1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallSite.h" 59 #include "llvm/IR/CallingConv.h" 60 #include "llvm/IR/Constant.h" 61 #include "llvm/IR/Constants.h" 62 #include "llvm/IR/DataLayout.h" 63 #include "llvm/IR/DebugLoc.h" 64 #include "llvm/IR/DerivedTypes.h" 65 #include "llvm/IR/Function.h" 66 #include "llvm/IR/GlobalValue.h" 67 #include "llvm/IR/IRBuilder.h" 68 #include "llvm/IR/Instructions.h" 69 #include "llvm/IR/Intrinsics.h" 70 #include "llvm/IR/IntrinsicsPowerPC.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/Type.h" 73 #include "llvm/IR/Use.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/MC/MCContext.h" 76 #include "llvm/MC/MCExpr.h" 77 #include "llvm/MC/MCRegisterInfo.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision", 122 cl::desc("enable quad precision float support on ppc"), cl::Hidden); 123 124 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 125 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 126 127 STATISTIC(NumTailCalls, "Number of tail calls"); 128 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 129 130 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 131 132 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 133 134 // FIXME: Remove this once the bug has been fixed! 135 extern cl::opt<bool> ANDIGlueBug; 136 137 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 138 const PPCSubtarget &STI) 139 : TargetLowering(TM), Subtarget(STI) { 140 // Use _setjmp/_longjmp instead of setjmp/longjmp. 141 setUseUnderscoreSetJmp(true); 142 setUseUnderscoreLongJmp(true); 143 144 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 145 // arguments are at least 4/8 bytes aligned. 146 bool isPPC64 = Subtarget.isPPC64(); 147 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 148 149 // Set up the register classes. 150 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 151 if (!useSoftFloat()) { 152 if (hasSPE()) { 153 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 154 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 155 } else { 156 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 157 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 158 } 159 } 160 161 // Match BITREVERSE to customized fast code sequence in the td file. 162 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 163 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 164 165 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 166 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 167 168 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 169 for (MVT VT : MVT::integer_valuetypes()) { 170 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 171 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 172 } 173 174 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 175 176 // PowerPC has pre-inc load and store's. 177 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 178 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 179 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 180 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 181 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 182 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 183 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 184 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 185 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 186 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 187 if (!Subtarget.hasSPE()) { 188 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 189 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 190 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 191 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 192 } 193 194 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 195 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 196 for (MVT VT : ScalarIntVTs) { 197 setOperationAction(ISD::ADDC, VT, Legal); 198 setOperationAction(ISD::ADDE, VT, Legal); 199 setOperationAction(ISD::SUBC, VT, Legal); 200 setOperationAction(ISD::SUBE, VT, Legal); 201 } 202 203 if (Subtarget.useCRBits()) { 204 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 205 206 if (isPPC64 || Subtarget.hasFPCVT()) { 207 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 208 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 209 isPPC64 ? MVT::i64 : MVT::i32); 210 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 211 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 212 isPPC64 ? MVT::i64 : MVT::i32); 213 } else { 214 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 215 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 216 } 217 218 // PowerPC does not support direct load/store of condition registers. 219 setOperationAction(ISD::LOAD, MVT::i1, Custom); 220 setOperationAction(ISD::STORE, MVT::i1, Custom); 221 222 // FIXME: Remove this once the ANDI glue bug is fixed: 223 if (ANDIGlueBug) 224 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 225 226 for (MVT VT : MVT::integer_valuetypes()) { 227 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 228 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 229 setTruncStoreAction(VT, MVT::i1, Expand); 230 } 231 232 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 233 } 234 235 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 236 // PPC (the libcall is not available). 237 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 238 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 239 240 // We do not currently implement these libm ops for PowerPC. 241 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 242 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 243 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 244 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 245 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 246 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 247 248 // PowerPC has no SREM/UREM instructions unless we are on P9 249 // On P9 we may use a hardware instruction to compute the remainder. 250 // The instructions are not legalized directly because in the cases where the 251 // result of both the remainder and the division is required it is more 252 // efficient to compute the remainder from the result of the division rather 253 // than use the remainder instruction. 254 if (Subtarget.isISA3_0()) { 255 setOperationAction(ISD::SREM, MVT::i32, Custom); 256 setOperationAction(ISD::UREM, MVT::i32, Custom); 257 setOperationAction(ISD::SREM, MVT::i64, Custom); 258 setOperationAction(ISD::UREM, MVT::i64, Custom); 259 } else { 260 setOperationAction(ISD::SREM, MVT::i32, Expand); 261 setOperationAction(ISD::UREM, MVT::i32, Expand); 262 setOperationAction(ISD::SREM, MVT::i64, Expand); 263 setOperationAction(ISD::UREM, MVT::i64, Expand); 264 } 265 266 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 267 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 268 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 269 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 270 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 271 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 272 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 273 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 274 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 275 276 // We don't support sin/cos/sqrt/fmod/pow 277 setOperationAction(ISD::FSIN , MVT::f64, Expand); 278 setOperationAction(ISD::FCOS , MVT::f64, Expand); 279 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 280 setOperationAction(ISD::FREM , MVT::f64, Expand); 281 setOperationAction(ISD::FPOW , MVT::f64, Expand); 282 setOperationAction(ISD::FSIN , MVT::f32, Expand); 283 setOperationAction(ISD::FCOS , MVT::f32, Expand); 284 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 285 setOperationAction(ISD::FREM , MVT::f32, Expand); 286 setOperationAction(ISD::FPOW , MVT::f32, Expand); 287 if (Subtarget.hasSPE()) { 288 setOperationAction(ISD::FMA , MVT::f64, Expand); 289 setOperationAction(ISD::FMA , MVT::f32, Expand); 290 } else { 291 setOperationAction(ISD::FMA , MVT::f64, Legal); 292 setOperationAction(ISD::FMA , MVT::f32, Legal); 293 } 294 295 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 296 297 // If we're enabling GP optimizations, use hardware square root 298 if (!Subtarget.hasFSQRT() && 299 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 300 Subtarget.hasFRE())) 301 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 302 303 if (!Subtarget.hasFSQRT() && 304 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 305 Subtarget.hasFRES())) 306 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 307 308 if (Subtarget.hasFCPSGN()) { 309 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 310 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 311 } else { 312 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 313 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 314 } 315 316 if (Subtarget.hasFPRND()) { 317 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 318 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 319 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 320 setOperationAction(ISD::FROUND, MVT::f64, Legal); 321 322 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 323 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 324 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 325 setOperationAction(ISD::FROUND, MVT::f32, Legal); 326 } 327 328 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 329 // to speed up scalar BSWAP64. 330 // CTPOP or CTTZ were introduced in P8/P9 respectively 331 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 332 if (Subtarget.hasP9Vector()) 333 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 334 else 335 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 336 if (Subtarget.isISA3_0()) { 337 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 338 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 339 } else { 340 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 341 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 342 } 343 344 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 345 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 346 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 347 } else { 348 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 349 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 350 } 351 352 // PowerPC does not have ROTR 353 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 354 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 355 356 if (!Subtarget.useCRBits()) { 357 // PowerPC does not have Select 358 setOperationAction(ISD::SELECT, MVT::i32, Expand); 359 setOperationAction(ISD::SELECT, MVT::i64, Expand); 360 setOperationAction(ISD::SELECT, MVT::f32, Expand); 361 setOperationAction(ISD::SELECT, MVT::f64, Expand); 362 } 363 364 // PowerPC wants to turn select_cc of FP into fsel when possible. 365 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 366 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 367 368 // PowerPC wants to optimize integer setcc a bit 369 if (!Subtarget.useCRBits()) 370 setOperationAction(ISD::SETCC, MVT::i32, Custom); 371 372 // PowerPC does not have BRCOND which requires SetCC 373 if (!Subtarget.useCRBits()) 374 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 375 376 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 377 378 if (Subtarget.hasSPE()) { 379 // SPE has built-in conversions 380 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 381 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 382 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 383 } else { 384 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 385 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 386 387 // PowerPC does not have [U|S]INT_TO_FP 388 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 389 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 390 } 391 392 if (Subtarget.hasDirectMove() && isPPC64) { 393 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 394 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 395 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 396 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 397 } else { 398 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 399 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 400 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 401 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 402 } 403 404 // We cannot sextinreg(i1). Expand to shifts. 405 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 406 407 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 408 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 409 // support continuation, user-level threading, and etc.. As a result, no 410 // other SjLj exception interfaces are implemented and please don't build 411 // your own exception handling based on them. 412 // LLVM/Clang supports zero-cost DWARF exception handling. 413 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 414 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 415 416 // We want to legalize GlobalAddress and ConstantPool nodes into the 417 // appropriate instructions to materialize the address. 418 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 419 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 420 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 421 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 422 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 423 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 424 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 425 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 426 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 427 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 428 429 // TRAP is legal. 430 setOperationAction(ISD::TRAP, MVT::Other, Legal); 431 432 // TRAMPOLINE is custom lowered. 433 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 434 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 435 436 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 437 setOperationAction(ISD::VASTART , MVT::Other, Custom); 438 439 if (Subtarget.is64BitELFABI()) { 440 // VAARG always uses double-word chunks, so promote anything smaller. 441 setOperationAction(ISD::VAARG, MVT::i1, Promote); 442 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 443 setOperationAction(ISD::VAARG, MVT::i8, Promote); 444 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 445 setOperationAction(ISD::VAARG, MVT::i16, Promote); 446 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 447 setOperationAction(ISD::VAARG, MVT::i32, Promote); 448 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 449 setOperationAction(ISD::VAARG, MVT::Other, Expand); 450 } else if (Subtarget.is32BitELFABI()) { 451 // VAARG is custom lowered with the 32-bit SVR4 ABI. 452 setOperationAction(ISD::VAARG, MVT::Other, Custom); 453 setOperationAction(ISD::VAARG, MVT::i64, Custom); 454 } else 455 setOperationAction(ISD::VAARG, MVT::Other, Expand); 456 457 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 458 if (Subtarget.is32BitELFABI()) 459 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 460 else 461 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 462 463 // Use the default implementation. 464 setOperationAction(ISD::VAEND , MVT::Other, Expand); 465 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 466 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 467 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 468 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 469 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 470 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 471 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 472 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 473 474 // We want to custom lower some of our intrinsics. 475 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 476 477 // To handle counter-based loop conditions. 478 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 479 480 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 481 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 482 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 483 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 484 485 // Comparisons that require checking two conditions. 486 if (Subtarget.hasSPE()) { 487 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 488 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 489 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 490 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 491 } 492 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 493 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 494 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 495 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 496 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 497 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 498 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 499 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 500 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 501 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 502 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 503 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 504 505 if (Subtarget.has64BitSupport()) { 506 // They also have instructions for converting between i64 and fp. 507 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 508 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 509 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 510 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 511 // This is just the low 32 bits of a (signed) fp->i64 conversion. 512 // We cannot do this with Promote because i64 is not a legal type. 513 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 514 515 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 516 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 517 } else { 518 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 519 if (Subtarget.hasSPE()) 520 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 521 else 522 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 523 } 524 525 // With the instructions enabled under FPCVT, we can do everything. 526 if (Subtarget.hasFPCVT()) { 527 if (Subtarget.has64BitSupport()) { 528 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 529 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 530 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 531 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 532 } 533 534 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 535 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 536 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 537 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 538 } 539 540 if (Subtarget.use64BitRegs()) { 541 // 64-bit PowerPC implementations can support i64 types directly 542 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 543 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 544 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 545 // 64-bit PowerPC wants to expand i128 shifts itself. 546 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 547 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 548 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 549 } else { 550 // 32-bit PowerPC wants to expand i64 shifts itself. 551 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 552 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 553 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 554 } 555 556 if (Subtarget.hasVSX()) { 557 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 558 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 559 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 560 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 561 } 562 563 if (Subtarget.hasAltivec()) { 564 // First set operation action for all vector types to expand. Then we 565 // will selectively turn on ones that can be effectively codegen'd. 566 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 567 // add/sub are legal for all supported vector VT's. 568 setOperationAction(ISD::ADD, VT, Legal); 569 setOperationAction(ISD::SUB, VT, Legal); 570 571 // For v2i64, these are only valid with P8Vector. This is corrected after 572 // the loop. 573 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 574 setOperationAction(ISD::SMAX, VT, Legal); 575 setOperationAction(ISD::SMIN, VT, Legal); 576 setOperationAction(ISD::UMAX, VT, Legal); 577 setOperationAction(ISD::UMIN, VT, Legal); 578 } 579 else { 580 setOperationAction(ISD::SMAX, VT, Expand); 581 setOperationAction(ISD::SMIN, VT, Expand); 582 setOperationAction(ISD::UMAX, VT, Expand); 583 setOperationAction(ISD::UMIN, VT, Expand); 584 } 585 586 if (Subtarget.hasVSX()) { 587 setOperationAction(ISD::FMAXNUM, VT, Legal); 588 setOperationAction(ISD::FMINNUM, VT, Legal); 589 } 590 591 // Vector instructions introduced in P8 592 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 593 setOperationAction(ISD::CTPOP, VT, Legal); 594 setOperationAction(ISD::CTLZ, VT, Legal); 595 } 596 else { 597 setOperationAction(ISD::CTPOP, VT, Expand); 598 setOperationAction(ISD::CTLZ, VT, Expand); 599 } 600 601 // Vector instructions introduced in P9 602 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 603 setOperationAction(ISD::CTTZ, VT, Legal); 604 else 605 setOperationAction(ISD::CTTZ, VT, Expand); 606 607 // We promote all shuffles to v16i8. 608 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 609 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 610 611 // We promote all non-typed operations to v4i32. 612 setOperationAction(ISD::AND , VT, Promote); 613 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 614 setOperationAction(ISD::OR , VT, Promote); 615 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 616 setOperationAction(ISD::XOR , VT, Promote); 617 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 618 setOperationAction(ISD::LOAD , VT, Promote); 619 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 620 setOperationAction(ISD::SELECT, VT, Promote); 621 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 622 setOperationAction(ISD::VSELECT, VT, Legal); 623 setOperationAction(ISD::SELECT_CC, VT, Promote); 624 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 625 setOperationAction(ISD::STORE, VT, Promote); 626 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 627 628 // No other operations are legal. 629 setOperationAction(ISD::MUL , VT, Expand); 630 setOperationAction(ISD::SDIV, VT, Expand); 631 setOperationAction(ISD::SREM, VT, Expand); 632 setOperationAction(ISD::UDIV, VT, Expand); 633 setOperationAction(ISD::UREM, VT, Expand); 634 setOperationAction(ISD::FDIV, VT, Expand); 635 setOperationAction(ISD::FREM, VT, Expand); 636 setOperationAction(ISD::FNEG, VT, Expand); 637 setOperationAction(ISD::FSQRT, VT, Expand); 638 setOperationAction(ISD::FLOG, VT, Expand); 639 setOperationAction(ISD::FLOG10, VT, Expand); 640 setOperationAction(ISD::FLOG2, VT, Expand); 641 setOperationAction(ISD::FEXP, VT, Expand); 642 setOperationAction(ISD::FEXP2, VT, Expand); 643 setOperationAction(ISD::FSIN, VT, Expand); 644 setOperationAction(ISD::FCOS, VT, Expand); 645 setOperationAction(ISD::FABS, VT, Expand); 646 setOperationAction(ISD::FFLOOR, VT, Expand); 647 setOperationAction(ISD::FCEIL, VT, Expand); 648 setOperationAction(ISD::FTRUNC, VT, Expand); 649 setOperationAction(ISD::FRINT, VT, Expand); 650 setOperationAction(ISD::FNEARBYINT, VT, Expand); 651 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 652 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 653 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 654 setOperationAction(ISD::MULHU, VT, Expand); 655 setOperationAction(ISD::MULHS, VT, Expand); 656 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 657 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 658 setOperationAction(ISD::UDIVREM, VT, Expand); 659 setOperationAction(ISD::SDIVREM, VT, Expand); 660 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 661 setOperationAction(ISD::FPOW, VT, Expand); 662 setOperationAction(ISD::BSWAP, VT, Expand); 663 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 664 setOperationAction(ISD::ROTL, VT, Expand); 665 setOperationAction(ISD::ROTR, VT, Expand); 666 667 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 668 setTruncStoreAction(VT, InnerVT, Expand); 669 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 670 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 671 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 672 } 673 } 674 if (!Subtarget.hasP8Vector()) { 675 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 676 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 677 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 678 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 679 } 680 681 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 682 setOperationAction(ISD::ABS, VT, Custom); 683 684 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 685 // with merges, splats, etc. 686 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 687 688 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 689 // are cheap, so handle them before they get expanded to scalar. 690 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 691 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 692 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 693 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 694 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 695 696 setOperationAction(ISD::AND , MVT::v4i32, Legal); 697 setOperationAction(ISD::OR , MVT::v4i32, Legal); 698 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 699 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 700 setOperationAction(ISD::SELECT, MVT::v4i32, 701 Subtarget.useCRBits() ? Legal : Expand); 702 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 703 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 704 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 705 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 706 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 707 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 708 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 709 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 710 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 711 712 // Without hasP8Altivec set, v2i64 SMAX isn't available. 713 // But ABS custom lowering requires SMAX support. 714 if (!Subtarget.hasP8Altivec()) 715 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 716 717 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 718 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 719 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 720 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 721 722 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 723 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 724 725 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 726 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 727 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 728 } 729 730 if (Subtarget.hasP8Altivec()) 731 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 732 else 733 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 734 735 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 736 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 737 738 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 739 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 740 741 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 742 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 743 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 744 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 745 746 // Altivec does not contain unordered floating-point compare instructions 747 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 748 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 749 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 750 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 751 752 if (Subtarget.hasVSX()) { 753 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 754 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 755 if (Subtarget.hasP8Vector()) { 756 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 757 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 758 } 759 if (Subtarget.hasDirectMove() && isPPC64) { 760 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 761 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 762 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 763 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 764 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 765 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 766 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 767 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 768 } 769 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 770 771 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 772 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 773 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 774 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 775 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 776 777 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 778 779 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 780 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 781 782 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 783 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 784 785 // Share the Altivec comparison restrictions. 786 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 787 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 788 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 789 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 790 791 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 792 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 793 794 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 795 796 if (Subtarget.hasP8Vector()) 797 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 798 799 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 800 801 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 802 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 803 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 804 805 if (Subtarget.hasP8Altivec()) { 806 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 807 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 808 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 809 810 // 128 bit shifts can be accomplished via 3 instructions for SHL and 811 // SRL, but not for SRA because of the instructions available: 812 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 813 // doing 814 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 815 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 816 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 817 818 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 819 } 820 else { 821 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 822 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 823 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 824 825 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 826 827 // VSX v2i64 only supports non-arithmetic operations. 828 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 829 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 830 } 831 832 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 833 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 834 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 835 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 836 837 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 838 839 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 840 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 841 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 842 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 843 844 // Custom handling for partial vectors of integers converted to 845 // floating point. We already have optimal handling for v2i32 through 846 // the DAG combine, so those aren't necessary. 847 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 848 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 849 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 850 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 851 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 852 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 853 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 854 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 855 856 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 857 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 858 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 859 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 860 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 861 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 862 863 if (Subtarget.hasDirectMove()) 864 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 865 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 866 867 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 868 } 869 870 if (Subtarget.hasP8Altivec()) { 871 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 872 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 873 } 874 875 if (Subtarget.hasP9Vector()) { 876 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 877 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 878 879 // 128 bit shifts can be accomplished via 3 instructions for SHL and 880 // SRL, but not for SRA because of the instructions available: 881 // VS{RL} and VS{RL}O. 882 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 883 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 884 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 885 886 if (EnableQuadPrecision) { 887 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 888 setOperationAction(ISD::FADD, MVT::f128, Legal); 889 setOperationAction(ISD::FSUB, MVT::f128, Legal); 890 setOperationAction(ISD::FDIV, MVT::f128, Legal); 891 setOperationAction(ISD::FMUL, MVT::f128, Legal); 892 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 893 // No extending loads to f128 on PPC. 894 for (MVT FPT : MVT::fp_valuetypes()) 895 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 896 setOperationAction(ISD::FMA, MVT::f128, Legal); 897 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 898 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 899 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 900 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 901 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 902 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 903 904 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 905 setOperationAction(ISD::FRINT, MVT::f128, Legal); 906 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 907 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 908 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 909 setOperationAction(ISD::FROUND, MVT::f128, Legal); 910 911 setOperationAction(ISD::SELECT, MVT::f128, Expand); 912 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 913 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 914 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 915 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 916 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 917 // No implementation for these ops for PowerPC. 918 setOperationAction(ISD::FSIN , MVT::f128, Expand); 919 setOperationAction(ISD::FCOS , MVT::f128, Expand); 920 setOperationAction(ISD::FPOW, MVT::f128, Expand); 921 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 922 setOperationAction(ISD::FREM, MVT::f128, Expand); 923 } 924 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 925 926 } 927 928 if (Subtarget.hasP9Altivec()) { 929 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 930 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 931 932 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 933 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 934 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 935 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 936 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 937 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 938 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 939 } 940 } 941 942 if (Subtarget.hasQPX()) { 943 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 944 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 945 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 946 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 947 948 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 949 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 950 951 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 952 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 953 954 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 955 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 956 957 if (!Subtarget.useCRBits()) 958 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 959 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 960 961 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 962 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 963 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 964 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 965 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 966 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 967 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 968 969 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 970 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 971 972 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 973 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 974 975 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 976 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 977 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 978 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 979 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 980 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 981 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 982 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 983 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 984 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 985 986 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 987 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 988 989 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 990 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 991 992 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 993 994 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 995 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 996 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 997 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 998 999 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1000 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 1001 1002 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 1003 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 1004 1005 if (!Subtarget.useCRBits()) 1006 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 1007 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 1008 1009 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 1010 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 1011 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 1012 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 1013 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 1014 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 1015 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 1016 1017 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 1018 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 1019 1020 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 1021 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 1022 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 1023 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 1024 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 1025 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 1026 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 1027 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 1028 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 1029 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 1030 1031 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 1032 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 1033 1034 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 1035 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 1036 1037 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 1038 1039 setOperationAction(ISD::AND , MVT::v4i1, Legal); 1040 setOperationAction(ISD::OR , MVT::v4i1, Legal); 1041 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 1042 1043 if (!Subtarget.useCRBits()) 1044 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 1045 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 1046 1047 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 1048 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 1049 1050 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 1051 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 1052 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 1053 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 1054 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 1055 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 1056 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 1057 1058 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 1059 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 1060 1061 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 1062 1063 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 1064 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 1065 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 1066 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 1067 1068 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 1069 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 1070 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 1071 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1072 1073 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 1074 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 1075 1076 // These need to set FE_INEXACT, and so cannot be vectorized here. 1077 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 1078 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 1079 1080 if (TM.Options.UnsafeFPMath) { 1081 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 1082 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 1083 1084 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 1085 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 1086 } else { 1087 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 1088 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 1089 1090 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 1091 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 1092 } 1093 } 1094 1095 if (Subtarget.has64BitSupport()) 1096 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1097 1098 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1099 1100 if (!isPPC64) { 1101 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1102 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1103 } 1104 1105 setBooleanContents(ZeroOrOneBooleanContent); 1106 1107 if (Subtarget.hasAltivec()) { 1108 // Altivec instructions set fields to all zeros or all ones. 1109 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1110 } 1111 1112 if (!isPPC64) { 1113 // These libcalls are not available in 32-bit. 1114 setLibcallName(RTLIB::SHL_I128, nullptr); 1115 setLibcallName(RTLIB::SRL_I128, nullptr); 1116 setLibcallName(RTLIB::SRA_I128, nullptr); 1117 } 1118 1119 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1120 1121 // We have target-specific dag combine patterns for the following nodes: 1122 setTargetDAGCombine(ISD::ADD); 1123 setTargetDAGCombine(ISD::SHL); 1124 setTargetDAGCombine(ISD::SRA); 1125 setTargetDAGCombine(ISD::SRL); 1126 setTargetDAGCombine(ISD::MUL); 1127 setTargetDAGCombine(ISD::SINT_TO_FP); 1128 setTargetDAGCombine(ISD::BUILD_VECTOR); 1129 if (Subtarget.hasFPCVT()) 1130 setTargetDAGCombine(ISD::UINT_TO_FP); 1131 setTargetDAGCombine(ISD::LOAD); 1132 setTargetDAGCombine(ISD::STORE); 1133 setTargetDAGCombine(ISD::BR_CC); 1134 if (Subtarget.useCRBits()) 1135 setTargetDAGCombine(ISD::BRCOND); 1136 setTargetDAGCombine(ISD::BSWAP); 1137 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1138 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1139 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1140 1141 setTargetDAGCombine(ISD::SIGN_EXTEND); 1142 setTargetDAGCombine(ISD::ZERO_EXTEND); 1143 setTargetDAGCombine(ISD::ANY_EXTEND); 1144 1145 setTargetDAGCombine(ISD::TRUNCATE); 1146 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1147 1148 1149 if (Subtarget.useCRBits()) { 1150 setTargetDAGCombine(ISD::TRUNCATE); 1151 setTargetDAGCombine(ISD::SETCC); 1152 setTargetDAGCombine(ISD::SELECT_CC); 1153 } 1154 1155 // Use reciprocal estimates. 1156 if (TM.Options.UnsafeFPMath) { 1157 setTargetDAGCombine(ISD::FDIV); 1158 setTargetDAGCombine(ISD::FSQRT); 1159 } 1160 1161 if (Subtarget.hasP9Altivec()) { 1162 setTargetDAGCombine(ISD::ABS); 1163 setTargetDAGCombine(ISD::VSELECT); 1164 } 1165 1166 // Darwin long double math library functions have $LDBL128 appended. 1167 if (Subtarget.isDarwin()) { 1168 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 1169 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 1170 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 1171 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 1172 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 1173 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 1174 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 1175 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 1176 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 1177 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 1178 } 1179 1180 if (EnableQuadPrecision) { 1181 setLibcallName(RTLIB::LOG_F128, "logf128"); 1182 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1183 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1184 setLibcallName(RTLIB::EXP_F128, "expf128"); 1185 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1186 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1187 setLibcallName(RTLIB::COS_F128, "cosf128"); 1188 setLibcallName(RTLIB::POW_F128, "powf128"); 1189 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1190 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1191 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1192 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1193 } 1194 1195 // With 32 condition bits, we don't need to sink (and duplicate) compares 1196 // aggressively in CodeGenPrep. 1197 if (Subtarget.useCRBits()) { 1198 setHasMultipleConditionRegisters(); 1199 setJumpIsExpensive(); 1200 } 1201 1202 setMinFunctionAlignment(Align(4)); 1203 if (Subtarget.isDarwin()) 1204 setPrefFunctionAlignment(Align(16)); 1205 1206 switch (Subtarget.getCPUDirective()) { 1207 default: break; 1208 case PPC::DIR_970: 1209 case PPC::DIR_A2: 1210 case PPC::DIR_E500: 1211 case PPC::DIR_E500mc: 1212 case PPC::DIR_E5500: 1213 case PPC::DIR_PWR4: 1214 case PPC::DIR_PWR5: 1215 case PPC::DIR_PWR5X: 1216 case PPC::DIR_PWR6: 1217 case PPC::DIR_PWR6X: 1218 case PPC::DIR_PWR7: 1219 case PPC::DIR_PWR8: 1220 case PPC::DIR_PWR9: 1221 case PPC::DIR_PWR_FUTURE: 1222 setPrefLoopAlignment(Align(16)); 1223 setPrefFunctionAlignment(Align(16)); 1224 break; 1225 } 1226 1227 if (Subtarget.enableMachineScheduler()) 1228 setSchedulingPreference(Sched::Source); 1229 else 1230 setSchedulingPreference(Sched::Hybrid); 1231 1232 computeRegisterProperties(STI.getRegisterInfo()); 1233 1234 // The Freescale cores do better with aggressive inlining of memcpy and 1235 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1236 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1237 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1238 MaxStoresPerMemset = 32; 1239 MaxStoresPerMemsetOptSize = 16; 1240 MaxStoresPerMemcpy = 32; 1241 MaxStoresPerMemcpyOptSize = 8; 1242 MaxStoresPerMemmove = 32; 1243 MaxStoresPerMemmoveOptSize = 8; 1244 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1245 // The A2 also benefits from (very) aggressive inlining of memcpy and 1246 // friends. The overhead of a the function call, even when warm, can be 1247 // over one hundred cycles. 1248 MaxStoresPerMemset = 128; 1249 MaxStoresPerMemcpy = 128; 1250 MaxStoresPerMemmove = 128; 1251 MaxLoadsPerMemcmp = 128; 1252 } else { 1253 MaxLoadsPerMemcmp = 8; 1254 MaxLoadsPerMemcmpOptSize = 4; 1255 } 1256 } 1257 1258 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1259 /// the desired ByVal argument alignment. 1260 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 1261 unsigned MaxMaxAlign) { 1262 if (MaxAlign == MaxMaxAlign) 1263 return; 1264 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1265 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 1266 MaxAlign = 32; 1267 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 1268 MaxAlign = 16; 1269 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1270 unsigned EltAlign = 0; 1271 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1272 if (EltAlign > MaxAlign) 1273 MaxAlign = EltAlign; 1274 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1275 for (auto *EltTy : STy->elements()) { 1276 unsigned EltAlign = 0; 1277 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1278 if (EltAlign > MaxAlign) 1279 MaxAlign = EltAlign; 1280 if (MaxAlign == MaxMaxAlign) 1281 break; 1282 } 1283 } 1284 } 1285 1286 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1287 /// function arguments in the caller parameter area. 1288 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1289 const DataLayout &DL) const { 1290 // Darwin passes everything on 4 byte boundary. 1291 if (Subtarget.isDarwin()) 1292 return 4; 1293 1294 // 16byte and wider vectors are passed on 16byte boundary. 1295 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1296 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1297 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1298 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1299 return Align; 1300 } 1301 1302 bool PPCTargetLowering::useSoftFloat() const { 1303 return Subtarget.useSoftFloat(); 1304 } 1305 1306 bool PPCTargetLowering::hasSPE() const { 1307 return Subtarget.hasSPE(); 1308 } 1309 1310 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1311 return VT.isScalarInteger(); 1312 } 1313 1314 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1315 switch ((PPCISD::NodeType)Opcode) { 1316 case PPCISD::FIRST_NUMBER: break; 1317 case PPCISD::FSEL: return "PPCISD::FSEL"; 1318 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1319 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1320 case PPCISD::FCFID: return "PPCISD::FCFID"; 1321 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1322 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1323 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1324 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1325 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1326 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1327 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1328 case PPCISD::FP_TO_UINT_IN_VSR: 1329 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1330 case PPCISD::FP_TO_SINT_IN_VSR: 1331 return "PPCISD::FP_TO_SINT_IN_VSR"; 1332 case PPCISD::FRE: return "PPCISD::FRE"; 1333 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1334 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1335 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1336 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1337 case PPCISD::VPERM: return "PPCISD::VPERM"; 1338 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1339 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1340 case PPCISD::XXREVERSE: return "PPCISD::XXREVERSE"; 1341 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1342 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1343 case PPCISD::CMPB: return "PPCISD::CMPB"; 1344 case PPCISD::Hi: return "PPCISD::Hi"; 1345 case PPCISD::Lo: return "PPCISD::Lo"; 1346 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1347 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1348 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1349 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1350 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1351 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1352 case PPCISD::SRL: return "PPCISD::SRL"; 1353 case PPCISD::SRA: return "PPCISD::SRA"; 1354 case PPCISD::SHL: return "PPCISD::SHL"; 1355 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1356 case PPCISD::CALL: return "PPCISD::CALL"; 1357 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1358 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1359 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1360 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1361 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1362 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1363 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1364 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1365 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1366 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1367 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1368 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1369 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1370 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1371 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1372 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1373 case PPCISD::VCMP: return "PPCISD::VCMP"; 1374 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1375 case PPCISD::LBRX: return "PPCISD::LBRX"; 1376 case PPCISD::STBRX: return "PPCISD::STBRX"; 1377 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1378 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1379 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1380 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1381 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1382 case PPCISD::SExtVElems: return "PPCISD::SExtVElems"; 1383 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1384 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1385 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1386 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1387 case PPCISD::ST_VSR_SCAL_INT: 1388 return "PPCISD::ST_VSR_SCAL_INT"; 1389 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1390 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1391 case PPCISD::BDZ: return "PPCISD::BDZ"; 1392 case PPCISD::MFFS: return "PPCISD::MFFS"; 1393 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1394 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1395 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1396 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1397 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1398 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1399 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1400 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1401 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1402 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1403 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1404 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1405 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1406 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1407 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1408 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1409 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1410 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1411 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1412 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1413 case PPCISD::SC: return "PPCISD::SC"; 1414 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1415 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1416 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1417 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1418 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1419 case PPCISD::VABSD: return "PPCISD::VABSD"; 1420 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1421 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1422 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1423 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1424 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1425 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1426 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1427 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1428 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1429 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1430 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1431 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1432 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1433 } 1434 return nullptr; 1435 } 1436 1437 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1438 EVT VT) const { 1439 if (!VT.isVector()) 1440 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1441 1442 if (Subtarget.hasQPX()) 1443 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1444 1445 return VT.changeVectorElementTypeToInteger(); 1446 } 1447 1448 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1449 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1450 return true; 1451 } 1452 1453 //===----------------------------------------------------------------------===// 1454 // Node matching predicates, for use by the tblgen matching code. 1455 //===----------------------------------------------------------------------===// 1456 1457 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1458 static bool isFloatingPointZero(SDValue Op) { 1459 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1460 return CFP->getValueAPF().isZero(); 1461 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1462 // Maybe this has already been legalized into the constant pool? 1463 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1464 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1465 return CFP->getValueAPF().isZero(); 1466 } 1467 return false; 1468 } 1469 1470 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1471 /// true if Op is undef or if it matches the specified value. 1472 static bool isConstantOrUndef(int Op, int Val) { 1473 return Op < 0 || Op == Val; 1474 } 1475 1476 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1477 /// VPKUHUM instruction. 1478 /// The ShuffleKind distinguishes between big-endian operations with 1479 /// two different inputs (0), either-endian operations with two identical 1480 /// inputs (1), and little-endian operations with two different inputs (2). 1481 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1482 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1483 SelectionDAG &DAG) { 1484 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1485 if (ShuffleKind == 0) { 1486 if (IsLE) 1487 return false; 1488 for (unsigned i = 0; i != 16; ++i) 1489 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1490 return false; 1491 } else if (ShuffleKind == 2) { 1492 if (!IsLE) 1493 return false; 1494 for (unsigned i = 0; i != 16; ++i) 1495 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1496 return false; 1497 } else if (ShuffleKind == 1) { 1498 unsigned j = IsLE ? 0 : 1; 1499 for (unsigned i = 0; i != 8; ++i) 1500 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1501 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1502 return false; 1503 } 1504 return true; 1505 } 1506 1507 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1508 /// VPKUWUM instruction. 1509 /// The ShuffleKind distinguishes between big-endian operations with 1510 /// two different inputs (0), either-endian operations with two identical 1511 /// inputs (1), and little-endian operations with two different inputs (2). 1512 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1513 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1514 SelectionDAG &DAG) { 1515 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1516 if (ShuffleKind == 0) { 1517 if (IsLE) 1518 return false; 1519 for (unsigned i = 0; i != 16; i += 2) 1520 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1521 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1522 return false; 1523 } else if (ShuffleKind == 2) { 1524 if (!IsLE) 1525 return false; 1526 for (unsigned i = 0; i != 16; i += 2) 1527 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1528 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1529 return false; 1530 } else if (ShuffleKind == 1) { 1531 unsigned j = IsLE ? 0 : 2; 1532 for (unsigned i = 0; i != 8; i += 2) 1533 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1534 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1535 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1536 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1537 return false; 1538 } 1539 return true; 1540 } 1541 1542 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1543 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1544 /// current subtarget. 1545 /// 1546 /// The ShuffleKind distinguishes between big-endian operations with 1547 /// two different inputs (0), either-endian operations with two identical 1548 /// inputs (1), and little-endian operations with two different inputs (2). 1549 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1550 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1551 SelectionDAG &DAG) { 1552 const PPCSubtarget& Subtarget = 1553 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1554 if (!Subtarget.hasP8Vector()) 1555 return false; 1556 1557 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1558 if (ShuffleKind == 0) { 1559 if (IsLE) 1560 return false; 1561 for (unsigned i = 0; i != 16; i += 4) 1562 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1563 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1564 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1565 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1566 return false; 1567 } else if (ShuffleKind == 2) { 1568 if (!IsLE) 1569 return false; 1570 for (unsigned i = 0; i != 16; i += 4) 1571 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1572 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1573 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1574 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1575 return false; 1576 } else if (ShuffleKind == 1) { 1577 unsigned j = IsLE ? 0 : 4; 1578 for (unsigned i = 0; i != 8; i += 4) 1579 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1580 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1581 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1582 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1583 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1584 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1585 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1586 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1587 return false; 1588 } 1589 return true; 1590 } 1591 1592 /// isVMerge - Common function, used to match vmrg* shuffles. 1593 /// 1594 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1595 unsigned LHSStart, unsigned RHSStart) { 1596 if (N->getValueType(0) != MVT::v16i8) 1597 return false; 1598 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1599 "Unsupported merge size!"); 1600 1601 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1602 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1603 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1604 LHSStart+j+i*UnitSize) || 1605 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1606 RHSStart+j+i*UnitSize)) 1607 return false; 1608 } 1609 return true; 1610 } 1611 1612 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1613 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1614 /// The ShuffleKind distinguishes between big-endian merges with two 1615 /// different inputs (0), either-endian merges with two identical inputs (1), 1616 /// and little-endian merges with two different inputs (2). For the latter, 1617 /// the input operands are swapped (see PPCInstrAltivec.td). 1618 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1619 unsigned ShuffleKind, SelectionDAG &DAG) { 1620 if (DAG.getDataLayout().isLittleEndian()) { 1621 if (ShuffleKind == 1) // unary 1622 return isVMerge(N, UnitSize, 0, 0); 1623 else if (ShuffleKind == 2) // swapped 1624 return isVMerge(N, UnitSize, 0, 16); 1625 else 1626 return false; 1627 } else { 1628 if (ShuffleKind == 1) // unary 1629 return isVMerge(N, UnitSize, 8, 8); 1630 else if (ShuffleKind == 0) // normal 1631 return isVMerge(N, UnitSize, 8, 24); 1632 else 1633 return false; 1634 } 1635 } 1636 1637 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1638 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1639 /// The ShuffleKind distinguishes between big-endian merges with two 1640 /// different inputs (0), either-endian merges with two identical inputs (1), 1641 /// and little-endian merges with two different inputs (2). For the latter, 1642 /// the input operands are swapped (see PPCInstrAltivec.td). 1643 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1644 unsigned ShuffleKind, SelectionDAG &DAG) { 1645 if (DAG.getDataLayout().isLittleEndian()) { 1646 if (ShuffleKind == 1) // unary 1647 return isVMerge(N, UnitSize, 8, 8); 1648 else if (ShuffleKind == 2) // swapped 1649 return isVMerge(N, UnitSize, 8, 24); 1650 else 1651 return false; 1652 } else { 1653 if (ShuffleKind == 1) // unary 1654 return isVMerge(N, UnitSize, 0, 0); 1655 else if (ShuffleKind == 0) // normal 1656 return isVMerge(N, UnitSize, 0, 16); 1657 else 1658 return false; 1659 } 1660 } 1661 1662 /** 1663 * Common function used to match vmrgew and vmrgow shuffles 1664 * 1665 * The indexOffset determines whether to look for even or odd words in 1666 * the shuffle mask. This is based on the of the endianness of the target 1667 * machine. 1668 * - Little Endian: 1669 * - Use offset of 0 to check for odd elements 1670 * - Use offset of 4 to check for even elements 1671 * - Big Endian: 1672 * - Use offset of 0 to check for even elements 1673 * - Use offset of 4 to check for odd elements 1674 * A detailed description of the vector element ordering for little endian and 1675 * big endian can be found at 1676 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1677 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1678 * compiler differences mean to you 1679 * 1680 * The mask to the shuffle vector instruction specifies the indices of the 1681 * elements from the two input vectors to place in the result. The elements are 1682 * numbered in array-access order, starting with the first vector. These vectors 1683 * are always of type v16i8, thus each vector will contain 16 elements of size 1684 * 8. More info on the shuffle vector can be found in the 1685 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1686 * Language Reference. 1687 * 1688 * The RHSStartValue indicates whether the same input vectors are used (unary) 1689 * or two different input vectors are used, based on the following: 1690 * - If the instruction uses the same vector for both inputs, the range of the 1691 * indices will be 0 to 15. In this case, the RHSStart value passed should 1692 * be 0. 1693 * - If the instruction has two different vectors then the range of the 1694 * indices will be 0 to 31. In this case, the RHSStart value passed should 1695 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1696 * to 31 specify elements in the second vector). 1697 * 1698 * \param[in] N The shuffle vector SD Node to analyze 1699 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1700 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1701 * vector to the shuffle_vector instruction 1702 * \return true iff this shuffle vector represents an even or odd word merge 1703 */ 1704 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1705 unsigned RHSStartValue) { 1706 if (N->getValueType(0) != MVT::v16i8) 1707 return false; 1708 1709 for (unsigned i = 0; i < 2; ++i) 1710 for (unsigned j = 0; j < 4; ++j) 1711 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1712 i*RHSStartValue+j+IndexOffset) || 1713 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1714 i*RHSStartValue+j+IndexOffset+8)) 1715 return false; 1716 return true; 1717 } 1718 1719 /** 1720 * Determine if the specified shuffle mask is suitable for the vmrgew or 1721 * vmrgow instructions. 1722 * 1723 * \param[in] N The shuffle vector SD Node to analyze 1724 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1725 * \param[in] ShuffleKind Identify the type of merge: 1726 * - 0 = big-endian merge with two different inputs; 1727 * - 1 = either-endian merge with two identical inputs; 1728 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1729 * little-endian merges). 1730 * \param[in] DAG The current SelectionDAG 1731 * \return true iff this shuffle mask 1732 */ 1733 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1734 unsigned ShuffleKind, SelectionDAG &DAG) { 1735 if (DAG.getDataLayout().isLittleEndian()) { 1736 unsigned indexOffset = CheckEven ? 4 : 0; 1737 if (ShuffleKind == 1) // Unary 1738 return isVMerge(N, indexOffset, 0); 1739 else if (ShuffleKind == 2) // swapped 1740 return isVMerge(N, indexOffset, 16); 1741 else 1742 return false; 1743 } 1744 else { 1745 unsigned indexOffset = CheckEven ? 0 : 4; 1746 if (ShuffleKind == 1) // Unary 1747 return isVMerge(N, indexOffset, 0); 1748 else if (ShuffleKind == 0) // Normal 1749 return isVMerge(N, indexOffset, 16); 1750 else 1751 return false; 1752 } 1753 return false; 1754 } 1755 1756 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1757 /// amount, otherwise return -1. 1758 /// The ShuffleKind distinguishes between big-endian operations with two 1759 /// different inputs (0), either-endian operations with two identical inputs 1760 /// (1), and little-endian operations with two different inputs (2). For the 1761 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1762 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1763 SelectionDAG &DAG) { 1764 if (N->getValueType(0) != MVT::v16i8) 1765 return -1; 1766 1767 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1768 1769 // Find the first non-undef value in the shuffle mask. 1770 unsigned i; 1771 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1772 /*search*/; 1773 1774 if (i == 16) return -1; // all undef. 1775 1776 // Otherwise, check to see if the rest of the elements are consecutively 1777 // numbered from this value. 1778 unsigned ShiftAmt = SVOp->getMaskElt(i); 1779 if (ShiftAmt < i) return -1; 1780 1781 ShiftAmt -= i; 1782 bool isLE = DAG.getDataLayout().isLittleEndian(); 1783 1784 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1785 // Check the rest of the elements to see if they are consecutive. 1786 for (++i; i != 16; ++i) 1787 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1788 return -1; 1789 } else if (ShuffleKind == 1) { 1790 // Check the rest of the elements to see if they are consecutive. 1791 for (++i; i != 16; ++i) 1792 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1793 return -1; 1794 } else 1795 return -1; 1796 1797 if (isLE) 1798 ShiftAmt = 16 - ShiftAmt; 1799 1800 return ShiftAmt; 1801 } 1802 1803 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1804 /// specifies a splat of a single element that is suitable for input to 1805 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1806 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1807 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1808 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 1809 1810 // The consecutive indices need to specify an element, not part of two 1811 // different elements. So abandon ship early if this isn't the case. 1812 if (N->getMaskElt(0) % EltSize != 0) 1813 return false; 1814 1815 // This is a splat operation if each element of the permute is the same, and 1816 // if the value doesn't reference the second vector. 1817 unsigned ElementBase = N->getMaskElt(0); 1818 1819 // FIXME: Handle UNDEF elements too! 1820 if (ElementBase >= 16) 1821 return false; 1822 1823 // Check that the indices are consecutive, in the case of a multi-byte element 1824 // splatted with a v16i8 mask. 1825 for (unsigned i = 1; i != EltSize; ++i) 1826 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1827 return false; 1828 1829 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1830 if (N->getMaskElt(i) < 0) continue; 1831 for (unsigned j = 0; j != EltSize; ++j) 1832 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1833 return false; 1834 } 1835 return true; 1836 } 1837 1838 /// Check that the mask is shuffling N byte elements. Within each N byte 1839 /// element of the mask, the indices could be either in increasing or 1840 /// decreasing order as long as they are consecutive. 1841 /// \param[in] N the shuffle vector SD Node to analyze 1842 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1843 /// Word/DoubleWord/QuadWord). 1844 /// \param[in] StepLen the delta indices number among the N byte element, if 1845 /// the mask is in increasing/decreasing order then it is 1/-1. 1846 /// \return true iff the mask is shuffling N byte elements. 1847 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1848 int StepLen) { 1849 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1850 "Unexpected element width."); 1851 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1852 1853 unsigned NumOfElem = 16 / Width; 1854 unsigned MaskVal[16]; // Width is never greater than 16 1855 for (unsigned i = 0; i < NumOfElem; ++i) { 1856 MaskVal[0] = N->getMaskElt(i * Width); 1857 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1858 return false; 1859 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1860 return false; 1861 } 1862 1863 for (unsigned int j = 1; j < Width; ++j) { 1864 MaskVal[j] = N->getMaskElt(i * Width + j); 1865 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1866 return false; 1867 } 1868 } 1869 } 1870 1871 return true; 1872 } 1873 1874 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1875 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1876 if (!isNByteElemShuffleMask(N, 4, 1)) 1877 return false; 1878 1879 // Now we look at mask elements 0,4,8,12 1880 unsigned M0 = N->getMaskElt(0) / 4; 1881 unsigned M1 = N->getMaskElt(4) / 4; 1882 unsigned M2 = N->getMaskElt(8) / 4; 1883 unsigned M3 = N->getMaskElt(12) / 4; 1884 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1885 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1886 1887 // Below, let H and L be arbitrary elements of the shuffle mask 1888 // where H is in the range [4,7] and L is in the range [0,3]. 1889 // H, 1, 2, 3 or L, 5, 6, 7 1890 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1891 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1892 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1893 InsertAtByte = IsLE ? 12 : 0; 1894 Swap = M0 < 4; 1895 return true; 1896 } 1897 // 0, H, 2, 3 or 4, L, 6, 7 1898 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1899 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1900 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1901 InsertAtByte = IsLE ? 8 : 4; 1902 Swap = M1 < 4; 1903 return true; 1904 } 1905 // 0, 1, H, 3 or 4, 5, L, 7 1906 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1907 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1908 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1909 InsertAtByte = IsLE ? 4 : 8; 1910 Swap = M2 < 4; 1911 return true; 1912 } 1913 // 0, 1, 2, H or 4, 5, 6, L 1914 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1915 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1916 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1917 InsertAtByte = IsLE ? 0 : 12; 1918 Swap = M3 < 4; 1919 return true; 1920 } 1921 1922 // If both vector operands for the shuffle are the same vector, the mask will 1923 // contain only elements from the first one and the second one will be undef. 1924 if (N->getOperand(1).isUndef()) { 1925 ShiftElts = 0; 1926 Swap = true; 1927 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1928 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1929 InsertAtByte = IsLE ? 12 : 0; 1930 return true; 1931 } 1932 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 1933 InsertAtByte = IsLE ? 8 : 4; 1934 return true; 1935 } 1936 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 1937 InsertAtByte = IsLE ? 4 : 8; 1938 return true; 1939 } 1940 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 1941 InsertAtByte = IsLE ? 0 : 12; 1942 return true; 1943 } 1944 } 1945 1946 return false; 1947 } 1948 1949 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1950 bool &Swap, bool IsLE) { 1951 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1952 // Ensure each byte index of the word is consecutive. 1953 if (!isNByteElemShuffleMask(N, 4, 1)) 1954 return false; 1955 1956 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 1957 unsigned M0 = N->getMaskElt(0) / 4; 1958 unsigned M1 = N->getMaskElt(4) / 4; 1959 unsigned M2 = N->getMaskElt(8) / 4; 1960 unsigned M3 = N->getMaskElt(12) / 4; 1961 1962 // If both vector operands for the shuffle are the same vector, the mask will 1963 // contain only elements from the first one and the second one will be undef. 1964 if (N->getOperand(1).isUndef()) { 1965 assert(M0 < 4 && "Indexing into an undef vector?"); 1966 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 1967 return false; 1968 1969 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 1970 Swap = false; 1971 return true; 1972 } 1973 1974 // Ensure each word index of the ShuffleVector Mask is consecutive. 1975 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 1976 return false; 1977 1978 if (IsLE) { 1979 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 1980 // Input vectors don't need to be swapped if the leading element 1981 // of the result is one of the 3 left elements of the second vector 1982 // (or if there is no shift to be done at all). 1983 Swap = false; 1984 ShiftElts = (8 - M0) % 8; 1985 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 1986 // Input vectors need to be swapped if the leading element 1987 // of the result is one of the 3 left elements of the first vector 1988 // (or if we're shifting by 4 - thereby simply swapping the vectors). 1989 Swap = true; 1990 ShiftElts = (4 - M0) % 4; 1991 } 1992 1993 return true; 1994 } else { // BE 1995 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 1996 // Input vectors don't need to be swapped if the leading element 1997 // of the result is one of the 4 elements of the first vector. 1998 Swap = false; 1999 ShiftElts = M0; 2000 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2001 // Input vectors need to be swapped if the leading element 2002 // of the result is one of the 4 elements of the right vector. 2003 Swap = true; 2004 ShiftElts = M0 - 4; 2005 } 2006 2007 return true; 2008 } 2009 } 2010 2011 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2012 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2013 2014 if (!isNByteElemShuffleMask(N, Width, -1)) 2015 return false; 2016 2017 for (int i = 0; i < 16; i += Width) 2018 if (N->getMaskElt(i) != i + Width - 1) 2019 return false; 2020 2021 return true; 2022 } 2023 2024 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2025 return isXXBRShuffleMaskHelper(N, 2); 2026 } 2027 2028 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2029 return isXXBRShuffleMaskHelper(N, 4); 2030 } 2031 2032 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2033 return isXXBRShuffleMaskHelper(N, 8); 2034 } 2035 2036 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2037 return isXXBRShuffleMaskHelper(N, 16); 2038 } 2039 2040 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2041 /// if the inputs to the instruction should be swapped and set \p DM to the 2042 /// value for the immediate. 2043 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2044 /// AND element 0 of the result comes from the first input (LE) or second input 2045 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2046 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2047 /// mask. 2048 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2049 bool &Swap, bool IsLE) { 2050 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2051 2052 // Ensure each byte index of the double word is consecutive. 2053 if (!isNByteElemShuffleMask(N, 8, 1)) 2054 return false; 2055 2056 unsigned M0 = N->getMaskElt(0) / 8; 2057 unsigned M1 = N->getMaskElt(8) / 8; 2058 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2059 2060 // If both vector operands for the shuffle are the same vector, the mask will 2061 // contain only elements from the first one and the second one will be undef. 2062 if (N->getOperand(1).isUndef()) { 2063 if ((M0 | M1) < 2) { 2064 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2065 Swap = false; 2066 return true; 2067 } else 2068 return false; 2069 } 2070 2071 if (IsLE) { 2072 if (M0 > 1 && M1 < 2) { 2073 Swap = false; 2074 } else if (M0 < 2 && M1 > 1) { 2075 M0 = (M0 + 2) % 4; 2076 M1 = (M1 + 2) % 4; 2077 Swap = true; 2078 } else 2079 return false; 2080 2081 // Note: if control flow comes here that means Swap is already set above 2082 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2083 return true; 2084 } else { // BE 2085 if (M0 < 2 && M1 > 1) { 2086 Swap = false; 2087 } else if (M0 > 1 && M1 < 2) { 2088 M0 = (M0 + 2) % 4; 2089 M1 = (M1 + 2) % 4; 2090 Swap = true; 2091 } else 2092 return false; 2093 2094 // Note: if control flow comes here that means Swap is already set above 2095 DM = (M0 << 1) + (M1 & 1); 2096 return true; 2097 } 2098 } 2099 2100 2101 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2102 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2103 /// elements are counted from the left of the vector register). 2104 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2105 SelectionDAG &DAG) { 2106 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2107 assert(isSplatShuffleMask(SVOp, EltSize)); 2108 if (DAG.getDataLayout().isLittleEndian()) 2109 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2110 else 2111 return SVOp->getMaskElt(0) / EltSize; 2112 } 2113 2114 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2115 /// by using a vspltis[bhw] instruction of the specified element size, return 2116 /// the constant being splatted. The ByteSize field indicates the number of 2117 /// bytes of each element [124] -> [bhw]. 2118 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2119 SDValue OpVal(nullptr, 0); 2120 2121 // If ByteSize of the splat is bigger than the element size of the 2122 // build_vector, then we have a case where we are checking for a splat where 2123 // multiple elements of the buildvector are folded together into a single 2124 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2125 unsigned EltSize = 16/N->getNumOperands(); 2126 if (EltSize < ByteSize) { 2127 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2128 SDValue UniquedVals[4]; 2129 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2130 2131 // See if all of the elements in the buildvector agree across. 2132 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2133 if (N->getOperand(i).isUndef()) continue; 2134 // If the element isn't a constant, bail fully out. 2135 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2136 2137 if (!UniquedVals[i&(Multiple-1)].getNode()) 2138 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2139 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2140 return SDValue(); // no match. 2141 } 2142 2143 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2144 // either constant or undef values that are identical for each chunk. See 2145 // if these chunks can form into a larger vspltis*. 2146 2147 // Check to see if all of the leading entries are either 0 or -1. If 2148 // neither, then this won't fit into the immediate field. 2149 bool LeadingZero = true; 2150 bool LeadingOnes = true; 2151 for (unsigned i = 0; i != Multiple-1; ++i) { 2152 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2153 2154 LeadingZero &= isNullConstant(UniquedVals[i]); 2155 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2156 } 2157 // Finally, check the least significant entry. 2158 if (LeadingZero) { 2159 if (!UniquedVals[Multiple-1].getNode()) 2160 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2161 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2162 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2163 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2164 } 2165 if (LeadingOnes) { 2166 if (!UniquedVals[Multiple-1].getNode()) 2167 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2168 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2169 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2170 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2171 } 2172 2173 return SDValue(); 2174 } 2175 2176 // Check to see if this buildvec has a single non-undef value in its elements. 2177 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2178 if (N->getOperand(i).isUndef()) continue; 2179 if (!OpVal.getNode()) 2180 OpVal = N->getOperand(i); 2181 else if (OpVal != N->getOperand(i)) 2182 return SDValue(); 2183 } 2184 2185 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2186 2187 unsigned ValSizeInBytes = EltSize; 2188 uint64_t Value = 0; 2189 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2190 Value = CN->getZExtValue(); 2191 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2192 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2193 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2194 } 2195 2196 // If the splat value is larger than the element value, then we can never do 2197 // this splat. The only case that we could fit the replicated bits into our 2198 // immediate field for would be zero, and we prefer to use vxor for it. 2199 if (ValSizeInBytes < ByteSize) return SDValue(); 2200 2201 // If the element value is larger than the splat value, check if it consists 2202 // of a repeated bit pattern of size ByteSize. 2203 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2204 return SDValue(); 2205 2206 // Properly sign extend the value. 2207 int MaskVal = SignExtend32(Value, ByteSize * 8); 2208 2209 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2210 if (MaskVal == 0) return SDValue(); 2211 2212 // Finally, if this value fits in a 5 bit sext field, return it 2213 if (SignExtend32<5>(MaskVal) == MaskVal) 2214 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2215 return SDValue(); 2216 } 2217 2218 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2219 /// amount, otherwise return -1. 2220 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2221 EVT VT = N->getValueType(0); 2222 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2223 return -1; 2224 2225 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2226 2227 // Find the first non-undef value in the shuffle mask. 2228 unsigned i; 2229 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2230 /*search*/; 2231 2232 if (i == 4) return -1; // all undef. 2233 2234 // Otherwise, check to see if the rest of the elements are consecutively 2235 // numbered from this value. 2236 unsigned ShiftAmt = SVOp->getMaskElt(i); 2237 if (ShiftAmt < i) return -1; 2238 ShiftAmt -= i; 2239 2240 // Check the rest of the elements to see if they are consecutive. 2241 for (++i; i != 4; ++i) 2242 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2243 return -1; 2244 2245 return ShiftAmt; 2246 } 2247 2248 //===----------------------------------------------------------------------===// 2249 // Addressing Mode Selection 2250 //===----------------------------------------------------------------------===// 2251 2252 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2253 /// or 64-bit immediate, and if the value can be accurately represented as a 2254 /// sign extension from a 16-bit value. If so, this returns true and the 2255 /// immediate. 2256 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2257 if (!isa<ConstantSDNode>(N)) 2258 return false; 2259 2260 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2261 if (N->getValueType(0) == MVT::i32) 2262 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2263 else 2264 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2265 } 2266 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2267 return isIntS16Immediate(Op.getNode(), Imm); 2268 } 2269 2270 2271 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2272 /// be represented as an indexed [r+r] operation. 2273 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2274 SDValue &Index, 2275 SelectionDAG &DAG) const { 2276 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2277 UI != E; ++UI) { 2278 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2279 if (Memop->getMemoryVT() == MVT::f64) { 2280 Base = N.getOperand(0); 2281 Index = N.getOperand(1); 2282 return true; 2283 } 2284 } 2285 } 2286 return false; 2287 } 2288 2289 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2290 /// can be represented as an indexed [r+r] operation. Returns false if it 2291 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2292 /// non-zero and N can be represented by a base register plus a signed 16-bit 2293 /// displacement, make a more precise judgement by checking (displacement % \p 2294 /// EncodingAlignment). 2295 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 2296 SDValue &Index, SelectionDAG &DAG, 2297 unsigned EncodingAlignment) const { 2298 int16_t imm = 0; 2299 if (N.getOpcode() == ISD::ADD) { 2300 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2301 // SPE load/store can only handle 8-bit offsets. 2302 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2303 return true; 2304 if (isIntS16Immediate(N.getOperand(1), imm) && 2305 (!EncodingAlignment || !(imm % EncodingAlignment))) 2306 return false; // r+i 2307 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2308 return false; // r+i 2309 2310 Base = N.getOperand(0); 2311 Index = N.getOperand(1); 2312 return true; 2313 } else if (N.getOpcode() == ISD::OR) { 2314 if (isIntS16Immediate(N.getOperand(1), imm) && 2315 (!EncodingAlignment || !(imm % EncodingAlignment))) 2316 return false; // r+i can fold it if we can. 2317 2318 // If this is an or of disjoint bitfields, we can codegen this as an add 2319 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2320 // disjoint. 2321 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2322 2323 if (LHSKnown.Zero.getBoolValue()) { 2324 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2325 // If all of the bits are known zero on the LHS or RHS, the add won't 2326 // carry. 2327 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2328 Base = N.getOperand(0); 2329 Index = N.getOperand(1); 2330 return true; 2331 } 2332 } 2333 } 2334 2335 return false; 2336 } 2337 2338 // If we happen to be doing an i64 load or store into a stack slot that has 2339 // less than a 4-byte alignment, then the frame-index elimination may need to 2340 // use an indexed load or store instruction (because the offset may not be a 2341 // multiple of 4). The extra register needed to hold the offset comes from the 2342 // register scavenger, and it is possible that the scavenger will need to use 2343 // an emergency spill slot. As a result, we need to make sure that a spill slot 2344 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2345 // stack slot. 2346 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2347 // FIXME: This does not handle the LWA case. 2348 if (VT != MVT::i64) 2349 return; 2350 2351 // NOTE: We'll exclude negative FIs here, which come from argument 2352 // lowering, because there are no known test cases triggering this problem 2353 // using packed structures (or similar). We can remove this exclusion if 2354 // we find such a test case. The reason why this is so test-case driven is 2355 // because this entire 'fixup' is only to prevent crashes (from the 2356 // register scavenger) on not-really-valid inputs. For example, if we have: 2357 // %a = alloca i1 2358 // %b = bitcast i1* %a to i64* 2359 // store i64* a, i64 b 2360 // then the store should really be marked as 'align 1', but is not. If it 2361 // were marked as 'align 1' then the indexed form would have been 2362 // instruction-selected initially, and the problem this 'fixup' is preventing 2363 // won't happen regardless. 2364 if (FrameIdx < 0) 2365 return; 2366 2367 MachineFunction &MF = DAG.getMachineFunction(); 2368 MachineFrameInfo &MFI = MF.getFrameInfo(); 2369 2370 unsigned Align = MFI.getObjectAlignment(FrameIdx); 2371 if (Align >= 4) 2372 return; 2373 2374 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2375 FuncInfo->setHasNonRISpills(); 2376 } 2377 2378 /// Returns true if the address N can be represented by a base register plus 2379 /// a signed 16-bit displacement [r+imm], and if it is not better 2380 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2381 /// displacements that are multiples of that value. 2382 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 2383 SDValue &Base, 2384 SelectionDAG &DAG, 2385 unsigned EncodingAlignment) const { 2386 // FIXME dl should come from parent load or store, not from address 2387 SDLoc dl(N); 2388 // If this can be more profitably realized as r+r, fail. 2389 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2390 return false; 2391 2392 if (N.getOpcode() == ISD::ADD) { 2393 int16_t imm = 0; 2394 if (isIntS16Immediate(N.getOperand(1), imm) && 2395 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2396 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2397 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2398 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2399 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2400 } else { 2401 Base = N.getOperand(0); 2402 } 2403 return true; // [r+i] 2404 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2405 // Match LOAD (ADD (X, Lo(G))). 2406 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2407 && "Cannot handle constant offsets yet!"); 2408 Disp = N.getOperand(1).getOperand(0); // The global address. 2409 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2410 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2411 Disp.getOpcode() == ISD::TargetConstantPool || 2412 Disp.getOpcode() == ISD::TargetJumpTable); 2413 Base = N.getOperand(0); 2414 return true; // [&g+r] 2415 } 2416 } else if (N.getOpcode() == ISD::OR) { 2417 int16_t imm = 0; 2418 if (isIntS16Immediate(N.getOperand(1), imm) && 2419 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2420 // If this is an or of disjoint bitfields, we can codegen this as an add 2421 // (for better address arithmetic) if the LHS and RHS of the OR are 2422 // provably disjoint. 2423 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2424 2425 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2426 // If all of the bits are known zero on the LHS or RHS, the add won't 2427 // carry. 2428 if (FrameIndexSDNode *FI = 2429 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2430 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2431 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2432 } else { 2433 Base = N.getOperand(0); 2434 } 2435 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2436 return true; 2437 } 2438 } 2439 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2440 // Loading from a constant address. 2441 2442 // If this address fits entirely in a 16-bit sext immediate field, codegen 2443 // this as "d, 0" 2444 int16_t Imm; 2445 if (isIntS16Immediate(CN, Imm) && 2446 (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) { 2447 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2448 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2449 CN->getValueType(0)); 2450 return true; 2451 } 2452 2453 // Handle 32-bit sext immediates with LIS + addr mode. 2454 if ((CN->getValueType(0) == MVT::i32 || 2455 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2456 (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) { 2457 int Addr = (int)CN->getZExtValue(); 2458 2459 // Otherwise, break this down into an LIS + disp. 2460 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2461 2462 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2463 MVT::i32); 2464 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2465 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2466 return true; 2467 } 2468 } 2469 2470 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2471 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2472 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2473 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2474 } else 2475 Base = N; 2476 return true; // [r+0] 2477 } 2478 2479 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2480 /// represented as an indexed [r+r] operation. 2481 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2482 SDValue &Index, 2483 SelectionDAG &DAG) const { 2484 // Check to see if we can easily represent this as an [r+r] address. This 2485 // will fail if it thinks that the address is more profitably represented as 2486 // reg+imm, e.g. where imm = 0. 2487 if (SelectAddressRegReg(N, Base, Index, DAG)) 2488 return true; 2489 2490 // If the address is the result of an add, we will utilize the fact that the 2491 // address calculation includes an implicit add. However, we can reduce 2492 // register pressure if we do not materialize a constant just for use as the 2493 // index register. We only get rid of the add if it is not an add of a 2494 // value and a 16-bit signed constant and both have a single use. 2495 int16_t imm = 0; 2496 if (N.getOpcode() == ISD::ADD && 2497 (!isIntS16Immediate(N.getOperand(1), imm) || 2498 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2499 Base = N.getOperand(0); 2500 Index = N.getOperand(1); 2501 return true; 2502 } 2503 2504 // Otherwise, do it the hard way, using R0 as the base register. 2505 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2506 N.getValueType()); 2507 Index = N; 2508 return true; 2509 } 2510 2511 /// Returns true if we should use a direct load into vector instruction 2512 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2513 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2514 2515 // If there are any other uses other than scalar to vector, then we should 2516 // keep it as a scalar load -> direct move pattern to prevent multiple 2517 // loads. 2518 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2519 if (!LD) 2520 return false; 2521 2522 EVT MemVT = LD->getMemoryVT(); 2523 if (!MemVT.isSimple()) 2524 return false; 2525 switch(MemVT.getSimpleVT().SimpleTy) { 2526 case MVT::i64: 2527 break; 2528 case MVT::i32: 2529 if (!ST.hasP8Vector()) 2530 return false; 2531 break; 2532 case MVT::i16: 2533 case MVT::i8: 2534 if (!ST.hasP9Vector()) 2535 return false; 2536 break; 2537 default: 2538 return false; 2539 } 2540 2541 SDValue LoadedVal(N, 0); 2542 if (!LoadedVal.hasOneUse()) 2543 return false; 2544 2545 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2546 UI != UE; ++UI) 2547 if (UI.getUse().get().getResNo() == 0 && 2548 UI->getOpcode() != ISD::SCALAR_TO_VECTOR) 2549 return false; 2550 2551 return true; 2552 } 2553 2554 /// getPreIndexedAddressParts - returns true by value, base pointer and 2555 /// offset pointer and addressing mode by reference if the node's address 2556 /// can be legally represented as pre-indexed load / store address. 2557 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2558 SDValue &Offset, 2559 ISD::MemIndexedMode &AM, 2560 SelectionDAG &DAG) const { 2561 if (DisablePPCPreinc) return false; 2562 2563 bool isLoad = true; 2564 SDValue Ptr; 2565 EVT VT; 2566 unsigned Alignment; 2567 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2568 Ptr = LD->getBasePtr(); 2569 VT = LD->getMemoryVT(); 2570 Alignment = LD->getAlignment(); 2571 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2572 Ptr = ST->getBasePtr(); 2573 VT = ST->getMemoryVT(); 2574 Alignment = ST->getAlignment(); 2575 isLoad = false; 2576 } else 2577 return false; 2578 2579 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2580 // instructions because we can fold these into a more efficient instruction 2581 // instead, (such as LXSD). 2582 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2583 return false; 2584 } 2585 2586 // PowerPC doesn't have preinc load/store instructions for vectors (except 2587 // for QPX, which does have preinc r+r forms). 2588 if (VT.isVector()) { 2589 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2590 return false; 2591 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2592 AM = ISD::PRE_INC; 2593 return true; 2594 } 2595 } 2596 2597 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2598 // Common code will reject creating a pre-inc form if the base pointer 2599 // is a frame index, or if N is a store and the base pointer is either 2600 // the same as or a predecessor of the value being stored. Check for 2601 // those situations here, and try with swapped Base/Offset instead. 2602 bool Swap = false; 2603 2604 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2605 Swap = true; 2606 else if (!isLoad) { 2607 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2608 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2609 Swap = true; 2610 } 2611 2612 if (Swap) 2613 std::swap(Base, Offset); 2614 2615 AM = ISD::PRE_INC; 2616 return true; 2617 } 2618 2619 // LDU/STU can only handle immediates that are a multiple of 4. 2620 if (VT != MVT::i64) { 2621 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0)) 2622 return false; 2623 } else { 2624 // LDU/STU need an address with at least 4-byte alignment. 2625 if (Alignment < 4) 2626 return false; 2627 2628 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4)) 2629 return false; 2630 } 2631 2632 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2633 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2634 // sext i32 to i64 when addr mode is r+i. 2635 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2636 LD->getExtensionType() == ISD::SEXTLOAD && 2637 isa<ConstantSDNode>(Offset)) 2638 return false; 2639 } 2640 2641 AM = ISD::PRE_INC; 2642 return true; 2643 } 2644 2645 //===----------------------------------------------------------------------===// 2646 // LowerOperation implementation 2647 //===----------------------------------------------------------------------===// 2648 2649 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2650 /// and LoOpFlags to the target MO flags. 2651 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2652 unsigned &HiOpFlags, unsigned &LoOpFlags, 2653 const GlobalValue *GV = nullptr) { 2654 HiOpFlags = PPCII::MO_HA; 2655 LoOpFlags = PPCII::MO_LO; 2656 2657 // Don't use the pic base if not in PIC relocation model. 2658 if (IsPIC) { 2659 HiOpFlags |= PPCII::MO_PIC_FLAG; 2660 LoOpFlags |= PPCII::MO_PIC_FLAG; 2661 } 2662 2663 // If this is a reference to a global value that requires a non-lazy-ptr, make 2664 // sure that instruction lowering adds it. 2665 if (GV && Subtarget.hasLazyResolverStub(GV)) { 2666 HiOpFlags |= PPCII::MO_NLP_FLAG; 2667 LoOpFlags |= PPCII::MO_NLP_FLAG; 2668 2669 if (GV->hasHiddenVisibility()) { 2670 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2671 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2672 } 2673 } 2674 } 2675 2676 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2677 SelectionDAG &DAG) { 2678 SDLoc DL(HiPart); 2679 EVT PtrVT = HiPart.getValueType(); 2680 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2681 2682 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2683 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2684 2685 // With PIC, the first instruction is actually "GR+hi(&G)". 2686 if (isPIC) 2687 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2688 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2689 2690 // Generate non-pic code that has direct accesses to the constant pool. 2691 // The address of the global is just (hi(&g)+lo(&g)). 2692 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2693 } 2694 2695 static void setUsesTOCBasePtr(MachineFunction &MF) { 2696 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2697 FuncInfo->setUsesTOCBasePtr(); 2698 } 2699 2700 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2701 setUsesTOCBasePtr(DAG.getMachineFunction()); 2702 } 2703 2704 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2705 SDValue GA) const { 2706 const bool Is64Bit = Subtarget.isPPC64(); 2707 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2708 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2709 : Subtarget.isAIXABI() 2710 ? DAG.getRegister(PPC::R2, VT) 2711 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2712 SDValue Ops[] = { GA, Reg }; 2713 return DAG.getMemIntrinsicNode( 2714 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2715 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, 2716 MachineMemOperand::MOLoad); 2717 } 2718 2719 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2720 SelectionDAG &DAG) const { 2721 EVT PtrVT = Op.getValueType(); 2722 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2723 const Constant *C = CP->getConstVal(); 2724 2725 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2726 // The actual address of the GlobalValue is stored in the TOC. 2727 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2728 setUsesTOCBasePtr(DAG); 2729 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2730 return getTOCEntry(DAG, SDLoc(CP), GA); 2731 } 2732 2733 unsigned MOHiFlag, MOLoFlag; 2734 bool IsPIC = isPositionIndependent(); 2735 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2736 2737 if (IsPIC && Subtarget.isSVR4ABI()) { 2738 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2739 PPCII::MO_PIC_FLAG); 2740 return getTOCEntry(DAG, SDLoc(CP), GA); 2741 } 2742 2743 SDValue CPIHi = 2744 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2745 SDValue CPILo = 2746 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2747 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2748 } 2749 2750 // For 64-bit PowerPC, prefer the more compact relative encodings. 2751 // This trades 32 bits per jump table entry for one or two instructions 2752 // on the jump site. 2753 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2754 if (isJumpTableRelative()) 2755 return MachineJumpTableInfo::EK_LabelDifference32; 2756 2757 return TargetLowering::getJumpTableEncoding(); 2758 } 2759 2760 bool PPCTargetLowering::isJumpTableRelative() const { 2761 if (UseAbsoluteJumpTables) 2762 return false; 2763 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 2764 return true; 2765 return TargetLowering::isJumpTableRelative(); 2766 } 2767 2768 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2769 SelectionDAG &DAG) const { 2770 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2771 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2772 2773 switch (getTargetMachine().getCodeModel()) { 2774 case CodeModel::Small: 2775 case CodeModel::Medium: 2776 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2777 default: 2778 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2779 getPointerTy(DAG.getDataLayout())); 2780 } 2781 } 2782 2783 const MCExpr * 2784 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2785 unsigned JTI, 2786 MCContext &Ctx) const { 2787 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2788 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2789 2790 switch (getTargetMachine().getCodeModel()) { 2791 case CodeModel::Small: 2792 case CodeModel::Medium: 2793 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2794 default: 2795 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2796 } 2797 } 2798 2799 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2800 EVT PtrVT = Op.getValueType(); 2801 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2802 2803 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2804 // The actual address of the GlobalValue is stored in the TOC. 2805 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2806 setUsesTOCBasePtr(DAG); 2807 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2808 return getTOCEntry(DAG, SDLoc(JT), GA); 2809 } 2810 2811 unsigned MOHiFlag, MOLoFlag; 2812 bool IsPIC = isPositionIndependent(); 2813 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2814 2815 if (IsPIC && Subtarget.isSVR4ABI()) { 2816 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2817 PPCII::MO_PIC_FLAG); 2818 return getTOCEntry(DAG, SDLoc(GA), GA); 2819 } 2820 2821 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2822 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2823 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2824 } 2825 2826 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2827 SelectionDAG &DAG) const { 2828 EVT PtrVT = Op.getValueType(); 2829 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2830 const BlockAddress *BA = BASDN->getBlockAddress(); 2831 2832 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2833 // The actual BlockAddress is stored in the TOC. 2834 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2835 setUsesTOCBasePtr(DAG); 2836 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2837 return getTOCEntry(DAG, SDLoc(BASDN), GA); 2838 } 2839 2840 // 32-bit position-independent ELF stores the BlockAddress in the .got. 2841 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 2842 return getTOCEntry( 2843 DAG, SDLoc(BASDN), 2844 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 2845 2846 unsigned MOHiFlag, MOLoFlag; 2847 bool IsPIC = isPositionIndependent(); 2848 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2849 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2850 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2851 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2852 } 2853 2854 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2855 SelectionDAG &DAG) const { 2856 // FIXME: TLS addresses currently use medium model code sequences, 2857 // which is the most useful form. Eventually support for small and 2858 // large models could be added if users need it, at the cost of 2859 // additional complexity. 2860 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2861 if (DAG.getTarget().useEmulatedTLS()) 2862 return LowerToTLSEmulatedModel(GA, DAG); 2863 2864 SDLoc dl(GA); 2865 const GlobalValue *GV = GA->getGlobal(); 2866 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2867 bool is64bit = Subtarget.isPPC64(); 2868 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2869 PICLevel::Level picLevel = M->getPICLevel(); 2870 2871 const TargetMachine &TM = getTargetMachine(); 2872 TLSModel::Model Model = TM.getTLSModel(GV); 2873 2874 if (Model == TLSModel::LocalExec) { 2875 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2876 PPCII::MO_TPREL_HA); 2877 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2878 PPCII::MO_TPREL_LO); 2879 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 2880 : DAG.getRegister(PPC::R2, MVT::i32); 2881 2882 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2883 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2884 } 2885 2886 if (Model == TLSModel::InitialExec) { 2887 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2888 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2889 PPCII::MO_TLS); 2890 SDValue GOTPtr; 2891 if (is64bit) { 2892 setUsesTOCBasePtr(DAG); 2893 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2894 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2895 PtrVT, GOTReg, TGA); 2896 } else { 2897 if (!TM.isPositionIndependent()) 2898 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2899 else if (picLevel == PICLevel::SmallPIC) 2900 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2901 else 2902 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2903 } 2904 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2905 PtrVT, TGA, GOTPtr); 2906 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2907 } 2908 2909 if (Model == TLSModel::GeneralDynamic) { 2910 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2911 SDValue GOTPtr; 2912 if (is64bit) { 2913 setUsesTOCBasePtr(DAG); 2914 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2915 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2916 GOTReg, TGA); 2917 } else { 2918 if (picLevel == PICLevel::SmallPIC) 2919 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2920 else 2921 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2922 } 2923 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2924 GOTPtr, TGA, TGA); 2925 } 2926 2927 if (Model == TLSModel::LocalDynamic) { 2928 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2929 SDValue GOTPtr; 2930 if (is64bit) { 2931 setUsesTOCBasePtr(DAG); 2932 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2933 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2934 GOTReg, TGA); 2935 } else { 2936 if (picLevel == PICLevel::SmallPIC) 2937 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2938 else 2939 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2940 } 2941 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2942 PtrVT, GOTPtr, TGA, TGA); 2943 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2944 PtrVT, TLSAddr, TGA); 2945 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2946 } 2947 2948 llvm_unreachable("Unknown TLS model!"); 2949 } 2950 2951 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2952 SelectionDAG &DAG) const { 2953 EVT PtrVT = Op.getValueType(); 2954 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2955 SDLoc DL(GSDN); 2956 const GlobalValue *GV = GSDN->getGlobal(); 2957 2958 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 2959 // The actual address of the GlobalValue is stored in the TOC. 2960 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2961 setUsesTOCBasePtr(DAG); 2962 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2963 return getTOCEntry(DAG, DL, GA); 2964 } 2965 2966 unsigned MOHiFlag, MOLoFlag; 2967 bool IsPIC = isPositionIndependent(); 2968 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 2969 2970 if (IsPIC && Subtarget.isSVR4ABI()) { 2971 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2972 GSDN->getOffset(), 2973 PPCII::MO_PIC_FLAG); 2974 return getTOCEntry(DAG, DL, GA); 2975 } 2976 2977 SDValue GAHi = 2978 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2979 SDValue GALo = 2980 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2981 2982 SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG); 2983 2984 // If the global reference is actually to a non-lazy-pointer, we have to do an 2985 // extra load to get the address of the global. 2986 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2987 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2988 return Ptr; 2989 } 2990 2991 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2992 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2993 SDLoc dl(Op); 2994 2995 if (Op.getValueType() == MVT::v2i64) { 2996 // When the operands themselves are v2i64 values, we need to do something 2997 // special because VSX has no underlying comparison operations for these. 2998 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2999 // Equality can be handled by casting to the legal type for Altivec 3000 // comparisons, everything else needs to be expanded. 3001 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3002 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 3003 DAG.getSetCC(dl, MVT::v4i32, 3004 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 3005 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 3006 CC)); 3007 } 3008 3009 return SDValue(); 3010 } 3011 3012 // We handle most of these in the usual way. 3013 return Op; 3014 } 3015 3016 // If we're comparing for equality to zero, expose the fact that this is 3017 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3018 // fold the new nodes. 3019 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3020 return V; 3021 3022 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3023 // Leave comparisons against 0 and -1 alone for now, since they're usually 3024 // optimized. FIXME: revisit this when we can custom lower all setcc 3025 // optimizations. 3026 if (C->isAllOnesValue() || C->isNullValue()) 3027 return SDValue(); 3028 } 3029 3030 // If we have an integer seteq/setne, turn it into a compare against zero 3031 // by xor'ing the rhs with the lhs, which is faster than setting a 3032 // condition register, reading it back out, and masking the correct bit. The 3033 // normal approach here uses sub to do this instead of xor. Using xor exposes 3034 // the result to other bit-twiddling opportunities. 3035 EVT LHSVT = Op.getOperand(0).getValueType(); 3036 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3037 EVT VT = Op.getValueType(); 3038 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3039 Op.getOperand(1)); 3040 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3041 } 3042 return SDValue(); 3043 } 3044 3045 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3046 SDNode *Node = Op.getNode(); 3047 EVT VT = Node->getValueType(0); 3048 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3049 SDValue InChain = Node->getOperand(0); 3050 SDValue VAListPtr = Node->getOperand(1); 3051 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3052 SDLoc dl(Node); 3053 3054 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3055 3056 // gpr_index 3057 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3058 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3059 InChain = GprIndex.getValue(1); 3060 3061 if (VT == MVT::i64) { 3062 // Check if GprIndex is even 3063 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3064 DAG.getConstant(1, dl, MVT::i32)); 3065 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3066 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3067 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3068 DAG.getConstant(1, dl, MVT::i32)); 3069 // Align GprIndex to be even if it isn't 3070 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3071 GprIndex); 3072 } 3073 3074 // fpr index is 1 byte after gpr 3075 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3076 DAG.getConstant(1, dl, MVT::i32)); 3077 3078 // fpr 3079 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3080 FprPtr, MachinePointerInfo(SV), MVT::i8); 3081 InChain = FprIndex.getValue(1); 3082 3083 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3084 DAG.getConstant(8, dl, MVT::i32)); 3085 3086 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3087 DAG.getConstant(4, dl, MVT::i32)); 3088 3089 // areas 3090 SDValue OverflowArea = 3091 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3092 InChain = OverflowArea.getValue(1); 3093 3094 SDValue RegSaveArea = 3095 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3096 InChain = RegSaveArea.getValue(1); 3097 3098 // select overflow_area if index > 8 3099 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3100 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3101 3102 // adjustment constant gpr_index * 4/8 3103 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3104 VT.isInteger() ? GprIndex : FprIndex, 3105 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3106 MVT::i32)); 3107 3108 // OurReg = RegSaveArea + RegConstant 3109 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3110 RegConstant); 3111 3112 // Floating types are 32 bytes into RegSaveArea 3113 if (VT.isFloatingPoint()) 3114 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3115 DAG.getConstant(32, dl, MVT::i32)); 3116 3117 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3118 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3119 VT.isInteger() ? GprIndex : FprIndex, 3120 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3121 MVT::i32)); 3122 3123 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3124 VT.isInteger() ? VAListPtr : FprPtr, 3125 MachinePointerInfo(SV), MVT::i8); 3126 3127 // determine if we should load from reg_save_area or overflow_area 3128 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3129 3130 // increase overflow_area by 4/8 if gpr/fpr > 8 3131 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3132 DAG.getConstant(VT.isInteger() ? 4 : 8, 3133 dl, MVT::i32)); 3134 3135 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3136 OverflowAreaPlusN); 3137 3138 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3139 MachinePointerInfo(), MVT::i32); 3140 3141 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3142 } 3143 3144 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3145 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3146 3147 // We have to copy the entire va_list struct: 3148 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3149 return DAG.getMemcpy(Op.getOperand(0), Op, 3150 Op.getOperand(1), Op.getOperand(2), 3151 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 3152 false, MachinePointerInfo(), MachinePointerInfo()); 3153 } 3154 3155 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3156 SelectionDAG &DAG) const { 3157 return Op.getOperand(0); 3158 } 3159 3160 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3161 SelectionDAG &DAG) const { 3162 SDValue Chain = Op.getOperand(0); 3163 SDValue Trmp = Op.getOperand(1); // trampoline 3164 SDValue FPtr = Op.getOperand(2); // nested function 3165 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3166 SDLoc dl(Op); 3167 3168 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3169 bool isPPC64 = (PtrVT == MVT::i64); 3170 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3171 3172 TargetLowering::ArgListTy Args; 3173 TargetLowering::ArgListEntry Entry; 3174 3175 Entry.Ty = IntPtrTy; 3176 Entry.Node = Trmp; Args.push_back(Entry); 3177 3178 // TrampSize == (isPPC64 ? 48 : 40); 3179 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3180 isPPC64 ? MVT::i64 : MVT::i32); 3181 Args.push_back(Entry); 3182 3183 Entry.Node = FPtr; Args.push_back(Entry); 3184 Entry.Node = Nest; Args.push_back(Entry); 3185 3186 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3187 TargetLowering::CallLoweringInfo CLI(DAG); 3188 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3189 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3190 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3191 3192 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3193 return CallResult.second; 3194 } 3195 3196 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3197 MachineFunction &MF = DAG.getMachineFunction(); 3198 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3199 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3200 3201 SDLoc dl(Op); 3202 3203 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 3204 // vastart just stores the address of the VarArgsFrameIndex slot into the 3205 // memory location argument. 3206 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3207 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3208 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3209 MachinePointerInfo(SV)); 3210 } 3211 3212 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3213 // We suppose the given va_list is already allocated. 3214 // 3215 // typedef struct { 3216 // char gpr; /* index into the array of 8 GPRs 3217 // * stored in the register save area 3218 // * gpr=0 corresponds to r3, 3219 // * gpr=1 to r4, etc. 3220 // */ 3221 // char fpr; /* index into the array of 8 FPRs 3222 // * stored in the register save area 3223 // * fpr=0 corresponds to f1, 3224 // * fpr=1 to f2, etc. 3225 // */ 3226 // char *overflow_arg_area; 3227 // /* location on stack that holds 3228 // * the next overflow argument 3229 // */ 3230 // char *reg_save_area; 3231 // /* where r3:r10 and f1:f8 (if saved) 3232 // * are stored 3233 // */ 3234 // } va_list[1]; 3235 3236 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3237 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3238 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3239 PtrVT); 3240 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3241 PtrVT); 3242 3243 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3244 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3245 3246 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3247 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3248 3249 uint64_t FPROffset = 1; 3250 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3251 3252 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3253 3254 // Store first byte : number of int regs 3255 SDValue firstStore = 3256 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3257 MachinePointerInfo(SV), MVT::i8); 3258 uint64_t nextOffset = FPROffset; 3259 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3260 ConstFPROffset); 3261 3262 // Store second byte : number of float regs 3263 SDValue secondStore = 3264 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3265 MachinePointerInfo(SV, nextOffset), MVT::i8); 3266 nextOffset += StackOffset; 3267 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3268 3269 // Store second word : arguments given on stack 3270 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3271 MachinePointerInfo(SV, nextOffset)); 3272 nextOffset += FrameOffset; 3273 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3274 3275 // Store third word : arguments given in registers 3276 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3277 MachinePointerInfo(SV, nextOffset)); 3278 } 3279 3280 /// FPR - The set of FP registers that should be allocated for arguments 3281 /// on Darwin and AIX. 3282 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3283 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3284 PPC::F11, PPC::F12, PPC::F13}; 3285 3286 /// QFPR - The set of QPX registers that should be allocated for arguments. 3287 static const MCPhysReg QFPR[] = { 3288 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3289 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3290 3291 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3292 /// the stack. 3293 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3294 unsigned PtrByteSize) { 3295 unsigned ArgSize = ArgVT.getStoreSize(); 3296 if (Flags.isByVal()) 3297 ArgSize = Flags.getByValSize(); 3298 3299 // Round up to multiples of the pointer size, except for array members, 3300 // which are always packed. 3301 if (!Flags.isInConsecutiveRegs()) 3302 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3303 3304 return ArgSize; 3305 } 3306 3307 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3308 /// on the stack. 3309 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3310 ISD::ArgFlagsTy Flags, 3311 unsigned PtrByteSize) { 3312 unsigned Align = PtrByteSize; 3313 3314 // Altivec parameters are padded to a 16 byte boundary. 3315 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3316 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3317 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3318 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3319 Align = 16; 3320 // QPX vector types stored in double-precision are padded to a 32 byte 3321 // boundary. 3322 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3323 Align = 32; 3324 3325 // ByVal parameters are aligned as requested. 3326 if (Flags.isByVal()) { 3327 unsigned BVAlign = Flags.getByValAlign(); 3328 if (BVAlign > PtrByteSize) { 3329 if (BVAlign % PtrByteSize != 0) 3330 llvm_unreachable( 3331 "ByVal alignment is not a multiple of the pointer size"); 3332 3333 Align = BVAlign; 3334 } 3335 } 3336 3337 // Array members are always packed to their original alignment. 3338 if (Flags.isInConsecutiveRegs()) { 3339 // If the array member was split into multiple registers, the first 3340 // needs to be aligned to the size of the full type. (Except for 3341 // ppcf128, which is only aligned as its f64 components.) 3342 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3343 Align = OrigVT.getStoreSize(); 3344 else 3345 Align = ArgVT.getStoreSize(); 3346 } 3347 3348 return Align; 3349 } 3350 3351 /// CalculateStackSlotUsed - Return whether this argument will use its 3352 /// stack slot (instead of being passed in registers). ArgOffset, 3353 /// AvailableFPRs, and AvailableVRs must hold the current argument 3354 /// position, and will be updated to account for this argument. 3355 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3356 ISD::ArgFlagsTy Flags, 3357 unsigned PtrByteSize, 3358 unsigned LinkageSize, 3359 unsigned ParamAreaSize, 3360 unsigned &ArgOffset, 3361 unsigned &AvailableFPRs, 3362 unsigned &AvailableVRs, bool HasQPX) { 3363 bool UseMemory = false; 3364 3365 // Respect alignment of argument on the stack. 3366 unsigned Align = 3367 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3368 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3369 // If there's no space left in the argument save area, we must 3370 // use memory (this check also catches zero-sized arguments). 3371 if (ArgOffset >= LinkageSize + ParamAreaSize) 3372 UseMemory = true; 3373 3374 // Allocate argument on the stack. 3375 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3376 if (Flags.isInConsecutiveRegsLast()) 3377 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3378 // If we overran the argument save area, we must use memory 3379 // (this check catches arguments passed partially in memory) 3380 if (ArgOffset > LinkageSize + ParamAreaSize) 3381 UseMemory = true; 3382 3383 // However, if the argument is actually passed in an FPR or a VR, 3384 // we don't use memory after all. 3385 if (!Flags.isByVal()) { 3386 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3387 // QPX registers overlap with the scalar FP registers. 3388 (HasQPX && (ArgVT == MVT::v4f32 || 3389 ArgVT == MVT::v4f64 || 3390 ArgVT == MVT::v4i1))) 3391 if (AvailableFPRs > 0) { 3392 --AvailableFPRs; 3393 return false; 3394 } 3395 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3396 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3397 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3398 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3399 if (AvailableVRs > 0) { 3400 --AvailableVRs; 3401 return false; 3402 } 3403 } 3404 3405 return UseMemory; 3406 } 3407 3408 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3409 /// ensure minimum alignment required for target. 3410 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3411 unsigned NumBytes) { 3412 unsigned TargetAlign = Lowering->getStackAlignment(); 3413 unsigned AlignMask = TargetAlign - 1; 3414 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 3415 return NumBytes; 3416 } 3417 3418 SDValue PPCTargetLowering::LowerFormalArguments( 3419 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3420 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3421 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3422 if (Subtarget.isAIXABI()) 3423 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3424 InVals); 3425 if (Subtarget.is64BitELFABI()) 3426 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3427 InVals); 3428 if (Subtarget.is32BitELFABI()) 3429 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3430 InVals); 3431 3432 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, 3433 InVals); 3434 } 3435 3436 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3437 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3438 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3439 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3440 3441 // 32-bit SVR4 ABI Stack Frame Layout: 3442 // +-----------------------------------+ 3443 // +--> | Back chain | 3444 // | +-----------------------------------+ 3445 // | | Floating-point register save area | 3446 // | +-----------------------------------+ 3447 // | | General register save area | 3448 // | +-----------------------------------+ 3449 // | | CR save word | 3450 // | +-----------------------------------+ 3451 // | | VRSAVE save word | 3452 // | +-----------------------------------+ 3453 // | | Alignment padding | 3454 // | +-----------------------------------+ 3455 // | | Vector register save area | 3456 // | +-----------------------------------+ 3457 // | | Local variable space | 3458 // | +-----------------------------------+ 3459 // | | Parameter list area | 3460 // | +-----------------------------------+ 3461 // | | LR save word | 3462 // | +-----------------------------------+ 3463 // SP--> +--- | Back chain | 3464 // +-----------------------------------+ 3465 // 3466 // Specifications: 3467 // System V Application Binary Interface PowerPC Processor Supplement 3468 // AltiVec Technology Programming Interface Manual 3469 3470 MachineFunction &MF = DAG.getMachineFunction(); 3471 MachineFrameInfo &MFI = MF.getFrameInfo(); 3472 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3473 3474 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3475 // Potential tail calls could cause overwriting of argument stack slots. 3476 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3477 (CallConv == CallingConv::Fast)); 3478 unsigned PtrByteSize = 4; 3479 3480 // Assign locations to all of the incoming arguments. 3481 SmallVector<CCValAssign, 16> ArgLocs; 3482 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3483 *DAG.getContext()); 3484 3485 // Reserve space for the linkage area on the stack. 3486 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3487 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 3488 if (useSoftFloat()) 3489 CCInfo.PreAnalyzeFormalArguments(Ins); 3490 3491 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3492 CCInfo.clearWasPPCF128(); 3493 3494 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3495 CCValAssign &VA = ArgLocs[i]; 3496 3497 // Arguments stored in registers. 3498 if (VA.isRegLoc()) { 3499 const TargetRegisterClass *RC; 3500 EVT ValVT = VA.getValVT(); 3501 3502 switch (ValVT.getSimpleVT().SimpleTy) { 3503 default: 3504 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3505 case MVT::i1: 3506 case MVT::i32: 3507 RC = &PPC::GPRCRegClass; 3508 break; 3509 case MVT::f32: 3510 if (Subtarget.hasP8Vector()) 3511 RC = &PPC::VSSRCRegClass; 3512 else if (Subtarget.hasSPE()) 3513 RC = &PPC::GPRCRegClass; 3514 else 3515 RC = &PPC::F4RCRegClass; 3516 break; 3517 case MVT::f64: 3518 if (Subtarget.hasVSX()) 3519 RC = &PPC::VSFRCRegClass; 3520 else if (Subtarget.hasSPE()) 3521 // SPE passes doubles in GPR pairs. 3522 RC = &PPC::GPRCRegClass; 3523 else 3524 RC = &PPC::F8RCRegClass; 3525 break; 3526 case MVT::v16i8: 3527 case MVT::v8i16: 3528 case MVT::v4i32: 3529 RC = &PPC::VRRCRegClass; 3530 break; 3531 case MVT::v4f32: 3532 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3533 break; 3534 case MVT::v2f64: 3535 case MVT::v2i64: 3536 RC = &PPC::VRRCRegClass; 3537 break; 3538 case MVT::v4f64: 3539 RC = &PPC::QFRCRegClass; 3540 break; 3541 case MVT::v4i1: 3542 RC = &PPC::QBRCRegClass; 3543 break; 3544 } 3545 3546 SDValue ArgValue; 3547 // Transform the arguments stored in physical registers into 3548 // virtual ones. 3549 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3550 assert(i + 1 < e && "No second half of double precision argument"); 3551 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3552 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3553 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3554 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3555 if (!Subtarget.isLittleEndian()) 3556 std::swap (ArgValueLo, ArgValueHi); 3557 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3558 ArgValueHi); 3559 } else { 3560 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3561 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3562 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3563 if (ValVT == MVT::i1) 3564 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3565 } 3566 3567 InVals.push_back(ArgValue); 3568 } else { 3569 // Argument stored in memory. 3570 assert(VA.isMemLoc()); 3571 3572 // Get the extended size of the argument type in stack 3573 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3574 // Get the actual size of the argument type 3575 unsigned ObjSize = VA.getValVT().getStoreSize(); 3576 unsigned ArgOffset = VA.getLocMemOffset(); 3577 // Stack objects in PPC32 are right justified. 3578 ArgOffset += ArgSize - ObjSize; 3579 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3580 3581 // Create load nodes to retrieve arguments from the stack. 3582 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3583 InVals.push_back( 3584 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3585 } 3586 } 3587 3588 // Assign locations to all of the incoming aggregate by value arguments. 3589 // Aggregates passed by value are stored in the local variable space of the 3590 // caller's stack frame, right above the parameter list area. 3591 SmallVector<CCValAssign, 16> ByValArgLocs; 3592 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3593 ByValArgLocs, *DAG.getContext()); 3594 3595 // Reserve stack space for the allocations in CCInfo. 3596 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3597 3598 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3599 3600 // Area that is at least reserved in the caller of this function. 3601 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3602 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3603 3604 // Set the size that is at least reserved in caller of this function. Tail 3605 // call optimized function's reserved stack space needs to be aligned so that 3606 // taking the difference between two stack areas will result in an aligned 3607 // stack. 3608 MinReservedArea = 3609 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3610 FuncInfo->setMinReservedArea(MinReservedArea); 3611 3612 SmallVector<SDValue, 8> MemOps; 3613 3614 // If the function takes variable number of arguments, make a frame index for 3615 // the start of the first vararg value... for expansion of llvm.va_start. 3616 if (isVarArg) { 3617 static const MCPhysReg GPArgRegs[] = { 3618 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3619 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3620 }; 3621 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3622 3623 static const MCPhysReg FPArgRegs[] = { 3624 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3625 PPC::F8 3626 }; 3627 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3628 3629 if (useSoftFloat() || hasSPE()) 3630 NumFPArgRegs = 0; 3631 3632 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3633 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3634 3635 // Make room for NumGPArgRegs and NumFPArgRegs. 3636 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3637 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3638 3639 FuncInfo->setVarArgsStackOffset( 3640 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3641 CCInfo.getNextStackOffset(), true)); 3642 3643 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3644 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3645 3646 // The fixed integer arguments of a variadic function are stored to the 3647 // VarArgsFrameIndex on the stack so that they may be loaded by 3648 // dereferencing the result of va_next. 3649 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3650 // Get an existing live-in vreg, or add a new one. 3651 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3652 if (!VReg) 3653 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3654 3655 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3656 SDValue Store = 3657 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3658 MemOps.push_back(Store); 3659 // Increment the address by four for the next argument to store 3660 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3661 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3662 } 3663 3664 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3665 // is set. 3666 // The double arguments are stored to the VarArgsFrameIndex 3667 // on the stack. 3668 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3669 // Get an existing live-in vreg, or add a new one. 3670 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3671 if (!VReg) 3672 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3673 3674 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3675 SDValue Store = 3676 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3677 MemOps.push_back(Store); 3678 // Increment the address by eight for the next argument to store 3679 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3680 PtrVT); 3681 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3682 } 3683 } 3684 3685 if (!MemOps.empty()) 3686 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3687 3688 return Chain; 3689 } 3690 3691 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3692 // value to MVT::i64 and then truncate to the correct register size. 3693 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3694 EVT ObjectVT, SelectionDAG &DAG, 3695 SDValue ArgVal, 3696 const SDLoc &dl) const { 3697 if (Flags.isSExt()) 3698 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3699 DAG.getValueType(ObjectVT)); 3700 else if (Flags.isZExt()) 3701 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3702 DAG.getValueType(ObjectVT)); 3703 3704 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3705 } 3706 3707 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3708 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3709 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3710 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3711 // TODO: add description of PPC stack frame format, or at least some docs. 3712 // 3713 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3714 bool isLittleEndian = Subtarget.isLittleEndian(); 3715 MachineFunction &MF = DAG.getMachineFunction(); 3716 MachineFrameInfo &MFI = MF.getFrameInfo(); 3717 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3718 3719 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3720 "fastcc not supported on varargs functions"); 3721 3722 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3723 // Potential tail calls could cause overwriting of argument stack slots. 3724 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3725 (CallConv == CallingConv::Fast)); 3726 unsigned PtrByteSize = 8; 3727 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3728 3729 static const MCPhysReg GPR[] = { 3730 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3731 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3732 }; 3733 static const MCPhysReg VR[] = { 3734 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3735 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3736 }; 3737 3738 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3739 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3740 const unsigned Num_VR_Regs = array_lengthof(VR); 3741 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3742 3743 // Do a first pass over the arguments to determine whether the ABI 3744 // guarantees that our caller has allocated the parameter save area 3745 // on its stack frame. In the ELFv1 ABI, this is always the case; 3746 // in the ELFv2 ABI, it is true if this is a vararg function or if 3747 // any parameter is located in a stack slot. 3748 3749 bool HasParameterArea = !isELFv2ABI || isVarArg; 3750 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3751 unsigned NumBytes = LinkageSize; 3752 unsigned AvailableFPRs = Num_FPR_Regs; 3753 unsigned AvailableVRs = Num_VR_Regs; 3754 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3755 if (Ins[i].Flags.isNest()) 3756 continue; 3757 3758 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3759 PtrByteSize, LinkageSize, ParamAreaSize, 3760 NumBytes, AvailableFPRs, AvailableVRs, 3761 Subtarget.hasQPX())) 3762 HasParameterArea = true; 3763 } 3764 3765 // Add DAG nodes to load the arguments or copy them out of registers. On 3766 // entry to a function on PPC, the arguments start after the linkage area, 3767 // although the first ones are often in registers. 3768 3769 unsigned ArgOffset = LinkageSize; 3770 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3771 unsigned &QFPR_idx = FPR_idx; 3772 SmallVector<SDValue, 8> MemOps; 3773 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3774 unsigned CurArgIdx = 0; 3775 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3776 SDValue ArgVal; 3777 bool needsLoad = false; 3778 EVT ObjectVT = Ins[ArgNo].VT; 3779 EVT OrigVT = Ins[ArgNo].ArgVT; 3780 unsigned ObjSize = ObjectVT.getStoreSize(); 3781 unsigned ArgSize = ObjSize; 3782 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3783 if (Ins[ArgNo].isOrigArg()) { 3784 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3785 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3786 } 3787 // We re-align the argument offset for each argument, except when using the 3788 // fast calling convention, when we need to make sure we do that only when 3789 // we'll actually use a stack slot. 3790 unsigned CurArgOffset, Align; 3791 auto ComputeArgOffset = [&]() { 3792 /* Respect alignment of argument on the stack. */ 3793 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3794 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3795 CurArgOffset = ArgOffset; 3796 }; 3797 3798 if (CallConv != CallingConv::Fast) { 3799 ComputeArgOffset(); 3800 3801 /* Compute GPR index associated with argument offset. */ 3802 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3803 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3804 } 3805 3806 // FIXME the codegen can be much improved in some cases. 3807 // We do not have to keep everything in memory. 3808 if (Flags.isByVal()) { 3809 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3810 3811 if (CallConv == CallingConv::Fast) 3812 ComputeArgOffset(); 3813 3814 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3815 ObjSize = Flags.getByValSize(); 3816 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3817 // Empty aggregate parameters do not take up registers. Examples: 3818 // struct { } a; 3819 // union { } b; 3820 // int c[0]; 3821 // etc. However, we have to provide a place-holder in InVals, so 3822 // pretend we have an 8-byte item at the current address for that 3823 // purpose. 3824 if (!ObjSize) { 3825 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3826 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3827 InVals.push_back(FIN); 3828 continue; 3829 } 3830 3831 // Create a stack object covering all stack doublewords occupied 3832 // by the argument. If the argument is (fully or partially) on 3833 // the stack, or if the argument is fully in registers but the 3834 // caller has allocated the parameter save anyway, we can refer 3835 // directly to the caller's stack frame. Otherwise, create a 3836 // local copy in our own frame. 3837 int FI; 3838 if (HasParameterArea || 3839 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3840 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3841 else 3842 FI = MFI.CreateStackObject(ArgSize, Align, false); 3843 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3844 3845 // Handle aggregates smaller than 8 bytes. 3846 if (ObjSize < PtrByteSize) { 3847 // The value of the object is its address, which differs from the 3848 // address of the enclosing doubleword on big-endian systems. 3849 SDValue Arg = FIN; 3850 if (!isLittleEndian) { 3851 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3852 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3853 } 3854 InVals.push_back(Arg); 3855 3856 if (GPR_idx != Num_GPR_Regs) { 3857 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3858 FuncInfo->addLiveInAttr(VReg, Flags); 3859 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3860 SDValue Store; 3861 3862 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3863 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3864 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3865 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3866 MachinePointerInfo(&*FuncArg), ObjType); 3867 } else { 3868 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3869 // store the whole register as-is to the parameter save area 3870 // slot. 3871 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3872 MachinePointerInfo(&*FuncArg)); 3873 } 3874 3875 MemOps.push_back(Store); 3876 } 3877 // Whether we copied from a register or not, advance the offset 3878 // into the parameter save area by a full doubleword. 3879 ArgOffset += PtrByteSize; 3880 continue; 3881 } 3882 3883 // The value of the object is its address, which is the address of 3884 // its first stack doubleword. 3885 InVals.push_back(FIN); 3886 3887 // Store whatever pieces of the object are in registers to memory. 3888 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3889 if (GPR_idx == Num_GPR_Regs) 3890 break; 3891 3892 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3893 FuncInfo->addLiveInAttr(VReg, Flags); 3894 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3895 SDValue Addr = FIN; 3896 if (j) { 3897 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3898 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3899 } 3900 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3901 MachinePointerInfo(&*FuncArg, j)); 3902 MemOps.push_back(Store); 3903 ++GPR_idx; 3904 } 3905 ArgOffset += ArgSize; 3906 continue; 3907 } 3908 3909 switch (ObjectVT.getSimpleVT().SimpleTy) { 3910 default: llvm_unreachable("Unhandled argument type!"); 3911 case MVT::i1: 3912 case MVT::i32: 3913 case MVT::i64: 3914 if (Flags.isNest()) { 3915 // The 'nest' parameter, if any, is passed in R11. 3916 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3917 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3918 3919 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3920 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3921 3922 break; 3923 } 3924 3925 // These can be scalar arguments or elements of an integer array type 3926 // passed directly. Clang may use those instead of "byval" aggregate 3927 // types to avoid forcing arguments to memory unnecessarily. 3928 if (GPR_idx != Num_GPR_Regs) { 3929 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3930 FuncInfo->addLiveInAttr(VReg, Flags); 3931 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3932 3933 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3934 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3935 // value to MVT::i64 and then truncate to the correct register size. 3936 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3937 } else { 3938 if (CallConv == CallingConv::Fast) 3939 ComputeArgOffset(); 3940 3941 needsLoad = true; 3942 ArgSize = PtrByteSize; 3943 } 3944 if (CallConv != CallingConv::Fast || needsLoad) 3945 ArgOffset += 8; 3946 break; 3947 3948 case MVT::f32: 3949 case MVT::f64: 3950 // These can be scalar arguments or elements of a float array type 3951 // passed directly. The latter are used to implement ELFv2 homogenous 3952 // float aggregates. 3953 if (FPR_idx != Num_FPR_Regs) { 3954 unsigned VReg; 3955 3956 if (ObjectVT == MVT::f32) 3957 VReg = MF.addLiveIn(FPR[FPR_idx], 3958 Subtarget.hasP8Vector() 3959 ? &PPC::VSSRCRegClass 3960 : &PPC::F4RCRegClass); 3961 else 3962 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3963 ? &PPC::VSFRCRegClass 3964 : &PPC::F8RCRegClass); 3965 3966 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3967 ++FPR_idx; 3968 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3969 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3970 // once we support fp <-> gpr moves. 3971 3972 // This can only ever happen in the presence of f32 array types, 3973 // since otherwise we never run out of FPRs before running out 3974 // of GPRs. 3975 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3976 FuncInfo->addLiveInAttr(VReg, Flags); 3977 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3978 3979 if (ObjectVT == MVT::f32) { 3980 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3981 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3982 DAG.getConstant(32, dl, MVT::i32)); 3983 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3984 } 3985 3986 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3987 } else { 3988 if (CallConv == CallingConv::Fast) 3989 ComputeArgOffset(); 3990 3991 needsLoad = true; 3992 } 3993 3994 // When passing an array of floats, the array occupies consecutive 3995 // space in the argument area; only round up to the next doubleword 3996 // at the end of the array. Otherwise, each float takes 8 bytes. 3997 if (CallConv != CallingConv::Fast || needsLoad) { 3998 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3999 ArgOffset += ArgSize; 4000 if (Flags.isInConsecutiveRegsLast()) 4001 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4002 } 4003 break; 4004 case MVT::v4f32: 4005 case MVT::v4i32: 4006 case MVT::v8i16: 4007 case MVT::v16i8: 4008 case MVT::v2f64: 4009 case MVT::v2i64: 4010 case MVT::v1i128: 4011 case MVT::f128: 4012 if (!Subtarget.hasQPX()) { 4013 // These can be scalar arguments or elements of a vector array type 4014 // passed directly. The latter are used to implement ELFv2 homogenous 4015 // vector aggregates. 4016 if (VR_idx != Num_VR_Regs) { 4017 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4018 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4019 ++VR_idx; 4020 } else { 4021 if (CallConv == CallingConv::Fast) 4022 ComputeArgOffset(); 4023 needsLoad = true; 4024 } 4025 if (CallConv != CallingConv::Fast || needsLoad) 4026 ArgOffset += 16; 4027 break; 4028 } // not QPX 4029 4030 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 4031 "Invalid QPX parameter type"); 4032 LLVM_FALLTHROUGH; 4033 4034 case MVT::v4f64: 4035 case MVT::v4i1: 4036 // QPX vectors are treated like their scalar floating-point subregisters 4037 // (except that they're larger). 4038 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 4039 if (QFPR_idx != Num_QFPR_Regs) { 4040 const TargetRegisterClass *RC; 4041 switch (ObjectVT.getSimpleVT().SimpleTy) { 4042 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 4043 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 4044 default: RC = &PPC::QBRCRegClass; break; 4045 } 4046 4047 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 4048 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4049 ++QFPR_idx; 4050 } else { 4051 if (CallConv == CallingConv::Fast) 4052 ComputeArgOffset(); 4053 needsLoad = true; 4054 } 4055 if (CallConv != CallingConv::Fast || needsLoad) 4056 ArgOffset += Sz; 4057 break; 4058 } 4059 4060 // We need to load the argument to a virtual register if we determined 4061 // above that we ran out of physical registers of the appropriate type. 4062 if (needsLoad) { 4063 if (ObjSize < ArgSize && !isLittleEndian) 4064 CurArgOffset += ArgSize - ObjSize; 4065 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4066 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4067 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4068 } 4069 4070 InVals.push_back(ArgVal); 4071 } 4072 4073 // Area that is at least reserved in the caller of this function. 4074 unsigned MinReservedArea; 4075 if (HasParameterArea) 4076 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4077 else 4078 MinReservedArea = LinkageSize; 4079 4080 // Set the size that is at least reserved in caller of this function. Tail 4081 // call optimized functions' reserved stack space needs to be aligned so that 4082 // taking the difference between two stack areas will result in an aligned 4083 // stack. 4084 MinReservedArea = 4085 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4086 FuncInfo->setMinReservedArea(MinReservedArea); 4087 4088 // If the function takes variable number of arguments, make a frame index for 4089 // the start of the first vararg value... for expansion of llvm.va_start. 4090 if (isVarArg) { 4091 int Depth = ArgOffset; 4092 4093 FuncInfo->setVarArgsFrameIndex( 4094 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4095 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4096 4097 // If this function is vararg, store any remaining integer argument regs 4098 // to their spots on the stack so that they may be loaded by dereferencing 4099 // the result of va_next. 4100 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4101 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4102 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4103 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4104 SDValue Store = 4105 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4106 MemOps.push_back(Store); 4107 // Increment the address by four for the next argument to store 4108 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4109 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4110 } 4111 } 4112 4113 if (!MemOps.empty()) 4114 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4115 4116 return Chain; 4117 } 4118 4119 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4120 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4121 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4122 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4123 // TODO: add description of PPC stack frame format, or at least some docs. 4124 // 4125 MachineFunction &MF = DAG.getMachineFunction(); 4126 MachineFrameInfo &MFI = MF.getFrameInfo(); 4127 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4128 4129 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4130 bool isPPC64 = PtrVT == MVT::i64; 4131 // Potential tail calls could cause overwriting of argument stack slots. 4132 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4133 (CallConv == CallingConv::Fast)); 4134 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4135 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4136 unsigned ArgOffset = LinkageSize; 4137 // Area that is at least reserved in caller of this function. 4138 unsigned MinReservedArea = ArgOffset; 4139 4140 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4141 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4142 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4143 }; 4144 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4145 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4146 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4147 }; 4148 static const MCPhysReg VR[] = { 4149 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4150 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4151 }; 4152 4153 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4154 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4155 const unsigned Num_VR_Regs = array_lengthof( VR); 4156 4157 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4158 4159 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4160 4161 // In 32-bit non-varargs functions, the stack space for vectors is after the 4162 // stack space for non-vectors. We do not use this space unless we have 4163 // too many vectors to fit in registers, something that only occurs in 4164 // constructed examples:), but we have to walk the arglist to figure 4165 // that out...for the pathological case, compute VecArgOffset as the 4166 // start of the vector parameter area. Computing VecArgOffset is the 4167 // entire point of the following loop. 4168 unsigned VecArgOffset = ArgOffset; 4169 if (!isVarArg && !isPPC64) { 4170 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4171 ++ArgNo) { 4172 EVT ObjectVT = Ins[ArgNo].VT; 4173 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4174 4175 if (Flags.isByVal()) { 4176 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4177 unsigned ObjSize = Flags.getByValSize(); 4178 unsigned ArgSize = 4179 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4180 VecArgOffset += ArgSize; 4181 continue; 4182 } 4183 4184 switch(ObjectVT.getSimpleVT().SimpleTy) { 4185 default: llvm_unreachable("Unhandled argument type!"); 4186 case MVT::i1: 4187 case MVT::i32: 4188 case MVT::f32: 4189 VecArgOffset += 4; 4190 break; 4191 case MVT::i64: // PPC64 4192 case MVT::f64: 4193 // FIXME: We are guaranteed to be !isPPC64 at this point. 4194 // Does MVT::i64 apply? 4195 VecArgOffset += 8; 4196 break; 4197 case MVT::v4f32: 4198 case MVT::v4i32: 4199 case MVT::v8i16: 4200 case MVT::v16i8: 4201 // Nothing to do, we're only looking at Nonvector args here. 4202 break; 4203 } 4204 } 4205 } 4206 // We've found where the vector parameter area in memory is. Skip the 4207 // first 12 parameters; these don't use that memory. 4208 VecArgOffset = ((VecArgOffset+15)/16)*16; 4209 VecArgOffset += 12*16; 4210 4211 // Add DAG nodes to load the arguments or copy them out of registers. On 4212 // entry to a function on PPC, the arguments start after the linkage area, 4213 // although the first ones are often in registers. 4214 4215 SmallVector<SDValue, 8> MemOps; 4216 unsigned nAltivecParamsAtEnd = 0; 4217 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4218 unsigned CurArgIdx = 0; 4219 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4220 SDValue ArgVal; 4221 bool needsLoad = false; 4222 EVT ObjectVT = Ins[ArgNo].VT; 4223 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4224 unsigned ArgSize = ObjSize; 4225 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4226 if (Ins[ArgNo].isOrigArg()) { 4227 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4228 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4229 } 4230 unsigned CurArgOffset = ArgOffset; 4231 4232 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4233 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4234 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4235 if (isVarArg || isPPC64) { 4236 MinReservedArea = ((MinReservedArea+15)/16)*16; 4237 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4238 Flags, 4239 PtrByteSize); 4240 } else nAltivecParamsAtEnd++; 4241 } else 4242 // Calculate min reserved area. 4243 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4244 Flags, 4245 PtrByteSize); 4246 4247 // FIXME the codegen can be much improved in some cases. 4248 // We do not have to keep everything in memory. 4249 if (Flags.isByVal()) { 4250 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4251 4252 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4253 ObjSize = Flags.getByValSize(); 4254 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4255 // Objects of size 1 and 2 are right justified, everything else is 4256 // left justified. This means the memory address is adjusted forwards. 4257 if (ObjSize==1 || ObjSize==2) { 4258 CurArgOffset = CurArgOffset + (4 - ObjSize); 4259 } 4260 // The value of the object is its address. 4261 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4262 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4263 InVals.push_back(FIN); 4264 if (ObjSize==1 || ObjSize==2) { 4265 if (GPR_idx != Num_GPR_Regs) { 4266 unsigned VReg; 4267 if (isPPC64) 4268 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4269 else 4270 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4271 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4272 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4273 SDValue Store = 4274 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4275 MachinePointerInfo(&*FuncArg), ObjType); 4276 MemOps.push_back(Store); 4277 ++GPR_idx; 4278 } 4279 4280 ArgOffset += PtrByteSize; 4281 4282 continue; 4283 } 4284 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4285 // Store whatever pieces of the object are in registers 4286 // to memory. ArgOffset will be the address of the beginning 4287 // of the object. 4288 if (GPR_idx != Num_GPR_Regs) { 4289 unsigned VReg; 4290 if (isPPC64) 4291 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4292 else 4293 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4294 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4295 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4296 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4297 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4298 MachinePointerInfo(&*FuncArg, j)); 4299 MemOps.push_back(Store); 4300 ++GPR_idx; 4301 ArgOffset += PtrByteSize; 4302 } else { 4303 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4304 break; 4305 } 4306 } 4307 continue; 4308 } 4309 4310 switch (ObjectVT.getSimpleVT().SimpleTy) { 4311 default: llvm_unreachable("Unhandled argument type!"); 4312 case MVT::i1: 4313 case MVT::i32: 4314 if (!isPPC64) { 4315 if (GPR_idx != Num_GPR_Regs) { 4316 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4317 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4318 4319 if (ObjectVT == MVT::i1) 4320 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4321 4322 ++GPR_idx; 4323 } else { 4324 needsLoad = true; 4325 ArgSize = PtrByteSize; 4326 } 4327 // All int arguments reserve stack space in the Darwin ABI. 4328 ArgOffset += PtrByteSize; 4329 break; 4330 } 4331 LLVM_FALLTHROUGH; 4332 case MVT::i64: // PPC64 4333 if (GPR_idx != Num_GPR_Regs) { 4334 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4335 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4336 4337 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4338 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4339 // value to MVT::i64 and then truncate to the correct register size. 4340 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4341 4342 ++GPR_idx; 4343 } else { 4344 needsLoad = true; 4345 ArgSize = PtrByteSize; 4346 } 4347 // All int arguments reserve stack space in the Darwin ABI. 4348 ArgOffset += 8; 4349 break; 4350 4351 case MVT::f32: 4352 case MVT::f64: 4353 // Every 4 bytes of argument space consumes one of the GPRs available for 4354 // argument passing. 4355 if (GPR_idx != Num_GPR_Regs) { 4356 ++GPR_idx; 4357 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4358 ++GPR_idx; 4359 } 4360 if (FPR_idx != Num_FPR_Regs) { 4361 unsigned VReg; 4362 4363 if (ObjectVT == MVT::f32) 4364 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4365 else 4366 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4367 4368 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4369 ++FPR_idx; 4370 } else { 4371 needsLoad = true; 4372 } 4373 4374 // All FP arguments reserve stack space in the Darwin ABI. 4375 ArgOffset += isPPC64 ? 8 : ObjSize; 4376 break; 4377 case MVT::v4f32: 4378 case MVT::v4i32: 4379 case MVT::v8i16: 4380 case MVT::v16i8: 4381 // Note that vector arguments in registers don't reserve stack space, 4382 // except in varargs functions. 4383 if (VR_idx != Num_VR_Regs) { 4384 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4385 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4386 if (isVarArg) { 4387 while ((ArgOffset % 16) != 0) { 4388 ArgOffset += PtrByteSize; 4389 if (GPR_idx != Num_GPR_Regs) 4390 GPR_idx++; 4391 } 4392 ArgOffset += 16; 4393 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4394 } 4395 ++VR_idx; 4396 } else { 4397 if (!isVarArg && !isPPC64) { 4398 // Vectors go after all the nonvectors. 4399 CurArgOffset = VecArgOffset; 4400 VecArgOffset += 16; 4401 } else { 4402 // Vectors are aligned. 4403 ArgOffset = ((ArgOffset+15)/16)*16; 4404 CurArgOffset = ArgOffset; 4405 ArgOffset += 16; 4406 } 4407 needsLoad = true; 4408 } 4409 break; 4410 } 4411 4412 // We need to load the argument to a virtual register if we determined above 4413 // that we ran out of physical registers of the appropriate type. 4414 if (needsLoad) { 4415 int FI = MFI.CreateFixedObject(ObjSize, 4416 CurArgOffset + (ArgSize - ObjSize), 4417 isImmutable); 4418 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4419 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4420 } 4421 4422 InVals.push_back(ArgVal); 4423 } 4424 4425 // Allow for Altivec parameters at the end, if needed. 4426 if (nAltivecParamsAtEnd) { 4427 MinReservedArea = ((MinReservedArea+15)/16)*16; 4428 MinReservedArea += 16*nAltivecParamsAtEnd; 4429 } 4430 4431 // Area that is at least reserved in the caller of this function. 4432 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4433 4434 // Set the size that is at least reserved in caller of this function. Tail 4435 // call optimized functions' reserved stack space needs to be aligned so that 4436 // taking the difference between two stack areas will result in an aligned 4437 // stack. 4438 MinReservedArea = 4439 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4440 FuncInfo->setMinReservedArea(MinReservedArea); 4441 4442 // If the function takes variable number of arguments, make a frame index for 4443 // the start of the first vararg value... for expansion of llvm.va_start. 4444 if (isVarArg) { 4445 int Depth = ArgOffset; 4446 4447 FuncInfo->setVarArgsFrameIndex( 4448 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4449 Depth, true)); 4450 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4451 4452 // If this function is vararg, store any remaining integer argument regs 4453 // to their spots on the stack so that they may be loaded by dereferencing 4454 // the result of va_next. 4455 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4456 unsigned VReg; 4457 4458 if (isPPC64) 4459 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4460 else 4461 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4462 4463 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4464 SDValue Store = 4465 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4466 MemOps.push_back(Store); 4467 // Increment the address by four for the next argument to store 4468 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4469 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4470 } 4471 } 4472 4473 if (!MemOps.empty()) 4474 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4475 4476 return Chain; 4477 } 4478 4479 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4480 /// adjusted to accommodate the arguments for the tailcall. 4481 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4482 unsigned ParamSize) { 4483 4484 if (!isTailCall) return 0; 4485 4486 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4487 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4488 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4489 // Remember only if the new adjustment is bigger. 4490 if (SPDiff < FI->getTailCallSPDelta()) 4491 FI->setTailCallSPDelta(SPDiff); 4492 4493 return SPDiff; 4494 } 4495 4496 static bool isFunctionGlobalAddress(SDValue Callee); 4497 4498 static bool 4499 callsShareTOCBase(const Function *Caller, SDValue Callee, 4500 const TargetMachine &TM) { 4501 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4502 // don't have enough information to determine if the caller and calle share 4503 // the same TOC base, so we have to pessimistically assume they don't for 4504 // correctness. 4505 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4506 if (!G) 4507 return false; 4508 4509 const GlobalValue *GV = G->getGlobal(); 4510 // The medium and large code models are expected to provide a sufficiently 4511 // large TOC to provide all data addressing needs of a module with a 4512 // single TOC. Since each module will be addressed with a single TOC then we 4513 // only need to check that caller and callee don't cross dso boundaries. 4514 if (CodeModel::Medium == TM.getCodeModel() || 4515 CodeModel::Large == TM.getCodeModel()) 4516 return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV); 4517 4518 // Otherwise we need to ensure callee and caller are in the same section, 4519 // since the linker may allocate multiple TOCs, and we don't know which 4520 // sections will belong to the same TOC base. 4521 4522 if (!GV->isStrongDefinitionForLinker()) 4523 return false; 4524 4525 // Any explicitly-specified sections and section prefixes must also match. 4526 // Also, if we're using -ffunction-sections, then each function is always in 4527 // a different section (the same is true for COMDAT functions). 4528 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4529 GV->getSection() != Caller->getSection()) 4530 return false; 4531 if (const auto *F = dyn_cast<Function>(GV)) { 4532 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4533 return false; 4534 } 4535 4536 // If the callee might be interposed, then we can't assume the ultimate call 4537 // target will be in the same section. Even in cases where we can assume that 4538 // interposition won't happen, in any case where the linker might insert a 4539 // stub to allow for interposition, we must generate code as though 4540 // interposition might occur. To understand why this matters, consider a 4541 // situation where: a -> b -> c where the arrows indicate calls. b and c are 4542 // in the same section, but a is in a different module (i.e. has a different 4543 // TOC base pointer). If the linker allows for interposition between b and c, 4544 // then it will generate a stub for the call edge between b and c which will 4545 // save the TOC pointer into the designated stack slot allocated by b. If we 4546 // return true here, and therefore allow a tail call between b and c, that 4547 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base 4548 // pointer into the stack slot allocated by a (where the a -> b stub saved 4549 // a's TOC base pointer). If we're not considering a tail call, but rather, 4550 // whether a nop is needed after the call instruction in b, because the linker 4551 // will insert a stub, it might complain about a missing nop if we omit it 4552 // (although many don't complain in this case). 4553 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4554 return false; 4555 4556 return true; 4557 } 4558 4559 static bool 4560 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4561 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4562 assert(Subtarget.is64BitELFABI()); 4563 4564 const unsigned PtrByteSize = 8; 4565 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4566 4567 static const MCPhysReg GPR[] = { 4568 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4569 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4570 }; 4571 static const MCPhysReg VR[] = { 4572 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4573 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4574 }; 4575 4576 const unsigned NumGPRs = array_lengthof(GPR); 4577 const unsigned NumFPRs = 13; 4578 const unsigned NumVRs = array_lengthof(VR); 4579 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4580 4581 unsigned NumBytes = LinkageSize; 4582 unsigned AvailableFPRs = NumFPRs; 4583 unsigned AvailableVRs = NumVRs; 4584 4585 for (const ISD::OutputArg& Param : Outs) { 4586 if (Param.Flags.isNest()) continue; 4587 4588 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4589 PtrByteSize, LinkageSize, ParamAreaSize, 4590 NumBytes, AvailableFPRs, AvailableVRs, 4591 Subtarget.hasQPX())) 4592 return true; 4593 } 4594 return false; 4595 } 4596 4597 static bool 4598 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) { 4599 if (CS.arg_size() != CallerFn->arg_size()) 4600 return false; 4601 4602 ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin(); 4603 ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end(); 4604 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4605 4606 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4607 const Value* CalleeArg = *CalleeArgIter; 4608 const Value* CallerArg = &(*CallerArgIter); 4609 if (CalleeArg == CallerArg) 4610 continue; 4611 4612 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4613 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4614 // } 4615 // 1st argument of callee is undef and has the same type as caller. 4616 if (CalleeArg->getType() == CallerArg->getType() && 4617 isa<UndefValue>(CalleeArg)) 4618 continue; 4619 4620 return false; 4621 } 4622 4623 return true; 4624 } 4625 4626 // Returns true if TCO is possible between the callers and callees 4627 // calling conventions. 4628 static bool 4629 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4630 CallingConv::ID CalleeCC) { 4631 // Tail calls are possible with fastcc and ccc. 4632 auto isTailCallableCC = [] (CallingConv::ID CC){ 4633 return CC == CallingConv::C || CC == CallingConv::Fast; 4634 }; 4635 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4636 return false; 4637 4638 // We can safely tail call both fastcc and ccc callees from a c calling 4639 // convention caller. If the caller is fastcc, we may have less stack space 4640 // than a non-fastcc caller with the same signature so disable tail-calls in 4641 // that case. 4642 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4643 } 4644 4645 bool 4646 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4647 SDValue Callee, 4648 CallingConv::ID CalleeCC, 4649 ImmutableCallSite CS, 4650 bool isVarArg, 4651 const SmallVectorImpl<ISD::OutputArg> &Outs, 4652 const SmallVectorImpl<ISD::InputArg> &Ins, 4653 SelectionDAG& DAG) const { 4654 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4655 4656 if (DisableSCO && !TailCallOpt) return false; 4657 4658 // Variadic argument functions are not supported. 4659 if (isVarArg) return false; 4660 4661 auto &Caller = DAG.getMachineFunction().getFunction(); 4662 // Check that the calling conventions are compatible for tco. 4663 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4664 return false; 4665 4666 // Caller contains any byval parameter is not supported. 4667 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4668 return false; 4669 4670 // Callee contains any byval parameter is not supported, too. 4671 // Note: This is a quick work around, because in some cases, e.g. 4672 // caller's stack size > callee's stack size, we are still able to apply 4673 // sibling call optimization. For example, gcc is able to do SCO for caller1 4674 // in the following example, but not for caller2. 4675 // struct test { 4676 // long int a; 4677 // char ary[56]; 4678 // } gTest; 4679 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4680 // b->a = v.a; 4681 // return 0; 4682 // } 4683 // void caller1(struct test a, struct test c, struct test *b) { 4684 // callee(gTest, b); } 4685 // void caller2(struct test *b) { callee(gTest, b); } 4686 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4687 return false; 4688 4689 // If callee and caller use different calling conventions, we cannot pass 4690 // parameters on stack since offsets for the parameter area may be different. 4691 if (Caller.getCallingConv() != CalleeCC && 4692 needStackSlotPassParameters(Subtarget, Outs)) 4693 return false; 4694 4695 // No TCO/SCO on indirect call because Caller have to restore its TOC 4696 if (!isFunctionGlobalAddress(Callee) && 4697 !isa<ExternalSymbolSDNode>(Callee)) 4698 return false; 4699 4700 // If the caller and callee potentially have different TOC bases then we 4701 // cannot tail call since we need to restore the TOC pointer after the call. 4702 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4703 if (!callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4704 return false; 4705 4706 // TCO allows altering callee ABI, so we don't have to check further. 4707 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4708 return true; 4709 4710 if (DisableSCO) return false; 4711 4712 // If callee use the same argument list that caller is using, then we can 4713 // apply SCO on this case. If it is not, then we need to check if callee needs 4714 // stack for passing arguments. 4715 if (!hasSameArgumentList(&Caller, CS) && 4716 needStackSlotPassParameters(Subtarget, Outs)) { 4717 return false; 4718 } 4719 4720 return true; 4721 } 4722 4723 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4724 /// for tail call optimization. Targets which want to do tail call 4725 /// optimization should implement this function. 4726 bool 4727 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4728 CallingConv::ID CalleeCC, 4729 bool isVarArg, 4730 const SmallVectorImpl<ISD::InputArg> &Ins, 4731 SelectionDAG& DAG) const { 4732 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4733 return false; 4734 4735 // Variable argument functions are not supported. 4736 if (isVarArg) 4737 return false; 4738 4739 MachineFunction &MF = DAG.getMachineFunction(); 4740 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4741 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4742 // Functions containing by val parameters are not supported. 4743 for (unsigned i = 0; i != Ins.size(); i++) { 4744 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4745 if (Flags.isByVal()) return false; 4746 } 4747 4748 // Non-PIC/GOT tail calls are supported. 4749 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4750 return true; 4751 4752 // At the moment we can only do local tail calls (in same module, hidden 4753 // or protected) if we are generating PIC. 4754 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4755 return G->getGlobal()->hasHiddenVisibility() 4756 || G->getGlobal()->hasProtectedVisibility(); 4757 } 4758 4759 return false; 4760 } 4761 4762 /// isCallCompatibleAddress - Return the immediate to use if the specified 4763 /// 32-bit value is representable in the immediate field of a BxA instruction. 4764 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4765 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4766 if (!C) return nullptr; 4767 4768 int Addr = C->getZExtValue(); 4769 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4770 SignExtend32<26>(Addr) != Addr) 4771 return nullptr; // Top 6 bits have to be sext of immediate. 4772 4773 return DAG 4774 .getConstant( 4775 (int)C->getZExtValue() >> 2, SDLoc(Op), 4776 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4777 .getNode(); 4778 } 4779 4780 namespace { 4781 4782 struct TailCallArgumentInfo { 4783 SDValue Arg; 4784 SDValue FrameIdxOp; 4785 int FrameIdx = 0; 4786 4787 TailCallArgumentInfo() = default; 4788 }; 4789 4790 } // end anonymous namespace 4791 4792 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4793 static void StoreTailCallArgumentsToStackSlot( 4794 SelectionDAG &DAG, SDValue Chain, 4795 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4796 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4797 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4798 SDValue Arg = TailCallArgs[i].Arg; 4799 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4800 int FI = TailCallArgs[i].FrameIdx; 4801 // Store relative to framepointer. 4802 MemOpChains.push_back(DAG.getStore( 4803 Chain, dl, Arg, FIN, 4804 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4805 } 4806 } 4807 4808 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4809 /// the appropriate stack slot for the tail call optimized function call. 4810 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4811 SDValue OldRetAddr, SDValue OldFP, 4812 int SPDiff, const SDLoc &dl) { 4813 if (SPDiff) { 4814 // Calculate the new stack slot for the return address. 4815 MachineFunction &MF = DAG.getMachineFunction(); 4816 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4817 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4818 bool isPPC64 = Subtarget.isPPC64(); 4819 int SlotSize = isPPC64 ? 8 : 4; 4820 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4821 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4822 NewRetAddrLoc, true); 4823 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4824 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4825 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4826 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4827 4828 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 4829 // slot as the FP is never overwritten. 4830 if (Subtarget.isDarwinABI()) { 4831 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 4832 int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc, 4833 true); 4834 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 4835 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 4836 MachinePointerInfo::getFixedStack( 4837 DAG.getMachineFunction(), NewFPIdx)); 4838 } 4839 } 4840 return Chain; 4841 } 4842 4843 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4844 /// the position of the argument. 4845 static void 4846 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4847 SDValue Arg, int SPDiff, unsigned ArgOffset, 4848 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4849 int Offset = ArgOffset + SPDiff; 4850 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4851 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4852 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4853 SDValue FIN = DAG.getFrameIndex(FI, VT); 4854 TailCallArgumentInfo Info; 4855 Info.Arg = Arg; 4856 Info.FrameIdxOp = FIN; 4857 Info.FrameIdx = FI; 4858 TailCallArguments.push_back(Info); 4859 } 4860 4861 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4862 /// stack slot. Returns the chain as result and the loaded frame pointers in 4863 /// LROpOut/FPOpout. Used when tail calling. 4864 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4865 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4866 SDValue &FPOpOut, const SDLoc &dl) const { 4867 if (SPDiff) { 4868 // Load the LR and FP stack slot for later adjusting. 4869 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4870 LROpOut = getReturnAddrFrameIndex(DAG); 4871 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4872 Chain = SDValue(LROpOut.getNode(), 1); 4873 4874 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 4875 // slot as the FP is never overwritten. 4876 if (Subtarget.isDarwinABI()) { 4877 FPOpOut = getFramePointerFrameIndex(DAG); 4878 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo()); 4879 Chain = SDValue(FPOpOut.getNode(), 1); 4880 } 4881 } 4882 return Chain; 4883 } 4884 4885 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4886 /// by "Src" to address "Dst" of size "Size". Alignment information is 4887 /// specified by the specific parameter attribute. The copy will be passed as 4888 /// a byval function parameter. 4889 /// Sometimes what we are copying is the end of a larger object, the part that 4890 /// does not fit in registers. 4891 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4892 SDValue Chain, ISD::ArgFlagsTy Flags, 4893 SelectionDAG &DAG, const SDLoc &dl) { 4894 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4895 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4896 false, false, false, MachinePointerInfo(), 4897 MachinePointerInfo()); 4898 } 4899 4900 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4901 /// tail calls. 4902 static void LowerMemOpCallTo( 4903 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4904 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4905 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4906 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4907 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4908 if (!isTailCall) { 4909 if (isVector) { 4910 SDValue StackPtr; 4911 if (isPPC64) 4912 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4913 else 4914 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4915 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4916 DAG.getConstant(ArgOffset, dl, PtrVT)); 4917 } 4918 MemOpChains.push_back( 4919 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4920 // Calculate and remember argument location. 4921 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4922 TailCallArguments); 4923 } 4924 4925 static void 4926 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4927 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4928 SDValue FPOp, 4929 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4930 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4931 // might overwrite each other in case of tail call optimization. 4932 SmallVector<SDValue, 8> MemOpChains2; 4933 // Do not flag preceding copytoreg stuff together with the following stuff. 4934 InFlag = SDValue(); 4935 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4936 MemOpChains2, dl); 4937 if (!MemOpChains2.empty()) 4938 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4939 4940 // Store the return address to the appropriate stack slot. 4941 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4942 4943 // Emit callseq_end just before tailcall node. 4944 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4945 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4946 InFlag = Chain.getValue(1); 4947 } 4948 4949 // Is this global address that of a function that can be called by name? (as 4950 // opposed to something that must hold a descriptor for an indirect call). 4951 static bool isFunctionGlobalAddress(SDValue Callee) { 4952 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4953 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4954 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4955 return false; 4956 4957 return G->getGlobal()->getValueType()->isFunctionTy(); 4958 } 4959 4960 return false; 4961 } 4962 4963 SDValue PPCTargetLowering::LowerCallResult( 4964 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 4965 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4966 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4967 SmallVector<CCValAssign, 16> RVLocs; 4968 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4969 *DAG.getContext()); 4970 4971 CCRetInfo.AnalyzeCallResult( 4972 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 4973 ? RetCC_PPC_Cold 4974 : RetCC_PPC); 4975 4976 // Copy all of the result registers out of their specified physreg. 4977 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4978 CCValAssign &VA = RVLocs[i]; 4979 assert(VA.isRegLoc() && "Can only return in registers!"); 4980 4981 SDValue Val; 4982 4983 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 4984 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 4985 InFlag); 4986 Chain = Lo.getValue(1); 4987 InFlag = Lo.getValue(2); 4988 VA = RVLocs[++i]; // skip ahead to next loc 4989 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 4990 InFlag); 4991 Chain = Hi.getValue(1); 4992 InFlag = Hi.getValue(2); 4993 if (!Subtarget.isLittleEndian()) 4994 std::swap (Lo, Hi); 4995 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 4996 } else { 4997 Val = DAG.getCopyFromReg(Chain, dl, 4998 VA.getLocReg(), VA.getLocVT(), InFlag); 4999 Chain = Val.getValue(1); 5000 InFlag = Val.getValue(2); 5001 } 5002 5003 switch (VA.getLocInfo()) { 5004 default: llvm_unreachable("Unknown loc info!"); 5005 case CCValAssign::Full: break; 5006 case CCValAssign::AExt: 5007 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5008 break; 5009 case CCValAssign::ZExt: 5010 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5011 DAG.getValueType(VA.getValVT())); 5012 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5013 break; 5014 case CCValAssign::SExt: 5015 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5016 DAG.getValueType(VA.getValVT())); 5017 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5018 break; 5019 } 5020 5021 InVals.push_back(Val); 5022 } 5023 5024 return Chain; 5025 } 5026 5027 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5028 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5029 // PatchPoint calls are not indirect. 5030 if (isPatchPoint) 5031 return false; 5032 5033 if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee)) 5034 return false; 5035 5036 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5037 // becuase the immediate function pointer points to a descriptor instead of 5038 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5039 // pointer immediate points to the global entry point, while the BLA would 5040 // need to jump to the local entry point (see rL211174). 5041 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5042 isBLACompatibleAddress(Callee, DAG)) 5043 return false; 5044 5045 return true; 5046 } 5047 5048 static unsigned getCallOpcode(bool isIndirectCall, bool isPatchPoint, 5049 bool isTailCall, const Function &Caller, 5050 const SDValue &Callee, 5051 const PPCSubtarget &Subtarget, 5052 const TargetMachine &TM) { 5053 if (isTailCall) 5054 return PPCISD::TC_RETURN; 5055 5056 // This is a call through a function pointer. 5057 if (isIndirectCall) { 5058 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5059 // indirect calls. The save of the caller's TOC pointer to the stack will be 5060 // inserted into the DAG as part of call lowering. The restore of the TOC 5061 // pointer is modeled by using a pseudo instruction for the call opcode that 5062 // represents the 2 instruction sequence of an indirect branch and link, 5063 // immediately followed by a load of the TOC pointer from the the stack save 5064 // slot into gpr2. 5065 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5066 return PPCISD::BCTRL_LOAD_TOC; 5067 5068 // An indirect call that does not need a TOC restore. 5069 return PPCISD::BCTRL; 5070 } 5071 5072 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5073 // immediately following the call instruction if the caller and callee may 5074 // have different TOC bases. At link time if the linker determines the calls 5075 // may not share a TOC base, the call is redirected to a trampoline inserted 5076 // by the linker. The trampoline will (among other things) save the callers 5077 // TOC pointer at an ABI designated offset in the linkage area and the linker 5078 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5079 // into gpr2. 5080 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5081 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5082 : PPCISD::CALL_NOP; 5083 5084 return PPCISD::CALL; 5085 } 5086 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5087 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5088 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5089 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5090 return SDValue(Dest, 0); 5091 5092 // Returns true if the callee is local, and false otherwise. 5093 auto isLocalCallee = [&]() { 5094 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5095 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5096 5097 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, 5098 G ? G->getGlobal() : nullptr); 5099 }; 5100 5101 bool UsePlt = Subtarget.is32BitELFABI() && !isLocalCallee(); 5102 5103 if (isFunctionGlobalAddress(Callee)) { 5104 const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 5105 if (!Subtarget.isAIXABI()) 5106 return DAG.getTargetGlobalAddress(G->getGlobal(), dl, 5107 Callee.getValueType(), 0, 5108 UsePlt ? PPCII::MO_PLT : 0); 5109 5110 // On AIX, direct function calls reference the symbol for the function's 5111 // entry point, which is named by prepending a "." before the function's 5112 // C-linkage name. 5113 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5114 5115 const GlobalObject *GO = cast<GlobalObject>(G->getGlobal()); 5116 MCSymbolXCOFF *S = cast<MCSymbolXCOFF>( 5117 Context.getOrCreateSymbol(Twine(".") + Twine(GO->getName()))); 5118 5119 if (GO && GO->isDeclaration() && !S->hasContainingCsect()) { 5120 // On AIX, an undefined symbol needs to be associated with a 5121 // MCSectionXCOFF to get the correct storage mapping class. 5122 // In this case, XCOFF::XMC_PR. 5123 const XCOFF::StorageClass SC = 5124 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO); 5125 MCSectionXCOFF *Sec = 5126 Context.getXCOFFSection(S->getName(), XCOFF::XMC_PR, XCOFF::XTY_ER, 5127 SC, SectionKind::getMetadata()); 5128 S->setContainingCsect(Sec); 5129 } 5130 5131 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5132 return DAG.getMCSymbol(S, PtrVT); 5133 } 5134 5135 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) 5136 return DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 5137 UsePlt ? PPCII::MO_PLT : 0); 5138 5139 // No transformation needed. 5140 assert(Callee.getNode() && "What no callee?"); 5141 return Callee; 5142 } 5143 5144 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5145 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5146 "Expected a CALLSEQ_STARTSDNode."); 5147 5148 // The last operand is the chain, except when the node has glue. If the node 5149 // has glue, then the last operand is the glue, and the chain is the second 5150 // last operand. 5151 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5152 if (LastValue.getValueType() != MVT::Glue) 5153 return LastValue; 5154 5155 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5156 } 5157 5158 // Creates the node that moves a functions address into the count register 5159 // to prepare for an indirect call instruction. 5160 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5161 SDValue &Glue, SDValue &Chain, 5162 const SDLoc &dl) { 5163 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5164 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5165 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5166 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5167 // The glue is the second value produced. 5168 Glue = Chain.getValue(1); 5169 } 5170 5171 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5172 SDValue &Glue, SDValue &Chain, 5173 SDValue CallSeqStart, 5174 ImmutableCallSite CS, const SDLoc &dl, 5175 bool hasNest, 5176 const PPCSubtarget &Subtarget) { 5177 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5178 // entry point, but to the function descriptor (the function entry point 5179 // address is part of the function descriptor though). 5180 // The function descriptor is a three doubleword structure with the 5181 // following fields: function entry point, TOC base address and 5182 // environment pointer. 5183 // Thus for a call through a function pointer, the following actions need 5184 // to be performed: 5185 // 1. Save the TOC of the caller in the TOC save area of its stack 5186 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5187 // 2. Load the address of the function entry point from the function 5188 // descriptor. 5189 // 3. Load the TOC of the callee from the function descriptor into r2. 5190 // 4. Load the environment pointer from the function descriptor into 5191 // r11. 5192 // 5. Branch to the function entry point address. 5193 // 6. On return of the callee, the TOC of the caller needs to be 5194 // restored (this is done in FinishCall()). 5195 // 5196 // The loads are scheduled at the beginning of the call sequence, and the 5197 // register copies are flagged together to ensure that no other 5198 // operations can be scheduled in between. E.g. without flagging the 5199 // copies together, a TOC access in the caller could be scheduled between 5200 // the assignment of the callee TOC and the branch to the callee, which leads 5201 // to incorrect code. 5202 5203 // Start by loading the function address from the descriptor. 5204 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5205 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5206 ? (MachineMemOperand::MODereferenceable | 5207 MachineMemOperand::MOInvariant) 5208 : MachineMemOperand::MONone; 5209 5210 MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr); 5211 5212 // One load for the functions entry point address. 5213 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 5214 /* Alignment = */ 8, MMOFlags); 5215 5216 // One for loading the TOC anchor for the module that contains the called 5217 // function. 5218 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 5219 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 5220 SDValue TOCPtr = 5221 DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8), 5222 /* Alignment = */ 8, MMOFlags); 5223 5224 // One for loading the environment pointer. 5225 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 5226 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 5227 SDValue LoadEnvPtr = 5228 DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16), 5229 /* Alignment = */ 8, MMOFlags); 5230 5231 // Then copy the newly loaded TOC anchor to the TOC pointer. 5232 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, Glue); 5233 Chain = TOCVal.getValue(0); 5234 Glue = TOCVal.getValue(1); 5235 5236 // If the function call has an explicit 'nest' parameter, it takes the 5237 // place of the environment pointer. 5238 if (!hasNest) { 5239 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, Glue); 5240 Chain = EnvVal.getValue(0); 5241 Glue = EnvVal.getValue(1); 5242 } 5243 5244 // The rest of the indirect call sequence is the same as the non-descriptor 5245 // DAG. 5246 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5247 } 5248 5249 static void 5250 buildCallOperands(SmallVectorImpl<SDValue> &Ops, CallingConv::ID CallConv, 5251 const SDLoc &dl, bool isTailCall, bool isVarArg, 5252 bool isPatchPoint, bool hasNest, SelectionDAG &DAG, 5253 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5254 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5255 const PPCSubtarget &Subtarget, bool isIndirect) { 5256 const bool IsPPC64 = Subtarget.isPPC64(); 5257 // MVT for a general purpose register. 5258 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5259 5260 // First operand is always the chain. 5261 Ops.push_back(Chain); 5262 5263 // If it's a direct call pass the callee as the second operand. 5264 if (!isIndirect) 5265 Ops.push_back(Callee); 5266 else { 5267 assert(!isPatchPoint && "Patch point call are not indirect."); 5268 if (Subtarget.isAIXABI()) 5269 report_fatal_error("Indirect call on AIX is not implemented."); 5270 5271 // For 64-bit ELF we have saved the TOC pointer to the linkage area on the 5272 // stack (this would have been done in `LowerCall_64SVR4`). The call 5273 // instruction is a pseudo instruction that represents both the indirect 5274 // branch and a load that restores the TOC pointer from the linkage area. 5275 // The operand for the TOC restore is an add of the TOC save offset to the 5276 // stack pointer. This must be the second operand: after the chain input but 5277 // before any other variadic arguments. 5278 if (Subtarget.is64BitELFABI()) { 5279 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5280 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5281 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5282 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 5283 Ops.push_back(AddTOC); 5284 } 5285 5286 // Add the register used for the environment pointer. 5287 if (Subtarget.usesFunctionDescriptors() && !hasNest) 5288 Ops.push_back(DAG.getRegister(PPC::X11, MVT::i64)); 5289 5290 // Add CTR register as callee so a bctr can be emitted later. 5291 if (isTailCall) 5292 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5293 } 5294 5295 // If this is a tail call add stack pointer delta. 5296 if (isTailCall) 5297 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5298 5299 // Add argument registers to the end of the list so that they are known live 5300 // into the call. 5301 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5302 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5303 RegsToPass[i].second.getValueType())); 5304 5305 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5306 // no way to mark dependencies as implicit here. 5307 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5308 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && !isPatchPoint) 5309 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::X2 : PPC::R2, RegVT)); 5310 5311 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5312 if (isVarArg && Subtarget.is32BitELFABI()) 5313 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5314 5315 // Add a register mask operand representing the call-preserved registers. 5316 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5317 const uint32_t *Mask = 5318 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 5319 assert(Mask && "Missing call preserved mask for calling convention"); 5320 Ops.push_back(DAG.getRegisterMask(Mask)); 5321 5322 // If the glue is valid, it is the last operand. 5323 if (Glue.getNode()) 5324 Ops.push_back(Glue); 5325 } 5326 5327 SDValue PPCTargetLowering::FinishCall( 5328 CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg, 5329 bool isPatchPoint, bool hasNest, SelectionDAG &DAG, 5330 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5331 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5332 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5333 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const { 5334 5335 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) 5336 setUsesTOCBasePtr(DAG); 5337 5338 const bool isIndirect = isIndirectCall(Callee, DAG, Subtarget, isPatchPoint); 5339 unsigned CallOpc = getCallOpcode(isIndirect, isPatchPoint, isTailCall, 5340 DAG.getMachineFunction().getFunction(), 5341 Callee, Subtarget, DAG.getTarget()); 5342 5343 if (!isIndirect) 5344 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5345 else if (Subtarget.usesFunctionDescriptors()) 5346 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CS, 5347 dl, hasNest, Subtarget); 5348 else 5349 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5350 5351 // Build the operand list for the call instruction. 5352 SmallVector<SDValue, 8> Ops; 5353 buildCallOperands(Ops, CallConv, dl, isTailCall, isVarArg, isPatchPoint, 5354 hasNest, DAG, RegsToPass, Glue, Chain, Callee, SPDiff, 5355 Subtarget, isIndirect); 5356 5357 // Emit tail call. 5358 if (isTailCall) { 5359 assert(((Callee.getOpcode() == ISD::Register && 5360 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5361 Callee.getOpcode() == ISD::TargetExternalSymbol || 5362 Callee.getOpcode() == ISD::TargetGlobalAddress || 5363 isa<ConstantSDNode>(Callee)) && 5364 "Expecting a global address, external symbol, absolute value or " 5365 "register"); 5366 assert(CallOpc == PPCISD::TC_RETURN && 5367 "Unexpected call opcode for a tail call."); 5368 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5369 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5370 } 5371 5372 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5373 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5374 Glue = Chain.getValue(1); 5375 5376 // When performing tail call optimization the callee pops its arguments off 5377 // the stack. Account for this here so these bytes can be pushed back on in 5378 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5379 int BytesCalleePops = (CallConv == CallingConv::Fast && 5380 getTargetMachine().Options.GuaranteedTailCallOpt) 5381 ? NumBytes 5382 : 0; 5383 5384 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5385 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5386 Glue, dl); 5387 Glue = Chain.getValue(1); 5388 5389 return LowerCallResult(Chain, Glue, CallConv, isVarArg, Ins, dl, DAG, InVals); 5390 } 5391 5392 SDValue 5393 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5394 SmallVectorImpl<SDValue> &InVals) const { 5395 SelectionDAG &DAG = CLI.DAG; 5396 SDLoc &dl = CLI.DL; 5397 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5398 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5399 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5400 SDValue Chain = CLI.Chain; 5401 SDValue Callee = CLI.Callee; 5402 bool &isTailCall = CLI.IsTailCall; 5403 CallingConv::ID CallConv = CLI.CallConv; 5404 bool isVarArg = CLI.IsVarArg; 5405 bool isPatchPoint = CLI.IsPatchPoint; 5406 ImmutableCallSite CS = CLI.CS; 5407 5408 if (isTailCall) { 5409 if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall())) 5410 isTailCall = false; 5411 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5412 isTailCall = 5413 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 5414 isVarArg, Outs, Ins, DAG); 5415 else 5416 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5417 Ins, DAG); 5418 if (isTailCall) { 5419 ++NumTailCalls; 5420 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5421 ++NumSiblingCalls; 5422 5423 assert(isa<GlobalAddressSDNode>(Callee) && 5424 "Callee should be an llvm::Function object."); 5425 LLVM_DEBUG( 5426 const GlobalValue *GV = 5427 cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5428 const unsigned Width = 5429 80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0"); 5430 dbgs() << "TCO caller: " 5431 << left_justify(DAG.getMachineFunction().getName(), Width) 5432 << ", callee linkage: " << GV->getVisibility() << ", " 5433 << GV->getLinkage() << "\n"); 5434 } 5435 } 5436 5437 if (!isTailCall && CS && CS.isMustTailCall()) 5438 report_fatal_error("failed to perform tail call elimination on a call " 5439 "site marked musttail"); 5440 5441 // When long calls (i.e. indirect calls) are always used, calls are always 5442 // made via function pointer. If we have a function name, first translate it 5443 // into a pointer. 5444 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5445 !isTailCall) 5446 Callee = LowerGlobalAddress(Callee, DAG); 5447 5448 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5449 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 5450 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5451 dl, DAG, InVals, CS); 5452 5453 if (Subtarget.isSVR4ABI()) 5454 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 5455 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5456 dl, DAG, InVals, CS); 5457 5458 if (Subtarget.isAIXABI()) 5459 return LowerCall_AIX(Chain, Callee, CallConv, isVarArg, 5460 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5461 dl, DAG, InVals, CS); 5462 5463 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 5464 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5465 dl, DAG, InVals, CS); 5466 } 5467 5468 SDValue PPCTargetLowering::LowerCall_32SVR4( 5469 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5470 bool isTailCall, bool isPatchPoint, 5471 const SmallVectorImpl<ISD::OutputArg> &Outs, 5472 const SmallVectorImpl<SDValue> &OutVals, 5473 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5474 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5475 ImmutableCallSite CS) const { 5476 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5477 // of the 32-bit SVR4 ABI stack frame layout. 5478 5479 assert((CallConv == CallingConv::C || 5480 CallConv == CallingConv::Cold || 5481 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5482 5483 unsigned PtrByteSize = 4; 5484 5485 MachineFunction &MF = DAG.getMachineFunction(); 5486 5487 // Mark this function as potentially containing a function that contains a 5488 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5489 // and restoring the callers stack pointer in this functions epilog. This is 5490 // done because by tail calling the called function might overwrite the value 5491 // in this function's (MF) stack pointer stack slot 0(SP). 5492 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5493 CallConv == CallingConv::Fast) 5494 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5495 5496 // Count how many bytes are to be pushed on the stack, including the linkage 5497 // area, parameter list area and the part of the local variable space which 5498 // contains copies of aggregates which are passed by value. 5499 5500 // Assign locations to all of the outgoing arguments. 5501 SmallVector<CCValAssign, 16> ArgLocs; 5502 PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 5503 5504 // Reserve space for the linkage area on the stack. 5505 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5506 PtrByteSize); 5507 if (useSoftFloat()) 5508 CCInfo.PreAnalyzeCallOperands(Outs); 5509 5510 if (isVarArg) { 5511 // Handle fixed and variable vector arguments differently. 5512 // Fixed vector arguments go into registers as long as registers are 5513 // available. Variable vector arguments always go into memory. 5514 unsigned NumArgs = Outs.size(); 5515 5516 for (unsigned i = 0; i != NumArgs; ++i) { 5517 MVT ArgVT = Outs[i].VT; 5518 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5519 bool Result; 5520 5521 if (Outs[i].IsFixed) { 5522 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5523 CCInfo); 5524 } else { 5525 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5526 ArgFlags, CCInfo); 5527 } 5528 5529 if (Result) { 5530 #ifndef NDEBUG 5531 errs() << "Call operand #" << i << " has unhandled type " 5532 << EVT(ArgVT).getEVTString() << "\n"; 5533 #endif 5534 llvm_unreachable(nullptr); 5535 } 5536 } 5537 } else { 5538 // All arguments are treated the same. 5539 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5540 } 5541 CCInfo.clearWasPPCF128(); 5542 5543 // Assign locations to all of the outgoing aggregate by value arguments. 5544 SmallVector<CCValAssign, 16> ByValArgLocs; 5545 CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext()); 5546 5547 // Reserve stack space for the allocations in CCInfo. 5548 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 5549 5550 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5551 5552 // Size of the linkage area, parameter list area and the part of the local 5553 // space variable where copies of aggregates which are passed by value are 5554 // stored. 5555 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5556 5557 // Calculate by how many bytes the stack has to be adjusted in case of tail 5558 // call optimization. 5559 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5560 5561 // Adjust the stack pointer for the new arguments... 5562 // These operations are automatically eliminated by the prolog/epilog pass 5563 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5564 SDValue CallSeqStart = Chain; 5565 5566 // Load the return address and frame pointer so it can be moved somewhere else 5567 // later. 5568 SDValue LROp, FPOp; 5569 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5570 5571 // Set up a copy of the stack pointer for use loading and storing any 5572 // arguments that may not fit in the registers available for argument 5573 // passing. 5574 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5575 5576 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5577 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5578 SmallVector<SDValue, 8> MemOpChains; 5579 5580 bool seenFloatArg = false; 5581 // Walk the register/memloc assignments, inserting copies/loads. 5582 // i - Tracks the index into the list of registers allocated for the call 5583 // RealArgIdx - Tracks the index into the list of actual function arguments 5584 // j - Tracks the index into the list of byval arguments 5585 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5586 i != e; 5587 ++i, ++RealArgIdx) { 5588 CCValAssign &VA = ArgLocs[i]; 5589 SDValue Arg = OutVals[RealArgIdx]; 5590 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5591 5592 if (Flags.isByVal()) { 5593 // Argument is an aggregate which is passed by value, thus we need to 5594 // create a copy of it in the local variable space of the current stack 5595 // frame (which is the stack frame of the caller) and pass the address of 5596 // this copy to the callee. 5597 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5598 CCValAssign &ByValVA = ByValArgLocs[j++]; 5599 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5600 5601 // Memory reserved in the local variable space of the callers stack frame. 5602 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5603 5604 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5605 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5606 StackPtr, PtrOff); 5607 5608 // Create a copy of the argument in the local area of the current 5609 // stack frame. 5610 SDValue MemcpyCall = 5611 CreateCopyOfByValArgument(Arg, PtrOff, 5612 CallSeqStart.getNode()->getOperand(0), 5613 Flags, DAG, dl); 5614 5615 // This must go outside the CALLSEQ_START..END. 5616 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5617 SDLoc(MemcpyCall)); 5618 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5619 NewCallSeqStart.getNode()); 5620 Chain = CallSeqStart = NewCallSeqStart; 5621 5622 // Pass the address of the aggregate copy on the stack either in a 5623 // physical register or in the parameter list area of the current stack 5624 // frame to the callee. 5625 Arg = PtrOff; 5626 } 5627 5628 // When useCRBits() is true, there can be i1 arguments. 5629 // It is because getRegisterType(MVT::i1) => MVT::i1, 5630 // and for other integer types getRegisterType() => MVT::i32. 5631 // Extend i1 and ensure callee will get i32. 5632 if (Arg.getValueType() == MVT::i1) 5633 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5634 dl, MVT::i32, Arg); 5635 5636 if (VA.isRegLoc()) { 5637 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5638 // Put argument in a physical register. 5639 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5640 bool IsLE = Subtarget.isLittleEndian(); 5641 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5642 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5643 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5644 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5645 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5646 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5647 SVal.getValue(0))); 5648 } else 5649 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5650 } else { 5651 // Put argument in the parameter list area of the current stack frame. 5652 assert(VA.isMemLoc()); 5653 unsigned LocMemOffset = VA.getLocMemOffset(); 5654 5655 if (!isTailCall) { 5656 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5657 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5658 StackPtr, PtrOff); 5659 5660 MemOpChains.push_back( 5661 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5662 } else { 5663 // Calculate and remember argument location. 5664 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5665 TailCallArguments); 5666 } 5667 } 5668 } 5669 5670 if (!MemOpChains.empty()) 5671 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5672 5673 // Build a sequence of copy-to-reg nodes chained together with token chain 5674 // and flag operands which copy the outgoing args into the appropriate regs. 5675 SDValue InFlag; 5676 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5677 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5678 RegsToPass[i].second, InFlag); 5679 InFlag = Chain.getValue(1); 5680 } 5681 5682 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5683 // registers. 5684 if (isVarArg) { 5685 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5686 SDValue Ops[] = { Chain, InFlag }; 5687 5688 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5689 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5690 5691 InFlag = Chain.getValue(1); 5692 } 5693 5694 if (isTailCall) 5695 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5696 TailCallArguments); 5697 5698 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 5699 /* unused except on PPC64 ELFv1 */ false, DAG, 5700 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5701 NumBytes, Ins, InVals, CS); 5702 } 5703 5704 // Copy an argument into memory, being careful to do this outside the 5705 // call sequence for the call to which the argument belongs. 5706 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5707 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5708 SelectionDAG &DAG, const SDLoc &dl) const { 5709 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5710 CallSeqStart.getNode()->getOperand(0), 5711 Flags, DAG, dl); 5712 // The MEMCPY must go outside the CALLSEQ_START..END. 5713 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5714 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5715 SDLoc(MemcpyCall)); 5716 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5717 NewCallSeqStart.getNode()); 5718 return NewCallSeqStart; 5719 } 5720 5721 SDValue PPCTargetLowering::LowerCall_64SVR4( 5722 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5723 bool isTailCall, bool isPatchPoint, 5724 const SmallVectorImpl<ISD::OutputArg> &Outs, 5725 const SmallVectorImpl<SDValue> &OutVals, 5726 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5727 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5728 ImmutableCallSite CS) const { 5729 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5730 bool isLittleEndian = Subtarget.isLittleEndian(); 5731 unsigned NumOps = Outs.size(); 5732 bool hasNest = false; 5733 bool IsSibCall = false; 5734 5735 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5736 unsigned PtrByteSize = 8; 5737 5738 MachineFunction &MF = DAG.getMachineFunction(); 5739 5740 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5741 IsSibCall = true; 5742 5743 // Mark this function as potentially containing a function that contains a 5744 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5745 // and restoring the callers stack pointer in this functions epilog. This is 5746 // done because by tail calling the called function might overwrite the value 5747 // in this function's (MF) stack pointer stack slot 0(SP). 5748 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5749 CallConv == CallingConv::Fast) 5750 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5751 5752 assert(!(CallConv == CallingConv::Fast && isVarArg) && 5753 "fastcc not supported on varargs functions"); 5754 5755 // Count how many bytes are to be pushed on the stack, including the linkage 5756 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5757 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5758 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5759 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5760 unsigned NumBytes = LinkageSize; 5761 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5762 unsigned &QFPR_idx = FPR_idx; 5763 5764 static const MCPhysReg GPR[] = { 5765 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5766 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5767 }; 5768 static const MCPhysReg VR[] = { 5769 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5770 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5771 }; 5772 5773 const unsigned NumGPRs = array_lengthof(GPR); 5774 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5775 const unsigned NumVRs = array_lengthof(VR); 5776 const unsigned NumQFPRs = NumFPRs; 5777 5778 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5779 // can be passed to the callee in registers. 5780 // For the fast calling convention, there is another check below. 5781 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5782 bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast; 5783 if (!HasParameterArea) { 5784 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5785 unsigned AvailableFPRs = NumFPRs; 5786 unsigned AvailableVRs = NumVRs; 5787 unsigned NumBytesTmp = NumBytes; 5788 for (unsigned i = 0; i != NumOps; ++i) { 5789 if (Outs[i].Flags.isNest()) continue; 5790 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5791 PtrByteSize, LinkageSize, ParamAreaSize, 5792 NumBytesTmp, AvailableFPRs, AvailableVRs, 5793 Subtarget.hasQPX())) 5794 HasParameterArea = true; 5795 } 5796 } 5797 5798 // When using the fast calling convention, we don't provide backing for 5799 // arguments that will be in registers. 5800 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5801 5802 // Avoid allocating parameter area for fastcc functions if all the arguments 5803 // can be passed in the registers. 5804 if (CallConv == CallingConv::Fast) 5805 HasParameterArea = false; 5806 5807 // Add up all the space actually used. 5808 for (unsigned i = 0; i != NumOps; ++i) { 5809 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5810 EVT ArgVT = Outs[i].VT; 5811 EVT OrigVT = Outs[i].ArgVT; 5812 5813 if (Flags.isNest()) 5814 continue; 5815 5816 if (CallConv == CallingConv::Fast) { 5817 if (Flags.isByVal()) { 5818 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5819 if (NumGPRsUsed > NumGPRs) 5820 HasParameterArea = true; 5821 } else { 5822 switch (ArgVT.getSimpleVT().SimpleTy) { 5823 default: llvm_unreachable("Unexpected ValueType for argument!"); 5824 case MVT::i1: 5825 case MVT::i32: 5826 case MVT::i64: 5827 if (++NumGPRsUsed <= NumGPRs) 5828 continue; 5829 break; 5830 case MVT::v4i32: 5831 case MVT::v8i16: 5832 case MVT::v16i8: 5833 case MVT::v2f64: 5834 case MVT::v2i64: 5835 case MVT::v1i128: 5836 case MVT::f128: 5837 if (++NumVRsUsed <= NumVRs) 5838 continue; 5839 break; 5840 case MVT::v4f32: 5841 // When using QPX, this is handled like a FP register, otherwise, it 5842 // is an Altivec register. 5843 if (Subtarget.hasQPX()) { 5844 if (++NumFPRsUsed <= NumFPRs) 5845 continue; 5846 } else { 5847 if (++NumVRsUsed <= NumVRs) 5848 continue; 5849 } 5850 break; 5851 case MVT::f32: 5852 case MVT::f64: 5853 case MVT::v4f64: // QPX 5854 case MVT::v4i1: // QPX 5855 if (++NumFPRsUsed <= NumFPRs) 5856 continue; 5857 break; 5858 } 5859 HasParameterArea = true; 5860 } 5861 } 5862 5863 /* Respect alignment of argument on the stack. */ 5864 unsigned Align = 5865 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5866 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 5867 5868 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5869 if (Flags.isInConsecutiveRegsLast()) 5870 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5871 } 5872 5873 unsigned NumBytesActuallyUsed = NumBytes; 5874 5875 // In the old ELFv1 ABI, 5876 // the prolog code of the callee may store up to 8 GPR argument registers to 5877 // the stack, allowing va_start to index over them in memory if its varargs. 5878 // Because we cannot tell if this is needed on the caller side, we have to 5879 // conservatively assume that it is needed. As such, make sure we have at 5880 // least enough stack space for the caller to store the 8 GPRs. 5881 // In the ELFv2 ABI, we allocate the parameter area iff a callee 5882 // really requires memory operands, e.g. a vararg function. 5883 if (HasParameterArea) 5884 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5885 else 5886 NumBytes = LinkageSize; 5887 5888 // Tail call needs the stack to be aligned. 5889 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5890 CallConv == CallingConv::Fast) 5891 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5892 5893 int SPDiff = 0; 5894 5895 // Calculate by how many bytes the stack has to be adjusted in case of tail 5896 // call optimization. 5897 if (!IsSibCall) 5898 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5899 5900 // To protect arguments on the stack from being clobbered in a tail call, 5901 // force all the loads to happen before doing any other lowering. 5902 if (isTailCall) 5903 Chain = DAG.getStackArgumentTokenFactor(Chain); 5904 5905 // Adjust the stack pointer for the new arguments... 5906 // These operations are automatically eliminated by the prolog/epilog pass 5907 if (!IsSibCall) 5908 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5909 SDValue CallSeqStart = Chain; 5910 5911 // Load the return address and frame pointer so it can be move somewhere else 5912 // later. 5913 SDValue LROp, FPOp; 5914 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5915 5916 // Set up a copy of the stack pointer for use loading and storing any 5917 // arguments that may not fit in the registers available for argument 5918 // passing. 5919 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5920 5921 // Figure out which arguments are going to go in registers, and which in 5922 // memory. Also, if this is a vararg function, floating point operations 5923 // must be stored to our stack, and loaded into integer regs as well, if 5924 // any integer regs are available for argument passing. 5925 unsigned ArgOffset = LinkageSize; 5926 5927 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5928 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5929 5930 SmallVector<SDValue, 8> MemOpChains; 5931 for (unsigned i = 0; i != NumOps; ++i) { 5932 SDValue Arg = OutVals[i]; 5933 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5934 EVT ArgVT = Outs[i].VT; 5935 EVT OrigVT = Outs[i].ArgVT; 5936 5937 // PtrOff will be used to store the current argument to the stack if a 5938 // register cannot be found for it. 5939 SDValue PtrOff; 5940 5941 // We re-align the argument offset for each argument, except when using the 5942 // fast calling convention, when we need to make sure we do that only when 5943 // we'll actually use a stack slot. 5944 auto ComputePtrOff = [&]() { 5945 /* Respect alignment of argument on the stack. */ 5946 unsigned Align = 5947 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5948 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 5949 5950 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5951 5952 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5953 }; 5954 5955 if (CallConv != CallingConv::Fast) { 5956 ComputePtrOff(); 5957 5958 /* Compute GPR index associated with argument offset. */ 5959 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 5960 GPR_idx = std::min(GPR_idx, NumGPRs); 5961 } 5962 5963 // Promote integers to 64-bit values. 5964 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 5965 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5966 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5967 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5968 } 5969 5970 // FIXME memcpy is used way more than necessary. Correctness first. 5971 // Note: "by value" is code for passing a structure by value, not 5972 // basic types. 5973 if (Flags.isByVal()) { 5974 // Note: Size includes alignment padding, so 5975 // struct x { short a; char b; } 5976 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 5977 // These are the proper values we need for right-justifying the 5978 // aggregate in a parameter register. 5979 unsigned Size = Flags.getByValSize(); 5980 5981 // An empty aggregate parameter takes up no storage and no 5982 // registers. 5983 if (Size == 0) 5984 continue; 5985 5986 if (CallConv == CallingConv::Fast) 5987 ComputePtrOff(); 5988 5989 // All aggregates smaller than 8 bytes must be passed right-justified. 5990 if (Size==1 || Size==2 || Size==4) { 5991 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 5992 if (GPR_idx != NumGPRs) { 5993 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5994 MachinePointerInfo(), VT); 5995 MemOpChains.push_back(Load.getValue(1)); 5996 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5997 5998 ArgOffset += PtrByteSize; 5999 continue; 6000 } 6001 } 6002 6003 if (GPR_idx == NumGPRs && Size < 8) { 6004 SDValue AddPtr = PtrOff; 6005 if (!isLittleEndian) { 6006 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6007 PtrOff.getValueType()); 6008 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6009 } 6010 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6011 CallSeqStart, 6012 Flags, DAG, dl); 6013 ArgOffset += PtrByteSize; 6014 continue; 6015 } 6016 // Copy entire object into memory. There are cases where gcc-generated 6017 // code assumes it is there, even if it could be put entirely into 6018 // registers. (This is not what the doc says.) 6019 6020 // FIXME: The above statement is likely due to a misunderstanding of the 6021 // documents. All arguments must be copied into the parameter area BY 6022 // THE CALLEE in the event that the callee takes the address of any 6023 // formal argument. That has not yet been implemented. However, it is 6024 // reasonable to use the stack area as a staging area for the register 6025 // load. 6026 6027 // Skip this for small aggregates, as we will use the same slot for a 6028 // right-justified copy, below. 6029 if (Size >= 8) 6030 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6031 CallSeqStart, 6032 Flags, DAG, dl); 6033 6034 // When a register is available, pass a small aggregate right-justified. 6035 if (Size < 8 && GPR_idx != NumGPRs) { 6036 // The easiest way to get this right-justified in a register 6037 // is to copy the structure into the rightmost portion of a 6038 // local variable slot, then load the whole slot into the 6039 // register. 6040 // FIXME: The memcpy seems to produce pretty awful code for 6041 // small aggregates, particularly for packed ones. 6042 // FIXME: It would be preferable to use the slot in the 6043 // parameter save area instead of a new local variable. 6044 SDValue AddPtr = PtrOff; 6045 if (!isLittleEndian) { 6046 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6047 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6048 } 6049 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6050 CallSeqStart, 6051 Flags, DAG, dl); 6052 6053 // Load the slot into the register. 6054 SDValue Load = 6055 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6056 MemOpChains.push_back(Load.getValue(1)); 6057 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6058 6059 // Done with this argument. 6060 ArgOffset += PtrByteSize; 6061 continue; 6062 } 6063 6064 // For aggregates larger than PtrByteSize, copy the pieces of the 6065 // object that fit into registers from the parameter save area. 6066 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6067 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6068 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6069 if (GPR_idx != NumGPRs) { 6070 SDValue Load = 6071 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6072 MemOpChains.push_back(Load.getValue(1)); 6073 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6074 ArgOffset += PtrByteSize; 6075 } else { 6076 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6077 break; 6078 } 6079 } 6080 continue; 6081 } 6082 6083 switch (Arg.getSimpleValueType().SimpleTy) { 6084 default: llvm_unreachable("Unexpected ValueType for argument!"); 6085 case MVT::i1: 6086 case MVT::i32: 6087 case MVT::i64: 6088 if (Flags.isNest()) { 6089 // The 'nest' parameter, if any, is passed in R11. 6090 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6091 hasNest = true; 6092 break; 6093 } 6094 6095 // These can be scalar arguments or elements of an integer array type 6096 // passed directly. Clang may use those instead of "byval" aggregate 6097 // types to avoid forcing arguments to memory unnecessarily. 6098 if (GPR_idx != NumGPRs) { 6099 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6100 } else { 6101 if (CallConv == CallingConv::Fast) 6102 ComputePtrOff(); 6103 6104 assert(HasParameterArea && 6105 "Parameter area must exist to pass an argument in memory."); 6106 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6107 true, isTailCall, false, MemOpChains, 6108 TailCallArguments, dl); 6109 if (CallConv == CallingConv::Fast) 6110 ArgOffset += PtrByteSize; 6111 } 6112 if (CallConv != CallingConv::Fast) 6113 ArgOffset += PtrByteSize; 6114 break; 6115 case MVT::f32: 6116 case MVT::f64: { 6117 // These can be scalar arguments or elements of a float array type 6118 // passed directly. The latter are used to implement ELFv2 homogenous 6119 // float aggregates. 6120 6121 // Named arguments go into FPRs first, and once they overflow, the 6122 // remaining arguments go into GPRs and then the parameter save area. 6123 // Unnamed arguments for vararg functions always go to GPRs and 6124 // then the parameter save area. For now, put all arguments to vararg 6125 // routines always in both locations (FPR *and* GPR or stack slot). 6126 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 6127 bool NeededLoad = false; 6128 6129 // First load the argument into the next available FPR. 6130 if (FPR_idx != NumFPRs) 6131 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6132 6133 // Next, load the argument into GPR or stack slot if needed. 6134 if (!NeedGPROrStack) 6135 ; 6136 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 6137 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6138 // once we support fp <-> gpr moves. 6139 6140 // In the non-vararg case, this can only ever happen in the 6141 // presence of f32 array types, since otherwise we never run 6142 // out of FPRs before running out of GPRs. 6143 SDValue ArgVal; 6144 6145 // Double values are always passed in a single GPR. 6146 if (Arg.getValueType() != MVT::f32) { 6147 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6148 6149 // Non-array float values are extended and passed in a GPR. 6150 } else if (!Flags.isInConsecutiveRegs()) { 6151 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6152 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6153 6154 // If we have an array of floats, we collect every odd element 6155 // together with its predecessor into one GPR. 6156 } else if (ArgOffset % PtrByteSize != 0) { 6157 SDValue Lo, Hi; 6158 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6159 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6160 if (!isLittleEndian) 6161 std::swap(Lo, Hi); 6162 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6163 6164 // The final element, if even, goes into the first half of a GPR. 6165 } else if (Flags.isInConsecutiveRegsLast()) { 6166 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6167 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6168 if (!isLittleEndian) 6169 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6170 DAG.getConstant(32, dl, MVT::i32)); 6171 6172 // Non-final even elements are skipped; they will be handled 6173 // together the with subsequent argument on the next go-around. 6174 } else 6175 ArgVal = SDValue(); 6176 6177 if (ArgVal.getNode()) 6178 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6179 } else { 6180 if (CallConv == CallingConv::Fast) 6181 ComputePtrOff(); 6182 6183 // Single-precision floating-point values are mapped to the 6184 // second (rightmost) word of the stack doubleword. 6185 if (Arg.getValueType() == MVT::f32 && 6186 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6187 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6188 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6189 } 6190 6191 assert(HasParameterArea && 6192 "Parameter area must exist to pass an argument in memory."); 6193 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6194 true, isTailCall, false, MemOpChains, 6195 TailCallArguments, dl); 6196 6197 NeededLoad = true; 6198 } 6199 // When passing an array of floats, the array occupies consecutive 6200 // space in the argument area; only round up to the next doubleword 6201 // at the end of the array. Otherwise, each float takes 8 bytes. 6202 if (CallConv != CallingConv::Fast || NeededLoad) { 6203 ArgOffset += (Arg.getValueType() == MVT::f32 && 6204 Flags.isInConsecutiveRegs()) ? 4 : 8; 6205 if (Flags.isInConsecutiveRegsLast()) 6206 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6207 } 6208 break; 6209 } 6210 case MVT::v4f32: 6211 case MVT::v4i32: 6212 case MVT::v8i16: 6213 case MVT::v16i8: 6214 case MVT::v2f64: 6215 case MVT::v2i64: 6216 case MVT::v1i128: 6217 case MVT::f128: 6218 if (!Subtarget.hasQPX()) { 6219 // These can be scalar arguments or elements of a vector array type 6220 // passed directly. The latter are used to implement ELFv2 homogenous 6221 // vector aggregates. 6222 6223 // For a varargs call, named arguments go into VRs or on the stack as 6224 // usual; unnamed arguments always go to the stack or the corresponding 6225 // GPRs when within range. For now, we always put the value in both 6226 // locations (or even all three). 6227 if (isVarArg) { 6228 assert(HasParameterArea && 6229 "Parameter area must exist if we have a varargs call."); 6230 // We could elide this store in the case where the object fits 6231 // entirely in R registers. Maybe later. 6232 SDValue Store = 6233 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6234 MemOpChains.push_back(Store); 6235 if (VR_idx != NumVRs) { 6236 SDValue Load = 6237 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6238 MemOpChains.push_back(Load.getValue(1)); 6239 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6240 } 6241 ArgOffset += 16; 6242 for (unsigned i=0; i<16; i+=PtrByteSize) { 6243 if (GPR_idx == NumGPRs) 6244 break; 6245 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6246 DAG.getConstant(i, dl, PtrVT)); 6247 SDValue Load = 6248 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6249 MemOpChains.push_back(Load.getValue(1)); 6250 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6251 } 6252 break; 6253 } 6254 6255 // Non-varargs Altivec params go into VRs or on the stack. 6256 if (VR_idx != NumVRs) { 6257 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6258 } else { 6259 if (CallConv == CallingConv::Fast) 6260 ComputePtrOff(); 6261 6262 assert(HasParameterArea && 6263 "Parameter area must exist to pass an argument in memory."); 6264 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6265 true, isTailCall, true, MemOpChains, 6266 TailCallArguments, dl); 6267 if (CallConv == CallingConv::Fast) 6268 ArgOffset += 16; 6269 } 6270 6271 if (CallConv != CallingConv::Fast) 6272 ArgOffset += 16; 6273 break; 6274 } // not QPX 6275 6276 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 6277 "Invalid QPX parameter type"); 6278 6279 LLVM_FALLTHROUGH; 6280 case MVT::v4f64: 6281 case MVT::v4i1: { 6282 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 6283 if (isVarArg) { 6284 assert(HasParameterArea && 6285 "Parameter area must exist if we have a varargs call."); 6286 // We could elide this store in the case where the object fits 6287 // entirely in R registers. Maybe later. 6288 SDValue Store = 6289 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6290 MemOpChains.push_back(Store); 6291 if (QFPR_idx != NumQFPRs) { 6292 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 6293 PtrOff, MachinePointerInfo()); 6294 MemOpChains.push_back(Load.getValue(1)); 6295 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 6296 } 6297 ArgOffset += (IsF32 ? 16 : 32); 6298 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 6299 if (GPR_idx == NumGPRs) 6300 break; 6301 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6302 DAG.getConstant(i, dl, PtrVT)); 6303 SDValue Load = 6304 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6305 MemOpChains.push_back(Load.getValue(1)); 6306 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6307 } 6308 break; 6309 } 6310 6311 // Non-varargs QPX params go into registers or on the stack. 6312 if (QFPR_idx != NumQFPRs) { 6313 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6314 } else { 6315 if (CallConv == CallingConv::Fast) 6316 ComputePtrOff(); 6317 6318 assert(HasParameterArea && 6319 "Parameter area must exist to pass an argument in memory."); 6320 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6321 true, isTailCall, true, MemOpChains, 6322 TailCallArguments, dl); 6323 if (CallConv == CallingConv::Fast) 6324 ArgOffset += (IsF32 ? 16 : 32); 6325 } 6326 6327 if (CallConv != CallingConv::Fast) 6328 ArgOffset += (IsF32 ? 16 : 32); 6329 break; 6330 } 6331 } 6332 } 6333 6334 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6335 "mismatch in size of parameter area"); 6336 (void)NumBytesActuallyUsed; 6337 6338 if (!MemOpChains.empty()) 6339 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6340 6341 // Check if this is an indirect call (MTCTR/BCTRL). 6342 // See prepareDescriptorIndirectCall and buildCallOperands for more 6343 // information about calls through function pointers in the 64-bit SVR4 ABI. 6344 if (!isTailCall && !isPatchPoint && 6345 !isFunctionGlobalAddress(Callee) && 6346 !isa<ExternalSymbolSDNode>(Callee)) { 6347 // Load r2 into a virtual register and store it to the TOC save area. 6348 setUsesTOCBasePtr(DAG); 6349 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6350 // TOC save area offset. 6351 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6352 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6353 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6354 Chain = DAG.getStore( 6355 Val.getValue(1), dl, Val, AddPtr, 6356 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 6357 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6358 // This does not mean the MTCTR instruction must use R12; it's easier 6359 // to model this as an extra parameter, so do that. 6360 if (isELFv2ABI && !isPatchPoint) 6361 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6362 } 6363 6364 // Build a sequence of copy-to-reg nodes chained together with token chain 6365 // and flag operands which copy the outgoing args into the appropriate regs. 6366 SDValue InFlag; 6367 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6368 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6369 RegsToPass[i].second, InFlag); 6370 InFlag = Chain.getValue(1); 6371 } 6372 6373 if (isTailCall && !IsSibCall) 6374 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6375 TailCallArguments); 6376 6377 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest, 6378 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 6379 SPDiff, NumBytes, Ins, InVals, CS); 6380 } 6381 6382 SDValue PPCTargetLowering::LowerCall_Darwin( 6383 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 6384 bool isTailCall, bool isPatchPoint, 6385 const SmallVectorImpl<ISD::OutputArg> &Outs, 6386 const SmallVectorImpl<SDValue> &OutVals, 6387 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6388 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6389 ImmutableCallSite CS) const { 6390 unsigned NumOps = Outs.size(); 6391 6392 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6393 bool isPPC64 = PtrVT == MVT::i64; 6394 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6395 6396 MachineFunction &MF = DAG.getMachineFunction(); 6397 6398 // Mark this function as potentially containing a function that contains a 6399 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6400 // and restoring the callers stack pointer in this functions epilog. This is 6401 // done because by tail calling the called function might overwrite the value 6402 // in this function's (MF) stack pointer stack slot 0(SP). 6403 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6404 CallConv == CallingConv::Fast) 6405 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6406 6407 // Count how many bytes are to be pushed on the stack, including the linkage 6408 // area, and parameter passing area. We start with 24/48 bytes, which is 6409 // prereserved space for [SP][CR][LR][3 x unused]. 6410 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6411 unsigned NumBytes = LinkageSize; 6412 6413 // Add up all the space actually used. 6414 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6415 // they all go in registers, but we must reserve stack space for them for 6416 // possible use by the caller. In varargs or 64-bit calls, parameters are 6417 // assigned stack space in order, with padding so Altivec parameters are 6418 // 16-byte aligned. 6419 unsigned nAltivecParamsAtEnd = 0; 6420 for (unsigned i = 0; i != NumOps; ++i) { 6421 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6422 EVT ArgVT = Outs[i].VT; 6423 // Varargs Altivec parameters are padded to a 16 byte boundary. 6424 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6425 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6426 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6427 if (!isVarArg && !isPPC64) { 6428 // Non-varargs Altivec parameters go after all the non-Altivec 6429 // parameters; handle those later so we know how much padding we need. 6430 nAltivecParamsAtEnd++; 6431 continue; 6432 } 6433 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6434 NumBytes = ((NumBytes+15)/16)*16; 6435 } 6436 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6437 } 6438 6439 // Allow for Altivec parameters at the end, if needed. 6440 if (nAltivecParamsAtEnd) { 6441 NumBytes = ((NumBytes+15)/16)*16; 6442 NumBytes += 16*nAltivecParamsAtEnd; 6443 } 6444 6445 // The prolog code of the callee may store up to 8 GPR argument registers to 6446 // the stack, allowing va_start to index over them in memory if its varargs. 6447 // Because we cannot tell if this is needed on the caller side, we have to 6448 // conservatively assume that it is needed. As such, make sure we have at 6449 // least enough stack space for the caller to store the 8 GPRs. 6450 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6451 6452 // Tail call needs the stack to be aligned. 6453 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6454 CallConv == CallingConv::Fast) 6455 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6456 6457 // Calculate by how many bytes the stack has to be adjusted in case of tail 6458 // call optimization. 6459 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 6460 6461 // To protect arguments on the stack from being clobbered in a tail call, 6462 // force all the loads to happen before doing any other lowering. 6463 if (isTailCall) 6464 Chain = DAG.getStackArgumentTokenFactor(Chain); 6465 6466 // Adjust the stack pointer for the new arguments... 6467 // These operations are automatically eliminated by the prolog/epilog pass 6468 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6469 SDValue CallSeqStart = Chain; 6470 6471 // Load the return address and frame pointer so it can be move somewhere else 6472 // later. 6473 SDValue LROp, FPOp; 6474 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6475 6476 // Set up a copy of the stack pointer for use loading and storing any 6477 // arguments that may not fit in the registers available for argument 6478 // passing. 6479 SDValue StackPtr; 6480 if (isPPC64) 6481 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6482 else 6483 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6484 6485 // Figure out which arguments are going to go in registers, and which in 6486 // memory. Also, if this is a vararg function, floating point operations 6487 // must be stored to our stack, and loaded into integer regs as well, if 6488 // any integer regs are available for argument passing. 6489 unsigned ArgOffset = LinkageSize; 6490 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6491 6492 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6493 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6494 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6495 }; 6496 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6497 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6498 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6499 }; 6500 static const MCPhysReg VR[] = { 6501 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6502 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6503 }; 6504 const unsigned NumGPRs = array_lengthof(GPR_32); 6505 const unsigned NumFPRs = 13; 6506 const unsigned NumVRs = array_lengthof(VR); 6507 6508 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6509 6510 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6511 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6512 6513 SmallVector<SDValue, 8> MemOpChains; 6514 for (unsigned i = 0; i != NumOps; ++i) { 6515 SDValue Arg = OutVals[i]; 6516 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6517 6518 // PtrOff will be used to store the current argument to the stack if a 6519 // register cannot be found for it. 6520 SDValue PtrOff; 6521 6522 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6523 6524 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6525 6526 // On PPC64, promote integers to 64-bit values. 6527 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6528 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6529 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6530 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6531 } 6532 6533 // FIXME memcpy is used way more than necessary. Correctness first. 6534 // Note: "by value" is code for passing a structure by value, not 6535 // basic types. 6536 if (Flags.isByVal()) { 6537 unsigned Size = Flags.getByValSize(); 6538 // Very small objects are passed right-justified. Everything else is 6539 // passed left-justified. 6540 if (Size==1 || Size==2) { 6541 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6542 if (GPR_idx != NumGPRs) { 6543 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6544 MachinePointerInfo(), VT); 6545 MemOpChains.push_back(Load.getValue(1)); 6546 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6547 6548 ArgOffset += PtrByteSize; 6549 } else { 6550 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6551 PtrOff.getValueType()); 6552 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6553 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6554 CallSeqStart, 6555 Flags, DAG, dl); 6556 ArgOffset += PtrByteSize; 6557 } 6558 continue; 6559 } 6560 // Copy entire object into memory. There are cases where gcc-generated 6561 // code assumes it is there, even if it could be put entirely into 6562 // registers. (This is not what the doc says.) 6563 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6564 CallSeqStart, 6565 Flags, DAG, dl); 6566 6567 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6568 // copy the pieces of the object that fit into registers from the 6569 // parameter save area. 6570 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6571 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6572 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6573 if (GPR_idx != NumGPRs) { 6574 SDValue Load = 6575 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6576 MemOpChains.push_back(Load.getValue(1)); 6577 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6578 ArgOffset += PtrByteSize; 6579 } else { 6580 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6581 break; 6582 } 6583 } 6584 continue; 6585 } 6586 6587 switch (Arg.getSimpleValueType().SimpleTy) { 6588 default: llvm_unreachable("Unexpected ValueType for argument!"); 6589 case MVT::i1: 6590 case MVT::i32: 6591 case MVT::i64: 6592 if (GPR_idx != NumGPRs) { 6593 if (Arg.getValueType() == MVT::i1) 6594 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6595 6596 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6597 } else { 6598 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6599 isPPC64, isTailCall, false, MemOpChains, 6600 TailCallArguments, dl); 6601 } 6602 ArgOffset += PtrByteSize; 6603 break; 6604 case MVT::f32: 6605 case MVT::f64: 6606 if (FPR_idx != NumFPRs) { 6607 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6608 6609 if (isVarArg) { 6610 SDValue Store = 6611 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6612 MemOpChains.push_back(Store); 6613 6614 // Float varargs are always shadowed in available integer registers 6615 if (GPR_idx != NumGPRs) { 6616 SDValue Load = 6617 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6618 MemOpChains.push_back(Load.getValue(1)); 6619 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6620 } 6621 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6622 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6623 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6624 SDValue Load = 6625 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6626 MemOpChains.push_back(Load.getValue(1)); 6627 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6628 } 6629 } else { 6630 // If we have any FPRs remaining, we may also have GPRs remaining. 6631 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6632 // GPRs. 6633 if (GPR_idx != NumGPRs) 6634 ++GPR_idx; 6635 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6636 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6637 ++GPR_idx; 6638 } 6639 } else 6640 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6641 isPPC64, isTailCall, false, MemOpChains, 6642 TailCallArguments, dl); 6643 if (isPPC64) 6644 ArgOffset += 8; 6645 else 6646 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6647 break; 6648 case MVT::v4f32: 6649 case MVT::v4i32: 6650 case MVT::v8i16: 6651 case MVT::v16i8: 6652 if (isVarArg) { 6653 // These go aligned on the stack, or in the corresponding R registers 6654 // when within range. The Darwin PPC ABI doc claims they also go in 6655 // V registers; in fact gcc does this only for arguments that are 6656 // prototyped, not for those that match the ... We do it for all 6657 // arguments, seems to work. 6658 while (ArgOffset % 16 !=0) { 6659 ArgOffset += PtrByteSize; 6660 if (GPR_idx != NumGPRs) 6661 GPR_idx++; 6662 } 6663 // We could elide this store in the case where the object fits 6664 // entirely in R registers. Maybe later. 6665 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6666 DAG.getConstant(ArgOffset, dl, PtrVT)); 6667 SDValue Store = 6668 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6669 MemOpChains.push_back(Store); 6670 if (VR_idx != NumVRs) { 6671 SDValue Load = 6672 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6673 MemOpChains.push_back(Load.getValue(1)); 6674 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6675 } 6676 ArgOffset += 16; 6677 for (unsigned i=0; i<16; i+=PtrByteSize) { 6678 if (GPR_idx == NumGPRs) 6679 break; 6680 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6681 DAG.getConstant(i, dl, PtrVT)); 6682 SDValue Load = 6683 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6684 MemOpChains.push_back(Load.getValue(1)); 6685 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6686 } 6687 break; 6688 } 6689 6690 // Non-varargs Altivec params generally go in registers, but have 6691 // stack space allocated at the end. 6692 if (VR_idx != NumVRs) { 6693 // Doesn't have GPR space allocated. 6694 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6695 } else if (nAltivecParamsAtEnd==0) { 6696 // We are emitting Altivec params in order. 6697 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6698 isPPC64, isTailCall, true, MemOpChains, 6699 TailCallArguments, dl); 6700 ArgOffset += 16; 6701 } 6702 break; 6703 } 6704 } 6705 // If all Altivec parameters fit in registers, as they usually do, 6706 // they get stack space following the non-Altivec parameters. We 6707 // don't track this here because nobody below needs it. 6708 // If there are more Altivec parameters than fit in registers emit 6709 // the stores here. 6710 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 6711 unsigned j = 0; 6712 // Offset is aligned; skip 1st 12 params which go in V registers. 6713 ArgOffset = ((ArgOffset+15)/16)*16; 6714 ArgOffset += 12*16; 6715 for (unsigned i = 0; i != NumOps; ++i) { 6716 SDValue Arg = OutVals[i]; 6717 EVT ArgType = Outs[i].VT; 6718 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6719 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6720 if (++j > NumVRs) { 6721 SDValue PtrOff; 6722 // We are emitting Altivec params in order. 6723 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6724 isPPC64, isTailCall, true, MemOpChains, 6725 TailCallArguments, dl); 6726 ArgOffset += 16; 6727 } 6728 } 6729 } 6730 } 6731 6732 if (!MemOpChains.empty()) 6733 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6734 6735 // On Darwin, R12 must contain the address of an indirect callee. This does 6736 // not mean the MTCTR instruction must use R12; it's easier to model this as 6737 // an extra parameter, so do that. 6738 if (!isTailCall && 6739 !isFunctionGlobalAddress(Callee) && 6740 !isa<ExternalSymbolSDNode>(Callee) && 6741 !isBLACompatibleAddress(Callee, DAG)) 6742 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6743 PPC::R12), Callee)); 6744 6745 // Build a sequence of copy-to-reg nodes chained together with token chain 6746 // and flag operands which copy the outgoing args into the appropriate regs. 6747 SDValue InFlag; 6748 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6749 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6750 RegsToPass[i].second, InFlag); 6751 InFlag = Chain.getValue(1); 6752 } 6753 6754 if (isTailCall) 6755 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6756 TailCallArguments); 6757 6758 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6759 /* unused except on PPC64 ELFv1 */ false, DAG, 6760 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6761 NumBytes, Ins, InVals, CS); 6762 } 6763 6764 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6765 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6766 CCState &State) { 6767 6768 if (ValVT == MVT::f128) 6769 report_fatal_error("f128 is unimplemented on AIX."); 6770 6771 if (ArgFlags.isByVal()) 6772 report_fatal_error("Passing structure by value is unimplemented."); 6773 6774 if (ArgFlags.isSRet()) 6775 report_fatal_error("Struct return arguments are unimplemented."); 6776 6777 if (ArgFlags.isNest()) 6778 report_fatal_error("Nest arguments are unimplemented."); 6779 6780 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6781 State.getMachineFunction().getSubtarget()); 6782 const bool IsPPC64 = Subtarget.isPPC64(); 6783 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6784 6785 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6786 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6787 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6788 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6789 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6790 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6791 6792 // Arguments always reserve parameter save area. 6793 switch (ValVT.SimpleTy) { 6794 default: 6795 report_fatal_error("Unhandled value type for argument."); 6796 case MVT::i64: 6797 // i64 arguments should have been split to i32 for PPC32. 6798 assert(IsPPC64 && "PPC32 should have split i64 values."); 6799 LLVM_FALLTHROUGH; 6800 case MVT::i1: 6801 case MVT::i32: 6802 State.AllocateStack(PtrByteSize, PtrByteSize); 6803 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6804 MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6805 // Promote integers if needed. 6806 if (ValVT.getSizeInBits() < RegVT.getSizeInBits()) 6807 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6808 : CCValAssign::LocInfo::ZExt; 6809 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6810 } 6811 else 6812 report_fatal_error("Handling of placing parameters on the stack is " 6813 "unimplemented!"); 6814 return false; 6815 6816 case MVT::f32: 6817 case MVT::f64: { 6818 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6819 const unsigned StoreSize = LocVT.getStoreSize(); 6820 // Floats are always 4-byte aligned in the PSA on AIX. 6821 // This includes f64 in 64-bit mode for ABI compatibility. 6822 State.AllocateStack(IsPPC64 ? 8 : StoreSize, 4); 6823 if (unsigned Reg = State.AllocateReg(FPR)) 6824 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, MVT::f64, LocInfo)); 6825 else 6826 report_fatal_error("Handling of placing parameters on the stack is " 6827 "unimplemented!"); 6828 6829 // f32 reserves 1 GPR in both PPC32 and PPC64. 6830 // f64 reserves 2 GPRs in PPC32 and 1 GPR in PPC64. 6831 for (unsigned i = 0; i < StoreSize; i += PtrByteSize) 6832 State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32); 6833 return false; 6834 } 6835 } 6836 } 6837 6838 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6839 bool IsPPC64) { 6840 assert((IsPPC64 || SVT != MVT::i64) && 6841 "i64 should have been split for 32-bit codegen."); 6842 6843 switch (SVT) { 6844 default: 6845 report_fatal_error("Unexpected value type for formal argument"); 6846 case MVT::i1: 6847 case MVT::i32: 6848 case MVT::i64: 6849 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6850 case MVT::f32: 6851 return &PPC::F4RCRegClass; 6852 case MVT::f64: 6853 return &PPC::F8RCRegClass; 6854 } 6855 } 6856 6857 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6858 SelectionDAG &DAG, SDValue ArgValue, 6859 MVT LocVT, const SDLoc &dl) { 6860 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6861 assert(ValVT.getSizeInBits() < LocVT.getSizeInBits()); 6862 6863 if (Flags.isSExt()) 6864 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6865 DAG.getValueType(ValVT)); 6866 else if (Flags.isZExt()) 6867 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6868 DAG.getValueType(ValVT)); 6869 6870 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6871 } 6872 6873 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 6874 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 6875 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6876 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 6877 6878 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 6879 CallConv == CallingConv::Fast) && 6880 "Unexpected calling convention!"); 6881 6882 if (isVarArg) 6883 report_fatal_error("This call type is unimplemented on AIX."); 6884 6885 if (getTargetMachine().Options.GuaranteedTailCallOpt) 6886 report_fatal_error("Tail call support is unimplemented on AIX."); 6887 6888 if (useSoftFloat()) 6889 report_fatal_error("Soft float support is unimplemented on AIX."); 6890 6891 const PPCSubtarget &Subtarget = 6892 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 6893 if (Subtarget.hasQPX()) 6894 report_fatal_error("QPX support is not supported on AIX."); 6895 6896 const bool IsPPC64 = Subtarget.isPPC64(); 6897 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6898 6899 // Assign locations to all of the incoming arguments. 6900 SmallVector<CCValAssign, 16> ArgLocs; 6901 MachineFunction &MF = DAG.getMachineFunction(); 6902 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 6903 6904 // Reserve space for the linkage area on the stack. 6905 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6906 // On AIX a minimum of 8 words is saved to the parameter save area. 6907 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 6908 CCInfo.AllocateStack(LinkageSize + MinParameterSaveArea, PtrByteSize); 6909 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 6910 6911 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 6912 CCValAssign &VA = ArgLocs[i]; 6913 SDValue ArgValue; 6914 ISD::ArgFlagsTy Flags = Ins[i].Flags; 6915 if (VA.isRegLoc()) { 6916 EVT ValVT = VA.getValVT(); 6917 MVT LocVT = VA.getLocVT(); 6918 MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy; 6919 unsigned VReg = 6920 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 6921 ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 6922 if (ValVT.isScalarInteger() && 6923 (ValVT.getSizeInBits() < LocVT.getSizeInBits())) { 6924 ArgValue = 6925 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 6926 } 6927 InVals.push_back(ArgValue); 6928 } else { 6929 report_fatal_error("Handling of formal arguments on the stack is " 6930 "unimplemented!"); 6931 } 6932 } 6933 6934 // Area that is at least reserved in the caller of this function. 6935 unsigned MinReservedArea = CCInfo.getNextStackOffset(); 6936 6937 // Set the size that is at least reserved in caller of this function. Tail 6938 // call optimized function's reserved stack space needs to be aligned so 6939 // that taking the difference between two stack areas will result in an 6940 // aligned stack. 6941 MinReservedArea = 6942 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 6943 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 6944 FuncInfo->setMinReservedArea(MinReservedArea); 6945 6946 return Chain; 6947 } 6948 6949 SDValue PPCTargetLowering::LowerCall_AIX( 6950 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 6951 bool isTailCall, bool isPatchPoint, 6952 const SmallVectorImpl<ISD::OutputArg> &Outs, 6953 const SmallVectorImpl<SDValue> &OutVals, 6954 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6955 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6956 ImmutableCallSite CS) const { 6957 6958 assert((CallConv == CallingConv::C || 6959 CallConv == CallingConv::Cold || 6960 CallConv == CallingConv::Fast) && "Unexpected calling convention!"); 6961 6962 if (isVarArg || isPatchPoint) 6963 report_fatal_error("This call type is unimplemented on AIX."); 6964 6965 if (!isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 6966 report_fatal_error("Handling of indirect call is unimplemented!"); 6967 6968 const PPCSubtarget& Subtarget = 6969 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 6970 if (Subtarget.hasQPX()) 6971 report_fatal_error("QPX is not supported on AIX."); 6972 if (Subtarget.hasAltivec()) 6973 report_fatal_error("Altivec support is unimplemented on AIX."); 6974 6975 MachineFunction &MF = DAG.getMachineFunction(); 6976 SmallVector<CCValAssign, 16> ArgLocs; 6977 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 6978 6979 // Reserve space for the linkage save area (LSA) on the stack. 6980 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 6981 // [SP][CR][LR][2 x reserved][TOC]. 6982 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 6983 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6984 const unsigned PtrByteSize = Subtarget.isPPC64() ? 8 : 4; 6985 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 6986 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 6987 6988 // The prolog code of the callee may store up to 8 GPR argument registers to 6989 // the stack, allowing va_start to index over them in memory if the callee 6990 // is variadic. 6991 // Because we cannot tell if this is needed on the caller side, we have to 6992 // conservatively assume that it is needed. As such, make sure we have at 6993 // least enough stack space for the caller to store the 8 GPRs. 6994 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 6995 const unsigned NumBytes = LinkageSize + MinParameterSaveAreaSize; 6996 6997 // Adjust the stack pointer for the new arguments... 6998 // These operations are automatically eliminated by the prolog/epilog pass. 6999 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7000 SDValue CallSeqStart = Chain; 7001 7002 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7003 7004 for (CCValAssign &VA : ArgLocs) { 7005 SDValue Arg = OutVals[VA.getValNo()]; 7006 7007 switch (VA.getLocInfo()) { 7008 default: report_fatal_error("Unexpected argument extension type."); 7009 case CCValAssign::Full: break; 7010 case CCValAssign::ZExt: 7011 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7012 break; 7013 case CCValAssign::SExt: 7014 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7015 break; 7016 } 7017 7018 if (VA.isRegLoc()) 7019 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7020 7021 if (VA.isMemLoc()) 7022 report_fatal_error("Handling of placing parameters on the stack is " 7023 "unimplemented!"); 7024 } 7025 7026 // Build a sequence of copy-to-reg nodes chained together with token chain 7027 // and flag operands which copy the outgoing args into the appropriate regs. 7028 SDValue InFlag; 7029 for (auto Reg : RegsToPass) { 7030 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7031 InFlag = Chain.getValue(1); 7032 } 7033 7034 const int SPDiff = 0; 7035 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 7036 /* unused except on PPC64 ELFv1 */ false, DAG, RegsToPass, 7037 InFlag, Chain, CallSeqStart, Callee, SPDiff, NumBytes, Ins, 7038 InVals, CS); 7039 } 7040 7041 bool 7042 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7043 MachineFunction &MF, bool isVarArg, 7044 const SmallVectorImpl<ISD::OutputArg> &Outs, 7045 LLVMContext &Context) const { 7046 SmallVector<CCValAssign, 16> RVLocs; 7047 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7048 return CCInfo.CheckReturn( 7049 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7050 ? RetCC_PPC_Cold 7051 : RetCC_PPC); 7052 } 7053 7054 SDValue 7055 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7056 bool isVarArg, 7057 const SmallVectorImpl<ISD::OutputArg> &Outs, 7058 const SmallVectorImpl<SDValue> &OutVals, 7059 const SDLoc &dl, SelectionDAG &DAG) const { 7060 SmallVector<CCValAssign, 16> RVLocs; 7061 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7062 *DAG.getContext()); 7063 CCInfo.AnalyzeReturn(Outs, 7064 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7065 ? RetCC_PPC_Cold 7066 : RetCC_PPC); 7067 7068 SDValue Flag; 7069 SmallVector<SDValue, 4> RetOps(1, Chain); 7070 7071 // Copy the result values into the output registers. 7072 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7073 CCValAssign &VA = RVLocs[i]; 7074 assert(VA.isRegLoc() && "Can only return in registers!"); 7075 7076 SDValue Arg = OutVals[RealResIdx]; 7077 7078 switch (VA.getLocInfo()) { 7079 default: llvm_unreachable("Unknown loc info!"); 7080 case CCValAssign::Full: break; 7081 case CCValAssign::AExt: 7082 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7083 break; 7084 case CCValAssign::ZExt: 7085 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7086 break; 7087 case CCValAssign::SExt: 7088 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7089 break; 7090 } 7091 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7092 bool isLittleEndian = Subtarget.isLittleEndian(); 7093 // Legalize ret f64 -> ret 2 x i32. 7094 SDValue SVal = 7095 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7096 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7097 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7098 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7099 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7100 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7101 Flag = Chain.getValue(1); 7102 VA = RVLocs[++i]; // skip ahead to next loc 7103 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7104 } else 7105 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7106 Flag = Chain.getValue(1); 7107 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7108 } 7109 7110 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7111 const MCPhysReg *I = 7112 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 7113 if (I) { 7114 for (; *I; ++I) { 7115 7116 if (PPC::G8RCRegClass.contains(*I)) 7117 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 7118 else if (PPC::F8RCRegClass.contains(*I)) 7119 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 7120 else if (PPC::CRRCRegClass.contains(*I)) 7121 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 7122 else if (PPC::VRRCRegClass.contains(*I)) 7123 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 7124 else 7125 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 7126 } 7127 } 7128 7129 RetOps[0] = Chain; // Update chain. 7130 7131 // Add the flag if we have it. 7132 if (Flag.getNode()) 7133 RetOps.push_back(Flag); 7134 7135 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7136 } 7137 7138 SDValue 7139 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7140 SelectionDAG &DAG) const { 7141 SDLoc dl(Op); 7142 7143 // Get the correct type for integers. 7144 EVT IntVT = Op.getValueType(); 7145 7146 // Get the inputs. 7147 SDValue Chain = Op.getOperand(0); 7148 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7149 // Build a DYNAREAOFFSET node. 7150 SDValue Ops[2] = {Chain, FPSIdx}; 7151 SDVTList VTs = DAG.getVTList(IntVT); 7152 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7153 } 7154 7155 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7156 SelectionDAG &DAG) const { 7157 // When we pop the dynamic allocation we need to restore the SP link. 7158 SDLoc dl(Op); 7159 7160 // Get the correct type for pointers. 7161 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7162 7163 // Construct the stack pointer operand. 7164 bool isPPC64 = Subtarget.isPPC64(); 7165 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7166 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7167 7168 // Get the operands for the STACKRESTORE. 7169 SDValue Chain = Op.getOperand(0); 7170 SDValue SaveSP = Op.getOperand(1); 7171 7172 // Load the old link SP. 7173 SDValue LoadLinkSP = 7174 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7175 7176 // Restore the stack pointer. 7177 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7178 7179 // Store the old link SP. 7180 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7181 } 7182 7183 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7184 MachineFunction &MF = DAG.getMachineFunction(); 7185 bool isPPC64 = Subtarget.isPPC64(); 7186 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7187 7188 // Get current frame pointer save index. The users of this index will be 7189 // primarily DYNALLOC instructions. 7190 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7191 int RASI = FI->getReturnAddrSaveIndex(); 7192 7193 // If the frame pointer save index hasn't been defined yet. 7194 if (!RASI) { 7195 // Find out what the fix offset of the frame pointer save area. 7196 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7197 // Allocate the frame index for frame pointer save area. 7198 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7199 // Save the result. 7200 FI->setReturnAddrSaveIndex(RASI); 7201 } 7202 return DAG.getFrameIndex(RASI, PtrVT); 7203 } 7204 7205 SDValue 7206 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7207 MachineFunction &MF = DAG.getMachineFunction(); 7208 bool isPPC64 = Subtarget.isPPC64(); 7209 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7210 7211 // Get current frame pointer save index. The users of this index will be 7212 // primarily DYNALLOC instructions. 7213 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7214 int FPSI = FI->getFramePointerSaveIndex(); 7215 7216 // If the frame pointer save index hasn't been defined yet. 7217 if (!FPSI) { 7218 // Find out what the fix offset of the frame pointer save area. 7219 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7220 // Allocate the frame index for frame pointer save area. 7221 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7222 // Save the result. 7223 FI->setFramePointerSaveIndex(FPSI); 7224 } 7225 return DAG.getFrameIndex(FPSI, PtrVT); 7226 } 7227 7228 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7229 SelectionDAG &DAG) const { 7230 // Get the inputs. 7231 SDValue Chain = Op.getOperand(0); 7232 SDValue Size = Op.getOperand(1); 7233 SDLoc dl(Op); 7234 7235 // Get the correct type for pointers. 7236 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7237 // Negate the size. 7238 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7239 DAG.getConstant(0, dl, PtrVT), Size); 7240 // Construct a node for the frame pointer save index. 7241 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7242 // Build a DYNALLOC node. 7243 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7244 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7245 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7246 } 7247 7248 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7249 SelectionDAG &DAG) const { 7250 MachineFunction &MF = DAG.getMachineFunction(); 7251 7252 bool isPPC64 = Subtarget.isPPC64(); 7253 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7254 7255 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7256 return DAG.getFrameIndex(FI, PtrVT); 7257 } 7258 7259 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7260 SelectionDAG &DAG) const { 7261 SDLoc DL(Op); 7262 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7263 DAG.getVTList(MVT::i32, MVT::Other), 7264 Op.getOperand(0), Op.getOperand(1)); 7265 } 7266 7267 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7268 SelectionDAG &DAG) const { 7269 SDLoc DL(Op); 7270 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7271 Op.getOperand(0), Op.getOperand(1)); 7272 } 7273 7274 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7275 if (Op.getValueType().isVector()) 7276 return LowerVectorLoad(Op, DAG); 7277 7278 assert(Op.getValueType() == MVT::i1 && 7279 "Custom lowering only for i1 loads"); 7280 7281 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7282 7283 SDLoc dl(Op); 7284 LoadSDNode *LD = cast<LoadSDNode>(Op); 7285 7286 SDValue Chain = LD->getChain(); 7287 SDValue BasePtr = LD->getBasePtr(); 7288 MachineMemOperand *MMO = LD->getMemOperand(); 7289 7290 SDValue NewLD = 7291 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7292 BasePtr, MVT::i8, MMO); 7293 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7294 7295 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7296 return DAG.getMergeValues(Ops, dl); 7297 } 7298 7299 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7300 if (Op.getOperand(1).getValueType().isVector()) 7301 return LowerVectorStore(Op, DAG); 7302 7303 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7304 "Custom lowering only for i1 stores"); 7305 7306 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7307 7308 SDLoc dl(Op); 7309 StoreSDNode *ST = cast<StoreSDNode>(Op); 7310 7311 SDValue Chain = ST->getChain(); 7312 SDValue BasePtr = ST->getBasePtr(); 7313 SDValue Value = ST->getValue(); 7314 MachineMemOperand *MMO = ST->getMemOperand(); 7315 7316 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7317 Value); 7318 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7319 } 7320 7321 // FIXME: Remove this once the ANDI glue bug is fixed: 7322 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7323 assert(Op.getValueType() == MVT::i1 && 7324 "Custom lowering only for i1 results"); 7325 7326 SDLoc DL(Op); 7327 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 7328 Op.getOperand(0)); 7329 } 7330 7331 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7332 SelectionDAG &DAG) const { 7333 7334 // Implements a vector truncate that fits in a vector register as a shuffle. 7335 // We want to legalize vector truncates down to where the source fits in 7336 // a vector register (and target is therefore smaller than vector register 7337 // size). At that point legalization will try to custom lower the sub-legal 7338 // result and get here - where we can contain the truncate as a single target 7339 // operation. 7340 7341 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7342 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7343 // 7344 // We will implement it for big-endian ordering as this (where x denotes 7345 // undefined): 7346 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7347 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7348 // 7349 // The same operation in little-endian ordering will be: 7350 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7351 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7352 7353 assert(Op.getValueType().isVector() && "Vector type expected."); 7354 7355 SDLoc DL(Op); 7356 SDValue N1 = Op.getOperand(0); 7357 unsigned SrcSize = N1.getValueType().getSizeInBits(); 7358 assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector"); 7359 SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7360 7361 EVT TrgVT = Op.getValueType(); 7362 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7363 EVT EltVT = TrgVT.getVectorElementType(); 7364 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7365 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7366 7367 // First list the elements we want to keep. 7368 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7369 SmallVector<int, 16> ShuffV; 7370 if (Subtarget.isLittleEndian()) 7371 for (unsigned i = 0; i < TrgNumElts; ++i) 7372 ShuffV.push_back(i * SizeMult); 7373 else 7374 for (unsigned i = 1; i <= TrgNumElts; ++i) 7375 ShuffV.push_back(i * SizeMult - 1); 7376 7377 // Populate the remaining elements with undefs. 7378 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7379 // ShuffV.push_back(i + WideNumElts); 7380 ShuffV.push_back(WideNumElts + 1); 7381 7382 SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc); 7383 return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV); 7384 } 7385 7386 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7387 /// possible. 7388 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7389 // Not FP? Not a fsel. 7390 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 7391 !Op.getOperand(2).getValueType().isFloatingPoint()) 7392 return Op; 7393 7394 bool HasNoInfs = DAG.getTarget().Options.NoInfsFPMath; 7395 bool HasNoNaNs = DAG.getTarget().Options.NoNaNsFPMath; 7396 // We might be able to do better than this under some circumstances, but in 7397 // general, fsel-based lowering of select is a finite-math-only optimization. 7398 // For more information, see section F.3 of the 2.06 ISA specification. 7399 // With ISA 3.0, we have xsmaxcdp/xsmincdp which are OK to emit even in the 7400 // presence of infinities. 7401 if (!Subtarget.hasP9Vector() && (!HasNoInfs || !HasNoNaNs)) 7402 return Op; 7403 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7404 7405 EVT ResVT = Op.getValueType(); 7406 EVT CmpVT = Op.getOperand(0).getValueType(); 7407 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7408 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7409 SDLoc dl(Op); 7410 7411 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7412 switch (CC) { 7413 default: 7414 // Not a min/max but with finite math, we may still be able to use fsel. 7415 if (HasNoInfs && HasNoNaNs) 7416 break; 7417 return Op; 7418 case ISD::SETOGT: 7419 case ISD::SETGT: 7420 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 7421 case ISD::SETOLT: 7422 case ISD::SETLT: 7423 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 7424 } 7425 } 7426 7427 // TODO: Propagate flags from the select rather than global settings. 7428 SDNodeFlags Flags; 7429 Flags.setNoInfs(true); 7430 Flags.setNoNaNs(true); 7431 7432 // If the RHS of the comparison is a 0.0, we don't need to do the 7433 // subtraction at all. 7434 SDValue Sel1; 7435 if (isFloatingPointZero(RHS)) 7436 switch (CC) { 7437 default: break; // SETUO etc aren't handled by fsel. 7438 case ISD::SETNE: 7439 std::swap(TV, FV); 7440 LLVM_FALLTHROUGH; 7441 case ISD::SETEQ: 7442 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7443 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7444 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7445 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7446 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7447 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7448 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7449 case ISD::SETULT: 7450 case ISD::SETLT: 7451 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7452 LLVM_FALLTHROUGH; 7453 case ISD::SETOGE: 7454 case ISD::SETGE: 7455 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7456 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7457 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7458 case ISD::SETUGT: 7459 case ISD::SETGT: 7460 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7461 LLVM_FALLTHROUGH; 7462 case ISD::SETOLE: 7463 case ISD::SETLE: 7464 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7465 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7466 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7467 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7468 } 7469 7470 SDValue Cmp; 7471 switch (CC) { 7472 default: break; // SETUO etc aren't handled by fsel. 7473 case ISD::SETNE: 7474 std::swap(TV, FV); 7475 LLVM_FALLTHROUGH; 7476 case ISD::SETEQ: 7477 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7478 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7479 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7480 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7481 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7482 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7483 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7484 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7485 case ISD::SETULT: 7486 case ISD::SETLT: 7487 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7488 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7489 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7490 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7491 case ISD::SETOGE: 7492 case ISD::SETGE: 7493 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7494 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7495 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7496 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7497 case ISD::SETUGT: 7498 case ISD::SETGT: 7499 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7500 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7501 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7502 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7503 case ISD::SETOLE: 7504 case ISD::SETLE: 7505 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7506 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7507 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7508 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7509 } 7510 return Op; 7511 } 7512 7513 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 7514 SelectionDAG &DAG, 7515 const SDLoc &dl) const { 7516 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7517 SDValue Src = Op.getOperand(0); 7518 if (Src.getValueType() == MVT::f32) 7519 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7520 7521 SDValue Tmp; 7522 switch (Op.getSimpleValueType().SimpleTy) { 7523 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7524 case MVT::i32: 7525 Tmp = DAG.getNode( 7526 Op.getOpcode() == ISD::FP_TO_SINT 7527 ? PPCISD::FCTIWZ 7528 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7529 dl, MVT::f64, Src); 7530 break; 7531 case MVT::i64: 7532 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7533 "i64 FP_TO_UINT is supported only with FPCVT"); 7534 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7535 PPCISD::FCTIDUZ, 7536 dl, MVT::f64, Src); 7537 break; 7538 } 7539 7540 // Convert the FP value to an int value through memory. 7541 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 7542 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 7543 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 7544 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 7545 MachinePointerInfo MPI = 7546 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 7547 7548 // Emit a store to the stack slot. 7549 SDValue Chain; 7550 if (i32Stack) { 7551 MachineFunction &MF = DAG.getMachineFunction(); 7552 MachineMemOperand *MMO = 7553 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 7554 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 7555 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 7556 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 7557 } else 7558 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI); 7559 7560 // Result is a load from the stack slot. If loading 4 bytes, make sure to 7561 // add in a bias on big endian. 7562 if (Op.getValueType() == MVT::i32 && !i32Stack) { 7563 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 7564 DAG.getConstant(4, dl, FIPtr.getValueType())); 7565 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 7566 } 7567 7568 RLI.Chain = Chain; 7569 RLI.Ptr = FIPtr; 7570 RLI.MPI = MPI; 7571 } 7572 7573 /// Custom lowers floating point to integer conversions to use 7574 /// the direct move instructions available in ISA 2.07 to avoid the 7575 /// need for load/store combinations. 7576 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 7577 SelectionDAG &DAG, 7578 const SDLoc &dl) const { 7579 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7580 SDValue Src = Op.getOperand(0); 7581 7582 if (Src.getValueType() == MVT::f32) 7583 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7584 7585 SDValue Tmp; 7586 switch (Op.getSimpleValueType().SimpleTy) { 7587 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7588 case MVT::i32: 7589 Tmp = DAG.getNode( 7590 Op.getOpcode() == ISD::FP_TO_SINT 7591 ? PPCISD::FCTIWZ 7592 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7593 dl, MVT::f64, Src); 7594 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 7595 break; 7596 case MVT::i64: 7597 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7598 "i64 FP_TO_UINT is supported only with FPCVT"); 7599 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7600 PPCISD::FCTIDUZ, 7601 dl, MVT::f64, Src); 7602 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 7603 break; 7604 } 7605 return Tmp; 7606 } 7607 7608 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 7609 const SDLoc &dl) const { 7610 7611 // FP to INT conversions are legal for f128. 7612 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128)) 7613 return Op; 7614 7615 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 7616 // PPC (the libcall is not available). 7617 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 7618 if (Op.getValueType() == MVT::i32) { 7619 if (Op.getOpcode() == ISD::FP_TO_SINT) { 7620 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7621 MVT::f64, Op.getOperand(0), 7622 DAG.getIntPtrConstant(0, dl)); 7623 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7624 MVT::f64, Op.getOperand(0), 7625 DAG.getIntPtrConstant(1, dl)); 7626 7627 // Add the two halves of the long double in round-to-zero mode. 7628 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 7629 7630 // Now use a smaller FP_TO_SINT. 7631 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 7632 } 7633 if (Op.getOpcode() == ISD::FP_TO_UINT) { 7634 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 7635 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 7636 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 7637 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 7638 // FIXME: generated code sucks. 7639 // TODO: Are there fast-math-flags to propagate to this FSUB? 7640 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 7641 Op.getOperand(0), Tmp); 7642 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 7643 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 7644 DAG.getConstant(0x80000000, dl, MVT::i32)); 7645 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 7646 Op.getOperand(0)); 7647 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 7648 ISD::SETGE); 7649 } 7650 } 7651 7652 return SDValue(); 7653 } 7654 7655 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 7656 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 7657 7658 ReuseLoadInfo RLI; 7659 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7660 7661 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7662 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7663 } 7664 7665 // We're trying to insert a regular store, S, and then a load, L. If the 7666 // incoming value, O, is a load, we might just be able to have our load use the 7667 // address used by O. However, we don't know if anything else will store to 7668 // that address before we can load from it. To prevent this situation, we need 7669 // to insert our load, L, into the chain as a peer of O. To do this, we give L 7670 // the same chain operand as O, we create a token factor from the chain results 7671 // of O and L, and we replace all uses of O's chain result with that token 7672 // factor (see spliceIntoChain below for this last part). 7673 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 7674 ReuseLoadInfo &RLI, 7675 SelectionDAG &DAG, 7676 ISD::LoadExtType ET) const { 7677 SDLoc dl(Op); 7678 if (ET == ISD::NON_EXTLOAD && 7679 (Op.getOpcode() == ISD::FP_TO_UINT || 7680 Op.getOpcode() == ISD::FP_TO_SINT) && 7681 isOperationLegalOrCustom(Op.getOpcode(), 7682 Op.getOperand(0).getValueType())) { 7683 7684 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7685 return true; 7686 } 7687 7688 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 7689 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 7690 LD->isNonTemporal()) 7691 return false; 7692 if (LD->getMemoryVT() != MemVT) 7693 return false; 7694 7695 RLI.Ptr = LD->getBasePtr(); 7696 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 7697 assert(LD->getAddressingMode() == ISD::PRE_INC && 7698 "Non-pre-inc AM on PPC?"); 7699 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 7700 LD->getOffset()); 7701 } 7702 7703 RLI.Chain = LD->getChain(); 7704 RLI.MPI = LD->getPointerInfo(); 7705 RLI.IsDereferenceable = LD->isDereferenceable(); 7706 RLI.IsInvariant = LD->isInvariant(); 7707 RLI.Alignment = LD->getAlignment(); 7708 RLI.AAInfo = LD->getAAInfo(); 7709 RLI.Ranges = LD->getRanges(); 7710 7711 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 7712 return true; 7713 } 7714 7715 // Given the head of the old chain, ResChain, insert a token factor containing 7716 // it and NewResChain, and make users of ResChain now be users of that token 7717 // factor. 7718 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 7719 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 7720 SDValue NewResChain, 7721 SelectionDAG &DAG) const { 7722 if (!ResChain) 7723 return; 7724 7725 SDLoc dl(NewResChain); 7726 7727 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 7728 NewResChain, DAG.getUNDEF(MVT::Other)); 7729 assert(TF.getNode() != NewResChain.getNode() && 7730 "A new TF really is required here"); 7731 7732 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 7733 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 7734 } 7735 7736 /// Analyze profitability of direct move 7737 /// prefer float load to int load plus direct move 7738 /// when there is no integer use of int load 7739 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 7740 SDNode *Origin = Op.getOperand(0).getNode(); 7741 if (Origin->getOpcode() != ISD::LOAD) 7742 return true; 7743 7744 // If there is no LXSIBZX/LXSIHZX, like Power8, 7745 // prefer direct move if the memory size is 1 or 2 bytes. 7746 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 7747 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 7748 return true; 7749 7750 for (SDNode::use_iterator UI = Origin->use_begin(), 7751 UE = Origin->use_end(); 7752 UI != UE; ++UI) { 7753 7754 // Only look at the users of the loaded value. 7755 if (UI.getUse().get().getResNo() != 0) 7756 continue; 7757 7758 if (UI->getOpcode() != ISD::SINT_TO_FP && 7759 UI->getOpcode() != ISD::UINT_TO_FP) 7760 return true; 7761 } 7762 7763 return false; 7764 } 7765 7766 /// Custom lowers integer to floating point conversions to use 7767 /// the direct move instructions available in ISA 2.07 to avoid the 7768 /// need for load/store combinations. 7769 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 7770 SelectionDAG &DAG, 7771 const SDLoc &dl) const { 7772 assert((Op.getValueType() == MVT::f32 || 7773 Op.getValueType() == MVT::f64) && 7774 "Invalid floating point type as target of conversion"); 7775 assert(Subtarget.hasFPCVT() && 7776 "Int to FP conversions with direct moves require FPCVT"); 7777 SDValue FP; 7778 SDValue Src = Op.getOperand(0); 7779 bool SinglePrec = Op.getValueType() == MVT::f32; 7780 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 7781 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 7782 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 7783 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 7784 7785 if (WordInt) { 7786 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 7787 dl, MVT::f64, Src); 7788 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7789 } 7790 else { 7791 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 7792 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7793 } 7794 7795 return FP; 7796 } 7797 7798 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 7799 7800 EVT VecVT = Vec.getValueType(); 7801 assert(VecVT.isVector() && "Expected a vector type."); 7802 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 7803 7804 EVT EltVT = VecVT.getVectorElementType(); 7805 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7806 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7807 7808 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 7809 SmallVector<SDValue, 16> Ops(NumConcat); 7810 Ops[0] = Vec; 7811 SDValue UndefVec = DAG.getUNDEF(VecVT); 7812 for (unsigned i = 1; i < NumConcat; ++i) 7813 Ops[i] = UndefVec; 7814 7815 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 7816 } 7817 7818 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 7819 const SDLoc &dl) const { 7820 7821 unsigned Opc = Op.getOpcode(); 7822 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) && 7823 "Unexpected conversion type"); 7824 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 7825 "Supports conversions to v2f64/v4f32 only."); 7826 7827 bool SignedConv = Opc == ISD::SINT_TO_FP; 7828 bool FourEltRes = Op.getValueType() == MVT::v4f32; 7829 7830 SDValue Wide = widenVec(DAG, Op.getOperand(0), dl); 7831 EVT WideVT = Wide.getValueType(); 7832 unsigned WideNumElts = WideVT.getVectorNumElements(); 7833 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 7834 7835 SmallVector<int, 16> ShuffV; 7836 for (unsigned i = 0; i < WideNumElts; ++i) 7837 ShuffV.push_back(i + WideNumElts); 7838 7839 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 7840 int SaveElts = FourEltRes ? 4 : 2; 7841 if (Subtarget.isLittleEndian()) 7842 for (int i = 0; i < SaveElts; i++) 7843 ShuffV[i * Stride] = i; 7844 else 7845 for (int i = 1; i <= SaveElts; i++) 7846 ShuffV[i * Stride - 1] = i - 1; 7847 7848 SDValue ShuffleSrc2 = 7849 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 7850 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 7851 unsigned ExtendOp = 7852 SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST; 7853 7854 SDValue Extend; 7855 if (!Subtarget.hasP9Altivec() && SignedConv) { 7856 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 7857 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 7858 DAG.getValueType(Op.getOperand(0).getValueType())); 7859 } else 7860 Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange); 7861 7862 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 7863 } 7864 7865 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 7866 SelectionDAG &DAG) const { 7867 SDLoc dl(Op); 7868 7869 EVT InVT = Op.getOperand(0).getValueType(); 7870 EVT OutVT = Op.getValueType(); 7871 if (OutVT.isVector() && OutVT.isFloatingPoint() && 7872 isOperationCustom(Op.getOpcode(), InVT)) 7873 return LowerINT_TO_FPVector(Op, DAG, dl); 7874 7875 // Conversions to f128 are legal. 7876 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128)) 7877 return Op; 7878 7879 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 7880 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 7881 return SDValue(); 7882 7883 SDValue Value = Op.getOperand(0); 7884 // The values are now known to be -1 (false) or 1 (true). To convert this 7885 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7886 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7887 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7888 7889 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 7890 7891 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7892 7893 if (Op.getValueType() != MVT::v4f64) 7894 Value = DAG.getNode(ISD::FP_ROUND, dl, 7895 Op.getValueType(), Value, 7896 DAG.getIntPtrConstant(1, dl)); 7897 return Value; 7898 } 7899 7900 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 7901 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 7902 return SDValue(); 7903 7904 if (Op.getOperand(0).getValueType() == MVT::i1) 7905 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 7906 DAG.getConstantFP(1.0, dl, Op.getValueType()), 7907 DAG.getConstantFP(0.0, dl, Op.getValueType())); 7908 7909 // If we have direct moves, we can do all the conversion, skip the store/load 7910 // however, without FPCVT we can't do most conversions. 7911 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 7912 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 7913 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 7914 7915 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 7916 "UINT_TO_FP is supported only with FPCVT"); 7917 7918 // If we have FCFIDS, then use it when converting to single-precision. 7919 // Otherwise, convert to double-precision and then round. 7920 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7921 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 7922 : PPCISD::FCFIDS) 7923 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 7924 : PPCISD::FCFID); 7925 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7926 ? MVT::f32 7927 : MVT::f64; 7928 7929 if (Op.getOperand(0).getValueType() == MVT::i64) { 7930 SDValue SINT = Op.getOperand(0); 7931 // When converting to single-precision, we actually need to convert 7932 // to double-precision first and then round to single-precision. 7933 // To avoid double-rounding effects during that operation, we have 7934 // to prepare the input operand. Bits that might be truncated when 7935 // converting to double-precision are replaced by a bit that won't 7936 // be lost at this stage, but is below the single-precision rounding 7937 // position. 7938 // 7939 // However, if -enable-unsafe-fp-math is in effect, accept double 7940 // rounding to avoid the extra overhead. 7941 if (Op.getValueType() == MVT::f32 && 7942 !Subtarget.hasFPCVT() && 7943 !DAG.getTarget().Options.UnsafeFPMath) { 7944 7945 // Twiddle input to make sure the low 11 bits are zero. (If this 7946 // is the case, we are guaranteed the value will fit into the 53 bit 7947 // mantissa of an IEEE double-precision value without rounding.) 7948 // If any of those low 11 bits were not zero originally, make sure 7949 // bit 12 (value 2048) is set instead, so that the final rounding 7950 // to single-precision gets the correct result. 7951 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7952 SINT, DAG.getConstant(2047, dl, MVT::i64)); 7953 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 7954 Round, DAG.getConstant(2047, dl, MVT::i64)); 7955 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 7956 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7957 Round, DAG.getConstant(-2048, dl, MVT::i64)); 7958 7959 // However, we cannot use that value unconditionally: if the magnitude 7960 // of the input value is small, the bit-twiddling we did above might 7961 // end up visibly changing the output. Fortunately, in that case, we 7962 // don't need to twiddle bits since the original input will convert 7963 // exactly to double-precision floating-point already. Therefore, 7964 // construct a conditional to use the original value if the top 11 7965 // bits are all sign-bit copies, and use the rounded value computed 7966 // above otherwise. 7967 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 7968 SINT, DAG.getConstant(53, dl, MVT::i32)); 7969 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 7970 Cond, DAG.getConstant(1, dl, MVT::i64)); 7971 Cond = DAG.getSetCC(dl, MVT::i32, 7972 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 7973 7974 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 7975 } 7976 7977 ReuseLoadInfo RLI; 7978 SDValue Bits; 7979 7980 MachineFunction &MF = DAG.getMachineFunction(); 7981 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 7982 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7983 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7984 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7985 } else if (Subtarget.hasLFIWAX() && 7986 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 7987 MachineMemOperand *MMO = 7988 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7989 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7990 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7991 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 7992 DAG.getVTList(MVT::f64, MVT::Other), 7993 Ops, MVT::i32, MMO); 7994 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7995 } else if (Subtarget.hasFPCVT() && 7996 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 7997 MachineMemOperand *MMO = 7998 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7999 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8000 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8001 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8002 DAG.getVTList(MVT::f64, MVT::Other), 8003 Ops, MVT::i32, MMO); 8004 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8005 } else if (((Subtarget.hasLFIWAX() && 8006 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8007 (Subtarget.hasFPCVT() && 8008 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8009 SINT.getOperand(0).getValueType() == MVT::i32) { 8010 MachineFrameInfo &MFI = MF.getFrameInfo(); 8011 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8012 8013 int FrameIdx = MFI.CreateStackObject(4, 4, false); 8014 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8015 8016 SDValue Store = 8017 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 8018 MachinePointerInfo::getFixedStack( 8019 DAG.getMachineFunction(), FrameIdx)); 8020 8021 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8022 "Expected an i32 store"); 8023 8024 RLI.Ptr = FIdx; 8025 RLI.Chain = Store; 8026 RLI.MPI = 8027 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8028 RLI.Alignment = 4; 8029 8030 MachineMemOperand *MMO = 8031 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8032 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8033 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8034 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8035 PPCISD::LFIWZX : PPCISD::LFIWAX, 8036 dl, DAG.getVTList(MVT::f64, MVT::Other), 8037 Ops, MVT::i32, MMO); 8038 } else 8039 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8040 8041 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 8042 8043 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8044 FP = DAG.getNode(ISD::FP_ROUND, dl, 8045 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 8046 return FP; 8047 } 8048 8049 assert(Op.getOperand(0).getValueType() == MVT::i32 && 8050 "Unhandled INT_TO_FP type in custom expander!"); 8051 // Since we only generate this in 64-bit mode, we can take advantage of 8052 // 64-bit registers. In particular, sign extend the input value into the 8053 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8054 // then lfd it and fcfid it. 8055 MachineFunction &MF = DAG.getMachineFunction(); 8056 MachineFrameInfo &MFI = MF.getFrameInfo(); 8057 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8058 8059 SDValue Ld; 8060 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8061 ReuseLoadInfo RLI; 8062 bool ReusingLoad; 8063 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 8064 DAG))) { 8065 int FrameIdx = MFI.CreateStackObject(4, 4, false); 8066 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8067 8068 SDValue Store = 8069 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 8070 MachinePointerInfo::getFixedStack( 8071 DAG.getMachineFunction(), FrameIdx)); 8072 8073 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8074 "Expected an i32 store"); 8075 8076 RLI.Ptr = FIdx; 8077 RLI.Chain = Store; 8078 RLI.MPI = 8079 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8080 RLI.Alignment = 4; 8081 } 8082 8083 MachineMemOperand *MMO = 8084 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8085 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8086 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8087 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 8088 PPCISD::LFIWZX : PPCISD::LFIWAX, 8089 dl, DAG.getVTList(MVT::f64, MVT::Other), 8090 Ops, MVT::i32, MMO); 8091 if (ReusingLoad) 8092 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8093 } else { 8094 assert(Subtarget.isPPC64() && 8095 "i32->FP without LFIWAX supported only on PPC64"); 8096 8097 int FrameIdx = MFI.CreateStackObject(8, 8, false); 8098 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8099 8100 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 8101 Op.getOperand(0)); 8102 8103 // STD the extended value into the stack slot. 8104 SDValue Store = DAG.getStore( 8105 DAG.getEntryNode(), dl, Ext64, FIdx, 8106 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8107 8108 // Load the value as a double. 8109 Ld = DAG.getLoad( 8110 MVT::f64, dl, Store, FIdx, 8111 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8112 } 8113 8114 // FCFID it and return it. 8115 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 8116 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8117 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8118 DAG.getIntPtrConstant(0, dl)); 8119 return FP; 8120 } 8121 8122 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8123 SelectionDAG &DAG) const { 8124 SDLoc dl(Op); 8125 /* 8126 The rounding mode is in bits 30:31 of FPSR, and has the following 8127 settings: 8128 00 Round to nearest 8129 01 Round to 0 8130 10 Round to +inf 8131 11 Round to -inf 8132 8133 FLT_ROUNDS, on the other hand, expects the following: 8134 -1 Undefined 8135 0 Round to 0 8136 1 Round to nearest 8137 2 Round to +inf 8138 3 Round to -inf 8139 8140 To perform the conversion, we do: 8141 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8142 */ 8143 8144 MachineFunction &MF = DAG.getMachineFunction(); 8145 EVT VT = Op.getValueType(); 8146 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8147 8148 // Save FP Control Word to register 8149 EVT NodeTys[] = { 8150 MVT::f64, // return register 8151 MVT::Glue // unused in this context 8152 }; 8153 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 8154 8155 // Save FP register to stack slot 8156 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 8157 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8158 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot, 8159 MachinePointerInfo()); 8160 8161 // Load FP Control Word from low 32 bits of stack slot. 8162 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8163 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8164 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo()); 8165 8166 // Transform as necessary 8167 SDValue CWD1 = 8168 DAG.getNode(ISD::AND, dl, MVT::i32, 8169 CWD, DAG.getConstant(3, dl, MVT::i32)); 8170 SDValue CWD2 = 8171 DAG.getNode(ISD::SRL, dl, MVT::i32, 8172 DAG.getNode(ISD::AND, dl, MVT::i32, 8173 DAG.getNode(ISD::XOR, dl, MVT::i32, 8174 CWD, DAG.getConstant(3, dl, MVT::i32)), 8175 DAG.getConstant(3, dl, MVT::i32)), 8176 DAG.getConstant(1, dl, MVT::i32)); 8177 8178 SDValue RetVal = 8179 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8180 8181 return DAG.getNode((VT.getSizeInBits() < 16 ? 8182 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 8183 } 8184 8185 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8186 EVT VT = Op.getValueType(); 8187 unsigned BitWidth = VT.getSizeInBits(); 8188 SDLoc dl(Op); 8189 assert(Op.getNumOperands() == 3 && 8190 VT == Op.getOperand(1).getValueType() && 8191 "Unexpected SHL!"); 8192 8193 // Expand into a bunch of logical ops. Note that these ops 8194 // depend on the PPC behavior for oversized shift amounts. 8195 SDValue Lo = Op.getOperand(0); 8196 SDValue Hi = Op.getOperand(1); 8197 SDValue Amt = Op.getOperand(2); 8198 EVT AmtVT = Amt.getValueType(); 8199 8200 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8201 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8202 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8203 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8204 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8205 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8206 DAG.getConstant(-BitWidth, dl, AmtVT)); 8207 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8208 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8209 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8210 SDValue OutOps[] = { OutLo, OutHi }; 8211 return DAG.getMergeValues(OutOps, dl); 8212 } 8213 8214 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8215 EVT VT = Op.getValueType(); 8216 SDLoc dl(Op); 8217 unsigned BitWidth = VT.getSizeInBits(); 8218 assert(Op.getNumOperands() == 3 && 8219 VT == Op.getOperand(1).getValueType() && 8220 "Unexpected SRL!"); 8221 8222 // Expand into a bunch of logical ops. Note that these ops 8223 // depend on the PPC behavior for oversized shift amounts. 8224 SDValue Lo = Op.getOperand(0); 8225 SDValue Hi = Op.getOperand(1); 8226 SDValue Amt = Op.getOperand(2); 8227 EVT AmtVT = Amt.getValueType(); 8228 8229 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8230 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8231 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8232 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8233 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8234 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8235 DAG.getConstant(-BitWidth, dl, AmtVT)); 8236 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8237 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8238 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8239 SDValue OutOps[] = { OutLo, OutHi }; 8240 return DAG.getMergeValues(OutOps, dl); 8241 } 8242 8243 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8244 SDLoc dl(Op); 8245 EVT VT = Op.getValueType(); 8246 unsigned BitWidth = VT.getSizeInBits(); 8247 assert(Op.getNumOperands() == 3 && 8248 VT == Op.getOperand(1).getValueType() && 8249 "Unexpected SRA!"); 8250 8251 // Expand into a bunch of logical ops, followed by a select_cc. 8252 SDValue Lo = Op.getOperand(0); 8253 SDValue Hi = Op.getOperand(1); 8254 SDValue Amt = Op.getOperand(2); 8255 EVT AmtVT = Amt.getValueType(); 8256 8257 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8258 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8259 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8260 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8261 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8262 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8263 DAG.getConstant(-BitWidth, dl, AmtVT)); 8264 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8265 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8266 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8267 Tmp4, Tmp6, ISD::SETLE); 8268 SDValue OutOps[] = { OutLo, OutHi }; 8269 return DAG.getMergeValues(OutOps, dl); 8270 } 8271 8272 //===----------------------------------------------------------------------===// 8273 // Vector related lowering. 8274 // 8275 8276 /// BuildSplatI - Build a canonical splati of Val with an element size of 8277 /// SplatSize. Cast the result to VT. 8278 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 8279 SelectionDAG &DAG, const SDLoc &dl) { 8280 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 8281 8282 static const MVT VTys[] = { // canonical VT to use for each size. 8283 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8284 }; 8285 8286 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8287 8288 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 8289 if (Val == -1) 8290 SplatSize = 1; 8291 8292 EVT CanonicalVT = VTys[SplatSize-1]; 8293 8294 // Build a canonical splat for this value. 8295 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8296 } 8297 8298 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8299 /// specified intrinsic ID. 8300 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8301 const SDLoc &dl, EVT DestVT = MVT::Other) { 8302 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8303 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8304 DAG.getConstant(IID, dl, MVT::i32), Op); 8305 } 8306 8307 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8308 /// specified intrinsic ID. 8309 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8310 SelectionDAG &DAG, const SDLoc &dl, 8311 EVT DestVT = MVT::Other) { 8312 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8313 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8314 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8315 } 8316 8317 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8318 /// specified intrinsic ID. 8319 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8320 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8321 EVT DestVT = MVT::Other) { 8322 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8323 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8324 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8325 } 8326 8327 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8328 /// amount. The result has the specified value type. 8329 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8330 SelectionDAG &DAG, const SDLoc &dl) { 8331 // Force LHS/RHS to be the right type. 8332 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8333 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8334 8335 int Ops[16]; 8336 for (unsigned i = 0; i != 16; ++i) 8337 Ops[i] = i + Amt; 8338 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8339 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8340 } 8341 8342 /// Do we have an efficient pattern in a .td file for this node? 8343 /// 8344 /// \param V - pointer to the BuildVectorSDNode being matched 8345 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8346 /// 8347 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8348 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8349 /// the opposite is true (expansion is beneficial) are: 8350 /// - The node builds a vector out of integers that are not 32 or 64-bits 8351 /// - The node builds a vector out of constants 8352 /// - The node is a "load-and-splat" 8353 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8354 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8355 bool HasDirectMove, 8356 bool HasP8Vector) { 8357 EVT VecVT = V->getValueType(0); 8358 bool RightType = VecVT == MVT::v2f64 || 8359 (HasP8Vector && VecVT == MVT::v4f32) || 8360 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8361 if (!RightType) 8362 return false; 8363 8364 bool IsSplat = true; 8365 bool IsLoad = false; 8366 SDValue Op0 = V->getOperand(0); 8367 8368 // This function is called in a block that confirms the node is not a constant 8369 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8370 // different constants. 8371 if (V->isConstant()) 8372 return false; 8373 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8374 if (V->getOperand(i).isUndef()) 8375 return false; 8376 // We want to expand nodes that represent load-and-splat even if the 8377 // loaded value is a floating point truncation or conversion to int. 8378 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8379 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8380 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8381 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8382 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8383 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8384 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8385 IsLoad = true; 8386 // If the operands are different or the input is not a load and has more 8387 // uses than just this BV node, then it isn't a splat. 8388 if (V->getOperand(i) != Op0 || 8389 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8390 IsSplat = false; 8391 } 8392 return !(IsSplat && IsLoad); 8393 } 8394 8395 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 8396 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 8397 8398 SDLoc dl(Op); 8399 SDValue Op0 = Op->getOperand(0); 8400 8401 if (!EnableQuadPrecision || 8402 (Op.getValueType() != MVT::f128 ) || 8403 (Op0.getOpcode() != ISD::BUILD_PAIR) || 8404 (Op0.getOperand(0).getValueType() != MVT::i64) || 8405 (Op0.getOperand(1).getValueType() != MVT::i64)) 8406 return SDValue(); 8407 8408 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 8409 Op0.getOperand(1)); 8410 } 8411 8412 static const SDValue *getNormalLoadInput(const SDValue &Op) { 8413 const SDValue *InputLoad = &Op; 8414 if (InputLoad->getOpcode() == ISD::BITCAST) 8415 InputLoad = &InputLoad->getOperand(0); 8416 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR) 8417 InputLoad = &InputLoad->getOperand(0); 8418 if (InputLoad->getOpcode() != ISD::LOAD) 8419 return nullptr; 8420 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8421 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 8422 } 8423 8424 // If this is a case we can't handle, return null and let the default 8425 // expansion code take care of it. If we CAN select this case, and if it 8426 // selects to a single instruction, return Op. Otherwise, if we can codegen 8427 // this case more efficiently than a constant pool load, lower it to the 8428 // sequence of ops that should be used. 8429 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 8430 SelectionDAG &DAG) const { 8431 SDLoc dl(Op); 8432 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 8433 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 8434 8435 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 8436 // We first build an i32 vector, load it into a QPX register, 8437 // then convert it to a floating-point vector and compare it 8438 // to a zero vector to get the boolean result. 8439 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8440 int FrameIdx = MFI.CreateStackObject(16, 16, false); 8441 MachinePointerInfo PtrInfo = 8442 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8443 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8444 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8445 8446 assert(BVN->getNumOperands() == 4 && 8447 "BUILD_VECTOR for v4i1 does not have 4 operands"); 8448 8449 bool IsConst = true; 8450 for (unsigned i = 0; i < 4; ++i) { 8451 if (BVN->getOperand(i).isUndef()) continue; 8452 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 8453 IsConst = false; 8454 break; 8455 } 8456 } 8457 8458 if (IsConst) { 8459 Constant *One = 8460 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 8461 Constant *NegOne = 8462 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 8463 8464 Constant *CV[4]; 8465 for (unsigned i = 0; i < 4; ++i) { 8466 if (BVN->getOperand(i).isUndef()) 8467 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 8468 else if (isNullConstant(BVN->getOperand(i))) 8469 CV[i] = NegOne; 8470 else 8471 CV[i] = One; 8472 } 8473 8474 Constant *CP = ConstantVector::get(CV); 8475 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 8476 16 /* alignment */); 8477 8478 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 8479 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 8480 return DAG.getMemIntrinsicNode( 8481 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 8482 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 8483 } 8484 8485 SmallVector<SDValue, 4> Stores; 8486 for (unsigned i = 0; i < 4; ++i) { 8487 if (BVN->getOperand(i).isUndef()) continue; 8488 8489 unsigned Offset = 4*i; 8490 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 8491 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 8492 8493 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 8494 if (StoreSize > 4) { 8495 Stores.push_back( 8496 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 8497 PtrInfo.getWithOffset(Offset), MVT::i32)); 8498 } else { 8499 SDValue StoreValue = BVN->getOperand(i); 8500 if (StoreSize < 4) 8501 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 8502 8503 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 8504 PtrInfo.getWithOffset(Offset))); 8505 } 8506 } 8507 8508 SDValue StoreChain; 8509 if (!Stores.empty()) 8510 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8511 else 8512 StoreChain = DAG.getEntryNode(); 8513 8514 // Now load from v4i32 into the QPX register; this will extend it to 8515 // v4i64 but not yet convert it to a floating point. Nevertheless, this 8516 // is typed as v4f64 because the QPX register integer states are not 8517 // explicitly represented. 8518 8519 SDValue Ops[] = {StoreChain, 8520 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 8521 FIdx}; 8522 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 8523 8524 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 8525 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8526 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8527 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 8528 LoadedVect); 8529 8530 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 8531 8532 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 8533 } 8534 8535 // All other QPX vectors are handled by generic code. 8536 if (Subtarget.hasQPX()) 8537 return SDValue(); 8538 8539 // Check if this is a splat of a constant value. 8540 APInt APSplatBits, APSplatUndef; 8541 unsigned SplatBitSize; 8542 bool HasAnyUndefs; 8543 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 8544 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 8545 SplatBitSize > 32) { 8546 8547 const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0)); 8548 // Handle load-and-splat patterns as we have instructions that will do this 8549 // in one go. 8550 if (InputLoad && DAG.isSplatValue(Op, true)) { 8551 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8552 8553 // We have handling for 4 and 8 byte elements. 8554 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 8555 8556 // Checking for a single use of this load, we have to check for vector 8557 // width (128 bits) / ElementSize uses (since each operand of the 8558 // BUILD_VECTOR is a separate use of the value. 8559 if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) && 8560 ((Subtarget.hasVSX() && ElementSize == 64) || 8561 (Subtarget.hasP9Vector() && ElementSize == 32))) { 8562 SDValue Ops[] = { 8563 LD->getChain(), // Chain 8564 LD->getBasePtr(), // Ptr 8565 DAG.getValueType(Op.getValueType()) // VT 8566 }; 8567 return 8568 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, 8569 DAG.getVTList(Op.getValueType(), MVT::Other), 8570 Ops, LD->getMemoryVT(), LD->getMemOperand()); 8571 } 8572 } 8573 8574 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 8575 // lowered to VSX instructions under certain conditions. 8576 // Without VSX, there is no pattern more efficient than expanding the node. 8577 if (Subtarget.hasVSX() && 8578 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 8579 Subtarget.hasP8Vector())) 8580 return Op; 8581 return SDValue(); 8582 } 8583 8584 unsigned SplatBits = APSplatBits.getZExtValue(); 8585 unsigned SplatUndef = APSplatUndef.getZExtValue(); 8586 unsigned SplatSize = SplatBitSize / 8; 8587 8588 // First, handle single instruction cases. 8589 8590 // All zeros? 8591 if (SplatBits == 0) { 8592 // Canonicalize all zero vectors to be v4i32. 8593 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 8594 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 8595 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 8596 } 8597 return Op; 8598 } 8599 8600 // We have XXSPLTIB for constant splats one byte wide 8601 if (Subtarget.hasP9Vector() && SplatSize == 1) { 8602 // This is a splat of 1-byte elements with some elements potentially undef. 8603 // Rather than trying to match undef in the SDAG patterns, ensure that all 8604 // elements are the same constant. 8605 if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) { 8606 SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits, 8607 dl, MVT::i32)); 8608 SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops); 8609 if (Op.getValueType() != MVT::v16i8) 8610 return DAG.getBitcast(Op.getValueType(), NewBV); 8611 return NewBV; 8612 } 8613 8614 // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll 8615 // detect that constant splats like v8i16: 0xABAB are really just splats 8616 // of a 1-byte constant. In this case, we need to convert the node to a 8617 // splat of v16i8 and a bitcast. 8618 if (Op.getValueType() != MVT::v16i8) 8619 return DAG.getBitcast(Op.getValueType(), 8620 DAG.getConstant(SplatBits, dl, MVT::v16i8)); 8621 8622 return Op; 8623 } 8624 8625 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 8626 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 8627 (32-SplatBitSize)); 8628 if (SextVal >= -16 && SextVal <= 15) 8629 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 8630 8631 // Two instruction sequences. 8632 8633 // If this value is in the range [-32,30] and is even, use: 8634 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 8635 // If this value is in the range [17,31] and is odd, use: 8636 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 8637 // If this value is in the range [-31,-17] and is odd, use: 8638 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 8639 // Note the last two are three-instruction sequences. 8640 if (SextVal >= -32 && SextVal <= 31) { 8641 // To avoid having these optimizations undone by constant folding, 8642 // we convert to a pseudo that will be expanded later into one of 8643 // the above forms. 8644 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 8645 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 8646 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 8647 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 8648 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 8649 if (VT == Op.getValueType()) 8650 return RetVal; 8651 else 8652 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 8653 } 8654 8655 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 8656 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 8657 // for fneg/fabs. 8658 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 8659 // Make -1 and vspltisw -1: 8660 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 8661 8662 // Make the VSLW intrinsic, computing 0x8000_0000. 8663 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 8664 OnesV, DAG, dl); 8665 8666 // xor by OnesV to invert it. 8667 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 8668 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8669 } 8670 8671 // Check to see if this is a wide variety of vsplti*, binop self cases. 8672 static const signed char SplatCsts[] = { 8673 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 8674 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 8675 }; 8676 8677 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 8678 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 8679 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 8680 int i = SplatCsts[idx]; 8681 8682 // Figure out what shift amount will be used by altivec if shifted by i in 8683 // this splat size. 8684 unsigned TypeShiftAmt = i & (SplatBitSize-1); 8685 8686 // vsplti + shl self. 8687 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 8688 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8689 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8690 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 8691 Intrinsic::ppc_altivec_vslw 8692 }; 8693 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8694 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8695 } 8696 8697 // vsplti + srl self. 8698 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8699 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8700 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8701 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 8702 Intrinsic::ppc_altivec_vsrw 8703 }; 8704 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8705 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8706 } 8707 8708 // vsplti + sra self. 8709 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8710 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8711 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8712 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 8713 Intrinsic::ppc_altivec_vsraw 8714 }; 8715 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8716 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8717 } 8718 8719 // vsplti + rol self. 8720 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 8721 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 8722 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8723 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8724 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 8725 Intrinsic::ppc_altivec_vrlw 8726 }; 8727 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8728 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8729 } 8730 8731 // t = vsplti c, result = vsldoi t, t, 1 8732 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 8733 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8734 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 8735 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8736 } 8737 // t = vsplti c, result = vsldoi t, t, 2 8738 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 8739 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8740 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 8741 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8742 } 8743 // t = vsplti c, result = vsldoi t, t, 3 8744 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 8745 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8746 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 8747 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8748 } 8749 } 8750 8751 return SDValue(); 8752 } 8753 8754 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 8755 /// the specified operations to build the shuffle. 8756 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 8757 SDValue RHS, SelectionDAG &DAG, 8758 const SDLoc &dl) { 8759 unsigned OpNum = (PFEntry >> 26) & 0x0F; 8760 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 8761 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 8762 8763 enum { 8764 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 8765 OP_VMRGHW, 8766 OP_VMRGLW, 8767 OP_VSPLTISW0, 8768 OP_VSPLTISW1, 8769 OP_VSPLTISW2, 8770 OP_VSPLTISW3, 8771 OP_VSLDOI4, 8772 OP_VSLDOI8, 8773 OP_VSLDOI12 8774 }; 8775 8776 if (OpNum == OP_COPY) { 8777 if (LHSID == (1*9+2)*9+3) return LHS; 8778 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 8779 return RHS; 8780 } 8781 8782 SDValue OpLHS, OpRHS; 8783 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 8784 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 8785 8786 int ShufIdxs[16]; 8787 switch (OpNum) { 8788 default: llvm_unreachable("Unknown i32 permute!"); 8789 case OP_VMRGHW: 8790 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 8791 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 8792 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 8793 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 8794 break; 8795 case OP_VMRGLW: 8796 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 8797 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 8798 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 8799 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 8800 break; 8801 case OP_VSPLTISW0: 8802 for (unsigned i = 0; i != 16; ++i) 8803 ShufIdxs[i] = (i&3)+0; 8804 break; 8805 case OP_VSPLTISW1: 8806 for (unsigned i = 0; i != 16; ++i) 8807 ShufIdxs[i] = (i&3)+4; 8808 break; 8809 case OP_VSPLTISW2: 8810 for (unsigned i = 0; i != 16; ++i) 8811 ShufIdxs[i] = (i&3)+8; 8812 break; 8813 case OP_VSPLTISW3: 8814 for (unsigned i = 0; i != 16; ++i) 8815 ShufIdxs[i] = (i&3)+12; 8816 break; 8817 case OP_VSLDOI4: 8818 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 8819 case OP_VSLDOI8: 8820 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 8821 case OP_VSLDOI12: 8822 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 8823 } 8824 EVT VT = OpLHS.getValueType(); 8825 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 8826 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 8827 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 8828 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8829 } 8830 8831 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 8832 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 8833 /// SDValue. 8834 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 8835 SelectionDAG &DAG) const { 8836 const unsigned BytesInVector = 16; 8837 bool IsLE = Subtarget.isLittleEndian(); 8838 SDLoc dl(N); 8839 SDValue V1 = N->getOperand(0); 8840 SDValue V2 = N->getOperand(1); 8841 unsigned ShiftElts = 0, InsertAtByte = 0; 8842 bool Swap = false; 8843 8844 // Shifts required to get the byte we want at element 7. 8845 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 8846 0, 15, 14, 13, 12, 11, 10, 9}; 8847 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 8848 1, 2, 3, 4, 5, 6, 7, 8}; 8849 8850 ArrayRef<int> Mask = N->getMask(); 8851 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 8852 8853 // For each mask element, find out if we're just inserting something 8854 // from V2 into V1 or vice versa. 8855 // Possible permutations inserting an element from V2 into V1: 8856 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8857 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8858 // ... 8859 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 8860 // Inserting from V1 into V2 will be similar, except mask range will be 8861 // [16,31]. 8862 8863 bool FoundCandidate = false; 8864 // If both vector operands for the shuffle are the same vector, the mask 8865 // will contain only elements from the first one and the second one will be 8866 // undef. 8867 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 8868 // Go through the mask of half-words to find an element that's being moved 8869 // from one vector to the other. 8870 for (unsigned i = 0; i < BytesInVector; ++i) { 8871 unsigned CurrentElement = Mask[i]; 8872 // If 2nd operand is undefined, we should only look for element 7 in the 8873 // Mask. 8874 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 8875 continue; 8876 8877 bool OtherElementsInOrder = true; 8878 // Examine the other elements in the Mask to see if they're in original 8879 // order. 8880 for (unsigned j = 0; j < BytesInVector; ++j) { 8881 if (j == i) 8882 continue; 8883 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 8884 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 8885 // in which we always assume we're always picking from the 1st operand. 8886 int MaskOffset = 8887 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 8888 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 8889 OtherElementsInOrder = false; 8890 break; 8891 } 8892 } 8893 // If other elements are in original order, we record the number of shifts 8894 // we need to get the element we want into element 7. Also record which byte 8895 // in the vector we should insert into. 8896 if (OtherElementsInOrder) { 8897 // If 2nd operand is undefined, we assume no shifts and no swapping. 8898 if (V2.isUndef()) { 8899 ShiftElts = 0; 8900 Swap = false; 8901 } else { 8902 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 8903 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 8904 : BigEndianShifts[CurrentElement & 0xF]; 8905 Swap = CurrentElement < BytesInVector; 8906 } 8907 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 8908 FoundCandidate = true; 8909 break; 8910 } 8911 } 8912 8913 if (!FoundCandidate) 8914 return SDValue(); 8915 8916 // Candidate found, construct the proper SDAG sequence with VINSERTB, 8917 // optionally with VECSHL if shift is required. 8918 if (Swap) 8919 std::swap(V1, V2); 8920 if (V2.isUndef()) 8921 V2 = V1; 8922 if (ShiftElts) { 8923 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8924 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8925 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 8926 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8927 } 8928 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 8929 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8930 } 8931 8932 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 8933 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 8934 /// SDValue. 8935 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 8936 SelectionDAG &DAG) const { 8937 const unsigned NumHalfWords = 8; 8938 const unsigned BytesInVector = NumHalfWords * 2; 8939 // Check that the shuffle is on half-words. 8940 if (!isNByteElemShuffleMask(N, 2, 1)) 8941 return SDValue(); 8942 8943 bool IsLE = Subtarget.isLittleEndian(); 8944 SDLoc dl(N); 8945 SDValue V1 = N->getOperand(0); 8946 SDValue V2 = N->getOperand(1); 8947 unsigned ShiftElts = 0, InsertAtByte = 0; 8948 bool Swap = false; 8949 8950 // Shifts required to get the half-word we want at element 3. 8951 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 8952 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 8953 8954 uint32_t Mask = 0; 8955 uint32_t OriginalOrderLow = 0x1234567; 8956 uint32_t OriginalOrderHigh = 0x89ABCDEF; 8957 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 8958 // 32-bit space, only need 4-bit nibbles per element. 8959 for (unsigned i = 0; i < NumHalfWords; ++i) { 8960 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8961 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 8962 } 8963 8964 // For each mask element, find out if we're just inserting something 8965 // from V2 into V1 or vice versa. Possible permutations inserting an element 8966 // from V2 into V1: 8967 // X, 1, 2, 3, 4, 5, 6, 7 8968 // 0, X, 2, 3, 4, 5, 6, 7 8969 // 0, 1, X, 3, 4, 5, 6, 7 8970 // 0, 1, 2, X, 4, 5, 6, 7 8971 // 0, 1, 2, 3, X, 5, 6, 7 8972 // 0, 1, 2, 3, 4, X, 6, 7 8973 // 0, 1, 2, 3, 4, 5, X, 7 8974 // 0, 1, 2, 3, 4, 5, 6, X 8975 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 8976 8977 bool FoundCandidate = false; 8978 // Go through the mask of half-words to find an element that's being moved 8979 // from one vector to the other. 8980 for (unsigned i = 0; i < NumHalfWords; ++i) { 8981 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8982 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 8983 uint32_t MaskOtherElts = ~(0xF << MaskShift); 8984 uint32_t TargetOrder = 0x0; 8985 8986 // If both vector operands for the shuffle are the same vector, the mask 8987 // will contain only elements from the first one and the second one will be 8988 // undef. 8989 if (V2.isUndef()) { 8990 ShiftElts = 0; 8991 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 8992 TargetOrder = OriginalOrderLow; 8993 Swap = false; 8994 // Skip if not the correct element or mask of other elements don't equal 8995 // to our expected order. 8996 if (MaskOneElt == VINSERTHSrcElem && 8997 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 8998 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 8999 FoundCandidate = true; 9000 break; 9001 } 9002 } else { // If both operands are defined. 9003 // Target order is [8,15] if the current mask is between [0,7]. 9004 TargetOrder = 9005 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9006 // Skip if mask of other elements don't equal our expected order. 9007 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9008 // We only need the last 3 bits for the number of shifts. 9009 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9010 : BigEndianShifts[MaskOneElt & 0x7]; 9011 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9012 Swap = MaskOneElt < NumHalfWords; 9013 FoundCandidate = true; 9014 break; 9015 } 9016 } 9017 } 9018 9019 if (!FoundCandidate) 9020 return SDValue(); 9021 9022 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9023 // optionally with VECSHL if shift is required. 9024 if (Swap) 9025 std::swap(V1, V2); 9026 if (V2.isUndef()) 9027 V2 = V1; 9028 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9029 if (ShiftElts) { 9030 // Double ShiftElts because we're left shifting on v16i8 type. 9031 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9032 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9033 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9034 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9035 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9036 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9037 } 9038 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9039 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9040 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9041 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9042 } 9043 9044 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9045 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9046 /// return the code it can be lowered into. Worst case, it can always be 9047 /// lowered into a vperm. 9048 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9049 SelectionDAG &DAG) const { 9050 SDLoc dl(Op); 9051 SDValue V1 = Op.getOperand(0); 9052 SDValue V2 = Op.getOperand(1); 9053 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9054 EVT VT = Op.getValueType(); 9055 bool isLittleEndian = Subtarget.isLittleEndian(); 9056 9057 unsigned ShiftElts, InsertAtByte; 9058 bool Swap = false; 9059 9060 // If this is a load-and-splat, we can do that with a single instruction 9061 // in some cases. However if the load has multiple uses, we don't want to 9062 // combine it because that will just produce multiple loads. 9063 const SDValue *InputLoad = getNormalLoadInput(V1); 9064 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9065 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9066 InputLoad->hasOneUse()) { 9067 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9068 int SplatIdx = 9069 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9070 9071 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9072 // For 4-byte load-and-splat, we need Power9. 9073 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9074 uint64_t Offset = 0; 9075 if (IsFourByte) 9076 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9077 else 9078 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9079 SDValue BasePtr = LD->getBasePtr(); 9080 if (Offset != 0) 9081 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9082 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9083 SDValue Ops[] = { 9084 LD->getChain(), // Chain 9085 BasePtr, // BasePtr 9086 DAG.getValueType(Op.getValueType()) // VT 9087 }; 9088 SDVTList VTL = 9089 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9090 SDValue LdSplt = 9091 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9092 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9093 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9094 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9095 return LdSplt; 9096 } 9097 } 9098 if (Subtarget.hasP9Vector() && 9099 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9100 isLittleEndian)) { 9101 if (Swap) 9102 std::swap(V1, V2); 9103 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9104 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9105 if (ShiftElts) { 9106 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9107 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9108 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9109 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9110 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9111 } 9112 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9113 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9114 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9115 } 9116 9117 if (Subtarget.hasP9Altivec()) { 9118 SDValue NewISDNode; 9119 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9120 return NewISDNode; 9121 9122 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9123 return NewISDNode; 9124 } 9125 9126 if (Subtarget.hasVSX() && 9127 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9128 if (Swap) 9129 std::swap(V1, V2); 9130 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9131 SDValue Conv2 = 9132 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9133 9134 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9135 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9136 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9137 } 9138 9139 if (Subtarget.hasVSX() && 9140 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9141 if (Swap) 9142 std::swap(V1, V2); 9143 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9144 SDValue Conv2 = 9145 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9146 9147 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9148 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9149 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9150 } 9151 9152 if (Subtarget.hasP9Vector()) { 9153 if (PPC::isXXBRHShuffleMask(SVOp)) { 9154 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9155 SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv); 9156 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9157 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9158 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9159 SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv); 9160 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9161 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9162 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9163 SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv); 9164 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9165 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9166 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9167 SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv); 9168 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9169 } 9170 } 9171 9172 if (Subtarget.hasVSX()) { 9173 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9174 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9175 9176 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9177 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9178 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9179 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9180 } 9181 9182 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9183 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9184 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9185 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9186 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9187 } 9188 } 9189 9190 if (Subtarget.hasQPX()) { 9191 if (VT.getVectorNumElements() != 4) 9192 return SDValue(); 9193 9194 if (V2.isUndef()) V2 = V1; 9195 9196 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 9197 if (AlignIdx != -1) { 9198 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 9199 DAG.getConstant(AlignIdx, dl, MVT::i32)); 9200 } else if (SVOp->isSplat()) { 9201 int SplatIdx = SVOp->getSplatIndex(); 9202 if (SplatIdx >= 4) { 9203 std::swap(V1, V2); 9204 SplatIdx -= 4; 9205 } 9206 9207 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 9208 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9209 } 9210 9211 // Lower this into a qvgpci/qvfperm pair. 9212 9213 // Compute the qvgpci literal 9214 unsigned idx = 0; 9215 for (unsigned i = 0; i < 4; ++i) { 9216 int m = SVOp->getMaskElt(i); 9217 unsigned mm = m >= 0 ? (unsigned) m : i; 9218 idx |= mm << (3-i)*3; 9219 } 9220 9221 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 9222 DAG.getConstant(idx, dl, MVT::i32)); 9223 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 9224 } 9225 9226 // Cases that are handled by instructions that take permute immediates 9227 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9228 // selected by the instruction selector. 9229 if (V2.isUndef()) { 9230 if (PPC::isSplatShuffleMask(SVOp, 1) || 9231 PPC::isSplatShuffleMask(SVOp, 2) || 9232 PPC::isSplatShuffleMask(SVOp, 4) || 9233 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9234 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9235 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9236 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9237 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9238 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9239 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9240 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9241 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9242 (Subtarget.hasP8Altivec() && ( 9243 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9244 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9245 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9246 return Op; 9247 } 9248 } 9249 9250 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9251 // and produce a fixed permutation. If any of these match, do not lower to 9252 // VPERM. 9253 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9254 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9255 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9256 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9257 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9258 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9259 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9260 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9261 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9262 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9263 (Subtarget.hasP8Altivec() && ( 9264 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9265 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9266 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9267 return Op; 9268 9269 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9270 // perfect shuffle table to emit an optimal matching sequence. 9271 ArrayRef<int> PermMask = SVOp->getMask(); 9272 9273 unsigned PFIndexes[4]; 9274 bool isFourElementShuffle = true; 9275 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9276 unsigned EltNo = 8; // Start out undef. 9277 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9278 if (PermMask[i*4+j] < 0) 9279 continue; // Undef, ignore it. 9280 9281 unsigned ByteSource = PermMask[i*4+j]; 9282 if ((ByteSource & 3) != j) { 9283 isFourElementShuffle = false; 9284 break; 9285 } 9286 9287 if (EltNo == 8) { 9288 EltNo = ByteSource/4; 9289 } else if (EltNo != ByteSource/4) { 9290 isFourElementShuffle = false; 9291 break; 9292 } 9293 } 9294 PFIndexes[i] = EltNo; 9295 } 9296 9297 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 9298 // perfect shuffle vector to determine if it is cost effective to do this as 9299 // discrete instructions, or whether we should use a vperm. 9300 // For now, we skip this for little endian until such time as we have a 9301 // little-endian perfect shuffle table. 9302 if (isFourElementShuffle && !isLittleEndian) { 9303 // Compute the index in the perfect shuffle table. 9304 unsigned PFTableIndex = 9305 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 9306 9307 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 9308 unsigned Cost = (PFEntry >> 30); 9309 9310 // Determining when to avoid vperm is tricky. Many things affect the cost 9311 // of vperm, particularly how many times the perm mask needs to be computed. 9312 // For example, if the perm mask can be hoisted out of a loop or is already 9313 // used (perhaps because there are multiple permutes with the same shuffle 9314 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 9315 // the loop requires an extra register. 9316 // 9317 // As a compromise, we only emit discrete instructions if the shuffle can be 9318 // generated in 3 or fewer operations. When we have loop information 9319 // available, if this block is within a loop, we should avoid using vperm 9320 // for 3-operation perms and use a constant pool load instead. 9321 if (Cost < 3) 9322 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 9323 } 9324 9325 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 9326 // vector that will get spilled to the constant pool. 9327 if (V2.isUndef()) V2 = V1; 9328 9329 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 9330 // that it is in input element units, not in bytes. Convert now. 9331 9332 // For little endian, the order of the input vectors is reversed, and 9333 // the permutation mask is complemented with respect to 31. This is 9334 // necessary to produce proper semantics with the big-endian-biased vperm 9335 // instruction. 9336 EVT EltVT = V1.getValueType().getVectorElementType(); 9337 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 9338 9339 SmallVector<SDValue, 16> ResultMask; 9340 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 9341 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 9342 9343 for (unsigned j = 0; j != BytesPerElement; ++j) 9344 if (isLittleEndian) 9345 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 9346 dl, MVT::i32)); 9347 else 9348 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 9349 MVT::i32)); 9350 } 9351 9352 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 9353 if (isLittleEndian) 9354 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9355 V2, V1, VPermMask); 9356 else 9357 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9358 V1, V2, VPermMask); 9359 } 9360 9361 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 9362 /// vector comparison. If it is, return true and fill in Opc/isDot with 9363 /// information about the intrinsic. 9364 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 9365 bool &isDot, const PPCSubtarget &Subtarget) { 9366 unsigned IntrinsicID = 9367 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 9368 CompareOpc = -1; 9369 isDot = false; 9370 switch (IntrinsicID) { 9371 default: 9372 return false; 9373 // Comparison predicates. 9374 case Intrinsic::ppc_altivec_vcmpbfp_p: 9375 CompareOpc = 966; 9376 isDot = true; 9377 break; 9378 case Intrinsic::ppc_altivec_vcmpeqfp_p: 9379 CompareOpc = 198; 9380 isDot = true; 9381 break; 9382 case Intrinsic::ppc_altivec_vcmpequb_p: 9383 CompareOpc = 6; 9384 isDot = true; 9385 break; 9386 case Intrinsic::ppc_altivec_vcmpequh_p: 9387 CompareOpc = 70; 9388 isDot = true; 9389 break; 9390 case Intrinsic::ppc_altivec_vcmpequw_p: 9391 CompareOpc = 134; 9392 isDot = true; 9393 break; 9394 case Intrinsic::ppc_altivec_vcmpequd_p: 9395 if (Subtarget.hasP8Altivec()) { 9396 CompareOpc = 199; 9397 isDot = true; 9398 } else 9399 return false; 9400 break; 9401 case Intrinsic::ppc_altivec_vcmpneb_p: 9402 case Intrinsic::ppc_altivec_vcmpneh_p: 9403 case Intrinsic::ppc_altivec_vcmpnew_p: 9404 case Intrinsic::ppc_altivec_vcmpnezb_p: 9405 case Intrinsic::ppc_altivec_vcmpnezh_p: 9406 case Intrinsic::ppc_altivec_vcmpnezw_p: 9407 if (Subtarget.hasP9Altivec()) { 9408 switch (IntrinsicID) { 9409 default: 9410 llvm_unreachable("Unknown comparison intrinsic."); 9411 case Intrinsic::ppc_altivec_vcmpneb_p: 9412 CompareOpc = 7; 9413 break; 9414 case Intrinsic::ppc_altivec_vcmpneh_p: 9415 CompareOpc = 71; 9416 break; 9417 case Intrinsic::ppc_altivec_vcmpnew_p: 9418 CompareOpc = 135; 9419 break; 9420 case Intrinsic::ppc_altivec_vcmpnezb_p: 9421 CompareOpc = 263; 9422 break; 9423 case Intrinsic::ppc_altivec_vcmpnezh_p: 9424 CompareOpc = 327; 9425 break; 9426 case Intrinsic::ppc_altivec_vcmpnezw_p: 9427 CompareOpc = 391; 9428 break; 9429 } 9430 isDot = true; 9431 } else 9432 return false; 9433 break; 9434 case Intrinsic::ppc_altivec_vcmpgefp_p: 9435 CompareOpc = 454; 9436 isDot = true; 9437 break; 9438 case Intrinsic::ppc_altivec_vcmpgtfp_p: 9439 CompareOpc = 710; 9440 isDot = true; 9441 break; 9442 case Intrinsic::ppc_altivec_vcmpgtsb_p: 9443 CompareOpc = 774; 9444 isDot = true; 9445 break; 9446 case Intrinsic::ppc_altivec_vcmpgtsh_p: 9447 CompareOpc = 838; 9448 isDot = true; 9449 break; 9450 case Intrinsic::ppc_altivec_vcmpgtsw_p: 9451 CompareOpc = 902; 9452 isDot = true; 9453 break; 9454 case Intrinsic::ppc_altivec_vcmpgtsd_p: 9455 if (Subtarget.hasP8Altivec()) { 9456 CompareOpc = 967; 9457 isDot = true; 9458 } else 9459 return false; 9460 break; 9461 case Intrinsic::ppc_altivec_vcmpgtub_p: 9462 CompareOpc = 518; 9463 isDot = true; 9464 break; 9465 case Intrinsic::ppc_altivec_vcmpgtuh_p: 9466 CompareOpc = 582; 9467 isDot = true; 9468 break; 9469 case Intrinsic::ppc_altivec_vcmpgtuw_p: 9470 CompareOpc = 646; 9471 isDot = true; 9472 break; 9473 case Intrinsic::ppc_altivec_vcmpgtud_p: 9474 if (Subtarget.hasP8Altivec()) { 9475 CompareOpc = 711; 9476 isDot = true; 9477 } else 9478 return false; 9479 break; 9480 9481 // VSX predicate comparisons use the same infrastructure 9482 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9483 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9484 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9485 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9486 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9487 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9488 if (Subtarget.hasVSX()) { 9489 switch (IntrinsicID) { 9490 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9491 CompareOpc = 99; 9492 break; 9493 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9494 CompareOpc = 115; 9495 break; 9496 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9497 CompareOpc = 107; 9498 break; 9499 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9500 CompareOpc = 67; 9501 break; 9502 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9503 CompareOpc = 83; 9504 break; 9505 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9506 CompareOpc = 75; 9507 break; 9508 } 9509 isDot = true; 9510 } else 9511 return false; 9512 break; 9513 9514 // Normal Comparisons. 9515 case Intrinsic::ppc_altivec_vcmpbfp: 9516 CompareOpc = 966; 9517 break; 9518 case Intrinsic::ppc_altivec_vcmpeqfp: 9519 CompareOpc = 198; 9520 break; 9521 case Intrinsic::ppc_altivec_vcmpequb: 9522 CompareOpc = 6; 9523 break; 9524 case Intrinsic::ppc_altivec_vcmpequh: 9525 CompareOpc = 70; 9526 break; 9527 case Intrinsic::ppc_altivec_vcmpequw: 9528 CompareOpc = 134; 9529 break; 9530 case Intrinsic::ppc_altivec_vcmpequd: 9531 if (Subtarget.hasP8Altivec()) 9532 CompareOpc = 199; 9533 else 9534 return false; 9535 break; 9536 case Intrinsic::ppc_altivec_vcmpneb: 9537 case Intrinsic::ppc_altivec_vcmpneh: 9538 case Intrinsic::ppc_altivec_vcmpnew: 9539 case Intrinsic::ppc_altivec_vcmpnezb: 9540 case Intrinsic::ppc_altivec_vcmpnezh: 9541 case Intrinsic::ppc_altivec_vcmpnezw: 9542 if (Subtarget.hasP9Altivec()) 9543 switch (IntrinsicID) { 9544 default: 9545 llvm_unreachable("Unknown comparison intrinsic."); 9546 case Intrinsic::ppc_altivec_vcmpneb: 9547 CompareOpc = 7; 9548 break; 9549 case Intrinsic::ppc_altivec_vcmpneh: 9550 CompareOpc = 71; 9551 break; 9552 case Intrinsic::ppc_altivec_vcmpnew: 9553 CompareOpc = 135; 9554 break; 9555 case Intrinsic::ppc_altivec_vcmpnezb: 9556 CompareOpc = 263; 9557 break; 9558 case Intrinsic::ppc_altivec_vcmpnezh: 9559 CompareOpc = 327; 9560 break; 9561 case Intrinsic::ppc_altivec_vcmpnezw: 9562 CompareOpc = 391; 9563 break; 9564 } 9565 else 9566 return false; 9567 break; 9568 case Intrinsic::ppc_altivec_vcmpgefp: 9569 CompareOpc = 454; 9570 break; 9571 case Intrinsic::ppc_altivec_vcmpgtfp: 9572 CompareOpc = 710; 9573 break; 9574 case Intrinsic::ppc_altivec_vcmpgtsb: 9575 CompareOpc = 774; 9576 break; 9577 case Intrinsic::ppc_altivec_vcmpgtsh: 9578 CompareOpc = 838; 9579 break; 9580 case Intrinsic::ppc_altivec_vcmpgtsw: 9581 CompareOpc = 902; 9582 break; 9583 case Intrinsic::ppc_altivec_vcmpgtsd: 9584 if (Subtarget.hasP8Altivec()) 9585 CompareOpc = 967; 9586 else 9587 return false; 9588 break; 9589 case Intrinsic::ppc_altivec_vcmpgtub: 9590 CompareOpc = 518; 9591 break; 9592 case Intrinsic::ppc_altivec_vcmpgtuh: 9593 CompareOpc = 582; 9594 break; 9595 case Intrinsic::ppc_altivec_vcmpgtuw: 9596 CompareOpc = 646; 9597 break; 9598 case Intrinsic::ppc_altivec_vcmpgtud: 9599 if (Subtarget.hasP8Altivec()) 9600 CompareOpc = 711; 9601 else 9602 return false; 9603 break; 9604 } 9605 return true; 9606 } 9607 9608 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 9609 /// lower, do it, otherwise return null. 9610 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 9611 SelectionDAG &DAG) const { 9612 unsigned IntrinsicID = 9613 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9614 9615 SDLoc dl(Op); 9616 9617 if (IntrinsicID == Intrinsic::thread_pointer) { 9618 // Reads the thread pointer register, used for __builtin_thread_pointer. 9619 if (Subtarget.isPPC64()) 9620 return DAG.getRegister(PPC::X13, MVT::i64); 9621 return DAG.getRegister(PPC::R2, MVT::i32); 9622 } 9623 9624 // If this is a lowered altivec predicate compare, CompareOpc is set to the 9625 // opcode number of the comparison. 9626 int CompareOpc; 9627 bool isDot; 9628 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 9629 return SDValue(); // Don't custom lower most intrinsics. 9630 9631 // If this is a non-dot comparison, make the VCMP node and we are done. 9632 if (!isDot) { 9633 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 9634 Op.getOperand(1), Op.getOperand(2), 9635 DAG.getConstant(CompareOpc, dl, MVT::i32)); 9636 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 9637 } 9638 9639 // Create the PPCISD altivec 'dot' comparison node. 9640 SDValue Ops[] = { 9641 Op.getOperand(2), // LHS 9642 Op.getOperand(3), // RHS 9643 DAG.getConstant(CompareOpc, dl, MVT::i32) 9644 }; 9645 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 9646 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 9647 9648 // Now that we have the comparison, emit a copy from the CR to a GPR. 9649 // This is flagged to the above dot comparison. 9650 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 9651 DAG.getRegister(PPC::CR6, MVT::i32), 9652 CompNode.getValue(1)); 9653 9654 // Unpack the result based on how the target uses it. 9655 unsigned BitNo; // Bit # of CR6. 9656 bool InvertBit; // Invert result? 9657 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 9658 default: // Can't happen, don't crash on invalid number though. 9659 case 0: // Return the value of the EQ bit of CR6. 9660 BitNo = 0; InvertBit = false; 9661 break; 9662 case 1: // Return the inverted value of the EQ bit of CR6. 9663 BitNo = 0; InvertBit = true; 9664 break; 9665 case 2: // Return the value of the LT bit of CR6. 9666 BitNo = 2; InvertBit = false; 9667 break; 9668 case 3: // Return the inverted value of the LT bit of CR6. 9669 BitNo = 2; InvertBit = true; 9670 break; 9671 } 9672 9673 // Shift the bit into the low position. 9674 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 9675 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 9676 // Isolate the bit. 9677 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 9678 DAG.getConstant(1, dl, MVT::i32)); 9679 9680 // If we are supposed to, toggle the bit. 9681 if (InvertBit) 9682 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 9683 DAG.getConstant(1, dl, MVT::i32)); 9684 return Flags; 9685 } 9686 9687 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 9688 SelectionDAG &DAG) const { 9689 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 9690 // the beginning of the argument list. 9691 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 9692 SDLoc DL(Op); 9693 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 9694 case Intrinsic::ppc_cfence: { 9695 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 9696 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 9697 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 9698 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 9699 Op.getOperand(ArgStart + 1)), 9700 Op.getOperand(0)), 9701 0); 9702 } 9703 default: 9704 break; 9705 } 9706 return SDValue(); 9707 } 9708 9709 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const { 9710 // Check for a DIV with the same operands as this REM. 9711 for (auto UI : Op.getOperand(1)->uses()) { 9712 if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) || 9713 (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV)) 9714 if (UI->getOperand(0) == Op.getOperand(0) && 9715 UI->getOperand(1) == Op.getOperand(1)) 9716 return SDValue(); 9717 } 9718 return Op; 9719 } 9720 9721 // Lower scalar BSWAP64 to xxbrd. 9722 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 9723 SDLoc dl(Op); 9724 // MTVSRDD 9725 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 9726 Op.getOperand(0)); 9727 // XXBRD 9728 Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op); 9729 // MFVSRD 9730 int VectorIndex = 0; 9731 if (Subtarget.isLittleEndian()) 9732 VectorIndex = 1; 9733 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 9734 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 9735 return Op; 9736 } 9737 9738 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 9739 // compared to a value that is atomically loaded (atomic loads zero-extend). 9740 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 9741 SelectionDAG &DAG) const { 9742 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 9743 "Expecting an atomic compare-and-swap here."); 9744 SDLoc dl(Op); 9745 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 9746 EVT MemVT = AtomicNode->getMemoryVT(); 9747 if (MemVT.getSizeInBits() >= 32) 9748 return Op; 9749 9750 SDValue CmpOp = Op.getOperand(2); 9751 // If this is already correctly zero-extended, leave it alone. 9752 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 9753 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 9754 return Op; 9755 9756 // Clear the high bits of the compare operand. 9757 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 9758 SDValue NewCmpOp = 9759 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 9760 DAG.getConstant(MaskVal, dl, MVT::i32)); 9761 9762 // Replace the existing compare operand with the properly zero-extended one. 9763 SmallVector<SDValue, 4> Ops; 9764 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 9765 Ops.push_back(AtomicNode->getOperand(i)); 9766 Ops[2] = NewCmpOp; 9767 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 9768 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 9769 auto NodeTy = 9770 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 9771 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 9772 } 9773 9774 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 9775 SelectionDAG &DAG) const { 9776 SDLoc dl(Op); 9777 // Create a stack slot that is 16-byte aligned. 9778 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9779 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9780 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9781 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9782 9783 // Store the input value into Value#0 of the stack slot. 9784 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 9785 MachinePointerInfo()); 9786 // Load it out. 9787 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 9788 } 9789 9790 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 9791 SelectionDAG &DAG) const { 9792 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 9793 "Should only be called for ISD::INSERT_VECTOR_ELT"); 9794 9795 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 9796 // We have legal lowering for constant indices but not for variable ones. 9797 if (!C) 9798 return SDValue(); 9799 9800 EVT VT = Op.getValueType(); 9801 SDLoc dl(Op); 9802 SDValue V1 = Op.getOperand(0); 9803 SDValue V2 = Op.getOperand(1); 9804 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 9805 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 9806 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 9807 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 9808 unsigned InsertAtElement = C->getZExtValue(); 9809 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 9810 if (Subtarget.isLittleEndian()) { 9811 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 9812 } 9813 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 9814 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9815 } 9816 return Op; 9817 } 9818 9819 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 9820 SelectionDAG &DAG) const { 9821 SDLoc dl(Op); 9822 SDNode *N = Op.getNode(); 9823 9824 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 9825 "Unknown extract_vector_elt type"); 9826 9827 SDValue Value = N->getOperand(0); 9828 9829 // The first part of this is like the store lowering except that we don't 9830 // need to track the chain. 9831 9832 // The values are now known to be -1 (false) or 1 (true). To convert this 9833 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9834 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9835 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9836 9837 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9838 // understand how to form the extending load. 9839 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9840 9841 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9842 9843 // Now convert to an integer and store. 9844 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9845 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9846 Value); 9847 9848 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9849 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9850 MachinePointerInfo PtrInfo = 9851 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9852 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9853 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9854 9855 SDValue StoreChain = DAG.getEntryNode(); 9856 SDValue Ops[] = {StoreChain, 9857 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9858 Value, FIdx}; 9859 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9860 9861 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9862 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9863 9864 // Extract the value requested. 9865 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 9866 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9867 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9868 9869 SDValue IntVal = 9870 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 9871 9872 if (!Subtarget.useCRBits()) 9873 return IntVal; 9874 9875 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 9876 } 9877 9878 /// Lowering for QPX v4i1 loads 9879 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 9880 SelectionDAG &DAG) const { 9881 SDLoc dl(Op); 9882 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 9883 SDValue LoadChain = LN->getChain(); 9884 SDValue BasePtr = LN->getBasePtr(); 9885 9886 if (Op.getValueType() == MVT::v4f64 || 9887 Op.getValueType() == MVT::v4f32) { 9888 EVT MemVT = LN->getMemoryVT(); 9889 unsigned Alignment = LN->getAlignment(); 9890 9891 // If this load is properly aligned, then it is legal. 9892 if (Alignment >= MemVT.getStoreSize()) 9893 return Op; 9894 9895 EVT ScalarVT = Op.getValueType().getScalarType(), 9896 ScalarMemVT = MemVT.getScalarType(); 9897 unsigned Stride = ScalarMemVT.getStoreSize(); 9898 9899 SDValue Vals[4], LoadChains[4]; 9900 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9901 SDValue Load; 9902 if (ScalarVT != ScalarMemVT) 9903 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 9904 BasePtr, 9905 LN->getPointerInfo().getWithOffset(Idx * Stride), 9906 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9907 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9908 else 9909 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 9910 LN->getPointerInfo().getWithOffset(Idx * Stride), 9911 MinAlign(Alignment, Idx * Stride), 9912 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9913 9914 if (Idx == 0 && LN->isIndexed()) { 9915 assert(LN->getAddressingMode() == ISD::PRE_INC && 9916 "Unknown addressing mode on vector load"); 9917 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 9918 LN->getAddressingMode()); 9919 } 9920 9921 Vals[Idx] = Load; 9922 LoadChains[Idx] = Load.getValue(1); 9923 9924 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9925 DAG.getConstant(Stride, dl, 9926 BasePtr.getValueType())); 9927 } 9928 9929 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9930 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 9931 9932 if (LN->isIndexed()) { 9933 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 9934 return DAG.getMergeValues(RetOps, dl); 9935 } 9936 9937 SDValue RetOps[] = { Value, TF }; 9938 return DAG.getMergeValues(RetOps, dl); 9939 } 9940 9941 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 9942 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 9943 9944 // To lower v4i1 from a byte array, we load the byte elements of the 9945 // vector and then reuse the BUILD_VECTOR logic. 9946 9947 SDValue VectElmts[4], VectElmtChains[4]; 9948 for (unsigned i = 0; i < 4; ++i) { 9949 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9950 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9951 9952 VectElmts[i] = DAG.getExtLoad( 9953 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 9954 LN->getPointerInfo().getWithOffset(i), MVT::i8, 9955 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9956 VectElmtChains[i] = VectElmts[i].getValue(1); 9957 } 9958 9959 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 9960 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 9961 9962 SDValue RVals[] = { Value, LoadChain }; 9963 return DAG.getMergeValues(RVals, dl); 9964 } 9965 9966 /// Lowering for QPX v4i1 stores 9967 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 9968 SelectionDAG &DAG) const { 9969 SDLoc dl(Op); 9970 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 9971 SDValue StoreChain = SN->getChain(); 9972 SDValue BasePtr = SN->getBasePtr(); 9973 SDValue Value = SN->getValue(); 9974 9975 if (Value.getValueType() == MVT::v4f64 || 9976 Value.getValueType() == MVT::v4f32) { 9977 EVT MemVT = SN->getMemoryVT(); 9978 unsigned Alignment = SN->getAlignment(); 9979 9980 // If this store is properly aligned, then it is legal. 9981 if (Alignment >= MemVT.getStoreSize()) 9982 return Op; 9983 9984 EVT ScalarVT = Value.getValueType().getScalarType(), 9985 ScalarMemVT = MemVT.getScalarType(); 9986 unsigned Stride = ScalarMemVT.getStoreSize(); 9987 9988 SDValue Stores[4]; 9989 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9990 SDValue Ex = DAG.getNode( 9991 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 9992 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 9993 SDValue Store; 9994 if (ScalarVT != ScalarMemVT) 9995 Store = 9996 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 9997 SN->getPointerInfo().getWithOffset(Idx * Stride), 9998 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9999 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10000 else 10001 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 10002 SN->getPointerInfo().getWithOffset(Idx * Stride), 10003 MinAlign(Alignment, Idx * Stride), 10004 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10005 10006 if (Idx == 0 && SN->isIndexed()) { 10007 assert(SN->getAddressingMode() == ISD::PRE_INC && 10008 "Unknown addressing mode on vector store"); 10009 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 10010 SN->getAddressingMode()); 10011 } 10012 10013 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10014 DAG.getConstant(Stride, dl, 10015 BasePtr.getValueType())); 10016 Stores[Idx] = Store; 10017 } 10018 10019 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10020 10021 if (SN->isIndexed()) { 10022 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 10023 return DAG.getMergeValues(RetOps, dl); 10024 } 10025 10026 return TF; 10027 } 10028 10029 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 10030 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 10031 10032 // The values are now known to be -1 (false) or 1 (true). To convert this 10033 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10034 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10035 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10036 10037 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10038 // understand how to form the extending load. 10039 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10040 10041 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10042 10043 // Now convert to an integer and store. 10044 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10045 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10046 Value); 10047 10048 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10049 int FrameIdx = MFI.CreateStackObject(16, 16, false); 10050 MachinePointerInfo PtrInfo = 10051 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10052 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10053 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10054 10055 SDValue Ops[] = {StoreChain, 10056 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10057 Value, FIdx}; 10058 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10059 10060 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10061 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10062 10063 // Move data into the byte array. 10064 SDValue Loads[4], LoadChains[4]; 10065 for (unsigned i = 0; i < 4; ++i) { 10066 unsigned Offset = 4*i; 10067 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10068 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10069 10070 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 10071 PtrInfo.getWithOffset(Offset)); 10072 LoadChains[i] = Loads[i].getValue(1); 10073 } 10074 10075 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10076 10077 SDValue Stores[4]; 10078 for (unsigned i = 0; i < 4; ++i) { 10079 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10080 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10081 10082 Stores[i] = DAG.getTruncStore( 10083 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 10084 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 10085 SN->getAAInfo()); 10086 } 10087 10088 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10089 10090 return StoreChain; 10091 } 10092 10093 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10094 SDLoc dl(Op); 10095 if (Op.getValueType() == MVT::v4i32) { 10096 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10097 10098 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 10099 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 10100 10101 SDValue RHSSwap = // = vrlw RHS, 16 10102 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10103 10104 // Shrinkify inputs to v8i16. 10105 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10106 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10107 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10108 10109 // Low parts multiplied together, generating 32-bit results (we ignore the 10110 // top parts). 10111 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10112 LHS, RHS, DAG, dl, MVT::v4i32); 10113 10114 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10115 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10116 // Shift the high parts up 16 bits. 10117 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10118 Neg16, DAG, dl); 10119 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10120 } else if (Op.getValueType() == MVT::v8i16) { 10121 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10122 10123 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 10124 10125 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 10126 LHS, RHS, Zero, DAG, dl); 10127 } else if (Op.getValueType() == MVT::v16i8) { 10128 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10129 bool isLittleEndian = Subtarget.isLittleEndian(); 10130 10131 // Multiply the even 8-bit parts, producing 16-bit sums. 10132 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10133 LHS, RHS, DAG, dl, MVT::v8i16); 10134 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10135 10136 // Multiply the odd 8-bit parts, producing 16-bit sums. 10137 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10138 LHS, RHS, DAG, dl, MVT::v8i16); 10139 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10140 10141 // Merge the results together. Because vmuleub and vmuloub are 10142 // instructions with a big-endian bias, we must reverse the 10143 // element numbering and reverse the meaning of "odd" and "even" 10144 // when generating little endian code. 10145 int Ops[16]; 10146 for (unsigned i = 0; i != 8; ++i) { 10147 if (isLittleEndian) { 10148 Ops[i*2 ] = 2*i; 10149 Ops[i*2+1] = 2*i+16; 10150 } else { 10151 Ops[i*2 ] = 2*i+1; 10152 Ops[i*2+1] = 2*i+1+16; 10153 } 10154 } 10155 if (isLittleEndian) 10156 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10157 else 10158 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10159 } else { 10160 llvm_unreachable("Unknown mul to lower!"); 10161 } 10162 } 10163 10164 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 10165 10166 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 10167 10168 EVT VT = Op.getValueType(); 10169 assert(VT.isVector() && 10170 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 10171 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 10172 VT == MVT::v16i8) && 10173 "Unexpected vector element type!"); 10174 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 10175 "Current subtarget doesn't support smax v2i64!"); 10176 10177 // For vector abs, it can be lowered to: 10178 // abs x 10179 // ==> 10180 // y = -x 10181 // smax(x, y) 10182 10183 SDLoc dl(Op); 10184 SDValue X = Op.getOperand(0); 10185 SDValue Zero = DAG.getConstant(0, dl, VT); 10186 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 10187 10188 // SMAX patch https://reviews.llvm.org/D47332 10189 // hasn't landed yet, so use intrinsic first here. 10190 // TODO: Should use SMAX directly once SMAX patch landed 10191 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 10192 if (VT == MVT::v2i64) 10193 BifID = Intrinsic::ppc_altivec_vmaxsd; 10194 else if (VT == MVT::v8i16) 10195 BifID = Intrinsic::ppc_altivec_vmaxsh; 10196 else if (VT == MVT::v16i8) 10197 BifID = Intrinsic::ppc_altivec_vmaxsb; 10198 10199 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 10200 } 10201 10202 // Custom lowering for fpext vf32 to v2f64 10203 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10204 10205 assert(Op.getOpcode() == ISD::FP_EXTEND && 10206 "Should only be called for ISD::FP_EXTEND"); 10207 10208 // We only want to custom lower an extend from v2f32 to v2f64. 10209 if (Op.getValueType() != MVT::v2f64 || 10210 Op.getOperand(0).getValueType() != MVT::v2f32) 10211 return SDValue(); 10212 10213 SDLoc dl(Op); 10214 SDValue Op0 = Op.getOperand(0); 10215 10216 switch (Op0.getOpcode()) { 10217 default: 10218 return SDValue(); 10219 case ISD::EXTRACT_SUBVECTOR: { 10220 assert(Op0.getNumOperands() == 2 && 10221 isa<ConstantSDNode>(Op0->getOperand(1)) && 10222 "Node should have 2 operands with second one being a constant!"); 10223 10224 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10225 return SDValue(); 10226 10227 // Custom lower is only done for high or low doubleword. 10228 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10229 if (Idx % 2 != 0) 10230 return SDValue(); 10231 10232 // Since input is v4f32, at this point Idx is either 0 or 2. 10233 // Shift to get the doubleword position we want. 10234 int DWord = Idx >> 1; 10235 10236 // High and low word positions are different on little endian. 10237 if (Subtarget.isLittleEndian()) 10238 DWord ^= 0x1; 10239 10240 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10241 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10242 } 10243 case ISD::FADD: 10244 case ISD::FMUL: 10245 case ISD::FSUB: { 10246 SDValue NewLoad[2]; 10247 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10248 // Ensure both input are loads. 10249 SDValue LdOp = Op0.getOperand(i); 10250 if (LdOp.getOpcode() != ISD::LOAD) 10251 return SDValue(); 10252 // Generate new load node. 10253 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10254 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10255 NewLoad[i] = DAG.getMemIntrinsicNode( 10256 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10257 LD->getMemoryVT(), LD->getMemOperand()); 10258 } 10259 SDValue NewOp = 10260 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10261 NewLoad[1], Op0.getNode()->getFlags()); 10262 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10263 DAG.getConstant(0, dl, MVT::i32)); 10264 } 10265 case ISD::LOAD: { 10266 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10267 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10268 SDValue NewLd = DAG.getMemIntrinsicNode( 10269 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10270 LD->getMemoryVT(), LD->getMemOperand()); 10271 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10272 DAG.getConstant(0, dl, MVT::i32)); 10273 } 10274 } 10275 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10276 } 10277 10278 /// LowerOperation - Provide custom lowering hooks for some operations. 10279 /// 10280 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10281 switch (Op.getOpcode()) { 10282 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10283 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10284 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10285 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10286 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10287 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10288 case ISD::SETCC: return LowerSETCC(Op, DAG); 10289 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10290 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10291 10292 // Variable argument lowering. 10293 case ISD::VASTART: return LowerVASTART(Op, DAG); 10294 case ISD::VAARG: return LowerVAARG(Op, DAG); 10295 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10296 10297 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10298 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10299 case ISD::GET_DYNAMIC_AREA_OFFSET: 10300 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10301 10302 // Exception handling lowering. 10303 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10304 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10305 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10306 10307 case ISD::LOAD: return LowerLOAD(Op, DAG); 10308 case ISD::STORE: return LowerSTORE(Op, DAG); 10309 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10310 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10311 case ISD::FP_TO_UINT: 10312 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10313 case ISD::UINT_TO_FP: 10314 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10315 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10316 10317 // Lower 64-bit shifts. 10318 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10319 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10320 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10321 10322 // Vector-related lowering. 10323 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10324 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10325 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10326 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10327 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 10328 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10329 case ISD::MUL: return LowerMUL(Op, DAG); 10330 case ISD::ABS: return LowerABS(Op, DAG); 10331 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10332 10333 // For counter-based loop handling. 10334 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10335 10336 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10337 10338 // Frame & Return address. 10339 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10340 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10341 10342 case ISD::INTRINSIC_VOID: 10343 return LowerINTRINSIC_VOID(Op, DAG); 10344 case ISD::SREM: 10345 case ISD::UREM: 10346 return LowerREM(Op, DAG); 10347 case ISD::BSWAP: 10348 return LowerBSWAP(Op, DAG); 10349 case ISD::ATOMIC_CMP_SWAP: 10350 return LowerATOMIC_CMP_SWAP(Op, DAG); 10351 } 10352 } 10353 10354 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 10355 SmallVectorImpl<SDValue>&Results, 10356 SelectionDAG &DAG) const { 10357 SDLoc dl(N); 10358 switch (N->getOpcode()) { 10359 default: 10360 llvm_unreachable("Do not know how to custom type legalize this operation!"); 10361 case ISD::READCYCLECOUNTER: { 10362 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 10363 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 10364 10365 Results.push_back(RTB); 10366 Results.push_back(RTB.getValue(1)); 10367 Results.push_back(RTB.getValue(2)); 10368 break; 10369 } 10370 case ISD::INTRINSIC_W_CHAIN: { 10371 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 10372 Intrinsic::loop_decrement) 10373 break; 10374 10375 assert(N->getValueType(0) == MVT::i1 && 10376 "Unexpected result type for CTR decrement intrinsic"); 10377 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 10378 N->getValueType(0)); 10379 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 10380 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 10381 N->getOperand(1)); 10382 10383 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 10384 Results.push_back(NewInt.getValue(1)); 10385 break; 10386 } 10387 case ISD::VAARG: { 10388 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 10389 return; 10390 10391 EVT VT = N->getValueType(0); 10392 10393 if (VT == MVT::i64) { 10394 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 10395 10396 Results.push_back(NewNode); 10397 Results.push_back(NewNode.getValue(1)); 10398 } 10399 return; 10400 } 10401 case ISD::FP_TO_SINT: 10402 case ISD::FP_TO_UINT: 10403 // LowerFP_TO_INT() can only handle f32 and f64. 10404 if (N->getOperand(0).getValueType() == MVT::ppcf128) 10405 return; 10406 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 10407 return; 10408 case ISD::TRUNCATE: { 10409 EVT TrgVT = N->getValueType(0); 10410 EVT OpVT = N->getOperand(0).getValueType(); 10411 if (TrgVT.isVector() && 10412 isOperationCustom(N->getOpcode(), TrgVT) && 10413 OpVT.getSizeInBits() <= 128 && 10414 isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits())) 10415 Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG)); 10416 return; 10417 } 10418 case ISD::BITCAST: 10419 // Don't handle bitcast here. 10420 return; 10421 } 10422 } 10423 10424 //===----------------------------------------------------------------------===// 10425 // Other Lowering Code 10426 //===----------------------------------------------------------------------===// 10427 10428 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 10429 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 10430 Function *Func = Intrinsic::getDeclaration(M, Id); 10431 return Builder.CreateCall(Func, {}); 10432 } 10433 10434 // The mappings for emitLeading/TrailingFence is taken from 10435 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 10436 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 10437 Instruction *Inst, 10438 AtomicOrdering Ord) const { 10439 if (Ord == AtomicOrdering::SequentiallyConsistent) 10440 return callIntrinsic(Builder, Intrinsic::ppc_sync); 10441 if (isReleaseOrStronger(Ord)) 10442 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10443 return nullptr; 10444 } 10445 10446 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 10447 Instruction *Inst, 10448 AtomicOrdering Ord) const { 10449 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 10450 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 10451 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 10452 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 10453 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 10454 return Builder.CreateCall( 10455 Intrinsic::getDeclaration( 10456 Builder.GetInsertBlock()->getParent()->getParent(), 10457 Intrinsic::ppc_cfence, {Inst->getType()}), 10458 {Inst}); 10459 // FIXME: Can use isync for rmw operation. 10460 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10461 } 10462 return nullptr; 10463 } 10464 10465 MachineBasicBlock * 10466 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 10467 unsigned AtomicSize, 10468 unsigned BinOpcode, 10469 unsigned CmpOpcode, 10470 unsigned CmpPred) const { 10471 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10472 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10473 10474 auto LoadMnemonic = PPC::LDARX; 10475 auto StoreMnemonic = PPC::STDCX; 10476 switch (AtomicSize) { 10477 default: 10478 llvm_unreachable("Unexpected size of atomic entity"); 10479 case 1: 10480 LoadMnemonic = PPC::LBARX; 10481 StoreMnemonic = PPC::STBCX; 10482 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10483 break; 10484 case 2: 10485 LoadMnemonic = PPC::LHARX; 10486 StoreMnemonic = PPC::STHCX; 10487 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10488 break; 10489 case 4: 10490 LoadMnemonic = PPC::LWARX; 10491 StoreMnemonic = PPC::STWCX; 10492 break; 10493 case 8: 10494 LoadMnemonic = PPC::LDARX; 10495 StoreMnemonic = PPC::STDCX; 10496 break; 10497 } 10498 10499 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10500 MachineFunction *F = BB->getParent(); 10501 MachineFunction::iterator It = ++BB->getIterator(); 10502 10503 Register dest = MI.getOperand(0).getReg(); 10504 Register ptrA = MI.getOperand(1).getReg(); 10505 Register ptrB = MI.getOperand(2).getReg(); 10506 Register incr = MI.getOperand(3).getReg(); 10507 DebugLoc dl = MI.getDebugLoc(); 10508 10509 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10510 MachineBasicBlock *loop2MBB = 10511 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10512 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10513 F->insert(It, loopMBB); 10514 if (CmpOpcode) 10515 F->insert(It, loop2MBB); 10516 F->insert(It, exitMBB); 10517 exitMBB->splice(exitMBB->begin(), BB, 10518 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10519 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10520 10521 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10522 Register TmpReg = (!BinOpcode) ? incr : 10523 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 10524 : &PPC::GPRCRegClass); 10525 10526 // thisMBB: 10527 // ... 10528 // fallthrough --> loopMBB 10529 BB->addSuccessor(loopMBB); 10530 10531 // loopMBB: 10532 // l[wd]arx dest, ptr 10533 // add r0, dest, incr 10534 // st[wd]cx. r0, ptr 10535 // bne- loopMBB 10536 // fallthrough --> exitMBB 10537 10538 // For max/min... 10539 // loopMBB: 10540 // l[wd]arx dest, ptr 10541 // cmpl?[wd] incr, dest 10542 // bgt exitMBB 10543 // loop2MBB: 10544 // st[wd]cx. dest, ptr 10545 // bne- loopMBB 10546 // fallthrough --> exitMBB 10547 10548 BB = loopMBB; 10549 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 10550 .addReg(ptrA).addReg(ptrB); 10551 if (BinOpcode) 10552 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 10553 if (CmpOpcode) { 10554 // Signed comparisons of byte or halfword values must be sign-extended. 10555 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 10556 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10557 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 10558 ExtReg).addReg(dest); 10559 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10560 .addReg(incr).addReg(ExtReg); 10561 } else 10562 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10563 .addReg(incr).addReg(dest); 10564 10565 BuildMI(BB, dl, TII->get(PPC::BCC)) 10566 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 10567 BB->addSuccessor(loop2MBB); 10568 BB->addSuccessor(exitMBB); 10569 BB = loop2MBB; 10570 } 10571 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10572 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 10573 BuildMI(BB, dl, TII->get(PPC::BCC)) 10574 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 10575 BB->addSuccessor(loopMBB); 10576 BB->addSuccessor(exitMBB); 10577 10578 // exitMBB: 10579 // ... 10580 BB = exitMBB; 10581 return BB; 10582 } 10583 10584 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 10585 MachineInstr &MI, MachineBasicBlock *BB, 10586 bool is8bit, // operation 10587 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 10588 // If we support part-word atomic mnemonics, just use them 10589 if (Subtarget.hasPartwordAtomics()) 10590 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 10591 CmpPred); 10592 10593 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10594 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10595 // In 64 bit mode we have to use 64 bits for addresses, even though the 10596 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 10597 // registers without caring whether they're 32 or 64, but here we're 10598 // doing actual arithmetic on the addresses. 10599 bool is64bit = Subtarget.isPPC64(); 10600 bool isLittleEndian = Subtarget.isLittleEndian(); 10601 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 10602 10603 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10604 MachineFunction *F = BB->getParent(); 10605 MachineFunction::iterator It = ++BB->getIterator(); 10606 10607 Register dest = MI.getOperand(0).getReg(); 10608 Register ptrA = MI.getOperand(1).getReg(); 10609 Register ptrB = MI.getOperand(2).getReg(); 10610 Register incr = MI.getOperand(3).getReg(); 10611 DebugLoc dl = MI.getDebugLoc(); 10612 10613 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10614 MachineBasicBlock *loop2MBB = 10615 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10616 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10617 F->insert(It, loopMBB); 10618 if (CmpOpcode) 10619 F->insert(It, loop2MBB); 10620 F->insert(It, exitMBB); 10621 exitMBB->splice(exitMBB->begin(), BB, 10622 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10623 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10624 10625 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10626 const TargetRegisterClass *RC = 10627 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10628 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 10629 10630 Register PtrReg = RegInfo.createVirtualRegister(RC); 10631 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 10632 Register ShiftReg = 10633 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 10634 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 10635 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 10636 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 10637 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 10638 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 10639 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 10640 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 10641 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 10642 Register Ptr1Reg; 10643 Register TmpReg = 10644 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 10645 10646 // thisMBB: 10647 // ... 10648 // fallthrough --> loopMBB 10649 BB->addSuccessor(loopMBB); 10650 10651 // The 4-byte load must be aligned, while a char or short may be 10652 // anywhere in the word. Hence all this nasty bookkeeping code. 10653 // add ptr1, ptrA, ptrB [copy if ptrA==0] 10654 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 10655 // xori shift, shift1, 24 [16] 10656 // rlwinm ptr, ptr1, 0, 0, 29 10657 // slw incr2, incr, shift 10658 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 10659 // slw mask, mask2, shift 10660 // loopMBB: 10661 // lwarx tmpDest, ptr 10662 // add tmp, tmpDest, incr2 10663 // andc tmp2, tmpDest, mask 10664 // and tmp3, tmp, mask 10665 // or tmp4, tmp3, tmp2 10666 // stwcx. tmp4, ptr 10667 // bne- loopMBB 10668 // fallthrough --> exitMBB 10669 // srw dest, tmpDest, shift 10670 if (ptrA != ZeroReg) { 10671 Ptr1Reg = RegInfo.createVirtualRegister(RC); 10672 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 10673 .addReg(ptrA) 10674 .addReg(ptrB); 10675 } else { 10676 Ptr1Reg = ptrB; 10677 } 10678 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 10679 // mode. 10680 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 10681 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 10682 .addImm(3) 10683 .addImm(27) 10684 .addImm(is8bit ? 28 : 27); 10685 if (!isLittleEndian) 10686 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 10687 .addReg(Shift1Reg) 10688 .addImm(is8bit ? 24 : 16); 10689 if (is64bit) 10690 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 10691 .addReg(Ptr1Reg) 10692 .addImm(0) 10693 .addImm(61); 10694 else 10695 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 10696 .addReg(Ptr1Reg) 10697 .addImm(0) 10698 .addImm(0) 10699 .addImm(29); 10700 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 10701 if (is8bit) 10702 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 10703 else { 10704 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 10705 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 10706 .addReg(Mask3Reg) 10707 .addImm(65535); 10708 } 10709 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 10710 .addReg(Mask2Reg) 10711 .addReg(ShiftReg); 10712 10713 BB = loopMBB; 10714 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 10715 .addReg(ZeroReg) 10716 .addReg(PtrReg); 10717 if (BinOpcode) 10718 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 10719 .addReg(Incr2Reg) 10720 .addReg(TmpDestReg); 10721 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 10722 .addReg(TmpDestReg) 10723 .addReg(MaskReg); 10724 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 10725 if (CmpOpcode) { 10726 // For unsigned comparisons, we can directly compare the shifted values. 10727 // For signed comparisons we shift and sign extend. 10728 Register SReg = RegInfo.createVirtualRegister(GPRC); 10729 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 10730 .addReg(TmpDestReg) 10731 .addReg(MaskReg); 10732 unsigned ValueReg = SReg; 10733 unsigned CmpReg = Incr2Reg; 10734 if (CmpOpcode == PPC::CMPW) { 10735 ValueReg = RegInfo.createVirtualRegister(GPRC); 10736 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 10737 .addReg(SReg) 10738 .addReg(ShiftReg); 10739 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 10740 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 10741 .addReg(ValueReg); 10742 ValueReg = ValueSReg; 10743 CmpReg = incr; 10744 } 10745 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10746 .addReg(CmpReg) 10747 .addReg(ValueReg); 10748 BuildMI(BB, dl, TII->get(PPC::BCC)) 10749 .addImm(CmpPred) 10750 .addReg(PPC::CR0) 10751 .addMBB(exitMBB); 10752 BB->addSuccessor(loop2MBB); 10753 BB->addSuccessor(exitMBB); 10754 BB = loop2MBB; 10755 } 10756 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 10757 BuildMI(BB, dl, TII->get(PPC::STWCX)) 10758 .addReg(Tmp4Reg) 10759 .addReg(ZeroReg) 10760 .addReg(PtrReg); 10761 BuildMI(BB, dl, TII->get(PPC::BCC)) 10762 .addImm(PPC::PRED_NE) 10763 .addReg(PPC::CR0) 10764 .addMBB(loopMBB); 10765 BB->addSuccessor(loopMBB); 10766 BB->addSuccessor(exitMBB); 10767 10768 // exitMBB: 10769 // ... 10770 BB = exitMBB; 10771 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 10772 .addReg(TmpDestReg) 10773 .addReg(ShiftReg); 10774 return BB; 10775 } 10776 10777 llvm::MachineBasicBlock * 10778 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 10779 MachineBasicBlock *MBB) const { 10780 DebugLoc DL = MI.getDebugLoc(); 10781 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10782 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10783 10784 MachineFunction *MF = MBB->getParent(); 10785 MachineRegisterInfo &MRI = MF->getRegInfo(); 10786 10787 const BasicBlock *BB = MBB->getBasicBlock(); 10788 MachineFunction::iterator I = ++MBB->getIterator(); 10789 10790 Register DstReg = MI.getOperand(0).getReg(); 10791 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 10792 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 10793 Register mainDstReg = MRI.createVirtualRegister(RC); 10794 Register restoreDstReg = MRI.createVirtualRegister(RC); 10795 10796 MVT PVT = getPointerTy(MF->getDataLayout()); 10797 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10798 "Invalid Pointer Size!"); 10799 // For v = setjmp(buf), we generate 10800 // 10801 // thisMBB: 10802 // SjLjSetup mainMBB 10803 // bl mainMBB 10804 // v_restore = 1 10805 // b sinkMBB 10806 // 10807 // mainMBB: 10808 // buf[LabelOffset] = LR 10809 // v_main = 0 10810 // 10811 // sinkMBB: 10812 // v = phi(main, restore) 10813 // 10814 10815 MachineBasicBlock *thisMBB = MBB; 10816 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 10817 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 10818 MF->insert(I, mainMBB); 10819 MF->insert(I, sinkMBB); 10820 10821 MachineInstrBuilder MIB; 10822 10823 // Transfer the remainder of BB and its successor edges to sinkMBB. 10824 sinkMBB->splice(sinkMBB->begin(), MBB, 10825 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 10826 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 10827 10828 // Note that the structure of the jmp_buf used here is not compatible 10829 // with that used by libc, and is not designed to be. Specifically, it 10830 // stores only those 'reserved' registers that LLVM does not otherwise 10831 // understand how to spill. Also, by convention, by the time this 10832 // intrinsic is called, Clang has already stored the frame address in the 10833 // first slot of the buffer and stack address in the third. Following the 10834 // X86 target code, we'll store the jump address in the second slot. We also 10835 // need to save the TOC pointer (R2) to handle jumps between shared 10836 // libraries, and that will be stored in the fourth slot. The thread 10837 // identifier (R13) is not affected. 10838 10839 // thisMBB: 10840 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10841 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10842 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10843 10844 // Prepare IP either in reg. 10845 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 10846 Register LabelReg = MRI.createVirtualRegister(PtrRC); 10847 Register BufReg = MI.getOperand(1).getReg(); 10848 10849 if (Subtarget.is64BitELFABI()) { 10850 setUsesTOCBasePtr(*MBB->getParent()); 10851 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 10852 .addReg(PPC::X2) 10853 .addImm(TOCOffset) 10854 .addReg(BufReg) 10855 .cloneMemRefs(MI); 10856 } 10857 10858 // Naked functions never have a base pointer, and so we use r1. For all 10859 // other functions, this decision must be delayed until during PEI. 10860 unsigned BaseReg; 10861 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 10862 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 10863 else 10864 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 10865 10866 MIB = BuildMI(*thisMBB, MI, DL, 10867 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 10868 .addReg(BaseReg) 10869 .addImm(BPOffset) 10870 .addReg(BufReg) 10871 .cloneMemRefs(MI); 10872 10873 // Setup 10874 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 10875 MIB.addRegMask(TRI->getNoPreservedMask()); 10876 10877 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 10878 10879 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 10880 .addMBB(mainMBB); 10881 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 10882 10883 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 10884 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 10885 10886 // mainMBB: 10887 // mainDstReg = 0 10888 MIB = 10889 BuildMI(mainMBB, DL, 10890 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 10891 10892 // Store IP 10893 if (Subtarget.isPPC64()) { 10894 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 10895 .addReg(LabelReg) 10896 .addImm(LabelOffset) 10897 .addReg(BufReg); 10898 } else { 10899 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 10900 .addReg(LabelReg) 10901 .addImm(LabelOffset) 10902 .addReg(BufReg); 10903 } 10904 MIB.cloneMemRefs(MI); 10905 10906 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 10907 mainMBB->addSuccessor(sinkMBB); 10908 10909 // sinkMBB: 10910 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 10911 TII->get(PPC::PHI), DstReg) 10912 .addReg(mainDstReg).addMBB(mainMBB) 10913 .addReg(restoreDstReg).addMBB(thisMBB); 10914 10915 MI.eraseFromParent(); 10916 return sinkMBB; 10917 } 10918 10919 MachineBasicBlock * 10920 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 10921 MachineBasicBlock *MBB) const { 10922 DebugLoc DL = MI.getDebugLoc(); 10923 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10924 10925 MachineFunction *MF = MBB->getParent(); 10926 MachineRegisterInfo &MRI = MF->getRegInfo(); 10927 10928 MVT PVT = getPointerTy(MF->getDataLayout()); 10929 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10930 "Invalid Pointer Size!"); 10931 10932 const TargetRegisterClass *RC = 10933 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10934 Register Tmp = MRI.createVirtualRegister(RC); 10935 // Since FP is only updated here but NOT referenced, it's treated as GPR. 10936 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 10937 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 10938 unsigned BP = 10939 (PVT == MVT::i64) 10940 ? PPC::X30 10941 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 10942 : PPC::R30); 10943 10944 MachineInstrBuilder MIB; 10945 10946 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10947 const int64_t SPOffset = 2 * PVT.getStoreSize(); 10948 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10949 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10950 10951 Register BufReg = MI.getOperand(0).getReg(); 10952 10953 // Reload FP (the jumped-to function may not have had a 10954 // frame pointer, and if so, then its r31 will be restored 10955 // as necessary). 10956 if (PVT == MVT::i64) { 10957 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 10958 .addImm(0) 10959 .addReg(BufReg); 10960 } else { 10961 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 10962 .addImm(0) 10963 .addReg(BufReg); 10964 } 10965 MIB.cloneMemRefs(MI); 10966 10967 // Reload IP 10968 if (PVT == MVT::i64) { 10969 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 10970 .addImm(LabelOffset) 10971 .addReg(BufReg); 10972 } else { 10973 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 10974 .addImm(LabelOffset) 10975 .addReg(BufReg); 10976 } 10977 MIB.cloneMemRefs(MI); 10978 10979 // Reload SP 10980 if (PVT == MVT::i64) { 10981 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 10982 .addImm(SPOffset) 10983 .addReg(BufReg); 10984 } else { 10985 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 10986 .addImm(SPOffset) 10987 .addReg(BufReg); 10988 } 10989 MIB.cloneMemRefs(MI); 10990 10991 // Reload BP 10992 if (PVT == MVT::i64) { 10993 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 10994 .addImm(BPOffset) 10995 .addReg(BufReg); 10996 } else { 10997 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 10998 .addImm(BPOffset) 10999 .addReg(BufReg); 11000 } 11001 MIB.cloneMemRefs(MI); 11002 11003 // Reload TOC 11004 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11005 setUsesTOCBasePtr(*MBB->getParent()); 11006 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11007 .addImm(TOCOffset) 11008 .addReg(BufReg) 11009 .cloneMemRefs(MI); 11010 } 11011 11012 // Jump 11013 BuildMI(*MBB, MI, DL, 11014 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11015 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11016 11017 MI.eraseFromParent(); 11018 return MBB; 11019 } 11020 11021 MachineBasicBlock * 11022 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11023 MachineBasicBlock *BB) const { 11024 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11025 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11026 if (Subtarget.is64BitELFABI() && 11027 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11028 // Call lowering should have added an r2 operand to indicate a dependence 11029 // on the TOC base pointer value. It can't however, because there is no 11030 // way to mark the dependence as implicit there, and so the stackmap code 11031 // will confuse it with a regular operand. Instead, add the dependence 11032 // here. 11033 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11034 } 11035 11036 return emitPatchPoint(MI, BB); 11037 } 11038 11039 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11040 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11041 return emitEHSjLjSetJmp(MI, BB); 11042 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11043 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11044 return emitEHSjLjLongJmp(MI, BB); 11045 } 11046 11047 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11048 11049 // To "insert" these instructions we actually have to insert their 11050 // control-flow patterns. 11051 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11052 MachineFunction::iterator It = ++BB->getIterator(); 11053 11054 MachineFunction *F = BB->getParent(); 11055 11056 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11057 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11058 MI.getOpcode() == PPC::SELECT_I8) { 11059 SmallVector<MachineOperand, 2> Cond; 11060 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11061 MI.getOpcode() == PPC::SELECT_CC_I8) 11062 Cond.push_back(MI.getOperand(4)); 11063 else 11064 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11065 Cond.push_back(MI.getOperand(1)); 11066 11067 DebugLoc dl = MI.getDebugLoc(); 11068 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11069 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11070 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 11071 MI.getOpcode() == PPC::SELECT_CC_F8 || 11072 MI.getOpcode() == PPC::SELECT_CC_F16 || 11073 MI.getOpcode() == PPC::SELECT_CC_QFRC || 11074 MI.getOpcode() == PPC::SELECT_CC_QSRC || 11075 MI.getOpcode() == PPC::SELECT_CC_QBRC || 11076 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11077 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11078 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11079 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11080 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11081 MI.getOpcode() == PPC::SELECT_CC_SPE || 11082 MI.getOpcode() == PPC::SELECT_F4 || 11083 MI.getOpcode() == PPC::SELECT_F8 || 11084 MI.getOpcode() == PPC::SELECT_F16 || 11085 MI.getOpcode() == PPC::SELECT_QFRC || 11086 MI.getOpcode() == PPC::SELECT_QSRC || 11087 MI.getOpcode() == PPC::SELECT_QBRC || 11088 MI.getOpcode() == PPC::SELECT_SPE || 11089 MI.getOpcode() == PPC::SELECT_SPE4 || 11090 MI.getOpcode() == PPC::SELECT_VRRC || 11091 MI.getOpcode() == PPC::SELECT_VSFRC || 11092 MI.getOpcode() == PPC::SELECT_VSSRC || 11093 MI.getOpcode() == PPC::SELECT_VSRC) { 11094 // The incoming instruction knows the destination vreg to set, the 11095 // condition code register to branch on, the true/false values to 11096 // select between, and a branch opcode to use. 11097 11098 // thisMBB: 11099 // ... 11100 // TrueVal = ... 11101 // cmpTY ccX, r1, r2 11102 // bCC copy1MBB 11103 // fallthrough --> copy0MBB 11104 MachineBasicBlock *thisMBB = BB; 11105 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 11106 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11107 DebugLoc dl = MI.getDebugLoc(); 11108 F->insert(It, copy0MBB); 11109 F->insert(It, sinkMBB); 11110 11111 // Transfer the remainder of BB and its successor edges to sinkMBB. 11112 sinkMBB->splice(sinkMBB->begin(), BB, 11113 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11114 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11115 11116 // Next, add the true and fallthrough blocks as its successors. 11117 BB->addSuccessor(copy0MBB); 11118 BB->addSuccessor(sinkMBB); 11119 11120 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 11121 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 11122 MI.getOpcode() == PPC::SELECT_F16 || 11123 MI.getOpcode() == PPC::SELECT_SPE4 || 11124 MI.getOpcode() == PPC::SELECT_SPE || 11125 MI.getOpcode() == PPC::SELECT_QFRC || 11126 MI.getOpcode() == PPC::SELECT_QSRC || 11127 MI.getOpcode() == PPC::SELECT_QBRC || 11128 MI.getOpcode() == PPC::SELECT_VRRC || 11129 MI.getOpcode() == PPC::SELECT_VSFRC || 11130 MI.getOpcode() == PPC::SELECT_VSSRC || 11131 MI.getOpcode() == PPC::SELECT_VSRC) { 11132 BuildMI(BB, dl, TII->get(PPC::BC)) 11133 .addReg(MI.getOperand(1).getReg()) 11134 .addMBB(sinkMBB); 11135 } else { 11136 unsigned SelectPred = MI.getOperand(4).getImm(); 11137 BuildMI(BB, dl, TII->get(PPC::BCC)) 11138 .addImm(SelectPred) 11139 .addReg(MI.getOperand(1).getReg()) 11140 .addMBB(sinkMBB); 11141 } 11142 11143 // copy0MBB: 11144 // %FalseValue = ... 11145 // # fallthrough to sinkMBB 11146 BB = copy0MBB; 11147 11148 // Update machine-CFG edges 11149 BB->addSuccessor(sinkMBB); 11150 11151 // sinkMBB: 11152 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 11153 // ... 11154 BB = sinkMBB; 11155 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 11156 .addReg(MI.getOperand(3).getReg()) 11157 .addMBB(copy0MBB) 11158 .addReg(MI.getOperand(2).getReg()) 11159 .addMBB(thisMBB); 11160 } else if (MI.getOpcode() == PPC::ReadTB) { 11161 // To read the 64-bit time-base register on a 32-bit target, we read the 11162 // two halves. Should the counter have wrapped while it was being read, we 11163 // need to try again. 11164 // ... 11165 // readLoop: 11166 // mfspr Rx,TBU # load from TBU 11167 // mfspr Ry,TB # load from TB 11168 // mfspr Rz,TBU # load from TBU 11169 // cmpw crX,Rx,Rz # check if 'old'='new' 11170 // bne readLoop # branch if they're not equal 11171 // ... 11172 11173 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 11174 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11175 DebugLoc dl = MI.getDebugLoc(); 11176 F->insert(It, readMBB); 11177 F->insert(It, sinkMBB); 11178 11179 // Transfer the remainder of BB and its successor edges to sinkMBB. 11180 sinkMBB->splice(sinkMBB->begin(), BB, 11181 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11182 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11183 11184 BB->addSuccessor(readMBB); 11185 BB = readMBB; 11186 11187 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11188 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11189 Register LoReg = MI.getOperand(0).getReg(); 11190 Register HiReg = MI.getOperand(1).getReg(); 11191 11192 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 11193 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 11194 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 11195 11196 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11197 11198 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 11199 .addReg(HiReg) 11200 .addReg(ReadAgainReg); 11201 BuildMI(BB, dl, TII->get(PPC::BCC)) 11202 .addImm(PPC::PRED_NE) 11203 .addReg(CmpReg) 11204 .addMBB(readMBB); 11205 11206 BB->addSuccessor(readMBB); 11207 BB->addSuccessor(sinkMBB); 11208 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 11209 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 11210 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 11211 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 11212 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 11213 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 11214 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 11215 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 11216 11217 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 11218 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 11219 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 11220 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 11221 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 11222 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 11223 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 11224 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 11225 11226 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 11227 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 11228 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 11229 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 11230 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 11231 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 11232 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 11233 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 11234 11235 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 11236 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 11237 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 11238 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 11239 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 11240 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 11241 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 11242 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 11243 11244 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 11245 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 11246 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 11247 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 11248 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 11249 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 11250 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 11251 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 11252 11253 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 11254 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 11255 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 11256 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 11257 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 11258 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 11259 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 11260 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 11261 11262 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 11263 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 11264 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 11265 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 11266 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 11267 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 11268 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 11269 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 11270 11271 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 11272 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 11273 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 11274 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 11275 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 11276 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 11277 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 11278 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 11279 11280 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 11281 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 11282 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 11283 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 11284 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 11285 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 11286 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 11287 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 11288 11289 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 11290 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 11291 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 11292 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 11293 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 11294 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 11295 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 11296 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 11297 11298 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 11299 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 11300 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 11301 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 11302 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 11303 BB = EmitAtomicBinary(MI, BB, 4, 0); 11304 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 11305 BB = EmitAtomicBinary(MI, BB, 8, 0); 11306 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 11307 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 11308 (Subtarget.hasPartwordAtomics() && 11309 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 11310 (Subtarget.hasPartwordAtomics() && 11311 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 11312 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 11313 11314 auto LoadMnemonic = PPC::LDARX; 11315 auto StoreMnemonic = PPC::STDCX; 11316 switch (MI.getOpcode()) { 11317 default: 11318 llvm_unreachable("Compare and swap of unknown size"); 11319 case PPC::ATOMIC_CMP_SWAP_I8: 11320 LoadMnemonic = PPC::LBARX; 11321 StoreMnemonic = PPC::STBCX; 11322 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11323 break; 11324 case PPC::ATOMIC_CMP_SWAP_I16: 11325 LoadMnemonic = PPC::LHARX; 11326 StoreMnemonic = PPC::STHCX; 11327 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11328 break; 11329 case PPC::ATOMIC_CMP_SWAP_I32: 11330 LoadMnemonic = PPC::LWARX; 11331 StoreMnemonic = PPC::STWCX; 11332 break; 11333 case PPC::ATOMIC_CMP_SWAP_I64: 11334 LoadMnemonic = PPC::LDARX; 11335 StoreMnemonic = PPC::STDCX; 11336 break; 11337 } 11338 Register dest = MI.getOperand(0).getReg(); 11339 Register ptrA = MI.getOperand(1).getReg(); 11340 Register ptrB = MI.getOperand(2).getReg(); 11341 Register oldval = MI.getOperand(3).getReg(); 11342 Register newval = MI.getOperand(4).getReg(); 11343 DebugLoc dl = MI.getDebugLoc(); 11344 11345 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11346 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11347 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11348 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11349 F->insert(It, loop1MBB); 11350 F->insert(It, loop2MBB); 11351 F->insert(It, midMBB); 11352 F->insert(It, exitMBB); 11353 exitMBB->splice(exitMBB->begin(), BB, 11354 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11355 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11356 11357 // thisMBB: 11358 // ... 11359 // fallthrough --> loopMBB 11360 BB->addSuccessor(loop1MBB); 11361 11362 // loop1MBB: 11363 // l[bhwd]arx dest, ptr 11364 // cmp[wd] dest, oldval 11365 // bne- midMBB 11366 // loop2MBB: 11367 // st[bhwd]cx. newval, ptr 11368 // bne- loopMBB 11369 // b exitBB 11370 // midMBB: 11371 // st[bhwd]cx. dest, ptr 11372 // exitBB: 11373 BB = loop1MBB; 11374 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 11375 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 11376 .addReg(oldval) 11377 .addReg(dest); 11378 BuildMI(BB, dl, TII->get(PPC::BCC)) 11379 .addImm(PPC::PRED_NE) 11380 .addReg(PPC::CR0) 11381 .addMBB(midMBB); 11382 BB->addSuccessor(loop2MBB); 11383 BB->addSuccessor(midMBB); 11384 11385 BB = loop2MBB; 11386 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11387 .addReg(newval) 11388 .addReg(ptrA) 11389 .addReg(ptrB); 11390 BuildMI(BB, dl, TII->get(PPC::BCC)) 11391 .addImm(PPC::PRED_NE) 11392 .addReg(PPC::CR0) 11393 .addMBB(loop1MBB); 11394 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11395 BB->addSuccessor(loop1MBB); 11396 BB->addSuccessor(exitMBB); 11397 11398 BB = midMBB; 11399 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11400 .addReg(dest) 11401 .addReg(ptrA) 11402 .addReg(ptrB); 11403 BB->addSuccessor(exitMBB); 11404 11405 // exitMBB: 11406 // ... 11407 BB = exitMBB; 11408 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 11409 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 11410 // We must use 64-bit registers for addresses when targeting 64-bit, 11411 // since we're actually doing arithmetic on them. Other registers 11412 // can be 32-bit. 11413 bool is64bit = Subtarget.isPPC64(); 11414 bool isLittleEndian = Subtarget.isLittleEndian(); 11415 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 11416 11417 Register dest = MI.getOperand(0).getReg(); 11418 Register ptrA = MI.getOperand(1).getReg(); 11419 Register ptrB = MI.getOperand(2).getReg(); 11420 Register oldval = MI.getOperand(3).getReg(); 11421 Register newval = MI.getOperand(4).getReg(); 11422 DebugLoc dl = MI.getDebugLoc(); 11423 11424 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11425 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11426 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11427 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11428 F->insert(It, loop1MBB); 11429 F->insert(It, loop2MBB); 11430 F->insert(It, midMBB); 11431 F->insert(It, exitMBB); 11432 exitMBB->splice(exitMBB->begin(), BB, 11433 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11434 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11435 11436 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11437 const TargetRegisterClass *RC = 11438 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11439 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11440 11441 Register PtrReg = RegInfo.createVirtualRegister(RC); 11442 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11443 Register ShiftReg = 11444 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11445 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 11446 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 11447 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 11448 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 11449 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11450 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11451 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11452 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11453 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11454 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11455 Register Ptr1Reg; 11456 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 11457 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11458 // thisMBB: 11459 // ... 11460 // fallthrough --> loopMBB 11461 BB->addSuccessor(loop1MBB); 11462 11463 // The 4-byte load must be aligned, while a char or short may be 11464 // anywhere in the word. Hence all this nasty bookkeeping code. 11465 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11466 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11467 // xori shift, shift1, 24 [16] 11468 // rlwinm ptr, ptr1, 0, 0, 29 11469 // slw newval2, newval, shift 11470 // slw oldval2, oldval,shift 11471 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11472 // slw mask, mask2, shift 11473 // and newval3, newval2, mask 11474 // and oldval3, oldval2, mask 11475 // loop1MBB: 11476 // lwarx tmpDest, ptr 11477 // and tmp, tmpDest, mask 11478 // cmpw tmp, oldval3 11479 // bne- midMBB 11480 // loop2MBB: 11481 // andc tmp2, tmpDest, mask 11482 // or tmp4, tmp2, newval3 11483 // stwcx. tmp4, ptr 11484 // bne- loop1MBB 11485 // b exitBB 11486 // midMBB: 11487 // stwcx. tmpDest, ptr 11488 // exitBB: 11489 // srw dest, tmpDest, shift 11490 if (ptrA != ZeroReg) { 11491 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11492 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11493 .addReg(ptrA) 11494 .addReg(ptrB); 11495 } else { 11496 Ptr1Reg = ptrB; 11497 } 11498 11499 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11500 // mode. 11501 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11502 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11503 .addImm(3) 11504 .addImm(27) 11505 .addImm(is8bit ? 28 : 27); 11506 if (!isLittleEndian) 11507 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11508 .addReg(Shift1Reg) 11509 .addImm(is8bit ? 24 : 16); 11510 if (is64bit) 11511 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11512 .addReg(Ptr1Reg) 11513 .addImm(0) 11514 .addImm(61); 11515 else 11516 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11517 .addReg(Ptr1Reg) 11518 .addImm(0) 11519 .addImm(0) 11520 .addImm(29); 11521 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 11522 .addReg(newval) 11523 .addReg(ShiftReg); 11524 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 11525 .addReg(oldval) 11526 .addReg(ShiftReg); 11527 if (is8bit) 11528 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11529 else { 11530 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11531 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11532 .addReg(Mask3Reg) 11533 .addImm(65535); 11534 } 11535 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11536 .addReg(Mask2Reg) 11537 .addReg(ShiftReg); 11538 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 11539 .addReg(NewVal2Reg) 11540 .addReg(MaskReg); 11541 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 11542 .addReg(OldVal2Reg) 11543 .addReg(MaskReg); 11544 11545 BB = loop1MBB; 11546 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11547 .addReg(ZeroReg) 11548 .addReg(PtrReg); 11549 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 11550 .addReg(TmpDestReg) 11551 .addReg(MaskReg); 11552 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 11553 .addReg(TmpReg) 11554 .addReg(OldVal3Reg); 11555 BuildMI(BB, dl, TII->get(PPC::BCC)) 11556 .addImm(PPC::PRED_NE) 11557 .addReg(PPC::CR0) 11558 .addMBB(midMBB); 11559 BB->addSuccessor(loop2MBB); 11560 BB->addSuccessor(midMBB); 11561 11562 BB = loop2MBB; 11563 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11564 .addReg(TmpDestReg) 11565 .addReg(MaskReg); 11566 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 11567 .addReg(Tmp2Reg) 11568 .addReg(NewVal3Reg); 11569 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11570 .addReg(Tmp4Reg) 11571 .addReg(ZeroReg) 11572 .addReg(PtrReg); 11573 BuildMI(BB, dl, TII->get(PPC::BCC)) 11574 .addImm(PPC::PRED_NE) 11575 .addReg(PPC::CR0) 11576 .addMBB(loop1MBB); 11577 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11578 BB->addSuccessor(loop1MBB); 11579 BB->addSuccessor(exitMBB); 11580 11581 BB = midMBB; 11582 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11583 .addReg(TmpDestReg) 11584 .addReg(ZeroReg) 11585 .addReg(PtrReg); 11586 BB->addSuccessor(exitMBB); 11587 11588 // exitMBB: 11589 // ... 11590 BB = exitMBB; 11591 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11592 .addReg(TmpReg) 11593 .addReg(ShiftReg); 11594 } else if (MI.getOpcode() == PPC::FADDrtz) { 11595 // This pseudo performs an FADD with rounding mode temporarily forced 11596 // to round-to-zero. We emit this via custom inserter since the FPSCR 11597 // is not modeled at the SelectionDAG level. 11598 Register Dest = MI.getOperand(0).getReg(); 11599 Register Src1 = MI.getOperand(1).getReg(); 11600 Register Src2 = MI.getOperand(2).getReg(); 11601 DebugLoc dl = MI.getDebugLoc(); 11602 11603 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11604 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11605 11606 // Save FPSCR value. 11607 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 11608 11609 // Set rounding mode to round-to-zero. 11610 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 11611 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 11612 11613 // Perform addition. 11614 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 11615 11616 // Restore FPSCR value. 11617 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 11618 } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 11619 MI.getOpcode() == PPC::ANDIo_1_GT_BIT || 11620 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 11621 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) { 11622 unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 11623 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) 11624 ? PPC::ANDI8o 11625 : PPC::ANDIo; 11626 bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 11627 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8); 11628 11629 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11630 Register Dest = RegInfo.createVirtualRegister( 11631 Opcode == PPC::ANDIo ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 11632 11633 DebugLoc dl = MI.getDebugLoc(); 11634 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 11635 .addReg(MI.getOperand(1).getReg()) 11636 .addImm(1); 11637 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 11638 MI.getOperand(0).getReg()) 11639 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 11640 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 11641 DebugLoc Dl = MI.getDebugLoc(); 11642 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11643 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11644 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 11645 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11646 MI.getOperand(0).getReg()) 11647 .addReg(CRReg); 11648 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 11649 DebugLoc Dl = MI.getDebugLoc(); 11650 unsigned Imm = MI.getOperand(1).getImm(); 11651 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 11652 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11653 MI.getOperand(0).getReg()) 11654 .addReg(PPC::CR0EQ); 11655 } else if (MI.getOpcode() == PPC::SETRNDi) { 11656 DebugLoc dl = MI.getDebugLoc(); 11657 Register OldFPSCRReg = MI.getOperand(0).getReg(); 11658 11659 // Save FPSCR value. 11660 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11661 11662 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 11663 // the following settings: 11664 // 00 Round to nearest 11665 // 01 Round to 0 11666 // 10 Round to +inf 11667 // 11 Round to -inf 11668 11669 // When the operand is immediate, using the two least significant bits of 11670 // the immediate to set the bits 62:63 of FPSCR. 11671 unsigned Mode = MI.getOperand(1).getImm(); 11672 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 11673 .addImm(31); 11674 11675 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 11676 .addImm(30); 11677 } else if (MI.getOpcode() == PPC::SETRND) { 11678 DebugLoc dl = MI.getDebugLoc(); 11679 11680 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 11681 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 11682 // If the target doesn't have DirectMove, we should use stack to do the 11683 // conversion, because the target doesn't have the instructions like mtvsrd 11684 // or mfvsrd to do this conversion directly. 11685 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 11686 if (Subtarget.hasDirectMove()) { 11687 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 11688 .addReg(SrcReg); 11689 } else { 11690 // Use stack to do the register copy. 11691 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 11692 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11693 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 11694 if (RC == &PPC::F8RCRegClass) { 11695 // Copy register from F8RCRegClass to G8RCRegclass. 11696 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 11697 "Unsupported RegClass."); 11698 11699 StoreOp = PPC::STFD; 11700 LoadOp = PPC::LD; 11701 } else { 11702 // Copy register from G8RCRegClass to F8RCRegclass. 11703 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 11704 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 11705 "Unsupported RegClass."); 11706 } 11707 11708 MachineFrameInfo &MFI = F->getFrameInfo(); 11709 int FrameIdx = MFI.CreateStackObject(8, 8, false); 11710 11711 MachineMemOperand *MMOStore = F->getMachineMemOperand( 11712 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 11713 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 11714 MFI.getObjectAlignment(FrameIdx)); 11715 11716 // Store the SrcReg into the stack. 11717 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 11718 .addReg(SrcReg) 11719 .addImm(0) 11720 .addFrameIndex(FrameIdx) 11721 .addMemOperand(MMOStore); 11722 11723 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 11724 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 11725 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 11726 MFI.getObjectAlignment(FrameIdx)); 11727 11728 // Load from the stack where SrcReg is stored, and save to DestReg, 11729 // so we have done the RegClass conversion from RegClass::SrcReg to 11730 // RegClass::DestReg. 11731 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 11732 .addImm(0) 11733 .addFrameIndex(FrameIdx) 11734 .addMemOperand(MMOLoad); 11735 } 11736 }; 11737 11738 Register OldFPSCRReg = MI.getOperand(0).getReg(); 11739 11740 // Save FPSCR value. 11741 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11742 11743 // When the operand is gprc register, use two least significant bits of the 11744 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 11745 // 11746 // copy OldFPSCRTmpReg, OldFPSCRReg 11747 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 11748 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 11749 // copy NewFPSCRReg, NewFPSCRTmpReg 11750 // mtfsf 255, NewFPSCRReg 11751 MachineOperand SrcOp = MI.getOperand(1); 11752 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11753 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11754 11755 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 11756 11757 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11758 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11759 11760 // The first operand of INSERT_SUBREG should be a register which has 11761 // subregisters, we only care about its RegClass, so we should use an 11762 // IMPLICIT_DEF register. 11763 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 11764 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 11765 .addReg(ImDefReg) 11766 .add(SrcOp) 11767 .addImm(1); 11768 11769 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11770 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 11771 .addReg(OldFPSCRTmpReg) 11772 .addReg(ExtSrcReg) 11773 .addImm(0) 11774 .addImm(62); 11775 11776 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11777 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 11778 11779 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 11780 // bits of FPSCR. 11781 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 11782 .addImm(255) 11783 .addReg(NewFPSCRReg) 11784 .addImm(0) 11785 .addImm(0); 11786 } else { 11787 llvm_unreachable("Unexpected instr type to insert"); 11788 } 11789 11790 MI.eraseFromParent(); // The pseudo instruction is gone now. 11791 return BB; 11792 } 11793 11794 //===----------------------------------------------------------------------===// 11795 // Target Optimization Hooks 11796 //===----------------------------------------------------------------------===// 11797 11798 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 11799 // For the estimates, convergence is quadratic, so we essentially double the 11800 // number of digits correct after every iteration. For both FRE and FRSQRTE, 11801 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 11802 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 11803 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 11804 if (VT.getScalarType() == MVT::f64) 11805 RefinementSteps++; 11806 return RefinementSteps; 11807 } 11808 11809 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 11810 int Enabled, int &RefinementSteps, 11811 bool &UseOneConstNR, 11812 bool Reciprocal) const { 11813 EVT VT = Operand.getValueType(); 11814 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 11815 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 11816 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 11817 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 11818 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 11819 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 11820 if (RefinementSteps == ReciprocalEstimate::Unspecified) 11821 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 11822 11823 // The Newton-Raphson computation with a single constant does not provide 11824 // enough accuracy on some CPUs. 11825 UseOneConstNR = !Subtarget.needsTwoConstNR(); 11826 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 11827 } 11828 return SDValue(); 11829 } 11830 11831 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 11832 int Enabled, 11833 int &RefinementSteps) const { 11834 EVT VT = Operand.getValueType(); 11835 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 11836 (VT == MVT::f64 && Subtarget.hasFRE()) || 11837 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 11838 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 11839 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 11840 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 11841 if (RefinementSteps == ReciprocalEstimate::Unspecified) 11842 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 11843 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 11844 } 11845 return SDValue(); 11846 } 11847 11848 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 11849 // Note: This functionality is used only when unsafe-fp-math is enabled, and 11850 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 11851 // enabled for division), this functionality is redundant with the default 11852 // combiner logic (once the division -> reciprocal/multiply transformation 11853 // has taken place). As a result, this matters more for older cores than for 11854 // newer ones. 11855 11856 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 11857 // reciprocal if there are two or more FDIVs (for embedded cores with only 11858 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 11859 switch (Subtarget.getCPUDirective()) { 11860 default: 11861 return 3; 11862 case PPC::DIR_440: 11863 case PPC::DIR_A2: 11864 case PPC::DIR_E500: 11865 case PPC::DIR_E500mc: 11866 case PPC::DIR_E5500: 11867 return 2; 11868 } 11869 } 11870 11871 // isConsecutiveLSLoc needs to work even if all adds have not yet been 11872 // collapsed, and so we need to look through chains of them. 11873 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 11874 int64_t& Offset, SelectionDAG &DAG) { 11875 if (DAG.isBaseWithConstantOffset(Loc)) { 11876 Base = Loc.getOperand(0); 11877 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 11878 11879 // The base might itself be a base plus an offset, and if so, accumulate 11880 // that as well. 11881 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 11882 } 11883 } 11884 11885 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 11886 unsigned Bytes, int Dist, 11887 SelectionDAG &DAG) { 11888 if (VT.getSizeInBits() / 8 != Bytes) 11889 return false; 11890 11891 SDValue BaseLoc = Base->getBasePtr(); 11892 if (Loc.getOpcode() == ISD::FrameIndex) { 11893 if (BaseLoc.getOpcode() != ISD::FrameIndex) 11894 return false; 11895 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 11896 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 11897 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 11898 int FS = MFI.getObjectSize(FI); 11899 int BFS = MFI.getObjectSize(BFI); 11900 if (FS != BFS || FS != (int)Bytes) return false; 11901 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 11902 } 11903 11904 SDValue Base1 = Loc, Base2 = BaseLoc; 11905 int64_t Offset1 = 0, Offset2 = 0; 11906 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 11907 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 11908 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 11909 return true; 11910 11911 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11912 const GlobalValue *GV1 = nullptr; 11913 const GlobalValue *GV2 = nullptr; 11914 Offset1 = 0; 11915 Offset2 = 0; 11916 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 11917 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 11918 if (isGA1 && isGA2 && GV1 == GV2) 11919 return Offset1 == (Offset2 + Dist*Bytes); 11920 return false; 11921 } 11922 11923 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 11924 // not enforce equality of the chain operands. 11925 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 11926 unsigned Bytes, int Dist, 11927 SelectionDAG &DAG) { 11928 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 11929 EVT VT = LS->getMemoryVT(); 11930 SDValue Loc = LS->getBasePtr(); 11931 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 11932 } 11933 11934 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 11935 EVT VT; 11936 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11937 default: return false; 11938 case Intrinsic::ppc_qpx_qvlfd: 11939 case Intrinsic::ppc_qpx_qvlfda: 11940 VT = MVT::v4f64; 11941 break; 11942 case Intrinsic::ppc_qpx_qvlfs: 11943 case Intrinsic::ppc_qpx_qvlfsa: 11944 VT = MVT::v4f32; 11945 break; 11946 case Intrinsic::ppc_qpx_qvlfcd: 11947 case Intrinsic::ppc_qpx_qvlfcda: 11948 VT = MVT::v2f64; 11949 break; 11950 case Intrinsic::ppc_qpx_qvlfcs: 11951 case Intrinsic::ppc_qpx_qvlfcsa: 11952 VT = MVT::v2f32; 11953 break; 11954 case Intrinsic::ppc_qpx_qvlfiwa: 11955 case Intrinsic::ppc_qpx_qvlfiwz: 11956 case Intrinsic::ppc_altivec_lvx: 11957 case Intrinsic::ppc_altivec_lvxl: 11958 case Intrinsic::ppc_vsx_lxvw4x: 11959 case Intrinsic::ppc_vsx_lxvw4x_be: 11960 VT = MVT::v4i32; 11961 break; 11962 case Intrinsic::ppc_vsx_lxvd2x: 11963 case Intrinsic::ppc_vsx_lxvd2x_be: 11964 VT = MVT::v2f64; 11965 break; 11966 case Intrinsic::ppc_altivec_lvebx: 11967 VT = MVT::i8; 11968 break; 11969 case Intrinsic::ppc_altivec_lvehx: 11970 VT = MVT::i16; 11971 break; 11972 case Intrinsic::ppc_altivec_lvewx: 11973 VT = MVT::i32; 11974 break; 11975 } 11976 11977 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 11978 } 11979 11980 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 11981 EVT VT; 11982 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11983 default: return false; 11984 case Intrinsic::ppc_qpx_qvstfd: 11985 case Intrinsic::ppc_qpx_qvstfda: 11986 VT = MVT::v4f64; 11987 break; 11988 case Intrinsic::ppc_qpx_qvstfs: 11989 case Intrinsic::ppc_qpx_qvstfsa: 11990 VT = MVT::v4f32; 11991 break; 11992 case Intrinsic::ppc_qpx_qvstfcd: 11993 case Intrinsic::ppc_qpx_qvstfcda: 11994 VT = MVT::v2f64; 11995 break; 11996 case Intrinsic::ppc_qpx_qvstfcs: 11997 case Intrinsic::ppc_qpx_qvstfcsa: 11998 VT = MVT::v2f32; 11999 break; 12000 case Intrinsic::ppc_qpx_qvstfiw: 12001 case Intrinsic::ppc_qpx_qvstfiwa: 12002 case Intrinsic::ppc_altivec_stvx: 12003 case Intrinsic::ppc_altivec_stvxl: 12004 case Intrinsic::ppc_vsx_stxvw4x: 12005 VT = MVT::v4i32; 12006 break; 12007 case Intrinsic::ppc_vsx_stxvd2x: 12008 VT = MVT::v2f64; 12009 break; 12010 case Intrinsic::ppc_vsx_stxvw4x_be: 12011 VT = MVT::v4i32; 12012 break; 12013 case Intrinsic::ppc_vsx_stxvd2x_be: 12014 VT = MVT::v2f64; 12015 break; 12016 case Intrinsic::ppc_altivec_stvebx: 12017 VT = MVT::i8; 12018 break; 12019 case Intrinsic::ppc_altivec_stvehx: 12020 VT = MVT::i16; 12021 break; 12022 case Intrinsic::ppc_altivec_stvewx: 12023 VT = MVT::i32; 12024 break; 12025 } 12026 12027 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12028 } 12029 12030 return false; 12031 } 12032 12033 // Return true is there is a nearyby consecutive load to the one provided 12034 // (regardless of alignment). We search up and down the chain, looking though 12035 // token factors and other loads (but nothing else). As a result, a true result 12036 // indicates that it is safe to create a new consecutive load adjacent to the 12037 // load provided. 12038 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12039 SDValue Chain = LD->getChain(); 12040 EVT VT = LD->getMemoryVT(); 12041 12042 SmallSet<SDNode *, 16> LoadRoots; 12043 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12044 SmallSet<SDNode *, 16> Visited; 12045 12046 // First, search up the chain, branching to follow all token-factor operands. 12047 // If we find a consecutive load, then we're done, otherwise, record all 12048 // nodes just above the top-level loads and token factors. 12049 while (!Queue.empty()) { 12050 SDNode *ChainNext = Queue.pop_back_val(); 12051 if (!Visited.insert(ChainNext).second) 12052 continue; 12053 12054 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12055 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12056 return true; 12057 12058 if (!Visited.count(ChainLD->getChain().getNode())) 12059 Queue.push_back(ChainLD->getChain().getNode()); 12060 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 12061 for (const SDUse &O : ChainNext->ops()) 12062 if (!Visited.count(O.getNode())) 12063 Queue.push_back(O.getNode()); 12064 } else 12065 LoadRoots.insert(ChainNext); 12066 } 12067 12068 // Second, search down the chain, starting from the top-level nodes recorded 12069 // in the first phase. These top-level nodes are the nodes just above all 12070 // loads and token factors. Starting with their uses, recursively look though 12071 // all loads (just the chain uses) and token factors to find a consecutive 12072 // load. 12073 Visited.clear(); 12074 Queue.clear(); 12075 12076 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 12077 IE = LoadRoots.end(); I != IE; ++I) { 12078 Queue.push_back(*I); 12079 12080 while (!Queue.empty()) { 12081 SDNode *LoadRoot = Queue.pop_back_val(); 12082 if (!Visited.insert(LoadRoot).second) 12083 continue; 12084 12085 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 12086 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12087 return true; 12088 12089 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 12090 UE = LoadRoot->use_end(); UI != UE; ++UI) 12091 if (((isa<MemSDNode>(*UI) && 12092 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 12093 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 12094 Queue.push_back(*UI); 12095 } 12096 } 12097 12098 return false; 12099 } 12100 12101 /// This function is called when we have proved that a SETCC node can be replaced 12102 /// by subtraction (and other supporting instructions) so that the result of 12103 /// comparison is kept in a GPR instead of CR. This function is purely for 12104 /// codegen purposes and has some flags to guide the codegen process. 12105 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 12106 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 12107 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12108 12109 // Zero extend the operands to the largest legal integer. Originally, they 12110 // must be of a strictly smaller size. 12111 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 12112 DAG.getConstant(Size, DL, MVT::i32)); 12113 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 12114 DAG.getConstant(Size, DL, MVT::i32)); 12115 12116 // Swap if needed. Depends on the condition code. 12117 if (Swap) 12118 std::swap(Op0, Op1); 12119 12120 // Subtract extended integers. 12121 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 12122 12123 // Move the sign bit to the least significant position and zero out the rest. 12124 // Now the least significant bit carries the result of original comparison. 12125 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 12126 DAG.getConstant(Size - 1, DL, MVT::i32)); 12127 auto Final = Shifted; 12128 12129 // Complement the result if needed. Based on the condition code. 12130 if (Complement) 12131 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 12132 DAG.getConstant(1, DL, MVT::i64)); 12133 12134 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 12135 } 12136 12137 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 12138 DAGCombinerInfo &DCI) const { 12139 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12140 12141 SelectionDAG &DAG = DCI.DAG; 12142 SDLoc DL(N); 12143 12144 // Size of integers being compared has a critical role in the following 12145 // analysis, so we prefer to do this when all types are legal. 12146 if (!DCI.isAfterLegalizeDAG()) 12147 return SDValue(); 12148 12149 // If all users of SETCC extend its value to a legal integer type 12150 // then we replace SETCC with a subtraction 12151 for (SDNode::use_iterator UI = N->use_begin(), 12152 UE = N->use_end(); UI != UE; ++UI) { 12153 if (UI->getOpcode() != ISD::ZERO_EXTEND) 12154 return SDValue(); 12155 } 12156 12157 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12158 auto OpSize = N->getOperand(0).getValueSizeInBits(); 12159 12160 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 12161 12162 if (OpSize < Size) { 12163 switch (CC) { 12164 default: break; 12165 case ISD::SETULT: 12166 return generateEquivalentSub(N, Size, false, false, DL, DAG); 12167 case ISD::SETULE: 12168 return generateEquivalentSub(N, Size, true, true, DL, DAG); 12169 case ISD::SETUGT: 12170 return generateEquivalentSub(N, Size, false, true, DL, DAG); 12171 case ISD::SETUGE: 12172 return generateEquivalentSub(N, Size, true, false, DL, DAG); 12173 } 12174 } 12175 12176 return SDValue(); 12177 } 12178 12179 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 12180 DAGCombinerInfo &DCI) const { 12181 SelectionDAG &DAG = DCI.DAG; 12182 SDLoc dl(N); 12183 12184 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 12185 // If we're tracking CR bits, we need to be careful that we don't have: 12186 // trunc(binary-ops(zext(x), zext(y))) 12187 // or 12188 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 12189 // such that we're unnecessarily moving things into GPRs when it would be 12190 // better to keep them in CR bits. 12191 12192 // Note that trunc here can be an actual i1 trunc, or can be the effective 12193 // truncation that comes from a setcc or select_cc. 12194 if (N->getOpcode() == ISD::TRUNCATE && 12195 N->getValueType(0) != MVT::i1) 12196 return SDValue(); 12197 12198 if (N->getOperand(0).getValueType() != MVT::i32 && 12199 N->getOperand(0).getValueType() != MVT::i64) 12200 return SDValue(); 12201 12202 if (N->getOpcode() == ISD::SETCC || 12203 N->getOpcode() == ISD::SELECT_CC) { 12204 // If we're looking at a comparison, then we need to make sure that the 12205 // high bits (all except for the first) don't matter the result. 12206 ISD::CondCode CC = 12207 cast<CondCodeSDNode>(N->getOperand( 12208 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 12209 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 12210 12211 if (ISD::isSignedIntSetCC(CC)) { 12212 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 12213 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 12214 return SDValue(); 12215 } else if (ISD::isUnsignedIntSetCC(CC)) { 12216 if (!DAG.MaskedValueIsZero(N->getOperand(0), 12217 APInt::getHighBitsSet(OpBits, OpBits-1)) || 12218 !DAG.MaskedValueIsZero(N->getOperand(1), 12219 APInt::getHighBitsSet(OpBits, OpBits-1))) 12220 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 12221 : SDValue()); 12222 } else { 12223 // This is neither a signed nor an unsigned comparison, just make sure 12224 // that the high bits are equal. 12225 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 12226 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 12227 12228 // We don't really care about what is known about the first bit (if 12229 // anything), so clear it in all masks prior to comparing them. 12230 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 12231 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 12232 12233 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 12234 return SDValue(); 12235 } 12236 } 12237 12238 // We now know that the higher-order bits are irrelevant, we just need to 12239 // make sure that all of the intermediate operations are bit operations, and 12240 // all inputs are extensions. 12241 if (N->getOperand(0).getOpcode() != ISD::AND && 12242 N->getOperand(0).getOpcode() != ISD::OR && 12243 N->getOperand(0).getOpcode() != ISD::XOR && 12244 N->getOperand(0).getOpcode() != ISD::SELECT && 12245 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 12246 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 12247 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 12248 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 12249 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 12250 return SDValue(); 12251 12252 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 12253 N->getOperand(1).getOpcode() != ISD::AND && 12254 N->getOperand(1).getOpcode() != ISD::OR && 12255 N->getOperand(1).getOpcode() != ISD::XOR && 12256 N->getOperand(1).getOpcode() != ISD::SELECT && 12257 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 12258 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 12259 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 12260 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 12261 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 12262 return SDValue(); 12263 12264 SmallVector<SDValue, 4> Inputs; 12265 SmallVector<SDValue, 8> BinOps, PromOps; 12266 SmallPtrSet<SDNode *, 16> Visited; 12267 12268 for (unsigned i = 0; i < 2; ++i) { 12269 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12270 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12271 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12272 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12273 isa<ConstantSDNode>(N->getOperand(i))) 12274 Inputs.push_back(N->getOperand(i)); 12275 else 12276 BinOps.push_back(N->getOperand(i)); 12277 12278 if (N->getOpcode() == ISD::TRUNCATE) 12279 break; 12280 } 12281 12282 // Visit all inputs, collect all binary operations (and, or, xor and 12283 // select) that are all fed by extensions. 12284 while (!BinOps.empty()) { 12285 SDValue BinOp = BinOps.back(); 12286 BinOps.pop_back(); 12287 12288 if (!Visited.insert(BinOp.getNode()).second) 12289 continue; 12290 12291 PromOps.push_back(BinOp); 12292 12293 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12294 // The condition of the select is not promoted. 12295 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12296 continue; 12297 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12298 continue; 12299 12300 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12301 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12302 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12303 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12304 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12305 Inputs.push_back(BinOp.getOperand(i)); 12306 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12307 BinOp.getOperand(i).getOpcode() == ISD::OR || 12308 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12309 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12310 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 12311 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12312 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12313 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12314 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 12315 BinOps.push_back(BinOp.getOperand(i)); 12316 } else { 12317 // We have an input that is not an extension or another binary 12318 // operation; we'll abort this transformation. 12319 return SDValue(); 12320 } 12321 } 12322 } 12323 12324 // Make sure that this is a self-contained cluster of operations (which 12325 // is not quite the same thing as saying that everything has only one 12326 // use). 12327 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12328 if (isa<ConstantSDNode>(Inputs[i])) 12329 continue; 12330 12331 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12332 UE = Inputs[i].getNode()->use_end(); 12333 UI != UE; ++UI) { 12334 SDNode *User = *UI; 12335 if (User != N && !Visited.count(User)) 12336 return SDValue(); 12337 12338 // Make sure that we're not going to promote the non-output-value 12339 // operand(s) or SELECT or SELECT_CC. 12340 // FIXME: Although we could sometimes handle this, and it does occur in 12341 // practice that one of the condition inputs to the select is also one of 12342 // the outputs, we currently can't deal with this. 12343 if (User->getOpcode() == ISD::SELECT) { 12344 if (User->getOperand(0) == Inputs[i]) 12345 return SDValue(); 12346 } else if (User->getOpcode() == ISD::SELECT_CC) { 12347 if (User->getOperand(0) == Inputs[i] || 12348 User->getOperand(1) == Inputs[i]) 12349 return SDValue(); 12350 } 12351 } 12352 } 12353 12354 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12355 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12356 UE = PromOps[i].getNode()->use_end(); 12357 UI != UE; ++UI) { 12358 SDNode *User = *UI; 12359 if (User != N && !Visited.count(User)) 12360 return SDValue(); 12361 12362 // Make sure that we're not going to promote the non-output-value 12363 // operand(s) or SELECT or SELECT_CC. 12364 // FIXME: Although we could sometimes handle this, and it does occur in 12365 // practice that one of the condition inputs to the select is also one of 12366 // the outputs, we currently can't deal with this. 12367 if (User->getOpcode() == ISD::SELECT) { 12368 if (User->getOperand(0) == PromOps[i]) 12369 return SDValue(); 12370 } else if (User->getOpcode() == ISD::SELECT_CC) { 12371 if (User->getOperand(0) == PromOps[i] || 12372 User->getOperand(1) == PromOps[i]) 12373 return SDValue(); 12374 } 12375 } 12376 } 12377 12378 // Replace all inputs with the extension operand. 12379 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12380 // Constants may have users outside the cluster of to-be-promoted nodes, 12381 // and so we need to replace those as we do the promotions. 12382 if (isa<ConstantSDNode>(Inputs[i])) 12383 continue; 12384 else 12385 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 12386 } 12387 12388 std::list<HandleSDNode> PromOpHandles; 12389 for (auto &PromOp : PromOps) 12390 PromOpHandles.emplace_back(PromOp); 12391 12392 // Replace all operations (these are all the same, but have a different 12393 // (i1) return type). DAG.getNode will validate that the types of 12394 // a binary operator match, so go through the list in reverse so that 12395 // we've likely promoted both operands first. Any intermediate truncations or 12396 // extensions disappear. 12397 while (!PromOpHandles.empty()) { 12398 SDValue PromOp = PromOpHandles.back().getValue(); 12399 PromOpHandles.pop_back(); 12400 12401 if (PromOp.getOpcode() == ISD::TRUNCATE || 12402 PromOp.getOpcode() == ISD::SIGN_EXTEND || 12403 PromOp.getOpcode() == ISD::ZERO_EXTEND || 12404 PromOp.getOpcode() == ISD::ANY_EXTEND) { 12405 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 12406 PromOp.getOperand(0).getValueType() != MVT::i1) { 12407 // The operand is not yet ready (see comment below). 12408 PromOpHandles.emplace_front(PromOp); 12409 continue; 12410 } 12411 12412 SDValue RepValue = PromOp.getOperand(0); 12413 if (isa<ConstantSDNode>(RepValue)) 12414 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 12415 12416 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 12417 continue; 12418 } 12419 12420 unsigned C; 12421 switch (PromOp.getOpcode()) { 12422 default: C = 0; break; 12423 case ISD::SELECT: C = 1; break; 12424 case ISD::SELECT_CC: C = 2; break; 12425 } 12426 12427 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12428 PromOp.getOperand(C).getValueType() != MVT::i1) || 12429 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12430 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 12431 // The to-be-promoted operands of this node have not yet been 12432 // promoted (this should be rare because we're going through the 12433 // list backward, but if one of the operands has several users in 12434 // this cluster of to-be-promoted nodes, it is possible). 12435 PromOpHandles.emplace_front(PromOp); 12436 continue; 12437 } 12438 12439 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12440 PromOp.getNode()->op_end()); 12441 12442 // If there are any constant inputs, make sure they're replaced now. 12443 for (unsigned i = 0; i < 2; ++i) 12444 if (isa<ConstantSDNode>(Ops[C+i])) 12445 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 12446 12447 DAG.ReplaceAllUsesOfValueWith(PromOp, 12448 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 12449 } 12450 12451 // Now we're left with the initial truncation itself. 12452 if (N->getOpcode() == ISD::TRUNCATE) 12453 return N->getOperand(0); 12454 12455 // Otherwise, this is a comparison. The operands to be compared have just 12456 // changed type (to i1), but everything else is the same. 12457 return SDValue(N, 0); 12458 } 12459 12460 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 12461 DAGCombinerInfo &DCI) const { 12462 SelectionDAG &DAG = DCI.DAG; 12463 SDLoc dl(N); 12464 12465 // If we're tracking CR bits, we need to be careful that we don't have: 12466 // zext(binary-ops(trunc(x), trunc(y))) 12467 // or 12468 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 12469 // such that we're unnecessarily moving things into CR bits that can more 12470 // efficiently stay in GPRs. Note that if we're not certain that the high 12471 // bits are set as required by the final extension, we still may need to do 12472 // some masking to get the proper behavior. 12473 12474 // This same functionality is important on PPC64 when dealing with 12475 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 12476 // the return values of functions. Because it is so similar, it is handled 12477 // here as well. 12478 12479 if (N->getValueType(0) != MVT::i32 && 12480 N->getValueType(0) != MVT::i64) 12481 return SDValue(); 12482 12483 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 12484 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 12485 return SDValue(); 12486 12487 if (N->getOperand(0).getOpcode() != ISD::AND && 12488 N->getOperand(0).getOpcode() != ISD::OR && 12489 N->getOperand(0).getOpcode() != ISD::XOR && 12490 N->getOperand(0).getOpcode() != ISD::SELECT && 12491 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 12492 return SDValue(); 12493 12494 SmallVector<SDValue, 4> Inputs; 12495 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 12496 SmallPtrSet<SDNode *, 16> Visited; 12497 12498 // Visit all inputs, collect all binary operations (and, or, xor and 12499 // select) that are all fed by truncations. 12500 while (!BinOps.empty()) { 12501 SDValue BinOp = BinOps.back(); 12502 BinOps.pop_back(); 12503 12504 if (!Visited.insert(BinOp.getNode()).second) 12505 continue; 12506 12507 PromOps.push_back(BinOp); 12508 12509 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12510 // The condition of the select is not promoted. 12511 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12512 continue; 12513 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12514 continue; 12515 12516 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12517 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12518 Inputs.push_back(BinOp.getOperand(i)); 12519 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12520 BinOp.getOperand(i).getOpcode() == ISD::OR || 12521 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12522 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12523 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 12524 BinOps.push_back(BinOp.getOperand(i)); 12525 } else { 12526 // We have an input that is not a truncation or another binary 12527 // operation; we'll abort this transformation. 12528 return SDValue(); 12529 } 12530 } 12531 } 12532 12533 // The operands of a select that must be truncated when the select is 12534 // promoted because the operand is actually part of the to-be-promoted set. 12535 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 12536 12537 // Make sure that this is a self-contained cluster of operations (which 12538 // is not quite the same thing as saying that everything has only one 12539 // use). 12540 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12541 if (isa<ConstantSDNode>(Inputs[i])) 12542 continue; 12543 12544 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12545 UE = Inputs[i].getNode()->use_end(); 12546 UI != UE; ++UI) { 12547 SDNode *User = *UI; 12548 if (User != N && !Visited.count(User)) 12549 return SDValue(); 12550 12551 // If we're going to promote the non-output-value operand(s) or SELECT or 12552 // SELECT_CC, record them for truncation. 12553 if (User->getOpcode() == ISD::SELECT) { 12554 if (User->getOperand(0) == Inputs[i]) 12555 SelectTruncOp[0].insert(std::make_pair(User, 12556 User->getOperand(0).getValueType())); 12557 } else if (User->getOpcode() == ISD::SELECT_CC) { 12558 if (User->getOperand(0) == Inputs[i]) 12559 SelectTruncOp[0].insert(std::make_pair(User, 12560 User->getOperand(0).getValueType())); 12561 if (User->getOperand(1) == Inputs[i]) 12562 SelectTruncOp[1].insert(std::make_pair(User, 12563 User->getOperand(1).getValueType())); 12564 } 12565 } 12566 } 12567 12568 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12569 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12570 UE = PromOps[i].getNode()->use_end(); 12571 UI != UE; ++UI) { 12572 SDNode *User = *UI; 12573 if (User != N && !Visited.count(User)) 12574 return SDValue(); 12575 12576 // If we're going to promote the non-output-value operand(s) or SELECT or 12577 // SELECT_CC, record them for truncation. 12578 if (User->getOpcode() == ISD::SELECT) { 12579 if (User->getOperand(0) == PromOps[i]) 12580 SelectTruncOp[0].insert(std::make_pair(User, 12581 User->getOperand(0).getValueType())); 12582 } else if (User->getOpcode() == ISD::SELECT_CC) { 12583 if (User->getOperand(0) == PromOps[i]) 12584 SelectTruncOp[0].insert(std::make_pair(User, 12585 User->getOperand(0).getValueType())); 12586 if (User->getOperand(1) == PromOps[i]) 12587 SelectTruncOp[1].insert(std::make_pair(User, 12588 User->getOperand(1).getValueType())); 12589 } 12590 } 12591 } 12592 12593 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 12594 bool ReallyNeedsExt = false; 12595 if (N->getOpcode() != ISD::ANY_EXTEND) { 12596 // If all of the inputs are not already sign/zero extended, then 12597 // we'll still need to do that at the end. 12598 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12599 if (isa<ConstantSDNode>(Inputs[i])) 12600 continue; 12601 12602 unsigned OpBits = 12603 Inputs[i].getOperand(0).getValueSizeInBits(); 12604 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 12605 12606 if ((N->getOpcode() == ISD::ZERO_EXTEND && 12607 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 12608 APInt::getHighBitsSet(OpBits, 12609 OpBits-PromBits))) || 12610 (N->getOpcode() == ISD::SIGN_EXTEND && 12611 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 12612 (OpBits-(PromBits-1)))) { 12613 ReallyNeedsExt = true; 12614 break; 12615 } 12616 } 12617 } 12618 12619 // Replace all inputs, either with the truncation operand, or a 12620 // truncation or extension to the final output type. 12621 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12622 // Constant inputs need to be replaced with the to-be-promoted nodes that 12623 // use them because they might have users outside of the cluster of 12624 // promoted nodes. 12625 if (isa<ConstantSDNode>(Inputs[i])) 12626 continue; 12627 12628 SDValue InSrc = Inputs[i].getOperand(0); 12629 if (Inputs[i].getValueType() == N->getValueType(0)) 12630 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 12631 else if (N->getOpcode() == ISD::SIGN_EXTEND) 12632 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12633 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 12634 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12635 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12636 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 12637 else 12638 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12639 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 12640 } 12641 12642 std::list<HandleSDNode> PromOpHandles; 12643 for (auto &PromOp : PromOps) 12644 PromOpHandles.emplace_back(PromOp); 12645 12646 // Replace all operations (these are all the same, but have a different 12647 // (promoted) return type). DAG.getNode will validate that the types of 12648 // a binary operator match, so go through the list in reverse so that 12649 // we've likely promoted both operands first. 12650 while (!PromOpHandles.empty()) { 12651 SDValue PromOp = PromOpHandles.back().getValue(); 12652 PromOpHandles.pop_back(); 12653 12654 unsigned C; 12655 switch (PromOp.getOpcode()) { 12656 default: C = 0; break; 12657 case ISD::SELECT: C = 1; break; 12658 case ISD::SELECT_CC: C = 2; break; 12659 } 12660 12661 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12662 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 12663 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12664 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 12665 // The to-be-promoted operands of this node have not yet been 12666 // promoted (this should be rare because we're going through the 12667 // list backward, but if one of the operands has several users in 12668 // this cluster of to-be-promoted nodes, it is possible). 12669 PromOpHandles.emplace_front(PromOp); 12670 continue; 12671 } 12672 12673 // For SELECT and SELECT_CC nodes, we do a similar check for any 12674 // to-be-promoted comparison inputs. 12675 if (PromOp.getOpcode() == ISD::SELECT || 12676 PromOp.getOpcode() == ISD::SELECT_CC) { 12677 if ((SelectTruncOp[0].count(PromOp.getNode()) && 12678 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 12679 (SelectTruncOp[1].count(PromOp.getNode()) && 12680 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 12681 PromOpHandles.emplace_front(PromOp); 12682 continue; 12683 } 12684 } 12685 12686 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12687 PromOp.getNode()->op_end()); 12688 12689 // If this node has constant inputs, then they'll need to be promoted here. 12690 for (unsigned i = 0; i < 2; ++i) { 12691 if (!isa<ConstantSDNode>(Ops[C+i])) 12692 continue; 12693 if (Ops[C+i].getValueType() == N->getValueType(0)) 12694 continue; 12695 12696 if (N->getOpcode() == ISD::SIGN_EXTEND) 12697 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12698 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12699 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12700 else 12701 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12702 } 12703 12704 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 12705 // truncate them again to the original value type. 12706 if (PromOp.getOpcode() == ISD::SELECT || 12707 PromOp.getOpcode() == ISD::SELECT_CC) { 12708 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 12709 if (SI0 != SelectTruncOp[0].end()) 12710 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 12711 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 12712 if (SI1 != SelectTruncOp[1].end()) 12713 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 12714 } 12715 12716 DAG.ReplaceAllUsesOfValueWith(PromOp, 12717 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 12718 } 12719 12720 // Now we're left with the initial extension itself. 12721 if (!ReallyNeedsExt) 12722 return N->getOperand(0); 12723 12724 // To zero extend, just mask off everything except for the first bit (in the 12725 // i1 case). 12726 if (N->getOpcode() == ISD::ZERO_EXTEND) 12727 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 12728 DAG.getConstant(APInt::getLowBitsSet( 12729 N->getValueSizeInBits(0), PromBits), 12730 dl, N->getValueType(0))); 12731 12732 assert(N->getOpcode() == ISD::SIGN_EXTEND && 12733 "Invalid extension type"); 12734 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 12735 SDValue ShiftCst = 12736 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 12737 return DAG.getNode( 12738 ISD::SRA, dl, N->getValueType(0), 12739 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 12740 ShiftCst); 12741 } 12742 12743 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 12744 DAGCombinerInfo &DCI) const { 12745 assert(N->getOpcode() == ISD::SETCC && 12746 "Should be called with a SETCC node"); 12747 12748 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12749 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 12750 SDValue LHS = N->getOperand(0); 12751 SDValue RHS = N->getOperand(1); 12752 12753 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 12754 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 12755 LHS.hasOneUse()) 12756 std::swap(LHS, RHS); 12757 12758 // x == 0-y --> x+y == 0 12759 // x != 0-y --> x+y != 0 12760 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 12761 RHS.hasOneUse()) { 12762 SDLoc DL(N); 12763 SelectionDAG &DAG = DCI.DAG; 12764 EVT VT = N->getValueType(0); 12765 EVT OpVT = LHS.getValueType(); 12766 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 12767 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 12768 } 12769 } 12770 12771 return DAGCombineTruncBoolExt(N, DCI); 12772 } 12773 12774 // Is this an extending load from an f32 to an f64? 12775 static bool isFPExtLoad(SDValue Op) { 12776 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 12777 return LD->getExtensionType() == ISD::EXTLOAD && 12778 Op.getValueType() == MVT::f64; 12779 return false; 12780 } 12781 12782 /// Reduces the number of fp-to-int conversion when building a vector. 12783 /// 12784 /// If this vector is built out of floating to integer conversions, 12785 /// transform it to a vector built out of floating point values followed by a 12786 /// single floating to integer conversion of the vector. 12787 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 12788 /// becomes (fptosi (build_vector ($A, $B, ...))) 12789 SDValue PPCTargetLowering:: 12790 combineElementTruncationToVectorTruncation(SDNode *N, 12791 DAGCombinerInfo &DCI) const { 12792 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12793 "Should be called with a BUILD_VECTOR node"); 12794 12795 SelectionDAG &DAG = DCI.DAG; 12796 SDLoc dl(N); 12797 12798 SDValue FirstInput = N->getOperand(0); 12799 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 12800 "The input operand must be an fp-to-int conversion."); 12801 12802 // This combine happens after legalization so the fp_to_[su]i nodes are 12803 // already converted to PPCSISD nodes. 12804 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 12805 if (FirstConversion == PPCISD::FCTIDZ || 12806 FirstConversion == PPCISD::FCTIDUZ || 12807 FirstConversion == PPCISD::FCTIWZ || 12808 FirstConversion == PPCISD::FCTIWUZ) { 12809 bool IsSplat = true; 12810 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 12811 FirstConversion == PPCISD::FCTIWUZ; 12812 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 12813 SmallVector<SDValue, 4> Ops; 12814 EVT TargetVT = N->getValueType(0); 12815 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 12816 SDValue NextOp = N->getOperand(i); 12817 if (NextOp.getOpcode() != PPCISD::MFVSR) 12818 return SDValue(); 12819 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 12820 if (NextConversion != FirstConversion) 12821 return SDValue(); 12822 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 12823 // This is not valid if the input was originally double precision. It is 12824 // also not profitable to do unless this is an extending load in which 12825 // case doing this combine will allow us to combine consecutive loads. 12826 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 12827 return SDValue(); 12828 if (N->getOperand(i) != FirstInput) 12829 IsSplat = false; 12830 } 12831 12832 // If this is a splat, we leave it as-is since there will be only a single 12833 // fp-to-int conversion followed by a splat of the integer. This is better 12834 // for 32-bit and smaller ints and neutral for 64-bit ints. 12835 if (IsSplat) 12836 return SDValue(); 12837 12838 // Now that we know we have the right type of node, get its operands 12839 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 12840 SDValue In = N->getOperand(i).getOperand(0); 12841 if (Is32Bit) { 12842 // For 32-bit values, we need to add an FP_ROUND node (if we made it 12843 // here, we know that all inputs are extending loads so this is safe). 12844 if (In.isUndef()) 12845 Ops.push_back(DAG.getUNDEF(SrcVT)); 12846 else { 12847 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 12848 MVT::f32, In.getOperand(0), 12849 DAG.getIntPtrConstant(1, dl)); 12850 Ops.push_back(Trunc); 12851 } 12852 } else 12853 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 12854 } 12855 12856 unsigned Opcode; 12857 if (FirstConversion == PPCISD::FCTIDZ || 12858 FirstConversion == PPCISD::FCTIWZ) 12859 Opcode = ISD::FP_TO_SINT; 12860 else 12861 Opcode = ISD::FP_TO_UINT; 12862 12863 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 12864 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 12865 return DAG.getNode(Opcode, dl, TargetVT, BV); 12866 } 12867 return SDValue(); 12868 } 12869 12870 /// Reduce the number of loads when building a vector. 12871 /// 12872 /// Building a vector out of multiple loads can be converted to a load 12873 /// of the vector type if the loads are consecutive. If the loads are 12874 /// consecutive but in descending order, a shuffle is added at the end 12875 /// to reorder the vector. 12876 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 12877 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12878 "Should be called with a BUILD_VECTOR node"); 12879 12880 SDLoc dl(N); 12881 12882 // Return early for non byte-sized type, as they can't be consecutive. 12883 if (!N->getValueType(0).getVectorElementType().isByteSized()) 12884 return SDValue(); 12885 12886 bool InputsAreConsecutiveLoads = true; 12887 bool InputsAreReverseConsecutive = true; 12888 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 12889 SDValue FirstInput = N->getOperand(0); 12890 bool IsRoundOfExtLoad = false; 12891 12892 if (FirstInput.getOpcode() == ISD::FP_ROUND && 12893 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 12894 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 12895 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 12896 } 12897 // Not a build vector of (possibly fp_rounded) loads. 12898 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 12899 N->getNumOperands() == 1) 12900 return SDValue(); 12901 12902 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 12903 // If any inputs are fp_round(extload), they all must be. 12904 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 12905 return SDValue(); 12906 12907 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 12908 N->getOperand(i); 12909 if (NextInput.getOpcode() != ISD::LOAD) 12910 return SDValue(); 12911 12912 SDValue PreviousInput = 12913 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 12914 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 12915 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 12916 12917 // If any inputs are fp_round(extload), they all must be. 12918 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 12919 return SDValue(); 12920 12921 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 12922 InputsAreConsecutiveLoads = false; 12923 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 12924 InputsAreReverseConsecutive = false; 12925 12926 // Exit early if the loads are neither consecutive nor reverse consecutive. 12927 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 12928 return SDValue(); 12929 } 12930 12931 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 12932 "The loads cannot be both consecutive and reverse consecutive."); 12933 12934 SDValue FirstLoadOp = 12935 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 12936 SDValue LastLoadOp = 12937 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 12938 N->getOperand(N->getNumOperands()-1); 12939 12940 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 12941 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 12942 if (InputsAreConsecutiveLoads) { 12943 assert(LD1 && "Input needs to be a LoadSDNode."); 12944 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 12945 LD1->getBasePtr(), LD1->getPointerInfo(), 12946 LD1->getAlignment()); 12947 } 12948 if (InputsAreReverseConsecutive) { 12949 assert(LDL && "Input needs to be a LoadSDNode."); 12950 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 12951 LDL->getBasePtr(), LDL->getPointerInfo(), 12952 LDL->getAlignment()); 12953 SmallVector<int, 16> Ops; 12954 for (int i = N->getNumOperands() - 1; i >= 0; i--) 12955 Ops.push_back(i); 12956 12957 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 12958 DAG.getUNDEF(N->getValueType(0)), Ops); 12959 } 12960 return SDValue(); 12961 } 12962 12963 // This function adds the required vector_shuffle needed to get 12964 // the elements of the vector extract in the correct position 12965 // as specified by the CorrectElems encoding. 12966 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 12967 SDValue Input, uint64_t Elems, 12968 uint64_t CorrectElems) { 12969 SDLoc dl(N); 12970 12971 unsigned NumElems = Input.getValueType().getVectorNumElements(); 12972 SmallVector<int, 16> ShuffleMask(NumElems, -1); 12973 12974 // Knowing the element indices being extracted from the original 12975 // vector and the order in which they're being inserted, just put 12976 // them at element indices required for the instruction. 12977 for (unsigned i = 0; i < N->getNumOperands(); i++) { 12978 if (DAG.getDataLayout().isLittleEndian()) 12979 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 12980 else 12981 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 12982 CorrectElems = CorrectElems >> 8; 12983 Elems = Elems >> 8; 12984 } 12985 12986 SDValue Shuffle = 12987 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 12988 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 12989 12990 EVT Ty = N->getValueType(0); 12991 SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle); 12992 return BV; 12993 } 12994 12995 // Look for build vector patterns where input operands come from sign 12996 // extended vector_extract elements of specific indices. If the correct indices 12997 // aren't used, add a vector shuffle to fix up the indices and create a new 12998 // PPCISD:SExtVElems node which selects the vector sign extend instructions 12999 // during instruction selection. 13000 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13001 // This array encodes the indices that the vector sign extend instructions 13002 // extract from when extending from one type to another for both BE and LE. 13003 // The right nibble of each byte corresponds to the LE incides. 13004 // and the left nibble of each byte corresponds to the BE incides. 13005 // For example: 0x3074B8FC byte->word 13006 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13007 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13008 // For example: 0x000070F8 byte->double word 13009 // For LE: the allowed indices are: 0x0,0x8 13010 // For BE: the allowed indices are: 0x7,0xF 13011 uint64_t TargetElems[] = { 13012 0x3074B8FC, // b->w 13013 0x000070F8, // b->d 13014 0x10325476, // h->w 13015 0x00003074, // h->d 13016 0x00001032, // w->d 13017 }; 13018 13019 uint64_t Elems = 0; 13020 int Index; 13021 SDValue Input; 13022 13023 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13024 if (!Op) 13025 return false; 13026 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13027 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13028 return false; 13029 13030 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13031 // of the right width. 13032 SDValue Extract = Op.getOperand(0); 13033 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13034 Extract = Extract.getOperand(0); 13035 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13036 return false; 13037 13038 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13039 if (!ExtOp) 13040 return false; 13041 13042 Index = ExtOp->getZExtValue(); 13043 if (Input && Input != Extract.getOperand(0)) 13044 return false; 13045 13046 if (!Input) 13047 Input = Extract.getOperand(0); 13048 13049 Elems = Elems << 8; 13050 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13051 Elems |= Index; 13052 13053 return true; 13054 }; 13055 13056 // If the build vector operands aren't sign extended vector extracts, 13057 // of the same input vector, then return. 13058 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13059 if (!isSExtOfVecExtract(N->getOperand(i))) { 13060 return SDValue(); 13061 } 13062 } 13063 13064 // If the vector extract indicies are not correct, add the appropriate 13065 // vector_shuffle. 13066 int TgtElemArrayIdx; 13067 int InputSize = Input.getValueType().getScalarSizeInBits(); 13068 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 13069 if (InputSize + OutputSize == 40) 13070 TgtElemArrayIdx = 0; 13071 else if (InputSize + OutputSize == 72) 13072 TgtElemArrayIdx = 1; 13073 else if (InputSize + OutputSize == 48) 13074 TgtElemArrayIdx = 2; 13075 else if (InputSize + OutputSize == 80) 13076 TgtElemArrayIdx = 3; 13077 else if (InputSize + OutputSize == 96) 13078 TgtElemArrayIdx = 4; 13079 else 13080 return SDValue(); 13081 13082 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 13083 CorrectElems = DAG.getDataLayout().isLittleEndian() 13084 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 13085 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 13086 if (Elems != CorrectElems) { 13087 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 13088 } 13089 13090 // Regular lowering will catch cases where a shuffle is not needed. 13091 return SDValue(); 13092 } 13093 13094 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 13095 DAGCombinerInfo &DCI) const { 13096 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13097 "Should be called with a BUILD_VECTOR node"); 13098 13099 SelectionDAG &DAG = DCI.DAG; 13100 SDLoc dl(N); 13101 13102 if (!Subtarget.hasVSX()) 13103 return SDValue(); 13104 13105 // The target independent DAG combiner will leave a build_vector of 13106 // float-to-int conversions intact. We can generate MUCH better code for 13107 // a float-to-int conversion of a vector of floats. 13108 SDValue FirstInput = N->getOperand(0); 13109 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 13110 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 13111 if (Reduced) 13112 return Reduced; 13113 } 13114 13115 // If we're building a vector out of consecutive loads, just load that 13116 // vector type. 13117 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 13118 if (Reduced) 13119 return Reduced; 13120 13121 // If we're building a vector out of extended elements from another vector 13122 // we have P9 vector integer extend instructions. The code assumes legal 13123 // input types (i.e. it can't handle things like v4i16) so do not run before 13124 // legalization. 13125 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 13126 Reduced = combineBVOfVecSExt(N, DAG); 13127 if (Reduced) 13128 return Reduced; 13129 } 13130 13131 13132 if (N->getValueType(0) != MVT::v2f64) 13133 return SDValue(); 13134 13135 // Looking for: 13136 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 13137 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 13138 FirstInput.getOpcode() != ISD::UINT_TO_FP) 13139 return SDValue(); 13140 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 13141 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 13142 return SDValue(); 13143 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 13144 return SDValue(); 13145 13146 SDValue Ext1 = FirstInput.getOperand(0); 13147 SDValue Ext2 = N->getOperand(1).getOperand(0); 13148 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 13149 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13150 return SDValue(); 13151 13152 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 13153 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 13154 if (!Ext1Op || !Ext2Op) 13155 return SDValue(); 13156 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 13157 Ext1.getOperand(0) != Ext2.getOperand(0)) 13158 return SDValue(); 13159 13160 int FirstElem = Ext1Op->getZExtValue(); 13161 int SecondElem = Ext2Op->getZExtValue(); 13162 int SubvecIdx; 13163 if (FirstElem == 0 && SecondElem == 1) 13164 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 13165 else if (FirstElem == 2 && SecondElem == 3) 13166 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 13167 else 13168 return SDValue(); 13169 13170 SDValue SrcVec = Ext1.getOperand(0); 13171 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 13172 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 13173 return DAG.getNode(NodeType, dl, MVT::v2f64, 13174 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 13175 } 13176 13177 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 13178 DAGCombinerInfo &DCI) const { 13179 assert((N->getOpcode() == ISD::SINT_TO_FP || 13180 N->getOpcode() == ISD::UINT_TO_FP) && 13181 "Need an int -> FP conversion node here"); 13182 13183 if (useSoftFloat() || !Subtarget.has64BitSupport()) 13184 return SDValue(); 13185 13186 SelectionDAG &DAG = DCI.DAG; 13187 SDLoc dl(N); 13188 SDValue Op(N, 0); 13189 13190 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 13191 // from the hardware. 13192 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 13193 return SDValue(); 13194 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 13195 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 13196 return SDValue(); 13197 13198 SDValue FirstOperand(Op.getOperand(0)); 13199 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 13200 (FirstOperand.getValueType() == MVT::i8 || 13201 FirstOperand.getValueType() == MVT::i16); 13202 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 13203 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 13204 bool DstDouble = Op.getValueType() == MVT::f64; 13205 unsigned ConvOp = Signed ? 13206 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 13207 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 13208 SDValue WidthConst = 13209 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 13210 dl, false); 13211 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 13212 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 13213 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 13214 DAG.getVTList(MVT::f64, MVT::Other), 13215 Ops, MVT::i8, LDN->getMemOperand()); 13216 13217 // For signed conversion, we need to sign-extend the value in the VSR 13218 if (Signed) { 13219 SDValue ExtOps[] = { Ld, WidthConst }; 13220 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 13221 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 13222 } else 13223 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 13224 } 13225 13226 13227 // For i32 intermediate values, unfortunately, the conversion functions 13228 // leave the upper 32 bits of the value are undefined. Within the set of 13229 // scalar instructions, we have no method for zero- or sign-extending the 13230 // value. Thus, we cannot handle i32 intermediate values here. 13231 if (Op.getOperand(0).getValueType() == MVT::i32) 13232 return SDValue(); 13233 13234 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 13235 "UINT_TO_FP is supported only with FPCVT"); 13236 13237 // If we have FCFIDS, then use it when converting to single-precision. 13238 // Otherwise, convert to double-precision and then round. 13239 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13240 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 13241 : PPCISD::FCFIDS) 13242 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 13243 : PPCISD::FCFID); 13244 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13245 ? MVT::f32 13246 : MVT::f64; 13247 13248 // If we're converting from a float, to an int, and back to a float again, 13249 // then we don't need the store/load pair at all. 13250 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 13251 Subtarget.hasFPCVT()) || 13252 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 13253 SDValue Src = Op.getOperand(0).getOperand(0); 13254 if (Src.getValueType() == MVT::f32) { 13255 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 13256 DCI.AddToWorklist(Src.getNode()); 13257 } else if (Src.getValueType() != MVT::f64) { 13258 // Make sure that we don't pick up a ppc_fp128 source value. 13259 return SDValue(); 13260 } 13261 13262 unsigned FCTOp = 13263 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 13264 PPCISD::FCTIDUZ; 13265 13266 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 13267 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 13268 13269 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 13270 FP = DAG.getNode(ISD::FP_ROUND, dl, 13271 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 13272 DCI.AddToWorklist(FP.getNode()); 13273 } 13274 13275 return FP; 13276 } 13277 13278 return SDValue(); 13279 } 13280 13281 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 13282 // builtins) into loads with swaps. 13283 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 13284 DAGCombinerInfo &DCI) const { 13285 SelectionDAG &DAG = DCI.DAG; 13286 SDLoc dl(N); 13287 SDValue Chain; 13288 SDValue Base; 13289 MachineMemOperand *MMO; 13290 13291 switch (N->getOpcode()) { 13292 default: 13293 llvm_unreachable("Unexpected opcode for little endian VSX load"); 13294 case ISD::LOAD: { 13295 LoadSDNode *LD = cast<LoadSDNode>(N); 13296 Chain = LD->getChain(); 13297 Base = LD->getBasePtr(); 13298 MMO = LD->getMemOperand(); 13299 // If the MMO suggests this isn't a load of a full vector, leave 13300 // things alone. For a built-in, we have to make the change for 13301 // correctness, so if there is a size problem that will be a bug. 13302 if (MMO->getSize() < 16) 13303 return SDValue(); 13304 break; 13305 } 13306 case ISD::INTRINSIC_W_CHAIN: { 13307 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13308 Chain = Intrin->getChain(); 13309 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 13310 // us what we want. Get operand 2 instead. 13311 Base = Intrin->getOperand(2); 13312 MMO = Intrin->getMemOperand(); 13313 break; 13314 } 13315 } 13316 13317 MVT VecTy = N->getValueType(0).getSimpleVT(); 13318 13319 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 13320 // aligned and the type is a vector with elements up to 4 bytes 13321 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 13322 && VecTy.getScalarSizeInBits() <= 32 ) { 13323 return SDValue(); 13324 } 13325 13326 SDValue LoadOps[] = { Chain, Base }; 13327 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 13328 DAG.getVTList(MVT::v2f64, MVT::Other), 13329 LoadOps, MVT::v2f64, MMO); 13330 13331 DCI.AddToWorklist(Load.getNode()); 13332 Chain = Load.getValue(1); 13333 SDValue Swap = DAG.getNode( 13334 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 13335 DCI.AddToWorklist(Swap.getNode()); 13336 13337 // Add a bitcast if the resulting load type doesn't match v2f64. 13338 if (VecTy != MVT::v2f64) { 13339 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 13340 DCI.AddToWorklist(N.getNode()); 13341 // Package {bitcast value, swap's chain} to match Load's shape. 13342 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 13343 N, Swap.getValue(1)); 13344 } 13345 13346 return Swap; 13347 } 13348 13349 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 13350 // builtins) into stores with swaps. 13351 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 13352 DAGCombinerInfo &DCI) const { 13353 SelectionDAG &DAG = DCI.DAG; 13354 SDLoc dl(N); 13355 SDValue Chain; 13356 SDValue Base; 13357 unsigned SrcOpnd; 13358 MachineMemOperand *MMO; 13359 13360 switch (N->getOpcode()) { 13361 default: 13362 llvm_unreachable("Unexpected opcode for little endian VSX store"); 13363 case ISD::STORE: { 13364 StoreSDNode *ST = cast<StoreSDNode>(N); 13365 Chain = ST->getChain(); 13366 Base = ST->getBasePtr(); 13367 MMO = ST->getMemOperand(); 13368 SrcOpnd = 1; 13369 // If the MMO suggests this isn't a store of a full vector, leave 13370 // things alone. For a built-in, we have to make the change for 13371 // correctness, so if there is a size problem that will be a bug. 13372 if (MMO->getSize() < 16) 13373 return SDValue(); 13374 break; 13375 } 13376 case ISD::INTRINSIC_VOID: { 13377 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13378 Chain = Intrin->getChain(); 13379 // Intrin->getBasePtr() oddly does not get what we want. 13380 Base = Intrin->getOperand(3); 13381 MMO = Intrin->getMemOperand(); 13382 SrcOpnd = 2; 13383 break; 13384 } 13385 } 13386 13387 SDValue Src = N->getOperand(SrcOpnd); 13388 MVT VecTy = Src.getValueType().getSimpleVT(); 13389 13390 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 13391 // aligned and the type is a vector with elements up to 4 bytes 13392 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 13393 && VecTy.getScalarSizeInBits() <= 32 ) { 13394 return SDValue(); 13395 } 13396 13397 // All stores are done as v2f64 and possible bit cast. 13398 if (VecTy != MVT::v2f64) { 13399 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 13400 DCI.AddToWorklist(Src.getNode()); 13401 } 13402 13403 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 13404 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 13405 DCI.AddToWorklist(Swap.getNode()); 13406 Chain = Swap.getValue(1); 13407 SDValue StoreOps[] = { Chain, Swap, Base }; 13408 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 13409 DAG.getVTList(MVT::Other), 13410 StoreOps, VecTy, MMO); 13411 DCI.AddToWorklist(Store.getNode()); 13412 return Store; 13413 } 13414 13415 // Handle DAG combine for STORE (FP_TO_INT F). 13416 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 13417 DAGCombinerInfo &DCI) const { 13418 13419 SelectionDAG &DAG = DCI.DAG; 13420 SDLoc dl(N); 13421 unsigned Opcode = N->getOperand(1).getOpcode(); 13422 13423 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 13424 && "Not a FP_TO_INT Instruction!"); 13425 13426 SDValue Val = N->getOperand(1).getOperand(0); 13427 EVT Op1VT = N->getOperand(1).getValueType(); 13428 EVT ResVT = Val.getValueType(); 13429 13430 // Floating point types smaller than 32 bits are not legal on Power. 13431 if (ResVT.getScalarSizeInBits() < 32) 13432 return SDValue(); 13433 13434 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 13435 bool ValidTypeForStoreFltAsInt = 13436 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 13437 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 13438 13439 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() || 13440 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 13441 return SDValue(); 13442 13443 // Extend f32 values to f64 13444 if (ResVT.getScalarSizeInBits() == 32) { 13445 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 13446 DCI.AddToWorklist(Val.getNode()); 13447 } 13448 13449 // Set signed or unsigned conversion opcode. 13450 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 13451 PPCISD::FP_TO_SINT_IN_VSR : 13452 PPCISD::FP_TO_UINT_IN_VSR; 13453 13454 Val = DAG.getNode(ConvOpcode, 13455 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 13456 DCI.AddToWorklist(Val.getNode()); 13457 13458 // Set number of bytes being converted. 13459 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 13460 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 13461 DAG.getIntPtrConstant(ByteSize, dl, false), 13462 DAG.getValueType(Op1VT) }; 13463 13464 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 13465 DAG.getVTList(MVT::Other), Ops, 13466 cast<StoreSDNode>(N)->getMemoryVT(), 13467 cast<StoreSDNode>(N)->getMemOperand()); 13468 13469 DCI.AddToWorklist(Val.getNode()); 13470 return Val; 13471 } 13472 13473 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 13474 LSBaseSDNode *LSBase, 13475 DAGCombinerInfo &DCI) const { 13476 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 13477 "Not a reverse memop pattern!"); 13478 13479 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 13480 auto Mask = SVN->getMask(); 13481 int i = 0; 13482 auto I = Mask.rbegin(); 13483 auto E = Mask.rend(); 13484 13485 for (; I != E; ++I) { 13486 if (*I != i) 13487 return false; 13488 i++; 13489 } 13490 return true; 13491 }; 13492 13493 SelectionDAG &DAG = DCI.DAG; 13494 EVT VT = SVN->getValueType(0); 13495 13496 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 13497 return SDValue(); 13498 13499 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 13500 // See comment in PPCVSXSwapRemoval.cpp. 13501 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 13502 if (!Subtarget.hasP9Vector()) 13503 return SDValue(); 13504 13505 if(!IsElementReverse(SVN)) 13506 return SDValue(); 13507 13508 if (LSBase->getOpcode() == ISD::LOAD) { 13509 SDLoc dl(SVN); 13510 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 13511 return DAG.getMemIntrinsicNode( 13512 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 13513 LSBase->getMemoryVT(), LSBase->getMemOperand()); 13514 } 13515 13516 if (LSBase->getOpcode() == ISD::STORE) { 13517 SDLoc dl(LSBase); 13518 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 13519 LSBase->getBasePtr()}; 13520 return DAG.getMemIntrinsicNode( 13521 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 13522 LSBase->getMemoryVT(), LSBase->getMemOperand()); 13523 } 13524 13525 llvm_unreachable("Expected a load or store node here"); 13526 } 13527 13528 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 13529 DAGCombinerInfo &DCI) const { 13530 SelectionDAG &DAG = DCI.DAG; 13531 SDLoc dl(N); 13532 switch (N->getOpcode()) { 13533 default: break; 13534 case ISD::ADD: 13535 return combineADD(N, DCI); 13536 case ISD::SHL: 13537 return combineSHL(N, DCI); 13538 case ISD::SRA: 13539 return combineSRA(N, DCI); 13540 case ISD::SRL: 13541 return combineSRL(N, DCI); 13542 case ISD::MUL: 13543 return combineMUL(N, DCI); 13544 case PPCISD::SHL: 13545 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 13546 return N->getOperand(0); 13547 break; 13548 case PPCISD::SRL: 13549 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 13550 return N->getOperand(0); 13551 break; 13552 case PPCISD::SRA: 13553 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 13554 if (C->isNullValue() || // 0 >>s V -> 0. 13555 C->isAllOnesValue()) // -1 >>s V -> -1. 13556 return N->getOperand(0); 13557 } 13558 break; 13559 case ISD::SIGN_EXTEND: 13560 case ISD::ZERO_EXTEND: 13561 case ISD::ANY_EXTEND: 13562 return DAGCombineExtBoolTrunc(N, DCI); 13563 case ISD::TRUNCATE: 13564 return combineTRUNCATE(N, DCI); 13565 case ISD::SETCC: 13566 if (SDValue CSCC = combineSetCC(N, DCI)) 13567 return CSCC; 13568 LLVM_FALLTHROUGH; 13569 case ISD::SELECT_CC: 13570 return DAGCombineTruncBoolExt(N, DCI); 13571 case ISD::SINT_TO_FP: 13572 case ISD::UINT_TO_FP: 13573 return combineFPToIntToFP(N, DCI); 13574 case ISD::VECTOR_SHUFFLE: 13575 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 13576 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 13577 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 13578 } 13579 break; 13580 case ISD::STORE: { 13581 13582 EVT Op1VT = N->getOperand(1).getValueType(); 13583 unsigned Opcode = N->getOperand(1).getOpcode(); 13584 13585 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 13586 SDValue Val= combineStoreFPToInt(N, DCI); 13587 if (Val) 13588 return Val; 13589 } 13590 13591 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 13592 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 13593 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 13594 if (Val) 13595 return Val; 13596 } 13597 13598 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 13599 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 13600 N->getOperand(1).getNode()->hasOneUse() && 13601 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 13602 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 13603 13604 // STBRX can only handle simple types and it makes no sense to store less 13605 // two bytes in byte-reversed order. 13606 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 13607 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 13608 break; 13609 13610 SDValue BSwapOp = N->getOperand(1).getOperand(0); 13611 // Do an any-extend to 32-bits if this is a half-word input. 13612 if (BSwapOp.getValueType() == MVT::i16) 13613 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 13614 13615 // If the type of BSWAP operand is wider than stored memory width 13616 // it need to be shifted to the right side before STBRX. 13617 if (Op1VT.bitsGT(mVT)) { 13618 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 13619 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 13620 DAG.getConstant(Shift, dl, MVT::i32)); 13621 // Need to truncate if this is a bswap of i64 stored as i32/i16. 13622 if (Op1VT == MVT::i64) 13623 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 13624 } 13625 13626 SDValue Ops[] = { 13627 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 13628 }; 13629 return 13630 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 13631 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 13632 cast<StoreSDNode>(N)->getMemOperand()); 13633 } 13634 13635 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 13636 // So it can increase the chance of CSE constant construction. 13637 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 13638 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 13639 // Need to sign-extended to 64-bits to handle negative values. 13640 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 13641 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 13642 MemVT.getSizeInBits()); 13643 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 13644 13645 // DAG.getTruncStore() can't be used here because it doesn't accept 13646 // the general (base + offset) addressing mode. 13647 // So we use UpdateNodeOperands and setTruncatingStore instead. 13648 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 13649 N->getOperand(3)); 13650 cast<StoreSDNode>(N)->setTruncatingStore(true); 13651 return SDValue(N, 0); 13652 } 13653 13654 // For little endian, VSX stores require generating xxswapd/lxvd2x. 13655 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 13656 if (Op1VT.isSimple()) { 13657 MVT StoreVT = Op1VT.getSimpleVT(); 13658 if (Subtarget.needsSwapsForVSXMemOps() && 13659 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 13660 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 13661 return expandVSXStoreForLE(N, DCI); 13662 } 13663 break; 13664 } 13665 case ISD::LOAD: { 13666 LoadSDNode *LD = cast<LoadSDNode>(N); 13667 EVT VT = LD->getValueType(0); 13668 13669 // For little endian, VSX loads require generating lxvd2x/xxswapd. 13670 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 13671 if (VT.isSimple()) { 13672 MVT LoadVT = VT.getSimpleVT(); 13673 if (Subtarget.needsSwapsForVSXMemOps() && 13674 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 13675 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 13676 return expandVSXLoadForLE(N, DCI); 13677 } 13678 13679 // We sometimes end up with a 64-bit integer load, from which we extract 13680 // two single-precision floating-point numbers. This happens with 13681 // std::complex<float>, and other similar structures, because of the way we 13682 // canonicalize structure copies. However, if we lack direct moves, 13683 // then the final bitcasts from the extracted integer values to the 13684 // floating-point numbers turn into store/load pairs. Even with direct moves, 13685 // just loading the two floating-point numbers is likely better. 13686 auto ReplaceTwoFloatLoad = [&]() { 13687 if (VT != MVT::i64) 13688 return false; 13689 13690 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 13691 LD->isVolatile()) 13692 return false; 13693 13694 // We're looking for a sequence like this: 13695 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 13696 // t16: i64 = srl t13, Constant:i32<32> 13697 // t17: i32 = truncate t16 13698 // t18: f32 = bitcast t17 13699 // t19: i32 = truncate t13 13700 // t20: f32 = bitcast t19 13701 13702 if (!LD->hasNUsesOfValue(2, 0)) 13703 return false; 13704 13705 auto UI = LD->use_begin(); 13706 while (UI.getUse().getResNo() != 0) ++UI; 13707 SDNode *Trunc = *UI++; 13708 while (UI.getUse().getResNo() != 0) ++UI; 13709 SDNode *RightShift = *UI; 13710 if (Trunc->getOpcode() != ISD::TRUNCATE) 13711 std::swap(Trunc, RightShift); 13712 13713 if (Trunc->getOpcode() != ISD::TRUNCATE || 13714 Trunc->getValueType(0) != MVT::i32 || 13715 !Trunc->hasOneUse()) 13716 return false; 13717 if (RightShift->getOpcode() != ISD::SRL || 13718 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 13719 RightShift->getConstantOperandVal(1) != 32 || 13720 !RightShift->hasOneUse()) 13721 return false; 13722 13723 SDNode *Trunc2 = *RightShift->use_begin(); 13724 if (Trunc2->getOpcode() != ISD::TRUNCATE || 13725 Trunc2->getValueType(0) != MVT::i32 || 13726 !Trunc2->hasOneUse()) 13727 return false; 13728 13729 SDNode *Bitcast = *Trunc->use_begin(); 13730 SDNode *Bitcast2 = *Trunc2->use_begin(); 13731 13732 if (Bitcast->getOpcode() != ISD::BITCAST || 13733 Bitcast->getValueType(0) != MVT::f32) 13734 return false; 13735 if (Bitcast2->getOpcode() != ISD::BITCAST || 13736 Bitcast2->getValueType(0) != MVT::f32) 13737 return false; 13738 13739 if (Subtarget.isLittleEndian()) 13740 std::swap(Bitcast, Bitcast2); 13741 13742 // Bitcast has the second float (in memory-layout order) and Bitcast2 13743 // has the first one. 13744 13745 SDValue BasePtr = LD->getBasePtr(); 13746 if (LD->isIndexed()) { 13747 assert(LD->getAddressingMode() == ISD::PRE_INC && 13748 "Non-pre-inc AM on PPC?"); 13749 BasePtr = 13750 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 13751 LD->getOffset()); 13752 } 13753 13754 auto MMOFlags = 13755 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 13756 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 13757 LD->getPointerInfo(), LD->getAlignment(), 13758 MMOFlags, LD->getAAInfo()); 13759 SDValue AddPtr = 13760 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 13761 BasePtr, DAG.getIntPtrConstant(4, dl)); 13762 SDValue FloatLoad2 = DAG.getLoad( 13763 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 13764 LD->getPointerInfo().getWithOffset(4), 13765 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 13766 13767 if (LD->isIndexed()) { 13768 // Note that DAGCombine should re-form any pre-increment load(s) from 13769 // what is produced here if that makes sense. 13770 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 13771 } 13772 13773 DCI.CombineTo(Bitcast2, FloatLoad); 13774 DCI.CombineTo(Bitcast, FloatLoad2); 13775 13776 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 13777 SDValue(FloatLoad2.getNode(), 1)); 13778 return true; 13779 }; 13780 13781 if (ReplaceTwoFloatLoad()) 13782 return SDValue(N, 0); 13783 13784 EVT MemVT = LD->getMemoryVT(); 13785 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 13786 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 13787 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 13788 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 13789 if (LD->isUnindexed() && VT.isVector() && 13790 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 13791 // P8 and later hardware should just use LOAD. 13792 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 13793 VT == MVT::v4i32 || VT == MVT::v4f32)) || 13794 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 13795 LD->getAlignment() >= ScalarABIAlignment)) && 13796 LD->getAlignment() < ABIAlignment) { 13797 // This is a type-legal unaligned Altivec or QPX load. 13798 SDValue Chain = LD->getChain(); 13799 SDValue Ptr = LD->getBasePtr(); 13800 bool isLittleEndian = Subtarget.isLittleEndian(); 13801 13802 // This implements the loading of unaligned vectors as described in 13803 // the venerable Apple Velocity Engine overview. Specifically: 13804 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 13805 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 13806 // 13807 // The general idea is to expand a sequence of one or more unaligned 13808 // loads into an alignment-based permutation-control instruction (lvsl 13809 // or lvsr), a series of regular vector loads (which always truncate 13810 // their input address to an aligned address), and a series of 13811 // permutations. The results of these permutations are the requested 13812 // loaded values. The trick is that the last "extra" load is not taken 13813 // from the address you might suspect (sizeof(vector) bytes after the 13814 // last requested load), but rather sizeof(vector) - 1 bytes after the 13815 // last requested vector. The point of this is to avoid a page fault if 13816 // the base address happened to be aligned. This works because if the 13817 // base address is aligned, then adding less than a full vector length 13818 // will cause the last vector in the sequence to be (re)loaded. 13819 // Otherwise, the next vector will be fetched as you might suspect was 13820 // necessary. 13821 13822 // We might be able to reuse the permutation generation from 13823 // a different base address offset from this one by an aligned amount. 13824 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 13825 // optimization later. 13826 Intrinsic::ID Intr, IntrLD, IntrPerm; 13827 MVT PermCntlTy, PermTy, LDTy; 13828 if (Subtarget.hasAltivec()) { 13829 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 13830 Intrinsic::ppc_altivec_lvsl; 13831 IntrLD = Intrinsic::ppc_altivec_lvx; 13832 IntrPerm = Intrinsic::ppc_altivec_vperm; 13833 PermCntlTy = MVT::v16i8; 13834 PermTy = MVT::v4i32; 13835 LDTy = MVT::v4i32; 13836 } else { 13837 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 13838 Intrinsic::ppc_qpx_qvlpcls; 13839 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 13840 Intrinsic::ppc_qpx_qvlfs; 13841 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 13842 PermCntlTy = MVT::v4f64; 13843 PermTy = MVT::v4f64; 13844 LDTy = MemVT.getSimpleVT(); 13845 } 13846 13847 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 13848 13849 // Create the new MMO for the new base load. It is like the original MMO, 13850 // but represents an area in memory almost twice the vector size centered 13851 // on the original address. If the address is unaligned, we might start 13852 // reading up to (sizeof(vector)-1) bytes below the address of the 13853 // original unaligned load. 13854 MachineFunction &MF = DAG.getMachineFunction(); 13855 MachineMemOperand *BaseMMO = 13856 MF.getMachineMemOperand(LD->getMemOperand(), 13857 -(long)MemVT.getStoreSize()+1, 13858 2*MemVT.getStoreSize()-1); 13859 13860 // Create the new base load. 13861 SDValue LDXIntID = 13862 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 13863 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 13864 SDValue BaseLoad = 13865 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 13866 DAG.getVTList(PermTy, MVT::Other), 13867 BaseLoadOps, LDTy, BaseMMO); 13868 13869 // Note that the value of IncOffset (which is provided to the next 13870 // load's pointer info offset value, and thus used to calculate the 13871 // alignment), and the value of IncValue (which is actually used to 13872 // increment the pointer value) are different! This is because we 13873 // require the next load to appear to be aligned, even though it 13874 // is actually offset from the base pointer by a lesser amount. 13875 int IncOffset = VT.getSizeInBits() / 8; 13876 int IncValue = IncOffset; 13877 13878 // Walk (both up and down) the chain looking for another load at the real 13879 // (aligned) offset (the alignment of the other load does not matter in 13880 // this case). If found, then do not use the offset reduction trick, as 13881 // that will prevent the loads from being later combined (as they would 13882 // otherwise be duplicates). 13883 if (!findConsecutiveLoad(LD, DAG)) 13884 --IncValue; 13885 13886 SDValue Increment = 13887 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 13888 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 13889 13890 MachineMemOperand *ExtraMMO = 13891 MF.getMachineMemOperand(LD->getMemOperand(), 13892 1, 2*MemVT.getStoreSize()-1); 13893 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 13894 SDValue ExtraLoad = 13895 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 13896 DAG.getVTList(PermTy, MVT::Other), 13897 ExtraLoadOps, LDTy, ExtraMMO); 13898 13899 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 13900 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 13901 13902 // Because vperm has a big-endian bias, we must reverse the order 13903 // of the input vectors and complement the permute control vector 13904 // when generating little endian code. We have already handled the 13905 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 13906 // and ExtraLoad here. 13907 SDValue Perm; 13908 if (isLittleEndian) 13909 Perm = BuildIntrinsicOp(IntrPerm, 13910 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 13911 else 13912 Perm = BuildIntrinsicOp(IntrPerm, 13913 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 13914 13915 if (VT != PermTy) 13916 Perm = Subtarget.hasAltivec() ? 13917 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 13918 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 13919 DAG.getTargetConstant(1, dl, MVT::i64)); 13920 // second argument is 1 because this rounding 13921 // is always exact. 13922 13923 // The output of the permutation is our loaded result, the TokenFactor is 13924 // our new chain. 13925 DCI.CombineTo(N, Perm, TF); 13926 return SDValue(N, 0); 13927 } 13928 } 13929 break; 13930 case ISD::INTRINSIC_WO_CHAIN: { 13931 bool isLittleEndian = Subtarget.isLittleEndian(); 13932 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 13933 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 13934 : Intrinsic::ppc_altivec_lvsl); 13935 if ((IID == Intr || 13936 IID == Intrinsic::ppc_qpx_qvlpcld || 13937 IID == Intrinsic::ppc_qpx_qvlpcls) && 13938 N->getOperand(1)->getOpcode() == ISD::ADD) { 13939 SDValue Add = N->getOperand(1); 13940 13941 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 13942 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 13943 13944 if (DAG.MaskedValueIsZero(Add->getOperand(1), 13945 APInt::getAllOnesValue(Bits /* alignment */) 13946 .zext(Add.getScalarValueSizeInBits()))) { 13947 SDNode *BasePtr = Add->getOperand(0).getNode(); 13948 for (SDNode::use_iterator UI = BasePtr->use_begin(), 13949 UE = BasePtr->use_end(); 13950 UI != UE; ++UI) { 13951 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13952 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 13953 // We've found another LVSL/LVSR, and this address is an aligned 13954 // multiple of that one. The results will be the same, so use the 13955 // one we've just found instead. 13956 13957 return SDValue(*UI, 0); 13958 } 13959 } 13960 } 13961 13962 if (isa<ConstantSDNode>(Add->getOperand(1))) { 13963 SDNode *BasePtr = Add->getOperand(0).getNode(); 13964 for (SDNode::use_iterator UI = BasePtr->use_begin(), 13965 UE = BasePtr->use_end(); UI != UE; ++UI) { 13966 if (UI->getOpcode() == ISD::ADD && 13967 isa<ConstantSDNode>(UI->getOperand(1)) && 13968 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 13969 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 13970 (1ULL << Bits) == 0) { 13971 SDNode *OtherAdd = *UI; 13972 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 13973 VE = OtherAdd->use_end(); VI != VE; ++VI) { 13974 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13975 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 13976 return SDValue(*VI, 0); 13977 } 13978 } 13979 } 13980 } 13981 } 13982 } 13983 13984 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 13985 // Expose the vabsduw/h/b opportunity for down stream 13986 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 13987 (IID == Intrinsic::ppc_altivec_vmaxsw || 13988 IID == Intrinsic::ppc_altivec_vmaxsh || 13989 IID == Intrinsic::ppc_altivec_vmaxsb)) { 13990 SDValue V1 = N->getOperand(1); 13991 SDValue V2 = N->getOperand(2); 13992 if ((V1.getSimpleValueType() == MVT::v4i32 || 13993 V1.getSimpleValueType() == MVT::v8i16 || 13994 V1.getSimpleValueType() == MVT::v16i8) && 13995 V1.getSimpleValueType() == V2.getSimpleValueType()) { 13996 // (0-a, a) 13997 if (V1.getOpcode() == ISD::SUB && 13998 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 13999 V1.getOperand(1) == V2) { 14000 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 14001 } 14002 // (a, 0-a) 14003 if (V2.getOpcode() == ISD::SUB && 14004 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 14005 V2.getOperand(1) == V1) { 14006 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14007 } 14008 // (x-y, y-x) 14009 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 14010 V1.getOperand(0) == V2.getOperand(1) && 14011 V1.getOperand(1) == V2.getOperand(0)) { 14012 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14013 } 14014 } 14015 } 14016 } 14017 14018 break; 14019 case ISD::INTRINSIC_W_CHAIN: 14020 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14021 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14022 if (Subtarget.needsSwapsForVSXMemOps()) { 14023 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14024 default: 14025 break; 14026 case Intrinsic::ppc_vsx_lxvw4x: 14027 case Intrinsic::ppc_vsx_lxvd2x: 14028 return expandVSXLoadForLE(N, DCI); 14029 } 14030 } 14031 break; 14032 case ISD::INTRINSIC_VOID: 14033 // For little endian, VSX stores require generating xxswapd/stxvd2x. 14034 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14035 if (Subtarget.needsSwapsForVSXMemOps()) { 14036 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14037 default: 14038 break; 14039 case Intrinsic::ppc_vsx_stxvw4x: 14040 case Intrinsic::ppc_vsx_stxvd2x: 14041 return expandVSXStoreForLE(N, DCI); 14042 } 14043 } 14044 break; 14045 case ISD::BSWAP: 14046 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 14047 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 14048 N->getOperand(0).hasOneUse() && 14049 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 14050 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 14051 N->getValueType(0) == MVT::i64))) { 14052 SDValue Load = N->getOperand(0); 14053 LoadSDNode *LD = cast<LoadSDNode>(Load); 14054 // Create the byte-swapping load. 14055 SDValue Ops[] = { 14056 LD->getChain(), // Chain 14057 LD->getBasePtr(), // Ptr 14058 DAG.getValueType(N->getValueType(0)) // VT 14059 }; 14060 SDValue BSLoad = 14061 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 14062 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 14063 MVT::i64 : MVT::i32, MVT::Other), 14064 Ops, LD->getMemoryVT(), LD->getMemOperand()); 14065 14066 // If this is an i16 load, insert the truncate. 14067 SDValue ResVal = BSLoad; 14068 if (N->getValueType(0) == MVT::i16) 14069 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 14070 14071 // First, combine the bswap away. This makes the value produced by the 14072 // load dead. 14073 DCI.CombineTo(N, ResVal); 14074 14075 // Next, combine the load away, we give it a bogus result value but a real 14076 // chain result. The result value is dead because the bswap is dead. 14077 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 14078 14079 // Return N so it doesn't get rechecked! 14080 return SDValue(N, 0); 14081 } 14082 break; 14083 case PPCISD::VCMP: 14084 // If a VCMPo node already exists with exactly the same operands as this 14085 // node, use its result instead of this node (VCMPo computes both a CR6 and 14086 // a normal output). 14087 // 14088 if (!N->getOperand(0).hasOneUse() && 14089 !N->getOperand(1).hasOneUse() && 14090 !N->getOperand(2).hasOneUse()) { 14091 14092 // Scan all of the users of the LHS, looking for VCMPo's that match. 14093 SDNode *VCMPoNode = nullptr; 14094 14095 SDNode *LHSN = N->getOperand(0).getNode(); 14096 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 14097 UI != E; ++UI) 14098 if (UI->getOpcode() == PPCISD::VCMPo && 14099 UI->getOperand(1) == N->getOperand(1) && 14100 UI->getOperand(2) == N->getOperand(2) && 14101 UI->getOperand(0) == N->getOperand(0)) { 14102 VCMPoNode = *UI; 14103 break; 14104 } 14105 14106 // If there is no VCMPo node, or if the flag value has a single use, don't 14107 // transform this. 14108 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 14109 break; 14110 14111 // Look at the (necessarily single) use of the flag value. If it has a 14112 // chain, this transformation is more complex. Note that multiple things 14113 // could use the value result, which we should ignore. 14114 SDNode *FlagUser = nullptr; 14115 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 14116 FlagUser == nullptr; ++UI) { 14117 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 14118 SDNode *User = *UI; 14119 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 14120 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 14121 FlagUser = User; 14122 break; 14123 } 14124 } 14125 } 14126 14127 // If the user is a MFOCRF instruction, we know this is safe. 14128 // Otherwise we give up for right now. 14129 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 14130 return SDValue(VCMPoNode, 0); 14131 } 14132 break; 14133 case ISD::BRCOND: { 14134 SDValue Cond = N->getOperand(1); 14135 SDValue Target = N->getOperand(2); 14136 14137 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14138 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 14139 Intrinsic::loop_decrement) { 14140 14141 // We now need to make the intrinsic dead (it cannot be instruction 14142 // selected). 14143 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 14144 assert(Cond.getNode()->hasOneUse() && 14145 "Counter decrement has more than one use"); 14146 14147 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 14148 N->getOperand(0), Target); 14149 } 14150 } 14151 break; 14152 case ISD::BR_CC: { 14153 // If this is a branch on an altivec predicate comparison, lower this so 14154 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 14155 // lowering is done pre-legalize, because the legalizer lowers the predicate 14156 // compare down to code that is difficult to reassemble. 14157 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 14158 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 14159 14160 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 14161 // value. If so, pass-through the AND to get to the intrinsic. 14162 if (LHS.getOpcode() == ISD::AND && 14163 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 14164 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 14165 Intrinsic::loop_decrement && 14166 isa<ConstantSDNode>(LHS.getOperand(1)) && 14167 !isNullConstant(LHS.getOperand(1))) 14168 LHS = LHS.getOperand(0); 14169 14170 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14171 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 14172 Intrinsic::loop_decrement && 14173 isa<ConstantSDNode>(RHS)) { 14174 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 14175 "Counter decrement comparison is not EQ or NE"); 14176 14177 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14178 bool isBDNZ = (CC == ISD::SETEQ && Val) || 14179 (CC == ISD::SETNE && !Val); 14180 14181 // We now need to make the intrinsic dead (it cannot be instruction 14182 // selected). 14183 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 14184 assert(LHS.getNode()->hasOneUse() && 14185 "Counter decrement has more than one use"); 14186 14187 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 14188 N->getOperand(0), N->getOperand(4)); 14189 } 14190 14191 int CompareOpc; 14192 bool isDot; 14193 14194 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14195 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 14196 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 14197 assert(isDot && "Can't compare against a vector result!"); 14198 14199 // If this is a comparison against something other than 0/1, then we know 14200 // that the condition is never/always true. 14201 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14202 if (Val != 0 && Val != 1) { 14203 if (CC == ISD::SETEQ) // Cond never true, remove branch. 14204 return N->getOperand(0); 14205 // Always !=, turn it into an unconditional branch. 14206 return DAG.getNode(ISD::BR, dl, MVT::Other, 14207 N->getOperand(0), N->getOperand(4)); 14208 } 14209 14210 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 14211 14212 // Create the PPCISD altivec 'dot' comparison node. 14213 SDValue Ops[] = { 14214 LHS.getOperand(2), // LHS of compare 14215 LHS.getOperand(3), // RHS of compare 14216 DAG.getConstant(CompareOpc, dl, MVT::i32) 14217 }; 14218 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 14219 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 14220 14221 // Unpack the result based on how the target uses it. 14222 PPC::Predicate CompOpc; 14223 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 14224 default: // Can't happen, don't crash on invalid number though. 14225 case 0: // Branch on the value of the EQ bit of CR6. 14226 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 14227 break; 14228 case 1: // Branch on the inverted value of the EQ bit of CR6. 14229 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 14230 break; 14231 case 2: // Branch on the value of the LT bit of CR6. 14232 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 14233 break; 14234 case 3: // Branch on the inverted value of the LT bit of CR6. 14235 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 14236 break; 14237 } 14238 14239 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 14240 DAG.getConstant(CompOpc, dl, MVT::i32), 14241 DAG.getRegister(PPC::CR6, MVT::i32), 14242 N->getOperand(4), CompNode.getValue(1)); 14243 } 14244 break; 14245 } 14246 case ISD::BUILD_VECTOR: 14247 return DAGCombineBuildVector(N, DCI); 14248 case ISD::ABS: 14249 return combineABS(N, DCI); 14250 case ISD::VSELECT: 14251 return combineVSelect(N, DCI); 14252 } 14253 14254 return SDValue(); 14255 } 14256 14257 SDValue 14258 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 14259 SelectionDAG &DAG, 14260 SmallVectorImpl<SDNode *> &Created) const { 14261 // fold (sdiv X, pow2) 14262 EVT VT = N->getValueType(0); 14263 if (VT == MVT::i64 && !Subtarget.isPPC64()) 14264 return SDValue(); 14265 if ((VT != MVT::i32 && VT != MVT::i64) || 14266 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 14267 return SDValue(); 14268 14269 SDLoc DL(N); 14270 SDValue N0 = N->getOperand(0); 14271 14272 bool IsNegPow2 = (-Divisor).isPowerOf2(); 14273 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 14274 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 14275 14276 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 14277 Created.push_back(Op.getNode()); 14278 14279 if (IsNegPow2) { 14280 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 14281 Created.push_back(Op.getNode()); 14282 } 14283 14284 return Op; 14285 } 14286 14287 //===----------------------------------------------------------------------===// 14288 // Inline Assembly Support 14289 //===----------------------------------------------------------------------===// 14290 14291 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 14292 KnownBits &Known, 14293 const APInt &DemandedElts, 14294 const SelectionDAG &DAG, 14295 unsigned Depth) const { 14296 Known.resetAll(); 14297 switch (Op.getOpcode()) { 14298 default: break; 14299 case PPCISD::LBRX: { 14300 // lhbrx is known to have the top bits cleared out. 14301 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 14302 Known.Zero = 0xFFFF0000; 14303 break; 14304 } 14305 case ISD::INTRINSIC_WO_CHAIN: { 14306 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 14307 default: break; 14308 case Intrinsic::ppc_altivec_vcmpbfp_p: 14309 case Intrinsic::ppc_altivec_vcmpeqfp_p: 14310 case Intrinsic::ppc_altivec_vcmpequb_p: 14311 case Intrinsic::ppc_altivec_vcmpequh_p: 14312 case Intrinsic::ppc_altivec_vcmpequw_p: 14313 case Intrinsic::ppc_altivec_vcmpequd_p: 14314 case Intrinsic::ppc_altivec_vcmpgefp_p: 14315 case Intrinsic::ppc_altivec_vcmpgtfp_p: 14316 case Intrinsic::ppc_altivec_vcmpgtsb_p: 14317 case Intrinsic::ppc_altivec_vcmpgtsh_p: 14318 case Intrinsic::ppc_altivec_vcmpgtsw_p: 14319 case Intrinsic::ppc_altivec_vcmpgtsd_p: 14320 case Intrinsic::ppc_altivec_vcmpgtub_p: 14321 case Intrinsic::ppc_altivec_vcmpgtuh_p: 14322 case Intrinsic::ppc_altivec_vcmpgtuw_p: 14323 case Intrinsic::ppc_altivec_vcmpgtud_p: 14324 Known.Zero = ~1U; // All bits but the low one are known to be zero. 14325 break; 14326 } 14327 } 14328 } 14329 } 14330 14331 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 14332 switch (Subtarget.getCPUDirective()) { 14333 default: break; 14334 case PPC::DIR_970: 14335 case PPC::DIR_PWR4: 14336 case PPC::DIR_PWR5: 14337 case PPC::DIR_PWR5X: 14338 case PPC::DIR_PWR6: 14339 case PPC::DIR_PWR6X: 14340 case PPC::DIR_PWR7: 14341 case PPC::DIR_PWR8: 14342 case PPC::DIR_PWR9: 14343 case PPC::DIR_PWR_FUTURE: { 14344 if (!ML) 14345 break; 14346 14347 if (!DisableInnermostLoopAlign32) { 14348 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 14349 // so that we can decrease cache misses and branch-prediction misses. 14350 // Actual alignment of the loop will depend on the hotness check and other 14351 // logic in alignBlocks. 14352 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 14353 return Align(32); 14354 } 14355 14356 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 14357 14358 // For small loops (between 5 and 8 instructions), align to a 32-byte 14359 // boundary so that the entire loop fits in one instruction-cache line. 14360 uint64_t LoopSize = 0; 14361 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 14362 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 14363 LoopSize += TII->getInstSizeInBytes(*J); 14364 if (LoopSize > 32) 14365 break; 14366 } 14367 14368 if (LoopSize > 16 && LoopSize <= 32) 14369 return Align(32); 14370 14371 break; 14372 } 14373 } 14374 14375 return TargetLowering::getPrefLoopAlignment(ML); 14376 } 14377 14378 /// getConstraintType - Given a constraint, return the type of 14379 /// constraint it is for this target. 14380 PPCTargetLowering::ConstraintType 14381 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 14382 if (Constraint.size() == 1) { 14383 switch (Constraint[0]) { 14384 default: break; 14385 case 'b': 14386 case 'r': 14387 case 'f': 14388 case 'd': 14389 case 'v': 14390 case 'y': 14391 return C_RegisterClass; 14392 case 'Z': 14393 // FIXME: While Z does indicate a memory constraint, it specifically 14394 // indicates an r+r address (used in conjunction with the 'y' modifier 14395 // in the replacement string). Currently, we're forcing the base 14396 // register to be r0 in the asm printer (which is interpreted as zero) 14397 // and forming the complete address in the second register. This is 14398 // suboptimal. 14399 return C_Memory; 14400 } 14401 } else if (Constraint == "wc") { // individual CR bits. 14402 return C_RegisterClass; 14403 } else if (Constraint == "wa" || Constraint == "wd" || 14404 Constraint == "wf" || Constraint == "ws" || 14405 Constraint == "wi" || Constraint == "ww") { 14406 return C_RegisterClass; // VSX registers. 14407 } 14408 return TargetLowering::getConstraintType(Constraint); 14409 } 14410 14411 /// Examine constraint type and operand type and determine a weight value. 14412 /// This object must already have been set up with the operand type 14413 /// and the current alternative constraint selected. 14414 TargetLowering::ConstraintWeight 14415 PPCTargetLowering::getSingleConstraintMatchWeight( 14416 AsmOperandInfo &info, const char *constraint) const { 14417 ConstraintWeight weight = CW_Invalid; 14418 Value *CallOperandVal = info.CallOperandVal; 14419 // If we don't have a value, we can't do a match, 14420 // but allow it at the lowest weight. 14421 if (!CallOperandVal) 14422 return CW_Default; 14423 Type *type = CallOperandVal->getType(); 14424 14425 // Look at the constraint type. 14426 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 14427 return CW_Register; // an individual CR bit. 14428 else if ((StringRef(constraint) == "wa" || 14429 StringRef(constraint) == "wd" || 14430 StringRef(constraint) == "wf") && 14431 type->isVectorTy()) 14432 return CW_Register; 14433 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 14434 return CW_Register; // just hold 64-bit integers data. 14435 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 14436 return CW_Register; 14437 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 14438 return CW_Register; 14439 14440 switch (*constraint) { 14441 default: 14442 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 14443 break; 14444 case 'b': 14445 if (type->isIntegerTy()) 14446 weight = CW_Register; 14447 break; 14448 case 'f': 14449 if (type->isFloatTy()) 14450 weight = CW_Register; 14451 break; 14452 case 'd': 14453 if (type->isDoubleTy()) 14454 weight = CW_Register; 14455 break; 14456 case 'v': 14457 if (type->isVectorTy()) 14458 weight = CW_Register; 14459 break; 14460 case 'y': 14461 weight = CW_Register; 14462 break; 14463 case 'Z': 14464 weight = CW_Memory; 14465 break; 14466 } 14467 return weight; 14468 } 14469 14470 std::pair<unsigned, const TargetRegisterClass *> 14471 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 14472 StringRef Constraint, 14473 MVT VT) const { 14474 if (Constraint.size() == 1) { 14475 // GCC RS6000 Constraint Letters 14476 switch (Constraint[0]) { 14477 case 'b': // R1-R31 14478 if (VT == MVT::i64 && Subtarget.isPPC64()) 14479 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 14480 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 14481 case 'r': // R0-R31 14482 if (VT == MVT::i64 && Subtarget.isPPC64()) 14483 return std::make_pair(0U, &PPC::G8RCRegClass); 14484 return std::make_pair(0U, &PPC::GPRCRegClass); 14485 // 'd' and 'f' constraints are both defined to be "the floating point 14486 // registers", where one is for 32-bit and the other for 64-bit. We don't 14487 // really care overly much here so just give them all the same reg classes. 14488 case 'd': 14489 case 'f': 14490 if (Subtarget.hasSPE()) { 14491 if (VT == MVT::f32 || VT == MVT::i32) 14492 return std::make_pair(0U, &PPC::GPRCRegClass); 14493 if (VT == MVT::f64 || VT == MVT::i64) 14494 return std::make_pair(0U, &PPC::SPERCRegClass); 14495 } else { 14496 if (VT == MVT::f32 || VT == MVT::i32) 14497 return std::make_pair(0U, &PPC::F4RCRegClass); 14498 if (VT == MVT::f64 || VT == MVT::i64) 14499 return std::make_pair(0U, &PPC::F8RCRegClass); 14500 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 14501 return std::make_pair(0U, &PPC::QFRCRegClass); 14502 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 14503 return std::make_pair(0U, &PPC::QSRCRegClass); 14504 } 14505 break; 14506 case 'v': 14507 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 14508 return std::make_pair(0U, &PPC::QFRCRegClass); 14509 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 14510 return std::make_pair(0U, &PPC::QSRCRegClass); 14511 if (Subtarget.hasAltivec()) 14512 return std::make_pair(0U, &PPC::VRRCRegClass); 14513 break; 14514 case 'y': // crrc 14515 return std::make_pair(0U, &PPC::CRRCRegClass); 14516 } 14517 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 14518 // An individual CR bit. 14519 return std::make_pair(0U, &PPC::CRBITRCRegClass); 14520 } else if ((Constraint == "wa" || Constraint == "wd" || 14521 Constraint == "wf" || Constraint == "wi") && 14522 Subtarget.hasVSX()) { 14523 return std::make_pair(0U, &PPC::VSRCRegClass); 14524 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 14525 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 14526 return std::make_pair(0U, &PPC::VSSRCRegClass); 14527 else 14528 return std::make_pair(0U, &PPC::VSFRCRegClass); 14529 } 14530 14531 // If we name a VSX register, we can't defer to the base class because it 14532 // will not recognize the correct register (their names will be VSL{0-31} 14533 // and V{0-31} so they won't match). So we match them here. 14534 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 14535 int VSNum = atoi(Constraint.data() + 3); 14536 assert(VSNum >= 0 && VSNum <= 63 && 14537 "Attempted to access a vsr out of range"); 14538 if (VSNum < 32) 14539 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 14540 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 14541 } 14542 std::pair<unsigned, const TargetRegisterClass *> R = 14543 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 14544 14545 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 14546 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 14547 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 14548 // register. 14549 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 14550 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 14551 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 14552 PPC::GPRCRegClass.contains(R.first)) 14553 return std::make_pair(TRI->getMatchingSuperReg(R.first, 14554 PPC::sub_32, &PPC::G8RCRegClass), 14555 &PPC::G8RCRegClass); 14556 14557 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 14558 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 14559 R.first = PPC::CR0; 14560 R.second = &PPC::CRRCRegClass; 14561 } 14562 14563 return R; 14564 } 14565 14566 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 14567 /// vector. If it is invalid, don't add anything to Ops. 14568 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 14569 std::string &Constraint, 14570 std::vector<SDValue>&Ops, 14571 SelectionDAG &DAG) const { 14572 SDValue Result; 14573 14574 // Only support length 1 constraints. 14575 if (Constraint.length() > 1) return; 14576 14577 char Letter = Constraint[0]; 14578 switch (Letter) { 14579 default: break; 14580 case 'I': 14581 case 'J': 14582 case 'K': 14583 case 'L': 14584 case 'M': 14585 case 'N': 14586 case 'O': 14587 case 'P': { 14588 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 14589 if (!CST) return; // Must be an immediate to match. 14590 SDLoc dl(Op); 14591 int64_t Value = CST->getSExtValue(); 14592 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 14593 // numbers are printed as such. 14594 switch (Letter) { 14595 default: llvm_unreachable("Unknown constraint letter!"); 14596 case 'I': // "I" is a signed 16-bit constant. 14597 if (isInt<16>(Value)) 14598 Result = DAG.getTargetConstant(Value, dl, TCVT); 14599 break; 14600 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 14601 if (isShiftedUInt<16, 16>(Value)) 14602 Result = DAG.getTargetConstant(Value, dl, TCVT); 14603 break; 14604 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 14605 if (isShiftedInt<16, 16>(Value)) 14606 Result = DAG.getTargetConstant(Value, dl, TCVT); 14607 break; 14608 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 14609 if (isUInt<16>(Value)) 14610 Result = DAG.getTargetConstant(Value, dl, TCVT); 14611 break; 14612 case 'M': // "M" is a constant that is greater than 31. 14613 if (Value > 31) 14614 Result = DAG.getTargetConstant(Value, dl, TCVT); 14615 break; 14616 case 'N': // "N" is a positive constant that is an exact power of two. 14617 if (Value > 0 && isPowerOf2_64(Value)) 14618 Result = DAG.getTargetConstant(Value, dl, TCVT); 14619 break; 14620 case 'O': // "O" is the constant zero. 14621 if (Value == 0) 14622 Result = DAG.getTargetConstant(Value, dl, TCVT); 14623 break; 14624 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 14625 if (isInt<16>(-Value)) 14626 Result = DAG.getTargetConstant(Value, dl, TCVT); 14627 break; 14628 } 14629 break; 14630 } 14631 } 14632 14633 if (Result.getNode()) { 14634 Ops.push_back(Result); 14635 return; 14636 } 14637 14638 // Handle standard constraint letters. 14639 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 14640 } 14641 14642 // isLegalAddressingMode - Return true if the addressing mode represented 14643 // by AM is legal for this target, for a load/store of the specified type. 14644 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 14645 const AddrMode &AM, Type *Ty, 14646 unsigned AS, Instruction *I) const { 14647 // PPC does not allow r+i addressing modes for vectors! 14648 if (Ty->isVectorTy() && AM.BaseOffs != 0) 14649 return false; 14650 14651 // PPC allows a sign-extended 16-bit immediate field. 14652 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 14653 return false; 14654 14655 // No global is ever allowed as a base. 14656 if (AM.BaseGV) 14657 return false; 14658 14659 // PPC only support r+r, 14660 switch (AM.Scale) { 14661 case 0: // "r+i" or just "i", depending on HasBaseReg. 14662 break; 14663 case 1: 14664 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 14665 return false; 14666 // Otherwise we have r+r or r+i. 14667 break; 14668 case 2: 14669 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 14670 return false; 14671 // Allow 2*r as r+r. 14672 break; 14673 default: 14674 // No other scales are supported. 14675 return false; 14676 } 14677 14678 return true; 14679 } 14680 14681 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 14682 SelectionDAG &DAG) const { 14683 MachineFunction &MF = DAG.getMachineFunction(); 14684 MachineFrameInfo &MFI = MF.getFrameInfo(); 14685 MFI.setReturnAddressIsTaken(true); 14686 14687 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 14688 return SDValue(); 14689 14690 SDLoc dl(Op); 14691 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 14692 14693 // Make sure the function does not optimize away the store of the RA to 14694 // the stack. 14695 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 14696 FuncInfo->setLRStoreRequired(); 14697 bool isPPC64 = Subtarget.isPPC64(); 14698 auto PtrVT = getPointerTy(MF.getDataLayout()); 14699 14700 if (Depth > 0) { 14701 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 14702 SDValue Offset = 14703 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 14704 isPPC64 ? MVT::i64 : MVT::i32); 14705 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 14706 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 14707 MachinePointerInfo()); 14708 } 14709 14710 // Just load the return address off the stack. 14711 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 14712 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 14713 MachinePointerInfo()); 14714 } 14715 14716 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 14717 SelectionDAG &DAG) const { 14718 SDLoc dl(Op); 14719 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 14720 14721 MachineFunction &MF = DAG.getMachineFunction(); 14722 MachineFrameInfo &MFI = MF.getFrameInfo(); 14723 MFI.setFrameAddressIsTaken(true); 14724 14725 EVT PtrVT = getPointerTy(MF.getDataLayout()); 14726 bool isPPC64 = PtrVT == MVT::i64; 14727 14728 // Naked functions never have a frame pointer, and so we use r1. For all 14729 // other functions, this decision must be delayed until during PEI. 14730 unsigned FrameReg; 14731 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 14732 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 14733 else 14734 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 14735 14736 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 14737 PtrVT); 14738 while (Depth--) 14739 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 14740 FrameAddr, MachinePointerInfo()); 14741 return FrameAddr; 14742 } 14743 14744 // FIXME? Maybe this could be a TableGen attribute on some registers and 14745 // this table could be generated automatically from RegInfo. 14746 Register PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 14747 const MachineFunction &MF) const { 14748 bool isPPC64 = Subtarget.isPPC64(); 14749 bool IsDarwinABI = Subtarget.isDarwinABI(); 14750 14751 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 14752 (!isPPC64 && VT != MVT::i32)) 14753 report_fatal_error("Invalid register global variable type"); 14754 14755 bool is64Bit = isPPC64 && VT == MVT::i64; 14756 Register Reg = StringSwitch<Register>(RegName) 14757 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 14758 .Case("r2", (IsDarwinABI || isPPC64) ? Register() : PPC::R2) 14759 .Case("r13", (!isPPC64 && IsDarwinABI) ? Register() : 14760 (is64Bit ? PPC::X13 : PPC::R13)) 14761 .Default(Register()); 14762 14763 if (Reg) 14764 return Reg; 14765 report_fatal_error("Invalid register name global variable"); 14766 } 14767 14768 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 14769 // 32-bit SVR4 ABI access everything as got-indirect. 14770 if (Subtarget.is32BitELFABI()) 14771 return true; 14772 14773 // AIX accesses everything indirectly through the TOC, which is similar to 14774 // the GOT. 14775 if (Subtarget.isAIXABI()) 14776 return true; 14777 14778 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 14779 // If it is small or large code model, module locals are accessed 14780 // indirectly by loading their address from .toc/.got. 14781 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 14782 return true; 14783 14784 // JumpTable and BlockAddress are accessed as got-indirect. 14785 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 14786 return true; 14787 14788 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 14789 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 14790 14791 return false; 14792 } 14793 14794 bool 14795 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 14796 // The PowerPC target isn't yet aware of offsets. 14797 return false; 14798 } 14799 14800 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 14801 const CallInst &I, 14802 MachineFunction &MF, 14803 unsigned Intrinsic) const { 14804 switch (Intrinsic) { 14805 case Intrinsic::ppc_qpx_qvlfd: 14806 case Intrinsic::ppc_qpx_qvlfs: 14807 case Intrinsic::ppc_qpx_qvlfcd: 14808 case Intrinsic::ppc_qpx_qvlfcs: 14809 case Intrinsic::ppc_qpx_qvlfiwa: 14810 case Intrinsic::ppc_qpx_qvlfiwz: 14811 case Intrinsic::ppc_altivec_lvx: 14812 case Intrinsic::ppc_altivec_lvxl: 14813 case Intrinsic::ppc_altivec_lvebx: 14814 case Intrinsic::ppc_altivec_lvehx: 14815 case Intrinsic::ppc_altivec_lvewx: 14816 case Intrinsic::ppc_vsx_lxvd2x: 14817 case Intrinsic::ppc_vsx_lxvw4x: { 14818 EVT VT; 14819 switch (Intrinsic) { 14820 case Intrinsic::ppc_altivec_lvebx: 14821 VT = MVT::i8; 14822 break; 14823 case Intrinsic::ppc_altivec_lvehx: 14824 VT = MVT::i16; 14825 break; 14826 case Intrinsic::ppc_altivec_lvewx: 14827 VT = MVT::i32; 14828 break; 14829 case Intrinsic::ppc_vsx_lxvd2x: 14830 VT = MVT::v2f64; 14831 break; 14832 case Intrinsic::ppc_qpx_qvlfd: 14833 VT = MVT::v4f64; 14834 break; 14835 case Intrinsic::ppc_qpx_qvlfs: 14836 VT = MVT::v4f32; 14837 break; 14838 case Intrinsic::ppc_qpx_qvlfcd: 14839 VT = MVT::v2f64; 14840 break; 14841 case Intrinsic::ppc_qpx_qvlfcs: 14842 VT = MVT::v2f32; 14843 break; 14844 default: 14845 VT = MVT::v4i32; 14846 break; 14847 } 14848 14849 Info.opc = ISD::INTRINSIC_W_CHAIN; 14850 Info.memVT = VT; 14851 Info.ptrVal = I.getArgOperand(0); 14852 Info.offset = -VT.getStoreSize()+1; 14853 Info.size = 2*VT.getStoreSize()-1; 14854 Info.align = Align::None(); 14855 Info.flags = MachineMemOperand::MOLoad; 14856 return true; 14857 } 14858 case Intrinsic::ppc_qpx_qvlfda: 14859 case Intrinsic::ppc_qpx_qvlfsa: 14860 case Intrinsic::ppc_qpx_qvlfcda: 14861 case Intrinsic::ppc_qpx_qvlfcsa: 14862 case Intrinsic::ppc_qpx_qvlfiwaa: 14863 case Intrinsic::ppc_qpx_qvlfiwza: { 14864 EVT VT; 14865 switch (Intrinsic) { 14866 case Intrinsic::ppc_qpx_qvlfda: 14867 VT = MVT::v4f64; 14868 break; 14869 case Intrinsic::ppc_qpx_qvlfsa: 14870 VT = MVT::v4f32; 14871 break; 14872 case Intrinsic::ppc_qpx_qvlfcda: 14873 VT = MVT::v2f64; 14874 break; 14875 case Intrinsic::ppc_qpx_qvlfcsa: 14876 VT = MVT::v2f32; 14877 break; 14878 default: 14879 VT = MVT::v4i32; 14880 break; 14881 } 14882 14883 Info.opc = ISD::INTRINSIC_W_CHAIN; 14884 Info.memVT = VT; 14885 Info.ptrVal = I.getArgOperand(0); 14886 Info.offset = 0; 14887 Info.size = VT.getStoreSize(); 14888 Info.align = Align::None(); 14889 Info.flags = MachineMemOperand::MOLoad; 14890 return true; 14891 } 14892 case Intrinsic::ppc_qpx_qvstfd: 14893 case Intrinsic::ppc_qpx_qvstfs: 14894 case Intrinsic::ppc_qpx_qvstfcd: 14895 case Intrinsic::ppc_qpx_qvstfcs: 14896 case Intrinsic::ppc_qpx_qvstfiw: 14897 case Intrinsic::ppc_altivec_stvx: 14898 case Intrinsic::ppc_altivec_stvxl: 14899 case Intrinsic::ppc_altivec_stvebx: 14900 case Intrinsic::ppc_altivec_stvehx: 14901 case Intrinsic::ppc_altivec_stvewx: 14902 case Intrinsic::ppc_vsx_stxvd2x: 14903 case Intrinsic::ppc_vsx_stxvw4x: { 14904 EVT VT; 14905 switch (Intrinsic) { 14906 case Intrinsic::ppc_altivec_stvebx: 14907 VT = MVT::i8; 14908 break; 14909 case Intrinsic::ppc_altivec_stvehx: 14910 VT = MVT::i16; 14911 break; 14912 case Intrinsic::ppc_altivec_stvewx: 14913 VT = MVT::i32; 14914 break; 14915 case Intrinsic::ppc_vsx_stxvd2x: 14916 VT = MVT::v2f64; 14917 break; 14918 case Intrinsic::ppc_qpx_qvstfd: 14919 VT = MVT::v4f64; 14920 break; 14921 case Intrinsic::ppc_qpx_qvstfs: 14922 VT = MVT::v4f32; 14923 break; 14924 case Intrinsic::ppc_qpx_qvstfcd: 14925 VT = MVT::v2f64; 14926 break; 14927 case Intrinsic::ppc_qpx_qvstfcs: 14928 VT = MVT::v2f32; 14929 break; 14930 default: 14931 VT = MVT::v4i32; 14932 break; 14933 } 14934 14935 Info.opc = ISD::INTRINSIC_VOID; 14936 Info.memVT = VT; 14937 Info.ptrVal = I.getArgOperand(1); 14938 Info.offset = -VT.getStoreSize()+1; 14939 Info.size = 2*VT.getStoreSize()-1; 14940 Info.align = Align::None(); 14941 Info.flags = MachineMemOperand::MOStore; 14942 return true; 14943 } 14944 case Intrinsic::ppc_qpx_qvstfda: 14945 case Intrinsic::ppc_qpx_qvstfsa: 14946 case Intrinsic::ppc_qpx_qvstfcda: 14947 case Intrinsic::ppc_qpx_qvstfcsa: 14948 case Intrinsic::ppc_qpx_qvstfiwa: { 14949 EVT VT; 14950 switch (Intrinsic) { 14951 case Intrinsic::ppc_qpx_qvstfda: 14952 VT = MVT::v4f64; 14953 break; 14954 case Intrinsic::ppc_qpx_qvstfsa: 14955 VT = MVT::v4f32; 14956 break; 14957 case Intrinsic::ppc_qpx_qvstfcda: 14958 VT = MVT::v2f64; 14959 break; 14960 case Intrinsic::ppc_qpx_qvstfcsa: 14961 VT = MVT::v2f32; 14962 break; 14963 default: 14964 VT = MVT::v4i32; 14965 break; 14966 } 14967 14968 Info.opc = ISD::INTRINSIC_VOID; 14969 Info.memVT = VT; 14970 Info.ptrVal = I.getArgOperand(1); 14971 Info.offset = 0; 14972 Info.size = VT.getStoreSize(); 14973 Info.align = Align::None(); 14974 Info.flags = MachineMemOperand::MOStore; 14975 return true; 14976 } 14977 default: 14978 break; 14979 } 14980 14981 return false; 14982 } 14983 14984 /// getOptimalMemOpType - Returns the target specific optimal type for load 14985 /// and store operations as a result of memset, memcpy, and memmove 14986 /// lowering. If DstAlign is zero that means it's safe to destination 14987 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 14988 /// means there isn't a need to check it against alignment requirement, 14989 /// probably because the source does not need to be loaded. If 'IsMemset' is 14990 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 14991 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 14992 /// source is constant so it does not need to be loaded. 14993 /// It returns EVT::Other if the type should be determined using generic 14994 /// target-independent logic. 14995 EVT PPCTargetLowering::getOptimalMemOpType( 14996 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, 14997 bool ZeroMemset, bool MemcpyStrSrc, 14998 const AttributeList &FuncAttributes) const { 14999 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 15000 // When expanding a memset, require at least two QPX instructions to cover 15001 // the cost of loading the value to be stored from the constant pool. 15002 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 15003 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 15004 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) { 15005 return MVT::v4f64; 15006 } 15007 15008 // We should use Altivec/VSX loads and stores when available. For unaligned 15009 // addresses, unaligned VSX loads are only fast starting with the P8. 15010 if (Subtarget.hasAltivec() && Size >= 16 && 15011 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 15012 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 15013 return MVT::v4i32; 15014 } 15015 15016 if (Subtarget.isPPC64()) { 15017 return MVT::i64; 15018 } 15019 15020 return MVT::i32; 15021 } 15022 15023 /// Returns true if it is beneficial to convert a load of a constant 15024 /// to just the constant itself. 15025 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 15026 Type *Ty) const { 15027 assert(Ty->isIntegerTy()); 15028 15029 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 15030 return !(BitSize == 0 || BitSize > 64); 15031 } 15032 15033 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 15034 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 15035 return false; 15036 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 15037 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 15038 return NumBits1 == 64 && NumBits2 == 32; 15039 } 15040 15041 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 15042 if (!VT1.isInteger() || !VT2.isInteger()) 15043 return false; 15044 unsigned NumBits1 = VT1.getSizeInBits(); 15045 unsigned NumBits2 = VT2.getSizeInBits(); 15046 return NumBits1 == 64 && NumBits2 == 32; 15047 } 15048 15049 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 15050 // Generally speaking, zexts are not free, but they are free when they can be 15051 // folded with other operations. 15052 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 15053 EVT MemVT = LD->getMemoryVT(); 15054 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 15055 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 15056 (LD->getExtensionType() == ISD::NON_EXTLOAD || 15057 LD->getExtensionType() == ISD::ZEXTLOAD)) 15058 return true; 15059 } 15060 15061 // FIXME: Add other cases... 15062 // - 32-bit shifts with a zext to i64 15063 // - zext after ctlz, bswap, etc. 15064 // - zext after and by a constant mask 15065 15066 return TargetLowering::isZExtFree(Val, VT2); 15067 } 15068 15069 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 15070 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 15071 "invalid fpext types"); 15072 // Extending to float128 is not free. 15073 if (DestVT == MVT::f128) 15074 return false; 15075 return true; 15076 } 15077 15078 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 15079 return isInt<16>(Imm) || isUInt<16>(Imm); 15080 } 15081 15082 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 15083 return isInt<16>(Imm) || isUInt<16>(Imm); 15084 } 15085 15086 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 15087 unsigned, 15088 unsigned, 15089 MachineMemOperand::Flags, 15090 bool *Fast) const { 15091 if (DisablePPCUnaligned) 15092 return false; 15093 15094 // PowerPC supports unaligned memory access for simple non-vector types. 15095 // Although accessing unaligned addresses is not as efficient as accessing 15096 // aligned addresses, it is generally more efficient than manual expansion, 15097 // and generally only traps for software emulation when crossing page 15098 // boundaries. 15099 15100 if (!VT.isSimple()) 15101 return false; 15102 15103 if (VT.getSimpleVT().isVector()) { 15104 if (Subtarget.hasVSX()) { 15105 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 15106 VT != MVT::v4f32 && VT != MVT::v4i32) 15107 return false; 15108 } else { 15109 return false; 15110 } 15111 } 15112 15113 if (VT == MVT::ppcf128) 15114 return false; 15115 15116 if (Fast) 15117 *Fast = true; 15118 15119 return true; 15120 } 15121 15122 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 15123 EVT VT) const { 15124 VT = VT.getScalarType(); 15125 15126 if (!VT.isSimple()) 15127 return false; 15128 15129 switch (VT.getSimpleVT().SimpleTy) { 15130 case MVT::f32: 15131 case MVT::f64: 15132 return true; 15133 case MVT::f128: 15134 return (EnableQuadPrecision && Subtarget.hasP9Vector()); 15135 default: 15136 break; 15137 } 15138 15139 return false; 15140 } 15141 15142 const MCPhysReg * 15143 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 15144 // LR is a callee-save register, but we must treat it as clobbered by any call 15145 // site. Hence we include LR in the scratch registers, which are in turn added 15146 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 15147 // to CTR, which is used by any indirect call. 15148 static const MCPhysReg ScratchRegs[] = { 15149 PPC::X12, PPC::LR8, PPC::CTR8, 0 15150 }; 15151 15152 return ScratchRegs; 15153 } 15154 15155 unsigned PPCTargetLowering::getExceptionPointerRegister( 15156 const Constant *PersonalityFn) const { 15157 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 15158 } 15159 15160 unsigned PPCTargetLowering::getExceptionSelectorRegister( 15161 const Constant *PersonalityFn) const { 15162 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 15163 } 15164 15165 bool 15166 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 15167 EVT VT , unsigned DefinedValues) const { 15168 if (VT == MVT::v2i64) 15169 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 15170 15171 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 15172 return true; 15173 15174 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 15175 } 15176 15177 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 15178 if (DisableILPPref || Subtarget.enableMachineScheduler()) 15179 return TargetLowering::getSchedulingPreference(N); 15180 15181 return Sched::ILP; 15182 } 15183 15184 // Create a fast isel object. 15185 FastISel * 15186 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 15187 const TargetLibraryInfo *LibInfo) const { 15188 return PPC::createFastISel(FuncInfo, LibInfo); 15189 } 15190 15191 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 15192 if (Subtarget.isDarwinABI()) return; 15193 if (!Subtarget.isPPC64()) return; 15194 15195 // Update IsSplitCSR in PPCFunctionInfo 15196 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 15197 PFI->setIsSplitCSR(true); 15198 } 15199 15200 void PPCTargetLowering::insertCopiesSplitCSR( 15201 MachineBasicBlock *Entry, 15202 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 15203 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 15204 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 15205 if (!IStart) 15206 return; 15207 15208 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 15209 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 15210 MachineBasicBlock::iterator MBBI = Entry->begin(); 15211 for (const MCPhysReg *I = IStart; *I; ++I) { 15212 const TargetRegisterClass *RC = nullptr; 15213 if (PPC::G8RCRegClass.contains(*I)) 15214 RC = &PPC::G8RCRegClass; 15215 else if (PPC::F8RCRegClass.contains(*I)) 15216 RC = &PPC::F8RCRegClass; 15217 else if (PPC::CRRCRegClass.contains(*I)) 15218 RC = &PPC::CRRCRegClass; 15219 else if (PPC::VRRCRegClass.contains(*I)) 15220 RC = &PPC::VRRCRegClass; 15221 else 15222 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 15223 15224 Register NewVR = MRI->createVirtualRegister(RC); 15225 // Create copy from CSR to a virtual register. 15226 // FIXME: this currently does not emit CFI pseudo-instructions, it works 15227 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 15228 // nounwind. If we want to generalize this later, we may need to emit 15229 // CFI pseudo-instructions. 15230 assert(Entry->getParent()->getFunction().hasFnAttribute( 15231 Attribute::NoUnwind) && 15232 "Function should be nounwind in insertCopiesSplitCSR!"); 15233 Entry->addLiveIn(*I); 15234 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 15235 .addReg(*I); 15236 15237 // Insert the copy-back instructions right before the terminator. 15238 for (auto *Exit : Exits) 15239 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 15240 TII->get(TargetOpcode::COPY), *I) 15241 .addReg(NewVR); 15242 } 15243 } 15244 15245 // Override to enable LOAD_STACK_GUARD lowering on Linux. 15246 bool PPCTargetLowering::useLoadStackGuardNode() const { 15247 if (!Subtarget.isTargetLinux()) 15248 return TargetLowering::useLoadStackGuardNode(); 15249 return true; 15250 } 15251 15252 // Override to disable global variable loading on Linux. 15253 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 15254 if (!Subtarget.isTargetLinux()) 15255 return TargetLowering::insertSSPDeclarations(M); 15256 } 15257 15258 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 15259 bool ForCodeSize) const { 15260 if (!VT.isSimple() || !Subtarget.hasVSX()) 15261 return false; 15262 15263 switch(VT.getSimpleVT().SimpleTy) { 15264 default: 15265 // For FP types that are currently not supported by PPC backend, return 15266 // false. Examples: f16, f80. 15267 return false; 15268 case MVT::f32: 15269 case MVT::f64: 15270 case MVT::ppcf128: 15271 return Imm.isPosZero(); 15272 } 15273 } 15274 15275 // For vector shift operation op, fold 15276 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 15277 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 15278 SelectionDAG &DAG) { 15279 SDValue N0 = N->getOperand(0); 15280 SDValue N1 = N->getOperand(1); 15281 EVT VT = N0.getValueType(); 15282 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 15283 unsigned Opcode = N->getOpcode(); 15284 unsigned TargetOpcode; 15285 15286 switch (Opcode) { 15287 default: 15288 llvm_unreachable("Unexpected shift operation"); 15289 case ISD::SHL: 15290 TargetOpcode = PPCISD::SHL; 15291 break; 15292 case ISD::SRL: 15293 TargetOpcode = PPCISD::SRL; 15294 break; 15295 case ISD::SRA: 15296 TargetOpcode = PPCISD::SRA; 15297 break; 15298 } 15299 15300 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 15301 N1->getOpcode() == ISD::AND) 15302 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 15303 if (Mask->getZExtValue() == OpSizeInBits - 1) 15304 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 15305 15306 return SDValue(); 15307 } 15308 15309 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 15310 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15311 return Value; 15312 15313 SDValue N0 = N->getOperand(0); 15314 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 15315 if (!Subtarget.isISA3_0() || 15316 N0.getOpcode() != ISD::SIGN_EXTEND || 15317 N0.getOperand(0).getValueType() != MVT::i32 || 15318 CN1 == nullptr || N->getValueType(0) != MVT::i64) 15319 return SDValue(); 15320 15321 // We can't save an operation here if the value is already extended, and 15322 // the existing shift is easier to combine. 15323 SDValue ExtsSrc = N0.getOperand(0); 15324 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 15325 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 15326 return SDValue(); 15327 15328 SDLoc DL(N0); 15329 SDValue ShiftBy = SDValue(CN1, 0); 15330 // We want the shift amount to be i32 on the extswli, but the shift could 15331 // have an i64. 15332 if (ShiftBy.getValueType() == MVT::i64) 15333 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 15334 15335 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 15336 ShiftBy); 15337 } 15338 15339 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 15340 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15341 return Value; 15342 15343 return SDValue(); 15344 } 15345 15346 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 15347 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15348 return Value; 15349 15350 return SDValue(); 15351 } 15352 15353 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 15354 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 15355 // When C is zero, the equation (addi Z, -C) can be simplified to Z 15356 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 15357 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 15358 const PPCSubtarget &Subtarget) { 15359 if (!Subtarget.isPPC64()) 15360 return SDValue(); 15361 15362 SDValue LHS = N->getOperand(0); 15363 SDValue RHS = N->getOperand(1); 15364 15365 auto isZextOfCompareWithConstant = [](SDValue Op) { 15366 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 15367 Op.getValueType() != MVT::i64) 15368 return false; 15369 15370 SDValue Cmp = Op.getOperand(0); 15371 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 15372 Cmp.getOperand(0).getValueType() != MVT::i64) 15373 return false; 15374 15375 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 15376 int64_t NegConstant = 0 - Constant->getSExtValue(); 15377 // Due to the limitations of the addi instruction, 15378 // -C is required to be [-32768, 32767]. 15379 return isInt<16>(NegConstant); 15380 } 15381 15382 return false; 15383 }; 15384 15385 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 15386 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 15387 15388 // If there is a pattern, canonicalize a zext operand to the RHS. 15389 if (LHSHasPattern && !RHSHasPattern) 15390 std::swap(LHS, RHS); 15391 else if (!LHSHasPattern && !RHSHasPattern) 15392 return SDValue(); 15393 15394 SDLoc DL(N); 15395 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 15396 SDValue Cmp = RHS.getOperand(0); 15397 SDValue Z = Cmp.getOperand(0); 15398 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 15399 15400 assert(Constant && "Constant Should not be a null pointer."); 15401 int64_t NegConstant = 0 - Constant->getSExtValue(); 15402 15403 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 15404 default: break; 15405 case ISD::SETNE: { 15406 // when C == 0 15407 // --> addze X, (addic Z, -1).carry 15408 // / 15409 // add X, (zext(setne Z, C))-- 15410 // \ when -32768 <= -C <= 32767 && C != 0 15411 // --> addze X, (addic (addi Z, -C), -1).carry 15412 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15413 DAG.getConstant(NegConstant, DL, MVT::i64)); 15414 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15415 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15416 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 15417 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15418 SDValue(Addc.getNode(), 1)); 15419 } 15420 case ISD::SETEQ: { 15421 // when C == 0 15422 // --> addze X, (subfic Z, 0).carry 15423 // / 15424 // add X, (zext(sete Z, C))-- 15425 // \ when -32768 <= -C <= 32767 && C != 0 15426 // --> addze X, (subfic (addi Z, -C), 0).carry 15427 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15428 DAG.getConstant(NegConstant, DL, MVT::i64)); 15429 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15430 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15431 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 15432 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15433 SDValue(Subc.getNode(), 1)); 15434 } 15435 } 15436 15437 return SDValue(); 15438 } 15439 15440 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 15441 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 15442 return Value; 15443 15444 return SDValue(); 15445 } 15446 15447 // Detect TRUNCATE operations on bitcasts of float128 values. 15448 // What we are looking for here is the situtation where we extract a subset 15449 // of bits from a 128 bit float. 15450 // This can be of two forms: 15451 // 1) BITCAST of f128 feeding TRUNCATE 15452 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 15453 // The reason this is required is because we do not have a legal i128 type 15454 // and so we want to prevent having to store the f128 and then reload part 15455 // of it. 15456 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 15457 DAGCombinerInfo &DCI) const { 15458 // If we are using CRBits then try that first. 15459 if (Subtarget.useCRBits()) { 15460 // Check if CRBits did anything and return that if it did. 15461 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 15462 return CRTruncValue; 15463 } 15464 15465 SDLoc dl(N); 15466 SDValue Op0 = N->getOperand(0); 15467 15468 // Looking for a truncate of i128 to i64. 15469 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 15470 return SDValue(); 15471 15472 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 15473 15474 // SRL feeding TRUNCATE. 15475 if (Op0.getOpcode() == ISD::SRL) { 15476 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 15477 // The right shift has to be by 64 bits. 15478 if (!ConstNode || ConstNode->getZExtValue() != 64) 15479 return SDValue(); 15480 15481 // Switch the element number to extract. 15482 EltToExtract = EltToExtract ? 0 : 1; 15483 // Update Op0 past the SRL. 15484 Op0 = Op0.getOperand(0); 15485 } 15486 15487 // BITCAST feeding a TRUNCATE possibly via SRL. 15488 if (Op0.getOpcode() == ISD::BITCAST && 15489 Op0.getValueType() == MVT::i128 && 15490 Op0.getOperand(0).getValueType() == MVT::f128) { 15491 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 15492 return DCI.DAG.getNode( 15493 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 15494 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 15495 } 15496 return SDValue(); 15497 } 15498 15499 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 15500 SelectionDAG &DAG = DCI.DAG; 15501 15502 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 15503 if (!ConstOpOrElement) 15504 return SDValue(); 15505 15506 // An imul is usually smaller than the alternative sequence for legal type. 15507 if (DAG.getMachineFunction().getFunction().hasMinSize() && 15508 isOperationLegal(ISD::MUL, N->getValueType(0))) 15509 return SDValue(); 15510 15511 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 15512 switch (this->Subtarget.getCPUDirective()) { 15513 default: 15514 // TODO: enhance the condition for subtarget before pwr8 15515 return false; 15516 case PPC::DIR_PWR8: 15517 // type mul add shl 15518 // scalar 4 1 1 15519 // vector 7 2 2 15520 return true; 15521 case PPC::DIR_PWR9: 15522 case PPC::DIR_PWR_FUTURE: 15523 // type mul add shl 15524 // scalar 5 2 2 15525 // vector 7 2 2 15526 15527 // The cycle RATIO of related operations are showed as a table above. 15528 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 15529 // scalar and vector type. For 2 instrs patterns, add/sub + shl 15530 // are 4, it is always profitable; but for 3 instrs patterns 15531 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 15532 // So we should only do it for vector type. 15533 return IsAddOne && IsNeg ? VT.isVector() : true; 15534 } 15535 }; 15536 15537 EVT VT = N->getValueType(0); 15538 SDLoc DL(N); 15539 15540 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 15541 bool IsNeg = MulAmt.isNegative(); 15542 APInt MulAmtAbs = MulAmt.abs(); 15543 15544 if ((MulAmtAbs - 1).isPowerOf2()) { 15545 // (mul x, 2^N + 1) => (add (shl x, N), x) 15546 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 15547 15548 if (!IsProfitable(IsNeg, true, VT)) 15549 return SDValue(); 15550 15551 SDValue Op0 = N->getOperand(0); 15552 SDValue Op1 = 15553 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 15554 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 15555 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 15556 15557 if (!IsNeg) 15558 return Res; 15559 15560 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 15561 } else if ((MulAmtAbs + 1).isPowerOf2()) { 15562 // (mul x, 2^N - 1) => (sub (shl x, N), x) 15563 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 15564 15565 if (!IsProfitable(IsNeg, false, VT)) 15566 return SDValue(); 15567 15568 SDValue Op0 = N->getOperand(0); 15569 SDValue Op1 = 15570 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 15571 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 15572 15573 if (!IsNeg) 15574 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 15575 else 15576 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 15577 15578 } else { 15579 return SDValue(); 15580 } 15581 } 15582 15583 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 15584 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 15585 if (!Subtarget.is64BitELFABI()) 15586 return false; 15587 15588 // If not a tail call then no need to proceed. 15589 if (!CI->isTailCall()) 15590 return false; 15591 15592 // If tail calls are disabled for the caller then we are done. 15593 const Function *Caller = CI->getParent()->getParent(); 15594 auto Attr = Caller->getFnAttribute("disable-tail-calls"); 15595 if (Attr.getValueAsString() == "true") 15596 return false; 15597 15598 // If sibling calls have been disabled and tail-calls aren't guaranteed 15599 // there is no reason to duplicate. 15600 auto &TM = getTargetMachine(); 15601 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 15602 return false; 15603 15604 // Can't tail call a function called indirectly, or if it has variadic args. 15605 const Function *Callee = CI->getCalledFunction(); 15606 if (!Callee || Callee->isVarArg()) 15607 return false; 15608 15609 // Make sure the callee and caller calling conventions are eligible for tco. 15610 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 15611 CI->getCallingConv())) 15612 return false; 15613 15614 // If the function is local then we have a good chance at tail-calling it 15615 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 15616 } 15617 15618 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 15619 if (!Subtarget.hasVSX()) 15620 return false; 15621 if (Subtarget.hasP9Vector() && VT == MVT::f128) 15622 return true; 15623 return VT == MVT::f32 || VT == MVT::f64 || 15624 VT == MVT::v4f32 || VT == MVT::v2f64; 15625 } 15626 15627 bool PPCTargetLowering:: 15628 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 15629 const Value *Mask = AndI.getOperand(1); 15630 // If the mask is suitable for andi. or andis. we should sink the and. 15631 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 15632 // Can't handle constants wider than 64-bits. 15633 if (CI->getBitWidth() > 64) 15634 return false; 15635 int64_t ConstVal = CI->getZExtValue(); 15636 return isUInt<16>(ConstVal) || 15637 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 15638 } 15639 15640 // For non-constant masks, we can always use the record-form and. 15641 return true; 15642 } 15643 15644 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 15645 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 15646 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 15647 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 15648 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 15649 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 15650 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 15651 assert(Subtarget.hasP9Altivec() && 15652 "Only combine this when P9 altivec supported!"); 15653 EVT VT = N->getValueType(0); 15654 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 15655 return SDValue(); 15656 15657 SelectionDAG &DAG = DCI.DAG; 15658 SDLoc dl(N); 15659 if (N->getOperand(0).getOpcode() == ISD::SUB) { 15660 // Even for signed integers, if it's known to be positive (as signed 15661 // integer) due to zero-extended inputs. 15662 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 15663 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 15664 if ((SubOpcd0 == ISD::ZERO_EXTEND || 15665 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 15666 (SubOpcd1 == ISD::ZERO_EXTEND || 15667 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 15668 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 15669 N->getOperand(0)->getOperand(0), 15670 N->getOperand(0)->getOperand(1), 15671 DAG.getTargetConstant(0, dl, MVT::i32)); 15672 } 15673 15674 // For type v4i32, it can be optimized with xvnegsp + vabsduw 15675 if (N->getOperand(0).getValueType() == MVT::v4i32 && 15676 N->getOperand(0).hasOneUse()) { 15677 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 15678 N->getOperand(0)->getOperand(0), 15679 N->getOperand(0)->getOperand(1), 15680 DAG.getTargetConstant(1, dl, MVT::i32)); 15681 } 15682 } 15683 15684 return SDValue(); 15685 } 15686 15687 // For type v4i32/v8ii16/v16i8, transform 15688 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 15689 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 15690 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 15691 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 15692 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 15693 DAGCombinerInfo &DCI) const { 15694 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 15695 assert(Subtarget.hasP9Altivec() && 15696 "Only combine this when P9 altivec supported!"); 15697 15698 SelectionDAG &DAG = DCI.DAG; 15699 SDLoc dl(N); 15700 SDValue Cond = N->getOperand(0); 15701 SDValue TrueOpnd = N->getOperand(1); 15702 SDValue FalseOpnd = N->getOperand(2); 15703 EVT VT = N->getOperand(1).getValueType(); 15704 15705 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 15706 FalseOpnd.getOpcode() != ISD::SUB) 15707 return SDValue(); 15708 15709 // ABSD only available for type v4i32/v8i16/v16i8 15710 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 15711 return SDValue(); 15712 15713 // At least to save one more dependent computation 15714 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 15715 return SDValue(); 15716 15717 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 15718 15719 // Can only handle unsigned comparison here 15720 switch (CC) { 15721 default: 15722 return SDValue(); 15723 case ISD::SETUGT: 15724 case ISD::SETUGE: 15725 break; 15726 case ISD::SETULT: 15727 case ISD::SETULE: 15728 std::swap(TrueOpnd, FalseOpnd); 15729 break; 15730 } 15731 15732 SDValue CmpOpnd1 = Cond.getOperand(0); 15733 SDValue CmpOpnd2 = Cond.getOperand(1); 15734 15735 // SETCC CmpOpnd1 CmpOpnd2 cond 15736 // TrueOpnd = CmpOpnd1 - CmpOpnd2 15737 // FalseOpnd = CmpOpnd2 - CmpOpnd1 15738 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 15739 TrueOpnd.getOperand(1) == CmpOpnd2 && 15740 FalseOpnd.getOperand(0) == CmpOpnd2 && 15741 FalseOpnd.getOperand(1) == CmpOpnd1) { 15742 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 15743 CmpOpnd1, CmpOpnd2, 15744 DAG.getTargetConstant(0, dl, MVT::i32)); 15745 } 15746 15747 return SDValue(); 15748 } 15749