1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCISelLowering.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCCCState.h"
18 #include "PPCCallingConv.h"
19 #include "PPCFrameLowering.h"
20 #include "PPCInstrInfo.h"
21 #include "PPCMachineFunctionInfo.h"
22 #include "PPCPerfectShuffle.h"
23 #include "PPCRegisterInfo.h"
24 #include "PPCSubtarget.h"
25 #include "PPCTargetMachine.h"
26 #include "llvm/ADT/APFloat.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/None.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/ADT/StringSwitch.h"
38 #include "llvm/CodeGen/CallingConvLower.h"
39 #include "llvm/CodeGen/ISDOpcodes.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineLoopInfo.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/ValueTypes.h"
57 #include "llvm/IR/CallSite.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/Module.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/MC/MCExpr.h"
74 #include "llvm/MC/MCRegisterInfo.h"
75 #include "llvm/Support/AtomicOrdering.h"
76 #include "llvm/Support/BranchProbability.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CodeGen.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/Compiler.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/Format.h"
84 #include "llvm/Support/KnownBits.h"
85 #include "llvm/Support/MachineValueType.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Target/TargetMachine.h"
89 #include "llvm/Target/TargetOptions.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstdint>
93 #include <iterator>
94 #include <list>
95 #include <utility>
96 #include <vector>
97 
98 using namespace llvm;
99 
100 #define DEBUG_TYPE "ppc-lowering"
101 
102 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
103 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
104 
105 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
106 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
107 
108 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
109 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
110 
111 static cl::opt<bool> DisableSCO("disable-ppc-sco",
112 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
113 
114 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
115 cl::desc("enable quad precision float support on ppc"), cl::Hidden);
116 
117 STATISTIC(NumTailCalls, "Number of tail calls");
118 STATISTIC(NumSiblingCalls, "Number of sibling calls");
119 
120 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
121 
122 // FIXME: Remove this once the bug has been fixed!
123 extern cl::opt<bool> ANDIGlueBug;
124 
125 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
126                                      const PPCSubtarget &STI)
127     : TargetLowering(TM), Subtarget(STI) {
128   // Use _setjmp/_longjmp instead of setjmp/longjmp.
129   setUseUnderscoreSetJmp(true);
130   setUseUnderscoreLongJmp(true);
131 
132   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
133   // arguments are at least 4/8 bytes aligned.
134   bool isPPC64 = Subtarget.isPPC64();
135   setMinStackArgumentAlignment(isPPC64 ? 8:4);
136 
137   // Set up the register classes.
138   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
139   if (!useSoftFloat()) {
140     if (hasSPE()) {
141       addRegisterClass(MVT::f32, &PPC::SPE4RCRegClass);
142       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
143     } else {
144       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
145       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
146     }
147   }
148 
149   // Match BITREVERSE to customized fast code sequence in the td file.
150   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
151   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
152 
153   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
154   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
155 
156   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
157   for (MVT VT : MVT::integer_valuetypes()) {
158     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
159     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
160   }
161 
162   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
163 
164   // PowerPC has pre-inc load and store's.
165   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
166   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
167   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
168   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
169   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
170   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
171   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
172   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
173   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
174   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
175   if (!Subtarget.hasSPE()) {
176     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
177     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
178     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
179     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
180   }
181 
182   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
183   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
184   for (MVT VT : ScalarIntVTs) {
185     setOperationAction(ISD::ADDC, VT, Legal);
186     setOperationAction(ISD::ADDE, VT, Legal);
187     setOperationAction(ISD::SUBC, VT, Legal);
188     setOperationAction(ISD::SUBE, VT, Legal);
189   }
190 
191   if (Subtarget.useCRBits()) {
192     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
193 
194     if (isPPC64 || Subtarget.hasFPCVT()) {
195       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
196       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
197                          isPPC64 ? MVT::i64 : MVT::i32);
198       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
199       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
200                         isPPC64 ? MVT::i64 : MVT::i32);
201     } else {
202       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
203       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
204     }
205 
206     // PowerPC does not support direct load/store of condition registers.
207     setOperationAction(ISD::LOAD, MVT::i1, Custom);
208     setOperationAction(ISD::STORE, MVT::i1, Custom);
209 
210     // FIXME: Remove this once the ANDI glue bug is fixed:
211     if (ANDIGlueBug)
212       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
213 
214     for (MVT VT : MVT::integer_valuetypes()) {
215       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
216       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
217       setTruncStoreAction(VT, MVT::i1, Expand);
218     }
219 
220     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
221   }
222 
223   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
224   // PPC (the libcall is not available).
225   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
226   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
227 
228   // We do not currently implement these libm ops for PowerPC.
229   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
230   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
231   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
232   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
233   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
234   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
235 
236   // PowerPC has no SREM/UREM instructions unless we are on P9
237   // On P9 we may use a hardware instruction to compute the remainder.
238   // The instructions are not legalized directly because in the cases where the
239   // result of both the remainder and the division is required it is more
240   // efficient to compute the remainder from the result of the division rather
241   // than use the remainder instruction.
242   if (Subtarget.isISA3_0()) {
243     setOperationAction(ISD::SREM, MVT::i32, Custom);
244     setOperationAction(ISD::UREM, MVT::i32, Custom);
245     setOperationAction(ISD::SREM, MVT::i64, Custom);
246     setOperationAction(ISD::UREM, MVT::i64, Custom);
247   } else {
248     setOperationAction(ISD::SREM, MVT::i32, Expand);
249     setOperationAction(ISD::UREM, MVT::i32, Expand);
250     setOperationAction(ISD::SREM, MVT::i64, Expand);
251     setOperationAction(ISD::UREM, MVT::i64, Expand);
252   }
253 
254   if (Subtarget.hasP9Vector()) {
255     setOperationAction(ISD::ABS, MVT::v4i32, Legal);
256     setOperationAction(ISD::ABS, MVT::v8i16, Legal);
257     setOperationAction(ISD::ABS, MVT::v16i8, Legal);
258   }
259 
260   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
261   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
262   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
263   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
264   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
265   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
266   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
267   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
268   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
269 
270   // We don't support sin/cos/sqrt/fmod/pow
271   setOperationAction(ISD::FSIN , MVT::f64, Expand);
272   setOperationAction(ISD::FCOS , MVT::f64, Expand);
273   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
274   setOperationAction(ISD::FREM , MVT::f64, Expand);
275   setOperationAction(ISD::FPOW , MVT::f64, Expand);
276   setOperationAction(ISD::FSIN , MVT::f32, Expand);
277   setOperationAction(ISD::FCOS , MVT::f32, Expand);
278   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
279   setOperationAction(ISD::FREM , MVT::f32, Expand);
280   setOperationAction(ISD::FPOW , MVT::f32, Expand);
281   if (Subtarget.hasSPE()) {
282     setOperationAction(ISD::FMA  , MVT::f64, Expand);
283     setOperationAction(ISD::FMA  , MVT::f32, Expand);
284   } else {
285     setOperationAction(ISD::FMA  , MVT::f64, Legal);
286     setOperationAction(ISD::FMA  , MVT::f32, Legal);
287   }
288 
289   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
290 
291   // If we're enabling GP optimizations, use hardware square root
292   if (!Subtarget.hasFSQRT() &&
293       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
294         Subtarget.hasFRE()))
295     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
296 
297   if (!Subtarget.hasFSQRT() &&
298       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
299         Subtarget.hasFRES()))
300     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
301 
302   if (Subtarget.hasFCPSGN()) {
303     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
304     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
305   } else {
306     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
307     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
308   }
309 
310   if (Subtarget.hasFPRND()) {
311     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
312     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
313     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
314     setOperationAction(ISD::FROUND, MVT::f64, Legal);
315 
316     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
317     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
318     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
319     setOperationAction(ISD::FROUND, MVT::f32, Legal);
320   }
321 
322   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
323   // to speed up scalar BSWAP64.
324   // CTPOP or CTTZ were introduced in P8/P9 respectively
325   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
326   if (Subtarget.isISA3_0()) {
327     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
328     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
329     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
330   } else {
331     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
332     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
333     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
334   }
335 
336   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
337     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
338     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
339   } else {
340     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
341     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
342   }
343 
344   // PowerPC does not have ROTR
345   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
346   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
347 
348   if (!Subtarget.useCRBits()) {
349     // PowerPC does not have Select
350     setOperationAction(ISD::SELECT, MVT::i32, Expand);
351     setOperationAction(ISD::SELECT, MVT::i64, Expand);
352     setOperationAction(ISD::SELECT, MVT::f32, Expand);
353     setOperationAction(ISD::SELECT, MVT::f64, Expand);
354   }
355 
356   // PowerPC wants to turn select_cc of FP into fsel when possible.
357   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
358   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
359 
360   // PowerPC wants to optimize integer setcc a bit
361   if (!Subtarget.useCRBits())
362     setOperationAction(ISD::SETCC, MVT::i32, Custom);
363 
364   // PowerPC does not have BRCOND which requires SetCC
365   if (!Subtarget.useCRBits())
366     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
367 
368   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
369 
370   if (Subtarget.hasSPE()) {
371     // SPE has built-in conversions
372     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
373     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
374     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
375   } else {
376     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
377     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
378 
379     // PowerPC does not have [U|S]INT_TO_FP
380     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
381     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
382   }
383 
384   if (Subtarget.hasDirectMove() && isPPC64) {
385     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
386     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
387     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
388     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
389   } else {
390     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
391     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
392     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
393     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
394   }
395 
396   // We cannot sextinreg(i1).  Expand to shifts.
397   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
398 
399   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
400   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
401   // support continuation, user-level threading, and etc.. As a result, no
402   // other SjLj exception interfaces are implemented and please don't build
403   // your own exception handling based on them.
404   // LLVM/Clang supports zero-cost DWARF exception handling.
405   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
406   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
407 
408   // We want to legalize GlobalAddress and ConstantPool nodes into the
409   // appropriate instructions to materialize the address.
410   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
411   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
412   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
413   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
414   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
415   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
416   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
417   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
418   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
419   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
420 
421   // TRAP is legal.
422   setOperationAction(ISD::TRAP, MVT::Other, Legal);
423 
424   // TRAMPOLINE is custom lowered.
425   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
426   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
427 
428   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
429   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
430 
431   if (Subtarget.isSVR4ABI()) {
432     if (isPPC64) {
433       // VAARG always uses double-word chunks, so promote anything smaller.
434       setOperationAction(ISD::VAARG, MVT::i1, Promote);
435       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
436       setOperationAction(ISD::VAARG, MVT::i8, Promote);
437       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
438       setOperationAction(ISD::VAARG, MVT::i16, Promote);
439       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
440       setOperationAction(ISD::VAARG, MVT::i32, Promote);
441       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
442       setOperationAction(ISD::VAARG, MVT::Other, Expand);
443     } else {
444       // VAARG is custom lowered with the 32-bit SVR4 ABI.
445       setOperationAction(ISD::VAARG, MVT::Other, Custom);
446       setOperationAction(ISD::VAARG, MVT::i64, Custom);
447     }
448   } else
449     setOperationAction(ISD::VAARG, MVT::Other, Expand);
450 
451   if (Subtarget.isSVR4ABI() && !isPPC64)
452     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
453     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
454   else
455     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
456 
457   // Use the default implementation.
458   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
459   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
460   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
461   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
462   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
463   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
464   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
465   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
466   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
467 
468   // We want to custom lower some of our intrinsics.
469   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
470 
471   // To handle counter-based loop conditions.
472   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
473 
474   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
475   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
476   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
477   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
478 
479   // Comparisons that require checking two conditions.
480   if (Subtarget.hasSPE()) {
481     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
482     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
483     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
484     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
485   }
486   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
487   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
488   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
489   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
490   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
491   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
492   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
493   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
494   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
495   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
496   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
497   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
498 
499   if (Subtarget.has64BitSupport()) {
500     // They also have instructions for converting between i64 and fp.
501     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
502     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
503     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
504     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
505     // This is just the low 32 bits of a (signed) fp->i64 conversion.
506     // We cannot do this with Promote because i64 is not a legal type.
507     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
508 
509     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
510       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
511   } else {
512     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
513     if (Subtarget.hasSPE())
514       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
515     else
516       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
517   }
518 
519   // With the instructions enabled under FPCVT, we can do everything.
520   if (Subtarget.hasFPCVT()) {
521     if (Subtarget.has64BitSupport()) {
522       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
523       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
524       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
525       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
526     }
527 
528     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
529     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
530     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
531     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
532   }
533 
534   if (Subtarget.use64BitRegs()) {
535     // 64-bit PowerPC implementations can support i64 types directly
536     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
537     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
538     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
539     // 64-bit PowerPC wants to expand i128 shifts itself.
540     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
541     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
542     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
543   } else {
544     // 32-bit PowerPC wants to expand i64 shifts itself.
545     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
546     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
547     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
548   }
549 
550   if (Subtarget.hasAltivec()) {
551     // First set operation action for all vector types to expand. Then we
552     // will selectively turn on ones that can be effectively codegen'd.
553     for (MVT VT : MVT::vector_valuetypes()) {
554       // add/sub are legal for all supported vector VT's.
555       setOperationAction(ISD::ADD, VT, Legal);
556       setOperationAction(ISD::SUB, VT, Legal);
557 
558       // Vector instructions introduced in P8
559       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
560         setOperationAction(ISD::CTPOP, VT, Legal);
561         setOperationAction(ISD::CTLZ, VT, Legal);
562       }
563       else {
564         setOperationAction(ISD::CTPOP, VT, Expand);
565         setOperationAction(ISD::CTLZ, VT, Expand);
566       }
567 
568       // Vector instructions introduced in P9
569       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
570         setOperationAction(ISD::CTTZ, VT, Legal);
571       else
572         setOperationAction(ISD::CTTZ, VT, Expand);
573 
574       // We promote all shuffles to v16i8.
575       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
576       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
577 
578       // We promote all non-typed operations to v4i32.
579       setOperationAction(ISD::AND   , VT, Promote);
580       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
581       setOperationAction(ISD::OR    , VT, Promote);
582       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
583       setOperationAction(ISD::XOR   , VT, Promote);
584       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
585       setOperationAction(ISD::LOAD  , VT, Promote);
586       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
587       setOperationAction(ISD::SELECT, VT, Promote);
588       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
589       setOperationAction(ISD::SELECT_CC, VT, Promote);
590       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
591       setOperationAction(ISD::STORE, VT, Promote);
592       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
593 
594       // No other operations are legal.
595       setOperationAction(ISD::MUL , VT, Expand);
596       setOperationAction(ISD::SDIV, VT, Expand);
597       setOperationAction(ISD::SREM, VT, Expand);
598       setOperationAction(ISD::UDIV, VT, Expand);
599       setOperationAction(ISD::UREM, VT, Expand);
600       setOperationAction(ISD::FDIV, VT, Expand);
601       setOperationAction(ISD::FREM, VT, Expand);
602       setOperationAction(ISD::FNEG, VT, Expand);
603       setOperationAction(ISD::FSQRT, VT, Expand);
604       setOperationAction(ISD::FLOG, VT, Expand);
605       setOperationAction(ISD::FLOG10, VT, Expand);
606       setOperationAction(ISD::FLOG2, VT, Expand);
607       setOperationAction(ISD::FEXP, VT, Expand);
608       setOperationAction(ISD::FEXP2, VT, Expand);
609       setOperationAction(ISD::FSIN, VT, Expand);
610       setOperationAction(ISD::FCOS, VT, Expand);
611       setOperationAction(ISD::FABS, VT, Expand);
612       setOperationAction(ISD::FFLOOR, VT, Expand);
613       setOperationAction(ISD::FCEIL,  VT, Expand);
614       setOperationAction(ISD::FTRUNC, VT, Expand);
615       setOperationAction(ISD::FRINT,  VT, Expand);
616       setOperationAction(ISD::FNEARBYINT, VT, Expand);
617       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
618       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
619       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
620       setOperationAction(ISD::MULHU, VT, Expand);
621       setOperationAction(ISD::MULHS, VT, Expand);
622       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
623       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
624       setOperationAction(ISD::UDIVREM, VT, Expand);
625       setOperationAction(ISD::SDIVREM, VT, Expand);
626       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
627       setOperationAction(ISD::FPOW, VT, Expand);
628       setOperationAction(ISD::BSWAP, VT, Expand);
629       setOperationAction(ISD::VSELECT, VT, Expand);
630       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
631       setOperationAction(ISD::ROTL, VT, Expand);
632       setOperationAction(ISD::ROTR, VT, Expand);
633 
634       for (MVT InnerVT : MVT::vector_valuetypes()) {
635         setTruncStoreAction(VT, InnerVT, Expand);
636         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
637         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
638         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
639       }
640     }
641 
642     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
643     // with merges, splats, etc.
644     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
645 
646     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
647     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
648     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
649     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
650     setOperationAction(ISD::SELECT, MVT::v4i32,
651                        Subtarget.useCRBits() ? Legal : Expand);
652     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
653     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
654     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
655     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
656     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
657     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
658     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
659     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
660     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
661 
662     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
663     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
664     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
665     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
666 
667     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
668     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
669 
670     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
671       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
672       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
673     }
674 
675     if (Subtarget.hasP8Altivec())
676       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
677     else
678       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
679 
680     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
681     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
682 
683     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
684     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
685 
686     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
687     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
688     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
689     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
690 
691     // Altivec does not contain unordered floating-point compare instructions
692     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
693     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
694     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
695     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
696 
697     if (Subtarget.hasVSX()) {
698       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
699       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
700       if (Subtarget.hasP8Vector()) {
701         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
702         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
703       }
704       if (Subtarget.hasDirectMove() && isPPC64) {
705         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
706         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
707         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
708         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
709         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
710         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
711         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
712         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
713       }
714       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
715 
716       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
717       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
718       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
719       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
720       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
721 
722       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
723 
724       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
725       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
726 
727       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
728       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
729 
730       setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
731       setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
732       setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
733       setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
734       setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
735 
736       // Share the Altivec comparison restrictions.
737       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
738       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
739       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
740       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
741 
742       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
743       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
744 
745       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
746 
747       if (Subtarget.hasP8Vector())
748         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
749 
750       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
751 
752       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
753       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
754       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
755 
756       if (Subtarget.hasP8Altivec()) {
757         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
758         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
759         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
760 
761         // 128 bit shifts can be accomplished via 3 instructions for SHL and
762         // SRL, but not for SRA because of the instructions available:
763         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
764         // doing
765         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
766         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
767         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
768 
769         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
770       }
771       else {
772         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
773         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
774         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
775 
776         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
777 
778         // VSX v2i64 only supports non-arithmetic operations.
779         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
780         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
781       }
782 
783       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
784       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
785       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
786       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
787 
788       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
789 
790       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
791       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
792       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
793       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
794 
795       // Vector operation legalization checks the result type of
796       // SIGN_EXTEND_INREG, overall legalization checks the inner type.
797       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
798       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
799       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
800       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
801 
802       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
803       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
804       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
805       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
806 
807       if (Subtarget.hasDirectMove())
808         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
809       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
810 
811       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
812     }
813 
814     if (Subtarget.hasP8Altivec()) {
815       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
816       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
817     }
818 
819     if (Subtarget.hasP9Vector()) {
820       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
821       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
822 
823       // 128 bit shifts can be accomplished via 3 instructions for SHL and
824       // SRL, but not for SRA because of the instructions available:
825       // VS{RL} and VS{RL}O.
826       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
827       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
828       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
829 
830       if (EnableQuadPrecision) {
831         addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
832         setOperationAction(ISD::FADD, MVT::f128, Legal);
833         setOperationAction(ISD::FSUB, MVT::f128, Legal);
834         setOperationAction(ISD::FDIV, MVT::f128, Legal);
835         setOperationAction(ISD::FMUL, MVT::f128, Legal);
836         setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
837         // No extending loads to f128 on PPC.
838         for (MVT FPT : MVT::fp_valuetypes())
839           setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
840         setOperationAction(ISD::FMA, MVT::f128, Legal);
841         setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
842         setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
843         setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
844         setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
845         setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
846         setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
847 
848         setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
849         setOperationAction(ISD::FRINT, MVT::f128, Legal);
850         setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
851         setOperationAction(ISD::FCEIL, MVT::f128, Legal);
852         setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
853         setOperationAction(ISD::FROUND, MVT::f128, Legal);
854 
855         setOperationAction(ISD::SELECT, MVT::f128, Expand);
856         setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
857         setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
858         setTruncStoreAction(MVT::f128, MVT::f64, Expand);
859         setTruncStoreAction(MVT::f128, MVT::f32, Expand);
860         setOperationAction(ISD::BITCAST, MVT::i128, Custom);
861         // No implementation for these ops for PowerPC.
862         setOperationAction(ISD::FSIN , MVT::f128, Expand);
863         setOperationAction(ISD::FCOS , MVT::f128, Expand);
864         setOperationAction(ISD::FPOW, MVT::f128, Expand);
865         setOperationAction(ISD::FPOWI, MVT::f128, Expand);
866         setOperationAction(ISD::FREM, MVT::f128, Expand);
867       }
868 
869     }
870 
871     if (Subtarget.hasP9Altivec()) {
872       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
873       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
874     }
875   }
876 
877   if (Subtarget.hasQPX()) {
878     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
879     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
880     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
881     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
882 
883     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
884     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
885 
886     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
887     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
888 
889     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
890     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
891 
892     if (!Subtarget.useCRBits())
893       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
894     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
895 
896     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
897     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
898     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
899     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
900     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
901     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
902     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
903 
904     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
905     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
906 
907     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
908     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
909     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
910 
911     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
912     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
913     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
914     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
915     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
916     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
917     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
918     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
919     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
920     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
921 
922     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
923     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
924 
925     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
926     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
927 
928     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
929 
930     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
931     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
932     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
933     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
934 
935     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
936     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
937 
938     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
939     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
940 
941     if (!Subtarget.useCRBits())
942       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
943     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
944 
945     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
946     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
947     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
948     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
949     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
950     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
951     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
952 
953     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
954     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
955 
956     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
957     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
958     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
959     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
960     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
961     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
962     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
963     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
964     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
965     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
966 
967     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
968     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
969 
970     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
971     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
972 
973     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
974 
975     setOperationAction(ISD::AND , MVT::v4i1, Legal);
976     setOperationAction(ISD::OR , MVT::v4i1, Legal);
977     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
978 
979     if (!Subtarget.useCRBits())
980       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
981     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
982 
983     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
984     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
985 
986     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
987     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
988     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
989     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
990     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
991     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
992     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
993 
994     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
995     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
996 
997     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
998 
999     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
1000     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
1001     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
1002     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
1003 
1004     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
1005     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
1006     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
1007     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1008 
1009     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
1010     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
1011 
1012     // These need to set FE_INEXACT, and so cannot be vectorized here.
1013     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
1014     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
1015 
1016     if (TM.Options.UnsafeFPMath) {
1017       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1018       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1019 
1020       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
1021       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
1022     } else {
1023       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
1024       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
1025 
1026       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
1027       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
1028     }
1029   }
1030 
1031   if (Subtarget.has64BitSupport())
1032     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1033 
1034   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1035 
1036   if (!isPPC64) {
1037     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1038     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1039   }
1040 
1041   setBooleanContents(ZeroOrOneBooleanContent);
1042 
1043   if (Subtarget.hasAltivec()) {
1044     // Altivec instructions set fields to all zeros or all ones.
1045     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1046   }
1047 
1048   if (!isPPC64) {
1049     // These libcalls are not available in 32-bit.
1050     setLibcallName(RTLIB::SHL_I128, nullptr);
1051     setLibcallName(RTLIB::SRL_I128, nullptr);
1052     setLibcallName(RTLIB::SRA_I128, nullptr);
1053   }
1054 
1055   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1056 
1057   // We have target-specific dag combine patterns for the following nodes:
1058   setTargetDAGCombine(ISD::SHL);
1059   setTargetDAGCombine(ISD::SRA);
1060   setTargetDAGCombine(ISD::SRL);
1061   setTargetDAGCombine(ISD::SINT_TO_FP);
1062   setTargetDAGCombine(ISD::BUILD_VECTOR);
1063   if (Subtarget.hasFPCVT())
1064     setTargetDAGCombine(ISD::UINT_TO_FP);
1065   setTargetDAGCombine(ISD::LOAD);
1066   setTargetDAGCombine(ISD::STORE);
1067   setTargetDAGCombine(ISD::BR_CC);
1068   if (Subtarget.useCRBits())
1069     setTargetDAGCombine(ISD::BRCOND);
1070   setTargetDAGCombine(ISD::BSWAP);
1071   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1072   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1073   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1074 
1075   setTargetDAGCombine(ISD::SIGN_EXTEND);
1076   setTargetDAGCombine(ISD::ZERO_EXTEND);
1077   setTargetDAGCombine(ISD::ANY_EXTEND);
1078 
1079   if (Subtarget.useCRBits()) {
1080     setTargetDAGCombine(ISD::TRUNCATE);
1081     setTargetDAGCombine(ISD::SETCC);
1082     setTargetDAGCombine(ISD::SELECT_CC);
1083   }
1084 
1085   // Use reciprocal estimates.
1086   if (TM.Options.UnsafeFPMath) {
1087     setTargetDAGCombine(ISD::FDIV);
1088     setTargetDAGCombine(ISD::FSQRT);
1089   }
1090 
1091   // Darwin long double math library functions have $LDBL128 appended.
1092   if (Subtarget.isDarwin()) {
1093     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
1094     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
1095     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
1096     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
1097     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
1098     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
1099     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
1100     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
1101     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
1102     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
1103   }
1104 
1105   if (EnableQuadPrecision) {
1106     setLibcallName(RTLIB::LOG_F128, "logf128");
1107     setLibcallName(RTLIB::LOG2_F128, "log2f128");
1108     setLibcallName(RTLIB::LOG10_F128, "log10f128");
1109     setLibcallName(RTLIB::EXP_F128, "expf128");
1110     setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1111     setLibcallName(RTLIB::SIN_F128, "sinf128");
1112     setLibcallName(RTLIB::COS_F128, "cosf128");
1113     setLibcallName(RTLIB::POW_F128, "powf128");
1114     setLibcallName(RTLIB::FMIN_F128, "fminf128");
1115     setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1116     setLibcallName(RTLIB::POWI_F128, "__powikf2");
1117     setLibcallName(RTLIB::REM_F128, "fmodf128");
1118   }
1119 
1120   // With 32 condition bits, we don't need to sink (and duplicate) compares
1121   // aggressively in CodeGenPrep.
1122   if (Subtarget.useCRBits()) {
1123     setHasMultipleConditionRegisters();
1124     setJumpIsExpensive();
1125   }
1126 
1127   setMinFunctionAlignment(2);
1128   if (Subtarget.isDarwin())
1129     setPrefFunctionAlignment(4);
1130 
1131   switch (Subtarget.getDarwinDirective()) {
1132   default: break;
1133   case PPC::DIR_970:
1134   case PPC::DIR_A2:
1135   case PPC::DIR_E500:
1136   case PPC::DIR_E500mc:
1137   case PPC::DIR_E5500:
1138   case PPC::DIR_PWR4:
1139   case PPC::DIR_PWR5:
1140   case PPC::DIR_PWR5X:
1141   case PPC::DIR_PWR6:
1142   case PPC::DIR_PWR6X:
1143   case PPC::DIR_PWR7:
1144   case PPC::DIR_PWR8:
1145   case PPC::DIR_PWR9:
1146     setPrefFunctionAlignment(4);
1147     setPrefLoopAlignment(4);
1148     break;
1149   }
1150 
1151   if (Subtarget.enableMachineScheduler())
1152     setSchedulingPreference(Sched::Source);
1153   else
1154     setSchedulingPreference(Sched::Hybrid);
1155 
1156   computeRegisterProperties(STI.getRegisterInfo());
1157 
1158   // The Freescale cores do better with aggressive inlining of memcpy and
1159   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1160   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
1161       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
1162     MaxStoresPerMemset = 32;
1163     MaxStoresPerMemsetOptSize = 16;
1164     MaxStoresPerMemcpy = 32;
1165     MaxStoresPerMemcpyOptSize = 8;
1166     MaxStoresPerMemmove = 32;
1167     MaxStoresPerMemmoveOptSize = 8;
1168   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
1169     // The A2 also benefits from (very) aggressive inlining of memcpy and
1170     // friends. The overhead of a the function call, even when warm, can be
1171     // over one hundred cycles.
1172     MaxStoresPerMemset = 128;
1173     MaxStoresPerMemcpy = 128;
1174     MaxStoresPerMemmove = 128;
1175     MaxLoadsPerMemcmp = 128;
1176   } else {
1177     MaxLoadsPerMemcmp = 8;
1178     MaxLoadsPerMemcmpOptSize = 4;
1179   }
1180 }
1181 
1182 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1183 /// the desired ByVal argument alignment.
1184 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1185                              unsigned MaxMaxAlign) {
1186   if (MaxAlign == MaxMaxAlign)
1187     return;
1188   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1189     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
1190       MaxAlign = 32;
1191     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
1192       MaxAlign = 16;
1193   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1194     unsigned EltAlign = 0;
1195     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1196     if (EltAlign > MaxAlign)
1197       MaxAlign = EltAlign;
1198   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1199     for (auto *EltTy : STy->elements()) {
1200       unsigned EltAlign = 0;
1201       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1202       if (EltAlign > MaxAlign)
1203         MaxAlign = EltAlign;
1204       if (MaxAlign == MaxMaxAlign)
1205         break;
1206     }
1207   }
1208 }
1209 
1210 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1211 /// function arguments in the caller parameter area.
1212 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1213                                                   const DataLayout &DL) const {
1214   // Darwin passes everything on 4 byte boundary.
1215   if (Subtarget.isDarwin())
1216     return 4;
1217 
1218   // 16byte and wider vectors are passed on 16byte boundary.
1219   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1220   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1221   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1222     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1223   return Align;
1224 }
1225 
1226 unsigned PPCTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1227                                                           CallingConv:: ID CC,
1228                                                           EVT VT) const {
1229   if (Subtarget.hasSPE() && VT == MVT::f64)
1230     return 2;
1231   return PPCTargetLowering::getNumRegisters(Context, VT);
1232 }
1233 
1234 MVT PPCTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1235                                                      CallingConv:: ID CC,
1236                                                      EVT VT) const {
1237   if (Subtarget.hasSPE() && VT == MVT::f64)
1238     return MVT::i32;
1239   return PPCTargetLowering::getRegisterType(Context, VT);
1240 }
1241 
1242 bool PPCTargetLowering::useSoftFloat() const {
1243   return Subtarget.useSoftFloat();
1244 }
1245 
1246 bool PPCTargetLowering::hasSPE() const {
1247   return Subtarget.hasSPE();
1248 }
1249 
1250 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1251   switch ((PPCISD::NodeType)Opcode) {
1252   case PPCISD::FIRST_NUMBER:    break;
1253   case PPCISD::FSEL:            return "PPCISD::FSEL";
1254   case PPCISD::FCFID:           return "PPCISD::FCFID";
1255   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1256   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1257   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1258   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1259   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1260   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1261   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1262   case PPCISD::FP_TO_UINT_IN_VSR:
1263                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1264   case PPCISD::FP_TO_SINT_IN_VSR:
1265                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1266   case PPCISD::FRE:             return "PPCISD::FRE";
1267   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1268   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1269   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1270   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1271   case PPCISD::VPERM:           return "PPCISD::VPERM";
1272   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1273   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1274   case PPCISD::XXREVERSE:       return "PPCISD::XXREVERSE";
1275   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1276   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1277   case PPCISD::CMPB:            return "PPCISD::CMPB";
1278   case PPCISD::Hi:              return "PPCISD::Hi";
1279   case PPCISD::Lo:              return "PPCISD::Lo";
1280   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1281   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1282   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1283   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1284   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1285   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1286   case PPCISD::SRL:             return "PPCISD::SRL";
1287   case PPCISD::SRA:             return "PPCISD::SRA";
1288   case PPCISD::SHL:             return "PPCISD::SHL";
1289   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1290   case PPCISD::CALL:            return "PPCISD::CALL";
1291   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1292   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1293   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1294   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1295   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1296   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1297   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1298   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1299   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1300   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1301   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1302   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1303   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1304   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1305   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
1306   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
1307   case PPCISD::VCMP:            return "PPCISD::VCMP";
1308   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1309   case PPCISD::LBRX:            return "PPCISD::LBRX";
1310   case PPCISD::STBRX:           return "PPCISD::STBRX";
1311   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1312   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1313   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1314   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1315   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1316   case PPCISD::SExtVElems:      return "PPCISD::SExtVElems";
1317   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1318   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1319   case PPCISD::ST_VSR_SCAL_INT:
1320                                 return "PPCISD::ST_VSR_SCAL_INT";
1321   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1322   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1323   case PPCISD::BDZ:             return "PPCISD::BDZ";
1324   case PPCISD::MFFS:            return "PPCISD::MFFS";
1325   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1326   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1327   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1328   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1329   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1330   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1331   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1332   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1333   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1334   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1335   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1336   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1337   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1338   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1339   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1340   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1341   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1342   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1343   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1344   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1345   case PPCISD::SC:              return "PPCISD::SC";
1346   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1347   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1348   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1349   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1350   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1351   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1352   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1353   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1354   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1355   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1356   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1357   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1358   }
1359   return nullptr;
1360 }
1361 
1362 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1363                                           EVT VT) const {
1364   if (!VT.isVector())
1365     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1366 
1367   if (Subtarget.hasQPX())
1368     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1369 
1370   return VT.changeVectorElementTypeToInteger();
1371 }
1372 
1373 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1374   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1375   return true;
1376 }
1377 
1378 //===----------------------------------------------------------------------===//
1379 // Node matching predicates, for use by the tblgen matching code.
1380 //===----------------------------------------------------------------------===//
1381 
1382 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1383 static bool isFloatingPointZero(SDValue Op) {
1384   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1385     return CFP->getValueAPF().isZero();
1386   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1387     // Maybe this has already been legalized into the constant pool?
1388     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1389       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1390         return CFP->getValueAPF().isZero();
1391   }
1392   return false;
1393 }
1394 
1395 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1396 /// true if Op is undef or if it matches the specified value.
1397 static bool isConstantOrUndef(int Op, int Val) {
1398   return Op < 0 || Op == Val;
1399 }
1400 
1401 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1402 /// VPKUHUM instruction.
1403 /// The ShuffleKind distinguishes between big-endian operations with
1404 /// two different inputs (0), either-endian operations with two identical
1405 /// inputs (1), and little-endian operations with two different inputs (2).
1406 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1407 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1408                                SelectionDAG &DAG) {
1409   bool IsLE = DAG.getDataLayout().isLittleEndian();
1410   if (ShuffleKind == 0) {
1411     if (IsLE)
1412       return false;
1413     for (unsigned i = 0; i != 16; ++i)
1414       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1415         return false;
1416   } else if (ShuffleKind == 2) {
1417     if (!IsLE)
1418       return false;
1419     for (unsigned i = 0; i != 16; ++i)
1420       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1421         return false;
1422   } else if (ShuffleKind == 1) {
1423     unsigned j = IsLE ? 0 : 1;
1424     for (unsigned i = 0; i != 8; ++i)
1425       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1426           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1427         return false;
1428   }
1429   return true;
1430 }
1431 
1432 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1433 /// VPKUWUM instruction.
1434 /// The ShuffleKind distinguishes between big-endian operations with
1435 /// two different inputs (0), either-endian operations with two identical
1436 /// inputs (1), and little-endian operations with two different inputs (2).
1437 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1438 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1439                                SelectionDAG &DAG) {
1440   bool IsLE = DAG.getDataLayout().isLittleEndian();
1441   if (ShuffleKind == 0) {
1442     if (IsLE)
1443       return false;
1444     for (unsigned i = 0; i != 16; i += 2)
1445       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1446           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1447         return false;
1448   } else if (ShuffleKind == 2) {
1449     if (!IsLE)
1450       return false;
1451     for (unsigned i = 0; i != 16; i += 2)
1452       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1453           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1454         return false;
1455   } else if (ShuffleKind == 1) {
1456     unsigned j = IsLE ? 0 : 2;
1457     for (unsigned i = 0; i != 8; i += 2)
1458       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1459           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1460           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1461           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1462         return false;
1463   }
1464   return true;
1465 }
1466 
1467 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1468 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1469 /// current subtarget.
1470 ///
1471 /// The ShuffleKind distinguishes between big-endian operations with
1472 /// two different inputs (0), either-endian operations with two identical
1473 /// inputs (1), and little-endian operations with two different inputs (2).
1474 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1475 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1476                                SelectionDAG &DAG) {
1477   const PPCSubtarget& Subtarget =
1478     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1479   if (!Subtarget.hasP8Vector())
1480     return false;
1481 
1482   bool IsLE = DAG.getDataLayout().isLittleEndian();
1483   if (ShuffleKind == 0) {
1484     if (IsLE)
1485       return false;
1486     for (unsigned i = 0; i != 16; i += 4)
1487       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1488           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1489           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1490           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1491         return false;
1492   } else if (ShuffleKind == 2) {
1493     if (!IsLE)
1494       return false;
1495     for (unsigned i = 0; i != 16; i += 4)
1496       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1497           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1498           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1499           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1500         return false;
1501   } else if (ShuffleKind == 1) {
1502     unsigned j = IsLE ? 0 : 4;
1503     for (unsigned i = 0; i != 8; i += 4)
1504       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1505           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1506           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1507           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1508           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1509           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1510           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1511           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1512         return false;
1513   }
1514   return true;
1515 }
1516 
1517 /// isVMerge - Common function, used to match vmrg* shuffles.
1518 ///
1519 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1520                      unsigned LHSStart, unsigned RHSStart) {
1521   if (N->getValueType(0) != MVT::v16i8)
1522     return false;
1523   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1524          "Unsupported merge size!");
1525 
1526   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1527     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1528       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1529                              LHSStart+j+i*UnitSize) ||
1530           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1531                              RHSStart+j+i*UnitSize))
1532         return false;
1533     }
1534   return true;
1535 }
1536 
1537 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1538 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1539 /// The ShuffleKind distinguishes between big-endian merges with two
1540 /// different inputs (0), either-endian merges with two identical inputs (1),
1541 /// and little-endian merges with two different inputs (2).  For the latter,
1542 /// the input operands are swapped (see PPCInstrAltivec.td).
1543 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1544                              unsigned ShuffleKind, SelectionDAG &DAG) {
1545   if (DAG.getDataLayout().isLittleEndian()) {
1546     if (ShuffleKind == 1) // unary
1547       return isVMerge(N, UnitSize, 0, 0);
1548     else if (ShuffleKind == 2) // swapped
1549       return isVMerge(N, UnitSize, 0, 16);
1550     else
1551       return false;
1552   } else {
1553     if (ShuffleKind == 1) // unary
1554       return isVMerge(N, UnitSize, 8, 8);
1555     else if (ShuffleKind == 0) // normal
1556       return isVMerge(N, UnitSize, 8, 24);
1557     else
1558       return false;
1559   }
1560 }
1561 
1562 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1563 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1564 /// The ShuffleKind distinguishes between big-endian merges with two
1565 /// different inputs (0), either-endian merges with two identical inputs (1),
1566 /// and little-endian merges with two different inputs (2).  For the latter,
1567 /// the input operands are swapped (see PPCInstrAltivec.td).
1568 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1569                              unsigned ShuffleKind, SelectionDAG &DAG) {
1570   if (DAG.getDataLayout().isLittleEndian()) {
1571     if (ShuffleKind == 1) // unary
1572       return isVMerge(N, UnitSize, 8, 8);
1573     else if (ShuffleKind == 2) // swapped
1574       return isVMerge(N, UnitSize, 8, 24);
1575     else
1576       return false;
1577   } else {
1578     if (ShuffleKind == 1) // unary
1579       return isVMerge(N, UnitSize, 0, 0);
1580     else if (ShuffleKind == 0) // normal
1581       return isVMerge(N, UnitSize, 0, 16);
1582     else
1583       return false;
1584   }
1585 }
1586 
1587 /**
1588  * Common function used to match vmrgew and vmrgow shuffles
1589  *
1590  * The indexOffset determines whether to look for even or odd words in
1591  * the shuffle mask. This is based on the of the endianness of the target
1592  * machine.
1593  *   - Little Endian:
1594  *     - Use offset of 0 to check for odd elements
1595  *     - Use offset of 4 to check for even elements
1596  *   - Big Endian:
1597  *     - Use offset of 0 to check for even elements
1598  *     - Use offset of 4 to check for odd elements
1599  * A detailed description of the vector element ordering for little endian and
1600  * big endian can be found at
1601  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1602  * Targeting your applications - what little endian and big endian IBM XL C/C++
1603  * compiler differences mean to you
1604  *
1605  * The mask to the shuffle vector instruction specifies the indices of the
1606  * elements from the two input vectors to place in the result. The elements are
1607  * numbered in array-access order, starting with the first vector. These vectors
1608  * are always of type v16i8, thus each vector will contain 16 elements of size
1609  * 8. More info on the shuffle vector can be found in the
1610  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1611  * Language Reference.
1612  *
1613  * The RHSStartValue indicates whether the same input vectors are used (unary)
1614  * or two different input vectors are used, based on the following:
1615  *   - If the instruction uses the same vector for both inputs, the range of the
1616  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1617  *     be 0.
1618  *   - If the instruction has two different vectors then the range of the
1619  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1620  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1621  *     to 31 specify elements in the second vector).
1622  *
1623  * \param[in] N The shuffle vector SD Node to analyze
1624  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1625  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1626  * vector to the shuffle_vector instruction
1627  * \return true iff this shuffle vector represents an even or odd word merge
1628  */
1629 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1630                      unsigned RHSStartValue) {
1631   if (N->getValueType(0) != MVT::v16i8)
1632     return false;
1633 
1634   for (unsigned i = 0; i < 2; ++i)
1635     for (unsigned j = 0; j < 4; ++j)
1636       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1637                              i*RHSStartValue+j+IndexOffset) ||
1638           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1639                              i*RHSStartValue+j+IndexOffset+8))
1640         return false;
1641   return true;
1642 }
1643 
1644 /**
1645  * Determine if the specified shuffle mask is suitable for the vmrgew or
1646  * vmrgow instructions.
1647  *
1648  * \param[in] N The shuffle vector SD Node to analyze
1649  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1650  * \param[in] ShuffleKind Identify the type of merge:
1651  *   - 0 = big-endian merge with two different inputs;
1652  *   - 1 = either-endian merge with two identical inputs;
1653  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1654  *     little-endian merges).
1655  * \param[in] DAG The current SelectionDAG
1656  * \return true iff this shuffle mask
1657  */
1658 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1659                               unsigned ShuffleKind, SelectionDAG &DAG) {
1660   if (DAG.getDataLayout().isLittleEndian()) {
1661     unsigned indexOffset = CheckEven ? 4 : 0;
1662     if (ShuffleKind == 1) // Unary
1663       return isVMerge(N, indexOffset, 0);
1664     else if (ShuffleKind == 2) // swapped
1665       return isVMerge(N, indexOffset, 16);
1666     else
1667       return false;
1668   }
1669   else {
1670     unsigned indexOffset = CheckEven ? 0 : 4;
1671     if (ShuffleKind == 1) // Unary
1672       return isVMerge(N, indexOffset, 0);
1673     else if (ShuffleKind == 0) // Normal
1674       return isVMerge(N, indexOffset, 16);
1675     else
1676       return false;
1677   }
1678   return false;
1679 }
1680 
1681 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1682 /// amount, otherwise return -1.
1683 /// The ShuffleKind distinguishes between big-endian operations with two
1684 /// different inputs (0), either-endian operations with two identical inputs
1685 /// (1), and little-endian operations with two different inputs (2).  For the
1686 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1687 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1688                              SelectionDAG &DAG) {
1689   if (N->getValueType(0) != MVT::v16i8)
1690     return -1;
1691 
1692   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1693 
1694   // Find the first non-undef value in the shuffle mask.
1695   unsigned i;
1696   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1697     /*search*/;
1698 
1699   if (i == 16) return -1;  // all undef.
1700 
1701   // Otherwise, check to see if the rest of the elements are consecutively
1702   // numbered from this value.
1703   unsigned ShiftAmt = SVOp->getMaskElt(i);
1704   if (ShiftAmt < i) return -1;
1705 
1706   ShiftAmt -= i;
1707   bool isLE = DAG.getDataLayout().isLittleEndian();
1708 
1709   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1710     // Check the rest of the elements to see if they are consecutive.
1711     for (++i; i != 16; ++i)
1712       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1713         return -1;
1714   } else if (ShuffleKind == 1) {
1715     // Check the rest of the elements to see if they are consecutive.
1716     for (++i; i != 16; ++i)
1717       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1718         return -1;
1719   } else
1720     return -1;
1721 
1722   if (isLE)
1723     ShiftAmt = 16 - ShiftAmt;
1724 
1725   return ShiftAmt;
1726 }
1727 
1728 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1729 /// specifies a splat of a single element that is suitable for input to
1730 /// VSPLTB/VSPLTH/VSPLTW.
1731 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1732   assert(N->getValueType(0) == MVT::v16i8 &&
1733          (EltSize == 1 || EltSize == 2 || EltSize == 4));
1734 
1735   // The consecutive indices need to specify an element, not part of two
1736   // different elements.  So abandon ship early if this isn't the case.
1737   if (N->getMaskElt(0) % EltSize != 0)
1738     return false;
1739 
1740   // This is a splat operation if each element of the permute is the same, and
1741   // if the value doesn't reference the second vector.
1742   unsigned ElementBase = N->getMaskElt(0);
1743 
1744   // FIXME: Handle UNDEF elements too!
1745   if (ElementBase >= 16)
1746     return false;
1747 
1748   // Check that the indices are consecutive, in the case of a multi-byte element
1749   // splatted with a v16i8 mask.
1750   for (unsigned i = 1; i != EltSize; ++i)
1751     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1752       return false;
1753 
1754   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1755     if (N->getMaskElt(i) < 0) continue;
1756     for (unsigned j = 0; j != EltSize; ++j)
1757       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1758         return false;
1759   }
1760   return true;
1761 }
1762 
1763 /// Check that the mask is shuffling N byte elements. Within each N byte
1764 /// element of the mask, the indices could be either in increasing or
1765 /// decreasing order as long as they are consecutive.
1766 /// \param[in] N the shuffle vector SD Node to analyze
1767 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1768 /// Word/DoubleWord/QuadWord).
1769 /// \param[in] StepLen the delta indices number among the N byte element, if
1770 /// the mask is in increasing/decreasing order then it is 1/-1.
1771 /// \return true iff the mask is shuffling N byte elements.
1772 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1773                                    int StepLen) {
1774   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1775          "Unexpected element width.");
1776   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1777 
1778   unsigned NumOfElem = 16 / Width;
1779   unsigned MaskVal[16]; //  Width is never greater than 16
1780   for (unsigned i = 0; i < NumOfElem; ++i) {
1781     MaskVal[0] = N->getMaskElt(i * Width);
1782     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1783       return false;
1784     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1785       return false;
1786     }
1787 
1788     for (unsigned int j = 1; j < Width; ++j) {
1789       MaskVal[j] = N->getMaskElt(i * Width + j);
1790       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1791         return false;
1792       }
1793     }
1794   }
1795 
1796   return true;
1797 }
1798 
1799 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1800                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1801   if (!isNByteElemShuffleMask(N, 4, 1))
1802     return false;
1803 
1804   // Now we look at mask elements 0,4,8,12
1805   unsigned M0 = N->getMaskElt(0) / 4;
1806   unsigned M1 = N->getMaskElt(4) / 4;
1807   unsigned M2 = N->getMaskElt(8) / 4;
1808   unsigned M3 = N->getMaskElt(12) / 4;
1809   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1810   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1811 
1812   // Below, let H and L be arbitrary elements of the shuffle mask
1813   // where H is in the range [4,7] and L is in the range [0,3].
1814   // H, 1, 2, 3 or L, 5, 6, 7
1815   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1816       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1817     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1818     InsertAtByte = IsLE ? 12 : 0;
1819     Swap = M0 < 4;
1820     return true;
1821   }
1822   // 0, H, 2, 3 or 4, L, 6, 7
1823   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1824       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1825     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1826     InsertAtByte = IsLE ? 8 : 4;
1827     Swap = M1 < 4;
1828     return true;
1829   }
1830   // 0, 1, H, 3 or 4, 5, L, 7
1831   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1832       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1833     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1834     InsertAtByte = IsLE ? 4 : 8;
1835     Swap = M2 < 4;
1836     return true;
1837   }
1838   // 0, 1, 2, H or 4, 5, 6, L
1839   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1840       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1841     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1842     InsertAtByte = IsLE ? 0 : 12;
1843     Swap = M3 < 4;
1844     return true;
1845   }
1846 
1847   // If both vector operands for the shuffle are the same vector, the mask will
1848   // contain only elements from the first one and the second one will be undef.
1849   if (N->getOperand(1).isUndef()) {
1850     ShiftElts = 0;
1851     Swap = true;
1852     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1853     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1854       InsertAtByte = IsLE ? 12 : 0;
1855       return true;
1856     }
1857     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1858       InsertAtByte = IsLE ? 8 : 4;
1859       return true;
1860     }
1861     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1862       InsertAtByte = IsLE ? 4 : 8;
1863       return true;
1864     }
1865     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1866       InsertAtByte = IsLE ? 0 : 12;
1867       return true;
1868     }
1869   }
1870 
1871   return false;
1872 }
1873 
1874 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1875                                bool &Swap, bool IsLE) {
1876   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1877   // Ensure each byte index of the word is consecutive.
1878   if (!isNByteElemShuffleMask(N, 4, 1))
1879     return false;
1880 
1881   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
1882   unsigned M0 = N->getMaskElt(0) / 4;
1883   unsigned M1 = N->getMaskElt(4) / 4;
1884   unsigned M2 = N->getMaskElt(8) / 4;
1885   unsigned M3 = N->getMaskElt(12) / 4;
1886 
1887   // If both vector operands for the shuffle are the same vector, the mask will
1888   // contain only elements from the first one and the second one will be undef.
1889   if (N->getOperand(1).isUndef()) {
1890     assert(M0 < 4 && "Indexing into an undef vector?");
1891     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
1892       return false;
1893 
1894     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
1895     Swap = false;
1896     return true;
1897   }
1898 
1899   // Ensure each word index of the ShuffleVector Mask is consecutive.
1900   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
1901     return false;
1902 
1903   if (IsLE) {
1904     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
1905       // Input vectors don't need to be swapped if the leading element
1906       // of the result is one of the 3 left elements of the second vector
1907       // (or if there is no shift to be done at all).
1908       Swap = false;
1909       ShiftElts = (8 - M0) % 8;
1910     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
1911       // Input vectors need to be swapped if the leading element
1912       // of the result is one of the 3 left elements of the first vector
1913       // (or if we're shifting by 4 - thereby simply swapping the vectors).
1914       Swap = true;
1915       ShiftElts = (4 - M0) % 4;
1916     }
1917 
1918     return true;
1919   } else {                                          // BE
1920     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
1921       // Input vectors don't need to be swapped if the leading element
1922       // of the result is one of the 4 elements of the first vector.
1923       Swap = false;
1924       ShiftElts = M0;
1925     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
1926       // Input vectors need to be swapped if the leading element
1927       // of the result is one of the 4 elements of the right vector.
1928       Swap = true;
1929       ShiftElts = M0 - 4;
1930     }
1931 
1932     return true;
1933   }
1934 }
1935 
1936 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
1937   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1938 
1939   if (!isNByteElemShuffleMask(N, Width, -1))
1940     return false;
1941 
1942   for (int i = 0; i < 16; i += Width)
1943     if (N->getMaskElt(i) != i + Width - 1)
1944       return false;
1945 
1946   return true;
1947 }
1948 
1949 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
1950   return isXXBRShuffleMaskHelper(N, 2);
1951 }
1952 
1953 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
1954   return isXXBRShuffleMaskHelper(N, 4);
1955 }
1956 
1957 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
1958   return isXXBRShuffleMaskHelper(N, 8);
1959 }
1960 
1961 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
1962   return isXXBRShuffleMaskHelper(N, 16);
1963 }
1964 
1965 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
1966 /// if the inputs to the instruction should be swapped and set \p DM to the
1967 /// value for the immediate.
1968 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
1969 /// AND element 0 of the result comes from the first input (LE) or second input
1970 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
1971 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
1972 /// mask.
1973 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
1974                                bool &Swap, bool IsLE) {
1975   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1976 
1977   // Ensure each byte index of the double word is consecutive.
1978   if (!isNByteElemShuffleMask(N, 8, 1))
1979     return false;
1980 
1981   unsigned M0 = N->getMaskElt(0) / 8;
1982   unsigned M1 = N->getMaskElt(8) / 8;
1983   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
1984 
1985   // If both vector operands for the shuffle are the same vector, the mask will
1986   // contain only elements from the first one and the second one will be undef.
1987   if (N->getOperand(1).isUndef()) {
1988     if ((M0 | M1) < 2) {
1989       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
1990       Swap = false;
1991       return true;
1992     } else
1993       return false;
1994   }
1995 
1996   if (IsLE) {
1997     if (M0 > 1 && M1 < 2) {
1998       Swap = false;
1999     } else if (M0 < 2 && M1 > 1) {
2000       M0 = (M0 + 2) % 4;
2001       M1 = (M1 + 2) % 4;
2002       Swap = true;
2003     } else
2004       return false;
2005 
2006     // Note: if control flow comes here that means Swap is already set above
2007     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2008     return true;
2009   } else { // BE
2010     if (M0 < 2 && M1 > 1) {
2011       Swap = false;
2012     } else if (M0 > 1 && M1 < 2) {
2013       M0 = (M0 + 2) % 4;
2014       M1 = (M1 + 2) % 4;
2015       Swap = true;
2016     } else
2017       return false;
2018 
2019     // Note: if control flow comes here that means Swap is already set above
2020     DM = (M0 << 1) + (M1 & 1);
2021     return true;
2022   }
2023 }
2024 
2025 
2026 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
2027 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
2028 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
2029                                 SelectionDAG &DAG) {
2030   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2031   assert(isSplatShuffleMask(SVOp, EltSize));
2032   if (DAG.getDataLayout().isLittleEndian())
2033     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2034   else
2035     return SVOp->getMaskElt(0) / EltSize;
2036 }
2037 
2038 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2039 /// by using a vspltis[bhw] instruction of the specified element size, return
2040 /// the constant being splatted.  The ByteSize field indicates the number of
2041 /// bytes of each element [124] -> [bhw].
2042 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2043   SDValue OpVal(nullptr, 0);
2044 
2045   // If ByteSize of the splat is bigger than the element size of the
2046   // build_vector, then we have a case where we are checking for a splat where
2047   // multiple elements of the buildvector are folded together into a single
2048   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2049   unsigned EltSize = 16/N->getNumOperands();
2050   if (EltSize < ByteSize) {
2051     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2052     SDValue UniquedVals[4];
2053     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2054 
2055     // See if all of the elements in the buildvector agree across.
2056     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2057       if (N->getOperand(i).isUndef()) continue;
2058       // If the element isn't a constant, bail fully out.
2059       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2060 
2061       if (!UniquedVals[i&(Multiple-1)].getNode())
2062         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2063       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2064         return SDValue();  // no match.
2065     }
2066 
2067     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2068     // either constant or undef values that are identical for each chunk.  See
2069     // if these chunks can form into a larger vspltis*.
2070 
2071     // Check to see if all of the leading entries are either 0 or -1.  If
2072     // neither, then this won't fit into the immediate field.
2073     bool LeadingZero = true;
2074     bool LeadingOnes = true;
2075     for (unsigned i = 0; i != Multiple-1; ++i) {
2076       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2077 
2078       LeadingZero &= isNullConstant(UniquedVals[i]);
2079       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2080     }
2081     // Finally, check the least significant entry.
2082     if (LeadingZero) {
2083       if (!UniquedVals[Multiple-1].getNode())
2084         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2085       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2086       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2087         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2088     }
2089     if (LeadingOnes) {
2090       if (!UniquedVals[Multiple-1].getNode())
2091         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2092       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2093       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2094         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2095     }
2096 
2097     return SDValue();
2098   }
2099 
2100   // Check to see if this buildvec has a single non-undef value in its elements.
2101   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2102     if (N->getOperand(i).isUndef()) continue;
2103     if (!OpVal.getNode())
2104       OpVal = N->getOperand(i);
2105     else if (OpVal != N->getOperand(i))
2106       return SDValue();
2107   }
2108 
2109   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2110 
2111   unsigned ValSizeInBytes = EltSize;
2112   uint64_t Value = 0;
2113   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2114     Value = CN->getZExtValue();
2115   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2116     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2117     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2118   }
2119 
2120   // If the splat value is larger than the element value, then we can never do
2121   // this splat.  The only case that we could fit the replicated bits into our
2122   // immediate field for would be zero, and we prefer to use vxor for it.
2123   if (ValSizeInBytes < ByteSize) return SDValue();
2124 
2125   // If the element value is larger than the splat value, check if it consists
2126   // of a repeated bit pattern of size ByteSize.
2127   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2128     return SDValue();
2129 
2130   // Properly sign extend the value.
2131   int MaskVal = SignExtend32(Value, ByteSize * 8);
2132 
2133   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2134   if (MaskVal == 0) return SDValue();
2135 
2136   // Finally, if this value fits in a 5 bit sext field, return it
2137   if (SignExtend32<5>(MaskVal) == MaskVal)
2138     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2139   return SDValue();
2140 }
2141 
2142 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2143 /// amount, otherwise return -1.
2144 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2145   EVT VT = N->getValueType(0);
2146   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2147     return -1;
2148 
2149   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2150 
2151   // Find the first non-undef value in the shuffle mask.
2152   unsigned i;
2153   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2154     /*search*/;
2155 
2156   if (i == 4) return -1;  // all undef.
2157 
2158   // Otherwise, check to see if the rest of the elements are consecutively
2159   // numbered from this value.
2160   unsigned ShiftAmt = SVOp->getMaskElt(i);
2161   if (ShiftAmt < i) return -1;
2162   ShiftAmt -= i;
2163 
2164   // Check the rest of the elements to see if they are consecutive.
2165   for (++i; i != 4; ++i)
2166     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2167       return -1;
2168 
2169   return ShiftAmt;
2170 }
2171 
2172 //===----------------------------------------------------------------------===//
2173 //  Addressing Mode Selection
2174 //===----------------------------------------------------------------------===//
2175 
2176 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2177 /// or 64-bit immediate, and if the value can be accurately represented as a
2178 /// sign extension from a 16-bit value.  If so, this returns true and the
2179 /// immediate.
2180 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2181   if (!isa<ConstantSDNode>(N))
2182     return false;
2183 
2184   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2185   if (N->getValueType(0) == MVT::i32)
2186     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2187   else
2188     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2189 }
2190 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2191   return isIntS16Immediate(Op.getNode(), Imm);
2192 }
2193 
2194 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2195 /// can be represented as an indexed [r+r] operation.  Returns false if it
2196 /// can be more efficiently represented with [r+imm].
2197 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2198                                             SDValue &Index,
2199                                             SelectionDAG &DAG) const {
2200   int16_t imm = 0;
2201   if (N.getOpcode() == ISD::ADD) {
2202     if (isIntS16Immediate(N.getOperand(1), imm))
2203       return false;    // r+i
2204     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2205       return false;    // r+i
2206 
2207     Base = N.getOperand(0);
2208     Index = N.getOperand(1);
2209     return true;
2210   } else if (N.getOpcode() == ISD::OR) {
2211     if (isIntS16Immediate(N.getOperand(1), imm))
2212       return false;    // r+i can fold it if we can.
2213 
2214     // If this is an or of disjoint bitfields, we can codegen this as an add
2215     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2216     // disjoint.
2217     KnownBits LHSKnown, RHSKnown;
2218     DAG.computeKnownBits(N.getOperand(0), LHSKnown);
2219 
2220     if (LHSKnown.Zero.getBoolValue()) {
2221       DAG.computeKnownBits(N.getOperand(1), RHSKnown);
2222       // If all of the bits are known zero on the LHS or RHS, the add won't
2223       // carry.
2224       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2225         Base = N.getOperand(0);
2226         Index = N.getOperand(1);
2227         return true;
2228       }
2229     }
2230   }
2231 
2232   return false;
2233 }
2234 
2235 // If we happen to be doing an i64 load or store into a stack slot that has
2236 // less than a 4-byte alignment, then the frame-index elimination may need to
2237 // use an indexed load or store instruction (because the offset may not be a
2238 // multiple of 4). The extra register needed to hold the offset comes from the
2239 // register scavenger, and it is possible that the scavenger will need to use
2240 // an emergency spill slot. As a result, we need to make sure that a spill slot
2241 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2242 // stack slot.
2243 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2244   // FIXME: This does not handle the LWA case.
2245   if (VT != MVT::i64)
2246     return;
2247 
2248   // NOTE: We'll exclude negative FIs here, which come from argument
2249   // lowering, because there are no known test cases triggering this problem
2250   // using packed structures (or similar). We can remove this exclusion if
2251   // we find such a test case. The reason why this is so test-case driven is
2252   // because this entire 'fixup' is only to prevent crashes (from the
2253   // register scavenger) on not-really-valid inputs. For example, if we have:
2254   //   %a = alloca i1
2255   //   %b = bitcast i1* %a to i64*
2256   //   store i64* a, i64 b
2257   // then the store should really be marked as 'align 1', but is not. If it
2258   // were marked as 'align 1' then the indexed form would have been
2259   // instruction-selected initially, and the problem this 'fixup' is preventing
2260   // won't happen regardless.
2261   if (FrameIdx < 0)
2262     return;
2263 
2264   MachineFunction &MF = DAG.getMachineFunction();
2265   MachineFrameInfo &MFI = MF.getFrameInfo();
2266 
2267   unsigned Align = MFI.getObjectAlignment(FrameIdx);
2268   if (Align >= 4)
2269     return;
2270 
2271   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2272   FuncInfo->setHasNonRISpills();
2273 }
2274 
2275 /// Returns true if the address N can be represented by a base register plus
2276 /// a signed 16-bit displacement [r+imm], and if it is not better
2277 /// represented as reg+reg.  If \p Alignment is non-zero, only accept
2278 /// displacements that are multiples of that value.
2279 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2280                                             SDValue &Base,
2281                                             SelectionDAG &DAG,
2282                                             unsigned Alignment) const {
2283   // FIXME dl should come from parent load or store, not from address
2284   SDLoc dl(N);
2285   // If this can be more profitably realized as r+r, fail.
2286   if (SelectAddressRegReg(N, Disp, Base, DAG))
2287     return false;
2288 
2289   if (N.getOpcode() == ISD::ADD) {
2290     int16_t imm = 0;
2291     if (isIntS16Immediate(N.getOperand(1), imm) &&
2292         (!Alignment || (imm % Alignment) == 0)) {
2293       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2294       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2295         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2296         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2297       } else {
2298         Base = N.getOperand(0);
2299       }
2300       return true; // [r+i]
2301     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2302       // Match LOAD (ADD (X, Lo(G))).
2303       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2304              && "Cannot handle constant offsets yet!");
2305       Disp = N.getOperand(1).getOperand(0);  // The global address.
2306       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2307              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2308              Disp.getOpcode() == ISD::TargetConstantPool ||
2309              Disp.getOpcode() == ISD::TargetJumpTable);
2310       Base = N.getOperand(0);
2311       return true;  // [&g+r]
2312     }
2313   } else if (N.getOpcode() == ISD::OR) {
2314     int16_t imm = 0;
2315     if (isIntS16Immediate(N.getOperand(1), imm) &&
2316         (!Alignment || (imm % Alignment) == 0)) {
2317       // If this is an or of disjoint bitfields, we can codegen this as an add
2318       // (for better address arithmetic) if the LHS and RHS of the OR are
2319       // provably disjoint.
2320       KnownBits LHSKnown;
2321       DAG.computeKnownBits(N.getOperand(0), LHSKnown);
2322 
2323       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2324         // If all of the bits are known zero on the LHS or RHS, the add won't
2325         // carry.
2326         if (FrameIndexSDNode *FI =
2327               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2328           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2329           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2330         } else {
2331           Base = N.getOperand(0);
2332         }
2333         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2334         return true;
2335       }
2336     }
2337   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2338     // Loading from a constant address.
2339 
2340     // If this address fits entirely in a 16-bit sext immediate field, codegen
2341     // this as "d, 0"
2342     int16_t Imm;
2343     if (isIntS16Immediate(CN, Imm) && (!Alignment || (Imm % Alignment) == 0)) {
2344       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2345       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2346                              CN->getValueType(0));
2347       return true;
2348     }
2349 
2350     // Handle 32-bit sext immediates with LIS + addr mode.
2351     if ((CN->getValueType(0) == MVT::i32 ||
2352          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2353         (!Alignment || (CN->getZExtValue() % Alignment) == 0)) {
2354       int Addr = (int)CN->getZExtValue();
2355 
2356       // Otherwise, break this down into an LIS + disp.
2357       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2358 
2359       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2360                                    MVT::i32);
2361       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2362       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2363       return true;
2364     }
2365   }
2366 
2367   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2368   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2369     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2370     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2371   } else
2372     Base = N;
2373   return true;      // [r+0]
2374 }
2375 
2376 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2377 /// represented as an indexed [r+r] operation.
2378 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2379                                                 SDValue &Index,
2380                                                 SelectionDAG &DAG) const {
2381   // Check to see if we can easily represent this as an [r+r] address.  This
2382   // will fail if it thinks that the address is more profitably represented as
2383   // reg+imm, e.g. where imm = 0.
2384   if (SelectAddressRegReg(N, Base, Index, DAG))
2385     return true;
2386 
2387   // If the address is the result of an add, we will utilize the fact that the
2388   // address calculation includes an implicit add.  However, we can reduce
2389   // register pressure if we do not materialize a constant just for use as the
2390   // index register.  We only get rid of the add if it is not an add of a
2391   // value and a 16-bit signed constant and both have a single use.
2392   int16_t imm = 0;
2393   if (N.getOpcode() == ISD::ADD &&
2394       (!isIntS16Immediate(N.getOperand(1), imm) ||
2395        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2396     Base = N.getOperand(0);
2397     Index = N.getOperand(1);
2398     return true;
2399   }
2400 
2401   // Otherwise, do it the hard way, using R0 as the base register.
2402   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2403                          N.getValueType());
2404   Index = N;
2405   return true;
2406 }
2407 
2408 /// getPreIndexedAddressParts - returns true by value, base pointer and
2409 /// offset pointer and addressing mode by reference if the node's address
2410 /// can be legally represented as pre-indexed load / store address.
2411 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2412                                                   SDValue &Offset,
2413                                                   ISD::MemIndexedMode &AM,
2414                                                   SelectionDAG &DAG) const {
2415   if (DisablePPCPreinc) return false;
2416 
2417   bool isLoad = true;
2418   SDValue Ptr;
2419   EVT VT;
2420   unsigned Alignment;
2421   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2422     Ptr = LD->getBasePtr();
2423     VT = LD->getMemoryVT();
2424     Alignment = LD->getAlignment();
2425   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2426     Ptr = ST->getBasePtr();
2427     VT  = ST->getMemoryVT();
2428     Alignment = ST->getAlignment();
2429     isLoad = false;
2430   } else
2431     return false;
2432 
2433   // PowerPC doesn't have preinc load/store instructions for vectors (except
2434   // for QPX, which does have preinc r+r forms).
2435   if (VT.isVector()) {
2436     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2437       return false;
2438     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2439       AM = ISD::PRE_INC;
2440       return true;
2441     }
2442   }
2443 
2444   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2445     // Common code will reject creating a pre-inc form if the base pointer
2446     // is a frame index, or if N is a store and the base pointer is either
2447     // the same as or a predecessor of the value being stored.  Check for
2448     // those situations here, and try with swapped Base/Offset instead.
2449     bool Swap = false;
2450 
2451     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2452       Swap = true;
2453     else if (!isLoad) {
2454       SDValue Val = cast<StoreSDNode>(N)->getValue();
2455       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2456         Swap = true;
2457     }
2458 
2459     if (Swap)
2460       std::swap(Base, Offset);
2461 
2462     AM = ISD::PRE_INC;
2463     return true;
2464   }
2465 
2466   // LDU/STU can only handle immediates that are a multiple of 4.
2467   if (VT != MVT::i64) {
2468     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2469       return false;
2470   } else {
2471     // LDU/STU need an address with at least 4-byte alignment.
2472     if (Alignment < 4)
2473       return false;
2474 
2475     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2476       return false;
2477   }
2478 
2479   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2480     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2481     // sext i32 to i64 when addr mode is r+i.
2482     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2483         LD->getExtensionType() == ISD::SEXTLOAD &&
2484         isa<ConstantSDNode>(Offset))
2485       return false;
2486   }
2487 
2488   AM = ISD::PRE_INC;
2489   return true;
2490 }
2491 
2492 //===----------------------------------------------------------------------===//
2493 //  LowerOperation implementation
2494 //===----------------------------------------------------------------------===//
2495 
2496 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2497 /// and LoOpFlags to the target MO flags.
2498 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2499                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2500                                const GlobalValue *GV = nullptr) {
2501   HiOpFlags = PPCII::MO_HA;
2502   LoOpFlags = PPCII::MO_LO;
2503 
2504   // Don't use the pic base if not in PIC relocation model.
2505   if (IsPIC) {
2506     HiOpFlags |= PPCII::MO_PIC_FLAG;
2507     LoOpFlags |= PPCII::MO_PIC_FLAG;
2508   }
2509 
2510   // If this is a reference to a global value that requires a non-lazy-ptr, make
2511   // sure that instruction lowering adds it.
2512   if (GV && Subtarget.hasLazyResolverStub(GV)) {
2513     HiOpFlags |= PPCII::MO_NLP_FLAG;
2514     LoOpFlags |= PPCII::MO_NLP_FLAG;
2515 
2516     if (GV->hasHiddenVisibility()) {
2517       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2518       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2519     }
2520   }
2521 }
2522 
2523 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2524                              SelectionDAG &DAG) {
2525   SDLoc DL(HiPart);
2526   EVT PtrVT = HiPart.getValueType();
2527   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2528 
2529   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2530   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2531 
2532   // With PIC, the first instruction is actually "GR+hi(&G)".
2533   if (isPIC)
2534     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2535                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2536 
2537   // Generate non-pic code that has direct accesses to the constant pool.
2538   // The address of the global is just (hi(&g)+lo(&g)).
2539   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2540 }
2541 
2542 static void setUsesTOCBasePtr(MachineFunction &MF) {
2543   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2544   FuncInfo->setUsesTOCBasePtr();
2545 }
2546 
2547 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2548   setUsesTOCBasePtr(DAG.getMachineFunction());
2549 }
2550 
2551 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit,
2552                            SDValue GA) {
2553   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2554   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
2555                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2556 
2557   SDValue Ops[] = { GA, Reg };
2558   return DAG.getMemIntrinsicNode(
2559       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2560       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
2561       MachineMemOperand::MOLoad);
2562 }
2563 
2564 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2565                                              SelectionDAG &DAG) const {
2566   EVT PtrVT = Op.getValueType();
2567   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2568   const Constant *C = CP->getConstVal();
2569 
2570   // 64-bit SVR4 ABI code is always position-independent.
2571   // The actual address of the GlobalValue is stored in the TOC.
2572   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2573     setUsesTOCBasePtr(DAG);
2574     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2575     return getTOCEntry(DAG, SDLoc(CP), true, GA);
2576   }
2577 
2578   unsigned MOHiFlag, MOLoFlag;
2579   bool IsPIC = isPositionIndependent();
2580   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2581 
2582   if (IsPIC && Subtarget.isSVR4ABI()) {
2583     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2584                                            PPCII::MO_PIC_FLAG);
2585     return getTOCEntry(DAG, SDLoc(CP), false, GA);
2586   }
2587 
2588   SDValue CPIHi =
2589     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2590   SDValue CPILo =
2591     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2592   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2593 }
2594 
2595 // For 64-bit PowerPC, prefer the more compact relative encodings.
2596 // This trades 32 bits per jump table entry for one or two instructions
2597 // on the jump site.
2598 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2599   if (isJumpTableRelative())
2600     return MachineJumpTableInfo::EK_LabelDifference32;
2601 
2602   return TargetLowering::getJumpTableEncoding();
2603 }
2604 
2605 bool PPCTargetLowering::isJumpTableRelative() const {
2606   if (Subtarget.isPPC64())
2607     return true;
2608   return TargetLowering::isJumpTableRelative();
2609 }
2610 
2611 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2612                                                     SelectionDAG &DAG) const {
2613   if (!Subtarget.isPPC64())
2614     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2615 
2616   switch (getTargetMachine().getCodeModel()) {
2617   case CodeModel::Small:
2618   case CodeModel::Medium:
2619     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2620   default:
2621     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2622                        getPointerTy(DAG.getDataLayout()));
2623   }
2624 }
2625 
2626 const MCExpr *
2627 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2628                                                 unsigned JTI,
2629                                                 MCContext &Ctx) const {
2630   if (!Subtarget.isPPC64())
2631     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2632 
2633   switch (getTargetMachine().getCodeModel()) {
2634   case CodeModel::Small:
2635   case CodeModel::Medium:
2636     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2637   default:
2638     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2639   }
2640 }
2641 
2642 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2643   EVT PtrVT = Op.getValueType();
2644   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2645 
2646   // 64-bit SVR4 ABI code is always position-independent.
2647   // The actual address of the GlobalValue is stored in the TOC.
2648   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2649     setUsesTOCBasePtr(DAG);
2650     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2651     return getTOCEntry(DAG, SDLoc(JT), true, GA);
2652   }
2653 
2654   unsigned MOHiFlag, MOLoFlag;
2655   bool IsPIC = isPositionIndependent();
2656   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2657 
2658   if (IsPIC && Subtarget.isSVR4ABI()) {
2659     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2660                                         PPCII::MO_PIC_FLAG);
2661     return getTOCEntry(DAG, SDLoc(GA), false, GA);
2662   }
2663 
2664   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2665   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2666   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2667 }
2668 
2669 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2670                                              SelectionDAG &DAG) const {
2671   EVT PtrVT = Op.getValueType();
2672   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2673   const BlockAddress *BA = BASDN->getBlockAddress();
2674 
2675   // 64-bit SVR4 ABI code is always position-independent.
2676   // The actual BlockAddress is stored in the TOC.
2677   if (Subtarget.isSVR4ABI() && isPositionIndependent()) {
2678     if (Subtarget.isPPC64())
2679       setUsesTOCBasePtr(DAG);
2680     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2681     return getTOCEntry(DAG, SDLoc(BASDN), Subtarget.isPPC64(), GA);
2682   }
2683 
2684   unsigned MOHiFlag, MOLoFlag;
2685   bool IsPIC = isPositionIndependent();
2686   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2687   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2688   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2689   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2690 }
2691 
2692 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2693                                               SelectionDAG &DAG) const {
2694   // FIXME: TLS addresses currently use medium model code sequences,
2695   // which is the most useful form.  Eventually support for small and
2696   // large models could be added if users need it, at the cost of
2697   // additional complexity.
2698   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2699   if (DAG.getTarget().useEmulatedTLS())
2700     return LowerToTLSEmulatedModel(GA, DAG);
2701 
2702   SDLoc dl(GA);
2703   const GlobalValue *GV = GA->getGlobal();
2704   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2705   bool is64bit = Subtarget.isPPC64();
2706   const Module *M = DAG.getMachineFunction().getFunction().getParent();
2707   PICLevel::Level picLevel = M->getPICLevel();
2708 
2709   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
2710 
2711   if (Model == TLSModel::LocalExec) {
2712     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2713                                                PPCII::MO_TPREL_HA);
2714     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2715                                                PPCII::MO_TPREL_LO);
2716     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2717                              : DAG.getRegister(PPC::R2, MVT::i32);
2718 
2719     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2720     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2721   }
2722 
2723   if (Model == TLSModel::InitialExec) {
2724     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2725     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2726                                                 PPCII::MO_TLS);
2727     SDValue GOTPtr;
2728     if (is64bit) {
2729       setUsesTOCBasePtr(DAG);
2730       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2731       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2732                            PtrVT, GOTReg, TGA);
2733     } else
2734       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2735     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2736                                    PtrVT, TGA, GOTPtr);
2737     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2738   }
2739 
2740   if (Model == TLSModel::GeneralDynamic) {
2741     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2742     SDValue GOTPtr;
2743     if (is64bit) {
2744       setUsesTOCBasePtr(DAG);
2745       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2746       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2747                                    GOTReg, TGA);
2748     } else {
2749       if (picLevel == PICLevel::SmallPIC)
2750         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2751       else
2752         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2753     }
2754     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2755                        GOTPtr, TGA, TGA);
2756   }
2757 
2758   if (Model == TLSModel::LocalDynamic) {
2759     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2760     SDValue GOTPtr;
2761     if (is64bit) {
2762       setUsesTOCBasePtr(DAG);
2763       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2764       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2765                            GOTReg, TGA);
2766     } else {
2767       if (picLevel == PICLevel::SmallPIC)
2768         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2769       else
2770         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2771     }
2772     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2773                                   PtrVT, GOTPtr, TGA, TGA);
2774     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2775                                       PtrVT, TLSAddr, TGA);
2776     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2777   }
2778 
2779   llvm_unreachable("Unknown TLS model!");
2780 }
2781 
2782 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2783                                               SelectionDAG &DAG) const {
2784   EVT PtrVT = Op.getValueType();
2785   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2786   SDLoc DL(GSDN);
2787   const GlobalValue *GV = GSDN->getGlobal();
2788 
2789   // 64-bit SVR4 ABI code is always position-independent.
2790   // The actual address of the GlobalValue is stored in the TOC.
2791   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2792     setUsesTOCBasePtr(DAG);
2793     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2794     return getTOCEntry(DAG, DL, true, GA);
2795   }
2796 
2797   unsigned MOHiFlag, MOLoFlag;
2798   bool IsPIC = isPositionIndependent();
2799   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2800 
2801   if (IsPIC && Subtarget.isSVR4ABI()) {
2802     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2803                                             GSDN->getOffset(),
2804                                             PPCII::MO_PIC_FLAG);
2805     return getTOCEntry(DAG, DL, false, GA);
2806   }
2807 
2808   SDValue GAHi =
2809     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2810   SDValue GALo =
2811     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2812 
2813   SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
2814 
2815   // If the global reference is actually to a non-lazy-pointer, we have to do an
2816   // extra load to get the address of the global.
2817   if (MOHiFlag & PPCII::MO_NLP_FLAG)
2818     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2819   return Ptr;
2820 }
2821 
2822 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2823   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2824   SDLoc dl(Op);
2825 
2826   if (Op.getValueType() == MVT::v2i64) {
2827     // When the operands themselves are v2i64 values, we need to do something
2828     // special because VSX has no underlying comparison operations for these.
2829     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2830       // Equality can be handled by casting to the legal type for Altivec
2831       // comparisons, everything else needs to be expanded.
2832       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2833         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2834                  DAG.getSetCC(dl, MVT::v4i32,
2835                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2836                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2837                    CC));
2838       }
2839 
2840       return SDValue();
2841     }
2842 
2843     // We handle most of these in the usual way.
2844     return Op;
2845   }
2846 
2847   // If we're comparing for equality to zero, expose the fact that this is
2848   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
2849   // fold the new nodes.
2850   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
2851     return V;
2852 
2853   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2854     // Leave comparisons against 0 and -1 alone for now, since they're usually
2855     // optimized.  FIXME: revisit this when we can custom lower all setcc
2856     // optimizations.
2857     if (C->isAllOnesValue() || C->isNullValue())
2858       return SDValue();
2859   }
2860 
2861   // If we have an integer seteq/setne, turn it into a compare against zero
2862   // by xor'ing the rhs with the lhs, which is faster than setting a
2863   // condition register, reading it back out, and masking the correct bit.  The
2864   // normal approach here uses sub to do this instead of xor.  Using xor exposes
2865   // the result to other bit-twiddling opportunities.
2866   EVT LHSVT = Op.getOperand(0).getValueType();
2867   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2868     EVT VT = Op.getValueType();
2869     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2870                                 Op.getOperand(1));
2871     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
2872   }
2873   return SDValue();
2874 }
2875 
2876 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2877   SDNode *Node = Op.getNode();
2878   EVT VT = Node->getValueType(0);
2879   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2880   SDValue InChain = Node->getOperand(0);
2881   SDValue VAListPtr = Node->getOperand(1);
2882   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2883   SDLoc dl(Node);
2884 
2885   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
2886 
2887   // gpr_index
2888   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2889                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
2890   InChain = GprIndex.getValue(1);
2891 
2892   if (VT == MVT::i64) {
2893     // Check if GprIndex is even
2894     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
2895                                  DAG.getConstant(1, dl, MVT::i32));
2896     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
2897                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
2898     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
2899                                           DAG.getConstant(1, dl, MVT::i32));
2900     // Align GprIndex to be even if it isn't
2901     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
2902                            GprIndex);
2903   }
2904 
2905   // fpr index is 1 byte after gpr
2906   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2907                                DAG.getConstant(1, dl, MVT::i32));
2908 
2909   // fpr
2910   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2911                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
2912   InChain = FprIndex.getValue(1);
2913 
2914   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2915                                        DAG.getConstant(8, dl, MVT::i32));
2916 
2917   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2918                                         DAG.getConstant(4, dl, MVT::i32));
2919 
2920   // areas
2921   SDValue OverflowArea =
2922       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
2923   InChain = OverflowArea.getValue(1);
2924 
2925   SDValue RegSaveArea =
2926       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
2927   InChain = RegSaveArea.getValue(1);
2928 
2929   // select overflow_area if index > 8
2930   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
2931                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
2932 
2933   // adjustment constant gpr_index * 4/8
2934   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
2935                                     VT.isInteger() ? GprIndex : FprIndex,
2936                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
2937                                                     MVT::i32));
2938 
2939   // OurReg = RegSaveArea + RegConstant
2940   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
2941                                RegConstant);
2942 
2943   // Floating types are 32 bytes into RegSaveArea
2944   if (VT.isFloatingPoint())
2945     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
2946                          DAG.getConstant(32, dl, MVT::i32));
2947 
2948   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
2949   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2950                                    VT.isInteger() ? GprIndex : FprIndex,
2951                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
2952                                                    MVT::i32));
2953 
2954   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
2955                               VT.isInteger() ? VAListPtr : FprPtr,
2956                               MachinePointerInfo(SV), MVT::i8);
2957 
2958   // determine if we should load from reg_save_area or overflow_area
2959   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
2960 
2961   // increase overflow_area by 4/8 if gpr/fpr > 8
2962   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
2963                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
2964                                           dl, MVT::i32));
2965 
2966   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
2967                              OverflowAreaPlusN);
2968 
2969   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
2970                               MachinePointerInfo(), MVT::i32);
2971 
2972   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
2973 }
2974 
2975 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
2976   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
2977 
2978   // We have to copy the entire va_list struct:
2979   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
2980   return DAG.getMemcpy(Op.getOperand(0), Op,
2981                        Op.getOperand(1), Op.getOperand(2),
2982                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
2983                        false, MachinePointerInfo(), MachinePointerInfo());
2984 }
2985 
2986 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
2987                                                   SelectionDAG &DAG) const {
2988   return Op.getOperand(0);
2989 }
2990 
2991 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
2992                                                 SelectionDAG &DAG) const {
2993   SDValue Chain = Op.getOperand(0);
2994   SDValue Trmp = Op.getOperand(1); // trampoline
2995   SDValue FPtr = Op.getOperand(2); // nested function
2996   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
2997   SDLoc dl(Op);
2998 
2999   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3000   bool isPPC64 = (PtrVT == MVT::i64);
3001   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3002 
3003   TargetLowering::ArgListTy Args;
3004   TargetLowering::ArgListEntry Entry;
3005 
3006   Entry.Ty = IntPtrTy;
3007   Entry.Node = Trmp; Args.push_back(Entry);
3008 
3009   // TrampSize == (isPPC64 ? 48 : 40);
3010   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3011                                isPPC64 ? MVT::i64 : MVT::i32);
3012   Args.push_back(Entry);
3013 
3014   Entry.Node = FPtr; Args.push_back(Entry);
3015   Entry.Node = Nest; Args.push_back(Entry);
3016 
3017   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3018   TargetLowering::CallLoweringInfo CLI(DAG);
3019   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3020       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3021       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3022 
3023   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3024   return CallResult.second;
3025 }
3026 
3027 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3028   MachineFunction &MF = DAG.getMachineFunction();
3029   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3030   EVT PtrVT = getPointerTy(MF.getDataLayout());
3031 
3032   SDLoc dl(Op);
3033 
3034   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
3035     // vastart just stores the address of the VarArgsFrameIndex slot into the
3036     // memory location argument.
3037     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3038     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3039     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3040                         MachinePointerInfo(SV));
3041   }
3042 
3043   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3044   // We suppose the given va_list is already allocated.
3045   //
3046   // typedef struct {
3047   //  char gpr;     /* index into the array of 8 GPRs
3048   //                 * stored in the register save area
3049   //                 * gpr=0 corresponds to r3,
3050   //                 * gpr=1 to r4, etc.
3051   //                 */
3052   //  char fpr;     /* index into the array of 8 FPRs
3053   //                 * stored in the register save area
3054   //                 * fpr=0 corresponds to f1,
3055   //                 * fpr=1 to f2, etc.
3056   //                 */
3057   //  char *overflow_arg_area;
3058   //                /* location on stack that holds
3059   //                 * the next overflow argument
3060   //                 */
3061   //  char *reg_save_area;
3062   //               /* where r3:r10 and f1:f8 (if saved)
3063   //                * are stored
3064   //                */
3065   // } va_list[1];
3066 
3067   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3068   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3069   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3070                                             PtrVT);
3071   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3072                                  PtrVT);
3073 
3074   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3075   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3076 
3077   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3078   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3079 
3080   uint64_t FPROffset = 1;
3081   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3082 
3083   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3084 
3085   // Store first byte : number of int regs
3086   SDValue firstStore =
3087       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3088                         MachinePointerInfo(SV), MVT::i8);
3089   uint64_t nextOffset = FPROffset;
3090   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3091                                   ConstFPROffset);
3092 
3093   // Store second byte : number of float regs
3094   SDValue secondStore =
3095       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3096                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3097   nextOffset += StackOffset;
3098   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3099 
3100   // Store second word : arguments given on stack
3101   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3102                                     MachinePointerInfo(SV, nextOffset));
3103   nextOffset += FrameOffset;
3104   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3105 
3106   // Store third word : arguments given in registers
3107   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3108                       MachinePointerInfo(SV, nextOffset));
3109 }
3110 
3111 #include "PPCGenCallingConv.inc"
3112 
3113 // Function whose sole purpose is to kill compiler warnings
3114 // stemming from unused functions included from PPCGenCallingConv.inc.
3115 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
3116   return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
3117 }
3118 
3119 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
3120                                       CCValAssign::LocInfo &LocInfo,
3121                                       ISD::ArgFlagsTy &ArgFlags,
3122                                       CCState &State) {
3123   return true;
3124 }
3125 
3126 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
3127                                              MVT &LocVT,
3128                                              CCValAssign::LocInfo &LocInfo,
3129                                              ISD::ArgFlagsTy &ArgFlags,
3130                                              CCState &State) {
3131   static const MCPhysReg ArgRegs[] = {
3132     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3133     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3134   };
3135   const unsigned NumArgRegs = array_lengthof(ArgRegs);
3136 
3137   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
3138 
3139   // Skip one register if the first unallocated register has an even register
3140   // number and there are still argument registers available which have not been
3141   // allocated yet. RegNum is actually an index into ArgRegs, which means we
3142   // need to skip a register if RegNum is odd.
3143   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
3144     State.AllocateReg(ArgRegs[RegNum]);
3145   }
3146 
3147   // Always return false here, as this function only makes sure that the first
3148   // unallocated register has an odd register number and does not actually
3149   // allocate a register for the current argument.
3150   return false;
3151 }
3152 
3153 bool
3154 llvm::CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT,
3155                                                   MVT &LocVT,
3156                                                   CCValAssign::LocInfo &LocInfo,
3157                                                   ISD::ArgFlagsTy &ArgFlags,
3158                                                   CCState &State) {
3159   static const MCPhysReg ArgRegs[] = {
3160     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3161     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3162   };
3163   const unsigned NumArgRegs = array_lengthof(ArgRegs);
3164 
3165   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
3166   int RegsLeft = NumArgRegs - RegNum;
3167 
3168   // Skip if there is not enough registers left for long double type (4 gpr regs
3169   // in soft float mode) and put long double argument on the stack.
3170   if (RegNum != NumArgRegs && RegsLeft < 4) {
3171     for (int i = 0; i < RegsLeft; i++) {
3172       State.AllocateReg(ArgRegs[RegNum + i]);
3173     }
3174   }
3175 
3176   return false;
3177 }
3178 
3179 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
3180                                                MVT &LocVT,
3181                                                CCValAssign::LocInfo &LocInfo,
3182                                                ISD::ArgFlagsTy &ArgFlags,
3183                                                CCState &State) {
3184   static const MCPhysReg ArgRegs[] = {
3185     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3186     PPC::F8
3187   };
3188 
3189   const unsigned NumArgRegs = array_lengthof(ArgRegs);
3190 
3191   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
3192 
3193   // If there is only one Floating-point register left we need to put both f64
3194   // values of a split ppc_fp128 value on the stack.
3195   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
3196     State.AllocateReg(ArgRegs[RegNum]);
3197   }
3198 
3199   // Always return false here, as this function only makes sure that the two f64
3200   // values a ppc_fp128 value is split into are both passed in registers or both
3201   // passed on the stack and does not actually allocate a register for the
3202   // current argument.
3203   return false;
3204 }
3205 
3206 /// FPR - The set of FP registers that should be allocated for arguments,
3207 /// on Darwin.
3208 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3209                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3210                                 PPC::F11, PPC::F12, PPC::F13};
3211 
3212 /// QFPR - The set of QPX registers that should be allocated for arguments.
3213 static const MCPhysReg QFPR[] = {
3214     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3215     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3216 
3217 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3218 /// the stack.
3219 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3220                                        unsigned PtrByteSize) {
3221   unsigned ArgSize = ArgVT.getStoreSize();
3222   if (Flags.isByVal())
3223     ArgSize = Flags.getByValSize();
3224 
3225   // Round up to multiples of the pointer size, except for array members,
3226   // which are always packed.
3227   if (!Flags.isInConsecutiveRegs())
3228     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3229 
3230   return ArgSize;
3231 }
3232 
3233 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3234 /// on the stack.
3235 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3236                                             ISD::ArgFlagsTy Flags,
3237                                             unsigned PtrByteSize) {
3238   unsigned Align = PtrByteSize;
3239 
3240   // Altivec parameters are padded to a 16 byte boundary.
3241   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3242       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3243       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3244       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3245     Align = 16;
3246   // QPX vector types stored in double-precision are padded to a 32 byte
3247   // boundary.
3248   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3249     Align = 32;
3250 
3251   // ByVal parameters are aligned as requested.
3252   if (Flags.isByVal()) {
3253     unsigned BVAlign = Flags.getByValAlign();
3254     if (BVAlign > PtrByteSize) {
3255       if (BVAlign % PtrByteSize != 0)
3256           llvm_unreachable(
3257             "ByVal alignment is not a multiple of the pointer size");
3258 
3259       Align = BVAlign;
3260     }
3261   }
3262 
3263   // Array members are always packed to their original alignment.
3264   if (Flags.isInConsecutiveRegs()) {
3265     // If the array member was split into multiple registers, the first
3266     // needs to be aligned to the size of the full type.  (Except for
3267     // ppcf128, which is only aligned as its f64 components.)
3268     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3269       Align = OrigVT.getStoreSize();
3270     else
3271       Align = ArgVT.getStoreSize();
3272   }
3273 
3274   return Align;
3275 }
3276 
3277 /// CalculateStackSlotUsed - Return whether this argument will use its
3278 /// stack slot (instead of being passed in registers).  ArgOffset,
3279 /// AvailableFPRs, and AvailableVRs must hold the current argument
3280 /// position, and will be updated to account for this argument.
3281 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3282                                    ISD::ArgFlagsTy Flags,
3283                                    unsigned PtrByteSize,
3284                                    unsigned LinkageSize,
3285                                    unsigned ParamAreaSize,
3286                                    unsigned &ArgOffset,
3287                                    unsigned &AvailableFPRs,
3288                                    unsigned &AvailableVRs, bool HasQPX) {
3289   bool UseMemory = false;
3290 
3291   // Respect alignment of argument on the stack.
3292   unsigned Align =
3293     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3294   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3295   // If there's no space left in the argument save area, we must
3296   // use memory (this check also catches zero-sized arguments).
3297   if (ArgOffset >= LinkageSize + ParamAreaSize)
3298     UseMemory = true;
3299 
3300   // Allocate argument on the stack.
3301   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3302   if (Flags.isInConsecutiveRegsLast())
3303     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3304   // If we overran the argument save area, we must use memory
3305   // (this check catches arguments passed partially in memory)
3306   if (ArgOffset > LinkageSize + ParamAreaSize)
3307     UseMemory = true;
3308 
3309   // However, if the argument is actually passed in an FPR or a VR,
3310   // we don't use memory after all.
3311   if (!Flags.isByVal()) {
3312     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3313         // QPX registers overlap with the scalar FP registers.
3314         (HasQPX && (ArgVT == MVT::v4f32 ||
3315                     ArgVT == MVT::v4f64 ||
3316                     ArgVT == MVT::v4i1)))
3317       if (AvailableFPRs > 0) {
3318         --AvailableFPRs;
3319         return false;
3320       }
3321     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3322         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3323         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3324         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3325       if (AvailableVRs > 0) {
3326         --AvailableVRs;
3327         return false;
3328       }
3329   }
3330 
3331   return UseMemory;
3332 }
3333 
3334 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3335 /// ensure minimum alignment required for target.
3336 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3337                                      unsigned NumBytes) {
3338   unsigned TargetAlign = Lowering->getStackAlignment();
3339   unsigned AlignMask = TargetAlign - 1;
3340   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
3341   return NumBytes;
3342 }
3343 
3344 SDValue PPCTargetLowering::LowerFormalArguments(
3345     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3346     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3347     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3348   if (Subtarget.isSVR4ABI()) {
3349     if (Subtarget.isPPC64())
3350       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
3351                                          dl, DAG, InVals);
3352     else
3353       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
3354                                          dl, DAG, InVals);
3355   } else {
3356     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
3357                                        dl, DAG, InVals);
3358   }
3359 }
3360 
3361 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3362     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3363     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3364     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3365 
3366   // 32-bit SVR4 ABI Stack Frame Layout:
3367   //              +-----------------------------------+
3368   //        +-->  |            Back chain             |
3369   //        |     +-----------------------------------+
3370   //        |     | Floating-point register save area |
3371   //        |     +-----------------------------------+
3372   //        |     |    General register save area     |
3373   //        |     +-----------------------------------+
3374   //        |     |          CR save word             |
3375   //        |     +-----------------------------------+
3376   //        |     |         VRSAVE save word          |
3377   //        |     +-----------------------------------+
3378   //        |     |         Alignment padding         |
3379   //        |     +-----------------------------------+
3380   //        |     |     Vector register save area     |
3381   //        |     +-----------------------------------+
3382   //        |     |       Local variable space        |
3383   //        |     +-----------------------------------+
3384   //        |     |        Parameter list area        |
3385   //        |     +-----------------------------------+
3386   //        |     |           LR save word            |
3387   //        |     +-----------------------------------+
3388   // SP-->  +---  |            Back chain             |
3389   //              +-----------------------------------+
3390   //
3391   // Specifications:
3392   //   System V Application Binary Interface PowerPC Processor Supplement
3393   //   AltiVec Technology Programming Interface Manual
3394 
3395   MachineFunction &MF = DAG.getMachineFunction();
3396   MachineFrameInfo &MFI = MF.getFrameInfo();
3397   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3398 
3399   EVT PtrVT = getPointerTy(MF.getDataLayout());
3400   // Potential tail calls could cause overwriting of argument stack slots.
3401   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3402                        (CallConv == CallingConv::Fast));
3403   unsigned PtrByteSize = 4;
3404 
3405   // Assign locations to all of the incoming arguments.
3406   SmallVector<CCValAssign, 16> ArgLocs;
3407   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3408                  *DAG.getContext());
3409 
3410   // Reserve space for the linkage area on the stack.
3411   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3412   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3413   if (useSoftFloat() || hasSPE())
3414     CCInfo.PreAnalyzeFormalArguments(Ins);
3415 
3416   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3417   CCInfo.clearWasPPCF128();
3418 
3419   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3420     CCValAssign &VA = ArgLocs[i];
3421 
3422     // Arguments stored in registers.
3423     if (VA.isRegLoc()) {
3424       const TargetRegisterClass *RC;
3425       EVT ValVT = VA.getValVT();
3426 
3427       switch (ValVT.getSimpleVT().SimpleTy) {
3428         default:
3429           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3430         case MVT::i1:
3431         case MVT::i32:
3432           RC = &PPC::GPRCRegClass;
3433           break;
3434         case MVT::f32:
3435           if (Subtarget.hasP8Vector())
3436             RC = &PPC::VSSRCRegClass;
3437           else if (Subtarget.hasSPE())
3438             RC = &PPC::SPE4RCRegClass;
3439           else
3440             RC = &PPC::F4RCRegClass;
3441           break;
3442         case MVT::f64:
3443           if (Subtarget.hasVSX())
3444             RC = &PPC::VSFRCRegClass;
3445           else if (Subtarget.hasSPE())
3446             RC = &PPC::SPERCRegClass;
3447           else
3448             RC = &PPC::F8RCRegClass;
3449           break;
3450         case MVT::v16i8:
3451         case MVT::v8i16:
3452         case MVT::v4i32:
3453           RC = &PPC::VRRCRegClass;
3454           break;
3455         case MVT::v4f32:
3456           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3457           break;
3458         case MVT::v2f64:
3459         case MVT::v2i64:
3460           RC = &PPC::VRRCRegClass;
3461           break;
3462         case MVT::v4f64:
3463           RC = &PPC::QFRCRegClass;
3464           break;
3465         case MVT::v4i1:
3466           RC = &PPC::QBRCRegClass;
3467           break;
3468       }
3469 
3470       // Transform the arguments stored in physical registers into virtual ones.
3471       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3472       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3473                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
3474 
3475       if (ValVT == MVT::i1)
3476         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3477 
3478       InVals.push_back(ArgValue);
3479     } else {
3480       // Argument stored in memory.
3481       assert(VA.isMemLoc());
3482 
3483       unsigned ArgSize = VA.getLocVT().getStoreSize();
3484       int FI = MFI.CreateFixedObject(ArgSize, VA.getLocMemOffset(),
3485                                      isImmutable);
3486 
3487       // Create load nodes to retrieve arguments from the stack.
3488       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3489       InVals.push_back(
3490           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3491     }
3492   }
3493 
3494   // Assign locations to all of the incoming aggregate by value arguments.
3495   // Aggregates passed by value are stored in the local variable space of the
3496   // caller's stack frame, right above the parameter list area.
3497   SmallVector<CCValAssign, 16> ByValArgLocs;
3498   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3499                       ByValArgLocs, *DAG.getContext());
3500 
3501   // Reserve stack space for the allocations in CCInfo.
3502   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3503 
3504   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3505 
3506   // Area that is at least reserved in the caller of this function.
3507   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3508   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3509 
3510   // Set the size that is at least reserved in caller of this function.  Tail
3511   // call optimized function's reserved stack space needs to be aligned so that
3512   // taking the difference between two stack areas will result in an aligned
3513   // stack.
3514   MinReservedArea =
3515       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3516   FuncInfo->setMinReservedArea(MinReservedArea);
3517 
3518   SmallVector<SDValue, 8> MemOps;
3519 
3520   // If the function takes variable number of arguments, make a frame index for
3521   // the start of the first vararg value... for expansion of llvm.va_start.
3522   if (isVarArg) {
3523     static const MCPhysReg GPArgRegs[] = {
3524       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3525       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3526     };
3527     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3528 
3529     static const MCPhysReg FPArgRegs[] = {
3530       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3531       PPC::F8
3532     };
3533     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3534 
3535     if (useSoftFloat() || hasSPE())
3536        NumFPArgRegs = 0;
3537 
3538     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3539     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3540 
3541     // Make room for NumGPArgRegs and NumFPArgRegs.
3542     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3543                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3544 
3545     FuncInfo->setVarArgsStackOffset(
3546       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3547                             CCInfo.getNextStackOffset(), true));
3548 
3549     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3550     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3551 
3552     // The fixed integer arguments of a variadic function are stored to the
3553     // VarArgsFrameIndex on the stack so that they may be loaded by
3554     // dereferencing the result of va_next.
3555     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3556       // Get an existing live-in vreg, or add a new one.
3557       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3558       if (!VReg)
3559         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3560 
3561       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3562       SDValue Store =
3563           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3564       MemOps.push_back(Store);
3565       // Increment the address by four for the next argument to store
3566       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3567       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3568     }
3569 
3570     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3571     // is set.
3572     // The double arguments are stored to the VarArgsFrameIndex
3573     // on the stack.
3574     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3575       // Get an existing live-in vreg, or add a new one.
3576       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3577       if (!VReg)
3578         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3579 
3580       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3581       SDValue Store =
3582           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3583       MemOps.push_back(Store);
3584       // Increment the address by eight for the next argument to store
3585       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3586                                          PtrVT);
3587       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3588     }
3589   }
3590 
3591   if (!MemOps.empty())
3592     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3593 
3594   return Chain;
3595 }
3596 
3597 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3598 // value to MVT::i64 and then truncate to the correct register size.
3599 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3600                                              EVT ObjectVT, SelectionDAG &DAG,
3601                                              SDValue ArgVal,
3602                                              const SDLoc &dl) const {
3603   if (Flags.isSExt())
3604     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3605                          DAG.getValueType(ObjectVT));
3606   else if (Flags.isZExt())
3607     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3608                          DAG.getValueType(ObjectVT));
3609 
3610   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3611 }
3612 
3613 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3614     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3615     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3616     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3617   // TODO: add description of PPC stack frame format, or at least some docs.
3618   //
3619   bool isELFv2ABI = Subtarget.isELFv2ABI();
3620   bool isLittleEndian = Subtarget.isLittleEndian();
3621   MachineFunction &MF = DAG.getMachineFunction();
3622   MachineFrameInfo &MFI = MF.getFrameInfo();
3623   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3624 
3625   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3626          "fastcc not supported on varargs functions");
3627 
3628   EVT PtrVT = getPointerTy(MF.getDataLayout());
3629   // Potential tail calls could cause overwriting of argument stack slots.
3630   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3631                        (CallConv == CallingConv::Fast));
3632   unsigned PtrByteSize = 8;
3633   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3634 
3635   static const MCPhysReg GPR[] = {
3636     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3637     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3638   };
3639   static const MCPhysReg VR[] = {
3640     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3641     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3642   };
3643 
3644   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3645   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3646   const unsigned Num_VR_Regs  = array_lengthof(VR);
3647   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3648 
3649   // Do a first pass over the arguments to determine whether the ABI
3650   // guarantees that our caller has allocated the parameter save area
3651   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3652   // in the ELFv2 ABI, it is true if this is a vararg function or if
3653   // any parameter is located in a stack slot.
3654 
3655   bool HasParameterArea = !isELFv2ABI || isVarArg;
3656   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3657   unsigned NumBytes = LinkageSize;
3658   unsigned AvailableFPRs = Num_FPR_Regs;
3659   unsigned AvailableVRs = Num_VR_Regs;
3660   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3661     if (Ins[i].Flags.isNest())
3662       continue;
3663 
3664     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3665                                PtrByteSize, LinkageSize, ParamAreaSize,
3666                                NumBytes, AvailableFPRs, AvailableVRs,
3667                                Subtarget.hasQPX()))
3668       HasParameterArea = true;
3669   }
3670 
3671   // Add DAG nodes to load the arguments or copy them out of registers.  On
3672   // entry to a function on PPC, the arguments start after the linkage area,
3673   // although the first ones are often in registers.
3674 
3675   unsigned ArgOffset = LinkageSize;
3676   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3677   unsigned &QFPR_idx = FPR_idx;
3678   SmallVector<SDValue, 8> MemOps;
3679   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3680   unsigned CurArgIdx = 0;
3681   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3682     SDValue ArgVal;
3683     bool needsLoad = false;
3684     EVT ObjectVT = Ins[ArgNo].VT;
3685     EVT OrigVT = Ins[ArgNo].ArgVT;
3686     unsigned ObjSize = ObjectVT.getStoreSize();
3687     unsigned ArgSize = ObjSize;
3688     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3689     if (Ins[ArgNo].isOrigArg()) {
3690       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3691       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3692     }
3693     // We re-align the argument offset for each argument, except when using the
3694     // fast calling convention, when we need to make sure we do that only when
3695     // we'll actually use a stack slot.
3696     unsigned CurArgOffset, Align;
3697     auto ComputeArgOffset = [&]() {
3698       /* Respect alignment of argument on the stack.  */
3699       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3700       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3701       CurArgOffset = ArgOffset;
3702     };
3703 
3704     if (CallConv != CallingConv::Fast) {
3705       ComputeArgOffset();
3706 
3707       /* Compute GPR index associated with argument offset.  */
3708       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3709       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3710     }
3711 
3712     // FIXME the codegen can be much improved in some cases.
3713     // We do not have to keep everything in memory.
3714     if (Flags.isByVal()) {
3715       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3716 
3717       if (CallConv == CallingConv::Fast)
3718         ComputeArgOffset();
3719 
3720       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3721       ObjSize = Flags.getByValSize();
3722       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3723       // Empty aggregate parameters do not take up registers.  Examples:
3724       //   struct { } a;
3725       //   union  { } b;
3726       //   int c[0];
3727       // etc.  However, we have to provide a place-holder in InVals, so
3728       // pretend we have an 8-byte item at the current address for that
3729       // purpose.
3730       if (!ObjSize) {
3731         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3732         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3733         InVals.push_back(FIN);
3734         continue;
3735       }
3736 
3737       // Create a stack object covering all stack doublewords occupied
3738       // by the argument.  If the argument is (fully or partially) on
3739       // the stack, or if the argument is fully in registers but the
3740       // caller has allocated the parameter save anyway, we can refer
3741       // directly to the caller's stack frame.  Otherwise, create a
3742       // local copy in our own frame.
3743       int FI;
3744       if (HasParameterArea ||
3745           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3746         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3747       else
3748         FI = MFI.CreateStackObject(ArgSize, Align, false);
3749       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3750 
3751       // Handle aggregates smaller than 8 bytes.
3752       if (ObjSize < PtrByteSize) {
3753         // The value of the object is its address, which differs from the
3754         // address of the enclosing doubleword on big-endian systems.
3755         SDValue Arg = FIN;
3756         if (!isLittleEndian) {
3757           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3758           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3759         }
3760         InVals.push_back(Arg);
3761 
3762         if (GPR_idx != Num_GPR_Regs) {
3763           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3764           FuncInfo->addLiveInAttr(VReg, Flags);
3765           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3766           SDValue Store;
3767 
3768           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3769             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3770                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3771             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3772                                       MachinePointerInfo(&*FuncArg), ObjType);
3773           } else {
3774             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3775             // store the whole register as-is to the parameter save area
3776             // slot.
3777             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3778                                  MachinePointerInfo(&*FuncArg));
3779           }
3780 
3781           MemOps.push_back(Store);
3782         }
3783         // Whether we copied from a register or not, advance the offset
3784         // into the parameter save area by a full doubleword.
3785         ArgOffset += PtrByteSize;
3786         continue;
3787       }
3788 
3789       // The value of the object is its address, which is the address of
3790       // its first stack doubleword.
3791       InVals.push_back(FIN);
3792 
3793       // Store whatever pieces of the object are in registers to memory.
3794       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3795         if (GPR_idx == Num_GPR_Regs)
3796           break;
3797 
3798         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3799         FuncInfo->addLiveInAttr(VReg, Flags);
3800         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3801         SDValue Addr = FIN;
3802         if (j) {
3803           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3804           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3805         }
3806         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3807                                      MachinePointerInfo(&*FuncArg, j));
3808         MemOps.push_back(Store);
3809         ++GPR_idx;
3810       }
3811       ArgOffset += ArgSize;
3812       continue;
3813     }
3814 
3815     switch (ObjectVT.getSimpleVT().SimpleTy) {
3816     default: llvm_unreachable("Unhandled argument type!");
3817     case MVT::i1:
3818     case MVT::i32:
3819     case MVT::i64:
3820       if (Flags.isNest()) {
3821         // The 'nest' parameter, if any, is passed in R11.
3822         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3823         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3824 
3825         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3826           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3827 
3828         break;
3829       }
3830 
3831       // These can be scalar arguments or elements of an integer array type
3832       // passed directly.  Clang may use those instead of "byval" aggregate
3833       // types to avoid forcing arguments to memory unnecessarily.
3834       if (GPR_idx != Num_GPR_Regs) {
3835         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3836         FuncInfo->addLiveInAttr(VReg, Flags);
3837         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3838 
3839         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3840           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3841           // value to MVT::i64 and then truncate to the correct register size.
3842           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3843       } else {
3844         if (CallConv == CallingConv::Fast)
3845           ComputeArgOffset();
3846 
3847         needsLoad = true;
3848         ArgSize = PtrByteSize;
3849       }
3850       if (CallConv != CallingConv::Fast || needsLoad)
3851         ArgOffset += 8;
3852       break;
3853 
3854     case MVT::f32:
3855     case MVT::f64:
3856       // These can be scalar arguments or elements of a float array type
3857       // passed directly.  The latter are used to implement ELFv2 homogenous
3858       // float aggregates.
3859       if (FPR_idx != Num_FPR_Regs) {
3860         unsigned VReg;
3861 
3862         if (ObjectVT == MVT::f32)
3863           VReg = MF.addLiveIn(FPR[FPR_idx],
3864                               Subtarget.hasP8Vector()
3865                                   ? &PPC::VSSRCRegClass
3866                                   : &PPC::F4RCRegClass);
3867         else
3868           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3869                                                 ? &PPC::VSFRCRegClass
3870                                                 : &PPC::F8RCRegClass);
3871 
3872         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3873         ++FPR_idx;
3874       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3875         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3876         // once we support fp <-> gpr moves.
3877 
3878         // This can only ever happen in the presence of f32 array types,
3879         // since otherwise we never run out of FPRs before running out
3880         // of GPRs.
3881         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3882         FuncInfo->addLiveInAttr(VReg, Flags);
3883         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3884 
3885         if (ObjectVT == MVT::f32) {
3886           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3887             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3888                                  DAG.getConstant(32, dl, MVT::i32));
3889           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3890         }
3891 
3892         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3893       } else {
3894         if (CallConv == CallingConv::Fast)
3895           ComputeArgOffset();
3896 
3897         needsLoad = true;
3898       }
3899 
3900       // When passing an array of floats, the array occupies consecutive
3901       // space in the argument area; only round up to the next doubleword
3902       // at the end of the array.  Otherwise, each float takes 8 bytes.
3903       if (CallConv != CallingConv::Fast || needsLoad) {
3904         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3905         ArgOffset += ArgSize;
3906         if (Flags.isInConsecutiveRegsLast())
3907           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3908       }
3909       break;
3910     case MVT::v4f32:
3911     case MVT::v4i32:
3912     case MVT::v8i16:
3913     case MVT::v16i8:
3914     case MVT::v2f64:
3915     case MVT::v2i64:
3916     case MVT::v1i128:
3917     case MVT::f128:
3918       if (!Subtarget.hasQPX()) {
3919         // These can be scalar arguments or elements of a vector array type
3920         // passed directly.  The latter are used to implement ELFv2 homogenous
3921         // vector aggregates.
3922         if (VR_idx != Num_VR_Regs) {
3923           unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3924           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3925           ++VR_idx;
3926         } else {
3927           if (CallConv == CallingConv::Fast)
3928             ComputeArgOffset();
3929           needsLoad = true;
3930         }
3931         if (CallConv != CallingConv::Fast || needsLoad)
3932           ArgOffset += 16;
3933         break;
3934       } // not QPX
3935 
3936       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3937              "Invalid QPX parameter type");
3938       /* fall through */
3939 
3940     case MVT::v4f64:
3941     case MVT::v4i1:
3942       // QPX vectors are treated like their scalar floating-point subregisters
3943       // (except that they're larger).
3944       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3945       if (QFPR_idx != Num_QFPR_Regs) {
3946         const TargetRegisterClass *RC;
3947         switch (ObjectVT.getSimpleVT().SimpleTy) {
3948         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
3949         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
3950         default:         RC = &PPC::QBRCRegClass; break;
3951         }
3952 
3953         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
3954         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3955         ++QFPR_idx;
3956       } else {
3957         if (CallConv == CallingConv::Fast)
3958           ComputeArgOffset();
3959         needsLoad = true;
3960       }
3961       if (CallConv != CallingConv::Fast || needsLoad)
3962         ArgOffset += Sz;
3963       break;
3964     }
3965 
3966     // We need to load the argument to a virtual register if we determined
3967     // above that we ran out of physical registers of the appropriate type.
3968     if (needsLoad) {
3969       if (ObjSize < ArgSize && !isLittleEndian)
3970         CurArgOffset += ArgSize - ObjSize;
3971       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
3972       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3973       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
3974     }
3975 
3976     InVals.push_back(ArgVal);
3977   }
3978 
3979   // Area that is at least reserved in the caller of this function.
3980   unsigned MinReservedArea;
3981   if (HasParameterArea)
3982     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
3983   else
3984     MinReservedArea = LinkageSize;
3985 
3986   // Set the size that is at least reserved in caller of this function.  Tail
3987   // call optimized functions' reserved stack space needs to be aligned so that
3988   // taking the difference between two stack areas will result in an aligned
3989   // stack.
3990   MinReservedArea =
3991       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3992   FuncInfo->setMinReservedArea(MinReservedArea);
3993 
3994   // If the function takes variable number of arguments, make a frame index for
3995   // the start of the first vararg value... for expansion of llvm.va_start.
3996   if (isVarArg) {
3997     int Depth = ArgOffset;
3998 
3999     FuncInfo->setVarArgsFrameIndex(
4000       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4001     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4002 
4003     // If this function is vararg, store any remaining integer argument regs
4004     // to their spots on the stack so that they may be loaded by dereferencing
4005     // the result of va_next.
4006     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4007          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4008       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4009       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4010       SDValue Store =
4011           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4012       MemOps.push_back(Store);
4013       // Increment the address by four for the next argument to store
4014       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4015       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4016     }
4017   }
4018 
4019   if (!MemOps.empty())
4020     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4021 
4022   return Chain;
4023 }
4024 
4025 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4026     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4027     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4028     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4029   // TODO: add description of PPC stack frame format, or at least some docs.
4030   //
4031   MachineFunction &MF = DAG.getMachineFunction();
4032   MachineFrameInfo &MFI = MF.getFrameInfo();
4033   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4034 
4035   EVT PtrVT = getPointerTy(MF.getDataLayout());
4036   bool isPPC64 = PtrVT == MVT::i64;
4037   // Potential tail calls could cause overwriting of argument stack slots.
4038   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4039                        (CallConv == CallingConv::Fast));
4040   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4041   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4042   unsigned ArgOffset = LinkageSize;
4043   // Area that is at least reserved in caller of this function.
4044   unsigned MinReservedArea = ArgOffset;
4045 
4046   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4047     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4048     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4049   };
4050   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4051     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4052     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4053   };
4054   static const MCPhysReg VR[] = {
4055     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4056     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4057   };
4058 
4059   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4060   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4061   const unsigned Num_VR_Regs  = array_lengthof( VR);
4062 
4063   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4064 
4065   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4066 
4067   // In 32-bit non-varargs functions, the stack space for vectors is after the
4068   // stack space for non-vectors.  We do not use this space unless we have
4069   // too many vectors to fit in registers, something that only occurs in
4070   // constructed examples:), but we have to walk the arglist to figure
4071   // that out...for the pathological case, compute VecArgOffset as the
4072   // start of the vector parameter area.  Computing VecArgOffset is the
4073   // entire point of the following loop.
4074   unsigned VecArgOffset = ArgOffset;
4075   if (!isVarArg && !isPPC64) {
4076     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4077          ++ArgNo) {
4078       EVT ObjectVT = Ins[ArgNo].VT;
4079       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4080 
4081       if (Flags.isByVal()) {
4082         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4083         unsigned ObjSize = Flags.getByValSize();
4084         unsigned ArgSize =
4085                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4086         VecArgOffset += ArgSize;
4087         continue;
4088       }
4089 
4090       switch(ObjectVT.getSimpleVT().SimpleTy) {
4091       default: llvm_unreachable("Unhandled argument type!");
4092       case MVT::i1:
4093       case MVT::i32:
4094       case MVT::f32:
4095         VecArgOffset += 4;
4096         break;
4097       case MVT::i64:  // PPC64
4098       case MVT::f64:
4099         // FIXME: We are guaranteed to be !isPPC64 at this point.
4100         // Does MVT::i64 apply?
4101         VecArgOffset += 8;
4102         break;
4103       case MVT::v4f32:
4104       case MVT::v4i32:
4105       case MVT::v8i16:
4106       case MVT::v16i8:
4107         // Nothing to do, we're only looking at Nonvector args here.
4108         break;
4109       }
4110     }
4111   }
4112   // We've found where the vector parameter area in memory is.  Skip the
4113   // first 12 parameters; these don't use that memory.
4114   VecArgOffset = ((VecArgOffset+15)/16)*16;
4115   VecArgOffset += 12*16;
4116 
4117   // Add DAG nodes to load the arguments or copy them out of registers.  On
4118   // entry to a function on PPC, the arguments start after the linkage area,
4119   // although the first ones are often in registers.
4120 
4121   SmallVector<SDValue, 8> MemOps;
4122   unsigned nAltivecParamsAtEnd = 0;
4123   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4124   unsigned CurArgIdx = 0;
4125   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4126     SDValue ArgVal;
4127     bool needsLoad = false;
4128     EVT ObjectVT = Ins[ArgNo].VT;
4129     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4130     unsigned ArgSize = ObjSize;
4131     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4132     if (Ins[ArgNo].isOrigArg()) {
4133       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4134       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4135     }
4136     unsigned CurArgOffset = ArgOffset;
4137 
4138     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4139     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4140         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4141       if (isVarArg || isPPC64) {
4142         MinReservedArea = ((MinReservedArea+15)/16)*16;
4143         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4144                                                   Flags,
4145                                                   PtrByteSize);
4146       } else  nAltivecParamsAtEnd++;
4147     } else
4148       // Calculate min reserved area.
4149       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4150                                                 Flags,
4151                                                 PtrByteSize);
4152 
4153     // FIXME the codegen can be much improved in some cases.
4154     // We do not have to keep everything in memory.
4155     if (Flags.isByVal()) {
4156       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4157 
4158       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4159       ObjSize = Flags.getByValSize();
4160       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4161       // Objects of size 1 and 2 are right justified, everything else is
4162       // left justified.  This means the memory address is adjusted forwards.
4163       if (ObjSize==1 || ObjSize==2) {
4164         CurArgOffset = CurArgOffset + (4 - ObjSize);
4165       }
4166       // The value of the object is its address.
4167       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4168       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4169       InVals.push_back(FIN);
4170       if (ObjSize==1 || ObjSize==2) {
4171         if (GPR_idx != Num_GPR_Regs) {
4172           unsigned VReg;
4173           if (isPPC64)
4174             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4175           else
4176             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4177           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4178           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4179           SDValue Store =
4180               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4181                                 MachinePointerInfo(&*FuncArg), ObjType);
4182           MemOps.push_back(Store);
4183           ++GPR_idx;
4184         }
4185 
4186         ArgOffset += PtrByteSize;
4187 
4188         continue;
4189       }
4190       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4191         // Store whatever pieces of the object are in registers
4192         // to memory.  ArgOffset will be the address of the beginning
4193         // of the object.
4194         if (GPR_idx != Num_GPR_Regs) {
4195           unsigned VReg;
4196           if (isPPC64)
4197             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4198           else
4199             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4200           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4201           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4202           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4203           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4204                                        MachinePointerInfo(&*FuncArg, j));
4205           MemOps.push_back(Store);
4206           ++GPR_idx;
4207           ArgOffset += PtrByteSize;
4208         } else {
4209           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4210           break;
4211         }
4212       }
4213       continue;
4214     }
4215 
4216     switch (ObjectVT.getSimpleVT().SimpleTy) {
4217     default: llvm_unreachable("Unhandled argument type!");
4218     case MVT::i1:
4219     case MVT::i32:
4220       if (!isPPC64) {
4221         if (GPR_idx != Num_GPR_Regs) {
4222           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4223           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4224 
4225           if (ObjectVT == MVT::i1)
4226             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4227 
4228           ++GPR_idx;
4229         } else {
4230           needsLoad = true;
4231           ArgSize = PtrByteSize;
4232         }
4233         // All int arguments reserve stack space in the Darwin ABI.
4234         ArgOffset += PtrByteSize;
4235         break;
4236       }
4237       LLVM_FALLTHROUGH;
4238     case MVT::i64:  // PPC64
4239       if (GPR_idx != Num_GPR_Regs) {
4240         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4241         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4242 
4243         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4244           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4245           // value to MVT::i64 and then truncate to the correct register size.
4246           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4247 
4248         ++GPR_idx;
4249       } else {
4250         needsLoad = true;
4251         ArgSize = PtrByteSize;
4252       }
4253       // All int arguments reserve stack space in the Darwin ABI.
4254       ArgOffset += 8;
4255       break;
4256 
4257     case MVT::f32:
4258     case MVT::f64:
4259       // Every 4 bytes of argument space consumes one of the GPRs available for
4260       // argument passing.
4261       if (GPR_idx != Num_GPR_Regs) {
4262         ++GPR_idx;
4263         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4264           ++GPR_idx;
4265       }
4266       if (FPR_idx != Num_FPR_Regs) {
4267         unsigned VReg;
4268 
4269         if (ObjectVT == MVT::f32)
4270           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4271         else
4272           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4273 
4274         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4275         ++FPR_idx;
4276       } else {
4277         needsLoad = true;
4278       }
4279 
4280       // All FP arguments reserve stack space in the Darwin ABI.
4281       ArgOffset += isPPC64 ? 8 : ObjSize;
4282       break;
4283     case MVT::v4f32:
4284     case MVT::v4i32:
4285     case MVT::v8i16:
4286     case MVT::v16i8:
4287       // Note that vector arguments in registers don't reserve stack space,
4288       // except in varargs functions.
4289       if (VR_idx != Num_VR_Regs) {
4290         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4291         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4292         if (isVarArg) {
4293           while ((ArgOffset % 16) != 0) {
4294             ArgOffset += PtrByteSize;
4295             if (GPR_idx != Num_GPR_Regs)
4296               GPR_idx++;
4297           }
4298           ArgOffset += 16;
4299           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4300         }
4301         ++VR_idx;
4302       } else {
4303         if (!isVarArg && !isPPC64) {
4304           // Vectors go after all the nonvectors.
4305           CurArgOffset = VecArgOffset;
4306           VecArgOffset += 16;
4307         } else {
4308           // Vectors are aligned.
4309           ArgOffset = ((ArgOffset+15)/16)*16;
4310           CurArgOffset = ArgOffset;
4311           ArgOffset += 16;
4312         }
4313         needsLoad = true;
4314       }
4315       break;
4316     }
4317 
4318     // We need to load the argument to a virtual register if we determined above
4319     // that we ran out of physical registers of the appropriate type.
4320     if (needsLoad) {
4321       int FI = MFI.CreateFixedObject(ObjSize,
4322                                      CurArgOffset + (ArgSize - ObjSize),
4323                                      isImmutable);
4324       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4325       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4326     }
4327 
4328     InVals.push_back(ArgVal);
4329   }
4330 
4331   // Allow for Altivec parameters at the end, if needed.
4332   if (nAltivecParamsAtEnd) {
4333     MinReservedArea = ((MinReservedArea+15)/16)*16;
4334     MinReservedArea += 16*nAltivecParamsAtEnd;
4335   }
4336 
4337   // Area that is at least reserved in the caller of this function.
4338   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4339 
4340   // Set the size that is at least reserved in caller of this function.  Tail
4341   // call optimized functions' reserved stack space needs to be aligned so that
4342   // taking the difference between two stack areas will result in an aligned
4343   // stack.
4344   MinReservedArea =
4345       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4346   FuncInfo->setMinReservedArea(MinReservedArea);
4347 
4348   // If the function takes variable number of arguments, make a frame index for
4349   // the start of the first vararg value... for expansion of llvm.va_start.
4350   if (isVarArg) {
4351     int Depth = ArgOffset;
4352 
4353     FuncInfo->setVarArgsFrameIndex(
4354       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4355                             Depth, true));
4356     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4357 
4358     // If this function is vararg, store any remaining integer argument regs
4359     // to their spots on the stack so that they may be loaded by dereferencing
4360     // the result of va_next.
4361     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4362       unsigned VReg;
4363 
4364       if (isPPC64)
4365         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4366       else
4367         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4368 
4369       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4370       SDValue Store =
4371           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4372       MemOps.push_back(Store);
4373       // Increment the address by four for the next argument to store
4374       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4375       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4376     }
4377   }
4378 
4379   if (!MemOps.empty())
4380     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4381 
4382   return Chain;
4383 }
4384 
4385 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4386 /// adjusted to accommodate the arguments for the tailcall.
4387 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4388                                    unsigned ParamSize) {
4389 
4390   if (!isTailCall) return 0;
4391 
4392   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4393   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4394   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4395   // Remember only if the new adjustment is bigger.
4396   if (SPDiff < FI->getTailCallSPDelta())
4397     FI->setTailCallSPDelta(SPDiff);
4398 
4399   return SPDiff;
4400 }
4401 
4402 static bool isFunctionGlobalAddress(SDValue Callee);
4403 
4404 static bool
4405 callsShareTOCBase(const Function *Caller, SDValue Callee,
4406                     const TargetMachine &TM) {
4407   // If !G, Callee can be an external symbol.
4408   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4409   if (!G)
4410     return false;
4411 
4412   // The medium and large code models are expected to provide a sufficiently
4413   // large TOC to provide all data addressing needs of a module with a
4414   // single TOC. Since each module will be addressed with a single TOC then we
4415   // only need to check that caller and callee don't cross dso boundaries.
4416   if (CodeModel::Medium == TM.getCodeModel() ||
4417       CodeModel::Large == TM.getCodeModel())
4418     return TM.shouldAssumeDSOLocal(*Caller->getParent(), G->getGlobal());
4419 
4420   // Otherwise we need to ensure callee and caller are in the same section,
4421   // since the linker may allocate multiple TOCs, and we don't know which
4422   // sections will belong to the same TOC base.
4423 
4424   const GlobalValue *GV = G->getGlobal();
4425   if (!GV->isStrongDefinitionForLinker())
4426     return false;
4427 
4428   // Any explicitly-specified sections and section prefixes must also match.
4429   // Also, if we're using -ffunction-sections, then each function is always in
4430   // a different section (the same is true for COMDAT functions).
4431   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4432       GV->getSection() != Caller->getSection())
4433     return false;
4434   if (const auto *F = dyn_cast<Function>(GV)) {
4435     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4436       return false;
4437   }
4438 
4439   // If the callee might be interposed, then we can't assume the ultimate call
4440   // target will be in the same section. Even in cases where we can assume that
4441   // interposition won't happen, in any case where the linker might insert a
4442   // stub to allow for interposition, we must generate code as though
4443   // interposition might occur. To understand why this matters, consider a
4444   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4445   // in the same section, but a is in a different module (i.e. has a different
4446   // TOC base pointer). If the linker allows for interposition between b and c,
4447   // then it will generate a stub for the call edge between b and c which will
4448   // save the TOC pointer into the designated stack slot allocated by b. If we
4449   // return true here, and therefore allow a tail call between b and c, that
4450   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4451   // pointer into the stack slot allocated by a (where the a -> b stub saved
4452   // a's TOC base pointer). If we're not considering a tail call, but rather,
4453   // whether a nop is needed after the call instruction in b, because the linker
4454   // will insert a stub, it might complain about a missing nop if we omit it
4455   // (although many don't complain in this case).
4456   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4457     return false;
4458 
4459   return true;
4460 }
4461 
4462 static bool
4463 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4464                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4465   assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
4466 
4467   const unsigned PtrByteSize = 8;
4468   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4469 
4470   static const MCPhysReg GPR[] = {
4471     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4472     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4473   };
4474   static const MCPhysReg VR[] = {
4475     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4476     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4477   };
4478 
4479   const unsigned NumGPRs = array_lengthof(GPR);
4480   const unsigned NumFPRs = 13;
4481   const unsigned NumVRs = array_lengthof(VR);
4482   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4483 
4484   unsigned NumBytes = LinkageSize;
4485   unsigned AvailableFPRs = NumFPRs;
4486   unsigned AvailableVRs = NumVRs;
4487 
4488   for (const ISD::OutputArg& Param : Outs) {
4489     if (Param.Flags.isNest()) continue;
4490 
4491     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4492                                PtrByteSize, LinkageSize, ParamAreaSize,
4493                                NumBytes, AvailableFPRs, AvailableVRs,
4494                                Subtarget.hasQPX()))
4495       return true;
4496   }
4497   return false;
4498 }
4499 
4500 static bool
4501 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
4502   if (CS.arg_size() != CallerFn->arg_size())
4503     return false;
4504 
4505   ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
4506   ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
4507   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4508 
4509   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4510     const Value* CalleeArg = *CalleeArgIter;
4511     const Value* CallerArg = &(*CallerArgIter);
4512     if (CalleeArg == CallerArg)
4513       continue;
4514 
4515     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4516     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4517     //      }
4518     // 1st argument of callee is undef and has the same type as caller.
4519     if (CalleeArg->getType() == CallerArg->getType() &&
4520         isa<UndefValue>(CalleeArg))
4521       continue;
4522 
4523     return false;
4524   }
4525 
4526   return true;
4527 }
4528 
4529 // Returns true if TCO is possible between the callers and callees
4530 // calling conventions.
4531 static bool
4532 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4533                                     CallingConv::ID CalleeCC) {
4534   // Tail calls are possible with fastcc and ccc.
4535   auto isTailCallableCC  = [] (CallingConv::ID CC){
4536       return  CC == CallingConv::C || CC == CallingConv::Fast;
4537   };
4538   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4539     return false;
4540 
4541   // We can safely tail call both fastcc and ccc callees from a c calling
4542   // convention caller. If the caller is fastcc, we may have less stack space
4543   // than a non-fastcc caller with the same signature so disable tail-calls in
4544   // that case.
4545   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4546 }
4547 
4548 bool
4549 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4550                                     SDValue Callee,
4551                                     CallingConv::ID CalleeCC,
4552                                     ImmutableCallSite CS,
4553                                     bool isVarArg,
4554                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4555                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4556                                     SelectionDAG& DAG) const {
4557   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4558 
4559   if (DisableSCO && !TailCallOpt) return false;
4560 
4561   // Variadic argument functions are not supported.
4562   if (isVarArg) return false;
4563 
4564   auto &Caller = DAG.getMachineFunction().getFunction();
4565   // Check that the calling conventions are compatible for tco.
4566   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4567     return false;
4568 
4569   // Caller contains any byval parameter is not supported.
4570   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4571     return false;
4572 
4573   // Callee contains any byval parameter is not supported, too.
4574   // Note: This is a quick work around, because in some cases, e.g.
4575   // caller's stack size > callee's stack size, we are still able to apply
4576   // sibling call optimization. For example, gcc is able to do SCO for caller1
4577   // in the following example, but not for caller2.
4578   //   struct test {
4579   //     long int a;
4580   //     char ary[56];
4581   //   } gTest;
4582   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4583   //     b->a = v.a;
4584   //     return 0;
4585   //   }
4586   //   void caller1(struct test a, struct test c, struct test *b) {
4587   //     callee(gTest, b); }
4588   //   void caller2(struct test *b) { callee(gTest, b); }
4589   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4590     return false;
4591 
4592   // If callee and caller use different calling conventions, we cannot pass
4593   // parameters on stack since offsets for the parameter area may be different.
4594   if (Caller.getCallingConv() != CalleeCC &&
4595       needStackSlotPassParameters(Subtarget, Outs))
4596     return false;
4597 
4598   // No TCO/SCO on indirect call because Caller have to restore its TOC
4599   if (!isFunctionGlobalAddress(Callee) &&
4600       !isa<ExternalSymbolSDNode>(Callee))
4601     return false;
4602 
4603   // If the caller and callee potentially have different TOC bases then we
4604   // cannot tail call since we need to restore the TOC pointer after the call.
4605   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4606   if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4607     return false;
4608 
4609   // TCO allows altering callee ABI, so we don't have to check further.
4610   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4611     return true;
4612 
4613   if (DisableSCO) return false;
4614 
4615   // If callee use the same argument list that caller is using, then we can
4616   // apply SCO on this case. If it is not, then we need to check if callee needs
4617   // stack for passing arguments.
4618   if (!hasSameArgumentList(&Caller, CS) &&
4619       needStackSlotPassParameters(Subtarget, Outs)) {
4620     return false;
4621   }
4622 
4623   return true;
4624 }
4625 
4626 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4627 /// for tail call optimization. Targets which want to do tail call
4628 /// optimization should implement this function.
4629 bool
4630 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4631                                                      CallingConv::ID CalleeCC,
4632                                                      bool isVarArg,
4633                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4634                                                      SelectionDAG& DAG) const {
4635   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4636     return false;
4637 
4638   // Variable argument functions are not supported.
4639   if (isVarArg)
4640     return false;
4641 
4642   MachineFunction &MF = DAG.getMachineFunction();
4643   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4644   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4645     // Functions containing by val parameters are not supported.
4646     for (unsigned i = 0; i != Ins.size(); i++) {
4647        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4648        if (Flags.isByVal()) return false;
4649     }
4650 
4651     // Non-PIC/GOT tail calls are supported.
4652     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4653       return true;
4654 
4655     // At the moment we can only do local tail calls (in same module, hidden
4656     // or protected) if we are generating PIC.
4657     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4658       return G->getGlobal()->hasHiddenVisibility()
4659           || G->getGlobal()->hasProtectedVisibility();
4660   }
4661 
4662   return false;
4663 }
4664 
4665 /// isCallCompatibleAddress - Return the immediate to use if the specified
4666 /// 32-bit value is representable in the immediate field of a BxA instruction.
4667 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4668   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4669   if (!C) return nullptr;
4670 
4671   int Addr = C->getZExtValue();
4672   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4673       SignExtend32<26>(Addr) != Addr)
4674     return nullptr;  // Top 6 bits have to be sext of immediate.
4675 
4676   return DAG
4677       .getConstant(
4678           (int)C->getZExtValue() >> 2, SDLoc(Op),
4679           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4680       .getNode();
4681 }
4682 
4683 namespace {
4684 
4685 struct TailCallArgumentInfo {
4686   SDValue Arg;
4687   SDValue FrameIdxOp;
4688   int FrameIdx = 0;
4689 
4690   TailCallArgumentInfo() = default;
4691 };
4692 
4693 } // end anonymous namespace
4694 
4695 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4696 static void StoreTailCallArgumentsToStackSlot(
4697     SelectionDAG &DAG, SDValue Chain,
4698     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4699     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4700   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4701     SDValue Arg = TailCallArgs[i].Arg;
4702     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4703     int FI = TailCallArgs[i].FrameIdx;
4704     // Store relative to framepointer.
4705     MemOpChains.push_back(DAG.getStore(
4706         Chain, dl, Arg, FIN,
4707         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4708   }
4709 }
4710 
4711 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4712 /// the appropriate stack slot for the tail call optimized function call.
4713 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4714                                              SDValue OldRetAddr, SDValue OldFP,
4715                                              int SPDiff, const SDLoc &dl) {
4716   if (SPDiff) {
4717     // Calculate the new stack slot for the return address.
4718     MachineFunction &MF = DAG.getMachineFunction();
4719     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4720     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4721     bool isPPC64 = Subtarget.isPPC64();
4722     int SlotSize = isPPC64 ? 8 : 4;
4723     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4724     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4725                                                          NewRetAddrLoc, true);
4726     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4727     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4728     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4729                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4730 
4731     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4732     // slot as the FP is never overwritten.
4733     if (Subtarget.isDarwinABI()) {
4734       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4735       int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
4736                                                          true);
4737       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4738       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
4739                            MachinePointerInfo::getFixedStack(
4740                                DAG.getMachineFunction(), NewFPIdx));
4741     }
4742   }
4743   return Chain;
4744 }
4745 
4746 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4747 /// the position of the argument.
4748 static void
4749 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4750                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4751                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4752   int Offset = ArgOffset + SPDiff;
4753   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4754   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4755   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4756   SDValue FIN = DAG.getFrameIndex(FI, VT);
4757   TailCallArgumentInfo Info;
4758   Info.Arg = Arg;
4759   Info.FrameIdxOp = FIN;
4760   Info.FrameIdx = FI;
4761   TailCallArguments.push_back(Info);
4762 }
4763 
4764 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4765 /// stack slot. Returns the chain as result and the loaded frame pointers in
4766 /// LROpOut/FPOpout. Used when tail calling.
4767 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4768     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4769     SDValue &FPOpOut, const SDLoc &dl) const {
4770   if (SPDiff) {
4771     // Load the LR and FP stack slot for later adjusting.
4772     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4773     LROpOut = getReturnAddrFrameIndex(DAG);
4774     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4775     Chain = SDValue(LROpOut.getNode(), 1);
4776 
4777     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4778     // slot as the FP is never overwritten.
4779     if (Subtarget.isDarwinABI()) {
4780       FPOpOut = getFramePointerFrameIndex(DAG);
4781       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
4782       Chain = SDValue(FPOpOut.getNode(), 1);
4783     }
4784   }
4785   return Chain;
4786 }
4787 
4788 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4789 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4790 /// specified by the specific parameter attribute. The copy will be passed as
4791 /// a byval function parameter.
4792 /// Sometimes what we are copying is the end of a larger object, the part that
4793 /// does not fit in registers.
4794 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4795                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4796                                          SelectionDAG &DAG, const SDLoc &dl) {
4797   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4798   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4799                        false, false, false, MachinePointerInfo(),
4800                        MachinePointerInfo());
4801 }
4802 
4803 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4804 /// tail calls.
4805 static void LowerMemOpCallTo(
4806     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4807     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4808     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4809     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4810   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4811   if (!isTailCall) {
4812     if (isVector) {
4813       SDValue StackPtr;
4814       if (isPPC64)
4815         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4816       else
4817         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4818       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4819                            DAG.getConstant(ArgOffset, dl, PtrVT));
4820     }
4821     MemOpChains.push_back(
4822         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4823     // Calculate and remember argument location.
4824   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4825                                   TailCallArguments);
4826 }
4827 
4828 static void
4829 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4830                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4831                 SDValue FPOp,
4832                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4833   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4834   // might overwrite each other in case of tail call optimization.
4835   SmallVector<SDValue, 8> MemOpChains2;
4836   // Do not flag preceding copytoreg stuff together with the following stuff.
4837   InFlag = SDValue();
4838   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4839                                     MemOpChains2, dl);
4840   if (!MemOpChains2.empty())
4841     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4842 
4843   // Store the return address to the appropriate stack slot.
4844   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4845 
4846   // Emit callseq_end just before tailcall node.
4847   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4848                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4849   InFlag = Chain.getValue(1);
4850 }
4851 
4852 // Is this global address that of a function that can be called by name? (as
4853 // opposed to something that must hold a descriptor for an indirect call).
4854 static bool isFunctionGlobalAddress(SDValue Callee) {
4855   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4856     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4857         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4858       return false;
4859 
4860     return G->getGlobal()->getValueType()->isFunctionTy();
4861   }
4862 
4863   return false;
4864 }
4865 
4866 static unsigned
4867 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
4868             SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
4869             bool isPatchPoint, bool hasNest,
4870             SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
4871             SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4872             ImmutableCallSite CS, const PPCSubtarget &Subtarget) {
4873   bool isPPC64 = Subtarget.isPPC64();
4874   bool isSVR4ABI = Subtarget.isSVR4ABI();
4875   bool isELFv2ABI = Subtarget.isELFv2ABI();
4876 
4877   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4878   NodeTys.push_back(MVT::Other);   // Returns a chain
4879   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
4880 
4881   unsigned CallOpc = PPCISD::CALL;
4882 
4883   bool needIndirectCall = true;
4884   if (!isSVR4ABI || !isPPC64)
4885     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4886       // If this is an absolute destination address, use the munged value.
4887       Callee = SDValue(Dest, 0);
4888       needIndirectCall = false;
4889     }
4890 
4891   // PC-relative references to external symbols should go through $stub, unless
4892   // we're building with the leopard linker or later, which automatically
4893   // synthesizes these stubs.
4894   const TargetMachine &TM = DAG.getTarget();
4895   const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
4896   const GlobalValue *GV = nullptr;
4897   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
4898     GV = G->getGlobal();
4899   bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
4900   bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64;
4901 
4902   if (isFunctionGlobalAddress(Callee)) {
4903     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4904     // A call to a TLS address is actually an indirect call to a
4905     // thread-specific pointer.
4906     unsigned OpFlags = 0;
4907     if (UsePlt)
4908       OpFlags = PPCII::MO_PLT;
4909 
4910     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4911     // every direct call is) turn it into a TargetGlobalAddress /
4912     // TargetExternalSymbol node so that legalize doesn't hack it.
4913     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4914                                         Callee.getValueType(), 0, OpFlags);
4915     needIndirectCall = false;
4916   }
4917 
4918   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4919     unsigned char OpFlags = 0;
4920 
4921     if (UsePlt)
4922       OpFlags = PPCII::MO_PLT;
4923 
4924     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
4925                                          OpFlags);
4926     needIndirectCall = false;
4927   }
4928 
4929   if (isPatchPoint) {
4930     // We'll form an invalid direct call when lowering a patchpoint; the full
4931     // sequence for an indirect call is complicated, and many of the
4932     // instructions introduced might have side effects (and, thus, can't be
4933     // removed later). The call itself will be removed as soon as the
4934     // argument/return lowering is complete, so the fact that it has the wrong
4935     // kind of operands should not really matter.
4936     needIndirectCall = false;
4937   }
4938 
4939   if (needIndirectCall) {
4940     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
4941     // to do the call, we can't use PPCISD::CALL.
4942     SDValue MTCTROps[] = {Chain, Callee, InFlag};
4943 
4944     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
4945       // Function pointers in the 64-bit SVR4 ABI do not point to the function
4946       // entry point, but to the function descriptor (the function entry point
4947       // address is part of the function descriptor though).
4948       // The function descriptor is a three doubleword structure with the
4949       // following fields: function entry point, TOC base address and
4950       // environment pointer.
4951       // Thus for a call through a function pointer, the following actions need
4952       // to be performed:
4953       //   1. Save the TOC of the caller in the TOC save area of its stack
4954       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
4955       //   2. Load the address of the function entry point from the function
4956       //      descriptor.
4957       //   3. Load the TOC of the callee from the function descriptor into r2.
4958       //   4. Load the environment pointer from the function descriptor into
4959       //      r11.
4960       //   5. Branch to the function entry point address.
4961       //   6. On return of the callee, the TOC of the caller needs to be
4962       //      restored (this is done in FinishCall()).
4963       //
4964       // The loads are scheduled at the beginning of the call sequence, and the
4965       // register copies are flagged together to ensure that no other
4966       // operations can be scheduled in between. E.g. without flagging the
4967       // copies together, a TOC access in the caller could be scheduled between
4968       // the assignment of the callee TOC and the branch to the callee, which
4969       // results in the TOC access going through the TOC of the callee instead
4970       // of going through the TOC of the caller, which leads to incorrect code.
4971 
4972       // Load the address of the function entry point from the function
4973       // descriptor.
4974       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
4975       if (LDChain.getValueType() == MVT::Glue)
4976         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
4977 
4978       auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
4979                           ? (MachineMemOperand::MODereferenceable |
4980                              MachineMemOperand::MOInvariant)
4981                           : MachineMemOperand::MONone;
4982 
4983       MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
4984       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
4985                                         /* Alignment = */ 8, MMOFlags);
4986 
4987       // Load environment pointer into r11.
4988       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
4989       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
4990       SDValue LoadEnvPtr =
4991           DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16),
4992                       /* Alignment = */ 8, MMOFlags);
4993 
4994       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
4995       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
4996       SDValue TOCPtr =
4997           DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8),
4998                       /* Alignment = */ 8, MMOFlags);
4999 
5000       setUsesTOCBasePtr(DAG);
5001       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
5002                                         InFlag);
5003       Chain = TOCVal.getValue(0);
5004       InFlag = TOCVal.getValue(1);
5005 
5006       // If the function call has an explicit 'nest' parameter, it takes the
5007       // place of the environment pointer.
5008       if (!hasNest) {
5009         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
5010                                           InFlag);
5011 
5012         Chain = EnvVal.getValue(0);
5013         InFlag = EnvVal.getValue(1);
5014       }
5015 
5016       MTCTROps[0] = Chain;
5017       MTCTROps[1] = LoadFuncPtr;
5018       MTCTROps[2] = InFlag;
5019     }
5020 
5021     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
5022                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
5023     InFlag = Chain.getValue(1);
5024 
5025     NodeTys.clear();
5026     NodeTys.push_back(MVT::Other);
5027     NodeTys.push_back(MVT::Glue);
5028     Ops.push_back(Chain);
5029     CallOpc = PPCISD::BCTRL;
5030     Callee.setNode(nullptr);
5031     // Add use of X11 (holding environment pointer)
5032     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
5033       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
5034     // Add CTR register as callee so a bctr can be emitted later.
5035     if (isTailCall)
5036       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
5037   }
5038 
5039   // If this is a direct call, pass the chain and the callee.
5040   if (Callee.getNode()) {
5041     Ops.push_back(Chain);
5042     Ops.push_back(Callee);
5043   }
5044   // If this is a tail call add stack pointer delta.
5045   if (isTailCall)
5046     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5047 
5048   // Add argument registers to the end of the list so that they are known live
5049   // into the call.
5050   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5051     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5052                                   RegsToPass[i].second.getValueType()));
5053 
5054   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
5055   // into the call.
5056   if (isSVR4ABI && isPPC64 && !isPatchPoint) {
5057     setUsesTOCBasePtr(DAG);
5058     Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
5059   }
5060 
5061   return CallOpc;
5062 }
5063 
5064 SDValue PPCTargetLowering::LowerCallResult(
5065     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5066     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5067     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5068   SmallVector<CCValAssign, 16> RVLocs;
5069   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5070                     *DAG.getContext());
5071 
5072   CCRetInfo.AnalyzeCallResult(
5073       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5074                ? RetCC_PPC_Cold
5075                : RetCC_PPC);
5076 
5077   // Copy all of the result registers out of their specified physreg.
5078   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5079     CCValAssign &VA = RVLocs[i];
5080     assert(VA.isRegLoc() && "Can only return in registers!");
5081 
5082     SDValue Val = DAG.getCopyFromReg(Chain, dl,
5083                                      VA.getLocReg(), VA.getLocVT(), InFlag);
5084     Chain = Val.getValue(1);
5085     InFlag = Val.getValue(2);
5086 
5087     switch (VA.getLocInfo()) {
5088     default: llvm_unreachable("Unknown loc info!");
5089     case CCValAssign::Full: break;
5090     case CCValAssign::AExt:
5091       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5092       break;
5093     case CCValAssign::ZExt:
5094       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5095                         DAG.getValueType(VA.getValVT()));
5096       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5097       break;
5098     case CCValAssign::SExt:
5099       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5100                         DAG.getValueType(VA.getValVT()));
5101       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5102       break;
5103     }
5104 
5105     InVals.push_back(Val);
5106   }
5107 
5108   return Chain;
5109 }
5110 
5111 SDValue PPCTargetLowering::FinishCall(
5112     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
5113     bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
5114     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
5115     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5116     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5117     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
5118   std::vector<EVT> NodeTys;
5119   SmallVector<SDValue, 8> Ops;
5120   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
5121                                  SPDiff, isTailCall, isPatchPoint, hasNest,
5122                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
5123 
5124   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5125   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
5126     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5127 
5128   // When performing tail call optimization the callee pops its arguments off
5129   // the stack. Account for this here so these bytes can be pushed back on in
5130   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5131   int BytesCalleePops =
5132     (CallConv == CallingConv::Fast &&
5133      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
5134 
5135   // Add a register mask operand representing the call-preserved registers.
5136   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5137   const uint32_t *Mask =
5138       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
5139   assert(Mask && "Missing call preserved mask for calling convention");
5140   Ops.push_back(DAG.getRegisterMask(Mask));
5141 
5142   if (InFlag.getNode())
5143     Ops.push_back(InFlag);
5144 
5145   // Emit tail call.
5146   if (isTailCall) {
5147     assert(((Callee.getOpcode() == ISD::Register &&
5148              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5149             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5150             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5151             isa<ConstantSDNode>(Callee)) &&
5152     "Expecting an global address, external symbol, absolute value or register");
5153 
5154     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5155     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
5156   }
5157 
5158   // Add a NOP immediately after the branch instruction when using the 64-bit
5159   // SVR4 ABI. At link time, if caller and callee are in a different module and
5160   // thus have a different TOC, the call will be replaced with a call to a stub
5161   // function which saves the current TOC, loads the TOC of the callee and
5162   // branches to the callee. The NOP will be replaced with a load instruction
5163   // which restores the TOC of the caller from the TOC save slot of the current
5164   // stack frame. If caller and callee belong to the same module (and have the
5165   // same TOC), the NOP will remain unchanged.
5166 
5167   MachineFunction &MF = DAG.getMachineFunction();
5168   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
5169       !isPatchPoint) {
5170     if (CallOpc == PPCISD::BCTRL) {
5171       // This is a call through a function pointer.
5172       // Restore the caller TOC from the save area into R2.
5173       // See PrepareCall() for more information about calls through function
5174       // pointers in the 64-bit SVR4 ABI.
5175       // We are using a target-specific load with r2 hard coded, because the
5176       // result of a target-independent load would never go directly into r2,
5177       // since r2 is a reserved register (which prevents the register allocator
5178       // from allocating it), resulting in an additional register being
5179       // allocated and an unnecessary move instruction being generated.
5180       CallOpc = PPCISD::BCTRL_LOAD_TOC;
5181 
5182       EVT PtrVT = getPointerTy(DAG.getDataLayout());
5183       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
5184       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5185       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5186       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
5187 
5188       // The address needs to go after the chain input but before the flag (or
5189       // any other variadic arguments).
5190       Ops.insert(std::next(Ops.begin()), AddTOC);
5191     } else if (CallOpc == PPCISD::CALL &&
5192       !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) {
5193       // Otherwise insert NOP for non-local calls.
5194       CallOpc = PPCISD::CALL_NOP;
5195     }
5196   }
5197 
5198   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
5199   InFlag = Chain.getValue(1);
5200 
5201   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5202                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5203                              InFlag, dl);
5204   if (!Ins.empty())
5205     InFlag = Chain.getValue(1);
5206 
5207   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
5208                          Ins, dl, DAG, InVals);
5209 }
5210 
5211 SDValue
5212 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5213                              SmallVectorImpl<SDValue> &InVals) const {
5214   SelectionDAG &DAG                     = CLI.DAG;
5215   SDLoc &dl                             = CLI.DL;
5216   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5217   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5218   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5219   SDValue Chain                         = CLI.Chain;
5220   SDValue Callee                        = CLI.Callee;
5221   bool &isTailCall                      = CLI.IsTailCall;
5222   CallingConv::ID CallConv              = CLI.CallConv;
5223   bool isVarArg                         = CLI.IsVarArg;
5224   bool isPatchPoint                     = CLI.IsPatchPoint;
5225   ImmutableCallSite CS                  = CLI.CS;
5226 
5227   if (isTailCall) {
5228     if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
5229       isTailCall = false;
5230     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5231       isTailCall =
5232         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
5233                                                  isVarArg, Outs, Ins, DAG);
5234     else
5235       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5236                                                      Ins, DAG);
5237     if (isTailCall) {
5238       ++NumTailCalls;
5239       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5240         ++NumSiblingCalls;
5241 
5242       assert(isa<GlobalAddressSDNode>(Callee) &&
5243              "Callee should be an llvm::Function object.");
5244       LLVM_DEBUG(
5245           const GlobalValue *GV =
5246               cast<GlobalAddressSDNode>(Callee)->getGlobal();
5247           const unsigned Width =
5248               80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0");
5249           dbgs() << "TCO caller: "
5250                  << left_justify(DAG.getMachineFunction().getName(), Width)
5251                  << ", callee linkage: " << GV->getVisibility() << ", "
5252                  << GV->getLinkage() << "\n");
5253     }
5254   }
5255 
5256   if (!isTailCall && CS && CS.isMustTailCall())
5257     report_fatal_error("failed to perform tail call elimination on a call "
5258                        "site marked musttail");
5259 
5260   // When long calls (i.e. indirect calls) are always used, calls are always
5261   // made via function pointer. If we have a function name, first translate it
5262   // into a pointer.
5263   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5264       !isTailCall)
5265     Callee = LowerGlobalAddress(Callee, DAG);
5266 
5267   if (Subtarget.isSVR4ABI()) {
5268     if (Subtarget.isPPC64())
5269       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
5270                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
5271                               dl, DAG, InVals, CS);
5272     else
5273       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
5274                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
5275                               dl, DAG, InVals, CS);
5276   }
5277 
5278   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
5279                           isTailCall, isPatchPoint, Outs, OutVals, Ins,
5280                           dl, DAG, InVals, CS);
5281 }
5282 
5283 SDValue PPCTargetLowering::LowerCall_32SVR4(
5284     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5285     bool isTailCall, bool isPatchPoint,
5286     const SmallVectorImpl<ISD::OutputArg> &Outs,
5287     const SmallVectorImpl<SDValue> &OutVals,
5288     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5289     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5290     ImmutableCallSite CS) const {
5291   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5292   // of the 32-bit SVR4 ABI stack frame layout.
5293 
5294   assert((CallConv == CallingConv::C ||
5295           CallConv == CallingConv::Cold ||
5296           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5297 
5298   unsigned PtrByteSize = 4;
5299 
5300   MachineFunction &MF = DAG.getMachineFunction();
5301 
5302   // Mark this function as potentially containing a function that contains a
5303   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5304   // and restoring the callers stack pointer in this functions epilog. This is
5305   // done because by tail calling the called function might overwrite the value
5306   // in this function's (MF) stack pointer stack slot 0(SP).
5307   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5308       CallConv == CallingConv::Fast)
5309     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5310 
5311   // Count how many bytes are to be pushed on the stack, including the linkage
5312   // area, parameter list area and the part of the local variable space which
5313   // contains copies of aggregates which are passed by value.
5314 
5315   // Assign locations to all of the outgoing arguments.
5316   SmallVector<CCValAssign, 16> ArgLocs;
5317   PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
5318 
5319   // Reserve space for the linkage area on the stack.
5320   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5321                        PtrByteSize);
5322   if (useSoftFloat())
5323     CCInfo.PreAnalyzeCallOperands(Outs);
5324 
5325   if (isVarArg) {
5326     // Handle fixed and variable vector arguments differently.
5327     // Fixed vector arguments go into registers as long as registers are
5328     // available. Variable vector arguments always go into memory.
5329     unsigned NumArgs = Outs.size();
5330 
5331     for (unsigned i = 0; i != NumArgs; ++i) {
5332       MVT ArgVT = Outs[i].VT;
5333       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5334       bool Result;
5335 
5336       if (Outs[i].IsFixed) {
5337         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5338                                CCInfo);
5339       } else {
5340         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5341                                       ArgFlags, CCInfo);
5342       }
5343 
5344       if (Result) {
5345 #ifndef NDEBUG
5346         errs() << "Call operand #" << i << " has unhandled type "
5347              << EVT(ArgVT).getEVTString() << "\n";
5348 #endif
5349         llvm_unreachable(nullptr);
5350       }
5351     }
5352   } else {
5353     // All arguments are treated the same.
5354     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5355   }
5356   CCInfo.clearWasPPCF128();
5357 
5358   // Assign locations to all of the outgoing aggregate by value arguments.
5359   SmallVector<CCValAssign, 16> ByValArgLocs;
5360   CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
5361 
5362   // Reserve stack space for the allocations in CCInfo.
5363   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
5364 
5365   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5366 
5367   // Size of the linkage area, parameter list area and the part of the local
5368   // space variable where copies of aggregates which are passed by value are
5369   // stored.
5370   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5371 
5372   // Calculate by how many bytes the stack has to be adjusted in case of tail
5373   // call optimization.
5374   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5375 
5376   // Adjust the stack pointer for the new arguments...
5377   // These operations are automatically eliminated by the prolog/epilog pass
5378   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5379   SDValue CallSeqStart = Chain;
5380 
5381   // Load the return address and frame pointer so it can be moved somewhere else
5382   // later.
5383   SDValue LROp, FPOp;
5384   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5385 
5386   // Set up a copy of the stack pointer for use loading and storing any
5387   // arguments that may not fit in the registers available for argument
5388   // passing.
5389   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5390 
5391   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5392   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5393   SmallVector<SDValue, 8> MemOpChains;
5394 
5395   bool seenFloatArg = false;
5396   // Walk the register/memloc assignments, inserting copies/loads.
5397   for (unsigned i = 0, j = 0, e = ArgLocs.size();
5398        i != e;
5399        ++i) {
5400     CCValAssign &VA = ArgLocs[i];
5401     SDValue Arg = OutVals[i];
5402     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5403 
5404     if (Flags.isByVal()) {
5405       // Argument is an aggregate which is passed by value, thus we need to
5406       // create a copy of it in the local variable space of the current stack
5407       // frame (which is the stack frame of the caller) and pass the address of
5408       // this copy to the callee.
5409       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5410       CCValAssign &ByValVA = ByValArgLocs[j++];
5411       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5412 
5413       // Memory reserved in the local variable space of the callers stack frame.
5414       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5415 
5416       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5417       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5418                            StackPtr, PtrOff);
5419 
5420       // Create a copy of the argument in the local area of the current
5421       // stack frame.
5422       SDValue MemcpyCall =
5423         CreateCopyOfByValArgument(Arg, PtrOff,
5424                                   CallSeqStart.getNode()->getOperand(0),
5425                                   Flags, DAG, dl);
5426 
5427       // This must go outside the CALLSEQ_START..END.
5428       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5429                                                      SDLoc(MemcpyCall));
5430       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5431                              NewCallSeqStart.getNode());
5432       Chain = CallSeqStart = NewCallSeqStart;
5433 
5434       // Pass the address of the aggregate copy on the stack either in a
5435       // physical register or in the parameter list area of the current stack
5436       // frame to the callee.
5437       Arg = PtrOff;
5438     }
5439 
5440     if (VA.isRegLoc()) {
5441       if (Arg.getValueType() == MVT::i1)
5442         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
5443 
5444       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5445       // Put argument in a physical register.
5446       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5447     } else {
5448       // Put argument in the parameter list area of the current stack frame.
5449       assert(VA.isMemLoc());
5450       unsigned LocMemOffset = VA.getLocMemOffset();
5451 
5452       if (!isTailCall) {
5453         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5454         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5455                              StackPtr, PtrOff);
5456 
5457         MemOpChains.push_back(
5458             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5459       } else {
5460         // Calculate and remember argument location.
5461         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5462                                  TailCallArguments);
5463       }
5464     }
5465   }
5466 
5467   if (!MemOpChains.empty())
5468     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5469 
5470   // Build a sequence of copy-to-reg nodes chained together with token chain
5471   // and flag operands which copy the outgoing args into the appropriate regs.
5472   SDValue InFlag;
5473   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5474     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5475                              RegsToPass[i].second, InFlag);
5476     InFlag = Chain.getValue(1);
5477   }
5478 
5479   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5480   // registers.
5481   if (isVarArg) {
5482     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5483     SDValue Ops[] = { Chain, InFlag };
5484 
5485     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5486                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5487 
5488     InFlag = Chain.getValue(1);
5489   }
5490 
5491   if (isTailCall)
5492     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5493                     TailCallArguments);
5494 
5495   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5496                     /* unused except on PPC64 ELFv1 */ false, DAG,
5497                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5498                     NumBytes, Ins, InVals, CS);
5499 }
5500 
5501 // Copy an argument into memory, being careful to do this outside the
5502 // call sequence for the call to which the argument belongs.
5503 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5504     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5505     SelectionDAG &DAG, const SDLoc &dl) const {
5506   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5507                         CallSeqStart.getNode()->getOperand(0),
5508                         Flags, DAG, dl);
5509   // The MEMCPY must go outside the CALLSEQ_START..END.
5510   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5511   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5512                                                  SDLoc(MemcpyCall));
5513   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5514                          NewCallSeqStart.getNode());
5515   return NewCallSeqStart;
5516 }
5517 
5518 SDValue PPCTargetLowering::LowerCall_64SVR4(
5519     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5520     bool isTailCall, bool isPatchPoint,
5521     const SmallVectorImpl<ISD::OutputArg> &Outs,
5522     const SmallVectorImpl<SDValue> &OutVals,
5523     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5524     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5525     ImmutableCallSite CS) const {
5526   bool isELFv2ABI = Subtarget.isELFv2ABI();
5527   bool isLittleEndian = Subtarget.isLittleEndian();
5528   unsigned NumOps = Outs.size();
5529   bool hasNest = false;
5530   bool IsSibCall = false;
5531 
5532   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5533   unsigned PtrByteSize = 8;
5534 
5535   MachineFunction &MF = DAG.getMachineFunction();
5536 
5537   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5538     IsSibCall = true;
5539 
5540   // Mark this function as potentially containing a function that contains a
5541   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5542   // and restoring the callers stack pointer in this functions epilog. This is
5543   // done because by tail calling the called function might overwrite the value
5544   // in this function's (MF) stack pointer stack slot 0(SP).
5545   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5546       CallConv == CallingConv::Fast)
5547     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5548 
5549   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5550          "fastcc not supported on varargs functions");
5551 
5552   // Count how many bytes are to be pushed on the stack, including the linkage
5553   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5554   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5555   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5556   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5557   unsigned NumBytes = LinkageSize;
5558   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5559   unsigned &QFPR_idx = FPR_idx;
5560 
5561   static const MCPhysReg GPR[] = {
5562     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5563     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5564   };
5565   static const MCPhysReg VR[] = {
5566     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5567     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5568   };
5569 
5570   const unsigned NumGPRs = array_lengthof(GPR);
5571   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5572   const unsigned NumVRs  = array_lengthof(VR);
5573   const unsigned NumQFPRs = NumFPRs;
5574 
5575   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5576   // can be passed to the callee in registers.
5577   // For the fast calling convention, there is another check below.
5578   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5579   bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
5580   if (!HasParameterArea) {
5581     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5582     unsigned AvailableFPRs = NumFPRs;
5583     unsigned AvailableVRs = NumVRs;
5584     unsigned NumBytesTmp = NumBytes;
5585     for (unsigned i = 0; i != NumOps; ++i) {
5586       if (Outs[i].Flags.isNest()) continue;
5587       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5588                                 PtrByteSize, LinkageSize, ParamAreaSize,
5589                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
5590                                 Subtarget.hasQPX()))
5591         HasParameterArea = true;
5592     }
5593   }
5594 
5595   // When using the fast calling convention, we don't provide backing for
5596   // arguments that will be in registers.
5597   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5598 
5599   // Avoid allocating parameter area for fastcc functions if all the arguments
5600   // can be passed in the registers.
5601   if (CallConv == CallingConv::Fast)
5602     HasParameterArea = false;
5603 
5604   // Add up all the space actually used.
5605   for (unsigned i = 0; i != NumOps; ++i) {
5606     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5607     EVT ArgVT = Outs[i].VT;
5608     EVT OrigVT = Outs[i].ArgVT;
5609 
5610     if (Flags.isNest())
5611       continue;
5612 
5613     if (CallConv == CallingConv::Fast) {
5614       if (Flags.isByVal()) {
5615         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5616         if (NumGPRsUsed > NumGPRs)
5617           HasParameterArea = true;
5618       } else {
5619         switch (ArgVT.getSimpleVT().SimpleTy) {
5620         default: llvm_unreachable("Unexpected ValueType for argument!");
5621         case MVT::i1:
5622         case MVT::i32:
5623         case MVT::i64:
5624           if (++NumGPRsUsed <= NumGPRs)
5625             continue;
5626           break;
5627         case MVT::v4i32:
5628         case MVT::v8i16:
5629         case MVT::v16i8:
5630         case MVT::v2f64:
5631         case MVT::v2i64:
5632         case MVT::v1i128:
5633         case MVT::f128:
5634           if (++NumVRsUsed <= NumVRs)
5635             continue;
5636           break;
5637         case MVT::v4f32:
5638           // When using QPX, this is handled like a FP register, otherwise, it
5639           // is an Altivec register.
5640           if (Subtarget.hasQPX()) {
5641             if (++NumFPRsUsed <= NumFPRs)
5642               continue;
5643           } else {
5644             if (++NumVRsUsed <= NumVRs)
5645               continue;
5646           }
5647           break;
5648         case MVT::f32:
5649         case MVT::f64:
5650         case MVT::v4f64: // QPX
5651         case MVT::v4i1:  // QPX
5652           if (++NumFPRsUsed <= NumFPRs)
5653             continue;
5654           break;
5655         }
5656         HasParameterArea = true;
5657       }
5658     }
5659 
5660     /* Respect alignment of argument on the stack.  */
5661     unsigned Align =
5662       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5663     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5664 
5665     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5666     if (Flags.isInConsecutiveRegsLast())
5667       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5668   }
5669 
5670   unsigned NumBytesActuallyUsed = NumBytes;
5671 
5672   // In the old ELFv1 ABI,
5673   // the prolog code of the callee may store up to 8 GPR argument registers to
5674   // the stack, allowing va_start to index over them in memory if its varargs.
5675   // Because we cannot tell if this is needed on the caller side, we have to
5676   // conservatively assume that it is needed.  As such, make sure we have at
5677   // least enough stack space for the caller to store the 8 GPRs.
5678   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5679   // really requires memory operands, e.g. a vararg function.
5680   if (HasParameterArea)
5681     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5682   else
5683     NumBytes = LinkageSize;
5684 
5685   // Tail call needs the stack to be aligned.
5686   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5687       CallConv == CallingConv::Fast)
5688     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5689 
5690   int SPDiff = 0;
5691 
5692   // Calculate by how many bytes the stack has to be adjusted in case of tail
5693   // call optimization.
5694   if (!IsSibCall)
5695     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5696 
5697   // To protect arguments on the stack from being clobbered in a tail call,
5698   // force all the loads to happen before doing any other lowering.
5699   if (isTailCall)
5700     Chain = DAG.getStackArgumentTokenFactor(Chain);
5701 
5702   // Adjust the stack pointer for the new arguments...
5703   // These operations are automatically eliminated by the prolog/epilog pass
5704   if (!IsSibCall)
5705     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5706   SDValue CallSeqStart = Chain;
5707 
5708   // Load the return address and frame pointer so it can be move somewhere else
5709   // later.
5710   SDValue LROp, FPOp;
5711   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5712 
5713   // Set up a copy of the stack pointer for use loading and storing any
5714   // arguments that may not fit in the registers available for argument
5715   // passing.
5716   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5717 
5718   // Figure out which arguments are going to go in registers, and which in
5719   // memory.  Also, if this is a vararg function, floating point operations
5720   // must be stored to our stack, and loaded into integer regs as well, if
5721   // any integer regs are available for argument passing.
5722   unsigned ArgOffset = LinkageSize;
5723 
5724   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5725   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5726 
5727   SmallVector<SDValue, 8> MemOpChains;
5728   for (unsigned i = 0; i != NumOps; ++i) {
5729     SDValue Arg = OutVals[i];
5730     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5731     EVT ArgVT = Outs[i].VT;
5732     EVT OrigVT = Outs[i].ArgVT;
5733 
5734     // PtrOff will be used to store the current argument to the stack if a
5735     // register cannot be found for it.
5736     SDValue PtrOff;
5737 
5738     // We re-align the argument offset for each argument, except when using the
5739     // fast calling convention, when we need to make sure we do that only when
5740     // we'll actually use a stack slot.
5741     auto ComputePtrOff = [&]() {
5742       /* Respect alignment of argument on the stack.  */
5743       unsigned Align =
5744         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5745       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
5746 
5747       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5748 
5749       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5750     };
5751 
5752     if (CallConv != CallingConv::Fast) {
5753       ComputePtrOff();
5754 
5755       /* Compute GPR index associated with argument offset.  */
5756       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5757       GPR_idx = std::min(GPR_idx, NumGPRs);
5758     }
5759 
5760     // Promote integers to 64-bit values.
5761     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5762       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5763       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5764       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5765     }
5766 
5767     // FIXME memcpy is used way more than necessary.  Correctness first.
5768     // Note: "by value" is code for passing a structure by value, not
5769     // basic types.
5770     if (Flags.isByVal()) {
5771       // Note: Size includes alignment padding, so
5772       //   struct x { short a; char b; }
5773       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
5774       // These are the proper values we need for right-justifying the
5775       // aggregate in a parameter register.
5776       unsigned Size = Flags.getByValSize();
5777 
5778       // An empty aggregate parameter takes up no storage and no
5779       // registers.
5780       if (Size == 0)
5781         continue;
5782 
5783       if (CallConv == CallingConv::Fast)
5784         ComputePtrOff();
5785 
5786       // All aggregates smaller than 8 bytes must be passed right-justified.
5787       if (Size==1 || Size==2 || Size==4) {
5788         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
5789         if (GPR_idx != NumGPRs) {
5790           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5791                                         MachinePointerInfo(), VT);
5792           MemOpChains.push_back(Load.getValue(1));
5793           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5794 
5795           ArgOffset += PtrByteSize;
5796           continue;
5797         }
5798       }
5799 
5800       if (GPR_idx == NumGPRs && Size < 8) {
5801         SDValue AddPtr = PtrOff;
5802         if (!isLittleEndian) {
5803           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5804                                           PtrOff.getValueType());
5805           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5806         }
5807         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5808                                                           CallSeqStart,
5809                                                           Flags, DAG, dl);
5810         ArgOffset += PtrByteSize;
5811         continue;
5812       }
5813       // Copy entire object into memory.  There are cases where gcc-generated
5814       // code assumes it is there, even if it could be put entirely into
5815       // registers.  (This is not what the doc says.)
5816 
5817       // FIXME: The above statement is likely due to a misunderstanding of the
5818       // documents.  All arguments must be copied into the parameter area BY
5819       // THE CALLEE in the event that the callee takes the address of any
5820       // formal argument.  That has not yet been implemented.  However, it is
5821       // reasonable to use the stack area as a staging area for the register
5822       // load.
5823 
5824       // Skip this for small aggregates, as we will use the same slot for a
5825       // right-justified copy, below.
5826       if (Size >= 8)
5827         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5828                                                           CallSeqStart,
5829                                                           Flags, DAG, dl);
5830 
5831       // When a register is available, pass a small aggregate right-justified.
5832       if (Size < 8 && GPR_idx != NumGPRs) {
5833         // The easiest way to get this right-justified in a register
5834         // is to copy the structure into the rightmost portion of a
5835         // local variable slot, then load the whole slot into the
5836         // register.
5837         // FIXME: The memcpy seems to produce pretty awful code for
5838         // small aggregates, particularly for packed ones.
5839         // FIXME: It would be preferable to use the slot in the
5840         // parameter save area instead of a new local variable.
5841         SDValue AddPtr = PtrOff;
5842         if (!isLittleEndian) {
5843           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5844           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5845         }
5846         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5847                                                           CallSeqStart,
5848                                                           Flags, DAG, dl);
5849 
5850         // Load the slot into the register.
5851         SDValue Load =
5852             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
5853         MemOpChains.push_back(Load.getValue(1));
5854         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5855 
5856         // Done with this argument.
5857         ArgOffset += PtrByteSize;
5858         continue;
5859       }
5860 
5861       // For aggregates larger than PtrByteSize, copy the pieces of the
5862       // object that fit into registers from the parameter save area.
5863       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5864         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5865         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5866         if (GPR_idx != NumGPRs) {
5867           SDValue Load =
5868               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
5869           MemOpChains.push_back(Load.getValue(1));
5870           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5871           ArgOffset += PtrByteSize;
5872         } else {
5873           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5874           break;
5875         }
5876       }
5877       continue;
5878     }
5879 
5880     switch (Arg.getSimpleValueType().SimpleTy) {
5881     default: llvm_unreachable("Unexpected ValueType for argument!");
5882     case MVT::i1:
5883     case MVT::i32:
5884     case MVT::i64:
5885       if (Flags.isNest()) {
5886         // The 'nest' parameter, if any, is passed in R11.
5887         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
5888         hasNest = true;
5889         break;
5890       }
5891 
5892       // These can be scalar arguments or elements of an integer array type
5893       // passed directly.  Clang may use those instead of "byval" aggregate
5894       // types to avoid forcing arguments to memory unnecessarily.
5895       if (GPR_idx != NumGPRs) {
5896         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5897       } else {
5898         if (CallConv == CallingConv::Fast)
5899           ComputePtrOff();
5900 
5901         assert(HasParameterArea &&
5902                "Parameter area must exist to pass an argument in memory.");
5903         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5904                          true, isTailCall, false, MemOpChains,
5905                          TailCallArguments, dl);
5906         if (CallConv == CallingConv::Fast)
5907           ArgOffset += PtrByteSize;
5908       }
5909       if (CallConv != CallingConv::Fast)
5910         ArgOffset += PtrByteSize;
5911       break;
5912     case MVT::f32:
5913     case MVT::f64: {
5914       // These can be scalar arguments or elements of a float array type
5915       // passed directly.  The latter are used to implement ELFv2 homogenous
5916       // float aggregates.
5917 
5918       // Named arguments go into FPRs first, and once they overflow, the
5919       // remaining arguments go into GPRs and then the parameter save area.
5920       // Unnamed arguments for vararg functions always go to GPRs and
5921       // then the parameter save area.  For now, put all arguments to vararg
5922       // routines always in both locations (FPR *and* GPR or stack slot).
5923       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
5924       bool NeededLoad = false;
5925 
5926       // First load the argument into the next available FPR.
5927       if (FPR_idx != NumFPRs)
5928         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5929 
5930       // Next, load the argument into GPR or stack slot if needed.
5931       if (!NeedGPROrStack)
5932         ;
5933       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
5934         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
5935         // once we support fp <-> gpr moves.
5936 
5937         // In the non-vararg case, this can only ever happen in the
5938         // presence of f32 array types, since otherwise we never run
5939         // out of FPRs before running out of GPRs.
5940         SDValue ArgVal;
5941 
5942         // Double values are always passed in a single GPR.
5943         if (Arg.getValueType() != MVT::f32) {
5944           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
5945 
5946         // Non-array float values are extended and passed in a GPR.
5947         } else if (!Flags.isInConsecutiveRegs()) {
5948           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5949           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5950 
5951         // If we have an array of floats, we collect every odd element
5952         // together with its predecessor into one GPR.
5953         } else if (ArgOffset % PtrByteSize != 0) {
5954           SDValue Lo, Hi;
5955           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
5956           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5957           if (!isLittleEndian)
5958             std::swap(Lo, Hi);
5959           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5960 
5961         // The final element, if even, goes into the first half of a GPR.
5962         } else if (Flags.isInConsecutiveRegsLast()) {
5963           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5964           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5965           if (!isLittleEndian)
5966             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
5967                                  DAG.getConstant(32, dl, MVT::i32));
5968 
5969         // Non-final even elements are skipped; they will be handled
5970         // together the with subsequent argument on the next go-around.
5971         } else
5972           ArgVal = SDValue();
5973 
5974         if (ArgVal.getNode())
5975           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
5976       } else {
5977         if (CallConv == CallingConv::Fast)
5978           ComputePtrOff();
5979 
5980         // Single-precision floating-point values are mapped to the
5981         // second (rightmost) word of the stack doubleword.
5982         if (Arg.getValueType() == MVT::f32 &&
5983             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
5984           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5985           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5986         }
5987 
5988         assert(HasParameterArea &&
5989                "Parameter area must exist to pass an argument in memory.");
5990         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5991                          true, isTailCall, false, MemOpChains,
5992                          TailCallArguments, dl);
5993 
5994         NeededLoad = true;
5995       }
5996       // When passing an array of floats, the array occupies consecutive
5997       // space in the argument area; only round up to the next doubleword
5998       // at the end of the array.  Otherwise, each float takes 8 bytes.
5999       if (CallConv != CallingConv::Fast || NeededLoad) {
6000         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6001                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6002         if (Flags.isInConsecutiveRegsLast())
6003           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6004       }
6005       break;
6006     }
6007     case MVT::v4f32:
6008     case MVT::v4i32:
6009     case MVT::v8i16:
6010     case MVT::v16i8:
6011     case MVT::v2f64:
6012     case MVT::v2i64:
6013     case MVT::v1i128:
6014     case MVT::f128:
6015       if (!Subtarget.hasQPX()) {
6016       // These can be scalar arguments or elements of a vector array type
6017       // passed directly.  The latter are used to implement ELFv2 homogenous
6018       // vector aggregates.
6019 
6020       // For a varargs call, named arguments go into VRs or on the stack as
6021       // usual; unnamed arguments always go to the stack or the corresponding
6022       // GPRs when within range.  For now, we always put the value in both
6023       // locations (or even all three).
6024       if (isVarArg) {
6025         assert(HasParameterArea &&
6026                "Parameter area must exist if we have a varargs call.");
6027         // We could elide this store in the case where the object fits
6028         // entirely in R registers.  Maybe later.
6029         SDValue Store =
6030             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6031         MemOpChains.push_back(Store);
6032         if (VR_idx != NumVRs) {
6033           SDValue Load =
6034               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6035           MemOpChains.push_back(Load.getValue(1));
6036           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6037         }
6038         ArgOffset += 16;
6039         for (unsigned i=0; i<16; i+=PtrByteSize) {
6040           if (GPR_idx == NumGPRs)
6041             break;
6042           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6043                                    DAG.getConstant(i, dl, PtrVT));
6044           SDValue Load =
6045               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6046           MemOpChains.push_back(Load.getValue(1));
6047           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6048         }
6049         break;
6050       }
6051 
6052       // Non-varargs Altivec params go into VRs or on the stack.
6053       if (VR_idx != NumVRs) {
6054         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6055       } else {
6056         if (CallConv == CallingConv::Fast)
6057           ComputePtrOff();
6058 
6059         assert(HasParameterArea &&
6060                "Parameter area must exist to pass an argument in memory.");
6061         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6062                          true, isTailCall, true, MemOpChains,
6063                          TailCallArguments, dl);
6064         if (CallConv == CallingConv::Fast)
6065           ArgOffset += 16;
6066       }
6067 
6068       if (CallConv != CallingConv::Fast)
6069         ArgOffset += 16;
6070       break;
6071       } // not QPX
6072 
6073       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
6074              "Invalid QPX parameter type");
6075 
6076       /* fall through */
6077     case MVT::v4f64:
6078     case MVT::v4i1: {
6079       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
6080       if (isVarArg) {
6081         assert(HasParameterArea &&
6082                "Parameter area must exist if we have a varargs call.");
6083         // We could elide this store in the case where the object fits
6084         // entirely in R registers.  Maybe later.
6085         SDValue Store =
6086             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6087         MemOpChains.push_back(Store);
6088         if (QFPR_idx != NumQFPRs) {
6089           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
6090                                      PtrOff, MachinePointerInfo());
6091           MemOpChains.push_back(Load.getValue(1));
6092           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
6093         }
6094         ArgOffset += (IsF32 ? 16 : 32);
6095         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
6096           if (GPR_idx == NumGPRs)
6097             break;
6098           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6099                                    DAG.getConstant(i, dl, PtrVT));
6100           SDValue Load =
6101               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6102           MemOpChains.push_back(Load.getValue(1));
6103           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6104         }
6105         break;
6106       }
6107 
6108       // Non-varargs QPX params go into registers or on the stack.
6109       if (QFPR_idx != NumQFPRs) {
6110         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
6111       } else {
6112         if (CallConv == CallingConv::Fast)
6113           ComputePtrOff();
6114 
6115         assert(HasParameterArea &&
6116                "Parameter area must exist to pass an argument in memory.");
6117         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6118                          true, isTailCall, true, MemOpChains,
6119                          TailCallArguments, dl);
6120         if (CallConv == CallingConv::Fast)
6121           ArgOffset += (IsF32 ? 16 : 32);
6122       }
6123 
6124       if (CallConv != CallingConv::Fast)
6125         ArgOffset += (IsF32 ? 16 : 32);
6126       break;
6127       }
6128     }
6129   }
6130 
6131   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6132          "mismatch in size of parameter area");
6133   (void)NumBytesActuallyUsed;
6134 
6135   if (!MemOpChains.empty())
6136     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6137 
6138   // Check if this is an indirect call (MTCTR/BCTRL).
6139   // See PrepareCall() for more information about calls through function
6140   // pointers in the 64-bit SVR4 ABI.
6141   if (!isTailCall && !isPatchPoint &&
6142       !isFunctionGlobalAddress(Callee) &&
6143       !isa<ExternalSymbolSDNode>(Callee)) {
6144     // Load r2 into a virtual register and store it to the TOC save area.
6145     setUsesTOCBasePtr(DAG);
6146     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6147     // TOC save area offset.
6148     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6149     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6150     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6151     Chain = DAG.getStore(
6152         Val.getValue(1), dl, Val, AddPtr,
6153         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
6154     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6155     // This does not mean the MTCTR instruction must use R12; it's easier
6156     // to model this as an extra parameter, so do that.
6157     if (isELFv2ABI && !isPatchPoint)
6158       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6159   }
6160 
6161   // Build a sequence of copy-to-reg nodes chained together with token chain
6162   // and flag operands which copy the outgoing args into the appropriate regs.
6163   SDValue InFlag;
6164   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6165     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6166                              RegsToPass[i].second, InFlag);
6167     InFlag = Chain.getValue(1);
6168   }
6169 
6170   if (isTailCall && !IsSibCall)
6171     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6172                     TailCallArguments);
6173 
6174   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
6175                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
6176                     SPDiff, NumBytes, Ins, InVals, CS);
6177 }
6178 
6179 SDValue PPCTargetLowering::LowerCall_Darwin(
6180     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
6181     bool isTailCall, bool isPatchPoint,
6182     const SmallVectorImpl<ISD::OutputArg> &Outs,
6183     const SmallVectorImpl<SDValue> &OutVals,
6184     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6185     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6186     ImmutableCallSite CS) const {
6187   unsigned NumOps = Outs.size();
6188 
6189   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6190   bool isPPC64 = PtrVT == MVT::i64;
6191   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6192 
6193   MachineFunction &MF = DAG.getMachineFunction();
6194 
6195   // Mark this function as potentially containing a function that contains a
6196   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6197   // and restoring the callers stack pointer in this functions epilog. This is
6198   // done because by tail calling the called function might overwrite the value
6199   // in this function's (MF) stack pointer stack slot 0(SP).
6200   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6201       CallConv == CallingConv::Fast)
6202     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6203 
6204   // Count how many bytes are to be pushed on the stack, including the linkage
6205   // area, and parameter passing area.  We start with 24/48 bytes, which is
6206   // prereserved space for [SP][CR][LR][3 x unused].
6207   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6208   unsigned NumBytes = LinkageSize;
6209 
6210   // Add up all the space actually used.
6211   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6212   // they all go in registers, but we must reserve stack space for them for
6213   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6214   // assigned stack space in order, with padding so Altivec parameters are
6215   // 16-byte aligned.
6216   unsigned nAltivecParamsAtEnd = 0;
6217   for (unsigned i = 0; i != NumOps; ++i) {
6218     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6219     EVT ArgVT = Outs[i].VT;
6220     // Varargs Altivec parameters are padded to a 16 byte boundary.
6221     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6222         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6223         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6224       if (!isVarArg && !isPPC64) {
6225         // Non-varargs Altivec parameters go after all the non-Altivec
6226         // parameters; handle those later so we know how much padding we need.
6227         nAltivecParamsAtEnd++;
6228         continue;
6229       }
6230       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6231       NumBytes = ((NumBytes+15)/16)*16;
6232     }
6233     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6234   }
6235 
6236   // Allow for Altivec parameters at the end, if needed.
6237   if (nAltivecParamsAtEnd) {
6238     NumBytes = ((NumBytes+15)/16)*16;
6239     NumBytes += 16*nAltivecParamsAtEnd;
6240   }
6241 
6242   // The prolog code of the callee may store up to 8 GPR argument registers to
6243   // the stack, allowing va_start to index over them in memory if its varargs.
6244   // Because we cannot tell if this is needed on the caller side, we have to
6245   // conservatively assume that it is needed.  As such, make sure we have at
6246   // least enough stack space for the caller to store the 8 GPRs.
6247   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6248 
6249   // Tail call needs the stack to be aligned.
6250   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6251       CallConv == CallingConv::Fast)
6252     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6253 
6254   // Calculate by how many bytes the stack has to be adjusted in case of tail
6255   // call optimization.
6256   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
6257 
6258   // To protect arguments on the stack from being clobbered in a tail call,
6259   // force all the loads to happen before doing any other lowering.
6260   if (isTailCall)
6261     Chain = DAG.getStackArgumentTokenFactor(Chain);
6262 
6263   // Adjust the stack pointer for the new arguments...
6264   // These operations are automatically eliminated by the prolog/epilog pass
6265   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6266   SDValue CallSeqStart = Chain;
6267 
6268   // Load the return address and frame pointer so it can be move somewhere else
6269   // later.
6270   SDValue LROp, FPOp;
6271   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6272 
6273   // Set up a copy of the stack pointer for use loading and storing any
6274   // arguments that may not fit in the registers available for argument
6275   // passing.
6276   SDValue StackPtr;
6277   if (isPPC64)
6278     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6279   else
6280     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6281 
6282   // Figure out which arguments are going to go in registers, and which in
6283   // memory.  Also, if this is a vararg function, floating point operations
6284   // must be stored to our stack, and loaded into integer regs as well, if
6285   // any integer regs are available for argument passing.
6286   unsigned ArgOffset = LinkageSize;
6287   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6288 
6289   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6290     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6291     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6292   };
6293   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6294     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6295     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6296   };
6297   static const MCPhysReg VR[] = {
6298     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6299     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6300   };
6301   const unsigned NumGPRs = array_lengthof(GPR_32);
6302   const unsigned NumFPRs = 13;
6303   const unsigned NumVRs  = array_lengthof(VR);
6304 
6305   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6306 
6307   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6308   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6309 
6310   SmallVector<SDValue, 8> MemOpChains;
6311   for (unsigned i = 0; i != NumOps; ++i) {
6312     SDValue Arg = OutVals[i];
6313     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6314 
6315     // PtrOff will be used to store the current argument to the stack if a
6316     // register cannot be found for it.
6317     SDValue PtrOff;
6318 
6319     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6320 
6321     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6322 
6323     // On PPC64, promote integers to 64-bit values.
6324     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6325       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6326       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6327       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6328     }
6329 
6330     // FIXME memcpy is used way more than necessary.  Correctness first.
6331     // Note: "by value" is code for passing a structure by value, not
6332     // basic types.
6333     if (Flags.isByVal()) {
6334       unsigned Size = Flags.getByValSize();
6335       // Very small objects are passed right-justified.  Everything else is
6336       // passed left-justified.
6337       if (Size==1 || Size==2) {
6338         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6339         if (GPR_idx != NumGPRs) {
6340           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6341                                         MachinePointerInfo(), VT);
6342           MemOpChains.push_back(Load.getValue(1));
6343           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6344 
6345           ArgOffset += PtrByteSize;
6346         } else {
6347           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6348                                           PtrOff.getValueType());
6349           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6350           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6351                                                             CallSeqStart,
6352                                                             Flags, DAG, dl);
6353           ArgOffset += PtrByteSize;
6354         }
6355         continue;
6356       }
6357       // Copy entire object into memory.  There are cases where gcc-generated
6358       // code assumes it is there, even if it could be put entirely into
6359       // registers.  (This is not what the doc says.)
6360       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6361                                                         CallSeqStart,
6362                                                         Flags, DAG, dl);
6363 
6364       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6365       // copy the pieces of the object that fit into registers from the
6366       // parameter save area.
6367       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6368         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6369         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6370         if (GPR_idx != NumGPRs) {
6371           SDValue Load =
6372               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6373           MemOpChains.push_back(Load.getValue(1));
6374           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6375           ArgOffset += PtrByteSize;
6376         } else {
6377           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6378           break;
6379         }
6380       }
6381       continue;
6382     }
6383 
6384     switch (Arg.getSimpleValueType().SimpleTy) {
6385     default: llvm_unreachable("Unexpected ValueType for argument!");
6386     case MVT::i1:
6387     case MVT::i32:
6388     case MVT::i64:
6389       if (GPR_idx != NumGPRs) {
6390         if (Arg.getValueType() == MVT::i1)
6391           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6392 
6393         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6394       } else {
6395         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6396                          isPPC64, isTailCall, false, MemOpChains,
6397                          TailCallArguments, dl);
6398       }
6399       ArgOffset += PtrByteSize;
6400       break;
6401     case MVT::f32:
6402     case MVT::f64:
6403       if (FPR_idx != NumFPRs) {
6404         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6405 
6406         if (isVarArg) {
6407           SDValue Store =
6408               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6409           MemOpChains.push_back(Store);
6410 
6411           // Float varargs are always shadowed in available integer registers
6412           if (GPR_idx != NumGPRs) {
6413             SDValue Load =
6414                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6415             MemOpChains.push_back(Load.getValue(1));
6416             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6417           }
6418           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6419             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6420             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6421             SDValue Load =
6422                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6423             MemOpChains.push_back(Load.getValue(1));
6424             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6425           }
6426         } else {
6427           // If we have any FPRs remaining, we may also have GPRs remaining.
6428           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6429           // GPRs.
6430           if (GPR_idx != NumGPRs)
6431             ++GPR_idx;
6432           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6433               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6434             ++GPR_idx;
6435         }
6436       } else
6437         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6438                          isPPC64, isTailCall, false, MemOpChains,
6439                          TailCallArguments, dl);
6440       if (isPPC64)
6441         ArgOffset += 8;
6442       else
6443         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6444       break;
6445     case MVT::v4f32:
6446     case MVT::v4i32:
6447     case MVT::v8i16:
6448     case MVT::v16i8:
6449       if (isVarArg) {
6450         // These go aligned on the stack, or in the corresponding R registers
6451         // when within range.  The Darwin PPC ABI doc claims they also go in
6452         // V registers; in fact gcc does this only for arguments that are
6453         // prototyped, not for those that match the ...  We do it for all
6454         // arguments, seems to work.
6455         while (ArgOffset % 16 !=0) {
6456           ArgOffset += PtrByteSize;
6457           if (GPR_idx != NumGPRs)
6458             GPR_idx++;
6459         }
6460         // We could elide this store in the case where the object fits
6461         // entirely in R registers.  Maybe later.
6462         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6463                              DAG.getConstant(ArgOffset, dl, PtrVT));
6464         SDValue Store =
6465             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6466         MemOpChains.push_back(Store);
6467         if (VR_idx != NumVRs) {
6468           SDValue Load =
6469               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6470           MemOpChains.push_back(Load.getValue(1));
6471           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6472         }
6473         ArgOffset += 16;
6474         for (unsigned i=0; i<16; i+=PtrByteSize) {
6475           if (GPR_idx == NumGPRs)
6476             break;
6477           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6478                                    DAG.getConstant(i, dl, PtrVT));
6479           SDValue Load =
6480               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6481           MemOpChains.push_back(Load.getValue(1));
6482           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6483         }
6484         break;
6485       }
6486 
6487       // Non-varargs Altivec params generally go in registers, but have
6488       // stack space allocated at the end.
6489       if (VR_idx != NumVRs) {
6490         // Doesn't have GPR space allocated.
6491         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6492       } else if (nAltivecParamsAtEnd==0) {
6493         // We are emitting Altivec params in order.
6494         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6495                          isPPC64, isTailCall, true, MemOpChains,
6496                          TailCallArguments, dl);
6497         ArgOffset += 16;
6498       }
6499       break;
6500     }
6501   }
6502   // If all Altivec parameters fit in registers, as they usually do,
6503   // they get stack space following the non-Altivec parameters.  We
6504   // don't track this here because nobody below needs it.
6505   // If there are more Altivec parameters than fit in registers emit
6506   // the stores here.
6507   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
6508     unsigned j = 0;
6509     // Offset is aligned; skip 1st 12 params which go in V registers.
6510     ArgOffset = ((ArgOffset+15)/16)*16;
6511     ArgOffset += 12*16;
6512     for (unsigned i = 0; i != NumOps; ++i) {
6513       SDValue Arg = OutVals[i];
6514       EVT ArgType = Outs[i].VT;
6515       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6516           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6517         if (++j > NumVRs) {
6518           SDValue PtrOff;
6519           // We are emitting Altivec params in order.
6520           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6521                            isPPC64, isTailCall, true, MemOpChains,
6522                            TailCallArguments, dl);
6523           ArgOffset += 16;
6524         }
6525       }
6526     }
6527   }
6528 
6529   if (!MemOpChains.empty())
6530     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6531 
6532   // On Darwin, R12 must contain the address of an indirect callee.  This does
6533   // not mean the MTCTR instruction must use R12; it's easier to model this as
6534   // an extra parameter, so do that.
6535   if (!isTailCall &&
6536       !isFunctionGlobalAddress(Callee) &&
6537       !isa<ExternalSymbolSDNode>(Callee) &&
6538       !isBLACompatibleAddress(Callee, DAG))
6539     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6540                                                    PPC::R12), Callee));
6541 
6542   // Build a sequence of copy-to-reg nodes chained together with token chain
6543   // and flag operands which copy the outgoing args into the appropriate regs.
6544   SDValue InFlag;
6545   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6546     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6547                              RegsToPass[i].second, InFlag);
6548     InFlag = Chain.getValue(1);
6549   }
6550 
6551   if (isTailCall)
6552     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6553                     TailCallArguments);
6554 
6555   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6556                     /* unused except on PPC64 ELFv1 */ false, DAG,
6557                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6558                     NumBytes, Ins, InVals, CS);
6559 }
6560 
6561 bool
6562 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
6563                                   MachineFunction &MF, bool isVarArg,
6564                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
6565                                   LLVMContext &Context) const {
6566   SmallVector<CCValAssign, 16> RVLocs;
6567   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
6568   return CCInfo.CheckReturn(
6569       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6570                 ? RetCC_PPC_Cold
6571                 : RetCC_PPC);
6572 }
6573 
6574 SDValue
6575 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
6576                                bool isVarArg,
6577                                const SmallVectorImpl<ISD::OutputArg> &Outs,
6578                                const SmallVectorImpl<SDValue> &OutVals,
6579                                const SDLoc &dl, SelectionDAG &DAG) const {
6580   SmallVector<CCValAssign, 16> RVLocs;
6581   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
6582                  *DAG.getContext());
6583   CCInfo.AnalyzeReturn(Outs,
6584                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6585                            ? RetCC_PPC_Cold
6586                            : RetCC_PPC);
6587 
6588   SDValue Flag;
6589   SmallVector<SDValue, 4> RetOps(1, Chain);
6590 
6591   // Copy the result values into the output registers.
6592   for (unsigned i = 0; i != RVLocs.size(); ++i) {
6593     CCValAssign &VA = RVLocs[i];
6594     assert(VA.isRegLoc() && "Can only return in registers!");
6595 
6596     SDValue Arg = OutVals[i];
6597 
6598     switch (VA.getLocInfo()) {
6599     default: llvm_unreachable("Unknown loc info!");
6600     case CCValAssign::Full: break;
6601     case CCValAssign::AExt:
6602       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
6603       break;
6604     case CCValAssign::ZExt:
6605       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
6606       break;
6607     case CCValAssign::SExt:
6608       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
6609       break;
6610     }
6611 
6612     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
6613     Flag = Chain.getValue(1);
6614     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6615   }
6616 
6617   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
6618   const MCPhysReg *I =
6619     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
6620   if (I) {
6621     for (; *I; ++I) {
6622 
6623       if (PPC::G8RCRegClass.contains(*I))
6624         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
6625       else if (PPC::F8RCRegClass.contains(*I))
6626         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
6627       else if (PPC::CRRCRegClass.contains(*I))
6628         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
6629       else if (PPC::VRRCRegClass.contains(*I))
6630         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
6631       else
6632         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
6633     }
6634   }
6635 
6636   RetOps[0] = Chain;  // Update chain.
6637 
6638   // Add the flag if we have it.
6639   if (Flag.getNode())
6640     RetOps.push_back(Flag);
6641 
6642   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
6643 }
6644 
6645 SDValue
6646 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
6647                                                 SelectionDAG &DAG) const {
6648   SDLoc dl(Op);
6649 
6650   // Get the correct type for integers.
6651   EVT IntVT = Op.getValueType();
6652 
6653   // Get the inputs.
6654   SDValue Chain = Op.getOperand(0);
6655   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6656   // Build a DYNAREAOFFSET node.
6657   SDValue Ops[2] = {Chain, FPSIdx};
6658   SDVTList VTs = DAG.getVTList(IntVT);
6659   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
6660 }
6661 
6662 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
6663                                              SelectionDAG &DAG) const {
6664   // When we pop the dynamic allocation we need to restore the SP link.
6665   SDLoc dl(Op);
6666 
6667   // Get the correct type for pointers.
6668   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6669 
6670   // Construct the stack pointer operand.
6671   bool isPPC64 = Subtarget.isPPC64();
6672   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
6673   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
6674 
6675   // Get the operands for the STACKRESTORE.
6676   SDValue Chain = Op.getOperand(0);
6677   SDValue SaveSP = Op.getOperand(1);
6678 
6679   // Load the old link SP.
6680   SDValue LoadLinkSP =
6681       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
6682 
6683   // Restore the stack pointer.
6684   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
6685 
6686   // Store the old link SP.
6687   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
6688 }
6689 
6690 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
6691   MachineFunction &MF = DAG.getMachineFunction();
6692   bool isPPC64 = Subtarget.isPPC64();
6693   EVT PtrVT = getPointerTy(MF.getDataLayout());
6694 
6695   // Get current frame pointer save index.  The users of this index will be
6696   // primarily DYNALLOC instructions.
6697   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6698   int RASI = FI->getReturnAddrSaveIndex();
6699 
6700   // If the frame pointer save index hasn't been defined yet.
6701   if (!RASI) {
6702     // Find out what the fix offset of the frame pointer save area.
6703     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
6704     // Allocate the frame index for frame pointer save area.
6705     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
6706     // Save the result.
6707     FI->setReturnAddrSaveIndex(RASI);
6708   }
6709   return DAG.getFrameIndex(RASI, PtrVT);
6710 }
6711 
6712 SDValue
6713 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
6714   MachineFunction &MF = DAG.getMachineFunction();
6715   bool isPPC64 = Subtarget.isPPC64();
6716   EVT PtrVT = getPointerTy(MF.getDataLayout());
6717 
6718   // Get current frame pointer save index.  The users of this index will be
6719   // primarily DYNALLOC instructions.
6720   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6721   int FPSI = FI->getFramePointerSaveIndex();
6722 
6723   // If the frame pointer save index hasn't been defined yet.
6724   if (!FPSI) {
6725     // Find out what the fix offset of the frame pointer save area.
6726     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
6727     // Allocate the frame index for frame pointer save area.
6728     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
6729     // Save the result.
6730     FI->setFramePointerSaveIndex(FPSI);
6731   }
6732   return DAG.getFrameIndex(FPSI, PtrVT);
6733 }
6734 
6735 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6736                                                    SelectionDAG &DAG) const {
6737   // Get the inputs.
6738   SDValue Chain = Op.getOperand(0);
6739   SDValue Size  = Op.getOperand(1);
6740   SDLoc dl(Op);
6741 
6742   // Get the correct type for pointers.
6743   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6744   // Negate the size.
6745   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
6746                                 DAG.getConstant(0, dl, PtrVT), Size);
6747   // Construct a node for the frame pointer save index.
6748   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6749   // Build a DYNALLOC node.
6750   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
6751   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
6752   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
6753 }
6754 
6755 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
6756                                                      SelectionDAG &DAG) const {
6757   MachineFunction &MF = DAG.getMachineFunction();
6758 
6759   bool isPPC64 = Subtarget.isPPC64();
6760   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6761 
6762   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
6763   return DAG.getFrameIndex(FI, PtrVT);
6764 }
6765 
6766 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
6767                                                SelectionDAG &DAG) const {
6768   SDLoc DL(Op);
6769   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
6770                      DAG.getVTList(MVT::i32, MVT::Other),
6771                      Op.getOperand(0), Op.getOperand(1));
6772 }
6773 
6774 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
6775                                                 SelectionDAG &DAG) const {
6776   SDLoc DL(Op);
6777   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
6778                      Op.getOperand(0), Op.getOperand(1));
6779 }
6780 
6781 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
6782   if (Op.getValueType().isVector())
6783     return LowerVectorLoad(Op, DAG);
6784 
6785   assert(Op.getValueType() == MVT::i1 &&
6786          "Custom lowering only for i1 loads");
6787 
6788   // First, load 8 bits into 32 bits, then truncate to 1 bit.
6789 
6790   SDLoc dl(Op);
6791   LoadSDNode *LD = cast<LoadSDNode>(Op);
6792 
6793   SDValue Chain = LD->getChain();
6794   SDValue BasePtr = LD->getBasePtr();
6795   MachineMemOperand *MMO = LD->getMemOperand();
6796 
6797   SDValue NewLD =
6798       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
6799                      BasePtr, MVT::i8, MMO);
6800   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
6801 
6802   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
6803   return DAG.getMergeValues(Ops, dl);
6804 }
6805 
6806 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
6807   if (Op.getOperand(1).getValueType().isVector())
6808     return LowerVectorStore(Op, DAG);
6809 
6810   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
6811          "Custom lowering only for i1 stores");
6812 
6813   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
6814 
6815   SDLoc dl(Op);
6816   StoreSDNode *ST = cast<StoreSDNode>(Op);
6817 
6818   SDValue Chain = ST->getChain();
6819   SDValue BasePtr = ST->getBasePtr();
6820   SDValue Value = ST->getValue();
6821   MachineMemOperand *MMO = ST->getMemOperand();
6822 
6823   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
6824                       Value);
6825   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
6826 }
6827 
6828 // FIXME: Remove this once the ANDI glue bug is fixed:
6829 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
6830   assert(Op.getValueType() == MVT::i1 &&
6831          "Custom lowering only for i1 results");
6832 
6833   SDLoc DL(Op);
6834   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
6835                      Op.getOperand(0));
6836 }
6837 
6838 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
6839 /// possible.
6840 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
6841   // Not FP? Not a fsel.
6842   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
6843       !Op.getOperand(2).getValueType().isFloatingPoint())
6844     return Op;
6845 
6846   // We might be able to do better than this under some circumstances, but in
6847   // general, fsel-based lowering of select is a finite-math-only optimization.
6848   // For more information, see section F.3 of the 2.06 ISA specification.
6849   if (!DAG.getTarget().Options.NoInfsFPMath ||
6850       !DAG.getTarget().Options.NoNaNsFPMath)
6851     return Op;
6852   // TODO: Propagate flags from the select rather than global settings.
6853   SDNodeFlags Flags;
6854   Flags.setNoInfs(true);
6855   Flags.setNoNaNs(true);
6856 
6857   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
6858 
6859   EVT ResVT = Op.getValueType();
6860   EVT CmpVT = Op.getOperand(0).getValueType();
6861   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6862   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
6863   SDLoc dl(Op);
6864 
6865   // If the RHS of the comparison is a 0.0, we don't need to do the
6866   // subtraction at all.
6867   SDValue Sel1;
6868   if (isFloatingPointZero(RHS))
6869     switch (CC) {
6870     default: break;       // SETUO etc aren't handled by fsel.
6871     case ISD::SETNE:
6872       std::swap(TV, FV);
6873       LLVM_FALLTHROUGH;
6874     case ISD::SETEQ:
6875       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6876         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6877       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6878       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6879         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6880       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6881                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
6882     case ISD::SETULT:
6883     case ISD::SETLT:
6884       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6885       LLVM_FALLTHROUGH;
6886     case ISD::SETOGE:
6887     case ISD::SETGE:
6888       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6889         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6890       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6891     case ISD::SETUGT:
6892     case ISD::SETGT:
6893       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6894       LLVM_FALLTHROUGH;
6895     case ISD::SETOLE:
6896     case ISD::SETLE:
6897       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6898         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6899       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6900                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
6901     }
6902 
6903   SDValue Cmp;
6904   switch (CC) {
6905   default: break;       // SETUO etc aren't handled by fsel.
6906   case ISD::SETNE:
6907     std::swap(TV, FV);
6908     LLVM_FALLTHROUGH;
6909   case ISD::SETEQ:
6910     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6911     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6912       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6913     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6914     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6915       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6916     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6917                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
6918   case ISD::SETULT:
6919   case ISD::SETLT:
6920     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6921     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6922       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6923     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6924   case ISD::SETOGE:
6925   case ISD::SETGE:
6926     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6927     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6928       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6929     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6930   case ISD::SETUGT:
6931   case ISD::SETGT:
6932     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6933     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6934       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6935     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6936   case ISD::SETOLE:
6937   case ISD::SETLE:
6938     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6939     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6940       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6941     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6942   }
6943   return Op;
6944 }
6945 
6946 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
6947                                                SelectionDAG &DAG,
6948                                                const SDLoc &dl) const {
6949   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6950   SDValue Src = Op.getOperand(0);
6951   if (Src.getValueType() == MVT::f32)
6952     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6953 
6954   SDValue Tmp;
6955   switch (Op.getSimpleValueType().SimpleTy) {
6956   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6957   case MVT::i32:
6958     Tmp = DAG.getNode(
6959         Op.getOpcode() == ISD::FP_TO_SINT
6960             ? PPCISD::FCTIWZ
6961             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6962         dl, MVT::f64, Src);
6963     break;
6964   case MVT::i64:
6965     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6966            "i64 FP_TO_UINT is supported only with FPCVT");
6967     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6968                                                         PPCISD::FCTIDUZ,
6969                       dl, MVT::f64, Src);
6970     break;
6971   }
6972 
6973   // Convert the FP value to an int value through memory.
6974   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
6975     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
6976   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
6977   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
6978   MachinePointerInfo MPI =
6979       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
6980 
6981   // Emit a store to the stack slot.
6982   SDValue Chain;
6983   if (i32Stack) {
6984     MachineFunction &MF = DAG.getMachineFunction();
6985     MachineMemOperand *MMO =
6986       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
6987     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
6988     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
6989               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
6990   } else
6991     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
6992 
6993   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
6994   // add in a bias on big endian.
6995   if (Op.getValueType() == MVT::i32 && !i32Stack) {
6996     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
6997                         DAG.getConstant(4, dl, FIPtr.getValueType()));
6998     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
6999   }
7000 
7001   RLI.Chain = Chain;
7002   RLI.Ptr = FIPtr;
7003   RLI.MPI = MPI;
7004 }
7005 
7006 /// Custom lowers floating point to integer conversions to use
7007 /// the direct move instructions available in ISA 2.07 to avoid the
7008 /// need for load/store combinations.
7009 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
7010                                                     SelectionDAG &DAG,
7011                                                     const SDLoc &dl) const {
7012   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7013   SDValue Src = Op.getOperand(0);
7014 
7015   if (Src.getValueType() == MVT::f32)
7016     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7017 
7018   SDValue Tmp;
7019   switch (Op.getSimpleValueType().SimpleTy) {
7020   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7021   case MVT::i32:
7022     Tmp = DAG.getNode(
7023         Op.getOpcode() == ISD::FP_TO_SINT
7024             ? PPCISD::FCTIWZ
7025             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7026         dl, MVT::f64, Src);
7027     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
7028     break;
7029   case MVT::i64:
7030     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7031            "i64 FP_TO_UINT is supported only with FPCVT");
7032     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7033                                                         PPCISD::FCTIDUZ,
7034                       dl, MVT::f64, Src);
7035     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
7036     break;
7037   }
7038   return Tmp;
7039 }
7040 
7041 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
7042                                           const SDLoc &dl) const {
7043 
7044   // FP to INT conversions are legal for f128.
7045   if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
7046     return Op;
7047 
7048   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
7049   // PPC (the libcall is not available).
7050   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
7051     if (Op.getValueType() == MVT::i32) {
7052       if (Op.getOpcode() == ISD::FP_TO_SINT) {
7053         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7054                                  MVT::f64, Op.getOperand(0),
7055                                  DAG.getIntPtrConstant(0, dl));
7056         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7057                                  MVT::f64, Op.getOperand(0),
7058                                  DAG.getIntPtrConstant(1, dl));
7059 
7060         // Add the two halves of the long double in round-to-zero mode.
7061         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
7062 
7063         // Now use a smaller FP_TO_SINT.
7064         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
7065       }
7066       if (Op.getOpcode() == ISD::FP_TO_UINT) {
7067         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
7068         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
7069         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
7070         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
7071         // FIXME: generated code sucks.
7072         // TODO: Are there fast-math-flags to propagate to this FSUB?
7073         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
7074                                    Op.getOperand(0), Tmp);
7075         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
7076         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
7077                            DAG.getConstant(0x80000000, dl, MVT::i32));
7078         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
7079                                     Op.getOperand(0));
7080         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
7081                                ISD::SETGE);
7082       }
7083     }
7084 
7085     return SDValue();
7086   }
7087 
7088   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
7089     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
7090 
7091   ReuseLoadInfo RLI;
7092   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7093 
7094   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7095                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7096 }
7097 
7098 // We're trying to insert a regular store, S, and then a load, L. If the
7099 // incoming value, O, is a load, we might just be able to have our load use the
7100 // address used by O. However, we don't know if anything else will store to
7101 // that address before we can load from it. To prevent this situation, we need
7102 // to insert our load, L, into the chain as a peer of O. To do this, we give L
7103 // the same chain operand as O, we create a token factor from the chain results
7104 // of O and L, and we replace all uses of O's chain result with that token
7105 // factor (see spliceIntoChain below for this last part).
7106 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
7107                                             ReuseLoadInfo &RLI,
7108                                             SelectionDAG &DAG,
7109                                             ISD::LoadExtType ET) const {
7110   SDLoc dl(Op);
7111   if (ET == ISD::NON_EXTLOAD &&
7112       (Op.getOpcode() == ISD::FP_TO_UINT ||
7113        Op.getOpcode() == ISD::FP_TO_SINT) &&
7114       isOperationLegalOrCustom(Op.getOpcode(),
7115                                Op.getOperand(0).getValueType())) {
7116 
7117     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7118     return true;
7119   }
7120 
7121   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
7122   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
7123       LD->isNonTemporal())
7124     return false;
7125   if (LD->getMemoryVT() != MemVT)
7126     return false;
7127 
7128   RLI.Ptr = LD->getBasePtr();
7129   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
7130     assert(LD->getAddressingMode() == ISD::PRE_INC &&
7131            "Non-pre-inc AM on PPC?");
7132     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
7133                           LD->getOffset());
7134   }
7135 
7136   RLI.Chain = LD->getChain();
7137   RLI.MPI = LD->getPointerInfo();
7138   RLI.IsDereferenceable = LD->isDereferenceable();
7139   RLI.IsInvariant = LD->isInvariant();
7140   RLI.Alignment = LD->getAlignment();
7141   RLI.AAInfo = LD->getAAInfo();
7142   RLI.Ranges = LD->getRanges();
7143 
7144   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
7145   return true;
7146 }
7147 
7148 // Given the head of the old chain, ResChain, insert a token factor containing
7149 // it and NewResChain, and make users of ResChain now be users of that token
7150 // factor.
7151 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
7152 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
7153                                         SDValue NewResChain,
7154                                         SelectionDAG &DAG) const {
7155   if (!ResChain)
7156     return;
7157 
7158   SDLoc dl(NewResChain);
7159 
7160   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7161                            NewResChain, DAG.getUNDEF(MVT::Other));
7162   assert(TF.getNode() != NewResChain.getNode() &&
7163          "A new TF really is required here");
7164 
7165   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
7166   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
7167 }
7168 
7169 /// Analyze profitability of direct move
7170 /// prefer float load to int load plus direct move
7171 /// when there is no integer use of int load
7172 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
7173   SDNode *Origin = Op.getOperand(0).getNode();
7174   if (Origin->getOpcode() != ISD::LOAD)
7175     return true;
7176 
7177   // If there is no LXSIBZX/LXSIHZX, like Power8,
7178   // prefer direct move if the memory size is 1 or 2 bytes.
7179   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
7180   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
7181     return true;
7182 
7183   for (SDNode::use_iterator UI = Origin->use_begin(),
7184                             UE = Origin->use_end();
7185        UI != UE; ++UI) {
7186 
7187     // Only look at the users of the loaded value.
7188     if (UI.getUse().get().getResNo() != 0)
7189       continue;
7190 
7191     if (UI->getOpcode() != ISD::SINT_TO_FP &&
7192         UI->getOpcode() != ISD::UINT_TO_FP)
7193       return true;
7194   }
7195 
7196   return false;
7197 }
7198 
7199 /// Custom lowers integer to floating point conversions to use
7200 /// the direct move instructions available in ISA 2.07 to avoid the
7201 /// need for load/store combinations.
7202 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
7203                                                     SelectionDAG &DAG,
7204                                                     const SDLoc &dl) const {
7205   assert((Op.getValueType() == MVT::f32 ||
7206           Op.getValueType() == MVT::f64) &&
7207          "Invalid floating point type as target of conversion");
7208   assert(Subtarget.hasFPCVT() &&
7209          "Int to FP conversions with direct moves require FPCVT");
7210   SDValue FP;
7211   SDValue Src = Op.getOperand(0);
7212   bool SinglePrec = Op.getValueType() == MVT::f32;
7213   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
7214   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
7215   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
7216                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
7217 
7218   if (WordInt) {
7219     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
7220                      dl, MVT::f64, Src);
7221     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7222   }
7223   else {
7224     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
7225     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7226   }
7227 
7228   return FP;
7229 }
7230 
7231 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
7232                                           SelectionDAG &DAG) const {
7233   SDLoc dl(Op);
7234 
7235   // Conversions to f128 are legal.
7236   if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
7237     return Op;
7238 
7239   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
7240     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
7241       return SDValue();
7242 
7243     SDValue Value = Op.getOperand(0);
7244     // The values are now known to be -1 (false) or 1 (true). To convert this
7245     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7246     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7247     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7248 
7249     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
7250 
7251     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7252 
7253     if (Op.getValueType() != MVT::v4f64)
7254       Value = DAG.getNode(ISD::FP_ROUND, dl,
7255                           Op.getValueType(), Value,
7256                           DAG.getIntPtrConstant(1, dl));
7257     return Value;
7258   }
7259 
7260   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
7261   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
7262     return SDValue();
7263 
7264   if (Op.getOperand(0).getValueType() == MVT::i1)
7265     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
7266                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
7267                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
7268 
7269   // If we have direct moves, we can do all the conversion, skip the store/load
7270   // however, without FPCVT we can't do most conversions.
7271   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
7272       Subtarget.isPPC64() && Subtarget.hasFPCVT())
7273     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
7274 
7275   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
7276          "UINT_TO_FP is supported only with FPCVT");
7277 
7278   // If we have FCFIDS, then use it when converting to single-precision.
7279   // Otherwise, convert to double-precision and then round.
7280   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7281                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
7282                                                             : PPCISD::FCFIDS)
7283                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
7284                                                             : PPCISD::FCFID);
7285   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7286                   ? MVT::f32
7287                   : MVT::f64;
7288 
7289   if (Op.getOperand(0).getValueType() == MVT::i64) {
7290     SDValue SINT = Op.getOperand(0);
7291     // When converting to single-precision, we actually need to convert
7292     // to double-precision first and then round to single-precision.
7293     // To avoid double-rounding effects during that operation, we have
7294     // to prepare the input operand.  Bits that might be truncated when
7295     // converting to double-precision are replaced by a bit that won't
7296     // be lost at this stage, but is below the single-precision rounding
7297     // position.
7298     //
7299     // However, if -enable-unsafe-fp-math is in effect, accept double
7300     // rounding to avoid the extra overhead.
7301     if (Op.getValueType() == MVT::f32 &&
7302         !Subtarget.hasFPCVT() &&
7303         !DAG.getTarget().Options.UnsafeFPMath) {
7304 
7305       // Twiddle input to make sure the low 11 bits are zero.  (If this
7306       // is the case, we are guaranteed the value will fit into the 53 bit
7307       // mantissa of an IEEE double-precision value without rounding.)
7308       // If any of those low 11 bits were not zero originally, make sure
7309       // bit 12 (value 2048) is set instead, so that the final rounding
7310       // to single-precision gets the correct result.
7311       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7312                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
7313       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
7314                           Round, DAG.getConstant(2047, dl, MVT::i64));
7315       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
7316       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7317                           Round, DAG.getConstant(-2048, dl, MVT::i64));
7318 
7319       // However, we cannot use that value unconditionally: if the magnitude
7320       // of the input value is small, the bit-twiddling we did above might
7321       // end up visibly changing the output.  Fortunately, in that case, we
7322       // don't need to twiddle bits since the original input will convert
7323       // exactly to double-precision floating-point already.  Therefore,
7324       // construct a conditional to use the original value if the top 11
7325       // bits are all sign-bit copies, and use the rounded value computed
7326       // above otherwise.
7327       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
7328                                  SINT, DAG.getConstant(53, dl, MVT::i32));
7329       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
7330                          Cond, DAG.getConstant(1, dl, MVT::i64));
7331       Cond = DAG.getSetCC(dl, MVT::i32,
7332                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
7333 
7334       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
7335     }
7336 
7337     ReuseLoadInfo RLI;
7338     SDValue Bits;
7339 
7340     MachineFunction &MF = DAG.getMachineFunction();
7341     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
7342       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7343                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7344       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7345     } else if (Subtarget.hasLFIWAX() &&
7346                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
7347       MachineMemOperand *MMO =
7348         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7349                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7350       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7351       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
7352                                      DAG.getVTList(MVT::f64, MVT::Other),
7353                                      Ops, MVT::i32, MMO);
7354       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7355     } else if (Subtarget.hasFPCVT() &&
7356                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
7357       MachineMemOperand *MMO =
7358         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7359                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7360       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7361       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
7362                                      DAG.getVTList(MVT::f64, MVT::Other),
7363                                      Ops, MVT::i32, MMO);
7364       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7365     } else if (((Subtarget.hasLFIWAX() &&
7366                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
7367                 (Subtarget.hasFPCVT() &&
7368                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
7369                SINT.getOperand(0).getValueType() == MVT::i32) {
7370       MachineFrameInfo &MFI = MF.getFrameInfo();
7371       EVT PtrVT = getPointerTy(DAG.getDataLayout());
7372 
7373       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7374       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7375 
7376       SDValue Store =
7377           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
7378                        MachinePointerInfo::getFixedStack(
7379                            DAG.getMachineFunction(), FrameIdx));
7380 
7381       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7382              "Expected an i32 store");
7383 
7384       RLI.Ptr = FIdx;
7385       RLI.Chain = Store;
7386       RLI.MPI =
7387           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7388       RLI.Alignment = 4;
7389 
7390       MachineMemOperand *MMO =
7391         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7392                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7393       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7394       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
7395                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
7396                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
7397                                      Ops, MVT::i32, MMO);
7398     } else
7399       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
7400 
7401     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
7402 
7403     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7404       FP = DAG.getNode(ISD::FP_ROUND, dl,
7405                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
7406     return FP;
7407   }
7408 
7409   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
7410          "Unhandled INT_TO_FP type in custom expander!");
7411   // Since we only generate this in 64-bit mode, we can take advantage of
7412   // 64-bit registers.  In particular, sign extend the input value into the
7413   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
7414   // then lfd it and fcfid it.
7415   MachineFunction &MF = DAG.getMachineFunction();
7416   MachineFrameInfo &MFI = MF.getFrameInfo();
7417   EVT PtrVT = getPointerTy(MF.getDataLayout());
7418 
7419   SDValue Ld;
7420   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
7421     ReuseLoadInfo RLI;
7422     bool ReusingLoad;
7423     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
7424                                             DAG))) {
7425       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7426       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7427 
7428       SDValue Store =
7429           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
7430                        MachinePointerInfo::getFixedStack(
7431                            DAG.getMachineFunction(), FrameIdx));
7432 
7433       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7434              "Expected an i32 store");
7435 
7436       RLI.Ptr = FIdx;
7437       RLI.Chain = Store;
7438       RLI.MPI =
7439           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7440       RLI.Alignment = 4;
7441     }
7442 
7443     MachineMemOperand *MMO =
7444       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7445                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7446     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7447     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
7448                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
7449                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
7450                                  Ops, MVT::i32, MMO);
7451     if (ReusingLoad)
7452       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
7453   } else {
7454     assert(Subtarget.isPPC64() &&
7455            "i32->FP without LFIWAX supported only on PPC64");
7456 
7457     int FrameIdx = MFI.CreateStackObject(8, 8, false);
7458     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7459 
7460     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
7461                                 Op.getOperand(0));
7462 
7463     // STD the extended value into the stack slot.
7464     SDValue Store = DAG.getStore(
7465         DAG.getEntryNode(), dl, Ext64, FIdx,
7466         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7467 
7468     // Load the value as a double.
7469     Ld = DAG.getLoad(
7470         MVT::f64, dl, Store, FIdx,
7471         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7472   }
7473 
7474   // FCFID it and return it.
7475   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
7476   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7477     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
7478                      DAG.getIntPtrConstant(0, dl));
7479   return FP;
7480 }
7481 
7482 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7483                                             SelectionDAG &DAG) const {
7484   SDLoc dl(Op);
7485   /*
7486    The rounding mode is in bits 30:31 of FPSR, and has the following
7487    settings:
7488      00 Round to nearest
7489      01 Round to 0
7490      10 Round to +inf
7491      11 Round to -inf
7492 
7493   FLT_ROUNDS, on the other hand, expects the following:
7494     -1 Undefined
7495      0 Round to 0
7496      1 Round to nearest
7497      2 Round to +inf
7498      3 Round to -inf
7499 
7500   To perform the conversion, we do:
7501     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
7502   */
7503 
7504   MachineFunction &MF = DAG.getMachineFunction();
7505   EVT VT = Op.getValueType();
7506   EVT PtrVT = getPointerTy(MF.getDataLayout());
7507 
7508   // Save FP Control Word to register
7509   EVT NodeTys[] = {
7510     MVT::f64,    // return register
7511     MVT::Glue    // unused in this context
7512   };
7513   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
7514 
7515   // Save FP register to stack slot
7516   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
7517   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
7518   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
7519                                MachinePointerInfo());
7520 
7521   // Load FP Control Word from low 32 bits of stack slot.
7522   SDValue Four = DAG.getConstant(4, dl, PtrVT);
7523   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
7524   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
7525 
7526   // Transform as necessary
7527   SDValue CWD1 =
7528     DAG.getNode(ISD::AND, dl, MVT::i32,
7529                 CWD, DAG.getConstant(3, dl, MVT::i32));
7530   SDValue CWD2 =
7531     DAG.getNode(ISD::SRL, dl, MVT::i32,
7532                 DAG.getNode(ISD::AND, dl, MVT::i32,
7533                             DAG.getNode(ISD::XOR, dl, MVT::i32,
7534                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
7535                             DAG.getConstant(3, dl, MVT::i32)),
7536                 DAG.getConstant(1, dl, MVT::i32));
7537 
7538   SDValue RetVal =
7539     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
7540 
7541   return DAG.getNode((VT.getSizeInBits() < 16 ?
7542                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7543 }
7544 
7545 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7546   EVT VT = Op.getValueType();
7547   unsigned BitWidth = VT.getSizeInBits();
7548   SDLoc dl(Op);
7549   assert(Op.getNumOperands() == 3 &&
7550          VT == Op.getOperand(1).getValueType() &&
7551          "Unexpected SHL!");
7552 
7553   // Expand into a bunch of logical ops.  Note that these ops
7554   // depend on the PPC behavior for oversized shift amounts.
7555   SDValue Lo = Op.getOperand(0);
7556   SDValue Hi = Op.getOperand(1);
7557   SDValue Amt = Op.getOperand(2);
7558   EVT AmtVT = Amt.getValueType();
7559 
7560   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7561                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7562   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
7563   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
7564   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
7565   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7566                              DAG.getConstant(-BitWidth, dl, AmtVT));
7567   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
7568   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7569   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
7570   SDValue OutOps[] = { OutLo, OutHi };
7571   return DAG.getMergeValues(OutOps, dl);
7572 }
7573 
7574 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7575   EVT VT = Op.getValueType();
7576   SDLoc dl(Op);
7577   unsigned BitWidth = VT.getSizeInBits();
7578   assert(Op.getNumOperands() == 3 &&
7579          VT == Op.getOperand(1).getValueType() &&
7580          "Unexpected SRL!");
7581 
7582   // Expand into a bunch of logical ops.  Note that these ops
7583   // depend on the PPC behavior for oversized shift amounts.
7584   SDValue Lo = Op.getOperand(0);
7585   SDValue Hi = Op.getOperand(1);
7586   SDValue Amt = Op.getOperand(2);
7587   EVT AmtVT = Amt.getValueType();
7588 
7589   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7590                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7591   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7592   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7593   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7594   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7595                              DAG.getConstant(-BitWidth, dl, AmtVT));
7596   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
7597   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7598   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
7599   SDValue OutOps[] = { OutLo, OutHi };
7600   return DAG.getMergeValues(OutOps, dl);
7601 }
7602 
7603 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
7604   SDLoc dl(Op);
7605   EVT VT = Op.getValueType();
7606   unsigned BitWidth = VT.getSizeInBits();
7607   assert(Op.getNumOperands() == 3 &&
7608          VT == Op.getOperand(1).getValueType() &&
7609          "Unexpected SRA!");
7610 
7611   // Expand into a bunch of logical ops, followed by a select_cc.
7612   SDValue Lo = Op.getOperand(0);
7613   SDValue Hi = Op.getOperand(1);
7614   SDValue Amt = Op.getOperand(2);
7615   EVT AmtVT = Amt.getValueType();
7616 
7617   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7618                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7619   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7620   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7621   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7622   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7623                              DAG.getConstant(-BitWidth, dl, AmtVT));
7624   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
7625   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
7626   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
7627                                   Tmp4, Tmp6, ISD::SETLE);
7628   SDValue OutOps[] = { OutLo, OutHi };
7629   return DAG.getMergeValues(OutOps, dl);
7630 }
7631 
7632 //===----------------------------------------------------------------------===//
7633 // Vector related lowering.
7634 //
7635 
7636 /// BuildSplatI - Build a canonical splati of Val with an element size of
7637 /// SplatSize.  Cast the result to VT.
7638 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
7639                            SelectionDAG &DAG, const SDLoc &dl) {
7640   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
7641 
7642   static const MVT VTys[] = { // canonical VT to use for each size.
7643     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
7644   };
7645 
7646   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
7647 
7648   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
7649   if (Val == -1)
7650     SplatSize = 1;
7651 
7652   EVT CanonicalVT = VTys[SplatSize-1];
7653 
7654   // Build a canonical splat for this value.
7655   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
7656 }
7657 
7658 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
7659 /// specified intrinsic ID.
7660 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
7661                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
7662   if (DestVT == MVT::Other) DestVT = Op.getValueType();
7663   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7664                      DAG.getConstant(IID, dl, MVT::i32), Op);
7665 }
7666 
7667 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
7668 /// specified intrinsic ID.
7669 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
7670                                 SelectionDAG &DAG, const SDLoc &dl,
7671                                 EVT DestVT = MVT::Other) {
7672   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
7673   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7674                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
7675 }
7676 
7677 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
7678 /// specified intrinsic ID.
7679 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
7680                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
7681                                 EVT DestVT = MVT::Other) {
7682   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
7683   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7684                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
7685 }
7686 
7687 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
7688 /// amount.  The result has the specified value type.
7689 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
7690                            SelectionDAG &DAG, const SDLoc &dl) {
7691   // Force LHS/RHS to be the right type.
7692   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
7693   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
7694 
7695   int Ops[16];
7696   for (unsigned i = 0; i != 16; ++i)
7697     Ops[i] = i + Amt;
7698   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
7699   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7700 }
7701 
7702 /// Do we have an efficient pattern in a .td file for this node?
7703 ///
7704 /// \param V - pointer to the BuildVectorSDNode being matched
7705 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
7706 ///
7707 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
7708 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
7709 /// the opposite is true (expansion is beneficial) are:
7710 /// - The node builds a vector out of integers that are not 32 or 64-bits
7711 /// - The node builds a vector out of constants
7712 /// - The node is a "load-and-splat"
7713 /// In all other cases, we will choose to keep the BUILD_VECTOR.
7714 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
7715                                             bool HasDirectMove,
7716                                             bool HasP8Vector) {
7717   EVT VecVT = V->getValueType(0);
7718   bool RightType = VecVT == MVT::v2f64 ||
7719     (HasP8Vector && VecVT == MVT::v4f32) ||
7720     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
7721   if (!RightType)
7722     return false;
7723 
7724   bool IsSplat = true;
7725   bool IsLoad = false;
7726   SDValue Op0 = V->getOperand(0);
7727 
7728   // This function is called in a block that confirms the node is not a constant
7729   // splat. So a constant BUILD_VECTOR here means the vector is built out of
7730   // different constants.
7731   if (V->isConstant())
7732     return false;
7733   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
7734     if (V->getOperand(i).isUndef())
7735       return false;
7736     // We want to expand nodes that represent load-and-splat even if the
7737     // loaded value is a floating point truncation or conversion to int.
7738     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
7739         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
7740          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7741         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
7742          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7743         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
7744          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
7745       IsLoad = true;
7746     // If the operands are different or the input is not a load and has more
7747     // uses than just this BV node, then it isn't a splat.
7748     if (V->getOperand(i) != Op0 ||
7749         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
7750       IsSplat = false;
7751   }
7752   return !(IsSplat && IsLoad);
7753 }
7754 
7755 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
7756 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
7757 
7758   SDLoc dl(Op);
7759   SDValue Op0 = Op->getOperand(0);
7760 
7761   if (!EnableQuadPrecision ||
7762       (Op.getValueType() != MVT::f128 ) ||
7763       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
7764       (Op0.getOperand(0).getValueType() !=  MVT::i64) ||
7765       (Op0.getOperand(1).getValueType() != MVT::i64))
7766     return SDValue();
7767 
7768   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
7769                      Op0.getOperand(1));
7770 }
7771 
7772 // If this is a case we can't handle, return null and let the default
7773 // expansion code take care of it.  If we CAN select this case, and if it
7774 // selects to a single instruction, return Op.  Otherwise, if we can codegen
7775 // this case more efficiently than a constant pool load, lower it to the
7776 // sequence of ops that should be used.
7777 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
7778                                              SelectionDAG &DAG) const {
7779   SDLoc dl(Op);
7780   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7781   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
7782 
7783   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
7784     // We first build an i32 vector, load it into a QPX register,
7785     // then convert it to a floating-point vector and compare it
7786     // to a zero vector to get the boolean result.
7787     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7788     int FrameIdx = MFI.CreateStackObject(16, 16, false);
7789     MachinePointerInfo PtrInfo =
7790         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7791     EVT PtrVT = getPointerTy(DAG.getDataLayout());
7792     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7793 
7794     assert(BVN->getNumOperands() == 4 &&
7795       "BUILD_VECTOR for v4i1 does not have 4 operands");
7796 
7797     bool IsConst = true;
7798     for (unsigned i = 0; i < 4; ++i) {
7799       if (BVN->getOperand(i).isUndef()) continue;
7800       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
7801         IsConst = false;
7802         break;
7803       }
7804     }
7805 
7806     if (IsConst) {
7807       Constant *One =
7808         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
7809       Constant *NegOne =
7810         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
7811 
7812       Constant *CV[4];
7813       for (unsigned i = 0; i < 4; ++i) {
7814         if (BVN->getOperand(i).isUndef())
7815           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
7816         else if (isNullConstant(BVN->getOperand(i)))
7817           CV[i] = NegOne;
7818         else
7819           CV[i] = One;
7820       }
7821 
7822       Constant *CP = ConstantVector::get(CV);
7823       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
7824                                           16 /* alignment */);
7825 
7826       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
7827       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
7828       return DAG.getMemIntrinsicNode(
7829           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
7830           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
7831     }
7832 
7833     SmallVector<SDValue, 4> Stores;
7834     for (unsigned i = 0; i < 4; ++i) {
7835       if (BVN->getOperand(i).isUndef()) continue;
7836 
7837       unsigned Offset = 4*i;
7838       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7839       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7840 
7841       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
7842       if (StoreSize > 4) {
7843         Stores.push_back(
7844             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
7845                               PtrInfo.getWithOffset(Offset), MVT::i32));
7846       } else {
7847         SDValue StoreValue = BVN->getOperand(i);
7848         if (StoreSize < 4)
7849           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
7850 
7851         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
7852                                       PtrInfo.getWithOffset(Offset)));
7853       }
7854     }
7855 
7856     SDValue StoreChain;
7857     if (!Stores.empty())
7858       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7859     else
7860       StoreChain = DAG.getEntryNode();
7861 
7862     // Now load from v4i32 into the QPX register; this will extend it to
7863     // v4i64 but not yet convert it to a floating point. Nevertheless, this
7864     // is typed as v4f64 because the QPX register integer states are not
7865     // explicitly represented.
7866 
7867     SDValue Ops[] = {StoreChain,
7868                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
7869                      FIdx};
7870     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
7871 
7872     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
7873       dl, VTs, Ops, MVT::v4i32, PtrInfo);
7874     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7875       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
7876       LoadedVect);
7877 
7878     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
7879 
7880     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
7881   }
7882 
7883   // All other QPX vectors are handled by generic code.
7884   if (Subtarget.hasQPX())
7885     return SDValue();
7886 
7887   // Check if this is a splat of a constant value.
7888   APInt APSplatBits, APSplatUndef;
7889   unsigned SplatBitSize;
7890   bool HasAnyUndefs;
7891   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
7892                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
7893       SplatBitSize > 32) {
7894     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
7895     // lowered to VSX instructions under certain conditions.
7896     // Without VSX, there is no pattern more efficient than expanding the node.
7897     if (Subtarget.hasVSX() &&
7898         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
7899                                         Subtarget.hasP8Vector()))
7900       return Op;
7901     return SDValue();
7902   }
7903 
7904   unsigned SplatBits = APSplatBits.getZExtValue();
7905   unsigned SplatUndef = APSplatUndef.getZExtValue();
7906   unsigned SplatSize = SplatBitSize / 8;
7907 
7908   // First, handle single instruction cases.
7909 
7910   // All zeros?
7911   if (SplatBits == 0) {
7912     // Canonicalize all zero vectors to be v4i32.
7913     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
7914       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
7915       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
7916     }
7917     return Op;
7918   }
7919 
7920   // We have XXSPLTIB for constant splats one byte wide
7921   if (Subtarget.hasP9Vector() && SplatSize == 1) {
7922     // This is a splat of 1-byte elements with some elements potentially undef.
7923     // Rather than trying to match undef in the SDAG patterns, ensure that all
7924     // elements are the same constant.
7925     if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) {
7926       SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits,
7927                                                        dl, MVT::i32));
7928       SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops);
7929       if (Op.getValueType() != MVT::v16i8)
7930         return DAG.getBitcast(Op.getValueType(), NewBV);
7931       return NewBV;
7932     }
7933 
7934     // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll
7935     // detect that constant splats like v8i16: 0xABAB are really just splats
7936     // of a 1-byte constant. In this case, we need to convert the node to a
7937     // splat of v16i8 and a bitcast.
7938     if (Op.getValueType() != MVT::v16i8)
7939       return DAG.getBitcast(Op.getValueType(),
7940                             DAG.getConstant(SplatBits, dl, MVT::v16i8));
7941 
7942     return Op;
7943   }
7944 
7945   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
7946   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
7947                     (32-SplatBitSize));
7948   if (SextVal >= -16 && SextVal <= 15)
7949     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
7950 
7951   // Two instruction sequences.
7952 
7953   // If this value is in the range [-32,30] and is even, use:
7954   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
7955   // If this value is in the range [17,31] and is odd, use:
7956   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
7957   // If this value is in the range [-31,-17] and is odd, use:
7958   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
7959   // Note the last two are three-instruction sequences.
7960   if (SextVal >= -32 && SextVal <= 31) {
7961     // To avoid having these optimizations undone by constant folding,
7962     // we convert to a pseudo that will be expanded later into one of
7963     // the above forms.
7964     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
7965     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
7966               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
7967     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
7968     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
7969     if (VT == Op.getValueType())
7970       return RetVal;
7971     else
7972       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
7973   }
7974 
7975   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
7976   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
7977   // for fneg/fabs.
7978   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
7979     // Make -1 and vspltisw -1:
7980     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
7981 
7982     // Make the VSLW intrinsic, computing 0x8000_0000.
7983     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
7984                                    OnesV, DAG, dl);
7985 
7986     // xor by OnesV to invert it.
7987     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
7988     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7989   }
7990 
7991   // Check to see if this is a wide variety of vsplti*, binop self cases.
7992   static const signed char SplatCsts[] = {
7993     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
7994     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
7995   };
7996 
7997   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
7998     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
7999     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
8000     int i = SplatCsts[idx];
8001 
8002     // Figure out what shift amount will be used by altivec if shifted by i in
8003     // this splat size.
8004     unsigned TypeShiftAmt = i & (SplatBitSize-1);
8005 
8006     // vsplti + shl self.
8007     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
8008       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8009       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8010         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
8011         Intrinsic::ppc_altivec_vslw
8012       };
8013       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8014       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8015     }
8016 
8017     // vsplti + srl self.
8018     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8019       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8020       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8021         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
8022         Intrinsic::ppc_altivec_vsrw
8023       };
8024       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8025       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8026     }
8027 
8028     // vsplti + sra self.
8029     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8030       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8031       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8032         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
8033         Intrinsic::ppc_altivec_vsraw
8034       };
8035       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8036       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8037     }
8038 
8039     // vsplti + rol self.
8040     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
8041                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
8042       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8043       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8044         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
8045         Intrinsic::ppc_altivec_vrlw
8046       };
8047       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8048       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8049     }
8050 
8051     // t = vsplti c, result = vsldoi t, t, 1
8052     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
8053       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8054       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
8055       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8056     }
8057     // t = vsplti c, result = vsldoi t, t, 2
8058     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
8059       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8060       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
8061       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8062     }
8063     // t = vsplti c, result = vsldoi t, t, 3
8064     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
8065       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8066       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
8067       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8068     }
8069   }
8070 
8071   return SDValue();
8072 }
8073 
8074 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8075 /// the specified operations to build the shuffle.
8076 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8077                                       SDValue RHS, SelectionDAG &DAG,
8078                                       const SDLoc &dl) {
8079   unsigned OpNum = (PFEntry >> 26) & 0x0F;
8080   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8081   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8082 
8083   enum {
8084     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8085     OP_VMRGHW,
8086     OP_VMRGLW,
8087     OP_VSPLTISW0,
8088     OP_VSPLTISW1,
8089     OP_VSPLTISW2,
8090     OP_VSPLTISW3,
8091     OP_VSLDOI4,
8092     OP_VSLDOI8,
8093     OP_VSLDOI12
8094   };
8095 
8096   if (OpNum == OP_COPY) {
8097     if (LHSID == (1*9+2)*9+3) return LHS;
8098     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8099     return RHS;
8100   }
8101 
8102   SDValue OpLHS, OpRHS;
8103   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8104   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8105 
8106   int ShufIdxs[16];
8107   switch (OpNum) {
8108   default: llvm_unreachable("Unknown i32 permute!");
8109   case OP_VMRGHW:
8110     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
8111     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
8112     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
8113     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
8114     break;
8115   case OP_VMRGLW:
8116     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
8117     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
8118     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
8119     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
8120     break;
8121   case OP_VSPLTISW0:
8122     for (unsigned i = 0; i != 16; ++i)
8123       ShufIdxs[i] = (i&3)+0;
8124     break;
8125   case OP_VSPLTISW1:
8126     for (unsigned i = 0; i != 16; ++i)
8127       ShufIdxs[i] = (i&3)+4;
8128     break;
8129   case OP_VSPLTISW2:
8130     for (unsigned i = 0; i != 16; ++i)
8131       ShufIdxs[i] = (i&3)+8;
8132     break;
8133   case OP_VSPLTISW3:
8134     for (unsigned i = 0; i != 16; ++i)
8135       ShufIdxs[i] = (i&3)+12;
8136     break;
8137   case OP_VSLDOI4:
8138     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
8139   case OP_VSLDOI8:
8140     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
8141   case OP_VSLDOI12:
8142     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
8143   }
8144   EVT VT = OpLHS.getValueType();
8145   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
8146   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
8147   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
8148   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8149 }
8150 
8151 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
8152 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
8153 /// SDValue.
8154 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
8155                                            SelectionDAG &DAG) const {
8156   const unsigned BytesInVector = 16;
8157   bool IsLE = Subtarget.isLittleEndian();
8158   SDLoc dl(N);
8159   SDValue V1 = N->getOperand(0);
8160   SDValue V2 = N->getOperand(1);
8161   unsigned ShiftElts = 0, InsertAtByte = 0;
8162   bool Swap = false;
8163 
8164   // Shifts required to get the byte we want at element 7.
8165   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
8166                                    0, 15, 14, 13, 12, 11, 10, 9};
8167   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
8168                                 1, 2,  3,  4,  5,  6,  7,  8};
8169 
8170   ArrayRef<int> Mask = N->getMask();
8171   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
8172 
8173   // For each mask element, find out if we're just inserting something
8174   // from V2 into V1 or vice versa.
8175   // Possible permutations inserting an element from V2 into V1:
8176   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8177   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8178   //   ...
8179   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
8180   // Inserting from V1 into V2 will be similar, except mask range will be
8181   // [16,31].
8182 
8183   bool FoundCandidate = false;
8184   // If both vector operands for the shuffle are the same vector, the mask
8185   // will contain only elements from the first one and the second one will be
8186   // undef.
8187   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
8188   // Go through the mask of half-words to find an element that's being moved
8189   // from one vector to the other.
8190   for (unsigned i = 0; i < BytesInVector; ++i) {
8191     unsigned CurrentElement = Mask[i];
8192     // If 2nd operand is undefined, we should only look for element 7 in the
8193     // Mask.
8194     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
8195       continue;
8196 
8197     bool OtherElementsInOrder = true;
8198     // Examine the other elements in the Mask to see if they're in original
8199     // order.
8200     for (unsigned j = 0; j < BytesInVector; ++j) {
8201       if (j == i)
8202         continue;
8203       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
8204       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
8205       // in which we always assume we're always picking from the 1st operand.
8206       int MaskOffset =
8207           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
8208       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
8209         OtherElementsInOrder = false;
8210         break;
8211       }
8212     }
8213     // If other elements are in original order, we record the number of shifts
8214     // we need to get the element we want into element 7. Also record which byte
8215     // in the vector we should insert into.
8216     if (OtherElementsInOrder) {
8217       // If 2nd operand is undefined, we assume no shifts and no swapping.
8218       if (V2.isUndef()) {
8219         ShiftElts = 0;
8220         Swap = false;
8221       } else {
8222         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
8223         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
8224                          : BigEndianShifts[CurrentElement & 0xF];
8225         Swap = CurrentElement < BytesInVector;
8226       }
8227       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
8228       FoundCandidate = true;
8229       break;
8230     }
8231   }
8232 
8233   if (!FoundCandidate)
8234     return SDValue();
8235 
8236   // Candidate found, construct the proper SDAG sequence with VINSERTB,
8237   // optionally with VECSHL if shift is required.
8238   if (Swap)
8239     std::swap(V1, V2);
8240   if (V2.isUndef())
8241     V2 = V1;
8242   if (ShiftElts) {
8243     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8244                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8245     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
8246                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
8247   }
8248   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
8249                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
8250 }
8251 
8252 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
8253 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
8254 /// SDValue.
8255 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
8256                                            SelectionDAG &DAG) const {
8257   const unsigned NumHalfWords = 8;
8258   const unsigned BytesInVector = NumHalfWords * 2;
8259   // Check that the shuffle is on half-words.
8260   if (!isNByteElemShuffleMask(N, 2, 1))
8261     return SDValue();
8262 
8263   bool IsLE = Subtarget.isLittleEndian();
8264   SDLoc dl(N);
8265   SDValue V1 = N->getOperand(0);
8266   SDValue V2 = N->getOperand(1);
8267   unsigned ShiftElts = 0, InsertAtByte = 0;
8268   bool Swap = false;
8269 
8270   // Shifts required to get the half-word we want at element 3.
8271   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
8272   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
8273 
8274   uint32_t Mask = 0;
8275   uint32_t OriginalOrderLow = 0x1234567;
8276   uint32_t OriginalOrderHigh = 0x89ABCDEF;
8277   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
8278   // 32-bit space, only need 4-bit nibbles per element.
8279   for (unsigned i = 0; i < NumHalfWords; ++i) {
8280     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8281     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
8282   }
8283 
8284   // For each mask element, find out if we're just inserting something
8285   // from V2 into V1 or vice versa.  Possible permutations inserting an element
8286   // from V2 into V1:
8287   //   X, 1, 2, 3, 4, 5, 6, 7
8288   //   0, X, 2, 3, 4, 5, 6, 7
8289   //   0, 1, X, 3, 4, 5, 6, 7
8290   //   0, 1, 2, X, 4, 5, 6, 7
8291   //   0, 1, 2, 3, X, 5, 6, 7
8292   //   0, 1, 2, 3, 4, X, 6, 7
8293   //   0, 1, 2, 3, 4, 5, X, 7
8294   //   0, 1, 2, 3, 4, 5, 6, X
8295   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
8296 
8297   bool FoundCandidate = false;
8298   // Go through the mask of half-words to find an element that's being moved
8299   // from one vector to the other.
8300   for (unsigned i = 0; i < NumHalfWords; ++i) {
8301     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8302     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
8303     uint32_t MaskOtherElts = ~(0xF << MaskShift);
8304     uint32_t TargetOrder = 0x0;
8305 
8306     // If both vector operands for the shuffle are the same vector, the mask
8307     // will contain only elements from the first one and the second one will be
8308     // undef.
8309     if (V2.isUndef()) {
8310       ShiftElts = 0;
8311       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
8312       TargetOrder = OriginalOrderLow;
8313       Swap = false;
8314       // Skip if not the correct element or mask of other elements don't equal
8315       // to our expected order.
8316       if (MaskOneElt == VINSERTHSrcElem &&
8317           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8318         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8319         FoundCandidate = true;
8320         break;
8321       }
8322     } else { // If both operands are defined.
8323       // Target order is [8,15] if the current mask is between [0,7].
8324       TargetOrder =
8325           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
8326       // Skip if mask of other elements don't equal our expected order.
8327       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8328         // We only need the last 3 bits for the number of shifts.
8329         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
8330                          : BigEndianShifts[MaskOneElt & 0x7];
8331         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8332         Swap = MaskOneElt < NumHalfWords;
8333         FoundCandidate = true;
8334         break;
8335       }
8336     }
8337   }
8338 
8339   if (!FoundCandidate)
8340     return SDValue();
8341 
8342   // Candidate found, construct the proper SDAG sequence with VINSERTH,
8343   // optionally with VECSHL if shift is required.
8344   if (Swap)
8345     std::swap(V1, V2);
8346   if (V2.isUndef())
8347     V2 = V1;
8348   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8349   if (ShiftElts) {
8350     // Double ShiftElts because we're left shifting on v16i8 type.
8351     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8352                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
8353     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
8354     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8355                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8356     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8357   }
8358   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
8359   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8360                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
8361   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8362 }
8363 
8364 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
8365 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
8366 /// return the code it can be lowered into.  Worst case, it can always be
8367 /// lowered into a vperm.
8368 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
8369                                                SelectionDAG &DAG) const {
8370   SDLoc dl(Op);
8371   SDValue V1 = Op.getOperand(0);
8372   SDValue V2 = Op.getOperand(1);
8373   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8374   EVT VT = Op.getValueType();
8375   bool isLittleEndian = Subtarget.isLittleEndian();
8376 
8377   unsigned ShiftElts, InsertAtByte;
8378   bool Swap = false;
8379   if (Subtarget.hasP9Vector() &&
8380       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
8381                            isLittleEndian)) {
8382     if (Swap)
8383       std::swap(V1, V2);
8384     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8385     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
8386     if (ShiftElts) {
8387       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
8388                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
8389       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
8390                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
8391       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8392     }
8393     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
8394                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8395     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8396   }
8397 
8398   if (Subtarget.hasP9Altivec()) {
8399     SDValue NewISDNode;
8400     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
8401       return NewISDNode;
8402 
8403     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
8404       return NewISDNode;
8405   }
8406 
8407   if (Subtarget.hasVSX() &&
8408       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8409     if (Swap)
8410       std::swap(V1, V2);
8411     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8412     SDValue Conv2 =
8413         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
8414 
8415     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
8416                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8417     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
8418   }
8419 
8420   if (Subtarget.hasVSX() &&
8421     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8422     if (Swap)
8423       std::swap(V1, V2);
8424     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8425     SDValue Conv2 =
8426         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
8427 
8428     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
8429                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8430     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
8431   }
8432 
8433   if (Subtarget.hasP9Vector()) {
8434      if (PPC::isXXBRHShuffleMask(SVOp)) {
8435       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8436       SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv);
8437       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
8438     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
8439       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8440       SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv);
8441       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
8442     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
8443       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8444       SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv);
8445       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
8446     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
8447       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
8448       SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv);
8449       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
8450     }
8451   }
8452 
8453   if (Subtarget.hasVSX()) {
8454     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
8455       int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG);
8456 
8457       // If the source for the shuffle is a scalar_to_vector that came from a
8458       // 32-bit load, it will have used LXVWSX so we don't need to splat again.
8459       if (Subtarget.hasP9Vector() &&
8460           ((isLittleEndian && SplatIdx == 3) ||
8461            (!isLittleEndian && SplatIdx == 0))) {
8462         SDValue Src = V1.getOperand(0);
8463         if (Src.getOpcode() == ISD::SCALAR_TO_VECTOR &&
8464             Src.getOperand(0).getOpcode() == ISD::LOAD &&
8465             Src.getOperand(0).hasOneUse())
8466           return V1;
8467       }
8468       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8469       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
8470                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
8471       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
8472     }
8473 
8474     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
8475     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
8476       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
8477       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
8478       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
8479     }
8480   }
8481 
8482   if (Subtarget.hasQPX()) {
8483     if (VT.getVectorNumElements() != 4)
8484       return SDValue();
8485 
8486     if (V2.isUndef()) V2 = V1;
8487 
8488     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
8489     if (AlignIdx != -1) {
8490       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
8491                          DAG.getConstant(AlignIdx, dl, MVT::i32));
8492     } else if (SVOp->isSplat()) {
8493       int SplatIdx = SVOp->getSplatIndex();
8494       if (SplatIdx >= 4) {
8495         std::swap(V1, V2);
8496         SplatIdx -= 4;
8497       }
8498 
8499       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
8500                          DAG.getConstant(SplatIdx, dl, MVT::i32));
8501     }
8502 
8503     // Lower this into a qvgpci/qvfperm pair.
8504 
8505     // Compute the qvgpci literal
8506     unsigned idx = 0;
8507     for (unsigned i = 0; i < 4; ++i) {
8508       int m = SVOp->getMaskElt(i);
8509       unsigned mm = m >= 0 ? (unsigned) m : i;
8510       idx |= mm << (3-i)*3;
8511     }
8512 
8513     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
8514                              DAG.getConstant(idx, dl, MVT::i32));
8515     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
8516   }
8517 
8518   // Cases that are handled by instructions that take permute immediates
8519   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
8520   // selected by the instruction selector.
8521   if (V2.isUndef()) {
8522     if (PPC::isSplatShuffleMask(SVOp, 1) ||
8523         PPC::isSplatShuffleMask(SVOp, 2) ||
8524         PPC::isSplatShuffleMask(SVOp, 4) ||
8525         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
8526         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
8527         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
8528         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
8529         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
8530         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
8531         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
8532         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
8533         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
8534         (Subtarget.hasP8Altivec() && (
8535          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
8536          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
8537          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
8538       return Op;
8539     }
8540   }
8541 
8542   // Altivec has a variety of "shuffle immediates" that take two vector inputs
8543   // and produce a fixed permutation.  If any of these match, do not lower to
8544   // VPERM.
8545   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
8546   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8547       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8548       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
8549       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8550       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8551       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8552       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8553       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8554       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8555       (Subtarget.hasP8Altivec() && (
8556        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8557        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
8558        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
8559     return Op;
8560 
8561   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
8562   // perfect shuffle table to emit an optimal matching sequence.
8563   ArrayRef<int> PermMask = SVOp->getMask();
8564 
8565   unsigned PFIndexes[4];
8566   bool isFourElementShuffle = true;
8567   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
8568     unsigned EltNo = 8;   // Start out undef.
8569     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
8570       if (PermMask[i*4+j] < 0)
8571         continue;   // Undef, ignore it.
8572 
8573       unsigned ByteSource = PermMask[i*4+j];
8574       if ((ByteSource & 3) != j) {
8575         isFourElementShuffle = false;
8576         break;
8577       }
8578 
8579       if (EltNo == 8) {
8580         EltNo = ByteSource/4;
8581       } else if (EltNo != ByteSource/4) {
8582         isFourElementShuffle = false;
8583         break;
8584       }
8585     }
8586     PFIndexes[i] = EltNo;
8587   }
8588 
8589   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
8590   // perfect shuffle vector to determine if it is cost effective to do this as
8591   // discrete instructions, or whether we should use a vperm.
8592   // For now, we skip this for little endian until such time as we have a
8593   // little-endian perfect shuffle table.
8594   if (isFourElementShuffle && !isLittleEndian) {
8595     // Compute the index in the perfect shuffle table.
8596     unsigned PFTableIndex =
8597       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8598 
8599     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8600     unsigned Cost  = (PFEntry >> 30);
8601 
8602     // Determining when to avoid vperm is tricky.  Many things affect the cost
8603     // of vperm, particularly how many times the perm mask needs to be computed.
8604     // For example, if the perm mask can be hoisted out of a loop or is already
8605     // used (perhaps because there are multiple permutes with the same shuffle
8606     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
8607     // the loop requires an extra register.
8608     //
8609     // As a compromise, we only emit discrete instructions if the shuffle can be
8610     // generated in 3 or fewer operations.  When we have loop information
8611     // available, if this block is within a loop, we should avoid using vperm
8612     // for 3-operation perms and use a constant pool load instead.
8613     if (Cost < 3)
8614       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8615   }
8616 
8617   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
8618   // vector that will get spilled to the constant pool.
8619   if (V2.isUndef()) V2 = V1;
8620 
8621   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
8622   // that it is in input element units, not in bytes.  Convert now.
8623 
8624   // For little endian, the order of the input vectors is reversed, and
8625   // the permutation mask is complemented with respect to 31.  This is
8626   // necessary to produce proper semantics with the big-endian-biased vperm
8627   // instruction.
8628   EVT EltVT = V1.getValueType().getVectorElementType();
8629   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
8630 
8631   SmallVector<SDValue, 16> ResultMask;
8632   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
8633     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
8634 
8635     for (unsigned j = 0; j != BytesPerElement; ++j)
8636       if (isLittleEndian)
8637         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
8638                                              dl, MVT::i32));
8639       else
8640         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
8641                                              MVT::i32));
8642   }
8643 
8644   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
8645   if (isLittleEndian)
8646     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8647                        V2, V1, VPermMask);
8648   else
8649     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8650                        V1, V2, VPermMask);
8651 }
8652 
8653 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
8654 /// vector comparison.  If it is, return true and fill in Opc/isDot with
8655 /// information about the intrinsic.
8656 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
8657                                  bool &isDot, const PPCSubtarget &Subtarget) {
8658   unsigned IntrinsicID =
8659       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
8660   CompareOpc = -1;
8661   isDot = false;
8662   switch (IntrinsicID) {
8663   default:
8664     return false;
8665   // Comparison predicates.
8666   case Intrinsic::ppc_altivec_vcmpbfp_p:
8667     CompareOpc = 966;
8668     isDot = true;
8669     break;
8670   case Intrinsic::ppc_altivec_vcmpeqfp_p:
8671     CompareOpc = 198;
8672     isDot = true;
8673     break;
8674   case Intrinsic::ppc_altivec_vcmpequb_p:
8675     CompareOpc = 6;
8676     isDot = true;
8677     break;
8678   case Intrinsic::ppc_altivec_vcmpequh_p:
8679     CompareOpc = 70;
8680     isDot = true;
8681     break;
8682   case Intrinsic::ppc_altivec_vcmpequw_p:
8683     CompareOpc = 134;
8684     isDot = true;
8685     break;
8686   case Intrinsic::ppc_altivec_vcmpequd_p:
8687     if (Subtarget.hasP8Altivec()) {
8688       CompareOpc = 199;
8689       isDot = true;
8690     } else
8691       return false;
8692     break;
8693   case Intrinsic::ppc_altivec_vcmpneb_p:
8694   case Intrinsic::ppc_altivec_vcmpneh_p:
8695   case Intrinsic::ppc_altivec_vcmpnew_p:
8696   case Intrinsic::ppc_altivec_vcmpnezb_p:
8697   case Intrinsic::ppc_altivec_vcmpnezh_p:
8698   case Intrinsic::ppc_altivec_vcmpnezw_p:
8699     if (Subtarget.hasP9Altivec()) {
8700       switch (IntrinsicID) {
8701       default:
8702         llvm_unreachable("Unknown comparison intrinsic.");
8703       case Intrinsic::ppc_altivec_vcmpneb_p:
8704         CompareOpc = 7;
8705         break;
8706       case Intrinsic::ppc_altivec_vcmpneh_p:
8707         CompareOpc = 71;
8708         break;
8709       case Intrinsic::ppc_altivec_vcmpnew_p:
8710         CompareOpc = 135;
8711         break;
8712       case Intrinsic::ppc_altivec_vcmpnezb_p:
8713         CompareOpc = 263;
8714         break;
8715       case Intrinsic::ppc_altivec_vcmpnezh_p:
8716         CompareOpc = 327;
8717         break;
8718       case Intrinsic::ppc_altivec_vcmpnezw_p:
8719         CompareOpc = 391;
8720         break;
8721       }
8722       isDot = true;
8723     } else
8724       return false;
8725     break;
8726   case Intrinsic::ppc_altivec_vcmpgefp_p:
8727     CompareOpc = 454;
8728     isDot = true;
8729     break;
8730   case Intrinsic::ppc_altivec_vcmpgtfp_p:
8731     CompareOpc = 710;
8732     isDot = true;
8733     break;
8734   case Intrinsic::ppc_altivec_vcmpgtsb_p:
8735     CompareOpc = 774;
8736     isDot = true;
8737     break;
8738   case Intrinsic::ppc_altivec_vcmpgtsh_p:
8739     CompareOpc = 838;
8740     isDot = true;
8741     break;
8742   case Intrinsic::ppc_altivec_vcmpgtsw_p:
8743     CompareOpc = 902;
8744     isDot = true;
8745     break;
8746   case Intrinsic::ppc_altivec_vcmpgtsd_p:
8747     if (Subtarget.hasP8Altivec()) {
8748       CompareOpc = 967;
8749       isDot = true;
8750     } else
8751       return false;
8752     break;
8753   case Intrinsic::ppc_altivec_vcmpgtub_p:
8754     CompareOpc = 518;
8755     isDot = true;
8756     break;
8757   case Intrinsic::ppc_altivec_vcmpgtuh_p:
8758     CompareOpc = 582;
8759     isDot = true;
8760     break;
8761   case Intrinsic::ppc_altivec_vcmpgtuw_p:
8762     CompareOpc = 646;
8763     isDot = true;
8764     break;
8765   case Intrinsic::ppc_altivec_vcmpgtud_p:
8766     if (Subtarget.hasP8Altivec()) {
8767       CompareOpc = 711;
8768       isDot = true;
8769     } else
8770       return false;
8771     break;
8772 
8773   // VSX predicate comparisons use the same infrastructure
8774   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8775   case Intrinsic::ppc_vsx_xvcmpgedp_p:
8776   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8777   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8778   case Intrinsic::ppc_vsx_xvcmpgesp_p:
8779   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8780     if (Subtarget.hasVSX()) {
8781       switch (IntrinsicID) {
8782       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8783         CompareOpc = 99;
8784         break;
8785       case Intrinsic::ppc_vsx_xvcmpgedp_p:
8786         CompareOpc = 115;
8787         break;
8788       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8789         CompareOpc = 107;
8790         break;
8791       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8792         CompareOpc = 67;
8793         break;
8794       case Intrinsic::ppc_vsx_xvcmpgesp_p:
8795         CompareOpc = 83;
8796         break;
8797       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8798         CompareOpc = 75;
8799         break;
8800       }
8801       isDot = true;
8802     } else
8803       return false;
8804     break;
8805 
8806   // Normal Comparisons.
8807   case Intrinsic::ppc_altivec_vcmpbfp:
8808     CompareOpc = 966;
8809     break;
8810   case Intrinsic::ppc_altivec_vcmpeqfp:
8811     CompareOpc = 198;
8812     break;
8813   case Intrinsic::ppc_altivec_vcmpequb:
8814     CompareOpc = 6;
8815     break;
8816   case Intrinsic::ppc_altivec_vcmpequh:
8817     CompareOpc = 70;
8818     break;
8819   case Intrinsic::ppc_altivec_vcmpequw:
8820     CompareOpc = 134;
8821     break;
8822   case Intrinsic::ppc_altivec_vcmpequd:
8823     if (Subtarget.hasP8Altivec())
8824       CompareOpc = 199;
8825     else
8826       return false;
8827     break;
8828   case Intrinsic::ppc_altivec_vcmpneb:
8829   case Intrinsic::ppc_altivec_vcmpneh:
8830   case Intrinsic::ppc_altivec_vcmpnew:
8831   case Intrinsic::ppc_altivec_vcmpnezb:
8832   case Intrinsic::ppc_altivec_vcmpnezh:
8833   case Intrinsic::ppc_altivec_vcmpnezw:
8834     if (Subtarget.hasP9Altivec())
8835       switch (IntrinsicID) {
8836       default:
8837         llvm_unreachable("Unknown comparison intrinsic.");
8838       case Intrinsic::ppc_altivec_vcmpneb:
8839         CompareOpc = 7;
8840         break;
8841       case Intrinsic::ppc_altivec_vcmpneh:
8842         CompareOpc = 71;
8843         break;
8844       case Intrinsic::ppc_altivec_vcmpnew:
8845         CompareOpc = 135;
8846         break;
8847       case Intrinsic::ppc_altivec_vcmpnezb:
8848         CompareOpc = 263;
8849         break;
8850       case Intrinsic::ppc_altivec_vcmpnezh:
8851         CompareOpc = 327;
8852         break;
8853       case Intrinsic::ppc_altivec_vcmpnezw:
8854         CompareOpc = 391;
8855         break;
8856       }
8857     else
8858       return false;
8859     break;
8860   case Intrinsic::ppc_altivec_vcmpgefp:
8861     CompareOpc = 454;
8862     break;
8863   case Intrinsic::ppc_altivec_vcmpgtfp:
8864     CompareOpc = 710;
8865     break;
8866   case Intrinsic::ppc_altivec_vcmpgtsb:
8867     CompareOpc = 774;
8868     break;
8869   case Intrinsic::ppc_altivec_vcmpgtsh:
8870     CompareOpc = 838;
8871     break;
8872   case Intrinsic::ppc_altivec_vcmpgtsw:
8873     CompareOpc = 902;
8874     break;
8875   case Intrinsic::ppc_altivec_vcmpgtsd:
8876     if (Subtarget.hasP8Altivec())
8877       CompareOpc = 967;
8878     else
8879       return false;
8880     break;
8881   case Intrinsic::ppc_altivec_vcmpgtub:
8882     CompareOpc = 518;
8883     break;
8884   case Intrinsic::ppc_altivec_vcmpgtuh:
8885     CompareOpc = 582;
8886     break;
8887   case Intrinsic::ppc_altivec_vcmpgtuw:
8888     CompareOpc = 646;
8889     break;
8890   case Intrinsic::ppc_altivec_vcmpgtud:
8891     if (Subtarget.hasP8Altivec())
8892       CompareOpc = 711;
8893     else
8894       return false;
8895     break;
8896   }
8897   return true;
8898 }
8899 
8900 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
8901 /// lower, do it, otherwise return null.
8902 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
8903                                                    SelectionDAG &DAG) const {
8904   unsigned IntrinsicID =
8905     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8906 
8907   SDLoc dl(Op);
8908 
8909   if (IntrinsicID == Intrinsic::thread_pointer) {
8910     // Reads the thread pointer register, used for __builtin_thread_pointer.
8911     if (Subtarget.isPPC64())
8912       return DAG.getRegister(PPC::X13, MVT::i64);
8913     return DAG.getRegister(PPC::R2, MVT::i32);
8914   }
8915 
8916   // We are looking for absolute values here.
8917   // The idea is to try to fit one of two patterns:
8918   //  max (a, (0-a))  OR  max ((0-a), a)
8919   if (Subtarget.hasP9Vector() &&
8920       (IntrinsicID == Intrinsic::ppc_altivec_vmaxsw ||
8921        IntrinsicID == Intrinsic::ppc_altivec_vmaxsh ||
8922        IntrinsicID == Intrinsic::ppc_altivec_vmaxsb)) {
8923     SDValue V1 = Op.getOperand(1);
8924     SDValue V2 = Op.getOperand(2);
8925     if (V1.getSimpleValueType() == V2.getSimpleValueType() &&
8926         (V1.getSimpleValueType() == MVT::v4i32 ||
8927          V1.getSimpleValueType() == MVT::v8i16 ||
8928          V1.getSimpleValueType() == MVT::v16i8)) {
8929       if ( V1.getOpcode() == ISD::SUB &&
8930            ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
8931            V1.getOperand(1) == V2 ) {
8932         // Generate the abs instruction with the operands
8933         return DAG.getNode(ISD::ABS, dl, V2.getValueType(),V2);
8934       }
8935 
8936       if ( V2.getOpcode() == ISD::SUB &&
8937            ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
8938            V2.getOperand(1) == V1 ) {
8939         // Generate the abs instruction with the operands
8940         return DAG.getNode(ISD::ABS, dl, V1.getValueType(),V1);
8941       }
8942     }
8943   }
8944 
8945   // If this is a lowered altivec predicate compare, CompareOpc is set to the
8946   // opcode number of the comparison.
8947   int CompareOpc;
8948   bool isDot;
8949   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
8950     return SDValue();    // Don't custom lower most intrinsics.
8951 
8952   // If this is a non-dot comparison, make the VCMP node and we are done.
8953   if (!isDot) {
8954     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
8955                               Op.getOperand(1), Op.getOperand(2),
8956                               DAG.getConstant(CompareOpc, dl, MVT::i32));
8957     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
8958   }
8959 
8960   // Create the PPCISD altivec 'dot' comparison node.
8961   SDValue Ops[] = {
8962     Op.getOperand(2),  // LHS
8963     Op.getOperand(3),  // RHS
8964     DAG.getConstant(CompareOpc, dl, MVT::i32)
8965   };
8966   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
8967   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
8968 
8969   // Now that we have the comparison, emit a copy from the CR to a GPR.
8970   // This is flagged to the above dot comparison.
8971   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
8972                                 DAG.getRegister(PPC::CR6, MVT::i32),
8973                                 CompNode.getValue(1));
8974 
8975   // Unpack the result based on how the target uses it.
8976   unsigned BitNo;   // Bit # of CR6.
8977   bool InvertBit;   // Invert result?
8978   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
8979   default:  // Can't happen, don't crash on invalid number though.
8980   case 0:   // Return the value of the EQ bit of CR6.
8981     BitNo = 0; InvertBit = false;
8982     break;
8983   case 1:   // Return the inverted value of the EQ bit of CR6.
8984     BitNo = 0; InvertBit = true;
8985     break;
8986   case 2:   // Return the value of the LT bit of CR6.
8987     BitNo = 2; InvertBit = false;
8988     break;
8989   case 3:   // Return the inverted value of the LT bit of CR6.
8990     BitNo = 2; InvertBit = true;
8991     break;
8992   }
8993 
8994   // Shift the bit into the low position.
8995   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
8996                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
8997   // Isolate the bit.
8998   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
8999                       DAG.getConstant(1, dl, MVT::i32));
9000 
9001   // If we are supposed to, toggle the bit.
9002   if (InvertBit)
9003     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
9004                         DAG.getConstant(1, dl, MVT::i32));
9005   return Flags;
9006 }
9007 
9008 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
9009                                                SelectionDAG &DAG) const {
9010   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
9011   // the beginning of the argument list.
9012   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
9013   SDLoc DL(Op);
9014   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
9015   case Intrinsic::ppc_cfence: {
9016     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
9017     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
9018     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
9019                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
9020                                                   Op.getOperand(ArgStart + 1)),
9021                                       Op.getOperand(0)),
9022                    0);
9023   }
9024   default:
9025     break;
9026   }
9027   return SDValue();
9028 }
9029 
9030 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
9031   // Check for a DIV with the same operands as this REM.
9032   for (auto UI : Op.getOperand(1)->uses()) {
9033     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
9034         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
9035       if (UI->getOperand(0) == Op.getOperand(0) &&
9036           UI->getOperand(1) == Op.getOperand(1))
9037         return SDValue();
9038   }
9039   return Op;
9040 }
9041 
9042 // Lower scalar BSWAP64 to xxbrd.
9043 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
9044   SDLoc dl(Op);
9045   // MTVSRDD
9046   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
9047                    Op.getOperand(0));
9048   // XXBRD
9049   Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op);
9050   // MFVSRD
9051   int VectorIndex = 0;
9052   if (Subtarget.isLittleEndian())
9053     VectorIndex = 1;
9054   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
9055                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
9056   return Op;
9057 }
9058 
9059 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
9060 // compared to a value that is atomically loaded (atomic loads zero-extend).
9061 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
9062                                                 SelectionDAG &DAG) const {
9063   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
9064          "Expecting an atomic compare-and-swap here.");
9065   SDLoc dl(Op);
9066   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
9067   EVT MemVT = AtomicNode->getMemoryVT();
9068   if (MemVT.getSizeInBits() >= 32)
9069     return Op;
9070 
9071   SDValue CmpOp = Op.getOperand(2);
9072   // If this is already correctly zero-extended, leave it alone.
9073   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
9074   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
9075     return Op;
9076 
9077   // Clear the high bits of the compare operand.
9078   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
9079   SDValue NewCmpOp =
9080     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
9081                 DAG.getConstant(MaskVal, dl, MVT::i32));
9082 
9083   // Replace the existing compare operand with the properly zero-extended one.
9084   SmallVector<SDValue, 4> Ops;
9085   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
9086     Ops.push_back(AtomicNode->getOperand(i));
9087   Ops[2] = NewCmpOp;
9088   MachineMemOperand *MMO = AtomicNode->getMemOperand();
9089   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
9090   auto NodeTy =
9091     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
9092   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
9093 }
9094 
9095 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
9096                                                   SelectionDAG &DAG) const {
9097   SDLoc dl(Op);
9098   // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
9099   // instructions), but for smaller types, we need to first extend up to v2i32
9100   // before doing going farther.
9101   if (Op.getValueType() == MVT::v2i64) {
9102     EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
9103     if (ExtVT != MVT::v2i32) {
9104       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
9105       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
9106                        DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
9107                                         ExtVT.getVectorElementType(), 4)));
9108       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
9109       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
9110                        DAG.getValueType(MVT::v2i32));
9111     }
9112 
9113     return Op;
9114   }
9115 
9116   return SDValue();
9117 }
9118 
9119 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
9120                                                  SelectionDAG &DAG) const {
9121   SDLoc dl(Op);
9122   // Create a stack slot that is 16-byte aligned.
9123   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9124   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9125   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9126   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9127 
9128   // Store the input value into Value#0 of the stack slot.
9129   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
9130                                MachinePointerInfo());
9131   // Load it out.
9132   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
9133 }
9134 
9135 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
9136                                                   SelectionDAG &DAG) const {
9137   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
9138          "Should only be called for ISD::INSERT_VECTOR_ELT");
9139 
9140   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
9141   // We have legal lowering for constant indices but not for variable ones.
9142   if (!C)
9143     return SDValue();
9144 
9145   EVT VT = Op.getValueType();
9146   SDLoc dl(Op);
9147   SDValue V1 = Op.getOperand(0);
9148   SDValue V2 = Op.getOperand(1);
9149   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
9150   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
9151     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
9152     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
9153     unsigned InsertAtElement = C->getZExtValue();
9154     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
9155     if (Subtarget.isLittleEndian()) {
9156       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
9157     }
9158     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
9159                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9160   }
9161   return Op;
9162 }
9163 
9164 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
9165                                                    SelectionDAG &DAG) const {
9166   SDLoc dl(Op);
9167   SDNode *N = Op.getNode();
9168 
9169   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
9170          "Unknown extract_vector_elt type");
9171 
9172   SDValue Value = N->getOperand(0);
9173 
9174   // The first part of this is like the store lowering except that we don't
9175   // need to track the chain.
9176 
9177   // The values are now known to be -1 (false) or 1 (true). To convert this
9178   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9179   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9180   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9181 
9182   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9183   // understand how to form the extending load.
9184   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9185 
9186   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9187 
9188   // Now convert to an integer and store.
9189   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9190     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9191     Value);
9192 
9193   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9194   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9195   MachinePointerInfo PtrInfo =
9196       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9197   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9198   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9199 
9200   SDValue StoreChain = DAG.getEntryNode();
9201   SDValue Ops[] = {StoreChain,
9202                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9203                    Value, FIdx};
9204   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9205 
9206   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9207     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9208 
9209   // Extract the value requested.
9210   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9211   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9212   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9213 
9214   SDValue IntVal =
9215       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
9216 
9217   if (!Subtarget.useCRBits())
9218     return IntVal;
9219 
9220   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
9221 }
9222 
9223 /// Lowering for QPX v4i1 loads
9224 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
9225                                            SelectionDAG &DAG) const {
9226   SDLoc dl(Op);
9227   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
9228   SDValue LoadChain = LN->getChain();
9229   SDValue BasePtr = LN->getBasePtr();
9230 
9231   if (Op.getValueType() == MVT::v4f64 ||
9232       Op.getValueType() == MVT::v4f32) {
9233     EVT MemVT = LN->getMemoryVT();
9234     unsigned Alignment = LN->getAlignment();
9235 
9236     // If this load is properly aligned, then it is legal.
9237     if (Alignment >= MemVT.getStoreSize())
9238       return Op;
9239 
9240     EVT ScalarVT = Op.getValueType().getScalarType(),
9241         ScalarMemVT = MemVT.getScalarType();
9242     unsigned Stride = ScalarMemVT.getStoreSize();
9243 
9244     SDValue Vals[4], LoadChains[4];
9245     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9246       SDValue Load;
9247       if (ScalarVT != ScalarMemVT)
9248         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
9249                               BasePtr,
9250                               LN->getPointerInfo().getWithOffset(Idx * Stride),
9251                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9252                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
9253       else
9254         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
9255                            LN->getPointerInfo().getWithOffset(Idx * Stride),
9256                            MinAlign(Alignment, Idx * Stride),
9257                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
9258 
9259       if (Idx == 0 && LN->isIndexed()) {
9260         assert(LN->getAddressingMode() == ISD::PRE_INC &&
9261                "Unknown addressing mode on vector load");
9262         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
9263                                   LN->getAddressingMode());
9264       }
9265 
9266       Vals[Idx] = Load;
9267       LoadChains[Idx] = Load.getValue(1);
9268 
9269       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9270                             DAG.getConstant(Stride, dl,
9271                                             BasePtr.getValueType()));
9272     }
9273 
9274     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9275     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
9276 
9277     if (LN->isIndexed()) {
9278       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
9279       return DAG.getMergeValues(RetOps, dl);
9280     }
9281 
9282     SDValue RetOps[] = { Value, TF };
9283     return DAG.getMergeValues(RetOps, dl);
9284   }
9285 
9286   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
9287   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
9288 
9289   // To lower v4i1 from a byte array, we load the byte elements of the
9290   // vector and then reuse the BUILD_VECTOR logic.
9291 
9292   SDValue VectElmts[4], VectElmtChains[4];
9293   for (unsigned i = 0; i < 4; ++i) {
9294     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9295     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9296 
9297     VectElmts[i] = DAG.getExtLoad(
9298         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
9299         LN->getPointerInfo().getWithOffset(i), MVT::i8,
9300         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
9301     VectElmtChains[i] = VectElmts[i].getValue(1);
9302   }
9303 
9304   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
9305   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
9306 
9307   SDValue RVals[] = { Value, LoadChain };
9308   return DAG.getMergeValues(RVals, dl);
9309 }
9310 
9311 /// Lowering for QPX v4i1 stores
9312 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
9313                                             SelectionDAG &DAG) const {
9314   SDLoc dl(Op);
9315   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
9316   SDValue StoreChain = SN->getChain();
9317   SDValue BasePtr = SN->getBasePtr();
9318   SDValue Value = SN->getValue();
9319 
9320   if (Value.getValueType() == MVT::v4f64 ||
9321       Value.getValueType() == MVT::v4f32) {
9322     EVT MemVT = SN->getMemoryVT();
9323     unsigned Alignment = SN->getAlignment();
9324 
9325     // If this store is properly aligned, then it is legal.
9326     if (Alignment >= MemVT.getStoreSize())
9327       return Op;
9328 
9329     EVT ScalarVT = Value.getValueType().getScalarType(),
9330         ScalarMemVT = MemVT.getScalarType();
9331     unsigned Stride = ScalarMemVT.getStoreSize();
9332 
9333     SDValue Stores[4];
9334     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9335       SDValue Ex = DAG.getNode(
9336           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
9337           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
9338       SDValue Store;
9339       if (ScalarVT != ScalarMemVT)
9340         Store =
9341             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
9342                               SN->getPointerInfo().getWithOffset(Idx * Stride),
9343                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9344                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
9345       else
9346         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
9347                              SN->getPointerInfo().getWithOffset(Idx * Stride),
9348                              MinAlign(Alignment, Idx * Stride),
9349                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
9350 
9351       if (Idx == 0 && SN->isIndexed()) {
9352         assert(SN->getAddressingMode() == ISD::PRE_INC &&
9353                "Unknown addressing mode on vector store");
9354         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
9355                                     SN->getAddressingMode());
9356       }
9357 
9358       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9359                             DAG.getConstant(Stride, dl,
9360                                             BasePtr.getValueType()));
9361       Stores[Idx] = Store;
9362     }
9363 
9364     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9365 
9366     if (SN->isIndexed()) {
9367       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
9368       return DAG.getMergeValues(RetOps, dl);
9369     }
9370 
9371     return TF;
9372   }
9373 
9374   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
9375   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
9376 
9377   // The values are now known to be -1 (false) or 1 (true). To convert this
9378   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9379   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9380   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9381 
9382   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9383   // understand how to form the extending load.
9384   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9385 
9386   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9387 
9388   // Now convert to an integer and store.
9389   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9390     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9391     Value);
9392 
9393   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9394   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9395   MachinePointerInfo PtrInfo =
9396       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9397   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9398   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9399 
9400   SDValue Ops[] = {StoreChain,
9401                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9402                    Value, FIdx};
9403   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9404 
9405   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9406     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9407 
9408   // Move data into the byte array.
9409   SDValue Loads[4], LoadChains[4];
9410   for (unsigned i = 0; i < 4; ++i) {
9411     unsigned Offset = 4*i;
9412     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9413     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9414 
9415     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
9416                            PtrInfo.getWithOffset(Offset));
9417     LoadChains[i] = Loads[i].getValue(1);
9418   }
9419 
9420   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9421 
9422   SDValue Stores[4];
9423   for (unsigned i = 0; i < 4; ++i) {
9424     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9425     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9426 
9427     Stores[i] = DAG.getTruncStore(
9428         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
9429         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
9430         SN->getAAInfo());
9431   }
9432 
9433   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9434 
9435   return StoreChain;
9436 }
9437 
9438 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9439   SDLoc dl(Op);
9440   if (Op.getValueType() == MVT::v4i32) {
9441     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9442 
9443     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
9444     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
9445 
9446     SDValue RHSSwap =   // = vrlw RHS, 16
9447       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
9448 
9449     // Shrinkify inputs to v8i16.
9450     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
9451     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
9452     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
9453 
9454     // Low parts multiplied together, generating 32-bit results (we ignore the
9455     // top parts).
9456     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
9457                                         LHS, RHS, DAG, dl, MVT::v4i32);
9458 
9459     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
9460                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
9461     // Shift the high parts up 16 bits.
9462     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
9463                               Neg16, DAG, dl);
9464     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
9465   } else if (Op.getValueType() == MVT::v8i16) {
9466     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9467 
9468     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
9469 
9470     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
9471                             LHS, RHS, Zero, DAG, dl);
9472   } else if (Op.getValueType() == MVT::v16i8) {
9473     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9474     bool isLittleEndian = Subtarget.isLittleEndian();
9475 
9476     // Multiply the even 8-bit parts, producing 16-bit sums.
9477     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
9478                                            LHS, RHS, DAG, dl, MVT::v8i16);
9479     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
9480 
9481     // Multiply the odd 8-bit parts, producing 16-bit sums.
9482     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
9483                                           LHS, RHS, DAG, dl, MVT::v8i16);
9484     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
9485 
9486     // Merge the results together.  Because vmuleub and vmuloub are
9487     // instructions with a big-endian bias, we must reverse the
9488     // element numbering and reverse the meaning of "odd" and "even"
9489     // when generating little endian code.
9490     int Ops[16];
9491     for (unsigned i = 0; i != 8; ++i) {
9492       if (isLittleEndian) {
9493         Ops[i*2  ] = 2*i;
9494         Ops[i*2+1] = 2*i+16;
9495       } else {
9496         Ops[i*2  ] = 2*i+1;
9497         Ops[i*2+1] = 2*i+1+16;
9498       }
9499     }
9500     if (isLittleEndian)
9501       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
9502     else
9503       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
9504   } else {
9505     llvm_unreachable("Unknown mul to lower!");
9506   }
9507 }
9508 
9509 /// LowerOperation - Provide custom lowering hooks for some operations.
9510 ///
9511 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9512   switch (Op.getOpcode()) {
9513   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
9514   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9515   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9516   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9517   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9518   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9519   case ISD::SETCC:              return LowerSETCC(Op, DAG);
9520   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
9521   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
9522 
9523   // Variable argument lowering.
9524   case ISD::VASTART:            return LowerVASTART(Op, DAG);
9525   case ISD::VAARG:              return LowerVAARG(Op, DAG);
9526   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
9527 
9528   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
9529   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
9530   case ISD::GET_DYNAMIC_AREA_OFFSET:
9531     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
9532 
9533   // Exception handling lowering.
9534   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
9535   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
9536   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
9537 
9538   case ISD::LOAD:               return LowerLOAD(Op, DAG);
9539   case ISD::STORE:              return LowerSTORE(Op, DAG);
9540   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
9541   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
9542   case ISD::FP_TO_UINT:
9543   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
9544   case ISD::UINT_TO_FP:
9545   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
9546   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9547 
9548   // Lower 64-bit shifts.
9549   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
9550   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
9551   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
9552 
9553   // Vector-related lowering.
9554   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9555   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9556   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9557   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9558   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op, DAG);
9559   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9560   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9561   case ISD::MUL:                return LowerMUL(Op, DAG);
9562 
9563   // For counter-based loop handling.
9564   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
9565 
9566   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
9567 
9568   // Frame & Return address.
9569   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9570   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9571 
9572   case ISD::INTRINSIC_VOID:
9573     return LowerINTRINSIC_VOID(Op, DAG);
9574   case ISD::SREM:
9575   case ISD::UREM:
9576     return LowerREM(Op, DAG);
9577   case ISD::BSWAP:
9578     return LowerBSWAP(Op, DAG);
9579   case ISD::ATOMIC_CMP_SWAP:
9580     return LowerATOMIC_CMP_SWAP(Op, DAG);
9581   }
9582 }
9583 
9584 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
9585                                            SmallVectorImpl<SDValue>&Results,
9586                                            SelectionDAG &DAG) const {
9587   SDLoc dl(N);
9588   switch (N->getOpcode()) {
9589   default:
9590     llvm_unreachable("Do not know how to custom type legalize this operation!");
9591   case ISD::READCYCLECOUNTER: {
9592     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9593     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
9594 
9595     Results.push_back(RTB);
9596     Results.push_back(RTB.getValue(1));
9597     Results.push_back(RTB.getValue(2));
9598     break;
9599   }
9600   case ISD::INTRINSIC_W_CHAIN: {
9601     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
9602         Intrinsic::ppc_is_decremented_ctr_nonzero)
9603       break;
9604 
9605     assert(N->getValueType(0) == MVT::i1 &&
9606            "Unexpected result type for CTR decrement intrinsic");
9607     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
9608                                  N->getValueType(0));
9609     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
9610     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
9611                                  N->getOperand(1));
9612 
9613     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
9614     Results.push_back(NewInt.getValue(1));
9615     break;
9616   }
9617   case ISD::VAARG: {
9618     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
9619       return;
9620 
9621     EVT VT = N->getValueType(0);
9622 
9623     if (VT == MVT::i64) {
9624       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
9625 
9626       Results.push_back(NewNode);
9627       Results.push_back(NewNode.getValue(1));
9628     }
9629     return;
9630   }
9631   case ISD::FP_TO_SINT:
9632   case ISD::FP_TO_UINT:
9633     // LowerFP_TO_INT() can only handle f32 and f64.
9634     if (N->getOperand(0).getValueType() == MVT::ppcf128)
9635       return;
9636     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
9637     return;
9638   }
9639 }
9640 
9641 //===----------------------------------------------------------------------===//
9642 //  Other Lowering Code
9643 //===----------------------------------------------------------------------===//
9644 
9645 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
9646   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
9647   Function *Func = Intrinsic::getDeclaration(M, Id);
9648   return Builder.CreateCall(Func, {});
9649 }
9650 
9651 // The mappings for emitLeading/TrailingFence is taken from
9652 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
9653 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
9654                                                  Instruction *Inst,
9655                                                  AtomicOrdering Ord) const {
9656   if (Ord == AtomicOrdering::SequentiallyConsistent)
9657     return callIntrinsic(Builder, Intrinsic::ppc_sync);
9658   if (isReleaseOrStronger(Ord))
9659     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9660   return nullptr;
9661 }
9662 
9663 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
9664                                                   Instruction *Inst,
9665                                                   AtomicOrdering Ord) const {
9666   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
9667     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
9668     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
9669     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
9670     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
9671       return Builder.CreateCall(
9672           Intrinsic::getDeclaration(
9673               Builder.GetInsertBlock()->getParent()->getParent(),
9674               Intrinsic::ppc_cfence, {Inst->getType()}),
9675           {Inst});
9676     // FIXME: Can use isync for rmw operation.
9677     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9678   }
9679   return nullptr;
9680 }
9681 
9682 MachineBasicBlock *
9683 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
9684                                     unsigned AtomicSize,
9685                                     unsigned BinOpcode,
9686                                     unsigned CmpOpcode,
9687                                     unsigned CmpPred) const {
9688   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9689   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9690 
9691   auto LoadMnemonic = PPC::LDARX;
9692   auto StoreMnemonic = PPC::STDCX;
9693   switch (AtomicSize) {
9694   default:
9695     llvm_unreachable("Unexpected size of atomic entity");
9696   case 1:
9697     LoadMnemonic = PPC::LBARX;
9698     StoreMnemonic = PPC::STBCX;
9699     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9700     break;
9701   case 2:
9702     LoadMnemonic = PPC::LHARX;
9703     StoreMnemonic = PPC::STHCX;
9704     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9705     break;
9706   case 4:
9707     LoadMnemonic = PPC::LWARX;
9708     StoreMnemonic = PPC::STWCX;
9709     break;
9710   case 8:
9711     LoadMnemonic = PPC::LDARX;
9712     StoreMnemonic = PPC::STDCX;
9713     break;
9714   }
9715 
9716   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9717   MachineFunction *F = BB->getParent();
9718   MachineFunction::iterator It = ++BB->getIterator();
9719 
9720   unsigned dest = MI.getOperand(0).getReg();
9721   unsigned ptrA = MI.getOperand(1).getReg();
9722   unsigned ptrB = MI.getOperand(2).getReg();
9723   unsigned incr = MI.getOperand(3).getReg();
9724   DebugLoc dl = MI.getDebugLoc();
9725 
9726   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9727   MachineBasicBlock *loop2MBB =
9728     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9729   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9730   F->insert(It, loopMBB);
9731   if (CmpOpcode)
9732     F->insert(It, loop2MBB);
9733   F->insert(It, exitMBB);
9734   exitMBB->splice(exitMBB->begin(), BB,
9735                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9736   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9737 
9738   MachineRegisterInfo &RegInfo = F->getRegInfo();
9739   unsigned TmpReg = (!BinOpcode) ? incr :
9740     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
9741                                            : &PPC::GPRCRegClass);
9742 
9743   //  thisMBB:
9744   //   ...
9745   //   fallthrough --> loopMBB
9746   BB->addSuccessor(loopMBB);
9747 
9748   //  loopMBB:
9749   //   l[wd]arx dest, ptr
9750   //   add r0, dest, incr
9751   //   st[wd]cx. r0, ptr
9752   //   bne- loopMBB
9753   //   fallthrough --> exitMBB
9754 
9755   // For max/min...
9756   //  loopMBB:
9757   //   l[wd]arx dest, ptr
9758   //   cmpl?[wd] incr, dest
9759   //   bgt exitMBB
9760   //  loop2MBB:
9761   //   st[wd]cx. dest, ptr
9762   //   bne- loopMBB
9763   //   fallthrough --> exitMBB
9764 
9765   BB = loopMBB;
9766   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
9767     .addReg(ptrA).addReg(ptrB);
9768   if (BinOpcode)
9769     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
9770   if (CmpOpcode) {
9771     // Signed comparisons of byte or halfword values must be sign-extended.
9772     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
9773       unsigned ExtReg =  RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
9774       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
9775               ExtReg).addReg(dest);
9776       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9777         .addReg(incr).addReg(ExtReg);
9778     } else
9779       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9780         .addReg(incr).addReg(dest);
9781 
9782     BuildMI(BB, dl, TII->get(PPC::BCC))
9783       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
9784     BB->addSuccessor(loop2MBB);
9785     BB->addSuccessor(exitMBB);
9786     BB = loop2MBB;
9787   }
9788   BuildMI(BB, dl, TII->get(StoreMnemonic))
9789     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
9790   BuildMI(BB, dl, TII->get(PPC::BCC))
9791     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
9792   BB->addSuccessor(loopMBB);
9793   BB->addSuccessor(exitMBB);
9794 
9795   //  exitMBB:
9796   //   ...
9797   BB = exitMBB;
9798   return BB;
9799 }
9800 
9801 MachineBasicBlock *
9802 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr &MI,
9803                                             MachineBasicBlock *BB,
9804                                             bool is8bit, // operation
9805                                             unsigned BinOpcode,
9806                                             unsigned CmpOpcode,
9807                                             unsigned CmpPred) const {
9808   // If we support part-word atomic mnemonics, just use them
9809   if (Subtarget.hasPartwordAtomics())
9810     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode,
9811                             CmpOpcode, CmpPred);
9812 
9813   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9814   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9815   // In 64 bit mode we have to use 64 bits for addresses, even though the
9816   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
9817   // registers without caring whether they're 32 or 64, but here we're
9818   // doing actual arithmetic on the addresses.
9819   bool is64bit = Subtarget.isPPC64();
9820   bool isLittleEndian = Subtarget.isLittleEndian();
9821   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
9822 
9823   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9824   MachineFunction *F = BB->getParent();
9825   MachineFunction::iterator It = ++BB->getIterator();
9826 
9827   unsigned dest = MI.getOperand(0).getReg();
9828   unsigned ptrA = MI.getOperand(1).getReg();
9829   unsigned ptrB = MI.getOperand(2).getReg();
9830   unsigned incr = MI.getOperand(3).getReg();
9831   DebugLoc dl = MI.getDebugLoc();
9832 
9833   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9834   MachineBasicBlock *loop2MBB =
9835     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9836   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9837   F->insert(It, loopMBB);
9838   if (CmpOpcode)
9839     F->insert(It, loop2MBB);
9840   F->insert(It, exitMBB);
9841   exitMBB->splice(exitMBB->begin(), BB,
9842                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9843   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9844 
9845   MachineRegisterInfo &RegInfo = F->getRegInfo();
9846   const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
9847                                           : &PPC::GPRCRegClass;
9848   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
9849   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
9850   unsigned ShiftReg =
9851     isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC);
9852   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
9853   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
9854   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
9855   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
9856   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
9857   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
9858   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
9859   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
9860   unsigned Ptr1Reg;
9861   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
9862 
9863   //  thisMBB:
9864   //   ...
9865   //   fallthrough --> loopMBB
9866   BB->addSuccessor(loopMBB);
9867 
9868   // The 4-byte load must be aligned, while a char or short may be
9869   // anywhere in the word.  Hence all this nasty bookkeeping code.
9870   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
9871   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
9872   //   xori shift, shift1, 24 [16]
9873   //   rlwinm ptr, ptr1, 0, 0, 29
9874   //   slw incr2, incr, shift
9875   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
9876   //   slw mask, mask2, shift
9877   //  loopMBB:
9878   //   lwarx tmpDest, ptr
9879   //   add tmp, tmpDest, incr2
9880   //   andc tmp2, tmpDest, mask
9881   //   and tmp3, tmp, mask
9882   //   or tmp4, tmp3, tmp2
9883   //   stwcx. tmp4, ptr
9884   //   bne- loopMBB
9885   //   fallthrough --> exitMBB
9886   //   srw dest, tmpDest, shift
9887   if (ptrA != ZeroReg) {
9888     Ptr1Reg = RegInfo.createVirtualRegister(RC);
9889     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
9890       .addReg(ptrA).addReg(ptrB);
9891   } else {
9892     Ptr1Reg = ptrB;
9893   }
9894   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
9895       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
9896   if (!isLittleEndian)
9897     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
9898         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
9899   if (is64bit)
9900     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
9901       .addReg(Ptr1Reg).addImm(0).addImm(61);
9902   else
9903     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
9904       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
9905   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
9906       .addReg(incr).addReg(ShiftReg);
9907   if (is8bit)
9908     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
9909   else {
9910     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
9911     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
9912   }
9913   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
9914       .addReg(Mask2Reg).addReg(ShiftReg);
9915 
9916   BB = loopMBB;
9917   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
9918     .addReg(ZeroReg).addReg(PtrReg);
9919   if (BinOpcode)
9920     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
9921       .addReg(Incr2Reg).addReg(TmpDestReg);
9922   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
9923     .addReg(TmpDestReg).addReg(MaskReg);
9924   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
9925     .addReg(TmpReg).addReg(MaskReg);
9926   if (CmpOpcode) {
9927     // For unsigned comparisons, we can directly compare the shifted values.
9928     // For signed comparisons we shift and sign extend.
9929     unsigned SReg = RegInfo.createVirtualRegister(RC);
9930     BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), SReg)
9931       .addReg(TmpDestReg).addReg(MaskReg);
9932     unsigned ValueReg = SReg;
9933     unsigned CmpReg = Incr2Reg;
9934     if (CmpOpcode == PPC::CMPW) {
9935       ValueReg = RegInfo.createVirtualRegister(RC);
9936       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
9937         .addReg(SReg).addReg(ShiftReg);
9938       unsigned ValueSReg = RegInfo.createVirtualRegister(RC);
9939       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
9940         .addReg(ValueReg);
9941       ValueReg = ValueSReg;
9942       CmpReg = incr;
9943     }
9944     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9945       .addReg(CmpReg).addReg(ValueReg);
9946     BuildMI(BB, dl, TII->get(PPC::BCC))
9947       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
9948     BB->addSuccessor(loop2MBB);
9949     BB->addSuccessor(exitMBB);
9950     BB = loop2MBB;
9951   }
9952   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
9953     .addReg(Tmp3Reg).addReg(Tmp2Reg);
9954   BuildMI(BB, dl, TII->get(PPC::STWCX))
9955     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
9956   BuildMI(BB, dl, TII->get(PPC::BCC))
9957     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
9958   BB->addSuccessor(loopMBB);
9959   BB->addSuccessor(exitMBB);
9960 
9961   //  exitMBB:
9962   //   ...
9963   BB = exitMBB;
9964   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
9965     .addReg(ShiftReg);
9966   return BB;
9967 }
9968 
9969 llvm::MachineBasicBlock *
9970 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
9971                                     MachineBasicBlock *MBB) const {
9972   DebugLoc DL = MI.getDebugLoc();
9973   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9974   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
9975 
9976   MachineFunction *MF = MBB->getParent();
9977   MachineRegisterInfo &MRI = MF->getRegInfo();
9978 
9979   const BasicBlock *BB = MBB->getBasicBlock();
9980   MachineFunction::iterator I = ++MBB->getIterator();
9981 
9982   // Memory Reference
9983   MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
9984   MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
9985 
9986   unsigned DstReg = MI.getOperand(0).getReg();
9987   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
9988   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
9989   unsigned mainDstReg = MRI.createVirtualRegister(RC);
9990   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
9991 
9992   MVT PVT = getPointerTy(MF->getDataLayout());
9993   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
9994          "Invalid Pointer Size!");
9995   // For v = setjmp(buf), we generate
9996   //
9997   // thisMBB:
9998   //  SjLjSetup mainMBB
9999   //  bl mainMBB
10000   //  v_restore = 1
10001   //  b sinkMBB
10002   //
10003   // mainMBB:
10004   //  buf[LabelOffset] = LR
10005   //  v_main = 0
10006   //
10007   // sinkMBB:
10008   //  v = phi(main, restore)
10009   //
10010 
10011   MachineBasicBlock *thisMBB = MBB;
10012   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
10013   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
10014   MF->insert(I, mainMBB);
10015   MF->insert(I, sinkMBB);
10016 
10017   MachineInstrBuilder MIB;
10018 
10019   // Transfer the remainder of BB and its successor edges to sinkMBB.
10020   sinkMBB->splice(sinkMBB->begin(), MBB,
10021                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
10022   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
10023 
10024   // Note that the structure of the jmp_buf used here is not compatible
10025   // with that used by libc, and is not designed to be. Specifically, it
10026   // stores only those 'reserved' registers that LLVM does not otherwise
10027   // understand how to spill. Also, by convention, by the time this
10028   // intrinsic is called, Clang has already stored the frame address in the
10029   // first slot of the buffer and stack address in the third. Following the
10030   // X86 target code, we'll store the jump address in the second slot. We also
10031   // need to save the TOC pointer (R2) to handle jumps between shared
10032   // libraries, and that will be stored in the fourth slot. The thread
10033   // identifier (R13) is not affected.
10034 
10035   // thisMBB:
10036   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10037   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10038   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10039 
10040   // Prepare IP either in reg.
10041   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
10042   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
10043   unsigned BufReg = MI.getOperand(1).getReg();
10044 
10045   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
10046     setUsesTOCBasePtr(*MBB->getParent());
10047     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
10048             .addReg(PPC::X2)
10049             .addImm(TOCOffset)
10050             .addReg(BufReg);
10051     MIB.setMemRefs(MMOBegin, MMOEnd);
10052   }
10053 
10054   // Naked functions never have a base pointer, and so we use r1. For all
10055   // other functions, this decision must be delayed until during PEI.
10056   unsigned BaseReg;
10057   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
10058     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
10059   else
10060     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
10061 
10062   MIB = BuildMI(*thisMBB, MI, DL,
10063                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
10064             .addReg(BaseReg)
10065             .addImm(BPOffset)
10066             .addReg(BufReg);
10067   MIB.setMemRefs(MMOBegin, MMOEnd);
10068 
10069   // Setup
10070   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
10071   MIB.addRegMask(TRI->getNoPreservedMask());
10072 
10073   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
10074 
10075   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
10076           .addMBB(mainMBB);
10077   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
10078 
10079   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
10080   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
10081 
10082   // mainMBB:
10083   //  mainDstReg = 0
10084   MIB =
10085       BuildMI(mainMBB, DL,
10086               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
10087 
10088   // Store IP
10089   if (Subtarget.isPPC64()) {
10090     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
10091             .addReg(LabelReg)
10092             .addImm(LabelOffset)
10093             .addReg(BufReg);
10094   } else {
10095     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
10096             .addReg(LabelReg)
10097             .addImm(LabelOffset)
10098             .addReg(BufReg);
10099   }
10100 
10101   MIB.setMemRefs(MMOBegin, MMOEnd);
10102 
10103   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
10104   mainMBB->addSuccessor(sinkMBB);
10105 
10106   // sinkMBB:
10107   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
10108           TII->get(PPC::PHI), DstReg)
10109     .addReg(mainDstReg).addMBB(mainMBB)
10110     .addReg(restoreDstReg).addMBB(thisMBB);
10111 
10112   MI.eraseFromParent();
10113   return sinkMBB;
10114 }
10115 
10116 MachineBasicBlock *
10117 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
10118                                      MachineBasicBlock *MBB) const {
10119   DebugLoc DL = MI.getDebugLoc();
10120   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10121 
10122   MachineFunction *MF = MBB->getParent();
10123   MachineRegisterInfo &MRI = MF->getRegInfo();
10124 
10125   // Memory Reference
10126   MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
10127   MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
10128 
10129   MVT PVT = getPointerTy(MF->getDataLayout());
10130   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10131          "Invalid Pointer Size!");
10132 
10133   const TargetRegisterClass *RC =
10134     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10135   unsigned Tmp = MRI.createVirtualRegister(RC);
10136   // Since FP is only updated here but NOT referenced, it's treated as GPR.
10137   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
10138   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
10139   unsigned BP =
10140       (PVT == MVT::i64)
10141           ? PPC::X30
10142           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
10143                                                               : PPC::R30);
10144 
10145   MachineInstrBuilder MIB;
10146 
10147   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10148   const int64_t SPOffset    = 2 * PVT.getStoreSize();
10149   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10150   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10151 
10152   unsigned BufReg = MI.getOperand(0).getReg();
10153 
10154   // Reload FP (the jumped-to function may not have had a
10155   // frame pointer, and if so, then its r31 will be restored
10156   // as necessary).
10157   if (PVT == MVT::i64) {
10158     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
10159             .addImm(0)
10160             .addReg(BufReg);
10161   } else {
10162     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
10163             .addImm(0)
10164             .addReg(BufReg);
10165   }
10166   MIB.setMemRefs(MMOBegin, MMOEnd);
10167 
10168   // Reload IP
10169   if (PVT == MVT::i64) {
10170     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
10171             .addImm(LabelOffset)
10172             .addReg(BufReg);
10173   } else {
10174     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
10175             .addImm(LabelOffset)
10176             .addReg(BufReg);
10177   }
10178   MIB.setMemRefs(MMOBegin, MMOEnd);
10179 
10180   // Reload SP
10181   if (PVT == MVT::i64) {
10182     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
10183             .addImm(SPOffset)
10184             .addReg(BufReg);
10185   } else {
10186     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
10187             .addImm(SPOffset)
10188             .addReg(BufReg);
10189   }
10190   MIB.setMemRefs(MMOBegin, MMOEnd);
10191 
10192   // Reload BP
10193   if (PVT == MVT::i64) {
10194     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
10195             .addImm(BPOffset)
10196             .addReg(BufReg);
10197   } else {
10198     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
10199             .addImm(BPOffset)
10200             .addReg(BufReg);
10201   }
10202   MIB.setMemRefs(MMOBegin, MMOEnd);
10203 
10204   // Reload TOC
10205   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
10206     setUsesTOCBasePtr(*MBB->getParent());
10207     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
10208             .addImm(TOCOffset)
10209             .addReg(BufReg);
10210 
10211     MIB.setMemRefs(MMOBegin, MMOEnd);
10212   }
10213 
10214   // Jump
10215   BuildMI(*MBB, MI, DL,
10216           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
10217   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
10218 
10219   MI.eraseFromParent();
10220   return MBB;
10221 }
10222 
10223 MachineBasicBlock *
10224 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
10225                                                MachineBasicBlock *BB) const {
10226   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
10227       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10228     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
10229         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10230       // Call lowering should have added an r2 operand to indicate a dependence
10231       // on the TOC base pointer value. It can't however, because there is no
10232       // way to mark the dependence as implicit there, and so the stackmap code
10233       // will confuse it with a regular operand. Instead, add the dependence
10234       // here.
10235       setUsesTOCBasePtr(*BB->getParent());
10236       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
10237     }
10238 
10239     return emitPatchPoint(MI, BB);
10240   }
10241 
10242   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
10243       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
10244     return emitEHSjLjSetJmp(MI, BB);
10245   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
10246              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
10247     return emitEHSjLjLongJmp(MI, BB);
10248   }
10249 
10250   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10251 
10252   // To "insert" these instructions we actually have to insert their
10253   // control-flow patterns.
10254   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10255   MachineFunction::iterator It = ++BB->getIterator();
10256 
10257   MachineFunction *F = BB->getParent();
10258 
10259   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10260        MI.getOpcode() == PPC::SELECT_CC_I8 ||
10261        MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8) {
10262     SmallVector<MachineOperand, 2> Cond;
10263     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10264         MI.getOpcode() == PPC::SELECT_CC_I8)
10265       Cond.push_back(MI.getOperand(4));
10266     else
10267       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
10268     Cond.push_back(MI.getOperand(1));
10269 
10270     DebugLoc dl = MI.getDebugLoc();
10271     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
10272                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
10273   } else if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10274              MI.getOpcode() == PPC::SELECT_CC_I8 ||
10275              MI.getOpcode() == PPC::SELECT_CC_F4 ||
10276              MI.getOpcode() == PPC::SELECT_CC_F8 ||
10277              MI.getOpcode() == PPC::SELECT_CC_F16 ||
10278              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
10279              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
10280              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
10281              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
10282              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
10283              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
10284              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
10285              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
10286              MI.getOpcode() == PPC::SELECT_CC_SPE ||
10287              MI.getOpcode() == PPC::SELECT_I4 ||
10288              MI.getOpcode() == PPC::SELECT_I8 ||
10289              MI.getOpcode() == PPC::SELECT_F4 ||
10290              MI.getOpcode() == PPC::SELECT_F8 ||
10291              MI.getOpcode() == PPC::SELECT_F16 ||
10292              MI.getOpcode() == PPC::SELECT_QFRC ||
10293              MI.getOpcode() == PPC::SELECT_QSRC ||
10294              MI.getOpcode() == PPC::SELECT_QBRC ||
10295              MI.getOpcode() == PPC::SELECT_SPE ||
10296              MI.getOpcode() == PPC::SELECT_SPE4 ||
10297              MI.getOpcode() == PPC::SELECT_VRRC ||
10298              MI.getOpcode() == PPC::SELECT_VSFRC ||
10299              MI.getOpcode() == PPC::SELECT_VSSRC ||
10300              MI.getOpcode() == PPC::SELECT_VSRC) {
10301     // The incoming instruction knows the destination vreg to set, the
10302     // condition code register to branch on, the true/false values to
10303     // select between, and a branch opcode to use.
10304 
10305     //  thisMBB:
10306     //  ...
10307     //   TrueVal = ...
10308     //   cmpTY ccX, r1, r2
10309     //   bCC copy1MBB
10310     //   fallthrough --> copy0MBB
10311     MachineBasicBlock *thisMBB = BB;
10312     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10313     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10314     DebugLoc dl = MI.getDebugLoc();
10315     F->insert(It, copy0MBB);
10316     F->insert(It, sinkMBB);
10317 
10318     // Transfer the remainder of BB and its successor edges to sinkMBB.
10319     sinkMBB->splice(sinkMBB->begin(), BB,
10320                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10321     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10322 
10323     // Next, add the true and fallthrough blocks as its successors.
10324     BB->addSuccessor(copy0MBB);
10325     BB->addSuccessor(sinkMBB);
10326 
10327     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
10328         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
10329         MI.getOpcode() == PPC::SELECT_F16 ||
10330         MI.getOpcode() == PPC::SELECT_SPE4 ||
10331         MI.getOpcode() == PPC::SELECT_SPE ||
10332         MI.getOpcode() == PPC::SELECT_QFRC ||
10333         MI.getOpcode() == PPC::SELECT_QSRC ||
10334         MI.getOpcode() == PPC::SELECT_QBRC ||
10335         MI.getOpcode() == PPC::SELECT_VRRC ||
10336         MI.getOpcode() == PPC::SELECT_VSFRC ||
10337         MI.getOpcode() == PPC::SELECT_VSSRC ||
10338         MI.getOpcode() == PPC::SELECT_VSRC) {
10339       BuildMI(BB, dl, TII->get(PPC::BC))
10340           .addReg(MI.getOperand(1).getReg())
10341           .addMBB(sinkMBB);
10342     } else {
10343       unsigned SelectPred = MI.getOperand(4).getImm();
10344       BuildMI(BB, dl, TII->get(PPC::BCC))
10345           .addImm(SelectPred)
10346           .addReg(MI.getOperand(1).getReg())
10347           .addMBB(sinkMBB);
10348     }
10349 
10350     //  copy0MBB:
10351     //   %FalseValue = ...
10352     //   # fallthrough to sinkMBB
10353     BB = copy0MBB;
10354 
10355     // Update machine-CFG edges
10356     BB->addSuccessor(sinkMBB);
10357 
10358     //  sinkMBB:
10359     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10360     //  ...
10361     BB = sinkMBB;
10362     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
10363         .addReg(MI.getOperand(3).getReg())
10364         .addMBB(copy0MBB)
10365         .addReg(MI.getOperand(2).getReg())
10366         .addMBB(thisMBB);
10367   } else if (MI.getOpcode() == PPC::ReadTB) {
10368     // To read the 64-bit time-base register on a 32-bit target, we read the
10369     // two halves. Should the counter have wrapped while it was being read, we
10370     // need to try again.
10371     // ...
10372     // readLoop:
10373     // mfspr Rx,TBU # load from TBU
10374     // mfspr Ry,TB  # load from TB
10375     // mfspr Rz,TBU # load from TBU
10376     // cmpw crX,Rx,Rz # check if 'old'='new'
10377     // bne readLoop   # branch if they're not equal
10378     // ...
10379 
10380     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
10381     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10382     DebugLoc dl = MI.getDebugLoc();
10383     F->insert(It, readMBB);
10384     F->insert(It, sinkMBB);
10385 
10386     // Transfer the remainder of BB and its successor edges to sinkMBB.
10387     sinkMBB->splice(sinkMBB->begin(), BB,
10388                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10389     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10390 
10391     BB->addSuccessor(readMBB);
10392     BB = readMBB;
10393 
10394     MachineRegisterInfo &RegInfo = F->getRegInfo();
10395     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10396     unsigned LoReg = MI.getOperand(0).getReg();
10397     unsigned HiReg = MI.getOperand(1).getReg();
10398 
10399     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
10400     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
10401     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
10402 
10403     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10404 
10405     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
10406       .addReg(HiReg).addReg(ReadAgainReg);
10407     BuildMI(BB, dl, TII->get(PPC::BCC))
10408       .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
10409 
10410     BB->addSuccessor(readMBB);
10411     BB->addSuccessor(sinkMBB);
10412   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
10413     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
10414   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
10415     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
10416   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
10417     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
10418   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
10419     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
10420 
10421   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
10422     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
10423   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
10424     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
10425   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
10426     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
10427   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
10428     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
10429 
10430   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
10431     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
10432   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
10433     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
10434   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
10435     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
10436   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
10437     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
10438 
10439   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
10440     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
10441   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
10442     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
10443   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
10444     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
10445   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
10446     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
10447 
10448   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
10449     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
10450   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
10451     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
10452   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
10453     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
10454   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
10455     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
10456 
10457   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
10458     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
10459   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
10460     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
10461   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
10462     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
10463   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
10464     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
10465 
10466   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
10467     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
10468   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
10469     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
10470   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
10471     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
10472   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
10473     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
10474 
10475   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
10476     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
10477   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
10478     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
10479   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
10480     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
10481   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
10482     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
10483 
10484   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
10485     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
10486   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
10487     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
10488   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
10489     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
10490   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
10491     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
10492 
10493   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
10494     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
10495   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
10496     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
10497   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
10498     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
10499   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
10500     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
10501 
10502   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
10503     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
10504   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
10505     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
10506   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
10507     BB = EmitAtomicBinary(MI, BB, 4, 0);
10508   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
10509     BB = EmitAtomicBinary(MI, BB, 8, 0);
10510   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
10511            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
10512            (Subtarget.hasPartwordAtomics() &&
10513             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
10514            (Subtarget.hasPartwordAtomics() &&
10515             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
10516     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
10517 
10518     auto LoadMnemonic = PPC::LDARX;
10519     auto StoreMnemonic = PPC::STDCX;
10520     switch (MI.getOpcode()) {
10521     default:
10522       llvm_unreachable("Compare and swap of unknown size");
10523     case PPC::ATOMIC_CMP_SWAP_I8:
10524       LoadMnemonic = PPC::LBARX;
10525       StoreMnemonic = PPC::STBCX;
10526       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10527       break;
10528     case PPC::ATOMIC_CMP_SWAP_I16:
10529       LoadMnemonic = PPC::LHARX;
10530       StoreMnemonic = PPC::STHCX;
10531       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10532       break;
10533     case PPC::ATOMIC_CMP_SWAP_I32:
10534       LoadMnemonic = PPC::LWARX;
10535       StoreMnemonic = PPC::STWCX;
10536       break;
10537     case PPC::ATOMIC_CMP_SWAP_I64:
10538       LoadMnemonic = PPC::LDARX;
10539       StoreMnemonic = PPC::STDCX;
10540       break;
10541     }
10542     unsigned dest = MI.getOperand(0).getReg();
10543     unsigned ptrA = MI.getOperand(1).getReg();
10544     unsigned ptrB = MI.getOperand(2).getReg();
10545     unsigned oldval = MI.getOperand(3).getReg();
10546     unsigned newval = MI.getOperand(4).getReg();
10547     DebugLoc dl = MI.getDebugLoc();
10548 
10549     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10550     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10551     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10552     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10553     F->insert(It, loop1MBB);
10554     F->insert(It, loop2MBB);
10555     F->insert(It, midMBB);
10556     F->insert(It, exitMBB);
10557     exitMBB->splice(exitMBB->begin(), BB,
10558                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10559     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10560 
10561     //  thisMBB:
10562     //   ...
10563     //   fallthrough --> loopMBB
10564     BB->addSuccessor(loop1MBB);
10565 
10566     // loop1MBB:
10567     //   l[bhwd]arx dest, ptr
10568     //   cmp[wd] dest, oldval
10569     //   bne- midMBB
10570     // loop2MBB:
10571     //   st[bhwd]cx. newval, ptr
10572     //   bne- loopMBB
10573     //   b exitBB
10574     // midMBB:
10575     //   st[bhwd]cx. dest, ptr
10576     // exitBB:
10577     BB = loop1MBB;
10578     BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10579       .addReg(ptrA).addReg(ptrB);
10580     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
10581       .addReg(oldval).addReg(dest);
10582     BuildMI(BB, dl, TII->get(PPC::BCC))
10583       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
10584     BB->addSuccessor(loop2MBB);
10585     BB->addSuccessor(midMBB);
10586 
10587     BB = loop2MBB;
10588     BuildMI(BB, dl, TII->get(StoreMnemonic))
10589       .addReg(newval).addReg(ptrA).addReg(ptrB);
10590     BuildMI(BB, dl, TII->get(PPC::BCC))
10591       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
10592     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10593     BB->addSuccessor(loop1MBB);
10594     BB->addSuccessor(exitMBB);
10595 
10596     BB = midMBB;
10597     BuildMI(BB, dl, TII->get(StoreMnemonic))
10598       .addReg(dest).addReg(ptrA).addReg(ptrB);
10599     BB->addSuccessor(exitMBB);
10600 
10601     //  exitMBB:
10602     //   ...
10603     BB = exitMBB;
10604   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
10605              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
10606     // We must use 64-bit registers for addresses when targeting 64-bit,
10607     // since we're actually doing arithmetic on them.  Other registers
10608     // can be 32-bit.
10609     bool is64bit = Subtarget.isPPC64();
10610     bool isLittleEndian = Subtarget.isLittleEndian();
10611     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
10612 
10613     unsigned dest = MI.getOperand(0).getReg();
10614     unsigned ptrA = MI.getOperand(1).getReg();
10615     unsigned ptrB = MI.getOperand(2).getReg();
10616     unsigned oldval = MI.getOperand(3).getReg();
10617     unsigned newval = MI.getOperand(4).getReg();
10618     DebugLoc dl = MI.getDebugLoc();
10619 
10620     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10621     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10622     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10623     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10624     F->insert(It, loop1MBB);
10625     F->insert(It, loop2MBB);
10626     F->insert(It, midMBB);
10627     F->insert(It, exitMBB);
10628     exitMBB->splice(exitMBB->begin(), BB,
10629                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10630     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10631 
10632     MachineRegisterInfo &RegInfo = F->getRegInfo();
10633     const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
10634                                             : &PPC::GPRCRegClass;
10635     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
10636     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
10637     unsigned ShiftReg =
10638       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC);
10639     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
10640     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
10641     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
10642     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
10643     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
10644     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
10645     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
10646     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
10647     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
10648     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
10649     unsigned Ptr1Reg;
10650     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
10651     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10652     //  thisMBB:
10653     //   ...
10654     //   fallthrough --> loopMBB
10655     BB->addSuccessor(loop1MBB);
10656 
10657     // The 4-byte load must be aligned, while a char or short may be
10658     // anywhere in the word.  Hence all this nasty bookkeeping code.
10659     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10660     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10661     //   xori shift, shift1, 24 [16]
10662     //   rlwinm ptr, ptr1, 0, 0, 29
10663     //   slw newval2, newval, shift
10664     //   slw oldval2, oldval,shift
10665     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10666     //   slw mask, mask2, shift
10667     //   and newval3, newval2, mask
10668     //   and oldval3, oldval2, mask
10669     // loop1MBB:
10670     //   lwarx tmpDest, ptr
10671     //   and tmp, tmpDest, mask
10672     //   cmpw tmp, oldval3
10673     //   bne- midMBB
10674     // loop2MBB:
10675     //   andc tmp2, tmpDest, mask
10676     //   or tmp4, tmp2, newval3
10677     //   stwcx. tmp4, ptr
10678     //   bne- loop1MBB
10679     //   b exitBB
10680     // midMBB:
10681     //   stwcx. tmpDest, ptr
10682     // exitBB:
10683     //   srw dest, tmpDest, shift
10684     if (ptrA != ZeroReg) {
10685       Ptr1Reg = RegInfo.createVirtualRegister(RC);
10686       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10687         .addReg(ptrA).addReg(ptrB);
10688     } else {
10689       Ptr1Reg = ptrB;
10690     }
10691     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
10692         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
10693     if (!isLittleEndian)
10694       BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
10695           .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
10696     if (is64bit)
10697       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10698         .addReg(Ptr1Reg).addImm(0).addImm(61);
10699     else
10700       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10701         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
10702     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
10703         .addReg(newval).addReg(ShiftReg);
10704     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
10705         .addReg(oldval).addReg(ShiftReg);
10706     if (is8bit)
10707       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10708     else {
10709       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10710       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10711         .addReg(Mask3Reg).addImm(65535);
10712     }
10713     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10714         .addReg(Mask2Reg).addReg(ShiftReg);
10715     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
10716         .addReg(NewVal2Reg).addReg(MaskReg);
10717     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
10718         .addReg(OldVal2Reg).addReg(MaskReg);
10719 
10720     BB = loop1MBB;
10721     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10722         .addReg(ZeroReg).addReg(PtrReg);
10723     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
10724         .addReg(TmpDestReg).addReg(MaskReg);
10725     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
10726         .addReg(TmpReg).addReg(OldVal3Reg);
10727     BuildMI(BB, dl, TII->get(PPC::BCC))
10728         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
10729     BB->addSuccessor(loop2MBB);
10730     BB->addSuccessor(midMBB);
10731 
10732     BB = loop2MBB;
10733     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
10734         .addReg(TmpDestReg).addReg(MaskReg);
10735     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
10736         .addReg(Tmp2Reg).addReg(NewVal3Reg);
10737     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
10738         .addReg(ZeroReg).addReg(PtrReg);
10739     BuildMI(BB, dl, TII->get(PPC::BCC))
10740       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
10741     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10742     BB->addSuccessor(loop1MBB);
10743     BB->addSuccessor(exitMBB);
10744 
10745     BB = midMBB;
10746     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
10747       .addReg(ZeroReg).addReg(PtrReg);
10748     BB->addSuccessor(exitMBB);
10749 
10750     //  exitMBB:
10751     //   ...
10752     BB = exitMBB;
10753     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
10754       .addReg(ShiftReg);
10755   } else if (MI.getOpcode() == PPC::FADDrtz) {
10756     // This pseudo performs an FADD with rounding mode temporarily forced
10757     // to round-to-zero.  We emit this via custom inserter since the FPSCR
10758     // is not modeled at the SelectionDAG level.
10759     unsigned Dest = MI.getOperand(0).getReg();
10760     unsigned Src1 = MI.getOperand(1).getReg();
10761     unsigned Src2 = MI.getOperand(2).getReg();
10762     DebugLoc dl = MI.getDebugLoc();
10763 
10764     MachineRegisterInfo &RegInfo = F->getRegInfo();
10765     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
10766 
10767     // Save FPSCR value.
10768     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
10769 
10770     // Set rounding mode to round-to-zero.
10771     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
10772     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
10773 
10774     // Perform addition.
10775     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
10776 
10777     // Restore FPSCR value.
10778     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
10779   } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10780              MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
10781              MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10782              MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
10783     unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10784                        MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
10785                           ? PPC::ANDIo8
10786                           : PPC::ANDIo;
10787     bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10788                  MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
10789 
10790     MachineRegisterInfo &RegInfo = F->getRegInfo();
10791     unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
10792                                                   &PPC::GPRCRegClass :
10793                                                   &PPC::G8RCRegClass);
10794 
10795     DebugLoc dl = MI.getDebugLoc();
10796     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
10797         .addReg(MI.getOperand(1).getReg())
10798         .addImm(1);
10799     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
10800             MI.getOperand(0).getReg())
10801         .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
10802   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
10803     DebugLoc Dl = MI.getDebugLoc();
10804     MachineRegisterInfo &RegInfo = F->getRegInfo();
10805     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10806     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
10807     return BB;
10808   } else {
10809     llvm_unreachable("Unexpected instr type to insert");
10810   }
10811 
10812   MI.eraseFromParent(); // The pseudo instruction is gone now.
10813   return BB;
10814 }
10815 
10816 //===----------------------------------------------------------------------===//
10817 // Target Optimization Hooks
10818 //===----------------------------------------------------------------------===//
10819 
10820 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
10821   // For the estimates, convergence is quadratic, so we essentially double the
10822   // number of digits correct after every iteration. For both FRE and FRSQRTE,
10823   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
10824   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
10825   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
10826   if (VT.getScalarType() == MVT::f64)
10827     RefinementSteps++;
10828   return RefinementSteps;
10829 }
10830 
10831 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
10832                                            int Enabled, int &RefinementSteps,
10833                                            bool &UseOneConstNR,
10834                                            bool Reciprocal) const {
10835   EVT VT = Operand.getValueType();
10836   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
10837       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
10838       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
10839       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
10840       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
10841       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
10842     if (RefinementSteps == ReciprocalEstimate::Unspecified)
10843       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
10844 
10845     UseOneConstNR = true;
10846     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
10847   }
10848   return SDValue();
10849 }
10850 
10851 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
10852                                             int Enabled,
10853                                             int &RefinementSteps) const {
10854   EVT VT = Operand.getValueType();
10855   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
10856       (VT == MVT::f64 && Subtarget.hasFRE()) ||
10857       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
10858       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
10859       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
10860       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
10861     if (RefinementSteps == ReciprocalEstimate::Unspecified)
10862       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
10863     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
10864   }
10865   return SDValue();
10866 }
10867 
10868 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
10869   // Note: This functionality is used only when unsafe-fp-math is enabled, and
10870   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
10871   // enabled for division), this functionality is redundant with the default
10872   // combiner logic (once the division -> reciprocal/multiply transformation
10873   // has taken place). As a result, this matters more for older cores than for
10874   // newer ones.
10875 
10876   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
10877   // reciprocal if there are two or more FDIVs (for embedded cores with only
10878   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
10879   switch (Subtarget.getDarwinDirective()) {
10880   default:
10881     return 3;
10882   case PPC::DIR_440:
10883   case PPC::DIR_A2:
10884   case PPC::DIR_E500:
10885   case PPC::DIR_E500mc:
10886   case PPC::DIR_E5500:
10887     return 2;
10888   }
10889 }
10890 
10891 // isConsecutiveLSLoc needs to work even if all adds have not yet been
10892 // collapsed, and so we need to look through chains of them.
10893 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
10894                                      int64_t& Offset, SelectionDAG &DAG) {
10895   if (DAG.isBaseWithConstantOffset(Loc)) {
10896     Base = Loc.getOperand(0);
10897     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
10898 
10899     // The base might itself be a base plus an offset, and if so, accumulate
10900     // that as well.
10901     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
10902   }
10903 }
10904 
10905 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
10906                             unsigned Bytes, int Dist,
10907                             SelectionDAG &DAG) {
10908   if (VT.getSizeInBits() / 8 != Bytes)
10909     return false;
10910 
10911   SDValue BaseLoc = Base->getBasePtr();
10912   if (Loc.getOpcode() == ISD::FrameIndex) {
10913     if (BaseLoc.getOpcode() != ISD::FrameIndex)
10914       return false;
10915     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10916     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
10917     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
10918     int FS  = MFI.getObjectSize(FI);
10919     int BFS = MFI.getObjectSize(BFI);
10920     if (FS != BFS || FS != (int)Bytes) return false;
10921     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
10922   }
10923 
10924   SDValue Base1 = Loc, Base2 = BaseLoc;
10925   int64_t Offset1 = 0, Offset2 = 0;
10926   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
10927   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
10928   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
10929     return true;
10930 
10931   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10932   const GlobalValue *GV1 = nullptr;
10933   const GlobalValue *GV2 = nullptr;
10934   Offset1 = 0;
10935   Offset2 = 0;
10936   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
10937   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
10938   if (isGA1 && isGA2 && GV1 == GV2)
10939     return Offset1 == (Offset2 + Dist*Bytes);
10940   return false;
10941 }
10942 
10943 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
10944 // not enforce equality of the chain operands.
10945 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
10946                             unsigned Bytes, int Dist,
10947                             SelectionDAG &DAG) {
10948   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
10949     EVT VT = LS->getMemoryVT();
10950     SDValue Loc = LS->getBasePtr();
10951     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
10952   }
10953 
10954   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
10955     EVT VT;
10956     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10957     default: return false;
10958     case Intrinsic::ppc_qpx_qvlfd:
10959     case Intrinsic::ppc_qpx_qvlfda:
10960       VT = MVT::v4f64;
10961       break;
10962     case Intrinsic::ppc_qpx_qvlfs:
10963     case Intrinsic::ppc_qpx_qvlfsa:
10964       VT = MVT::v4f32;
10965       break;
10966     case Intrinsic::ppc_qpx_qvlfcd:
10967     case Intrinsic::ppc_qpx_qvlfcda:
10968       VT = MVT::v2f64;
10969       break;
10970     case Intrinsic::ppc_qpx_qvlfcs:
10971     case Intrinsic::ppc_qpx_qvlfcsa:
10972       VT = MVT::v2f32;
10973       break;
10974     case Intrinsic::ppc_qpx_qvlfiwa:
10975     case Intrinsic::ppc_qpx_qvlfiwz:
10976     case Intrinsic::ppc_altivec_lvx:
10977     case Intrinsic::ppc_altivec_lvxl:
10978     case Intrinsic::ppc_vsx_lxvw4x:
10979     case Intrinsic::ppc_vsx_lxvw4x_be:
10980       VT = MVT::v4i32;
10981       break;
10982     case Intrinsic::ppc_vsx_lxvd2x:
10983     case Intrinsic::ppc_vsx_lxvd2x_be:
10984       VT = MVT::v2f64;
10985       break;
10986     case Intrinsic::ppc_altivec_lvebx:
10987       VT = MVT::i8;
10988       break;
10989     case Intrinsic::ppc_altivec_lvehx:
10990       VT = MVT::i16;
10991       break;
10992     case Intrinsic::ppc_altivec_lvewx:
10993       VT = MVT::i32;
10994       break;
10995     }
10996 
10997     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
10998   }
10999 
11000   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
11001     EVT VT;
11002     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11003     default: return false;
11004     case Intrinsic::ppc_qpx_qvstfd:
11005     case Intrinsic::ppc_qpx_qvstfda:
11006       VT = MVT::v4f64;
11007       break;
11008     case Intrinsic::ppc_qpx_qvstfs:
11009     case Intrinsic::ppc_qpx_qvstfsa:
11010       VT = MVT::v4f32;
11011       break;
11012     case Intrinsic::ppc_qpx_qvstfcd:
11013     case Intrinsic::ppc_qpx_qvstfcda:
11014       VT = MVT::v2f64;
11015       break;
11016     case Intrinsic::ppc_qpx_qvstfcs:
11017     case Intrinsic::ppc_qpx_qvstfcsa:
11018       VT = MVT::v2f32;
11019       break;
11020     case Intrinsic::ppc_qpx_qvstfiw:
11021     case Intrinsic::ppc_qpx_qvstfiwa:
11022     case Intrinsic::ppc_altivec_stvx:
11023     case Intrinsic::ppc_altivec_stvxl:
11024     case Intrinsic::ppc_vsx_stxvw4x:
11025       VT = MVT::v4i32;
11026       break;
11027     case Intrinsic::ppc_vsx_stxvd2x:
11028       VT = MVT::v2f64;
11029       break;
11030     case Intrinsic::ppc_vsx_stxvw4x_be:
11031       VT = MVT::v4i32;
11032       break;
11033     case Intrinsic::ppc_vsx_stxvd2x_be:
11034       VT = MVT::v2f64;
11035       break;
11036     case Intrinsic::ppc_altivec_stvebx:
11037       VT = MVT::i8;
11038       break;
11039     case Intrinsic::ppc_altivec_stvehx:
11040       VT = MVT::i16;
11041       break;
11042     case Intrinsic::ppc_altivec_stvewx:
11043       VT = MVT::i32;
11044       break;
11045     }
11046 
11047     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
11048   }
11049 
11050   return false;
11051 }
11052 
11053 // Return true is there is a nearyby consecutive load to the one provided
11054 // (regardless of alignment). We search up and down the chain, looking though
11055 // token factors and other loads (but nothing else). As a result, a true result
11056 // indicates that it is safe to create a new consecutive load adjacent to the
11057 // load provided.
11058 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
11059   SDValue Chain = LD->getChain();
11060   EVT VT = LD->getMemoryVT();
11061 
11062   SmallSet<SDNode *, 16> LoadRoots;
11063   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
11064   SmallSet<SDNode *, 16> Visited;
11065 
11066   // First, search up the chain, branching to follow all token-factor operands.
11067   // If we find a consecutive load, then we're done, otherwise, record all
11068   // nodes just above the top-level loads and token factors.
11069   while (!Queue.empty()) {
11070     SDNode *ChainNext = Queue.pop_back_val();
11071     if (!Visited.insert(ChainNext).second)
11072       continue;
11073 
11074     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
11075       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
11076         return true;
11077 
11078       if (!Visited.count(ChainLD->getChain().getNode()))
11079         Queue.push_back(ChainLD->getChain().getNode());
11080     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
11081       for (const SDUse &O : ChainNext->ops())
11082         if (!Visited.count(O.getNode()))
11083           Queue.push_back(O.getNode());
11084     } else
11085       LoadRoots.insert(ChainNext);
11086   }
11087 
11088   // Second, search down the chain, starting from the top-level nodes recorded
11089   // in the first phase. These top-level nodes are the nodes just above all
11090   // loads and token factors. Starting with their uses, recursively look though
11091   // all loads (just the chain uses) and token factors to find a consecutive
11092   // load.
11093   Visited.clear();
11094   Queue.clear();
11095 
11096   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
11097        IE = LoadRoots.end(); I != IE; ++I) {
11098     Queue.push_back(*I);
11099 
11100     while (!Queue.empty()) {
11101       SDNode *LoadRoot = Queue.pop_back_val();
11102       if (!Visited.insert(LoadRoot).second)
11103         continue;
11104 
11105       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
11106         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
11107           return true;
11108 
11109       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
11110            UE = LoadRoot->use_end(); UI != UE; ++UI)
11111         if (((isa<MemSDNode>(*UI) &&
11112             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
11113             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
11114           Queue.push_back(*UI);
11115     }
11116   }
11117 
11118   return false;
11119 }
11120 
11121 /// This function is called when we have proved that a SETCC node can be replaced
11122 /// by subtraction (and other supporting instructions) so that the result of
11123 /// comparison is kept in a GPR instead of CR. This function is purely for
11124 /// codegen purposes and has some flags to guide the codegen process.
11125 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
11126                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
11127   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
11128 
11129   // Zero extend the operands to the largest legal integer. Originally, they
11130   // must be of a strictly smaller size.
11131   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
11132                          DAG.getConstant(Size, DL, MVT::i32));
11133   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
11134                          DAG.getConstant(Size, DL, MVT::i32));
11135 
11136   // Swap if needed. Depends on the condition code.
11137   if (Swap)
11138     std::swap(Op0, Op1);
11139 
11140   // Subtract extended integers.
11141   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
11142 
11143   // Move the sign bit to the least significant position and zero out the rest.
11144   // Now the least significant bit carries the result of original comparison.
11145   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
11146                              DAG.getConstant(Size - 1, DL, MVT::i32));
11147   auto Final = Shifted;
11148 
11149   // Complement the result if needed. Based on the condition code.
11150   if (Complement)
11151     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
11152                         DAG.getConstant(1, DL, MVT::i64));
11153 
11154   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
11155 }
11156 
11157 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
11158                                                   DAGCombinerInfo &DCI) const {
11159   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
11160 
11161   SelectionDAG &DAG = DCI.DAG;
11162   SDLoc DL(N);
11163 
11164   // Size of integers being compared has a critical role in the following
11165   // analysis, so we prefer to do this when all types are legal.
11166   if (!DCI.isAfterLegalizeDAG())
11167     return SDValue();
11168 
11169   // If all users of SETCC extend its value to a legal integer type
11170   // then we replace SETCC with a subtraction
11171   for (SDNode::use_iterator UI = N->use_begin(),
11172        UE = N->use_end(); UI != UE; ++UI) {
11173     if (UI->getOpcode() != ISD::ZERO_EXTEND)
11174       return SDValue();
11175   }
11176 
11177   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
11178   auto OpSize = N->getOperand(0).getValueSizeInBits();
11179 
11180   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
11181 
11182   if (OpSize < Size) {
11183     switch (CC) {
11184     default: break;
11185     case ISD::SETULT:
11186       return generateEquivalentSub(N, Size, false, false, DL, DAG);
11187     case ISD::SETULE:
11188       return generateEquivalentSub(N, Size, true, true, DL, DAG);
11189     case ISD::SETUGT:
11190       return generateEquivalentSub(N, Size, false, true, DL, DAG);
11191     case ISD::SETUGE:
11192       return generateEquivalentSub(N, Size, true, false, DL, DAG);
11193     }
11194   }
11195 
11196   return SDValue();
11197 }
11198 
11199 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
11200                                                   DAGCombinerInfo &DCI) const {
11201   SelectionDAG &DAG = DCI.DAG;
11202   SDLoc dl(N);
11203 
11204   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
11205   // If we're tracking CR bits, we need to be careful that we don't have:
11206   //   trunc(binary-ops(zext(x), zext(y)))
11207   // or
11208   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
11209   // such that we're unnecessarily moving things into GPRs when it would be
11210   // better to keep them in CR bits.
11211 
11212   // Note that trunc here can be an actual i1 trunc, or can be the effective
11213   // truncation that comes from a setcc or select_cc.
11214   if (N->getOpcode() == ISD::TRUNCATE &&
11215       N->getValueType(0) != MVT::i1)
11216     return SDValue();
11217 
11218   if (N->getOperand(0).getValueType() != MVT::i32 &&
11219       N->getOperand(0).getValueType() != MVT::i64)
11220     return SDValue();
11221 
11222   if (N->getOpcode() == ISD::SETCC ||
11223       N->getOpcode() == ISD::SELECT_CC) {
11224     // If we're looking at a comparison, then we need to make sure that the
11225     // high bits (all except for the first) don't matter the result.
11226     ISD::CondCode CC =
11227       cast<CondCodeSDNode>(N->getOperand(
11228         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
11229     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
11230 
11231     if (ISD::isSignedIntSetCC(CC)) {
11232       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
11233           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
11234         return SDValue();
11235     } else if (ISD::isUnsignedIntSetCC(CC)) {
11236       if (!DAG.MaskedValueIsZero(N->getOperand(0),
11237                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
11238           !DAG.MaskedValueIsZero(N->getOperand(1),
11239                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
11240         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
11241                                              : SDValue());
11242     } else {
11243       // This is neither a signed nor an unsigned comparison, just make sure
11244       // that the high bits are equal.
11245       KnownBits Op1Known, Op2Known;
11246       DAG.computeKnownBits(N->getOperand(0), Op1Known);
11247       DAG.computeKnownBits(N->getOperand(1), Op2Known);
11248 
11249       // We don't really care about what is known about the first bit (if
11250       // anything), so clear it in all masks prior to comparing them.
11251       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
11252       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
11253 
11254       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
11255         return SDValue();
11256     }
11257   }
11258 
11259   // We now know that the higher-order bits are irrelevant, we just need to
11260   // make sure that all of the intermediate operations are bit operations, and
11261   // all inputs are extensions.
11262   if (N->getOperand(0).getOpcode() != ISD::AND &&
11263       N->getOperand(0).getOpcode() != ISD::OR  &&
11264       N->getOperand(0).getOpcode() != ISD::XOR &&
11265       N->getOperand(0).getOpcode() != ISD::SELECT &&
11266       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
11267       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
11268       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
11269       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
11270       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
11271     return SDValue();
11272 
11273   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
11274       N->getOperand(1).getOpcode() != ISD::AND &&
11275       N->getOperand(1).getOpcode() != ISD::OR  &&
11276       N->getOperand(1).getOpcode() != ISD::XOR &&
11277       N->getOperand(1).getOpcode() != ISD::SELECT &&
11278       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
11279       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
11280       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
11281       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
11282       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
11283     return SDValue();
11284 
11285   SmallVector<SDValue, 4> Inputs;
11286   SmallVector<SDValue, 8> BinOps, PromOps;
11287   SmallPtrSet<SDNode *, 16> Visited;
11288 
11289   for (unsigned i = 0; i < 2; ++i) {
11290     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11291           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11292           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11293           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11294         isa<ConstantSDNode>(N->getOperand(i)))
11295       Inputs.push_back(N->getOperand(i));
11296     else
11297       BinOps.push_back(N->getOperand(i));
11298 
11299     if (N->getOpcode() == ISD::TRUNCATE)
11300       break;
11301   }
11302 
11303   // Visit all inputs, collect all binary operations (and, or, xor and
11304   // select) that are all fed by extensions.
11305   while (!BinOps.empty()) {
11306     SDValue BinOp = BinOps.back();
11307     BinOps.pop_back();
11308 
11309     if (!Visited.insert(BinOp.getNode()).second)
11310       continue;
11311 
11312     PromOps.push_back(BinOp);
11313 
11314     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11315       // The condition of the select is not promoted.
11316       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11317         continue;
11318       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11319         continue;
11320 
11321       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11322             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11323             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11324            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11325           isa<ConstantSDNode>(BinOp.getOperand(i))) {
11326         Inputs.push_back(BinOp.getOperand(i));
11327       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11328                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
11329                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11330                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11331                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
11332                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11333                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11334                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11335                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
11336         BinOps.push_back(BinOp.getOperand(i));
11337       } else {
11338         // We have an input that is not an extension or another binary
11339         // operation; we'll abort this transformation.
11340         return SDValue();
11341       }
11342     }
11343   }
11344 
11345   // Make sure that this is a self-contained cluster of operations (which
11346   // is not quite the same thing as saying that everything has only one
11347   // use).
11348   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11349     if (isa<ConstantSDNode>(Inputs[i]))
11350       continue;
11351 
11352     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11353                               UE = Inputs[i].getNode()->use_end();
11354          UI != UE; ++UI) {
11355       SDNode *User = *UI;
11356       if (User != N && !Visited.count(User))
11357         return SDValue();
11358 
11359       // Make sure that we're not going to promote the non-output-value
11360       // operand(s) or SELECT or SELECT_CC.
11361       // FIXME: Although we could sometimes handle this, and it does occur in
11362       // practice that one of the condition inputs to the select is also one of
11363       // the outputs, we currently can't deal with this.
11364       if (User->getOpcode() == ISD::SELECT) {
11365         if (User->getOperand(0) == Inputs[i])
11366           return SDValue();
11367       } else if (User->getOpcode() == ISD::SELECT_CC) {
11368         if (User->getOperand(0) == Inputs[i] ||
11369             User->getOperand(1) == Inputs[i])
11370           return SDValue();
11371       }
11372     }
11373   }
11374 
11375   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11376     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11377                               UE = PromOps[i].getNode()->use_end();
11378          UI != UE; ++UI) {
11379       SDNode *User = *UI;
11380       if (User != N && !Visited.count(User))
11381         return SDValue();
11382 
11383       // Make sure that we're not going to promote the non-output-value
11384       // operand(s) or SELECT or SELECT_CC.
11385       // FIXME: Although we could sometimes handle this, and it does occur in
11386       // practice that one of the condition inputs to the select is also one of
11387       // the outputs, we currently can't deal with this.
11388       if (User->getOpcode() == ISD::SELECT) {
11389         if (User->getOperand(0) == PromOps[i])
11390           return SDValue();
11391       } else if (User->getOpcode() == ISD::SELECT_CC) {
11392         if (User->getOperand(0) == PromOps[i] ||
11393             User->getOperand(1) == PromOps[i])
11394           return SDValue();
11395       }
11396     }
11397   }
11398 
11399   // Replace all inputs with the extension operand.
11400   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11401     // Constants may have users outside the cluster of to-be-promoted nodes,
11402     // and so we need to replace those as we do the promotions.
11403     if (isa<ConstantSDNode>(Inputs[i]))
11404       continue;
11405     else
11406       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
11407   }
11408 
11409   std::list<HandleSDNode> PromOpHandles;
11410   for (auto &PromOp : PromOps)
11411     PromOpHandles.emplace_back(PromOp);
11412 
11413   // Replace all operations (these are all the same, but have a different
11414   // (i1) return type). DAG.getNode will validate that the types of
11415   // a binary operator match, so go through the list in reverse so that
11416   // we've likely promoted both operands first. Any intermediate truncations or
11417   // extensions disappear.
11418   while (!PromOpHandles.empty()) {
11419     SDValue PromOp = PromOpHandles.back().getValue();
11420     PromOpHandles.pop_back();
11421 
11422     if (PromOp.getOpcode() == ISD::TRUNCATE ||
11423         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
11424         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
11425         PromOp.getOpcode() == ISD::ANY_EXTEND) {
11426       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
11427           PromOp.getOperand(0).getValueType() != MVT::i1) {
11428         // The operand is not yet ready (see comment below).
11429         PromOpHandles.emplace_front(PromOp);
11430         continue;
11431       }
11432 
11433       SDValue RepValue = PromOp.getOperand(0);
11434       if (isa<ConstantSDNode>(RepValue))
11435         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
11436 
11437       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
11438       continue;
11439     }
11440 
11441     unsigned C;
11442     switch (PromOp.getOpcode()) {
11443     default:             C = 0; break;
11444     case ISD::SELECT:    C = 1; break;
11445     case ISD::SELECT_CC: C = 2; break;
11446     }
11447 
11448     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11449          PromOp.getOperand(C).getValueType() != MVT::i1) ||
11450         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11451          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
11452       // The to-be-promoted operands of this node have not yet been
11453       // promoted (this should be rare because we're going through the
11454       // list backward, but if one of the operands has several users in
11455       // this cluster of to-be-promoted nodes, it is possible).
11456       PromOpHandles.emplace_front(PromOp);
11457       continue;
11458     }
11459 
11460     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
11461                                 PromOp.getNode()->op_end());
11462 
11463     // If there are any constant inputs, make sure they're replaced now.
11464     for (unsigned i = 0; i < 2; ++i)
11465       if (isa<ConstantSDNode>(Ops[C+i]))
11466         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
11467 
11468     DAG.ReplaceAllUsesOfValueWith(PromOp,
11469       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
11470   }
11471 
11472   // Now we're left with the initial truncation itself.
11473   if (N->getOpcode() == ISD::TRUNCATE)
11474     return N->getOperand(0);
11475 
11476   // Otherwise, this is a comparison. The operands to be compared have just
11477   // changed type (to i1), but everything else is the same.
11478   return SDValue(N, 0);
11479 }
11480 
11481 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
11482                                                   DAGCombinerInfo &DCI) const {
11483   SelectionDAG &DAG = DCI.DAG;
11484   SDLoc dl(N);
11485 
11486   // If we're tracking CR bits, we need to be careful that we don't have:
11487   //   zext(binary-ops(trunc(x), trunc(y)))
11488   // or
11489   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
11490   // such that we're unnecessarily moving things into CR bits that can more
11491   // efficiently stay in GPRs. Note that if we're not certain that the high
11492   // bits are set as required by the final extension, we still may need to do
11493   // some masking to get the proper behavior.
11494 
11495   // This same functionality is important on PPC64 when dealing with
11496   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
11497   // the return values of functions. Because it is so similar, it is handled
11498   // here as well.
11499 
11500   if (N->getValueType(0) != MVT::i32 &&
11501       N->getValueType(0) != MVT::i64)
11502     return SDValue();
11503 
11504   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
11505         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
11506     return SDValue();
11507 
11508   if (N->getOperand(0).getOpcode() != ISD::AND &&
11509       N->getOperand(0).getOpcode() != ISD::OR  &&
11510       N->getOperand(0).getOpcode() != ISD::XOR &&
11511       N->getOperand(0).getOpcode() != ISD::SELECT &&
11512       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
11513     return SDValue();
11514 
11515   SmallVector<SDValue, 4> Inputs;
11516   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
11517   SmallPtrSet<SDNode *, 16> Visited;
11518 
11519   // Visit all inputs, collect all binary operations (and, or, xor and
11520   // select) that are all fed by truncations.
11521   while (!BinOps.empty()) {
11522     SDValue BinOp = BinOps.back();
11523     BinOps.pop_back();
11524 
11525     if (!Visited.insert(BinOp.getNode()).second)
11526       continue;
11527 
11528     PromOps.push_back(BinOp);
11529 
11530     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11531       // The condition of the select is not promoted.
11532       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11533         continue;
11534       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11535         continue;
11536 
11537       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11538           isa<ConstantSDNode>(BinOp.getOperand(i))) {
11539         Inputs.push_back(BinOp.getOperand(i));
11540       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11541                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
11542                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11543                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11544                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
11545         BinOps.push_back(BinOp.getOperand(i));
11546       } else {
11547         // We have an input that is not a truncation or another binary
11548         // operation; we'll abort this transformation.
11549         return SDValue();
11550       }
11551     }
11552   }
11553 
11554   // The operands of a select that must be truncated when the select is
11555   // promoted because the operand is actually part of the to-be-promoted set.
11556   DenseMap<SDNode *, EVT> SelectTruncOp[2];
11557 
11558   // Make sure that this is a self-contained cluster of operations (which
11559   // is not quite the same thing as saying that everything has only one
11560   // use).
11561   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11562     if (isa<ConstantSDNode>(Inputs[i]))
11563       continue;
11564 
11565     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11566                               UE = Inputs[i].getNode()->use_end();
11567          UI != UE; ++UI) {
11568       SDNode *User = *UI;
11569       if (User != N && !Visited.count(User))
11570         return SDValue();
11571 
11572       // If we're going to promote the non-output-value operand(s) or SELECT or
11573       // SELECT_CC, record them for truncation.
11574       if (User->getOpcode() == ISD::SELECT) {
11575         if (User->getOperand(0) == Inputs[i])
11576           SelectTruncOp[0].insert(std::make_pair(User,
11577                                     User->getOperand(0).getValueType()));
11578       } else if (User->getOpcode() == ISD::SELECT_CC) {
11579         if (User->getOperand(0) == Inputs[i])
11580           SelectTruncOp[0].insert(std::make_pair(User,
11581                                     User->getOperand(0).getValueType()));
11582         if (User->getOperand(1) == Inputs[i])
11583           SelectTruncOp[1].insert(std::make_pair(User,
11584                                     User->getOperand(1).getValueType()));
11585       }
11586     }
11587   }
11588 
11589   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11590     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11591                               UE = PromOps[i].getNode()->use_end();
11592          UI != UE; ++UI) {
11593       SDNode *User = *UI;
11594       if (User != N && !Visited.count(User))
11595         return SDValue();
11596 
11597       // If we're going to promote the non-output-value operand(s) or SELECT or
11598       // SELECT_CC, record them for truncation.
11599       if (User->getOpcode() == ISD::SELECT) {
11600         if (User->getOperand(0) == PromOps[i])
11601           SelectTruncOp[0].insert(std::make_pair(User,
11602                                     User->getOperand(0).getValueType()));
11603       } else if (User->getOpcode() == ISD::SELECT_CC) {
11604         if (User->getOperand(0) == PromOps[i])
11605           SelectTruncOp[0].insert(std::make_pair(User,
11606                                     User->getOperand(0).getValueType()));
11607         if (User->getOperand(1) == PromOps[i])
11608           SelectTruncOp[1].insert(std::make_pair(User,
11609                                     User->getOperand(1).getValueType()));
11610       }
11611     }
11612   }
11613 
11614   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
11615   bool ReallyNeedsExt = false;
11616   if (N->getOpcode() != ISD::ANY_EXTEND) {
11617     // If all of the inputs are not already sign/zero extended, then
11618     // we'll still need to do that at the end.
11619     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11620       if (isa<ConstantSDNode>(Inputs[i]))
11621         continue;
11622 
11623       unsigned OpBits =
11624         Inputs[i].getOperand(0).getValueSizeInBits();
11625       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
11626 
11627       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
11628            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
11629                                   APInt::getHighBitsSet(OpBits,
11630                                                         OpBits-PromBits))) ||
11631           (N->getOpcode() == ISD::SIGN_EXTEND &&
11632            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
11633              (OpBits-(PromBits-1)))) {
11634         ReallyNeedsExt = true;
11635         break;
11636       }
11637     }
11638   }
11639 
11640   // Replace all inputs, either with the truncation operand, or a
11641   // truncation or extension to the final output type.
11642   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11643     // Constant inputs need to be replaced with the to-be-promoted nodes that
11644     // use them because they might have users outside of the cluster of
11645     // promoted nodes.
11646     if (isa<ConstantSDNode>(Inputs[i]))
11647       continue;
11648 
11649     SDValue InSrc = Inputs[i].getOperand(0);
11650     if (Inputs[i].getValueType() == N->getValueType(0))
11651       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
11652     else if (N->getOpcode() == ISD::SIGN_EXTEND)
11653       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11654         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
11655     else if (N->getOpcode() == ISD::ZERO_EXTEND)
11656       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11657         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
11658     else
11659       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11660         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
11661   }
11662 
11663   std::list<HandleSDNode> PromOpHandles;
11664   for (auto &PromOp : PromOps)
11665     PromOpHandles.emplace_back(PromOp);
11666 
11667   // Replace all operations (these are all the same, but have a different
11668   // (promoted) return type). DAG.getNode will validate that the types of
11669   // a binary operator match, so go through the list in reverse so that
11670   // we've likely promoted both operands first.
11671   while (!PromOpHandles.empty()) {
11672     SDValue PromOp = PromOpHandles.back().getValue();
11673     PromOpHandles.pop_back();
11674 
11675     unsigned C;
11676     switch (PromOp.getOpcode()) {
11677     default:             C = 0; break;
11678     case ISD::SELECT:    C = 1; break;
11679     case ISD::SELECT_CC: C = 2; break;
11680     }
11681 
11682     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11683          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
11684         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11685          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
11686       // The to-be-promoted operands of this node have not yet been
11687       // promoted (this should be rare because we're going through the
11688       // list backward, but if one of the operands has several users in
11689       // this cluster of to-be-promoted nodes, it is possible).
11690       PromOpHandles.emplace_front(PromOp);
11691       continue;
11692     }
11693 
11694     // For SELECT and SELECT_CC nodes, we do a similar check for any
11695     // to-be-promoted comparison inputs.
11696     if (PromOp.getOpcode() == ISD::SELECT ||
11697         PromOp.getOpcode() == ISD::SELECT_CC) {
11698       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
11699            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
11700           (SelectTruncOp[1].count(PromOp.getNode()) &&
11701            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
11702         PromOpHandles.emplace_front(PromOp);
11703         continue;
11704       }
11705     }
11706 
11707     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
11708                                 PromOp.getNode()->op_end());
11709 
11710     // If this node has constant inputs, then they'll need to be promoted here.
11711     for (unsigned i = 0; i < 2; ++i) {
11712       if (!isa<ConstantSDNode>(Ops[C+i]))
11713         continue;
11714       if (Ops[C+i].getValueType() == N->getValueType(0))
11715         continue;
11716 
11717       if (N->getOpcode() == ISD::SIGN_EXTEND)
11718         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11719       else if (N->getOpcode() == ISD::ZERO_EXTEND)
11720         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11721       else
11722         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11723     }
11724 
11725     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
11726     // truncate them again to the original value type.
11727     if (PromOp.getOpcode() == ISD::SELECT ||
11728         PromOp.getOpcode() == ISD::SELECT_CC) {
11729       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
11730       if (SI0 != SelectTruncOp[0].end())
11731         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
11732       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
11733       if (SI1 != SelectTruncOp[1].end())
11734         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
11735     }
11736 
11737     DAG.ReplaceAllUsesOfValueWith(PromOp,
11738       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
11739   }
11740 
11741   // Now we're left with the initial extension itself.
11742   if (!ReallyNeedsExt)
11743     return N->getOperand(0);
11744 
11745   // To zero extend, just mask off everything except for the first bit (in the
11746   // i1 case).
11747   if (N->getOpcode() == ISD::ZERO_EXTEND)
11748     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
11749                        DAG.getConstant(APInt::getLowBitsSet(
11750                                          N->getValueSizeInBits(0), PromBits),
11751                                        dl, N->getValueType(0)));
11752 
11753   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
11754          "Invalid extension type");
11755   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
11756   SDValue ShiftCst =
11757       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
11758   return DAG.getNode(
11759       ISD::SRA, dl, N->getValueType(0),
11760       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
11761       ShiftCst);
11762 }
11763 
11764 // Is this an extending load from an f32 to an f64?
11765 static bool isFPExtLoad(SDValue Op) {
11766   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
11767     return LD->getExtensionType() == ISD::EXTLOAD &&
11768       Op.getValueType() == MVT::f64;
11769   return false;
11770 }
11771 
11772 /// Reduces the number of fp-to-int conversion when building a vector.
11773 ///
11774 /// If this vector is built out of floating to integer conversions,
11775 /// transform it to a vector built out of floating point values followed by a
11776 /// single floating to integer conversion of the vector.
11777 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
11778 /// becomes (fptosi (build_vector ($A, $B, ...)))
11779 SDValue PPCTargetLowering::
11780 combineElementTruncationToVectorTruncation(SDNode *N,
11781                                            DAGCombinerInfo &DCI) const {
11782   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
11783          "Should be called with a BUILD_VECTOR node");
11784 
11785   SelectionDAG &DAG = DCI.DAG;
11786   SDLoc dl(N);
11787 
11788   SDValue FirstInput = N->getOperand(0);
11789   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
11790          "The input operand must be an fp-to-int conversion.");
11791 
11792   // This combine happens after legalization so the fp_to_[su]i nodes are
11793   // already converted to PPCSISD nodes.
11794   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
11795   if (FirstConversion == PPCISD::FCTIDZ ||
11796       FirstConversion == PPCISD::FCTIDUZ ||
11797       FirstConversion == PPCISD::FCTIWZ ||
11798       FirstConversion == PPCISD::FCTIWUZ) {
11799     bool IsSplat = true;
11800     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
11801       FirstConversion == PPCISD::FCTIWUZ;
11802     EVT SrcVT = FirstInput.getOperand(0).getValueType();
11803     SmallVector<SDValue, 4> Ops;
11804     EVT TargetVT = N->getValueType(0);
11805     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
11806       SDValue NextOp = N->getOperand(i);
11807       if (NextOp.getOpcode() != PPCISD::MFVSR)
11808         return SDValue();
11809       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
11810       if (NextConversion != FirstConversion)
11811         return SDValue();
11812       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
11813       // This is not valid if the input was originally double precision. It is
11814       // also not profitable to do unless this is an extending load in which
11815       // case doing this combine will allow us to combine consecutive loads.
11816       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
11817         return SDValue();
11818       if (N->getOperand(i) != FirstInput)
11819         IsSplat = false;
11820     }
11821 
11822     // If this is a splat, we leave it as-is since there will be only a single
11823     // fp-to-int conversion followed by a splat of the integer. This is better
11824     // for 32-bit and smaller ints and neutral for 64-bit ints.
11825     if (IsSplat)
11826       return SDValue();
11827 
11828     // Now that we know we have the right type of node, get its operands
11829     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
11830       SDValue In = N->getOperand(i).getOperand(0);
11831       if (Is32Bit) {
11832         // For 32-bit values, we need to add an FP_ROUND node (if we made it
11833         // here, we know that all inputs are extending loads so this is safe).
11834         if (In.isUndef())
11835           Ops.push_back(DAG.getUNDEF(SrcVT));
11836         else {
11837           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
11838                                       MVT::f32, In.getOperand(0),
11839                                       DAG.getIntPtrConstant(1, dl));
11840           Ops.push_back(Trunc);
11841         }
11842       } else
11843         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
11844     }
11845 
11846     unsigned Opcode;
11847     if (FirstConversion == PPCISD::FCTIDZ ||
11848         FirstConversion == PPCISD::FCTIWZ)
11849       Opcode = ISD::FP_TO_SINT;
11850     else
11851       Opcode = ISD::FP_TO_UINT;
11852 
11853     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
11854     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
11855     return DAG.getNode(Opcode, dl, TargetVT, BV);
11856   }
11857   return SDValue();
11858 }
11859 
11860 /// Reduce the number of loads when building a vector.
11861 ///
11862 /// Building a vector out of multiple loads can be converted to a load
11863 /// of the vector type if the loads are consecutive. If the loads are
11864 /// consecutive but in descending order, a shuffle is added at the end
11865 /// to reorder the vector.
11866 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
11867   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
11868          "Should be called with a BUILD_VECTOR node");
11869 
11870   SDLoc dl(N);
11871   bool InputsAreConsecutiveLoads = true;
11872   bool InputsAreReverseConsecutive = true;
11873   unsigned ElemSize = N->getValueType(0).getScalarSizeInBits() / 8;
11874   SDValue FirstInput = N->getOperand(0);
11875   bool IsRoundOfExtLoad = false;
11876 
11877   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
11878       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
11879     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
11880     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
11881   }
11882   // Not a build vector of (possibly fp_rounded) loads.
11883   if (!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD)
11884     return SDValue();
11885 
11886   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
11887     // If any inputs are fp_round(extload), they all must be.
11888     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
11889       return SDValue();
11890 
11891     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
11892       N->getOperand(i);
11893     if (NextInput.getOpcode() != ISD::LOAD)
11894       return SDValue();
11895 
11896     SDValue PreviousInput =
11897       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
11898     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
11899     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
11900 
11901     // If any inputs are fp_round(extload), they all must be.
11902     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
11903       return SDValue();
11904 
11905     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
11906       InputsAreConsecutiveLoads = false;
11907     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
11908       InputsAreReverseConsecutive = false;
11909 
11910     // Exit early if the loads are neither consecutive nor reverse consecutive.
11911     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
11912       return SDValue();
11913   }
11914 
11915   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
11916          "The loads cannot be both consecutive and reverse consecutive.");
11917 
11918   SDValue FirstLoadOp =
11919     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
11920   SDValue LastLoadOp =
11921     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
11922                        N->getOperand(N->getNumOperands()-1);
11923 
11924   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
11925   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
11926   if (InputsAreConsecutiveLoads) {
11927     assert(LD1 && "Input needs to be a LoadSDNode.");
11928     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
11929                        LD1->getBasePtr(), LD1->getPointerInfo(),
11930                        LD1->getAlignment());
11931   }
11932   if (InputsAreReverseConsecutive) {
11933     assert(LDL && "Input needs to be a LoadSDNode.");
11934     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
11935                                LDL->getBasePtr(), LDL->getPointerInfo(),
11936                                LDL->getAlignment());
11937     SmallVector<int, 16> Ops;
11938     for (int i = N->getNumOperands() - 1; i >= 0; i--)
11939       Ops.push_back(i);
11940 
11941     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
11942                                 DAG.getUNDEF(N->getValueType(0)), Ops);
11943   }
11944   return SDValue();
11945 }
11946 
11947 // This function adds the required vector_shuffle needed to get
11948 // the elements of the vector extract in the correct position
11949 // as specified by the CorrectElems encoding.
11950 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
11951                                       SDValue Input, uint64_t Elems,
11952                                       uint64_t CorrectElems) {
11953   SDLoc dl(N);
11954 
11955   unsigned NumElems = Input.getValueType().getVectorNumElements();
11956   SmallVector<int, 16> ShuffleMask(NumElems, -1);
11957 
11958   // Knowing the element indices being extracted from the original
11959   // vector and the order in which they're being inserted, just put
11960   // them at element indices required for the instruction.
11961   for (unsigned i = 0; i < N->getNumOperands(); i++) {
11962     if (DAG.getDataLayout().isLittleEndian())
11963       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
11964     else
11965       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
11966     CorrectElems = CorrectElems >> 8;
11967     Elems = Elems >> 8;
11968   }
11969 
11970   SDValue Shuffle =
11971       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
11972                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
11973 
11974   EVT Ty = N->getValueType(0);
11975   SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
11976   return BV;
11977 }
11978 
11979 // Look for build vector patterns where input operands come from sign
11980 // extended vector_extract elements of specific indices. If the correct indices
11981 // aren't used, add a vector shuffle to fix up the indices and create a new
11982 // PPCISD:SExtVElems node which selects the vector sign extend instructions
11983 // during instruction selection.
11984 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
11985   // This array encodes the indices that the vector sign extend instructions
11986   // extract from when extending from one type to another for both BE and LE.
11987   // The right nibble of each byte corresponds to the LE incides.
11988   // and the left nibble of each byte corresponds to the BE incides.
11989   // For example: 0x3074B8FC  byte->word
11990   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
11991   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
11992   // For example: 0x000070F8  byte->double word
11993   // For LE: the allowed indices are: 0x0,0x8
11994   // For BE: the allowed indices are: 0x7,0xF
11995   uint64_t TargetElems[] = {
11996       0x3074B8FC, // b->w
11997       0x000070F8, // b->d
11998       0x10325476, // h->w
11999       0x00003074, // h->d
12000       0x00001032, // w->d
12001   };
12002 
12003   uint64_t Elems = 0;
12004   int Index;
12005   SDValue Input;
12006 
12007   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
12008     if (!Op)
12009       return false;
12010     if (Op.getOpcode() != ISD::SIGN_EXTEND)
12011       return false;
12012 
12013     SDValue Extract = Op.getOperand(0);
12014     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12015       return false;
12016 
12017     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
12018     if (!ExtOp)
12019       return false;
12020 
12021     Index = ExtOp->getZExtValue();
12022     if (Input && Input != Extract.getOperand(0))
12023       return false;
12024 
12025     if (!Input)
12026       Input = Extract.getOperand(0);
12027 
12028     Elems = Elems << 8;
12029     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
12030     Elems |= Index;
12031 
12032     return true;
12033   };
12034 
12035   // If the build vector operands aren't sign extended vector extracts,
12036   // of the same input vector, then return.
12037   for (unsigned i = 0; i < N->getNumOperands(); i++) {
12038     if (!isSExtOfVecExtract(N->getOperand(i))) {
12039       return SDValue();
12040     }
12041   }
12042 
12043   // If the vector extract indicies are not correct, add the appropriate
12044   // vector_shuffle.
12045   int TgtElemArrayIdx;
12046   int InputSize = Input.getValueType().getScalarSizeInBits();
12047   int OutputSize = N->getValueType(0).getScalarSizeInBits();
12048   if (InputSize + OutputSize == 40)
12049     TgtElemArrayIdx = 0;
12050   else if (InputSize + OutputSize == 72)
12051     TgtElemArrayIdx = 1;
12052   else if (InputSize + OutputSize == 48)
12053     TgtElemArrayIdx = 2;
12054   else if (InputSize + OutputSize == 80)
12055     TgtElemArrayIdx = 3;
12056   else if (InputSize + OutputSize == 96)
12057     TgtElemArrayIdx = 4;
12058   else
12059     return SDValue();
12060 
12061   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
12062   CorrectElems = DAG.getDataLayout().isLittleEndian()
12063                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
12064                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
12065   if (Elems != CorrectElems) {
12066     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
12067   }
12068 
12069   // Regular lowering will catch cases where a shuffle is not needed.
12070   return SDValue();
12071 }
12072 
12073 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
12074                                                  DAGCombinerInfo &DCI) const {
12075   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12076          "Should be called with a BUILD_VECTOR node");
12077 
12078   SelectionDAG &DAG = DCI.DAG;
12079   SDLoc dl(N);
12080 
12081   if (!Subtarget.hasVSX())
12082     return SDValue();
12083 
12084   // The target independent DAG combiner will leave a build_vector of
12085   // float-to-int conversions intact. We can generate MUCH better code for
12086   // a float-to-int conversion of a vector of floats.
12087   SDValue FirstInput = N->getOperand(0);
12088   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
12089     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
12090     if (Reduced)
12091       return Reduced;
12092   }
12093 
12094   // If we're building a vector out of consecutive loads, just load that
12095   // vector type.
12096   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
12097   if (Reduced)
12098     return Reduced;
12099 
12100   // If we're building a vector out of extended elements from another vector
12101   // we have P9 vector integer extend instructions.
12102   if (Subtarget.hasP9Altivec()) {
12103     Reduced = combineBVOfVecSExt(N, DAG);
12104     if (Reduced)
12105       return Reduced;
12106   }
12107 
12108 
12109   if (N->getValueType(0) != MVT::v2f64)
12110     return SDValue();
12111 
12112   // Looking for:
12113   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
12114   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
12115       FirstInput.getOpcode() != ISD::UINT_TO_FP)
12116     return SDValue();
12117   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
12118       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
12119     return SDValue();
12120   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
12121     return SDValue();
12122 
12123   SDValue Ext1 = FirstInput.getOperand(0);
12124   SDValue Ext2 = N->getOperand(1).getOperand(0);
12125   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
12126      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12127     return SDValue();
12128 
12129   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
12130   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
12131   if (!Ext1Op || !Ext2Op)
12132     return SDValue();
12133   if (Ext1.getValueType() != MVT::i32 ||
12134       Ext2.getValueType() != MVT::i32)
12135   if (Ext1.getOperand(0) != Ext2.getOperand(0))
12136     return SDValue();
12137 
12138   int FirstElem = Ext1Op->getZExtValue();
12139   int SecondElem = Ext2Op->getZExtValue();
12140   int SubvecIdx;
12141   if (FirstElem == 0 && SecondElem == 1)
12142     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
12143   else if (FirstElem == 2 && SecondElem == 3)
12144     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
12145   else
12146     return SDValue();
12147 
12148   SDValue SrcVec = Ext1.getOperand(0);
12149   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
12150     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
12151   return DAG.getNode(NodeType, dl, MVT::v2f64,
12152                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
12153 }
12154 
12155 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
12156                                               DAGCombinerInfo &DCI) const {
12157   assert((N->getOpcode() == ISD::SINT_TO_FP ||
12158           N->getOpcode() == ISD::UINT_TO_FP) &&
12159          "Need an int -> FP conversion node here");
12160 
12161   if (useSoftFloat() || !Subtarget.has64BitSupport())
12162     return SDValue();
12163 
12164   SelectionDAG &DAG = DCI.DAG;
12165   SDLoc dl(N);
12166   SDValue Op(N, 0);
12167 
12168   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
12169   // from the hardware.
12170   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
12171     return SDValue();
12172   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
12173       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
12174     return SDValue();
12175 
12176   SDValue FirstOperand(Op.getOperand(0));
12177   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
12178     (FirstOperand.getValueType() == MVT::i8 ||
12179      FirstOperand.getValueType() == MVT::i16);
12180   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
12181     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
12182     bool DstDouble = Op.getValueType() == MVT::f64;
12183     unsigned ConvOp = Signed ?
12184       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
12185       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
12186     SDValue WidthConst =
12187       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
12188                             dl, false);
12189     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
12190     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
12191     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
12192                                          DAG.getVTList(MVT::f64, MVT::Other),
12193                                          Ops, MVT::i8, LDN->getMemOperand());
12194 
12195     // For signed conversion, we need to sign-extend the value in the VSR
12196     if (Signed) {
12197       SDValue ExtOps[] = { Ld, WidthConst };
12198       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
12199       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
12200     } else
12201       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
12202   }
12203 
12204 
12205   // For i32 intermediate values, unfortunately, the conversion functions
12206   // leave the upper 32 bits of the value are undefined. Within the set of
12207   // scalar instructions, we have no method for zero- or sign-extending the
12208   // value. Thus, we cannot handle i32 intermediate values here.
12209   if (Op.getOperand(0).getValueType() == MVT::i32)
12210     return SDValue();
12211 
12212   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
12213          "UINT_TO_FP is supported only with FPCVT");
12214 
12215   // If we have FCFIDS, then use it when converting to single-precision.
12216   // Otherwise, convert to double-precision and then round.
12217   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12218                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
12219                                                             : PPCISD::FCFIDS)
12220                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
12221                                                             : PPCISD::FCFID);
12222   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12223                   ? MVT::f32
12224                   : MVT::f64;
12225 
12226   // If we're converting from a float, to an int, and back to a float again,
12227   // then we don't need the store/load pair at all.
12228   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
12229        Subtarget.hasFPCVT()) ||
12230       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
12231     SDValue Src = Op.getOperand(0).getOperand(0);
12232     if (Src.getValueType() == MVT::f32) {
12233       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
12234       DCI.AddToWorklist(Src.getNode());
12235     } else if (Src.getValueType() != MVT::f64) {
12236       // Make sure that we don't pick up a ppc_fp128 source value.
12237       return SDValue();
12238     }
12239 
12240     unsigned FCTOp =
12241       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
12242                                                         PPCISD::FCTIDUZ;
12243 
12244     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
12245     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
12246 
12247     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
12248       FP = DAG.getNode(ISD::FP_ROUND, dl,
12249                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
12250       DCI.AddToWorklist(FP.getNode());
12251     }
12252 
12253     return FP;
12254   }
12255 
12256   return SDValue();
12257 }
12258 
12259 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
12260 // builtins) into loads with swaps.
12261 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
12262                                               DAGCombinerInfo &DCI) const {
12263   SelectionDAG &DAG = DCI.DAG;
12264   SDLoc dl(N);
12265   SDValue Chain;
12266   SDValue Base;
12267   MachineMemOperand *MMO;
12268 
12269   switch (N->getOpcode()) {
12270   default:
12271     llvm_unreachable("Unexpected opcode for little endian VSX load");
12272   case ISD::LOAD: {
12273     LoadSDNode *LD = cast<LoadSDNode>(N);
12274     Chain = LD->getChain();
12275     Base = LD->getBasePtr();
12276     MMO = LD->getMemOperand();
12277     // If the MMO suggests this isn't a load of a full vector, leave
12278     // things alone.  For a built-in, we have to make the change for
12279     // correctness, so if there is a size problem that will be a bug.
12280     if (MMO->getSize() < 16)
12281       return SDValue();
12282     break;
12283   }
12284   case ISD::INTRINSIC_W_CHAIN: {
12285     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12286     Chain = Intrin->getChain();
12287     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
12288     // us what we want. Get operand 2 instead.
12289     Base = Intrin->getOperand(2);
12290     MMO = Intrin->getMemOperand();
12291     break;
12292   }
12293   }
12294 
12295   MVT VecTy = N->getValueType(0).getSimpleVT();
12296 
12297   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
12298   // aligned and the type is a vector with elements up to 4 bytes
12299   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12300       && VecTy.getScalarSizeInBits() <= 32 ) {
12301     return SDValue();
12302   }
12303 
12304   SDValue LoadOps[] = { Chain, Base };
12305   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
12306                                          DAG.getVTList(MVT::v2f64, MVT::Other),
12307                                          LoadOps, MVT::v2f64, MMO);
12308 
12309   DCI.AddToWorklist(Load.getNode());
12310   Chain = Load.getValue(1);
12311   SDValue Swap = DAG.getNode(
12312       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
12313   DCI.AddToWorklist(Swap.getNode());
12314 
12315   // Add a bitcast if the resulting load type doesn't match v2f64.
12316   if (VecTy != MVT::v2f64) {
12317     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
12318     DCI.AddToWorklist(N.getNode());
12319     // Package {bitcast value, swap's chain} to match Load's shape.
12320     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
12321                        N, Swap.getValue(1));
12322   }
12323 
12324   return Swap;
12325 }
12326 
12327 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
12328 // builtins) into stores with swaps.
12329 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
12330                                                DAGCombinerInfo &DCI) const {
12331   SelectionDAG &DAG = DCI.DAG;
12332   SDLoc dl(N);
12333   SDValue Chain;
12334   SDValue Base;
12335   unsigned SrcOpnd;
12336   MachineMemOperand *MMO;
12337 
12338   switch (N->getOpcode()) {
12339   default:
12340     llvm_unreachable("Unexpected opcode for little endian VSX store");
12341   case ISD::STORE: {
12342     StoreSDNode *ST = cast<StoreSDNode>(N);
12343     Chain = ST->getChain();
12344     Base = ST->getBasePtr();
12345     MMO = ST->getMemOperand();
12346     SrcOpnd = 1;
12347     // If the MMO suggests this isn't a store of a full vector, leave
12348     // things alone.  For a built-in, we have to make the change for
12349     // correctness, so if there is a size problem that will be a bug.
12350     if (MMO->getSize() < 16)
12351       return SDValue();
12352     break;
12353   }
12354   case ISD::INTRINSIC_VOID: {
12355     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12356     Chain = Intrin->getChain();
12357     // Intrin->getBasePtr() oddly does not get what we want.
12358     Base = Intrin->getOperand(3);
12359     MMO = Intrin->getMemOperand();
12360     SrcOpnd = 2;
12361     break;
12362   }
12363   }
12364 
12365   SDValue Src = N->getOperand(SrcOpnd);
12366   MVT VecTy = Src.getValueType().getSimpleVT();
12367 
12368   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
12369   // aligned and the type is a vector with elements up to 4 bytes
12370   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12371       && VecTy.getScalarSizeInBits() <= 32 ) {
12372     return SDValue();
12373   }
12374 
12375   // All stores are done as v2f64 and possible bit cast.
12376   if (VecTy != MVT::v2f64) {
12377     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
12378     DCI.AddToWorklist(Src.getNode());
12379   }
12380 
12381   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
12382                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
12383   DCI.AddToWorklist(Swap.getNode());
12384   Chain = Swap.getValue(1);
12385   SDValue StoreOps[] = { Chain, Swap, Base };
12386   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
12387                                           DAG.getVTList(MVT::Other),
12388                                           StoreOps, VecTy, MMO);
12389   DCI.AddToWorklist(Store.getNode());
12390   return Store;
12391 }
12392 
12393 // Handle DAG combine for STORE (FP_TO_INT F).
12394 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
12395                                                DAGCombinerInfo &DCI) const {
12396 
12397   SelectionDAG &DAG = DCI.DAG;
12398   SDLoc dl(N);
12399   unsigned Opcode = N->getOperand(1).getOpcode();
12400 
12401   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
12402          && "Not a FP_TO_INT Instruction!");
12403 
12404   SDValue Val = N->getOperand(1).getOperand(0);
12405   EVT Op1VT = N->getOperand(1).getValueType();
12406   EVT ResVT = Val.getValueType();
12407 
12408   // Floating point types smaller than 32 bits are not legal on Power.
12409   if (ResVT.getScalarSizeInBits() < 32)
12410     return SDValue();
12411 
12412   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
12413   bool ValidTypeForStoreFltAsInt =
12414         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
12415          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
12416 
12417   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() ||
12418       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
12419     return SDValue();
12420 
12421   // Extend f32 values to f64
12422   if (ResVT.getScalarSizeInBits() == 32) {
12423     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
12424     DCI.AddToWorklist(Val.getNode());
12425   }
12426 
12427   // Set signed or unsigned conversion opcode.
12428   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
12429                           PPCISD::FP_TO_SINT_IN_VSR :
12430                           PPCISD::FP_TO_UINT_IN_VSR;
12431 
12432   Val = DAG.getNode(ConvOpcode,
12433                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
12434   DCI.AddToWorklist(Val.getNode());
12435 
12436   // Set number of bytes being converted.
12437   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
12438   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
12439                     DAG.getIntPtrConstant(ByteSize, dl, false),
12440                     DAG.getValueType(Op1VT) };
12441 
12442   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
12443           DAG.getVTList(MVT::Other), Ops,
12444           cast<StoreSDNode>(N)->getMemoryVT(),
12445           cast<StoreSDNode>(N)->getMemOperand());
12446 
12447   DCI.AddToWorklist(Val.getNode());
12448   return Val;
12449 }
12450 
12451 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
12452                                              DAGCombinerInfo &DCI) const {
12453   SelectionDAG &DAG = DCI.DAG;
12454   SDLoc dl(N);
12455   switch (N->getOpcode()) {
12456   default: break;
12457   case ISD::SHL:
12458     return combineSHL(N, DCI);
12459   case ISD::SRA:
12460     return combineSRA(N, DCI);
12461   case ISD::SRL:
12462     return combineSRL(N, DCI);
12463   case PPCISD::SHL:
12464     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
12465         return N->getOperand(0);
12466     break;
12467   case PPCISD::SRL:
12468     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
12469         return N->getOperand(0);
12470     break;
12471   case PPCISD::SRA:
12472     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
12473       if (C->isNullValue() ||   //  0 >>s V -> 0.
12474           C->isAllOnesValue())    // -1 >>s V -> -1.
12475         return N->getOperand(0);
12476     }
12477     break;
12478   case ISD::SIGN_EXTEND:
12479   case ISD::ZERO_EXTEND:
12480   case ISD::ANY_EXTEND:
12481     return DAGCombineExtBoolTrunc(N, DCI);
12482   case ISD::TRUNCATE:
12483   case ISD::SETCC:
12484   case ISD::SELECT_CC:
12485     return DAGCombineTruncBoolExt(N, DCI);
12486   case ISD::SINT_TO_FP:
12487   case ISD::UINT_TO_FP:
12488     return combineFPToIntToFP(N, DCI);
12489   case ISD::STORE: {
12490 
12491     EVT Op1VT = N->getOperand(1).getValueType();
12492     unsigned Opcode = N->getOperand(1).getOpcode();
12493 
12494     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
12495       SDValue Val= combineStoreFPToInt(N, DCI);
12496       if (Val)
12497         return Val;
12498     }
12499 
12500     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
12501     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
12502         N->getOperand(1).getNode()->hasOneUse() &&
12503         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
12504          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
12505 
12506       // STBRX can only handle simple types.
12507       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
12508       if (mVT.isExtended())
12509         break;
12510 
12511       SDValue BSwapOp = N->getOperand(1).getOperand(0);
12512       // Do an any-extend to 32-bits if this is a half-word input.
12513       if (BSwapOp.getValueType() == MVT::i16)
12514         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
12515 
12516       // If the type of BSWAP operand is wider than stored memory width
12517       // it need to be shifted to the right side before STBRX.
12518       if (Op1VT.bitsGT(mVT)) {
12519         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
12520         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
12521                               DAG.getConstant(Shift, dl, MVT::i32));
12522         // Need to truncate if this is a bswap of i64 stored as i32/i16.
12523         if (Op1VT == MVT::i64)
12524           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
12525       }
12526 
12527       SDValue Ops[] = {
12528         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
12529       };
12530       return
12531         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
12532                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
12533                                 cast<StoreSDNode>(N)->getMemOperand());
12534     }
12535 
12536     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
12537     // So it can increase the chance of CSE constant construction.
12538     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
12539         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
12540       // Need to sign-extended to 64-bits to handle negative values.
12541       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
12542       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
12543                                     MemVT.getSizeInBits());
12544       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
12545 
12546       // DAG.getTruncStore() can't be used here because it doesn't accept
12547       // the general (base + offset) addressing mode.
12548       // So we use UpdateNodeOperands and setTruncatingStore instead.
12549       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
12550                              N->getOperand(3));
12551       cast<StoreSDNode>(N)->setTruncatingStore(true);
12552       return SDValue(N, 0);
12553     }
12554 
12555     // For little endian, VSX stores require generating xxswapd/lxvd2x.
12556     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
12557     if (Op1VT.isSimple()) {
12558       MVT StoreVT = Op1VT.getSimpleVT();
12559       if (Subtarget.needsSwapsForVSXMemOps() &&
12560           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
12561            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
12562         return expandVSXStoreForLE(N, DCI);
12563     }
12564     break;
12565   }
12566   case ISD::LOAD: {
12567     LoadSDNode *LD = cast<LoadSDNode>(N);
12568     EVT VT = LD->getValueType(0);
12569 
12570     // For little endian, VSX loads require generating lxvd2x/xxswapd.
12571     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
12572     if (VT.isSimple()) {
12573       MVT LoadVT = VT.getSimpleVT();
12574       if (Subtarget.needsSwapsForVSXMemOps() &&
12575           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
12576            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
12577         return expandVSXLoadForLE(N, DCI);
12578     }
12579 
12580     // We sometimes end up with a 64-bit integer load, from which we extract
12581     // two single-precision floating-point numbers. This happens with
12582     // std::complex<float>, and other similar structures, because of the way we
12583     // canonicalize structure copies. However, if we lack direct moves,
12584     // then the final bitcasts from the extracted integer values to the
12585     // floating-point numbers turn into store/load pairs. Even with direct moves,
12586     // just loading the two floating-point numbers is likely better.
12587     auto ReplaceTwoFloatLoad = [&]() {
12588       if (VT != MVT::i64)
12589         return false;
12590 
12591       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
12592           LD->isVolatile())
12593         return false;
12594 
12595       //  We're looking for a sequence like this:
12596       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
12597       //      t16: i64 = srl t13, Constant:i32<32>
12598       //    t17: i32 = truncate t16
12599       //  t18: f32 = bitcast t17
12600       //    t19: i32 = truncate t13
12601       //  t20: f32 = bitcast t19
12602 
12603       if (!LD->hasNUsesOfValue(2, 0))
12604         return false;
12605 
12606       auto UI = LD->use_begin();
12607       while (UI.getUse().getResNo() != 0) ++UI;
12608       SDNode *Trunc = *UI++;
12609       while (UI.getUse().getResNo() != 0) ++UI;
12610       SDNode *RightShift = *UI;
12611       if (Trunc->getOpcode() != ISD::TRUNCATE)
12612         std::swap(Trunc, RightShift);
12613 
12614       if (Trunc->getOpcode() != ISD::TRUNCATE ||
12615           Trunc->getValueType(0) != MVT::i32 ||
12616           !Trunc->hasOneUse())
12617         return false;
12618       if (RightShift->getOpcode() != ISD::SRL ||
12619           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
12620           RightShift->getConstantOperandVal(1) != 32 ||
12621           !RightShift->hasOneUse())
12622         return false;
12623 
12624       SDNode *Trunc2 = *RightShift->use_begin();
12625       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
12626           Trunc2->getValueType(0) != MVT::i32 ||
12627           !Trunc2->hasOneUse())
12628         return false;
12629 
12630       SDNode *Bitcast = *Trunc->use_begin();
12631       SDNode *Bitcast2 = *Trunc2->use_begin();
12632 
12633       if (Bitcast->getOpcode() != ISD::BITCAST ||
12634           Bitcast->getValueType(0) != MVT::f32)
12635         return false;
12636       if (Bitcast2->getOpcode() != ISD::BITCAST ||
12637           Bitcast2->getValueType(0) != MVT::f32)
12638         return false;
12639 
12640       if (Subtarget.isLittleEndian())
12641         std::swap(Bitcast, Bitcast2);
12642 
12643       // Bitcast has the second float (in memory-layout order) and Bitcast2
12644       // has the first one.
12645 
12646       SDValue BasePtr = LD->getBasePtr();
12647       if (LD->isIndexed()) {
12648         assert(LD->getAddressingMode() == ISD::PRE_INC &&
12649                "Non-pre-inc AM on PPC?");
12650         BasePtr =
12651           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
12652                       LD->getOffset());
12653       }
12654 
12655       auto MMOFlags =
12656           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
12657       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
12658                                       LD->getPointerInfo(), LD->getAlignment(),
12659                                       MMOFlags, LD->getAAInfo());
12660       SDValue AddPtr =
12661         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
12662                     BasePtr, DAG.getIntPtrConstant(4, dl));
12663       SDValue FloatLoad2 = DAG.getLoad(
12664           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
12665           LD->getPointerInfo().getWithOffset(4),
12666           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
12667 
12668       if (LD->isIndexed()) {
12669         // Note that DAGCombine should re-form any pre-increment load(s) from
12670         // what is produced here if that makes sense.
12671         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
12672       }
12673 
12674       DCI.CombineTo(Bitcast2, FloatLoad);
12675       DCI.CombineTo(Bitcast, FloatLoad2);
12676 
12677       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
12678                                     SDValue(FloatLoad2.getNode(), 1));
12679       return true;
12680     };
12681 
12682     if (ReplaceTwoFloatLoad())
12683       return SDValue(N, 0);
12684 
12685     EVT MemVT = LD->getMemoryVT();
12686     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
12687     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
12688     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
12689     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
12690     if (LD->isUnindexed() && VT.isVector() &&
12691         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
12692           // P8 and later hardware should just use LOAD.
12693           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
12694                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
12695          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
12696           LD->getAlignment() >= ScalarABIAlignment)) &&
12697         LD->getAlignment() < ABIAlignment) {
12698       // This is a type-legal unaligned Altivec or QPX load.
12699       SDValue Chain = LD->getChain();
12700       SDValue Ptr = LD->getBasePtr();
12701       bool isLittleEndian = Subtarget.isLittleEndian();
12702 
12703       // This implements the loading of unaligned vectors as described in
12704       // the venerable Apple Velocity Engine overview. Specifically:
12705       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
12706       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
12707       //
12708       // The general idea is to expand a sequence of one or more unaligned
12709       // loads into an alignment-based permutation-control instruction (lvsl
12710       // or lvsr), a series of regular vector loads (which always truncate
12711       // their input address to an aligned address), and a series of
12712       // permutations.  The results of these permutations are the requested
12713       // loaded values.  The trick is that the last "extra" load is not taken
12714       // from the address you might suspect (sizeof(vector) bytes after the
12715       // last requested load), but rather sizeof(vector) - 1 bytes after the
12716       // last requested vector. The point of this is to avoid a page fault if
12717       // the base address happened to be aligned. This works because if the
12718       // base address is aligned, then adding less than a full vector length
12719       // will cause the last vector in the sequence to be (re)loaded.
12720       // Otherwise, the next vector will be fetched as you might suspect was
12721       // necessary.
12722 
12723       // We might be able to reuse the permutation generation from
12724       // a different base address offset from this one by an aligned amount.
12725       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
12726       // optimization later.
12727       Intrinsic::ID Intr, IntrLD, IntrPerm;
12728       MVT PermCntlTy, PermTy, LDTy;
12729       if (Subtarget.hasAltivec()) {
12730         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
12731                                  Intrinsic::ppc_altivec_lvsl;
12732         IntrLD = Intrinsic::ppc_altivec_lvx;
12733         IntrPerm = Intrinsic::ppc_altivec_vperm;
12734         PermCntlTy = MVT::v16i8;
12735         PermTy = MVT::v4i32;
12736         LDTy = MVT::v4i32;
12737       } else {
12738         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
12739                                        Intrinsic::ppc_qpx_qvlpcls;
12740         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
12741                                        Intrinsic::ppc_qpx_qvlfs;
12742         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
12743         PermCntlTy = MVT::v4f64;
12744         PermTy = MVT::v4f64;
12745         LDTy = MemVT.getSimpleVT();
12746       }
12747 
12748       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
12749 
12750       // Create the new MMO for the new base load. It is like the original MMO,
12751       // but represents an area in memory almost twice the vector size centered
12752       // on the original address. If the address is unaligned, we might start
12753       // reading up to (sizeof(vector)-1) bytes below the address of the
12754       // original unaligned load.
12755       MachineFunction &MF = DAG.getMachineFunction();
12756       MachineMemOperand *BaseMMO =
12757         MF.getMachineMemOperand(LD->getMemOperand(),
12758                                 -(long)MemVT.getStoreSize()+1,
12759                                 2*MemVT.getStoreSize()-1);
12760 
12761       // Create the new base load.
12762       SDValue LDXIntID =
12763           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
12764       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
12765       SDValue BaseLoad =
12766         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
12767                                 DAG.getVTList(PermTy, MVT::Other),
12768                                 BaseLoadOps, LDTy, BaseMMO);
12769 
12770       // Note that the value of IncOffset (which is provided to the next
12771       // load's pointer info offset value, and thus used to calculate the
12772       // alignment), and the value of IncValue (which is actually used to
12773       // increment the pointer value) are different! This is because we
12774       // require the next load to appear to be aligned, even though it
12775       // is actually offset from the base pointer by a lesser amount.
12776       int IncOffset = VT.getSizeInBits() / 8;
12777       int IncValue = IncOffset;
12778 
12779       // Walk (both up and down) the chain looking for another load at the real
12780       // (aligned) offset (the alignment of the other load does not matter in
12781       // this case). If found, then do not use the offset reduction trick, as
12782       // that will prevent the loads from being later combined (as they would
12783       // otherwise be duplicates).
12784       if (!findConsecutiveLoad(LD, DAG))
12785         --IncValue;
12786 
12787       SDValue Increment =
12788           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
12789       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
12790 
12791       MachineMemOperand *ExtraMMO =
12792         MF.getMachineMemOperand(LD->getMemOperand(),
12793                                 1, 2*MemVT.getStoreSize()-1);
12794       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
12795       SDValue ExtraLoad =
12796         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
12797                                 DAG.getVTList(PermTy, MVT::Other),
12798                                 ExtraLoadOps, LDTy, ExtraMMO);
12799 
12800       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
12801         BaseLoad.getValue(1), ExtraLoad.getValue(1));
12802 
12803       // Because vperm has a big-endian bias, we must reverse the order
12804       // of the input vectors and complement the permute control vector
12805       // when generating little endian code.  We have already handled the
12806       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
12807       // and ExtraLoad here.
12808       SDValue Perm;
12809       if (isLittleEndian)
12810         Perm = BuildIntrinsicOp(IntrPerm,
12811                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
12812       else
12813         Perm = BuildIntrinsicOp(IntrPerm,
12814                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
12815 
12816       if (VT != PermTy)
12817         Perm = Subtarget.hasAltivec() ?
12818                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
12819                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
12820                                DAG.getTargetConstant(1, dl, MVT::i64));
12821                                // second argument is 1 because this rounding
12822                                // is always exact.
12823 
12824       // The output of the permutation is our loaded result, the TokenFactor is
12825       // our new chain.
12826       DCI.CombineTo(N, Perm, TF);
12827       return SDValue(N, 0);
12828     }
12829     }
12830     break;
12831     case ISD::INTRINSIC_WO_CHAIN: {
12832       bool isLittleEndian = Subtarget.isLittleEndian();
12833       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
12834       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
12835                                            : Intrinsic::ppc_altivec_lvsl);
12836       if ((IID == Intr ||
12837            IID == Intrinsic::ppc_qpx_qvlpcld  ||
12838            IID == Intrinsic::ppc_qpx_qvlpcls) &&
12839         N->getOperand(1)->getOpcode() == ISD::ADD) {
12840         SDValue Add = N->getOperand(1);
12841 
12842         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
12843                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
12844 
12845         if (DAG.MaskedValueIsZero(Add->getOperand(1),
12846                                   APInt::getAllOnesValue(Bits /* alignment */)
12847                                       .zext(Add.getScalarValueSizeInBits()))) {
12848           SDNode *BasePtr = Add->getOperand(0).getNode();
12849           for (SDNode::use_iterator UI = BasePtr->use_begin(),
12850                                     UE = BasePtr->use_end();
12851                UI != UE; ++UI) {
12852             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
12853                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
12854               // We've found another LVSL/LVSR, and this address is an aligned
12855               // multiple of that one. The results will be the same, so use the
12856               // one we've just found instead.
12857 
12858               return SDValue(*UI, 0);
12859             }
12860           }
12861         }
12862 
12863         if (isa<ConstantSDNode>(Add->getOperand(1))) {
12864           SDNode *BasePtr = Add->getOperand(0).getNode();
12865           for (SDNode::use_iterator UI = BasePtr->use_begin(),
12866                UE = BasePtr->use_end(); UI != UE; ++UI) {
12867             if (UI->getOpcode() == ISD::ADD &&
12868                 isa<ConstantSDNode>(UI->getOperand(1)) &&
12869                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
12870                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
12871                 (1ULL << Bits) == 0) {
12872               SDNode *OtherAdd = *UI;
12873               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
12874                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
12875                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
12876                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
12877                   return SDValue(*VI, 0);
12878                 }
12879               }
12880             }
12881           }
12882         }
12883       }
12884     }
12885 
12886     break;
12887   case ISD::INTRINSIC_W_CHAIN:
12888     // For little endian, VSX loads require generating lxvd2x/xxswapd.
12889     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
12890     if (Subtarget.needsSwapsForVSXMemOps()) {
12891       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12892       default:
12893         break;
12894       case Intrinsic::ppc_vsx_lxvw4x:
12895       case Intrinsic::ppc_vsx_lxvd2x:
12896         return expandVSXLoadForLE(N, DCI);
12897       }
12898     }
12899     break;
12900   case ISD::INTRINSIC_VOID:
12901     // For little endian, VSX stores require generating xxswapd/stxvd2x.
12902     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
12903     if (Subtarget.needsSwapsForVSXMemOps()) {
12904       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12905       default:
12906         break;
12907       case Intrinsic::ppc_vsx_stxvw4x:
12908       case Intrinsic::ppc_vsx_stxvd2x:
12909         return expandVSXStoreForLE(N, DCI);
12910       }
12911     }
12912     break;
12913   case ISD::BSWAP:
12914     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
12915     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
12916         N->getOperand(0).hasOneUse() &&
12917         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
12918          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
12919           N->getValueType(0) == MVT::i64))) {
12920       SDValue Load = N->getOperand(0);
12921       LoadSDNode *LD = cast<LoadSDNode>(Load);
12922       // Create the byte-swapping load.
12923       SDValue Ops[] = {
12924         LD->getChain(),    // Chain
12925         LD->getBasePtr(),  // Ptr
12926         DAG.getValueType(N->getValueType(0)) // VT
12927       };
12928       SDValue BSLoad =
12929         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
12930                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
12931                                               MVT::i64 : MVT::i32, MVT::Other),
12932                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
12933 
12934       // If this is an i16 load, insert the truncate.
12935       SDValue ResVal = BSLoad;
12936       if (N->getValueType(0) == MVT::i16)
12937         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
12938 
12939       // First, combine the bswap away.  This makes the value produced by the
12940       // load dead.
12941       DCI.CombineTo(N, ResVal);
12942 
12943       // Next, combine the load away, we give it a bogus result value but a real
12944       // chain result.  The result value is dead because the bswap is dead.
12945       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
12946 
12947       // Return N so it doesn't get rechecked!
12948       return SDValue(N, 0);
12949     }
12950     break;
12951   case PPCISD::VCMP:
12952     // If a VCMPo node already exists with exactly the same operands as this
12953     // node, use its result instead of this node (VCMPo computes both a CR6 and
12954     // a normal output).
12955     //
12956     if (!N->getOperand(0).hasOneUse() &&
12957         !N->getOperand(1).hasOneUse() &&
12958         !N->getOperand(2).hasOneUse()) {
12959 
12960       // Scan all of the users of the LHS, looking for VCMPo's that match.
12961       SDNode *VCMPoNode = nullptr;
12962 
12963       SDNode *LHSN = N->getOperand(0).getNode();
12964       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
12965            UI != E; ++UI)
12966         if (UI->getOpcode() == PPCISD::VCMPo &&
12967             UI->getOperand(1) == N->getOperand(1) &&
12968             UI->getOperand(2) == N->getOperand(2) &&
12969             UI->getOperand(0) == N->getOperand(0)) {
12970           VCMPoNode = *UI;
12971           break;
12972         }
12973 
12974       // If there is no VCMPo node, or if the flag value has a single use, don't
12975       // transform this.
12976       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
12977         break;
12978 
12979       // Look at the (necessarily single) use of the flag value.  If it has a
12980       // chain, this transformation is more complex.  Note that multiple things
12981       // could use the value result, which we should ignore.
12982       SDNode *FlagUser = nullptr;
12983       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
12984            FlagUser == nullptr; ++UI) {
12985         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
12986         SDNode *User = *UI;
12987         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
12988           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
12989             FlagUser = User;
12990             break;
12991           }
12992         }
12993       }
12994 
12995       // If the user is a MFOCRF instruction, we know this is safe.
12996       // Otherwise we give up for right now.
12997       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
12998         return SDValue(VCMPoNode, 0);
12999     }
13000     break;
13001   case ISD::BRCOND: {
13002     SDValue Cond = N->getOperand(1);
13003     SDValue Target = N->getOperand(2);
13004 
13005     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13006         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
13007           Intrinsic::ppc_is_decremented_ctr_nonzero) {
13008 
13009       // We now need to make the intrinsic dead (it cannot be instruction
13010       // selected).
13011       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
13012       assert(Cond.getNode()->hasOneUse() &&
13013              "Counter decrement has more than one use");
13014 
13015       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
13016                          N->getOperand(0), Target);
13017     }
13018   }
13019   break;
13020   case ISD::BR_CC: {
13021     // If this is a branch on an altivec predicate comparison, lower this so
13022     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
13023     // lowering is done pre-legalize, because the legalizer lowers the predicate
13024     // compare down to code that is difficult to reassemble.
13025     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
13026     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
13027 
13028     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
13029     // value. If so, pass-through the AND to get to the intrinsic.
13030     if (LHS.getOpcode() == ISD::AND &&
13031         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13032         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
13033           Intrinsic::ppc_is_decremented_ctr_nonzero &&
13034         isa<ConstantSDNode>(LHS.getOperand(1)) &&
13035         !isNullConstant(LHS.getOperand(1)))
13036       LHS = LHS.getOperand(0);
13037 
13038     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13039         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
13040           Intrinsic::ppc_is_decremented_ctr_nonzero &&
13041         isa<ConstantSDNode>(RHS)) {
13042       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
13043              "Counter decrement comparison is not EQ or NE");
13044 
13045       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
13046       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
13047                     (CC == ISD::SETNE && !Val);
13048 
13049       // We now need to make the intrinsic dead (it cannot be instruction
13050       // selected).
13051       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
13052       assert(LHS.getNode()->hasOneUse() &&
13053              "Counter decrement has more than one use");
13054 
13055       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
13056                          N->getOperand(0), N->getOperand(4));
13057     }
13058 
13059     int CompareOpc;
13060     bool isDot;
13061 
13062     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13063         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
13064         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
13065       assert(isDot && "Can't compare against a vector result!");
13066 
13067       // If this is a comparison against something other than 0/1, then we know
13068       // that the condition is never/always true.
13069       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
13070       if (Val != 0 && Val != 1) {
13071         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
13072           return N->getOperand(0);
13073         // Always !=, turn it into an unconditional branch.
13074         return DAG.getNode(ISD::BR, dl, MVT::Other,
13075                            N->getOperand(0), N->getOperand(4));
13076       }
13077 
13078       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
13079 
13080       // Create the PPCISD altivec 'dot' comparison node.
13081       SDValue Ops[] = {
13082         LHS.getOperand(2),  // LHS of compare
13083         LHS.getOperand(3),  // RHS of compare
13084         DAG.getConstant(CompareOpc, dl, MVT::i32)
13085       };
13086       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
13087       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
13088 
13089       // Unpack the result based on how the target uses it.
13090       PPC::Predicate CompOpc;
13091       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
13092       default:  // Can't happen, don't crash on invalid number though.
13093       case 0:   // Branch on the value of the EQ bit of CR6.
13094         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
13095         break;
13096       case 1:   // Branch on the inverted value of the EQ bit of CR6.
13097         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
13098         break;
13099       case 2:   // Branch on the value of the LT bit of CR6.
13100         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
13101         break;
13102       case 3:   // Branch on the inverted value of the LT bit of CR6.
13103         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
13104         break;
13105       }
13106 
13107       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
13108                          DAG.getConstant(CompOpc, dl, MVT::i32),
13109                          DAG.getRegister(PPC::CR6, MVT::i32),
13110                          N->getOperand(4), CompNode.getValue(1));
13111     }
13112     break;
13113   }
13114   case ISD::BUILD_VECTOR:
13115     return DAGCombineBuildVector(N, DCI);
13116   }
13117 
13118   return SDValue();
13119 }
13120 
13121 SDValue
13122 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
13123                                  SelectionDAG &DAG,
13124                                  SmallVectorImpl<SDNode *> &Created) const {
13125   // fold (sdiv X, pow2)
13126   EVT VT = N->getValueType(0);
13127   if (VT == MVT::i64 && !Subtarget.isPPC64())
13128     return SDValue();
13129   if ((VT != MVT::i32 && VT != MVT::i64) ||
13130       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
13131     return SDValue();
13132 
13133   SDLoc DL(N);
13134   SDValue N0 = N->getOperand(0);
13135 
13136   bool IsNegPow2 = (-Divisor).isPowerOf2();
13137   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
13138   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
13139 
13140   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
13141   Created.push_back(Op.getNode());
13142 
13143   if (IsNegPow2) {
13144     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
13145     Created.push_back(Op.getNode());
13146   }
13147 
13148   return Op;
13149 }
13150 
13151 //===----------------------------------------------------------------------===//
13152 // Inline Assembly Support
13153 //===----------------------------------------------------------------------===//
13154 
13155 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
13156                                                       KnownBits &Known,
13157                                                       const APInt &DemandedElts,
13158                                                       const SelectionDAG &DAG,
13159                                                       unsigned Depth) const {
13160   Known.resetAll();
13161   switch (Op.getOpcode()) {
13162   default: break;
13163   case PPCISD::LBRX: {
13164     // lhbrx is known to have the top bits cleared out.
13165     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
13166       Known.Zero = 0xFFFF0000;
13167     break;
13168   }
13169   case ISD::INTRINSIC_WO_CHAIN: {
13170     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
13171     default: break;
13172     case Intrinsic::ppc_altivec_vcmpbfp_p:
13173     case Intrinsic::ppc_altivec_vcmpeqfp_p:
13174     case Intrinsic::ppc_altivec_vcmpequb_p:
13175     case Intrinsic::ppc_altivec_vcmpequh_p:
13176     case Intrinsic::ppc_altivec_vcmpequw_p:
13177     case Intrinsic::ppc_altivec_vcmpequd_p:
13178     case Intrinsic::ppc_altivec_vcmpgefp_p:
13179     case Intrinsic::ppc_altivec_vcmpgtfp_p:
13180     case Intrinsic::ppc_altivec_vcmpgtsb_p:
13181     case Intrinsic::ppc_altivec_vcmpgtsh_p:
13182     case Intrinsic::ppc_altivec_vcmpgtsw_p:
13183     case Intrinsic::ppc_altivec_vcmpgtsd_p:
13184     case Intrinsic::ppc_altivec_vcmpgtub_p:
13185     case Intrinsic::ppc_altivec_vcmpgtuh_p:
13186     case Intrinsic::ppc_altivec_vcmpgtuw_p:
13187     case Intrinsic::ppc_altivec_vcmpgtud_p:
13188       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
13189       break;
13190     }
13191   }
13192   }
13193 }
13194 
13195 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
13196   switch (Subtarget.getDarwinDirective()) {
13197   default: break;
13198   case PPC::DIR_970:
13199   case PPC::DIR_PWR4:
13200   case PPC::DIR_PWR5:
13201   case PPC::DIR_PWR5X:
13202   case PPC::DIR_PWR6:
13203   case PPC::DIR_PWR6X:
13204   case PPC::DIR_PWR7:
13205   case PPC::DIR_PWR8:
13206   case PPC::DIR_PWR9: {
13207     if (!ML)
13208       break;
13209 
13210     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
13211 
13212     // For small loops (between 5 and 8 instructions), align to a 32-byte
13213     // boundary so that the entire loop fits in one instruction-cache line.
13214     uint64_t LoopSize = 0;
13215     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
13216       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
13217         LoopSize += TII->getInstSizeInBytes(*J);
13218         if (LoopSize > 32)
13219           break;
13220       }
13221 
13222     if (LoopSize > 16 && LoopSize <= 32)
13223       return 5;
13224 
13225     break;
13226   }
13227   }
13228 
13229   return TargetLowering::getPrefLoopAlignment(ML);
13230 }
13231 
13232 /// getConstraintType - Given a constraint, return the type of
13233 /// constraint it is for this target.
13234 PPCTargetLowering::ConstraintType
13235 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
13236   if (Constraint.size() == 1) {
13237     switch (Constraint[0]) {
13238     default: break;
13239     case 'b':
13240     case 'r':
13241     case 'f':
13242     case 'd':
13243     case 'v':
13244     case 'y':
13245       return C_RegisterClass;
13246     case 'Z':
13247       // FIXME: While Z does indicate a memory constraint, it specifically
13248       // indicates an r+r address (used in conjunction with the 'y' modifier
13249       // in the replacement string). Currently, we're forcing the base
13250       // register to be r0 in the asm printer (which is interpreted as zero)
13251       // and forming the complete address in the second register. This is
13252       // suboptimal.
13253       return C_Memory;
13254     }
13255   } else if (Constraint == "wc") { // individual CR bits.
13256     return C_RegisterClass;
13257   } else if (Constraint == "wa" || Constraint == "wd" ||
13258              Constraint == "wf" || Constraint == "ws") {
13259     return C_RegisterClass; // VSX registers.
13260   }
13261   return TargetLowering::getConstraintType(Constraint);
13262 }
13263 
13264 /// Examine constraint type and operand type and determine a weight value.
13265 /// This object must already have been set up with the operand type
13266 /// and the current alternative constraint selected.
13267 TargetLowering::ConstraintWeight
13268 PPCTargetLowering::getSingleConstraintMatchWeight(
13269     AsmOperandInfo &info, const char *constraint) const {
13270   ConstraintWeight weight = CW_Invalid;
13271   Value *CallOperandVal = info.CallOperandVal;
13272     // If we don't have a value, we can't do a match,
13273     // but allow it at the lowest weight.
13274   if (!CallOperandVal)
13275     return CW_Default;
13276   Type *type = CallOperandVal->getType();
13277 
13278   // Look at the constraint type.
13279   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
13280     return CW_Register; // an individual CR bit.
13281   else if ((StringRef(constraint) == "wa" ||
13282             StringRef(constraint) == "wd" ||
13283             StringRef(constraint) == "wf") &&
13284            type->isVectorTy())
13285     return CW_Register;
13286   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
13287     return CW_Register;
13288 
13289   switch (*constraint) {
13290   default:
13291     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
13292     break;
13293   case 'b':
13294     if (type->isIntegerTy())
13295       weight = CW_Register;
13296     break;
13297   case 'f':
13298     if (type->isFloatTy())
13299       weight = CW_Register;
13300     break;
13301   case 'd':
13302     if (type->isDoubleTy())
13303       weight = CW_Register;
13304     break;
13305   case 'v':
13306     if (type->isVectorTy())
13307       weight = CW_Register;
13308     break;
13309   case 'y':
13310     weight = CW_Register;
13311     break;
13312   case 'Z':
13313     weight = CW_Memory;
13314     break;
13315   }
13316   return weight;
13317 }
13318 
13319 std::pair<unsigned, const TargetRegisterClass *>
13320 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
13321                                                 StringRef Constraint,
13322                                                 MVT VT) const {
13323   if (Constraint.size() == 1) {
13324     // GCC RS6000 Constraint Letters
13325     switch (Constraint[0]) {
13326     case 'b':   // R1-R31
13327       if (VT == MVT::i64 && Subtarget.isPPC64())
13328         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
13329       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
13330     case 'r':   // R0-R31
13331       if (VT == MVT::i64 && Subtarget.isPPC64())
13332         return std::make_pair(0U, &PPC::G8RCRegClass);
13333       return std::make_pair(0U, &PPC::GPRCRegClass);
13334     // 'd' and 'f' constraints are both defined to be "the floating point
13335     // registers", where one is for 32-bit and the other for 64-bit. We don't
13336     // really care overly much here so just give them all the same reg classes.
13337     case 'd':
13338     case 'f':
13339       if (Subtarget.hasSPE()) {
13340         if (VT == MVT::f32 || VT == MVT::i32)
13341           return std::make_pair(0U, &PPC::SPE4RCRegClass);
13342         if (VT == MVT::f64 || VT == MVT::i64)
13343           return std::make_pair(0U, &PPC::SPERCRegClass);
13344       } else {
13345         if (VT == MVT::f32 || VT == MVT::i32)
13346           return std::make_pair(0U, &PPC::F4RCRegClass);
13347         if (VT == MVT::f64 || VT == MVT::i64)
13348           return std::make_pair(0U, &PPC::F8RCRegClass);
13349         if (VT == MVT::v4f64 && Subtarget.hasQPX())
13350           return std::make_pair(0U, &PPC::QFRCRegClass);
13351         if (VT == MVT::v4f32 && Subtarget.hasQPX())
13352           return std::make_pair(0U, &PPC::QSRCRegClass);
13353       }
13354       break;
13355     case 'v':
13356       if (VT == MVT::v4f64 && Subtarget.hasQPX())
13357         return std::make_pair(0U, &PPC::QFRCRegClass);
13358       if (VT == MVT::v4f32 && Subtarget.hasQPX())
13359         return std::make_pair(0U, &PPC::QSRCRegClass);
13360       if (Subtarget.hasAltivec())
13361         return std::make_pair(0U, &PPC::VRRCRegClass);
13362       break;
13363     case 'y':   // crrc
13364       return std::make_pair(0U, &PPC::CRRCRegClass);
13365     }
13366   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
13367     // An individual CR bit.
13368     return std::make_pair(0U, &PPC::CRBITRCRegClass);
13369   } else if ((Constraint == "wa" || Constraint == "wd" ||
13370              Constraint == "wf") && Subtarget.hasVSX()) {
13371     return std::make_pair(0U, &PPC::VSRCRegClass);
13372   } else if (Constraint == "ws" && Subtarget.hasVSX()) {
13373     if (VT == MVT::f32 && Subtarget.hasP8Vector())
13374       return std::make_pair(0U, &PPC::VSSRCRegClass);
13375     else
13376       return std::make_pair(0U, &PPC::VSFRCRegClass);
13377   }
13378 
13379   std::pair<unsigned, const TargetRegisterClass *> R =
13380       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
13381 
13382   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
13383   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
13384   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
13385   // register.
13386   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
13387   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
13388   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
13389       PPC::GPRCRegClass.contains(R.first))
13390     return std::make_pair(TRI->getMatchingSuperReg(R.first,
13391                             PPC::sub_32, &PPC::G8RCRegClass),
13392                           &PPC::G8RCRegClass);
13393 
13394   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
13395   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
13396     R.first = PPC::CR0;
13397     R.second = &PPC::CRRCRegClass;
13398   }
13399 
13400   return R;
13401 }
13402 
13403 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
13404 /// vector.  If it is invalid, don't add anything to Ops.
13405 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
13406                                                      std::string &Constraint,
13407                                                      std::vector<SDValue>&Ops,
13408                                                      SelectionDAG &DAG) const {
13409   SDValue Result;
13410 
13411   // Only support length 1 constraints.
13412   if (Constraint.length() > 1) return;
13413 
13414   char Letter = Constraint[0];
13415   switch (Letter) {
13416   default: break;
13417   case 'I':
13418   case 'J':
13419   case 'K':
13420   case 'L':
13421   case 'M':
13422   case 'N':
13423   case 'O':
13424   case 'P': {
13425     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
13426     if (!CST) return; // Must be an immediate to match.
13427     SDLoc dl(Op);
13428     int64_t Value = CST->getSExtValue();
13429     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
13430                          // numbers are printed as such.
13431     switch (Letter) {
13432     default: llvm_unreachable("Unknown constraint letter!");
13433     case 'I':  // "I" is a signed 16-bit constant.
13434       if (isInt<16>(Value))
13435         Result = DAG.getTargetConstant(Value, dl, TCVT);
13436       break;
13437     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
13438       if (isShiftedUInt<16, 16>(Value))
13439         Result = DAG.getTargetConstant(Value, dl, TCVT);
13440       break;
13441     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
13442       if (isShiftedInt<16, 16>(Value))
13443         Result = DAG.getTargetConstant(Value, dl, TCVT);
13444       break;
13445     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
13446       if (isUInt<16>(Value))
13447         Result = DAG.getTargetConstant(Value, dl, TCVT);
13448       break;
13449     case 'M':  // "M" is a constant that is greater than 31.
13450       if (Value > 31)
13451         Result = DAG.getTargetConstant(Value, dl, TCVT);
13452       break;
13453     case 'N':  // "N" is a positive constant that is an exact power of two.
13454       if (Value > 0 && isPowerOf2_64(Value))
13455         Result = DAG.getTargetConstant(Value, dl, TCVT);
13456       break;
13457     case 'O':  // "O" is the constant zero.
13458       if (Value == 0)
13459         Result = DAG.getTargetConstant(Value, dl, TCVT);
13460       break;
13461     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
13462       if (isInt<16>(-Value))
13463         Result = DAG.getTargetConstant(Value, dl, TCVT);
13464       break;
13465     }
13466     break;
13467   }
13468   }
13469 
13470   if (Result.getNode()) {
13471     Ops.push_back(Result);
13472     return;
13473   }
13474 
13475   // Handle standard constraint letters.
13476   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
13477 }
13478 
13479 // isLegalAddressingMode - Return true if the addressing mode represented
13480 // by AM is legal for this target, for a load/store of the specified type.
13481 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
13482                                               const AddrMode &AM, Type *Ty,
13483                                               unsigned AS, Instruction *I) const {
13484   // PPC does not allow r+i addressing modes for vectors!
13485   if (Ty->isVectorTy() && AM.BaseOffs != 0)
13486     return false;
13487 
13488   // PPC allows a sign-extended 16-bit immediate field.
13489   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
13490     return false;
13491 
13492   // No global is ever allowed as a base.
13493   if (AM.BaseGV)
13494     return false;
13495 
13496   // PPC only support r+r,
13497   switch (AM.Scale) {
13498   case 0:  // "r+i" or just "i", depending on HasBaseReg.
13499     break;
13500   case 1:
13501     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
13502       return false;
13503     // Otherwise we have r+r or r+i.
13504     break;
13505   case 2:
13506     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
13507       return false;
13508     // Allow 2*r as r+r.
13509     break;
13510   default:
13511     // No other scales are supported.
13512     return false;
13513   }
13514 
13515   return true;
13516 }
13517 
13518 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
13519                                            SelectionDAG &DAG) const {
13520   MachineFunction &MF = DAG.getMachineFunction();
13521   MachineFrameInfo &MFI = MF.getFrameInfo();
13522   MFI.setReturnAddressIsTaken(true);
13523 
13524   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
13525     return SDValue();
13526 
13527   SDLoc dl(Op);
13528   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13529 
13530   // Make sure the function does not optimize away the store of the RA to
13531   // the stack.
13532   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
13533   FuncInfo->setLRStoreRequired();
13534   bool isPPC64 = Subtarget.isPPC64();
13535   auto PtrVT = getPointerTy(MF.getDataLayout());
13536 
13537   if (Depth > 0) {
13538     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
13539     SDValue Offset =
13540         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
13541                         isPPC64 ? MVT::i64 : MVT::i32);
13542     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
13543                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
13544                        MachinePointerInfo());
13545   }
13546 
13547   // Just load the return address off the stack.
13548   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
13549   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
13550                      MachinePointerInfo());
13551 }
13552 
13553 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
13554                                           SelectionDAG &DAG) const {
13555   SDLoc dl(Op);
13556   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13557 
13558   MachineFunction &MF = DAG.getMachineFunction();
13559   MachineFrameInfo &MFI = MF.getFrameInfo();
13560   MFI.setFrameAddressIsTaken(true);
13561 
13562   EVT PtrVT = getPointerTy(MF.getDataLayout());
13563   bool isPPC64 = PtrVT == MVT::i64;
13564 
13565   // Naked functions never have a frame pointer, and so we use r1. For all
13566   // other functions, this decision must be delayed until during PEI.
13567   unsigned FrameReg;
13568   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
13569     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
13570   else
13571     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
13572 
13573   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
13574                                          PtrVT);
13575   while (Depth--)
13576     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
13577                             FrameAddr, MachinePointerInfo());
13578   return FrameAddr;
13579 }
13580 
13581 // FIXME? Maybe this could be a TableGen attribute on some registers and
13582 // this table could be generated automatically from RegInfo.
13583 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
13584                                               SelectionDAG &DAG) const {
13585   bool isPPC64 = Subtarget.isPPC64();
13586   bool isDarwinABI = Subtarget.isDarwinABI();
13587 
13588   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
13589       (!isPPC64 && VT != MVT::i32))
13590     report_fatal_error("Invalid register global variable type");
13591 
13592   bool is64Bit = isPPC64 && VT == MVT::i64;
13593   unsigned Reg = StringSwitch<unsigned>(RegName)
13594                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
13595                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
13596                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
13597                                   (is64Bit ? PPC::X13 : PPC::R13))
13598                    .Default(0);
13599 
13600   if (Reg)
13601     return Reg;
13602   report_fatal_error("Invalid register name global variable");
13603 }
13604 
13605 bool
13606 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
13607   // The PowerPC target isn't yet aware of offsets.
13608   return false;
13609 }
13610 
13611 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
13612                                            const CallInst &I,
13613                                            MachineFunction &MF,
13614                                            unsigned Intrinsic) const {
13615   switch (Intrinsic) {
13616   case Intrinsic::ppc_qpx_qvlfd:
13617   case Intrinsic::ppc_qpx_qvlfs:
13618   case Intrinsic::ppc_qpx_qvlfcd:
13619   case Intrinsic::ppc_qpx_qvlfcs:
13620   case Intrinsic::ppc_qpx_qvlfiwa:
13621   case Intrinsic::ppc_qpx_qvlfiwz:
13622   case Intrinsic::ppc_altivec_lvx:
13623   case Intrinsic::ppc_altivec_lvxl:
13624   case Intrinsic::ppc_altivec_lvebx:
13625   case Intrinsic::ppc_altivec_lvehx:
13626   case Intrinsic::ppc_altivec_lvewx:
13627   case Intrinsic::ppc_vsx_lxvd2x:
13628   case Intrinsic::ppc_vsx_lxvw4x: {
13629     EVT VT;
13630     switch (Intrinsic) {
13631     case Intrinsic::ppc_altivec_lvebx:
13632       VT = MVT::i8;
13633       break;
13634     case Intrinsic::ppc_altivec_lvehx:
13635       VT = MVT::i16;
13636       break;
13637     case Intrinsic::ppc_altivec_lvewx:
13638       VT = MVT::i32;
13639       break;
13640     case Intrinsic::ppc_vsx_lxvd2x:
13641       VT = MVT::v2f64;
13642       break;
13643     case Intrinsic::ppc_qpx_qvlfd:
13644       VT = MVT::v4f64;
13645       break;
13646     case Intrinsic::ppc_qpx_qvlfs:
13647       VT = MVT::v4f32;
13648       break;
13649     case Intrinsic::ppc_qpx_qvlfcd:
13650       VT = MVT::v2f64;
13651       break;
13652     case Intrinsic::ppc_qpx_qvlfcs:
13653       VT = MVT::v2f32;
13654       break;
13655     default:
13656       VT = MVT::v4i32;
13657       break;
13658     }
13659 
13660     Info.opc = ISD::INTRINSIC_W_CHAIN;
13661     Info.memVT = VT;
13662     Info.ptrVal = I.getArgOperand(0);
13663     Info.offset = -VT.getStoreSize()+1;
13664     Info.size = 2*VT.getStoreSize()-1;
13665     Info.align = 1;
13666     Info.flags = MachineMemOperand::MOLoad;
13667     return true;
13668   }
13669   case Intrinsic::ppc_qpx_qvlfda:
13670   case Intrinsic::ppc_qpx_qvlfsa:
13671   case Intrinsic::ppc_qpx_qvlfcda:
13672   case Intrinsic::ppc_qpx_qvlfcsa:
13673   case Intrinsic::ppc_qpx_qvlfiwaa:
13674   case Intrinsic::ppc_qpx_qvlfiwza: {
13675     EVT VT;
13676     switch (Intrinsic) {
13677     case Intrinsic::ppc_qpx_qvlfda:
13678       VT = MVT::v4f64;
13679       break;
13680     case Intrinsic::ppc_qpx_qvlfsa:
13681       VT = MVT::v4f32;
13682       break;
13683     case Intrinsic::ppc_qpx_qvlfcda:
13684       VT = MVT::v2f64;
13685       break;
13686     case Intrinsic::ppc_qpx_qvlfcsa:
13687       VT = MVT::v2f32;
13688       break;
13689     default:
13690       VT = MVT::v4i32;
13691       break;
13692     }
13693 
13694     Info.opc = ISD::INTRINSIC_W_CHAIN;
13695     Info.memVT = VT;
13696     Info.ptrVal = I.getArgOperand(0);
13697     Info.offset = 0;
13698     Info.size = VT.getStoreSize();
13699     Info.align = 1;
13700     Info.flags = MachineMemOperand::MOLoad;
13701     return true;
13702   }
13703   case Intrinsic::ppc_qpx_qvstfd:
13704   case Intrinsic::ppc_qpx_qvstfs:
13705   case Intrinsic::ppc_qpx_qvstfcd:
13706   case Intrinsic::ppc_qpx_qvstfcs:
13707   case Intrinsic::ppc_qpx_qvstfiw:
13708   case Intrinsic::ppc_altivec_stvx:
13709   case Intrinsic::ppc_altivec_stvxl:
13710   case Intrinsic::ppc_altivec_stvebx:
13711   case Intrinsic::ppc_altivec_stvehx:
13712   case Intrinsic::ppc_altivec_stvewx:
13713   case Intrinsic::ppc_vsx_stxvd2x:
13714   case Intrinsic::ppc_vsx_stxvw4x: {
13715     EVT VT;
13716     switch (Intrinsic) {
13717     case Intrinsic::ppc_altivec_stvebx:
13718       VT = MVT::i8;
13719       break;
13720     case Intrinsic::ppc_altivec_stvehx:
13721       VT = MVT::i16;
13722       break;
13723     case Intrinsic::ppc_altivec_stvewx:
13724       VT = MVT::i32;
13725       break;
13726     case Intrinsic::ppc_vsx_stxvd2x:
13727       VT = MVT::v2f64;
13728       break;
13729     case Intrinsic::ppc_qpx_qvstfd:
13730       VT = MVT::v4f64;
13731       break;
13732     case Intrinsic::ppc_qpx_qvstfs:
13733       VT = MVT::v4f32;
13734       break;
13735     case Intrinsic::ppc_qpx_qvstfcd:
13736       VT = MVT::v2f64;
13737       break;
13738     case Intrinsic::ppc_qpx_qvstfcs:
13739       VT = MVT::v2f32;
13740       break;
13741     default:
13742       VT = MVT::v4i32;
13743       break;
13744     }
13745 
13746     Info.opc = ISD::INTRINSIC_VOID;
13747     Info.memVT = VT;
13748     Info.ptrVal = I.getArgOperand(1);
13749     Info.offset = -VT.getStoreSize()+1;
13750     Info.size = 2*VT.getStoreSize()-1;
13751     Info.align = 1;
13752     Info.flags = MachineMemOperand::MOStore;
13753     return true;
13754   }
13755   case Intrinsic::ppc_qpx_qvstfda:
13756   case Intrinsic::ppc_qpx_qvstfsa:
13757   case Intrinsic::ppc_qpx_qvstfcda:
13758   case Intrinsic::ppc_qpx_qvstfcsa:
13759   case Intrinsic::ppc_qpx_qvstfiwa: {
13760     EVT VT;
13761     switch (Intrinsic) {
13762     case Intrinsic::ppc_qpx_qvstfda:
13763       VT = MVT::v4f64;
13764       break;
13765     case Intrinsic::ppc_qpx_qvstfsa:
13766       VT = MVT::v4f32;
13767       break;
13768     case Intrinsic::ppc_qpx_qvstfcda:
13769       VT = MVT::v2f64;
13770       break;
13771     case Intrinsic::ppc_qpx_qvstfcsa:
13772       VT = MVT::v2f32;
13773       break;
13774     default:
13775       VT = MVT::v4i32;
13776       break;
13777     }
13778 
13779     Info.opc = ISD::INTRINSIC_VOID;
13780     Info.memVT = VT;
13781     Info.ptrVal = I.getArgOperand(1);
13782     Info.offset = 0;
13783     Info.size = VT.getStoreSize();
13784     Info.align = 1;
13785     Info.flags = MachineMemOperand::MOStore;
13786     return true;
13787   }
13788   default:
13789     break;
13790   }
13791 
13792   return false;
13793 }
13794 
13795 /// getOptimalMemOpType - Returns the target specific optimal type for load
13796 /// and store operations as a result of memset, memcpy, and memmove
13797 /// lowering. If DstAlign is zero that means it's safe to destination
13798 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
13799 /// means there isn't a need to check it against alignment requirement,
13800 /// probably because the source does not need to be loaded. If 'IsMemset' is
13801 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
13802 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
13803 /// source is constant so it does not need to be loaded.
13804 /// It returns EVT::Other if the type should be determined using generic
13805 /// target-independent logic.
13806 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
13807                                            unsigned DstAlign, unsigned SrcAlign,
13808                                            bool IsMemset, bool ZeroMemset,
13809                                            bool MemcpyStrSrc,
13810                                            MachineFunction &MF) const {
13811   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
13812     const Function &F = MF.getFunction();
13813     // When expanding a memset, require at least two QPX instructions to cover
13814     // the cost of loading the value to be stored from the constant pool.
13815     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
13816        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
13817         !F.hasFnAttribute(Attribute::NoImplicitFloat)) {
13818       return MVT::v4f64;
13819     }
13820 
13821     // We should use Altivec/VSX loads and stores when available. For unaligned
13822     // addresses, unaligned VSX loads are only fast starting with the P8.
13823     if (Subtarget.hasAltivec() && Size >= 16 &&
13824         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
13825          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
13826       return MVT::v4i32;
13827   }
13828 
13829   if (Subtarget.isPPC64()) {
13830     return MVT::i64;
13831   }
13832 
13833   return MVT::i32;
13834 }
13835 
13836 /// Returns true if it is beneficial to convert a load of a constant
13837 /// to just the constant itself.
13838 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
13839                                                           Type *Ty) const {
13840   assert(Ty->isIntegerTy());
13841 
13842   unsigned BitSize = Ty->getPrimitiveSizeInBits();
13843   return !(BitSize == 0 || BitSize > 64);
13844 }
13845 
13846 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
13847   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
13848     return false;
13849   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
13850   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
13851   return NumBits1 == 64 && NumBits2 == 32;
13852 }
13853 
13854 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
13855   if (!VT1.isInteger() || !VT2.isInteger())
13856     return false;
13857   unsigned NumBits1 = VT1.getSizeInBits();
13858   unsigned NumBits2 = VT2.getSizeInBits();
13859   return NumBits1 == 64 && NumBits2 == 32;
13860 }
13861 
13862 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
13863   // Generally speaking, zexts are not free, but they are free when they can be
13864   // folded with other operations.
13865   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
13866     EVT MemVT = LD->getMemoryVT();
13867     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
13868          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
13869         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
13870          LD->getExtensionType() == ISD::ZEXTLOAD))
13871       return true;
13872   }
13873 
13874   // FIXME: Add other cases...
13875   //  - 32-bit shifts with a zext to i64
13876   //  - zext after ctlz, bswap, etc.
13877   //  - zext after and by a constant mask
13878 
13879   return TargetLowering::isZExtFree(Val, VT2);
13880 }
13881 
13882 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
13883   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
13884          "invalid fpext types");
13885   // Extending to float128 is not free.
13886   if (DestVT == MVT::f128)
13887     return false;
13888   return true;
13889 }
13890 
13891 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
13892   return isInt<16>(Imm) || isUInt<16>(Imm);
13893 }
13894 
13895 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
13896   return isInt<16>(Imm) || isUInt<16>(Imm);
13897 }
13898 
13899 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
13900                                                        unsigned,
13901                                                        unsigned,
13902                                                        bool *Fast) const {
13903   if (DisablePPCUnaligned)
13904     return false;
13905 
13906   // PowerPC supports unaligned memory access for simple non-vector types.
13907   // Although accessing unaligned addresses is not as efficient as accessing
13908   // aligned addresses, it is generally more efficient than manual expansion,
13909   // and generally only traps for software emulation when crossing page
13910   // boundaries.
13911 
13912   if (!VT.isSimple())
13913     return false;
13914 
13915   if (VT.getSimpleVT().isVector()) {
13916     if (Subtarget.hasVSX()) {
13917       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
13918           VT != MVT::v4f32 && VT != MVT::v4i32)
13919         return false;
13920     } else {
13921       return false;
13922     }
13923   }
13924 
13925   if (VT == MVT::ppcf128)
13926     return false;
13927 
13928   if (Fast)
13929     *Fast = true;
13930 
13931   return true;
13932 }
13933 
13934 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
13935   VT = VT.getScalarType();
13936 
13937   if (!VT.isSimple())
13938     return false;
13939 
13940   switch (VT.getSimpleVT().SimpleTy) {
13941   case MVT::f32:
13942   case MVT::f64:
13943     return true;
13944   case MVT::f128:
13945     return (EnableQuadPrecision && Subtarget.hasP9Vector());
13946   default:
13947     break;
13948   }
13949 
13950   return false;
13951 }
13952 
13953 const MCPhysReg *
13954 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
13955   // LR is a callee-save register, but we must treat it as clobbered by any call
13956   // site. Hence we include LR in the scratch registers, which are in turn added
13957   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
13958   // to CTR, which is used by any indirect call.
13959   static const MCPhysReg ScratchRegs[] = {
13960     PPC::X12, PPC::LR8, PPC::CTR8, 0
13961   };
13962 
13963   return ScratchRegs;
13964 }
13965 
13966 unsigned PPCTargetLowering::getExceptionPointerRegister(
13967     const Constant *PersonalityFn) const {
13968   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
13969 }
13970 
13971 unsigned PPCTargetLowering::getExceptionSelectorRegister(
13972     const Constant *PersonalityFn) const {
13973   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
13974 }
13975 
13976 bool
13977 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
13978                      EVT VT , unsigned DefinedValues) const {
13979   if (VT == MVT::v2i64)
13980     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
13981 
13982   if (Subtarget.hasVSX() || Subtarget.hasQPX())
13983     return true;
13984 
13985   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
13986 }
13987 
13988 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
13989   if (DisableILPPref || Subtarget.enableMachineScheduler())
13990     return TargetLowering::getSchedulingPreference(N);
13991 
13992   return Sched::ILP;
13993 }
13994 
13995 // Create a fast isel object.
13996 FastISel *
13997 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
13998                                   const TargetLibraryInfo *LibInfo) const {
13999   return PPC::createFastISel(FuncInfo, LibInfo);
14000 }
14001 
14002 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
14003   if (Subtarget.isDarwinABI()) return;
14004   if (!Subtarget.isPPC64()) return;
14005 
14006   // Update IsSplitCSR in PPCFunctionInfo
14007   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
14008   PFI->setIsSplitCSR(true);
14009 }
14010 
14011 void PPCTargetLowering::insertCopiesSplitCSR(
14012   MachineBasicBlock *Entry,
14013   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
14014   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
14015   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
14016   if (!IStart)
14017     return;
14018 
14019   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
14020   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
14021   MachineBasicBlock::iterator MBBI = Entry->begin();
14022   for (const MCPhysReg *I = IStart; *I; ++I) {
14023     const TargetRegisterClass *RC = nullptr;
14024     if (PPC::G8RCRegClass.contains(*I))
14025       RC = &PPC::G8RCRegClass;
14026     else if (PPC::F8RCRegClass.contains(*I))
14027       RC = &PPC::F8RCRegClass;
14028     else if (PPC::CRRCRegClass.contains(*I))
14029       RC = &PPC::CRRCRegClass;
14030     else if (PPC::VRRCRegClass.contains(*I))
14031       RC = &PPC::VRRCRegClass;
14032     else
14033       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
14034 
14035     unsigned NewVR = MRI->createVirtualRegister(RC);
14036     // Create copy from CSR to a virtual register.
14037     // FIXME: this currently does not emit CFI pseudo-instructions, it works
14038     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
14039     // nounwind. If we want to generalize this later, we may need to emit
14040     // CFI pseudo-instructions.
14041     assert(Entry->getParent()->getFunction().hasFnAttribute(
14042              Attribute::NoUnwind) &&
14043            "Function should be nounwind in insertCopiesSplitCSR!");
14044     Entry->addLiveIn(*I);
14045     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
14046       .addReg(*I);
14047 
14048     // Insert the copy-back instructions right before the terminator
14049     for (auto *Exit : Exits)
14050       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
14051               TII->get(TargetOpcode::COPY), *I)
14052         .addReg(NewVR);
14053   }
14054 }
14055 
14056 // Override to enable LOAD_STACK_GUARD lowering on Linux.
14057 bool PPCTargetLowering::useLoadStackGuardNode() const {
14058   if (!Subtarget.isTargetLinux())
14059     return TargetLowering::useLoadStackGuardNode();
14060   return true;
14061 }
14062 
14063 // Override to disable global variable loading on Linux.
14064 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
14065   if (!Subtarget.isTargetLinux())
14066     return TargetLowering::insertSSPDeclarations(M);
14067 }
14068 
14069 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
14070   if (!VT.isSimple() || !Subtarget.hasVSX())
14071     return false;
14072 
14073   switch(VT.getSimpleVT().SimpleTy) {
14074   default:
14075     // For FP types that are currently not supported by PPC backend, return
14076     // false. Examples: f16, f80.
14077     return false;
14078   case MVT::f32:
14079   case MVT::f64:
14080   case MVT::ppcf128:
14081     return Imm.isPosZero();
14082   }
14083 }
14084 
14085 // For vector shift operation op, fold
14086 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
14087 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
14088                                   SelectionDAG &DAG) {
14089   SDValue N0 = N->getOperand(0);
14090   SDValue N1 = N->getOperand(1);
14091   EVT VT = N0.getValueType();
14092   unsigned OpSizeInBits = VT.getScalarSizeInBits();
14093   unsigned Opcode = N->getOpcode();
14094   unsigned TargetOpcode;
14095 
14096   switch (Opcode) {
14097   default:
14098     llvm_unreachable("Unexpected shift operation");
14099   case ISD::SHL:
14100     TargetOpcode = PPCISD::SHL;
14101     break;
14102   case ISD::SRL:
14103     TargetOpcode = PPCISD::SRL;
14104     break;
14105   case ISD::SRA:
14106     TargetOpcode = PPCISD::SRA;
14107     break;
14108   }
14109 
14110   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
14111       N1->getOpcode() == ISD::AND)
14112     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
14113       if (Mask->getZExtValue() == OpSizeInBits - 1)
14114         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
14115 
14116   return SDValue();
14117 }
14118 
14119 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
14120   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14121     return Value;
14122 
14123   return SDValue();
14124 }
14125 
14126 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
14127   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14128     return Value;
14129 
14130   return SDValue();
14131 }
14132 
14133 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
14134   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14135     return Value;
14136 
14137   return SDValue();
14138 }
14139 
14140 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
14141   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
14142   if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64())
14143     return false;
14144 
14145   // If not a tail call then no need to proceed.
14146   if (!CI->isTailCall())
14147     return false;
14148 
14149   // If tail calls are disabled for the caller then we are done.
14150   const Function *Caller = CI->getParent()->getParent();
14151   auto Attr = Caller->getFnAttribute("disable-tail-calls");
14152   if (Attr.getValueAsString() == "true")
14153     return false;
14154 
14155   // If sibling calls have been disabled and tail-calls aren't guaranteed
14156   // there is no reason to duplicate.
14157   auto &TM = getTargetMachine();
14158   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
14159     return false;
14160 
14161   // Can't tail call a function called indirectly, or if it has variadic args.
14162   const Function *Callee = CI->getCalledFunction();
14163   if (!Callee || Callee->isVarArg())
14164     return false;
14165 
14166   // Make sure the callee and caller calling conventions are eligible for tco.
14167   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
14168                                            CI->getCallingConv()))
14169       return false;
14170 
14171   // If the function is local then we have a good chance at tail-calling it
14172   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
14173 }
14174 
14175 bool PPCTargetLowering::
14176 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
14177   const Value *Mask = AndI.getOperand(1);
14178   // If the mask is suitable for andi. or andis. we should sink the and.
14179   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
14180     // Can't handle constants wider than 64-bits.
14181     if (CI->getBitWidth() > 64)
14182       return false;
14183     int64_t ConstVal = CI->getZExtValue();
14184     return isUInt<16>(ConstVal) ||
14185       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
14186   }
14187 
14188   // For non-constant masks, we can always use the record-form and.
14189   return true;
14190 }
14191