FlagSet |= PPC::MOF_ZExt;
17242     FlagSet &= ~PPC::MOF_NoExt;
17243   }
17244 
17245   // If we don't have prefixed instructions, 34-bit constants should be
17246   // treated as PPC::MOF_NotAddNorCst so they can match D-Forms.
17247   bool IsNonP1034BitConst =
17248       ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) &
17249        FlagSet) == PPC::MOF_RPlusSImm34;
17250   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR &&
17251       IsNonP1034BitConst)
17252     FlagSet |= PPC::MOF_NotAddNorCst;
17253 
17254   return FlagSet;
17255 }
17256 
17257 /// SelectForceXFormMode - Given the specified address, force it to be
17258 /// represented as an indexed [r+r] operation (an XForm instruction).
17259 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp,
17260                                                       SDValue &Base,
17261                                                       SelectionDAG &DAG) const {
17262 
17263   PPC::AddrMode Mode = PPC::AM_XForm;
17264   int16_t ForceXFormImm = 0;
17265   if (provablyDisjointOr(DAG, N) &&
17266       !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) {
17267     Disp = N.getOperand(0);
17268     Base = N.getOperand(1);
17269     return Mode;
17270   }
17271 
17272   // If the address is the result of an add, we will utilize the fact that the
17273   // address calculation includes an implicit add.  However, we can reduce
17274   // register pressure if we do not materialize a constant just for use as the
17275   // index register.  We only get rid of the add if it is not an add of a
17276   // value and a 16-bit signed constant and both have a single use.
17277   if (N.getOpcode() == ISD::ADD &&
17278       (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) ||
17279        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
17280     Disp = N.getOperand(0);
17281     Base = N.getOperand(1);
17282     return Mode;
17283   }
17284 
17285   // Otherwise, use R0 as the base register.
17286   Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17287                          N.getValueType());
17288   Base = N;
17289 
17290   return Mode;
17291 }
17292 
17293 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode),
17294 /// compute the address flags of the node, get the optimal address mode based
17295 /// on the flags, and set the Base and Disp based on the address mode.
17296 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent,
17297                                                        SDValue N, SDValue &Disp,
17298                                                        SDValue &Base,
17299                                                        SelectionDAG &DAG,
17300                                                        MaybeAlign Align) const {
17301   SDLoc DL(Parent);
17302 
17303   // Compute the address flags.
17304   unsigned Flags = computeMOFlags(Parent, N, DAG);
17305 
17306   // Get the optimal address mode based on the Flags.
17307   PPC::AddrMode Mode = getAddrModeForFlags(Flags);
17308 
17309   // Set Base and Disp accordingly depending on the address mode.
17310   switch (Mode) {
17311   case PPC::AM_DForm:
17312   case PPC::AM_DSForm:
17313   case PPC::AM_DQForm: {
17314     // This is a register plus a 16-bit immediate. The base will be the
17315     // register and the displacement will be the immediate unless it
17316     // isn't sufficiently aligned.
17317     if (Flags & PPC::MOF_RPlusSImm16) {
17318       SDValue Op0 = N.getOperand(0);
17319       SDValue Op1 = N.getOperand(1);
17320       int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue();
17321       if (!Align || isAligned(*Align, Imm)) {
17322         Disp = DAG.getTargetConstant(Imm, DL, N.getValueType());
17323         Base = Op0;
17324         if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) {
17325           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
17326           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
17327         }
17328         break;
17329       }
17330     }
17331     // This is a register plus the @lo relocation. The base is the register
17332     // and the displacement is the global address.
17333     else if (Flags & PPC::MOF_RPlusLo) {
17334       Disp = N.getOperand(1).getOperand(0); // The global address.
17335       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
17336              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
17337              Disp.getOpcode() == ISD::TargetConstantPool ||
17338              Disp.getOpcode() == ISD::TargetJumpTable);
17339       Base = N.getOperand(0);
17340       break;
17341     }
17342     // This is a constant address at most 32 bits. The base will be
17343     // zero or load-immediate-shifted and the displacement will be
17344     // the low 16 bits of the address.
17345     else if (Flags & PPC::MOF_AddrIsSImm32) {
17346       auto *CN = cast<ConstantSDNode>(N);
17347       EVT CNType = CN->getValueType(0);
17348       uint64_t CNImm = CN->getZExtValue();
17349       // If this address fits entirely in a 16-bit sext immediate field, codegen
17350       // this as "d, 0".
17351       int16_t Imm;
17352       if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) {
17353         Disp = DAG.getTargetConstant(Imm, DL, CNType);
17354         Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17355                                CNType);
17356         break;
17357       }
17358       // Handle 32-bit sext immediate with LIS + Addr mode.
17359       if ((CNType == MVT::i32 || isInt<32>(CNImm)) &&
17360           (!Align || isAligned(*Align, CNImm))) {
17361         int32_t Addr = (int32_t)CNImm;
17362         // Otherwise, break this down into LIS + Disp.
17363         Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32);
17364         Base =
17365             DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32);
17366         uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8;
17367         Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0);
17368         break;
17369       }
17370     }
17371     // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable.
17372     Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout()));
17373     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
17374       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
17375       fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
17376     } else
17377       Base = N;
17378     break;
17379   }
17380   case PPC::AM_None:
17381     break;
17382   default: { // By default, X-Form is always available to be selected.
17383     // When a frame index is not aligned, we also match by XForm.
17384     FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N);
17385     Base = FI ? N : N.getOperand(1);
17386     Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17387                                 N.getValueType())
17388               : N.getOperand(0);
17389     break;
17390   }
17391   }
17392   return Mode;
17393 }
17394 
17395 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC,
17396                                                  bool Return,
17397                                                  bool IsVarArg) const {
17398   switch (CC) {
17399   case CallingConv::Cold:
17400     return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS);
17401   default:
17402     return CC_PPC64_ELF_FIS;
17403   }
17404 }
17405