1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSectionXCOFF.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
122 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
123 
124 static cl::opt<bool> EnableQuadwordAtomics(
125     "ppc-quadword-atomics",
126     cl::desc("enable quadword lock-free atomic operations"), cl::init(false),
127     cl::Hidden);
128 
129 STATISTIC(NumTailCalls, "Number of tail calls");
130 STATISTIC(NumSiblingCalls, "Number of sibling calls");
131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
133 
134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
135 
136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
137 
138 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word";
139 
140 // FIXME: Remove this once the bug has been fixed!
141 extern cl::opt<bool> ANDIGlueBug;
142 
143 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
144                                      const PPCSubtarget &STI)
145     : TargetLowering(TM), Subtarget(STI) {
146   // Initialize map that relates the PPC addressing modes to the computed flags
147   // of a load/store instruction. The map is used to determine the optimal
148   // addressing mode when selecting load and stores.
149   initializeAddrModeMap();
150   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
151   // arguments are at least 4/8 bytes aligned.
152   bool isPPC64 = Subtarget.isPPC64();
153   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
154 
155   // Set up the register classes.
156   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
157   if (!useSoftFloat()) {
158     if (hasSPE()) {
159       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
160       // EFPU2 APU only supports f32
161       if (!Subtarget.hasEFPU2())
162         addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
163     } else {
164       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
165       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
166     }
167   }
168 
169   // Match BITREVERSE to customized fast code sequence in the td file.
170   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
171   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
172 
173   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
174   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
175 
176   // Custom lower inline assembly to check for special registers.
177   setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
178   setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom);
179 
180   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
181   for (MVT VT : MVT::integer_valuetypes()) {
182     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
183     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
184   }
185 
186   if (Subtarget.isISA3_0()) {
187     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
188     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
189     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
190     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
191   } else {
192     // No extending loads from f16 or HW conversions back and forth.
193     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
194     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
195     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
196     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
197     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
198     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
199     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
200     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
201   }
202 
203   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
204 
205   // PowerPC has pre-inc load and store's.
206   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
207   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
208   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
209   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
210   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
211   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
212   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
213   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
214   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
215   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
216   if (!Subtarget.hasSPE()) {
217     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
218     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
219     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
220     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
221   }
222 
223   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
224   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
225   for (MVT VT : ScalarIntVTs) {
226     setOperationAction(ISD::ADDC, VT, Legal);
227     setOperationAction(ISD::ADDE, VT, Legal);
228     setOperationAction(ISD::SUBC, VT, Legal);
229     setOperationAction(ISD::SUBE, VT, Legal);
230   }
231 
232   if (Subtarget.useCRBits()) {
233     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
234 
235     if (isPPC64 || Subtarget.hasFPCVT()) {
236       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote);
237       AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1,
238                         isPPC64 ? MVT::i64 : MVT::i32);
239       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote);
240       AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1,
241                         isPPC64 ? MVT::i64 : MVT::i32);
242 
243       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
244       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
245                          isPPC64 ? MVT::i64 : MVT::i32);
246       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
247       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
248                         isPPC64 ? MVT::i64 : MVT::i32);
249 
250       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote);
251       AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1,
252                         isPPC64 ? MVT::i64 : MVT::i32);
253       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote);
254       AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1,
255                         isPPC64 ? MVT::i64 : MVT::i32);
256 
257       setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
258       AddPromotedToType(ISD::FP_TO_SINT, MVT::i1,
259                         isPPC64 ? MVT::i64 : MVT::i32);
260       setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
261       AddPromotedToType(ISD::FP_TO_UINT, MVT::i1,
262                         isPPC64 ? MVT::i64 : MVT::i32);
263     } else {
264       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom);
265       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom);
266       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
267       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
268     }
269 
270     // PowerPC does not support direct load/store of condition registers.
271     setOperationAction(ISD::LOAD, MVT::i1, Custom);
272     setOperationAction(ISD::STORE, MVT::i1, Custom);
273 
274     // FIXME: Remove this once the ANDI glue bug is fixed:
275     if (ANDIGlueBug)
276       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
277 
278     for (MVT VT : MVT::integer_valuetypes()) {
279       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
280       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
281       setTruncStoreAction(VT, MVT::i1, Expand);
282     }
283 
284     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
285   }
286 
287   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
288   // PPC (the libcall is not available).
289   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
290   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
291   setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom);
292   setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom);
293 
294   // We do not currently implement these libm ops for PowerPC.
295   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
296   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
297   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
298   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
299   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
300   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
301 
302   // PowerPC has no SREM/UREM instructions unless we are on P9
303   // On P9 we may use a hardware instruction to compute the remainder.
304   // When the result of both the remainder and the division is required it is
305   // more efficient to compute the remainder from the result of the division
306   // rather than use the remainder instruction. The instructions are legalized
307   // directly because the DivRemPairsPass performs the transformation at the IR
308   // level.
309   if (Subtarget.isISA3_0()) {
310     setOperationAction(ISD::SREM, MVT::i32, Legal);
311     setOperationAction(ISD::UREM, MVT::i32, Legal);
312     setOperationAction(ISD::SREM, MVT::i64, Legal);
313     setOperationAction(ISD::UREM, MVT::i64, Legal);
314   } else {
315     setOperationAction(ISD::SREM, MVT::i32, Expand);
316     setOperationAction(ISD::UREM, MVT::i32, Expand);
317     setOperationAction(ISD::SREM, MVT::i64, Expand);
318     setOperationAction(ISD::UREM, MVT::i64, Expand);
319   }
320 
321   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
322   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
323   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
324   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
325   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
326   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
327   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
328   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
329   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
330 
331   // Handle constrained floating-point operations of scalar.
332   // TODO: Handle SPE specific operation.
333   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
334   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
335   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
336   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
337   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
338 
339   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
340   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
341   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
342   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
343 
344   if (!Subtarget.hasSPE()) {
345     setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
346     setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
347   }
348 
349   if (Subtarget.hasVSX()) {
350     setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal);
351     setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal);
352   }
353 
354   if (Subtarget.hasFSQRT()) {
355     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
356     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
357   }
358 
359   if (Subtarget.hasFPRND()) {
360     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
361     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
362     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
363     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
364 
365     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
366     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
367     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
368     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
369   }
370 
371   // We don't support sin/cos/sqrt/fmod/pow
372   setOperationAction(ISD::FSIN , MVT::f64, Expand);
373   setOperationAction(ISD::FCOS , MVT::f64, Expand);
374   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
375   setOperationAction(ISD::FREM , MVT::f64, Expand);
376   setOperationAction(ISD::FPOW , MVT::f64, Expand);
377   setOperationAction(ISD::FSIN , MVT::f32, Expand);
378   setOperationAction(ISD::FCOS , MVT::f32, Expand);
379   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
380   setOperationAction(ISD::FREM , MVT::f32, Expand);
381   setOperationAction(ISD::FPOW , MVT::f32, Expand);
382 
383   // MASS transformation for LLVM intrinsics with replicating fast-math flag
384   // to be consistent to PPCGenScalarMASSEntries pass
385   if (TM.getOptLevel() == CodeGenOpt::Aggressive &&
386       TM.Options.PPCGenScalarMASSEntries) {
387     setOperationAction(ISD::FSIN , MVT::f64, Custom);
388     setOperationAction(ISD::FCOS , MVT::f64, Custom);
389     setOperationAction(ISD::FPOW , MVT::f64, Custom);
390     setOperationAction(ISD::FLOG, MVT::f64, Custom);
391     setOperationAction(ISD::FLOG10, MVT::f64, Custom);
392     setOperationAction(ISD::FEXP, MVT::f64, Custom);
393     setOperationAction(ISD::FSIN , MVT::f32, Custom);
394     setOperationAction(ISD::FCOS , MVT::f32, Custom);
395     setOperationAction(ISD::FPOW , MVT::f32, Custom);
396     setOperationAction(ISD::FLOG, MVT::f32, Custom);
397     setOperationAction(ISD::FLOG10, MVT::f32, Custom);
398     setOperationAction(ISD::FEXP, MVT::f32, Custom);
399   }
400 
401   if (Subtarget.hasSPE()) {
402     setOperationAction(ISD::FMA  , MVT::f64, Expand);
403     setOperationAction(ISD::FMA  , MVT::f32, Expand);
404   } else {
405     setOperationAction(ISD::FMA  , MVT::f64, Legal);
406     setOperationAction(ISD::FMA  , MVT::f32, Legal);
407   }
408 
409   if (Subtarget.hasSPE())
410     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
411 
412   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
413 
414   // If we're enabling GP optimizations, use hardware square root
415   if (!Subtarget.hasFSQRT() &&
416       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
417         Subtarget.hasFRE()))
418     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
419 
420   if (!Subtarget.hasFSQRT() &&
421       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
422         Subtarget.hasFRES()))
423     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
424 
425   if (Subtarget.hasFCPSGN()) {
426     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
427     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
428   } else {
429     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
430     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
431   }
432 
433   if (Subtarget.hasFPRND()) {
434     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
435     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
436     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
437     setOperationAction(ISD::FROUND, MVT::f64, Legal);
438 
439     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
440     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
441     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
442     setOperationAction(ISD::FROUND, MVT::f32, Legal);
443   }
444 
445   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
446   // to speed up scalar BSWAP64.
447   // CTPOP or CTTZ were introduced in P8/P9 respectively
448   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
449   if (Subtarget.hasP9Vector() && Subtarget.isPPC64())
450     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
451   else
452     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
453   if (Subtarget.isISA3_0()) {
454     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
455     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
456   } else {
457     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
458     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
459   }
460 
461   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
462     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
463     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
464   } else {
465     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
466     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
467   }
468 
469   // PowerPC does not have ROTR
470   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
471   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
472 
473   if (!Subtarget.useCRBits()) {
474     // PowerPC does not have Select
475     setOperationAction(ISD::SELECT, MVT::i32, Expand);
476     setOperationAction(ISD::SELECT, MVT::i64, Expand);
477     setOperationAction(ISD::SELECT, MVT::f32, Expand);
478     setOperationAction(ISD::SELECT, MVT::f64, Expand);
479   }
480 
481   // PowerPC wants to turn select_cc of FP into fsel when possible.
482   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
483   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
484 
485   // PowerPC wants to optimize integer setcc a bit
486   if (!Subtarget.useCRBits())
487     setOperationAction(ISD::SETCC, MVT::i32, Custom);
488 
489   if (Subtarget.hasFPU()) {
490     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
491     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
492     setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal);
493 
494     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
495     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
496     setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal);
497   }
498 
499   // PowerPC does not have BRCOND which requires SetCC
500   if (!Subtarget.useCRBits())
501     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
502 
503   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
504 
505   if (Subtarget.hasSPE()) {
506     // SPE has built-in conversions
507     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
508     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
509     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
510     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
511     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
512     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
513 
514     // SPE supports signaling compare of f32/f64.
515     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
516     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
517   } else {
518     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
519     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
520     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
521 
522     // PowerPC does not have [U|S]INT_TO_FP
523     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand);
524     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand);
525     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
526     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
527   }
528 
529   if (Subtarget.hasDirectMove() && isPPC64) {
530     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
531     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
532     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
533     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
534     if (TM.Options.UnsafeFPMath) {
535       setOperationAction(ISD::LRINT, MVT::f64, Legal);
536       setOperationAction(ISD::LRINT, MVT::f32, Legal);
537       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
538       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
539       setOperationAction(ISD::LROUND, MVT::f64, Legal);
540       setOperationAction(ISD::LROUND, MVT::f32, Legal);
541       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
542       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
543     }
544   } else {
545     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
546     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
547     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
548     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
549   }
550 
551   // We cannot sextinreg(i1).  Expand to shifts.
552   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
553 
554   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
555   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
556   // support continuation, user-level threading, and etc.. As a result, no
557   // other SjLj exception interfaces are implemented and please don't build
558   // your own exception handling based on them.
559   // LLVM/Clang supports zero-cost DWARF exception handling.
560   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
561   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
562 
563   // We want to legalize GlobalAddress and ConstantPool nodes into the
564   // appropriate instructions to materialize the address.
565   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
566   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
567   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
568   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
569   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
570   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
571   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
572   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
573   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
574   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
575 
576   // TRAP is legal.
577   setOperationAction(ISD::TRAP, MVT::Other, Legal);
578 
579   // TRAMPOLINE is custom lowered.
580   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
581   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
582 
583   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
584   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
585 
586   if (Subtarget.is64BitELFABI()) {
587     // VAARG always uses double-word chunks, so promote anything smaller.
588     setOperationAction(ISD::VAARG, MVT::i1, Promote);
589     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
590     setOperationAction(ISD::VAARG, MVT::i8, Promote);
591     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
592     setOperationAction(ISD::VAARG, MVT::i16, Promote);
593     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
594     setOperationAction(ISD::VAARG, MVT::i32, Promote);
595     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
596     setOperationAction(ISD::VAARG, MVT::Other, Expand);
597   } else if (Subtarget.is32BitELFABI()) {
598     // VAARG is custom lowered with the 32-bit SVR4 ABI.
599     setOperationAction(ISD::VAARG, MVT::Other, Custom);
600     setOperationAction(ISD::VAARG, MVT::i64, Custom);
601   } else
602     setOperationAction(ISD::VAARG, MVT::Other, Expand);
603 
604   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
605   if (Subtarget.is32BitELFABI())
606     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
607   else
608     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
609 
610   // Use the default implementation.
611   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
612   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
613   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
614   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
615   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
616   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
617   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
618   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
619   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
620 
621   // We want to custom lower some of our intrinsics.
622   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
623   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f64, Custom);
624   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::ppcf128, Custom);
625 
626   // To handle counter-based loop conditions.
627   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
628 
629   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
630   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
631   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
632   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
633 
634   // Comparisons that require checking two conditions.
635   if (Subtarget.hasSPE()) {
636     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
637     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
638     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
639     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
640   }
641   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
642   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
643   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
644   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
645   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
646   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
647   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
648   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
649   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
650   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
651   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
652   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
653 
654   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
655   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
656 
657   if (Subtarget.has64BitSupport()) {
658     // They also have instructions for converting between i64 and fp.
659     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
660     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand);
661     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
662     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
663     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
664     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
665     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
666     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
667     // This is just the low 32 bits of a (signed) fp->i64 conversion.
668     // We cannot do this with Promote because i64 is not a legal type.
669     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
670     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
671 
672     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) {
673       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
674       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
675     }
676   } else {
677     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
678     if (Subtarget.hasSPE()) {
679       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
680       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
681     } else {
682       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand);
683       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
684     }
685   }
686 
687   // With the instructions enabled under FPCVT, we can do everything.
688   if (Subtarget.hasFPCVT()) {
689     if (Subtarget.has64BitSupport()) {
690       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
691       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
692       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
693       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
694       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
695       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
696       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
697       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
698     }
699 
700     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
701     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
702     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
703     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
704     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
705     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
706     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
707     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
708   }
709 
710   if (Subtarget.use64BitRegs()) {
711     // 64-bit PowerPC implementations can support i64 types directly
712     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
713     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
714     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
715     // 64-bit PowerPC wants to expand i128 shifts itself.
716     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
717     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
718     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
719   } else {
720     // 32-bit PowerPC wants to expand i64 shifts itself.
721     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
722     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
723     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
724   }
725 
726   // PowerPC has better expansions for funnel shifts than the generic
727   // TargetLowering::expandFunnelShift.
728   if (Subtarget.has64BitSupport()) {
729     setOperationAction(ISD::FSHL, MVT::i64, Custom);
730     setOperationAction(ISD::FSHR, MVT::i64, Custom);
731   }
732   setOperationAction(ISD::FSHL, MVT::i32, Custom);
733   setOperationAction(ISD::FSHR, MVT::i32, Custom);
734 
735   if (Subtarget.hasVSX()) {
736     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
737     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
738     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
739     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
740   }
741 
742   if (Subtarget.hasAltivec()) {
743     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
744       setOperationAction(ISD::SADDSAT, VT, Legal);
745       setOperationAction(ISD::SSUBSAT, VT, Legal);
746       setOperationAction(ISD::UADDSAT, VT, Legal);
747       setOperationAction(ISD::USUBSAT, VT, Legal);
748     }
749     // First set operation action for all vector types to expand. Then we
750     // will selectively turn on ones that can be effectively codegen'd.
751     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
752       // add/sub are legal for all supported vector VT's.
753       setOperationAction(ISD::ADD, VT, Legal);
754       setOperationAction(ISD::SUB, VT, Legal);
755 
756       // For v2i64, these are only valid with P8Vector. This is corrected after
757       // the loop.
758       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
759         setOperationAction(ISD::SMAX, VT, Legal);
760         setOperationAction(ISD::SMIN, VT, Legal);
761         setOperationAction(ISD::UMAX, VT, Legal);
762         setOperationAction(ISD::UMIN, VT, Legal);
763       }
764       else {
765         setOperationAction(ISD::SMAX, VT, Expand);
766         setOperationAction(ISD::SMIN, VT, Expand);
767         setOperationAction(ISD::UMAX, VT, Expand);
768         setOperationAction(ISD::UMIN, VT, Expand);
769       }
770 
771       if (Subtarget.hasVSX()) {
772         setOperationAction(ISD::FMAXNUM, VT, Legal);
773         setOperationAction(ISD::FMINNUM, VT, Legal);
774       }
775 
776       // Vector instructions introduced in P8
777       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
778         setOperationAction(ISD::CTPOP, VT, Legal);
779         setOperationAction(ISD::CTLZ, VT, Legal);
780       }
781       else {
782         setOperationAction(ISD::CTPOP, VT, Expand);
783         setOperationAction(ISD::CTLZ, VT, Expand);
784       }
785 
786       // Vector instructions introduced in P9
787       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
788         setOperationAction(ISD::CTTZ, VT, Legal);
789       else
790         setOperationAction(ISD::CTTZ, VT, Expand);
791 
792       // We promote all shuffles to v16i8.
793       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
794       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
795 
796       // We promote all non-typed operations to v4i32.
797       setOperationAction(ISD::AND   , VT, Promote);
798       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
799       setOperationAction(ISD::OR    , VT, Promote);
800       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
801       setOperationAction(ISD::XOR   , VT, Promote);
802       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
803       setOperationAction(ISD::LOAD  , VT, Promote);
804       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
805       setOperationAction(ISD::SELECT, VT, Promote);
806       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
807       setOperationAction(ISD::VSELECT, VT, Legal);
808       setOperationAction(ISD::SELECT_CC, VT, Promote);
809       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
810       setOperationAction(ISD::STORE, VT, Promote);
811       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
812 
813       // No other operations are legal.
814       setOperationAction(ISD::MUL , VT, Expand);
815       setOperationAction(ISD::SDIV, VT, Expand);
816       setOperationAction(ISD::SREM, VT, Expand);
817       setOperationAction(ISD::UDIV, VT, Expand);
818       setOperationAction(ISD::UREM, VT, Expand);
819       setOperationAction(ISD::FDIV, VT, Expand);
820       setOperationAction(ISD::FREM, VT, Expand);
821       setOperationAction(ISD::FNEG, VT, Expand);
822       setOperationAction(ISD::FSQRT, VT, Expand);
823       setOperationAction(ISD::FLOG, VT, Expand);
824       setOperationAction(ISD::FLOG10, VT, Expand);
825       setOperationAction(ISD::FLOG2, VT, Expand);
826       setOperationAction(ISD::FEXP, VT, Expand);
827       setOperationAction(ISD::FEXP2, VT, Expand);
828       setOperationAction(ISD::FSIN, VT, Expand);
829       setOperationAction(ISD::FCOS, VT, Expand);
830       setOperationAction(ISD::FABS, VT, Expand);
831       setOperationAction(ISD::FFLOOR, VT, Expand);
832       setOperationAction(ISD::FCEIL,  VT, Expand);
833       setOperationAction(ISD::FTRUNC, VT, Expand);
834       setOperationAction(ISD::FRINT,  VT, Expand);
835       setOperationAction(ISD::FNEARBYINT, VT, Expand);
836       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
837       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
838       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
839       setOperationAction(ISD::MULHU, VT, Expand);
840       setOperationAction(ISD::MULHS, VT, Expand);
841       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
842       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
843       setOperationAction(ISD::UDIVREM, VT, Expand);
844       setOperationAction(ISD::SDIVREM, VT, Expand);
845       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
846       setOperationAction(ISD::FPOW, VT, Expand);
847       setOperationAction(ISD::BSWAP, VT, Expand);
848       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
849       setOperationAction(ISD::ROTL, VT, Expand);
850       setOperationAction(ISD::ROTR, VT, Expand);
851 
852       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
853         setTruncStoreAction(VT, InnerVT, Expand);
854         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
855         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
856         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
857       }
858     }
859     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
860     if (!Subtarget.hasP8Vector()) {
861       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
862       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
863       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
864       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
865     }
866 
867     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
868     // with merges, splats, etc.
869     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
870 
871     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
872     // are cheap, so handle them before they get expanded to scalar.
873     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
874     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
875     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
876     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
877     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
878 
879     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
880     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
881     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
882     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
883     setOperationAction(ISD::SELECT, MVT::v4i32,
884                        Subtarget.useCRBits() ? Legal : Expand);
885     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
886     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
887     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
888     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
889     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
890     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
891     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
892     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
893     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
894     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
895     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
896     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
897     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
898 
899     // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
900     setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
901     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
902     if (Subtarget.hasAltivec())
903       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
904         setOperationAction(ISD::ROTL, VT, Legal);
905     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
906     if (Subtarget.hasP8Altivec())
907       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
908 
909     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
910     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
911     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
912     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
913 
914     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
915     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
916 
917     if (Subtarget.hasVSX()) {
918       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
919       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
920       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
921     }
922 
923     if (Subtarget.hasP8Altivec())
924       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
925     else
926       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
927 
928     if (Subtarget.isISA3_1()) {
929       setOperationAction(ISD::MUL, MVT::v2i64, Legal);
930       setOperationAction(ISD::MULHS, MVT::v2i64, Legal);
931       setOperationAction(ISD::MULHU, MVT::v2i64, Legal);
932       setOperationAction(ISD::MULHS, MVT::v4i32, Legal);
933       setOperationAction(ISD::MULHU, MVT::v4i32, Legal);
934       setOperationAction(ISD::UDIV, MVT::v2i64, Legal);
935       setOperationAction(ISD::SDIV, MVT::v2i64, Legal);
936       setOperationAction(ISD::UDIV, MVT::v4i32, Legal);
937       setOperationAction(ISD::SDIV, MVT::v4i32, Legal);
938       setOperationAction(ISD::UREM, MVT::v2i64, Legal);
939       setOperationAction(ISD::SREM, MVT::v2i64, Legal);
940       setOperationAction(ISD::UREM, MVT::v4i32, Legal);
941       setOperationAction(ISD::SREM, MVT::v4i32, Legal);
942       setOperationAction(ISD::UREM, MVT::v1i128, Legal);
943       setOperationAction(ISD::SREM, MVT::v1i128, Legal);
944       setOperationAction(ISD::UDIV, MVT::v1i128, Legal);
945       setOperationAction(ISD::SDIV, MVT::v1i128, Legal);
946       setOperationAction(ISD::ROTL, MVT::v1i128, Legal);
947     }
948 
949     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
950     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
951 
952     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
953     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
954 
955     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
956     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
957     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
958     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
959 
960     // Altivec does not contain unordered floating-point compare instructions
961     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
962     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
963     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
964     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
965 
966     if (Subtarget.hasVSX()) {
967       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
968       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
969       if (Subtarget.hasP8Vector()) {
970         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
971         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
972       }
973       if (Subtarget.hasDirectMove() && isPPC64) {
974         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
975         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
976         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
977         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
978         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
979         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
980         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
981         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
982       }
983       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
984 
985       // The nearbyint variants are not allowed to raise the inexact exception
986       // so we can only code-gen them with unsafe math.
987       if (TM.Options.UnsafeFPMath) {
988         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
989         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
990       }
991 
992       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
993       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
994       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
995       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
996       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
997       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
998       setOperationAction(ISD::FROUND, MVT::f64, Legal);
999       setOperationAction(ISD::FRINT, MVT::f64, Legal);
1000 
1001       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
1002       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
1003       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1004       setOperationAction(ISD::FROUND, MVT::f32, Legal);
1005       setOperationAction(ISD::FRINT, MVT::f32, Legal);
1006 
1007       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
1008       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
1009 
1010       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
1011       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
1012 
1013       // Share the Altivec comparison restrictions.
1014       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
1015       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
1016       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
1017       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
1018 
1019       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
1020       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
1021 
1022       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
1023 
1024       if (Subtarget.hasP8Vector())
1025         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
1026 
1027       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
1028 
1029       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
1030       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
1031       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
1032 
1033       if (Subtarget.hasP8Altivec()) {
1034         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
1035         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
1036         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
1037 
1038         // 128 bit shifts can be accomplished via 3 instructions for SHL and
1039         // SRL, but not for SRA because of the instructions available:
1040         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
1041         // doing
1042         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
1043         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
1044         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1045 
1046         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
1047       }
1048       else {
1049         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
1050         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
1051         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
1052 
1053         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
1054 
1055         // VSX v2i64 only supports non-arithmetic operations.
1056         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
1057         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
1058       }
1059 
1060       if (Subtarget.isISA3_1())
1061         setOperationAction(ISD::SETCC, MVT::v1i128, Legal);
1062       else
1063         setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
1064 
1065       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
1066       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
1067       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
1068       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
1069 
1070       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
1071 
1072       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
1073       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
1074       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
1075       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
1076       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
1077       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
1078       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
1079       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
1080 
1081       // Custom handling for partial vectors of integers converted to
1082       // floating point. We already have optimal handling for v2i32 through
1083       // the DAG combine, so those aren't necessary.
1084       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom);
1085       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom);
1086       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom);
1087       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom);
1088       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom);
1089       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom);
1090       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom);
1091       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom);
1092       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
1093       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
1094       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
1095       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
1096       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
1097       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
1098       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
1099       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
1100 
1101       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
1102       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
1103       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
1104       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
1105       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1106       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
1107 
1108       setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
1109       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
1110 
1111       // Handle constrained floating-point operations of vector.
1112       // The predictor is `hasVSX` because altivec instruction has
1113       // no exception but VSX vector instruction has.
1114       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
1115       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
1116       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
1117       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
1118       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
1119       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
1120       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
1121       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
1122       setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
1123       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
1124       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
1125       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
1126       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
1127 
1128       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
1129       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
1130       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
1131       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
1132       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
1133       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
1134       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
1135       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
1136       setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
1137       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
1138       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
1139       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
1140       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
1141 
1142       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
1143       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1144 
1145       for (MVT FPT : MVT::fp_valuetypes())
1146         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1147 
1148       // Expand the SELECT to SELECT_CC
1149       setOperationAction(ISD::SELECT, MVT::f128, Expand);
1150 
1151       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1152       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1153 
1154       // No implementation for these ops for PowerPC.
1155       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1156       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1157       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1158       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1159       setOperationAction(ISD::FREM, MVT::f128, Expand);
1160     }
1161 
1162     if (Subtarget.hasP8Altivec()) {
1163       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
1164       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
1165     }
1166 
1167     if (Subtarget.hasP9Vector()) {
1168       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1169       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1170 
1171       // 128 bit shifts can be accomplished via 3 instructions for SHL and
1172       // SRL, but not for SRA because of the instructions available:
1173       // VS{RL} and VS{RL}O.
1174       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1175       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1176       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1177 
1178       setOperationAction(ISD::FADD, MVT::f128, Legal);
1179       setOperationAction(ISD::FSUB, MVT::f128, Legal);
1180       setOperationAction(ISD::FDIV, MVT::f128, Legal);
1181       setOperationAction(ISD::FMUL, MVT::f128, Legal);
1182       setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1183 
1184       setOperationAction(ISD::FMA, MVT::f128, Legal);
1185       setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1186       setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1187       setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1188       setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1189       setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1190       setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1191 
1192       setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1193       setOperationAction(ISD::FRINT, MVT::f128, Legal);
1194       setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1195       setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1196       setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1197       setOperationAction(ISD::FROUND, MVT::f128, Legal);
1198 
1199       setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1200       setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1201       setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1202 
1203       // Handle constrained floating-point operations of fp128
1204       setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1205       setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1206       setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1207       setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1208       setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1209       setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1210       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1211       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1212       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1213       setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1214       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1215       setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1216       setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
1217       setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1218       setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1219       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1220       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1221       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1222       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1223       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1224     } else if (Subtarget.hasVSX()) {
1225       setOperationAction(ISD::LOAD, MVT::f128, Promote);
1226       setOperationAction(ISD::STORE, MVT::f128, Promote);
1227 
1228       AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32);
1229       AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32);
1230 
1231       // Set FADD/FSUB as libcall to avoid the legalizer to expand the
1232       // fp_to_uint and int_to_fp.
1233       setOperationAction(ISD::FADD, MVT::f128, LibCall);
1234       setOperationAction(ISD::FSUB, MVT::f128, LibCall);
1235 
1236       setOperationAction(ISD::FMUL, MVT::f128, Expand);
1237       setOperationAction(ISD::FDIV, MVT::f128, Expand);
1238       setOperationAction(ISD::FNEG, MVT::f128, Expand);
1239       setOperationAction(ISD::FABS, MVT::f128, Expand);
1240       setOperationAction(ISD::FSQRT, MVT::f128, Expand);
1241       setOperationAction(ISD::FMA, MVT::f128, Expand);
1242       setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
1243 
1244       // Expand the fp_extend if the target type is fp128.
1245       setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand);
1246       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand);
1247 
1248       // Expand the fp_round if the source type is fp128.
1249       for (MVT VT : {MVT::f32, MVT::f64}) {
1250         setOperationAction(ISD::FP_ROUND, VT, Custom);
1251         setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom);
1252       }
1253 
1254       setOperationAction(ISD::SETCC, MVT::f128, Custom);
1255       setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom);
1256       setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom);
1257       setOperationAction(ISD::BR_CC, MVT::f128, Expand);
1258 
1259       // Lower following f128 select_cc pattern:
1260       // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE
1261       setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
1262 
1263       // We need to handle f128 SELECT_CC with integer result type.
1264       setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1265       setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand);
1266     }
1267 
1268     if (Subtarget.hasP9Altivec()) {
1269       if (Subtarget.isISA3_1()) {
1270         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal);
1271         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Legal);
1272         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Legal);
1273         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal);
1274       } else {
1275         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1276         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1277       }
1278       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1279       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1280       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1281       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1282       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1283       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1284       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1285     }
1286 
1287     if (Subtarget.hasP10Vector()) {
1288       setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
1289     }
1290   }
1291 
1292   if (Subtarget.pairedVectorMemops()) {
1293     addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass);
1294     setOperationAction(ISD::LOAD, MVT::v256i1, Custom);
1295     setOperationAction(ISD::STORE, MVT::v256i1, Custom);
1296   }
1297   if (Subtarget.hasMMA()) {
1298     addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass);
1299     setOperationAction(ISD::LOAD, MVT::v512i1, Custom);
1300     setOperationAction(ISD::STORE, MVT::v512i1, Custom);
1301     setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom);
1302   }
1303 
1304   if (Subtarget.has64BitSupport())
1305     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1306 
1307   if (Subtarget.isISA3_1())
1308     setOperationAction(ISD::SRA, MVT::v1i128, Legal);
1309 
1310   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1311 
1312   if (!isPPC64) {
1313     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1314     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1315   }
1316 
1317   if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics()) {
1318     setMaxAtomicSizeInBitsSupported(128);
1319     setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom);
1320     setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom);
1321     setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom);
1322   }
1323 
1324   setBooleanContents(ZeroOrOneBooleanContent);
1325 
1326   if (Subtarget.hasAltivec()) {
1327     // Altivec instructions set fields to all zeros or all ones.
1328     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1329   }
1330 
1331   if (!isPPC64) {
1332     // These libcalls are not available in 32-bit.
1333     setLibcallName(RTLIB::SHL_I128, nullptr);
1334     setLibcallName(RTLIB::SRL_I128, nullptr);
1335     setLibcallName(RTLIB::SRA_I128, nullptr);
1336     setLibcallName(RTLIB::MULO_I64, nullptr);
1337   }
1338 
1339   if (!isPPC64)
1340     setMaxAtomicSizeInBitsSupported(32);
1341 
1342   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1343 
1344   // We have target-specific dag combine patterns for the following nodes:
1345   setTargetDAGCombine(ISD::ADD);
1346   setTargetDAGCombine(ISD::SHL);
1347   setTargetDAGCombine(ISD::SRA);
1348   setTargetDAGCombine(ISD::SRL);
1349   setTargetDAGCombine(ISD::MUL);
1350   setTargetDAGCombine(ISD::FMA);
1351   setTargetDAGCombine(ISD::SINT_TO_FP);
1352   setTargetDAGCombine(ISD::BUILD_VECTOR);
1353   if (Subtarget.hasFPCVT())
1354     setTargetDAGCombine(ISD::UINT_TO_FP);
1355   setTargetDAGCombine(ISD::LOAD);
1356   setTargetDAGCombine(ISD::STORE);
1357   setTargetDAGCombine(ISD::BR_CC);
1358   if (Subtarget.useCRBits())
1359     setTargetDAGCombine(ISD::BRCOND);
1360   setTargetDAGCombine(ISD::BSWAP);
1361   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1362   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1363   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1364 
1365   setTargetDAGCombine(ISD::SIGN_EXTEND);
1366   setTargetDAGCombine(ISD::ZERO_EXTEND);
1367   setTargetDAGCombine(ISD::ANY_EXTEND);
1368 
1369   setTargetDAGCombine(ISD::TRUNCATE);
1370   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1371 
1372 
1373   if (Subtarget.useCRBits()) {
1374     setTargetDAGCombine(ISD::TRUNCATE);
1375     setTargetDAGCombine(ISD::SETCC);
1376     setTargetDAGCombine(ISD::SELECT_CC);
1377   }
1378 
1379   if (Subtarget.hasP9Altivec()) {
1380     setTargetDAGCombine(ISD::ABS);
1381     setTargetDAGCombine(ISD::VSELECT);
1382   }
1383 
1384   setLibcallName(RTLIB::LOG_F128, "logf128");
1385   setLibcallName(RTLIB::LOG2_F128, "log2f128");
1386   setLibcallName(RTLIB::LOG10_F128, "log10f128");
1387   setLibcallName(RTLIB::EXP_F128, "expf128");
1388   setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1389   setLibcallName(RTLIB::SIN_F128, "sinf128");
1390   setLibcallName(RTLIB::COS_F128, "cosf128");
1391   setLibcallName(RTLIB::POW_F128, "powf128");
1392   setLibcallName(RTLIB::FMIN_F128, "fminf128");
1393   setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1394   setLibcallName(RTLIB::REM_F128, "fmodf128");
1395   setLibcallName(RTLIB::SQRT_F128, "sqrtf128");
1396   setLibcallName(RTLIB::CEIL_F128, "ceilf128");
1397   setLibcallName(RTLIB::FLOOR_F128, "floorf128");
1398   setLibcallName(RTLIB::TRUNC_F128, "truncf128");
1399   setLibcallName(RTLIB::ROUND_F128, "roundf128");
1400   setLibcallName(RTLIB::LROUND_F128, "lroundf128");
1401   setLibcallName(RTLIB::LLROUND_F128, "llroundf128");
1402   setLibcallName(RTLIB::RINT_F128, "rintf128");
1403   setLibcallName(RTLIB::LRINT_F128, "lrintf128");
1404   setLibcallName(RTLIB::LLRINT_F128, "llrintf128");
1405   setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128");
1406   setLibcallName(RTLIB::FMA_F128, "fmaf128");
1407 
1408   // With 32 condition bits, we don't need to sink (and duplicate) compares
1409   // aggressively in CodeGenPrep.
1410   if (Subtarget.useCRBits()) {
1411     setHasMultipleConditionRegisters();
1412     setJumpIsExpensive();
1413   }
1414 
1415   setMinFunctionAlignment(Align(4));
1416 
1417   switch (Subtarget.getCPUDirective()) {
1418   default: break;
1419   case PPC::DIR_970:
1420   case PPC::DIR_A2:
1421   case PPC::DIR_E500:
1422   case PPC::DIR_E500mc:
1423   case PPC::DIR_E5500:
1424   case PPC::DIR_PWR4:
1425   case PPC::DIR_PWR5:
1426   case PPC::DIR_PWR5X:
1427   case PPC::DIR_PWR6:
1428   case PPC::DIR_PWR6X:
1429   case PPC::DIR_PWR7:
1430   case PPC::DIR_PWR8:
1431   case PPC::DIR_PWR9:
1432   case PPC::DIR_PWR10:
1433   case PPC::DIR_PWR_FUTURE:
1434     setPrefLoopAlignment(Align(16));
1435     setPrefFunctionAlignment(Align(16));
1436     break;
1437   }
1438 
1439   if (Subtarget.enableMachineScheduler())
1440     setSchedulingPreference(Sched::Source);
1441   else
1442     setSchedulingPreference(Sched::Hybrid);
1443 
1444   computeRegisterProperties(STI.getRegisterInfo());
1445 
1446   // The Freescale cores do better with aggressive inlining of memcpy and
1447   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1448   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1449       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1450     MaxStoresPerMemset = 32;
1451     MaxStoresPerMemsetOptSize = 16;
1452     MaxStoresPerMemcpy = 32;
1453     MaxStoresPerMemcpyOptSize = 8;
1454     MaxStoresPerMemmove = 32;
1455     MaxStoresPerMemmoveOptSize = 8;
1456   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1457     // The A2 also benefits from (very) aggressive inlining of memcpy and
1458     // friends. The overhead of a the function call, even when warm, can be
1459     // over one hundred cycles.
1460     MaxStoresPerMemset = 128;
1461     MaxStoresPerMemcpy = 128;
1462     MaxStoresPerMemmove = 128;
1463     MaxLoadsPerMemcmp = 128;
1464   } else {
1465     MaxLoadsPerMemcmp = 8;
1466     MaxLoadsPerMemcmpOptSize = 4;
1467   }
1468 
1469   IsStrictFPEnabled = true;
1470 
1471   // Let the subtarget (CPU) decide if a predictable select is more expensive
1472   // than the corresponding branch. This information is used in CGP to decide
1473   // when to convert selects into branches.
1474   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1475 }
1476 
1477 // *********************************** NOTE ************************************
1478 // For selecting load and store instructions, the addressing modes are defined
1479 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD
1480 // patterns to match the load the store instructions.
1481 //
1482 // The TD definitions for the addressing modes correspond to their respective
1483 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely
1484 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the
1485 // address mode flags of a particular node. Afterwards, the computed address
1486 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal
1487 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement
1488 // accordingly, based on the preferred addressing mode.
1489 //
1490 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode.
1491 // MemOpFlags contains all the possible flags that can be used to compute the
1492 // optimal addressing mode for load and store instructions.
1493 // AddrMode contains all the possible load and store addressing modes available
1494 // on Power (such as DForm, DSForm, DQForm, XForm, etc.)
1495 //
1496 // When adding new load and store instructions, it is possible that new address
1497 // flags may need to be added into MemOpFlags, and a new addressing mode will
1498 // need to be added to AddrMode. An entry of the new addressing mode (consisting
1499 // of the minimal and main distinguishing address flags for the new load/store
1500 // instructions) will need to be added into initializeAddrModeMap() below.
1501 // Finally, when adding new addressing modes, the getAddrModeForFlags() will
1502 // need to be updated to account for selecting the optimal addressing mode.
1503 // *****************************************************************************
1504 /// Initialize the map that relates the different addressing modes of the load
1505 /// and store instructions to a set of flags. This ensures the load/store
1506 /// instruction is correctly matched during instruction selection.
1507 void PPCTargetLowering::initializeAddrModeMap() {
1508   AddrModesMap[PPC::AM_DForm] = {
1509       // LWZ, STW
1510       PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt,
1511       PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt,
1512       PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
1513       PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
1514       // LBZ, LHZ, STB, STH
1515       PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
1516       PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
1517       PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
1518       PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
1519       // LHA
1520       PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
1521       PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
1522       PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
1523       PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
1524       // LFS, LFD, STFS, STFD
1525       PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1526       PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1527       PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1528       PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1529   };
1530   AddrModesMap[PPC::AM_DSForm] = {
1531       // LWA
1532       PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt,
1533       PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
1534       PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
1535       // LD, STD
1536       PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt,
1537       PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt,
1538       PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt,
1539       // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64
1540       PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1541       PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1542       PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1543   };
1544   AddrModesMap[PPC::AM_DQForm] = {
1545       // LXV, STXV
1546       PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1547       PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1548       PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1549   };
1550   AddrModesMap[PPC::AM_PrefixDForm] = {PPC::MOF_RPlusSImm34 |
1551                                        PPC::MOF_SubtargetP10};
1552   // TODO: Add mapping for quadword load/store.
1553 }
1554 
1555 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1556 /// the desired ByVal argument alignment.
1557 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1558   if (MaxAlign == MaxMaxAlign)
1559     return;
1560   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1561     if (MaxMaxAlign >= 32 &&
1562         VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
1563       MaxAlign = Align(32);
1564     else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1565              MaxAlign < 16)
1566       MaxAlign = Align(16);
1567   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1568     Align EltAlign;
1569     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1570     if (EltAlign > MaxAlign)
1571       MaxAlign = EltAlign;
1572   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1573     for (auto *EltTy : STy->elements()) {
1574       Align EltAlign;
1575       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1576       if (EltAlign > MaxAlign)
1577         MaxAlign = EltAlign;
1578       if (MaxAlign == MaxMaxAlign)
1579         break;
1580     }
1581   }
1582 }
1583 
1584 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1585 /// function arguments in the caller parameter area.
1586 uint64_t PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1587                                                   const DataLayout &DL) const {
1588   // 16byte and wider vectors are passed on 16byte boundary.
1589   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1590   Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1591   if (Subtarget.hasAltivec())
1592     getMaxByValAlign(Ty, Alignment, Align(16));
1593   return Alignment.value();
1594 }
1595 
1596 bool PPCTargetLowering::useSoftFloat() const {
1597   return Subtarget.useSoftFloat();
1598 }
1599 
1600 bool PPCTargetLowering::hasSPE() const {
1601   return Subtarget.hasSPE();
1602 }
1603 
1604 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1605   return VT.isScalarInteger();
1606 }
1607 
1608 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1609   switch ((PPCISD::NodeType)Opcode) {
1610   case PPCISD::FIRST_NUMBER:    break;
1611   case PPCISD::FSEL:            return "PPCISD::FSEL";
1612   case PPCISD::XSMAXC:          return "PPCISD::XSMAXC";
1613   case PPCISD::XSMINC:          return "PPCISD::XSMINC";
1614   case PPCISD::FCFID:           return "PPCISD::FCFID";
1615   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1616   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1617   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1618   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1619   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1620   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1621   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1622   case PPCISD::FP_TO_UINT_IN_VSR:
1623                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1624   case PPCISD::FP_TO_SINT_IN_VSR:
1625                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1626   case PPCISD::FRE:             return "PPCISD::FRE";
1627   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1628   case PPCISD::FTSQRT:
1629     return "PPCISD::FTSQRT";
1630   case PPCISD::FSQRT:
1631     return "PPCISD::FSQRT";
1632   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1633   case PPCISD::VPERM:           return "PPCISD::VPERM";
1634   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1635   case PPCISD::XXSPLTI_SP_TO_DP:
1636     return "PPCISD::XXSPLTI_SP_TO_DP";
1637   case PPCISD::XXSPLTI32DX:
1638     return "PPCISD::XXSPLTI32DX";
1639   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1640   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1641   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1642   case PPCISD::CMPB:            return "PPCISD::CMPB";
1643   case PPCISD::Hi:              return "PPCISD::Hi";
1644   case PPCISD::Lo:              return "PPCISD::Lo";
1645   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1646   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1647   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1648   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1649   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1650   case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
1651   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1652   case PPCISD::SRL:             return "PPCISD::SRL";
1653   case PPCISD::SRA:             return "PPCISD::SRA";
1654   case PPCISD::SHL:             return "PPCISD::SHL";
1655   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1656   case PPCISD::CALL:            return "PPCISD::CALL";
1657   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1658   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1659   case PPCISD::CALL_RM:
1660     return "PPCISD::CALL_RM";
1661   case PPCISD::CALL_NOP_RM:
1662     return "PPCISD::CALL_NOP_RM";
1663   case PPCISD::CALL_NOTOC_RM:
1664     return "PPCISD::CALL_NOTOC_RM";
1665   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1666   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1667   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1668   case PPCISD::BCTRL_RM:
1669     return "PPCISD::BCTRL_RM";
1670   case PPCISD::BCTRL_LOAD_TOC_RM:
1671     return "PPCISD::BCTRL_LOAD_TOC_RM";
1672   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1673   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1674   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1675   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1676   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1677   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1678   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1679   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1680   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1681   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1682   case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1683     return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1684   case PPCISD::ANDI_rec_1_EQ_BIT:
1685     return "PPCISD::ANDI_rec_1_EQ_BIT";
1686   case PPCISD::ANDI_rec_1_GT_BIT:
1687     return "PPCISD::ANDI_rec_1_GT_BIT";
1688   case PPCISD::VCMP:            return "PPCISD::VCMP";
1689   case PPCISD::VCMP_rec:        return "PPCISD::VCMP_rec";
1690   case PPCISD::LBRX:            return "PPCISD::LBRX";
1691   case PPCISD::STBRX:           return "PPCISD::STBRX";
1692   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1693   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1694   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1695   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1696   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1697   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1698   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1699   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1700   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1701   case PPCISD::ST_VSR_SCAL_INT:
1702                                 return "PPCISD::ST_VSR_SCAL_INT";
1703   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1704   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1705   case PPCISD::BDZ:             return "PPCISD::BDZ";
1706   case PPCISD::MFFS:            return "PPCISD::MFFS";
1707   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1708   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1709   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1710   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1711   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1712   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1713   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1714   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1715   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1716   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1717   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1718   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1719   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1720   case PPCISD::TLSGD_AIX:       return "PPCISD::TLSGD_AIX";
1721   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1722   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1723   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1724   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1725   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1726   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1727   case PPCISD::PADDI_DTPREL:
1728     return "PPCISD::PADDI_DTPREL";
1729   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1730   case PPCISD::SC:              return "PPCISD::SC";
1731   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1732   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1733   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1734   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1735   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1736   case PPCISD::VABSD:           return "PPCISD::VABSD";
1737   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1738   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1739   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1740   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1741   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1742   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1743   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1744   case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR:
1745     return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR";
1746   case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR:
1747     return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR";
1748   case PPCISD::ACC_BUILD:       return "PPCISD::ACC_BUILD";
1749   case PPCISD::PAIR_BUILD:      return "PPCISD::PAIR_BUILD";
1750   case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG";
1751   case PPCISD::XXMFACC:         return "PPCISD::XXMFACC";
1752   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1753   case PPCISD::ZEXT_LD_SPLAT:   return "PPCISD::ZEXT_LD_SPLAT";
1754   case PPCISD::SEXT_LD_SPLAT:   return "PPCISD::SEXT_LD_SPLAT";
1755   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1756   case PPCISD::STRICT_FADDRTZ:
1757     return "PPCISD::STRICT_FADDRTZ";
1758   case PPCISD::STRICT_FCTIDZ:
1759     return "PPCISD::STRICT_FCTIDZ";
1760   case PPCISD::STRICT_FCTIWZ:
1761     return "PPCISD::STRICT_FCTIWZ";
1762   case PPCISD::STRICT_FCTIDUZ:
1763     return "PPCISD::STRICT_FCTIDUZ";
1764   case PPCISD::STRICT_FCTIWUZ:
1765     return "PPCISD::STRICT_FCTIWUZ";
1766   case PPCISD::STRICT_FCFID:
1767     return "PPCISD::STRICT_FCFID";
1768   case PPCISD::STRICT_FCFIDU:
1769     return "PPCISD::STRICT_FCFIDU";
1770   case PPCISD::STRICT_FCFIDS:
1771     return "PPCISD::STRICT_FCFIDS";
1772   case PPCISD::STRICT_FCFIDUS:
1773     return "PPCISD::STRICT_FCFIDUS";
1774   case PPCISD::LXVRZX:          return "PPCISD::LXVRZX";
1775   }
1776   return nullptr;
1777 }
1778 
1779 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1780                                           EVT VT) const {
1781   if (!VT.isVector())
1782     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1783 
1784   return VT.changeVectorElementTypeToInteger();
1785 }
1786 
1787 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1788   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1789   return true;
1790 }
1791 
1792 //===----------------------------------------------------------------------===//
1793 // Node matching predicates, for use by the tblgen matching code.
1794 //===----------------------------------------------------------------------===//
1795 
1796 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1797 static bool isFloatingPointZero(SDValue Op) {
1798   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1799     return CFP->getValueAPF().isZero();
1800   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1801     // Maybe this has already been legalized into the constant pool?
1802     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1803       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1804         return CFP->getValueAPF().isZero();
1805   }
1806   return false;
1807 }
1808 
1809 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1810 /// true if Op is undef or if it matches the specified value.
1811 static bool isConstantOrUndef(int Op, int Val) {
1812   return Op < 0 || Op == Val;
1813 }
1814 
1815 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1816 /// VPKUHUM instruction.
1817 /// The ShuffleKind distinguishes between big-endian operations with
1818 /// two different inputs (0), either-endian operations with two identical
1819 /// inputs (1), and little-endian operations with two different inputs (2).
1820 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1821 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1822                                SelectionDAG &DAG) {
1823   bool IsLE = DAG.getDataLayout().isLittleEndian();
1824   if (ShuffleKind == 0) {
1825     if (IsLE)
1826       return false;
1827     for (unsigned i = 0; i != 16; ++i)
1828       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1829         return false;
1830   } else if (ShuffleKind == 2) {
1831     if (!IsLE)
1832       return false;
1833     for (unsigned i = 0; i != 16; ++i)
1834       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1835         return false;
1836   } else if (ShuffleKind == 1) {
1837     unsigned j = IsLE ? 0 : 1;
1838     for (unsigned i = 0; i != 8; ++i)
1839       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1840           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1841         return false;
1842   }
1843   return true;
1844 }
1845 
1846 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1847 /// VPKUWUM instruction.
1848 /// The ShuffleKind distinguishes between big-endian operations with
1849 /// two different inputs (0), either-endian operations with two identical
1850 /// inputs (1), and little-endian operations with two different inputs (2).
1851 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1852 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1853                                SelectionDAG &DAG) {
1854   bool IsLE = DAG.getDataLayout().isLittleEndian();
1855   if (ShuffleKind == 0) {
1856     if (IsLE)
1857       return false;
1858     for (unsigned i = 0; i != 16; i += 2)
1859       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1860           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1861         return false;
1862   } else if (ShuffleKind == 2) {
1863     if (!IsLE)
1864       return false;
1865     for (unsigned i = 0; i != 16; i += 2)
1866       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1867           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1868         return false;
1869   } else if (ShuffleKind == 1) {
1870     unsigned j = IsLE ? 0 : 2;
1871     for (unsigned i = 0; i != 8; i += 2)
1872       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1873           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1874           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1875           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1876         return false;
1877   }
1878   return true;
1879 }
1880 
1881 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1882 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1883 /// current subtarget.
1884 ///
1885 /// The ShuffleKind distinguishes between big-endian operations with
1886 /// two different inputs (0), either-endian operations with two identical
1887 /// inputs (1), and little-endian operations with two different inputs (2).
1888 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1889 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1890                                SelectionDAG &DAG) {
1891   const PPCSubtarget& Subtarget =
1892       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1893   if (!Subtarget.hasP8Vector())
1894     return false;
1895 
1896   bool IsLE = DAG.getDataLayout().isLittleEndian();
1897   if (ShuffleKind == 0) {
1898     if (IsLE)
1899       return false;
1900     for (unsigned i = 0; i != 16; i += 4)
1901       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1902           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1903           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1904           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1905         return false;
1906   } else if (ShuffleKind == 2) {
1907     if (!IsLE)
1908       return false;
1909     for (unsigned i = 0; i != 16; i += 4)
1910       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1911           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1912           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1913           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1914         return false;
1915   } else if (ShuffleKind == 1) {
1916     unsigned j = IsLE ? 0 : 4;
1917     for (unsigned i = 0; i != 8; i += 4)
1918       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1919           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1920           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1921           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1922           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1923           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1924           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1925           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1926         return false;
1927   }
1928   return true;
1929 }
1930 
1931 /// isVMerge - Common function, used to match vmrg* shuffles.
1932 ///
1933 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1934                      unsigned LHSStart, unsigned RHSStart) {
1935   if (N->getValueType(0) != MVT::v16i8)
1936     return false;
1937   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1938          "Unsupported merge size!");
1939 
1940   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1941     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1942       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1943                              LHSStart+j+i*UnitSize) ||
1944           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1945                              RHSStart+j+i*UnitSize))
1946         return false;
1947     }
1948   return true;
1949 }
1950 
1951 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1952 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1953 /// The ShuffleKind distinguishes between big-endian merges with two
1954 /// different inputs (0), either-endian merges with two identical inputs (1),
1955 /// and little-endian merges with two different inputs (2).  For the latter,
1956 /// the input operands are swapped (see PPCInstrAltivec.td).
1957 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1958                              unsigned ShuffleKind, SelectionDAG &DAG) {
1959   if (DAG.getDataLayout().isLittleEndian()) {
1960     if (ShuffleKind == 1) // unary
1961       return isVMerge(N, UnitSize, 0, 0);
1962     else if (ShuffleKind == 2) // swapped
1963       return isVMerge(N, UnitSize, 0, 16);
1964     else
1965       return false;
1966   } else {
1967     if (ShuffleKind == 1) // unary
1968       return isVMerge(N, UnitSize, 8, 8);
1969     else if (ShuffleKind == 0) // normal
1970       return isVMerge(N, UnitSize, 8, 24);
1971     else
1972       return false;
1973   }
1974 }
1975 
1976 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1977 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1978 /// The ShuffleKind distinguishes between big-endian merges with two
1979 /// different inputs (0), either-endian merges with two identical inputs (1),
1980 /// and little-endian merges with two different inputs (2).  For the latter,
1981 /// the input operands are swapped (see PPCInstrAltivec.td).
1982 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1983                              unsigned ShuffleKind, SelectionDAG &DAG) {
1984   if (DAG.getDataLayout().isLittleEndian()) {
1985     if (ShuffleKind == 1) // unary
1986       return isVMerge(N, UnitSize, 8, 8);
1987     else if (ShuffleKind == 2) // swapped
1988       return isVMerge(N, UnitSize, 8, 24);
1989     else
1990       return false;
1991   } else {
1992     if (ShuffleKind == 1) // unary
1993       return isVMerge(N, UnitSize, 0, 0);
1994     else if (ShuffleKind == 0) // normal
1995       return isVMerge(N, UnitSize, 0, 16);
1996     else
1997       return false;
1998   }
1999 }
2000 
2001 /**
2002  * Common function used to match vmrgew and vmrgow shuffles
2003  *
2004  * The indexOffset determines whether to look for even or odd words in
2005  * the shuffle mask. This is based on the of the endianness of the target
2006  * machine.
2007  *   - Little Endian:
2008  *     - Use offset of 0 to check for odd elements
2009  *     - Use offset of 4 to check for even elements
2010  *   - Big Endian:
2011  *     - Use offset of 0 to check for even elements
2012  *     - Use offset of 4 to check for odd elements
2013  * A detailed description of the vector element ordering for little endian and
2014  * big endian can be found at
2015  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
2016  * Targeting your applications - what little endian and big endian IBM XL C/C++
2017  * compiler differences mean to you
2018  *
2019  * The mask to the shuffle vector instruction specifies the indices of the
2020  * elements from the two input vectors to place in the result. The elements are
2021  * numbered in array-access order, starting with the first vector. These vectors
2022  * are always of type v16i8, thus each vector will contain 16 elements of size
2023  * 8. More info on the shuffle vector can be found in the
2024  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
2025  * Language Reference.
2026  *
2027  * The RHSStartValue indicates whether the same input vectors are used (unary)
2028  * or two different input vectors are used, based on the following:
2029  *   - If the instruction uses the same vector for both inputs, the range of the
2030  *     indices will be 0 to 15. In this case, the RHSStart value passed should
2031  *     be 0.
2032  *   - If the instruction has two different vectors then the range of the
2033  *     indices will be 0 to 31. In this case, the RHSStart value passed should
2034  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
2035  *     to 31 specify elements in the second vector).
2036  *
2037  * \param[in] N The shuffle vector SD Node to analyze
2038  * \param[in] IndexOffset Specifies whether to look for even or odd elements
2039  * \param[in] RHSStartValue Specifies the starting index for the righthand input
2040  * vector to the shuffle_vector instruction
2041  * \return true iff this shuffle vector represents an even or odd word merge
2042  */
2043 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
2044                      unsigned RHSStartValue) {
2045   if (N->getValueType(0) != MVT::v16i8)
2046     return false;
2047 
2048   for (unsigned i = 0; i < 2; ++i)
2049     for (unsigned j = 0; j < 4; ++j)
2050       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
2051                              i*RHSStartValue+j+IndexOffset) ||
2052           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
2053                              i*RHSStartValue+j+IndexOffset+8))
2054         return false;
2055   return true;
2056 }
2057 
2058 /**
2059  * Determine if the specified shuffle mask is suitable for the vmrgew or
2060  * vmrgow instructions.
2061  *
2062  * \param[in] N The shuffle vector SD Node to analyze
2063  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
2064  * \param[in] ShuffleKind Identify the type of merge:
2065  *   - 0 = big-endian merge with two different inputs;
2066  *   - 1 = either-endian merge with two identical inputs;
2067  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
2068  *     little-endian merges).
2069  * \param[in] DAG The current SelectionDAG
2070  * \return true iff this shuffle mask
2071  */
2072 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
2073                               unsigned ShuffleKind, SelectionDAG &DAG) {
2074   if (DAG.getDataLayout().isLittleEndian()) {
2075     unsigned indexOffset = CheckEven ? 4 : 0;
2076     if (ShuffleKind == 1) // Unary
2077       return isVMerge(N, indexOffset, 0);
2078     else if (ShuffleKind == 2) // swapped
2079       return isVMerge(N, indexOffset, 16);
2080     else
2081       return false;
2082   }
2083   else {
2084     unsigned indexOffset = CheckEven ? 0 : 4;
2085     if (ShuffleKind == 1) // Unary
2086       return isVMerge(N, indexOffset, 0);
2087     else if (ShuffleKind == 0) // Normal
2088       return isVMerge(N, indexOffset, 16);
2089     else
2090       return false;
2091   }
2092   return false;
2093 }
2094 
2095 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
2096 /// amount, otherwise return -1.
2097 /// The ShuffleKind distinguishes between big-endian operations with two
2098 /// different inputs (0), either-endian operations with two identical inputs
2099 /// (1), and little-endian operations with two different inputs (2).  For the
2100 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
2101 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
2102                              SelectionDAG &DAG) {
2103   if (N->getValueType(0) != MVT::v16i8)
2104     return -1;
2105 
2106   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2107 
2108   // Find the first non-undef value in the shuffle mask.
2109   unsigned i;
2110   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
2111     /*search*/;
2112 
2113   if (i == 16) return -1;  // all undef.
2114 
2115   // Otherwise, check to see if the rest of the elements are consecutively
2116   // numbered from this value.
2117   unsigned ShiftAmt = SVOp->getMaskElt(i);
2118   if (ShiftAmt < i) return -1;
2119 
2120   ShiftAmt -= i;
2121   bool isLE = DAG.getDataLayout().isLittleEndian();
2122 
2123   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
2124     // Check the rest of the elements to see if they are consecutive.
2125     for (++i; i != 16; ++i)
2126       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2127         return -1;
2128   } else if (ShuffleKind == 1) {
2129     // Check the rest of the elements to see if they are consecutive.
2130     for (++i; i != 16; ++i)
2131       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
2132         return -1;
2133   } else
2134     return -1;
2135 
2136   if (isLE)
2137     ShiftAmt = 16 - ShiftAmt;
2138 
2139   return ShiftAmt;
2140 }
2141 
2142 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
2143 /// specifies a splat of a single element that is suitable for input to
2144 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
2145 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
2146   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
2147          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
2148 
2149   // The consecutive indices need to specify an element, not part of two
2150   // different elements.  So abandon ship early if this isn't the case.
2151   if (N->getMaskElt(0) % EltSize != 0)
2152     return false;
2153 
2154   // This is a splat operation if each element of the permute is the same, and
2155   // if the value doesn't reference the second vector.
2156   unsigned ElementBase = N->getMaskElt(0);
2157 
2158   // FIXME: Handle UNDEF elements too!
2159   if (ElementBase >= 16)
2160     return false;
2161 
2162   // Check that the indices are consecutive, in the case of a multi-byte element
2163   // splatted with a v16i8 mask.
2164   for (unsigned i = 1; i != EltSize; ++i)
2165     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
2166       return false;
2167 
2168   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
2169     if (N->getMaskElt(i) < 0) continue;
2170     for (unsigned j = 0; j != EltSize; ++j)
2171       if (N->getMaskElt(i+j) != N->getMaskElt(j))
2172         return false;
2173   }
2174   return true;
2175 }
2176 
2177 /// Check that the mask is shuffling N byte elements. Within each N byte
2178 /// element of the mask, the indices could be either in increasing or
2179 /// decreasing order as long as they are consecutive.
2180 /// \param[in] N the shuffle vector SD Node to analyze
2181 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
2182 /// Word/DoubleWord/QuadWord).
2183 /// \param[in] StepLen the delta indices number among the N byte element, if
2184 /// the mask is in increasing/decreasing order then it is 1/-1.
2185 /// \return true iff the mask is shuffling N byte elements.
2186 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
2187                                    int StepLen) {
2188   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
2189          "Unexpected element width.");
2190   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
2191 
2192   unsigned NumOfElem = 16 / Width;
2193   unsigned MaskVal[16]; //  Width is never greater than 16
2194   for (unsigned i = 0; i < NumOfElem; ++i) {
2195     MaskVal[0] = N->getMaskElt(i * Width);
2196     if ((StepLen == 1) && (MaskVal[0] % Width)) {
2197       return false;
2198     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
2199       return false;
2200     }
2201 
2202     for (unsigned int j = 1; j < Width; ++j) {
2203       MaskVal[j] = N->getMaskElt(i * Width + j);
2204       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
2205         return false;
2206       }
2207     }
2208   }
2209 
2210   return true;
2211 }
2212 
2213 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2214                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
2215   if (!isNByteElemShuffleMask(N, 4, 1))
2216     return false;
2217 
2218   // Now we look at mask elements 0,4,8,12
2219   unsigned M0 = N->getMaskElt(0) / 4;
2220   unsigned M1 = N->getMaskElt(4) / 4;
2221   unsigned M2 = N->getMaskElt(8) / 4;
2222   unsigned M3 = N->getMaskElt(12) / 4;
2223   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
2224   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
2225 
2226   // Below, let H and L be arbitrary elements of the shuffle mask
2227   // where H is in the range [4,7] and L is in the range [0,3].
2228   // H, 1, 2, 3 or L, 5, 6, 7
2229   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
2230       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
2231     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
2232     InsertAtByte = IsLE ? 12 : 0;
2233     Swap = M0 < 4;
2234     return true;
2235   }
2236   // 0, H, 2, 3 or 4, L, 6, 7
2237   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
2238       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
2239     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
2240     InsertAtByte = IsLE ? 8 : 4;
2241     Swap = M1 < 4;
2242     return true;
2243   }
2244   // 0, 1, H, 3 or 4, 5, L, 7
2245   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
2246       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
2247     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
2248     InsertAtByte = IsLE ? 4 : 8;
2249     Swap = M2 < 4;
2250     return true;
2251   }
2252   // 0, 1, 2, H or 4, 5, 6, L
2253   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
2254       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
2255     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
2256     InsertAtByte = IsLE ? 0 : 12;
2257     Swap = M3 < 4;
2258     return true;
2259   }
2260 
2261   // If both vector operands for the shuffle are the same vector, the mask will
2262   // contain only elements from the first one and the second one will be undef.
2263   if (N->getOperand(1).isUndef()) {
2264     ShiftElts = 0;
2265     Swap = true;
2266     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2267     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
2268       InsertAtByte = IsLE ? 12 : 0;
2269       return true;
2270     }
2271     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2272       InsertAtByte = IsLE ? 8 : 4;
2273       return true;
2274     }
2275     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2276       InsertAtByte = IsLE ? 4 : 8;
2277       return true;
2278     }
2279     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2280       InsertAtByte = IsLE ? 0 : 12;
2281       return true;
2282     }
2283   }
2284 
2285   return false;
2286 }
2287 
2288 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2289                                bool &Swap, bool IsLE) {
2290   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2291   // Ensure each byte index of the word is consecutive.
2292   if (!isNByteElemShuffleMask(N, 4, 1))
2293     return false;
2294 
2295   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2296   unsigned M0 = N->getMaskElt(0) / 4;
2297   unsigned M1 = N->getMaskElt(4) / 4;
2298   unsigned M2 = N->getMaskElt(8) / 4;
2299   unsigned M3 = N->getMaskElt(12) / 4;
2300 
2301   // If both vector operands for the shuffle are the same vector, the mask will
2302   // contain only elements from the first one and the second one will be undef.
2303   if (N->getOperand(1).isUndef()) {
2304     assert(M0 < 4 && "Indexing into an undef vector?");
2305     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2306       return false;
2307 
2308     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2309     Swap = false;
2310     return true;
2311   }
2312 
2313   // Ensure each word index of the ShuffleVector Mask is consecutive.
2314   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2315     return false;
2316 
2317   if (IsLE) {
2318     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2319       // Input vectors don't need to be swapped if the leading element
2320       // of the result is one of the 3 left elements of the second vector
2321       // (or if there is no shift to be done at all).
2322       Swap = false;
2323       ShiftElts = (8 - M0) % 8;
2324     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2325       // Input vectors need to be swapped if the leading element
2326       // of the result is one of the 3 left elements of the first vector
2327       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2328       Swap = true;
2329       ShiftElts = (4 - M0) % 4;
2330     }
2331 
2332     return true;
2333   } else {                                          // BE
2334     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2335       // Input vectors don't need to be swapped if the leading element
2336       // of the result is one of the 4 elements of the first vector.
2337       Swap = false;
2338       ShiftElts = M0;
2339     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2340       // Input vectors need to be swapped if the leading element
2341       // of the result is one of the 4 elements of the right vector.
2342       Swap = true;
2343       ShiftElts = M0 - 4;
2344     }
2345 
2346     return true;
2347   }
2348 }
2349 
2350 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2351   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2352 
2353   if (!isNByteElemShuffleMask(N, Width, -1))
2354     return false;
2355 
2356   for (int i = 0; i < 16; i += Width)
2357     if (N->getMaskElt(i) != i + Width - 1)
2358       return false;
2359 
2360   return true;
2361 }
2362 
2363 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2364   return isXXBRShuffleMaskHelper(N, 2);
2365 }
2366 
2367 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2368   return isXXBRShuffleMaskHelper(N, 4);
2369 }
2370 
2371 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2372   return isXXBRShuffleMaskHelper(N, 8);
2373 }
2374 
2375 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2376   return isXXBRShuffleMaskHelper(N, 16);
2377 }
2378 
2379 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2380 /// if the inputs to the instruction should be swapped and set \p DM to the
2381 /// value for the immediate.
2382 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2383 /// AND element 0 of the result comes from the first input (LE) or second input
2384 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2385 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2386 /// mask.
2387 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2388                                bool &Swap, bool IsLE) {
2389   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2390 
2391   // Ensure each byte index of the double word is consecutive.
2392   if (!isNByteElemShuffleMask(N, 8, 1))
2393     return false;
2394 
2395   unsigned M0 = N->getMaskElt(0) / 8;
2396   unsigned M1 = N->getMaskElt(8) / 8;
2397   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2398 
2399   // If both vector operands for the shuffle are the same vector, the mask will
2400   // contain only elements from the first one and the second one will be undef.
2401   if (N->getOperand(1).isUndef()) {
2402     if ((M0 | M1) < 2) {
2403       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2404       Swap = false;
2405       return true;
2406     } else
2407       return false;
2408   }
2409 
2410   if (IsLE) {
2411     if (M0 > 1 && M1 < 2) {
2412       Swap = false;
2413     } else if (M0 < 2 && M1 > 1) {
2414       M0 = (M0 + 2) % 4;
2415       M1 = (M1 + 2) % 4;
2416       Swap = true;
2417     } else
2418       return false;
2419 
2420     // Note: if control flow comes here that means Swap is already set above
2421     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2422     return true;
2423   } else { // BE
2424     if (M0 < 2 && M1 > 1) {
2425       Swap = false;
2426     } else if (M0 > 1 && M1 < 2) {
2427       M0 = (M0 + 2) % 4;
2428       M1 = (M1 + 2) % 4;
2429       Swap = true;
2430     } else
2431       return false;
2432 
2433     // Note: if control flow comes here that means Swap is already set above
2434     DM = (M0 << 1) + (M1 & 1);
2435     return true;
2436   }
2437 }
2438 
2439 
2440 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2441 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2442 /// elements are counted from the left of the vector register).
2443 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2444                                          SelectionDAG &DAG) {
2445   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2446   assert(isSplatShuffleMask(SVOp, EltSize));
2447   if (DAG.getDataLayout().isLittleEndian())
2448     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2449   else
2450     return SVOp->getMaskElt(0) / EltSize;
2451 }
2452 
2453 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2454 /// by using a vspltis[bhw] instruction of the specified element size, return
2455 /// the constant being splatted.  The ByteSize field indicates the number of
2456 /// bytes of each element [124] -> [bhw].
2457 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2458   SDValue OpVal;
2459 
2460   // If ByteSize of the splat is bigger than the element size of the
2461   // build_vector, then we have a case where we are checking for a splat where
2462   // multiple elements of the buildvector are folded together into a single
2463   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2464   unsigned EltSize = 16/N->getNumOperands();
2465   if (EltSize < ByteSize) {
2466     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2467     SDValue UniquedVals[4];
2468     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2469 
2470     // See if all of the elements in the buildvector agree across.
2471     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2472       if (N->getOperand(i).isUndef()) continue;
2473       // If the element isn't a constant, bail fully out.
2474       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2475 
2476       if (!UniquedVals[i&(Multiple-1)].getNode())
2477         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2478       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2479         return SDValue();  // no match.
2480     }
2481 
2482     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2483     // either constant or undef values that are identical for each chunk.  See
2484     // if these chunks can form into a larger vspltis*.
2485 
2486     // Check to see if all of the leading entries are either 0 or -1.  If
2487     // neither, then this won't fit into the immediate field.
2488     bool LeadingZero = true;
2489     bool LeadingOnes = true;
2490     for (unsigned i = 0; i != Multiple-1; ++i) {
2491       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2492 
2493       LeadingZero &= isNullConstant(UniquedVals[i]);
2494       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2495     }
2496     // Finally, check the least significant entry.
2497     if (LeadingZero) {
2498       if (!UniquedVals[Multiple-1].getNode())
2499         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2500       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2501       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2502         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2503     }
2504     if (LeadingOnes) {
2505       if (!UniquedVals[Multiple-1].getNode())
2506         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2507       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2508       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2509         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2510     }
2511 
2512     return SDValue();
2513   }
2514 
2515   // Check to see if this buildvec has a single non-undef value in its elements.
2516   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2517     if (N->getOperand(i).isUndef()) continue;
2518     if (!OpVal.getNode())
2519       OpVal = N->getOperand(i);
2520     else if (OpVal != N->getOperand(i))
2521       return SDValue();
2522   }
2523 
2524   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2525 
2526   unsigned ValSizeInBytes = EltSize;
2527   uint64_t Value = 0;
2528   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2529     Value = CN->getZExtValue();
2530   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2531     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2532     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2533   }
2534 
2535   // If the splat value is larger than the element value, then we can never do
2536   // this splat.  The only case that we could fit the replicated bits into our
2537   // immediate field for would be zero, and we prefer to use vxor for it.
2538   if (ValSizeInBytes < ByteSize) return SDValue();
2539 
2540   // If the element value is larger than the splat value, check if it consists
2541   // of a repeated bit pattern of size ByteSize.
2542   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2543     return SDValue();
2544 
2545   // Properly sign extend the value.
2546   int MaskVal = SignExtend32(Value, ByteSize * 8);
2547 
2548   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2549   if (MaskVal == 0) return SDValue();
2550 
2551   // Finally, if this value fits in a 5 bit sext field, return it
2552   if (SignExtend32<5>(MaskVal) == MaskVal)
2553     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2554   return SDValue();
2555 }
2556 
2557 //===----------------------------------------------------------------------===//
2558 //  Addressing Mode Selection
2559 //===----------------------------------------------------------------------===//
2560 
2561 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2562 /// or 64-bit immediate, and if the value can be accurately represented as a
2563 /// sign extension from a 16-bit value.  If so, this returns true and the
2564 /// immediate.
2565 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2566   if (!isa<ConstantSDNode>(N))
2567     return false;
2568 
2569   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2570   if (N->getValueType(0) == MVT::i32)
2571     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2572   else
2573     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2574 }
2575 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2576   return isIntS16Immediate(Op.getNode(), Imm);
2577 }
2578 
2579 /// Used when computing address flags for selecting loads and stores.
2580 /// If we have an OR, check if the LHS and RHS are provably disjoint.
2581 /// An OR of two provably disjoint values is equivalent to an ADD.
2582 /// Most PPC load/store instructions compute the effective address as a sum,
2583 /// so doing this conversion is useful.
2584 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) {
2585   if (N.getOpcode() != ISD::OR)
2586     return false;
2587   KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2588   if (!LHSKnown.Zero.getBoolValue())
2589     return false;
2590   KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2591   return (~(LHSKnown.Zero | RHSKnown.Zero) == 0);
2592 }
2593 
2594 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2595 /// be represented as an indexed [r+r] operation.
2596 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2597                                                SDValue &Index,
2598                                                SelectionDAG &DAG) const {
2599   for (SDNode *U : N->uses()) {
2600     if (MemSDNode *Memop = dyn_cast<MemSDNode>(U)) {
2601       if (Memop->getMemoryVT() == MVT::f64) {
2602           Base = N.getOperand(0);
2603           Index = N.getOperand(1);
2604           return true;
2605       }
2606     }
2607   }
2608   return false;
2609 }
2610 
2611 /// isIntS34Immediate - This method tests if value of node given can be
2612 /// accurately represented as a sign extension from a 34-bit value.  If so,
2613 /// this returns true and the immediate.
2614 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) {
2615   if (!isa<ConstantSDNode>(N))
2616     return false;
2617 
2618   Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2619   return isInt<34>(Imm);
2620 }
2621 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) {
2622   return isIntS34Immediate(Op.getNode(), Imm);
2623 }
2624 
2625 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2626 /// can be represented as an indexed [r+r] operation.  Returns false if it
2627 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2628 /// non-zero and N can be represented by a base register plus a signed 16-bit
2629 /// displacement, make a more precise judgement by checking (displacement % \p
2630 /// EncodingAlignment).
2631 bool PPCTargetLowering::SelectAddressRegReg(
2632     SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
2633     MaybeAlign EncodingAlignment) const {
2634   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2635   // a [pc+imm].
2636   if (SelectAddressPCRel(N, Base))
2637     return false;
2638 
2639   int16_t Imm = 0;
2640   if (N.getOpcode() == ISD::ADD) {
2641     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2642     // SPE load/store can only handle 8-bit offsets.
2643     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2644         return true;
2645     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2646         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2647       return false; // r+i
2648     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2649       return false;    // r+i
2650 
2651     Base = N.getOperand(0);
2652     Index = N.getOperand(1);
2653     return true;
2654   } else if (N.getOpcode() == ISD::OR) {
2655     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2656         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2657       return false; // r+i can fold it if we can.
2658 
2659     // If this is an or of disjoint bitfields, we can codegen this as an add
2660     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2661     // disjoint.
2662     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2663 
2664     if (LHSKnown.Zero.getBoolValue()) {
2665       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2666       // If all of the bits are known zero on the LHS or RHS, the add won't
2667       // carry.
2668       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2669         Base = N.getOperand(0);
2670         Index = N.getOperand(1);
2671         return true;
2672       }
2673     }
2674   }
2675 
2676   return false;
2677 }
2678 
2679 // If we happen to be doing an i64 load or store into a stack slot that has
2680 // less than a 4-byte alignment, then the frame-index elimination may need to
2681 // use an indexed load or store instruction (because the offset may not be a
2682 // multiple of 4). The extra register needed to hold the offset comes from the
2683 // register scavenger, and it is possible that the scavenger will need to use
2684 // an emergency spill slot. As a result, we need to make sure that a spill slot
2685 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2686 // stack slot.
2687 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2688   // FIXME: This does not handle the LWA case.
2689   if (VT != MVT::i64)
2690     return;
2691 
2692   // NOTE: We'll exclude negative FIs here, which come from argument
2693   // lowering, because there are no known test cases triggering this problem
2694   // using packed structures (or similar). We can remove this exclusion if
2695   // we find such a test case. The reason why this is so test-case driven is
2696   // because this entire 'fixup' is only to prevent crashes (from the
2697   // register scavenger) on not-really-valid inputs. For example, if we have:
2698   //   %a = alloca i1
2699   //   %b = bitcast i1* %a to i64*
2700   //   store i64* a, i64 b
2701   // then the store should really be marked as 'align 1', but is not. If it
2702   // were marked as 'align 1' then the indexed form would have been
2703   // instruction-selected initially, and the problem this 'fixup' is preventing
2704   // won't happen regardless.
2705   if (FrameIdx < 0)
2706     return;
2707 
2708   MachineFunction &MF = DAG.getMachineFunction();
2709   MachineFrameInfo &MFI = MF.getFrameInfo();
2710 
2711   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2712     return;
2713 
2714   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2715   FuncInfo->setHasNonRISpills();
2716 }
2717 
2718 /// Returns true if the address N can be represented by a base register plus
2719 /// a signed 16-bit displacement [r+imm], and if it is not better
2720 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2721 /// displacements that are multiples of that value.
2722 bool PPCTargetLowering::SelectAddressRegImm(
2723     SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
2724     MaybeAlign EncodingAlignment) const {
2725   // FIXME dl should come from parent load or store, not from address
2726   SDLoc dl(N);
2727 
2728   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2729   // a [pc+imm].
2730   if (SelectAddressPCRel(N, Base))
2731     return false;
2732 
2733   // If this can be more profitably realized as r+r, fail.
2734   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2735     return false;
2736 
2737   if (N.getOpcode() == ISD::ADD) {
2738     int16_t imm = 0;
2739     if (isIntS16Immediate(N.getOperand(1), imm) &&
2740         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2741       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2742       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2743         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2744         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2745       } else {
2746         Base = N.getOperand(0);
2747       }
2748       return true; // [r+i]
2749     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2750       // Match LOAD (ADD (X, Lo(G))).
2751       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2752              && "Cannot handle constant offsets yet!");
2753       Disp = N.getOperand(1).getOperand(0);  // The global address.
2754       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2755              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2756              Disp.getOpcode() == ISD::TargetConstantPool ||
2757              Disp.getOpcode() == ISD::TargetJumpTable);
2758       Base = N.getOperand(0);
2759       return true;  // [&g+r]
2760     }
2761   } else if (N.getOpcode() == ISD::OR) {
2762     int16_t imm = 0;
2763     if (isIntS16Immediate(N.getOperand(1), imm) &&
2764         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2765       // If this is an or of disjoint bitfields, we can codegen this as an add
2766       // (for better address arithmetic) if the LHS and RHS of the OR are
2767       // provably disjoint.
2768       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2769 
2770       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2771         // If all of the bits are known zero on the LHS or RHS, the add won't
2772         // carry.
2773         if (FrameIndexSDNode *FI =
2774               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2775           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2776           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2777         } else {
2778           Base = N.getOperand(0);
2779         }
2780         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2781         return true;
2782       }
2783     }
2784   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2785     // Loading from a constant address.
2786 
2787     // If this address fits entirely in a 16-bit sext immediate field, codegen
2788     // this as "d, 0"
2789     int16_t Imm;
2790     if (isIntS16Immediate(CN, Imm) &&
2791         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
2792       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2793       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2794                              CN->getValueType(0));
2795       return true;
2796     }
2797 
2798     // Handle 32-bit sext immediates with LIS + addr mode.
2799     if ((CN->getValueType(0) == MVT::i32 ||
2800          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2801         (!EncodingAlignment ||
2802          isAligned(*EncodingAlignment, CN->getZExtValue()))) {
2803       int Addr = (int)CN->getZExtValue();
2804 
2805       // Otherwise, break this down into an LIS + disp.
2806       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2807 
2808       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2809                                    MVT::i32);
2810       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2811       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2812       return true;
2813     }
2814   }
2815 
2816   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2817   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2818     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2819     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2820   } else
2821     Base = N;
2822   return true;      // [r+0]
2823 }
2824 
2825 /// Similar to the 16-bit case but for instructions that take a 34-bit
2826 /// displacement field (prefixed loads/stores).
2827 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp,
2828                                               SDValue &Base,
2829                                               SelectionDAG &DAG) const {
2830   // Only on 64-bit targets.
2831   if (N.getValueType() != MVT::i64)
2832     return false;
2833 
2834   SDLoc dl(N);
2835   int64_t Imm = 0;
2836 
2837   if (N.getOpcode() == ISD::ADD) {
2838     if (!isIntS34Immediate(N.getOperand(1), Imm))
2839       return false;
2840     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2841     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2842       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2843     else
2844       Base = N.getOperand(0);
2845     return true;
2846   }
2847 
2848   if (N.getOpcode() == ISD::OR) {
2849     if (!isIntS34Immediate(N.getOperand(1), Imm))
2850       return false;
2851     // If this is an or of disjoint bitfields, we can codegen this as an add
2852     // (for better address arithmetic) if the LHS and RHS of the OR are
2853     // provably disjoint.
2854     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2855     if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL)
2856       return false;
2857     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2858       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2859     else
2860       Base = N.getOperand(0);
2861     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2862     return true;
2863   }
2864 
2865   if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const.
2866     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2867     Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
2868     return true;
2869   }
2870 
2871   return false;
2872 }
2873 
2874 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2875 /// represented as an indexed [r+r] operation.
2876 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2877                                                 SDValue &Index,
2878                                                 SelectionDAG &DAG) const {
2879   // Check to see if we can easily represent this as an [r+r] address.  This
2880   // will fail if it thinks that the address is more profitably represented as
2881   // reg+imm, e.g. where imm = 0.
2882   if (SelectAddressRegReg(N, Base, Index, DAG))
2883     return true;
2884 
2885   // If the address is the result of an add, we will utilize the fact that the
2886   // address calculation includes an implicit add.  However, we can reduce
2887   // register pressure if we do not materialize a constant just for use as the
2888   // index register.  We only get rid of the add if it is not an add of a
2889   // value and a 16-bit signed constant and both have a single use.
2890   int16_t imm = 0;
2891   if (N.getOpcode() == ISD::ADD &&
2892       (!isIntS16Immediate(N.getOperand(1), imm) ||
2893        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2894     Base = N.getOperand(0);
2895     Index = N.getOperand(1);
2896     return true;
2897   }
2898 
2899   // Otherwise, do it the hard way, using R0 as the base register.
2900   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2901                          N.getValueType());
2902   Index = N;
2903   return true;
2904 }
2905 
2906 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2907   Ty *PCRelCand = dyn_cast<Ty>(N);
2908   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2909 }
2910 
2911 /// Returns true if this address is a PC Relative address.
2912 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2913 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2914 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2915   // This is a materialize PC Relative node. Always select this as PC Relative.
2916   Base = N;
2917   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2918     return true;
2919   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2920       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2921       isValidPCRelNode<JumpTableSDNode>(N) ||
2922       isValidPCRelNode<BlockAddressSDNode>(N))
2923     return true;
2924   return false;
2925 }
2926 
2927 /// Returns true if we should use a direct load into vector instruction
2928 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2929 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2930 
2931   // If there are any other uses other than scalar to vector, then we should
2932   // keep it as a scalar load -> direct move pattern to prevent multiple
2933   // loads.
2934   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2935   if (!LD)
2936     return false;
2937 
2938   EVT MemVT = LD->getMemoryVT();
2939   if (!MemVT.isSimple())
2940     return false;
2941   switch(MemVT.getSimpleVT().SimpleTy) {
2942   case MVT::i64:
2943     break;
2944   case MVT::i32:
2945     if (!ST.hasP8Vector())
2946       return false;
2947     break;
2948   case MVT::i16:
2949   case MVT::i8:
2950     if (!ST.hasP9Vector())
2951       return false;
2952     break;
2953   default:
2954     return false;
2955   }
2956 
2957   SDValue LoadedVal(N, 0);
2958   if (!LoadedVal.hasOneUse())
2959     return false;
2960 
2961   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2962        UI != UE; ++UI)
2963     if (UI.getUse().get().getResNo() == 0 &&
2964         UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
2965         UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
2966       return false;
2967 
2968   return true;
2969 }
2970 
2971 /// getPreIndexedAddressParts - returns true by value, base pointer and
2972 /// offset pointer and addressing mode by reference if the node's address
2973 /// can be legally represented as pre-indexed load / store address.
2974 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2975                                                   SDValue &Offset,
2976                                                   ISD::MemIndexedMode &AM,
2977                                                   SelectionDAG &DAG) const {
2978   if (DisablePPCPreinc) return false;
2979 
2980   bool isLoad = true;
2981   SDValue Ptr;
2982   EVT VT;
2983   unsigned Alignment;
2984   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2985     Ptr = LD->getBasePtr();
2986     VT = LD->getMemoryVT();
2987     Alignment = LD->getAlignment();
2988   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2989     Ptr = ST->getBasePtr();
2990     VT  = ST->getMemoryVT();
2991     Alignment = ST->getAlignment();
2992     isLoad = false;
2993   } else
2994     return false;
2995 
2996   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2997   // instructions because we can fold these into a more efficient instruction
2998   // instead, (such as LXSD).
2999   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
3000     return false;
3001   }
3002 
3003   // PowerPC doesn't have preinc load/store instructions for vectors
3004   if (VT.isVector())
3005     return false;
3006 
3007   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
3008     // Common code will reject creating a pre-inc form if the base pointer
3009     // is a frame index, or if N is a store and the base pointer is either
3010     // the same as or a predecessor of the value being stored.  Check for
3011     // those situations here, and try with swapped Base/Offset instead.
3012     bool Swap = false;
3013 
3014     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
3015       Swap = true;
3016     else if (!isLoad) {
3017       SDValue Val = cast<StoreSDNode>(N)->getValue();
3018       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
3019         Swap = true;
3020     }
3021 
3022     if (Swap)
3023       std::swap(Base, Offset);
3024 
3025     AM = ISD::PRE_INC;
3026     return true;
3027   }
3028 
3029   // LDU/STU can only handle immediates that are a multiple of 4.
3030   if (VT != MVT::i64) {
3031     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None))
3032       return false;
3033   } else {
3034     // LDU/STU need an address with at least 4-byte alignment.
3035     if (Alignment < 4)
3036       return false;
3037 
3038     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
3039       return false;
3040   }
3041 
3042   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3043     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
3044     // sext i32 to i64 when addr mode is r+i.
3045     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
3046         LD->getExtensionType() == ISD::SEXTLOAD &&
3047         isa<ConstantSDNode>(Offset))
3048       return false;
3049   }
3050 
3051   AM = ISD::PRE_INC;
3052   return true;
3053 }
3054 
3055 //===----------------------------------------------------------------------===//
3056 //  LowerOperation implementation
3057 //===----------------------------------------------------------------------===//
3058 
3059 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
3060 /// and LoOpFlags to the target MO flags.
3061 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
3062                                unsigned &HiOpFlags, unsigned &LoOpFlags,
3063                                const GlobalValue *GV = nullptr) {
3064   HiOpFlags = PPCII::MO_HA;
3065   LoOpFlags = PPCII::MO_LO;
3066 
3067   // Don't use the pic base if not in PIC relocation model.
3068   if (IsPIC) {
3069     HiOpFlags |= PPCII::MO_PIC_FLAG;
3070     LoOpFlags |= PPCII::MO_PIC_FLAG;
3071   }
3072 }
3073 
3074 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
3075                              SelectionDAG &DAG) {
3076   SDLoc DL(HiPart);
3077   EVT PtrVT = HiPart.getValueType();
3078   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
3079 
3080   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
3081   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
3082 
3083   // With PIC, the first instruction is actually "GR+hi(&G)".
3084   if (isPIC)
3085     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
3086                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
3087 
3088   // Generate non-pic code that has direct accesses to the constant pool.
3089   // The address of the global is just (hi(&g)+lo(&g)).
3090   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
3091 }
3092 
3093 static void setUsesTOCBasePtr(MachineFunction &MF) {
3094   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3095   FuncInfo->setUsesTOCBasePtr();
3096 }
3097 
3098 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
3099   setUsesTOCBasePtr(DAG.getMachineFunction());
3100 }
3101 
3102 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
3103                                        SDValue GA) const {
3104   const bool Is64Bit = Subtarget.isPPC64();
3105   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
3106   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
3107                         : Subtarget.isAIXABI()
3108                               ? DAG.getRegister(PPC::R2, VT)
3109                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
3110   SDValue Ops[] = { GA, Reg };
3111   return DAG.getMemIntrinsicNode(
3112       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
3113       MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
3114       MachineMemOperand::MOLoad);
3115 }
3116 
3117 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
3118                                              SelectionDAG &DAG) const {
3119   EVT PtrVT = Op.getValueType();
3120   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3121   const Constant *C = CP->getConstVal();
3122 
3123   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3124   // The actual address of the GlobalValue is stored in the TOC.
3125   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3126     if (Subtarget.isUsingPCRelativeCalls()) {
3127       SDLoc DL(CP);
3128       EVT Ty = getPointerTy(DAG.getDataLayout());
3129       SDValue ConstPool = DAG.getTargetConstantPool(
3130           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
3131       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
3132     }
3133     setUsesTOCBasePtr(DAG);
3134     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
3135     return getTOCEntry(DAG, SDLoc(CP), GA);
3136   }
3137 
3138   unsigned MOHiFlag, MOLoFlag;
3139   bool IsPIC = isPositionIndependent();
3140   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3141 
3142   if (IsPIC && Subtarget.isSVR4ABI()) {
3143     SDValue GA =
3144         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
3145     return getTOCEntry(DAG, SDLoc(CP), GA);
3146   }
3147 
3148   SDValue CPIHi =
3149       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
3150   SDValue CPILo =
3151       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
3152   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
3153 }
3154 
3155 // For 64-bit PowerPC, prefer the more compact relative encodings.
3156 // This trades 32 bits per jump table entry for one or two instructions
3157 // on the jump site.
3158 unsigned PPCTargetLowering::getJumpTableEncoding() const {
3159   if (isJumpTableRelative())
3160     return MachineJumpTableInfo::EK_LabelDifference32;
3161 
3162   return TargetLowering::getJumpTableEncoding();
3163 }
3164 
3165 bool PPCTargetLowering::isJumpTableRelative() const {
3166   if (UseAbsoluteJumpTables)
3167     return false;
3168   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
3169     return true;
3170   return TargetLowering::isJumpTableRelative();
3171 }
3172 
3173 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
3174                                                     SelectionDAG &DAG) const {
3175   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3176     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3177 
3178   switch (getTargetMachine().getCodeModel()) {
3179   case CodeModel::Small:
3180   case CodeModel::Medium:
3181     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3182   default:
3183     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
3184                        getPointerTy(DAG.getDataLayout()));
3185   }
3186 }
3187 
3188 const MCExpr *
3189 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
3190                                                 unsigned JTI,
3191                                                 MCContext &Ctx) const {
3192   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3193     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3194 
3195   switch (getTargetMachine().getCodeModel()) {
3196   case CodeModel::Small:
3197   case CodeModel::Medium:
3198     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3199   default:
3200     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
3201   }
3202 }
3203 
3204 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
3205   EVT PtrVT = Op.getValueType();
3206   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3207 
3208   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3209   if (Subtarget.isUsingPCRelativeCalls()) {
3210     SDLoc DL(JT);
3211     EVT Ty = getPointerTy(DAG.getDataLayout());
3212     SDValue GA =
3213         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
3214     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3215     return MatAddr;
3216   }
3217 
3218   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3219   // The actual address of the GlobalValue is stored in the TOC.
3220   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3221     setUsesTOCBasePtr(DAG);
3222     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3223     return getTOCEntry(DAG, SDLoc(JT), GA);
3224   }
3225 
3226   unsigned MOHiFlag, MOLoFlag;
3227   bool IsPIC = isPositionIndependent();
3228   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3229 
3230   if (IsPIC && Subtarget.isSVR4ABI()) {
3231     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3232                                         PPCII::MO_PIC_FLAG);
3233     return getTOCEntry(DAG, SDLoc(GA), GA);
3234   }
3235 
3236   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
3237   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
3238   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
3239 }
3240 
3241 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
3242                                              SelectionDAG &DAG) const {
3243   EVT PtrVT = Op.getValueType();
3244   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
3245   const BlockAddress *BA = BASDN->getBlockAddress();
3246 
3247   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3248   if (Subtarget.isUsingPCRelativeCalls()) {
3249     SDLoc DL(BASDN);
3250     EVT Ty = getPointerTy(DAG.getDataLayout());
3251     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
3252                                            PPCII::MO_PCREL_FLAG);
3253     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3254     return MatAddr;
3255   }
3256 
3257   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3258   // The actual BlockAddress is stored in the TOC.
3259   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3260     setUsesTOCBasePtr(DAG);
3261     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
3262     return getTOCEntry(DAG, SDLoc(BASDN), GA);
3263   }
3264 
3265   // 32-bit position-independent ELF stores the BlockAddress in the .got.
3266   if (Subtarget.is32BitELFABI() && isPositionIndependent())
3267     return getTOCEntry(
3268         DAG, SDLoc(BASDN),
3269         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
3270 
3271   unsigned MOHiFlag, MOLoFlag;
3272   bool IsPIC = isPositionIndependent();
3273   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3274   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
3275   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
3276   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
3277 }
3278 
3279 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
3280                                               SelectionDAG &DAG) const {
3281   if (Subtarget.isAIXABI())
3282     return LowerGlobalTLSAddressAIX(Op, DAG);
3283 
3284   return LowerGlobalTLSAddressLinux(Op, DAG);
3285 }
3286 
3287 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op,
3288                                                     SelectionDAG &DAG) const {
3289   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3290 
3291   if (DAG.getTarget().useEmulatedTLS())
3292     report_fatal_error("Emulated TLS is not yet supported on AIX");
3293 
3294   SDLoc dl(GA);
3295   const GlobalValue *GV = GA->getGlobal();
3296   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3297 
3298   // The general-dynamic model is the only access model supported for now, so
3299   // all the GlobalTLSAddress nodes are lowered with this model.
3300   // We need to generate two TOC entries, one for the variable offset, one for
3301   // the region handle. The global address for the TOC entry of the region
3302   // handle is created with the MO_TLSGDM_FLAG flag and the global address
3303   // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG.
3304   SDValue VariableOffsetTGA =
3305       DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG);
3306   SDValue RegionHandleTGA =
3307       DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG);
3308   SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA);
3309   SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA);
3310   return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset,
3311                      RegionHandle);
3312 }
3313 
3314 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op,
3315                                                       SelectionDAG &DAG) const {
3316   // FIXME: TLS addresses currently use medium model code sequences,
3317   // which is the most useful form.  Eventually support for small and
3318   // large models could be added if users need it, at the cost of
3319   // additional complexity.
3320   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3321   if (DAG.getTarget().useEmulatedTLS())
3322     return LowerToTLSEmulatedModel(GA, DAG);
3323 
3324   SDLoc dl(GA);
3325   const GlobalValue *GV = GA->getGlobal();
3326   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3327   bool is64bit = Subtarget.isPPC64();
3328   const Module *M = DAG.getMachineFunction().getFunction().getParent();
3329   PICLevel::Level picLevel = M->getPICLevel();
3330 
3331   const TargetMachine &TM = getTargetMachine();
3332   TLSModel::Model Model = TM.getTLSModel(GV);
3333 
3334   if (Model == TLSModel::LocalExec) {
3335     if (Subtarget.isUsingPCRelativeCalls()) {
3336       SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64);
3337       SDValue TGA = DAG.getTargetGlobalAddress(
3338           GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG));
3339       SDValue MatAddr =
3340           DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA);
3341       return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr);
3342     }
3343 
3344     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3345                                                PPCII::MO_TPREL_HA);
3346     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3347                                                PPCII::MO_TPREL_LO);
3348     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
3349                              : DAG.getRegister(PPC::R2, MVT::i32);
3350 
3351     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3352     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3353   }
3354 
3355   if (Model == TLSModel::InitialExec) {
3356     bool IsPCRel = Subtarget.isUsingPCRelativeCalls();
3357     SDValue TGA = DAG.getTargetGlobalAddress(
3358         GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0);
3359     SDValue TGATLS = DAG.getTargetGlobalAddress(
3360         GV, dl, PtrVT, 0,
3361         IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS);
3362     SDValue TPOffset;
3363     if (IsPCRel) {
3364       SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA);
3365       TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel,
3366                              MachinePointerInfo());
3367     } else {
3368       SDValue GOTPtr;
3369       if (is64bit) {
3370         setUsesTOCBasePtr(DAG);
3371         SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3372         GOTPtr =
3373             DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA);
3374       } else {
3375         if (!TM.isPositionIndependent())
3376           GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3377         else if (picLevel == PICLevel::SmallPIC)
3378           GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3379         else
3380           GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3381       }
3382       TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr);
3383     }
3384     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3385   }
3386 
3387   if (Model == TLSModel::GeneralDynamic) {
3388     if (Subtarget.isUsingPCRelativeCalls()) {
3389       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3390                                                PPCII::MO_GOT_TLSGD_PCREL_FLAG);
3391       return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3392     }
3393 
3394     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3395     SDValue GOTPtr;
3396     if (is64bit) {
3397       setUsesTOCBasePtr(DAG);
3398       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3399       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3400                                    GOTReg, TGA);
3401     } else {
3402       if (picLevel == PICLevel::SmallPIC)
3403         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3404       else
3405         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3406     }
3407     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3408                        GOTPtr, TGA, TGA);
3409   }
3410 
3411   if (Model == TLSModel::LocalDynamic) {
3412     if (Subtarget.isUsingPCRelativeCalls()) {
3413       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3414                                                PPCII::MO_GOT_TLSLD_PCREL_FLAG);
3415       SDValue MatPCRel =
3416           DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3417       return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA);
3418     }
3419 
3420     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3421     SDValue GOTPtr;
3422     if (is64bit) {
3423       setUsesTOCBasePtr(DAG);
3424       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3425       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3426                            GOTReg, TGA);
3427     } else {
3428       if (picLevel == PICLevel::SmallPIC)
3429         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3430       else
3431         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3432     }
3433     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3434                                   PtrVT, GOTPtr, TGA, TGA);
3435     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3436                                       PtrVT, TLSAddr, TGA);
3437     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3438   }
3439 
3440   llvm_unreachable("Unknown TLS model!");
3441 }
3442 
3443 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3444                                               SelectionDAG &DAG) const {
3445   EVT PtrVT = Op.getValueType();
3446   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3447   SDLoc DL(GSDN);
3448   const GlobalValue *GV = GSDN->getGlobal();
3449 
3450   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3451   // The actual address of the GlobalValue is stored in the TOC.
3452   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3453     if (Subtarget.isUsingPCRelativeCalls()) {
3454       EVT Ty = getPointerTy(DAG.getDataLayout());
3455       if (isAccessedAsGotIndirect(Op)) {
3456         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3457                                                 PPCII::MO_PCREL_FLAG |
3458                                                     PPCII::MO_GOT_FLAG);
3459         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3460         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3461                                    MachinePointerInfo());
3462         return Load;
3463       } else {
3464         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3465                                                 PPCII::MO_PCREL_FLAG);
3466         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3467       }
3468     }
3469     setUsesTOCBasePtr(DAG);
3470     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3471     return getTOCEntry(DAG, DL, GA);
3472   }
3473 
3474   unsigned MOHiFlag, MOLoFlag;
3475   bool IsPIC = isPositionIndependent();
3476   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3477 
3478   if (IsPIC && Subtarget.isSVR4ABI()) {
3479     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3480                                             GSDN->getOffset(),
3481                                             PPCII::MO_PIC_FLAG);
3482     return getTOCEntry(DAG, DL, GA);
3483   }
3484 
3485   SDValue GAHi =
3486     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3487   SDValue GALo =
3488     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3489 
3490   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3491 }
3492 
3493 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3494   bool IsStrict = Op->isStrictFPOpcode();
3495   ISD::CondCode CC =
3496       cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get();
3497   SDValue LHS = Op.getOperand(IsStrict ? 1 : 0);
3498   SDValue RHS = Op.getOperand(IsStrict ? 2 : 1);
3499   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
3500   EVT LHSVT = LHS.getValueType();
3501   SDLoc dl(Op);
3502 
3503   // Soften the setcc with libcall if it is fp128.
3504   if (LHSVT == MVT::f128) {
3505     assert(!Subtarget.hasP9Vector() &&
3506            "SETCC for f128 is already legal under Power9!");
3507     softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain,
3508                         Op->getOpcode() == ISD::STRICT_FSETCCS);
3509     if (RHS.getNode())
3510       LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS,
3511                         DAG.getCondCode(CC));
3512     if (IsStrict)
3513       return DAG.getMergeValues({LHS, Chain}, dl);
3514     return LHS;
3515   }
3516 
3517   assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!");
3518 
3519   if (Op.getValueType() == MVT::v2i64) {
3520     // When the operands themselves are v2i64 values, we need to do something
3521     // special because VSX has no underlying comparison operations for these.
3522     if (LHS.getValueType() == MVT::v2i64) {
3523       // Equality can be handled by casting to the legal type for Altivec
3524       // comparisons, everything else needs to be expanded.
3525       if (CC != ISD::SETEQ && CC != ISD::SETNE)
3526         return SDValue();
3527       SDValue SetCC32 = DAG.getSetCC(
3528           dl, MVT::v4i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS),
3529           DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC);
3530       int ShuffV[] = {1, 0, 3, 2};
3531       SDValue Shuff =
3532           DAG.getVectorShuffle(MVT::v4i32, dl, SetCC32, SetCC32, ShuffV);
3533       return DAG.getBitcast(MVT::v2i64,
3534                             DAG.getNode(CC == ISD::SETEQ ? ISD::AND : ISD::OR,
3535                                         dl, MVT::v4i32, Shuff, SetCC32));
3536     }
3537 
3538     // We handle most of these in the usual way.
3539     return Op;
3540   }
3541 
3542   // If we're comparing for equality to zero, expose the fact that this is
3543   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3544   // fold the new nodes.
3545   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3546     return V;
3547 
3548   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
3549     // Leave comparisons against 0 and -1 alone for now, since they're usually
3550     // optimized.  FIXME: revisit this when we can custom lower all setcc
3551     // optimizations.
3552     if (C->isAllOnes() || C->isZero())
3553       return SDValue();
3554   }
3555 
3556   // If we have an integer seteq/setne, turn it into a compare against zero
3557   // by xor'ing the rhs with the lhs, which is faster than setting a
3558   // condition register, reading it back out, and masking the correct bit.  The
3559   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3560   // the result to other bit-twiddling opportunities.
3561   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3562     EVT VT = Op.getValueType();
3563     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS);
3564     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3565   }
3566   return SDValue();
3567 }
3568 
3569 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3570   SDNode *Node = Op.getNode();
3571   EVT VT = Node->getValueType(0);
3572   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3573   SDValue InChain = Node->getOperand(0);
3574   SDValue VAListPtr = Node->getOperand(1);
3575   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3576   SDLoc dl(Node);
3577 
3578   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3579 
3580   // gpr_index
3581   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3582                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3583   InChain = GprIndex.getValue(1);
3584 
3585   if (VT == MVT::i64) {
3586     // Check if GprIndex is even
3587     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3588                                  DAG.getConstant(1, dl, MVT::i32));
3589     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3590                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3591     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3592                                           DAG.getConstant(1, dl, MVT::i32));
3593     // Align GprIndex to be even if it isn't
3594     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3595                            GprIndex);
3596   }
3597 
3598   // fpr index is 1 byte after gpr
3599   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3600                                DAG.getConstant(1, dl, MVT::i32));
3601 
3602   // fpr
3603   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3604                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3605   InChain = FprIndex.getValue(1);
3606 
3607   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3608                                        DAG.getConstant(8, dl, MVT::i32));
3609 
3610   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3611                                         DAG.getConstant(4, dl, MVT::i32));
3612 
3613   // areas
3614   SDValue OverflowArea =
3615       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3616   InChain = OverflowArea.getValue(1);
3617 
3618   SDValue RegSaveArea =
3619       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3620   InChain = RegSaveArea.getValue(1);
3621 
3622   // select overflow_area if index > 8
3623   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3624                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3625 
3626   // adjustment constant gpr_index * 4/8
3627   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3628                                     VT.isInteger() ? GprIndex : FprIndex,
3629                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3630                                                     MVT::i32));
3631 
3632   // OurReg = RegSaveArea + RegConstant
3633   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3634                                RegConstant);
3635 
3636   // Floating types are 32 bytes into RegSaveArea
3637   if (VT.isFloatingPoint())
3638     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3639                          DAG.getConstant(32, dl, MVT::i32));
3640 
3641   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3642   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3643                                    VT.isInteger() ? GprIndex : FprIndex,
3644                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3645                                                    MVT::i32));
3646 
3647   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3648                               VT.isInteger() ? VAListPtr : FprPtr,
3649                               MachinePointerInfo(SV), MVT::i8);
3650 
3651   // determine if we should load from reg_save_area or overflow_area
3652   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3653 
3654   // increase overflow_area by 4/8 if gpr/fpr > 8
3655   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3656                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3657                                           dl, MVT::i32));
3658 
3659   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3660                              OverflowAreaPlusN);
3661 
3662   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3663                               MachinePointerInfo(), MVT::i32);
3664 
3665   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3666 }
3667 
3668 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3669   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3670 
3671   // We have to copy the entire va_list struct:
3672   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3673   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3674                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3675                        false, true, false, MachinePointerInfo(),
3676                        MachinePointerInfo());
3677 }
3678 
3679 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3680                                                   SelectionDAG &DAG) const {
3681   if (Subtarget.isAIXABI())
3682     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3683 
3684   return Op.getOperand(0);
3685 }
3686 
3687 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
3688   MachineFunction &MF = DAG.getMachineFunction();
3689   PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>();
3690 
3691   assert((Op.getOpcode() == ISD::INLINEASM ||
3692           Op.getOpcode() == ISD::INLINEASM_BR) &&
3693          "Expecting Inline ASM node.");
3694 
3695   // If an LR store is already known to be required then there is not point in
3696   // checking this ASM as well.
3697   if (MFI.isLRStoreRequired())
3698     return Op;
3699 
3700   // Inline ASM nodes have an optional last operand that is an incoming Flag of
3701   // type MVT::Glue. We want to ignore this last operand if that is the case.
3702   unsigned NumOps = Op.getNumOperands();
3703   if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue)
3704     --NumOps;
3705 
3706   // Check all operands that may contain the LR.
3707   for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
3708     unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
3709     unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
3710     ++i; // Skip the ID value.
3711 
3712     switch (InlineAsm::getKind(Flags)) {
3713     default:
3714       llvm_unreachable("Bad flags!");
3715     case InlineAsm::Kind_RegUse:
3716     case InlineAsm::Kind_Imm:
3717     case InlineAsm::Kind_Mem:
3718       i += NumVals;
3719       break;
3720     case InlineAsm::Kind_Clobber:
3721     case InlineAsm::Kind_RegDef:
3722     case InlineAsm::Kind_RegDefEarlyClobber: {
3723       for (; NumVals; --NumVals, ++i) {
3724         Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
3725         if (Reg != PPC::LR && Reg != PPC::LR8)
3726           continue;
3727         MFI.setLRStoreRequired();
3728         return Op;
3729       }
3730       break;
3731     }
3732     }
3733   }
3734 
3735   return Op;
3736 }
3737 
3738 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3739                                                 SelectionDAG &DAG) const {
3740   if (Subtarget.isAIXABI())
3741     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3742 
3743   SDValue Chain = Op.getOperand(0);
3744   SDValue Trmp = Op.getOperand(1); // trampoline
3745   SDValue FPtr = Op.getOperand(2); // nested function
3746   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3747   SDLoc dl(Op);
3748 
3749   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3750   bool isPPC64 = (PtrVT == MVT::i64);
3751   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3752 
3753   TargetLowering::ArgListTy Args;
3754   TargetLowering::ArgListEntry Entry;
3755 
3756   Entry.Ty = IntPtrTy;
3757   Entry.Node = Trmp; Args.push_back(Entry);
3758 
3759   // TrampSize == (isPPC64 ? 48 : 40);
3760   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3761                                isPPC64 ? MVT::i64 : MVT::i32);
3762   Args.push_back(Entry);
3763 
3764   Entry.Node = FPtr; Args.push_back(Entry);
3765   Entry.Node = Nest; Args.push_back(Entry);
3766 
3767   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3768   TargetLowering::CallLoweringInfo CLI(DAG);
3769   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3770       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3771       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3772 
3773   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3774   return CallResult.second;
3775 }
3776 
3777 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3778   MachineFunction &MF = DAG.getMachineFunction();
3779   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3780   EVT PtrVT = getPointerTy(MF.getDataLayout());
3781 
3782   SDLoc dl(Op);
3783 
3784   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3785     // vastart just stores the address of the VarArgsFrameIndex slot into the
3786     // memory location argument.
3787     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3788     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3789     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3790                         MachinePointerInfo(SV));
3791   }
3792 
3793   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3794   // We suppose the given va_list is already allocated.
3795   //
3796   // typedef struct {
3797   //  char gpr;     /* index into the array of 8 GPRs
3798   //                 * stored in the register save area
3799   //                 * gpr=0 corresponds to r3,
3800   //                 * gpr=1 to r4, etc.
3801   //                 */
3802   //  char fpr;     /* index into the array of 8 FPRs
3803   //                 * stored in the register save area
3804   //                 * fpr=0 corresponds to f1,
3805   //                 * fpr=1 to f2, etc.
3806   //                 */
3807   //  char *overflow_arg_area;
3808   //                /* location on stack that holds
3809   //                 * the next overflow argument
3810   //                 */
3811   //  char *reg_save_area;
3812   //               /* where r3:r10 and f1:f8 (if saved)
3813   //                * are stored
3814   //                */
3815   // } va_list[1];
3816 
3817   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3818   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3819   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3820                                             PtrVT);
3821   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3822                                  PtrVT);
3823 
3824   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3825   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3826 
3827   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3828   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3829 
3830   uint64_t FPROffset = 1;
3831   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3832 
3833   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3834 
3835   // Store first byte : number of int regs
3836   SDValue firstStore =
3837       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3838                         MachinePointerInfo(SV), MVT::i8);
3839   uint64_t nextOffset = FPROffset;
3840   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3841                                   ConstFPROffset);
3842 
3843   // Store second byte : number of float regs
3844   SDValue secondStore =
3845       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3846                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3847   nextOffset += StackOffset;
3848   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3849 
3850   // Store second word : arguments given on stack
3851   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3852                                     MachinePointerInfo(SV, nextOffset));
3853   nextOffset += FrameOffset;
3854   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3855 
3856   // Store third word : arguments given in registers
3857   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3858                       MachinePointerInfo(SV, nextOffset));
3859 }
3860 
3861 /// FPR - The set of FP registers that should be allocated for arguments
3862 /// on Darwin and AIX.
3863 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3864                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3865                                 PPC::F11, PPC::F12, PPC::F13};
3866 
3867 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3868 /// the stack.
3869 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3870                                        unsigned PtrByteSize) {
3871   unsigned ArgSize = ArgVT.getStoreSize();
3872   if (Flags.isByVal())
3873     ArgSize = Flags.getByValSize();
3874 
3875   // Round up to multiples of the pointer size, except for array members,
3876   // which are always packed.
3877   if (!Flags.isInConsecutiveRegs())
3878     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3879 
3880   return ArgSize;
3881 }
3882 
3883 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3884 /// on the stack.
3885 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3886                                          ISD::ArgFlagsTy Flags,
3887                                          unsigned PtrByteSize) {
3888   Align Alignment(PtrByteSize);
3889 
3890   // Altivec parameters are padded to a 16 byte boundary.
3891   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3892       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3893       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3894       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3895     Alignment = Align(16);
3896 
3897   // ByVal parameters are aligned as requested.
3898   if (Flags.isByVal()) {
3899     auto BVAlign = Flags.getNonZeroByValAlign();
3900     if (BVAlign > PtrByteSize) {
3901       if (BVAlign.value() % PtrByteSize != 0)
3902         llvm_unreachable(
3903             "ByVal alignment is not a multiple of the pointer size");
3904 
3905       Alignment = BVAlign;
3906     }
3907   }
3908 
3909   // Array members are always packed to their original alignment.
3910   if (Flags.isInConsecutiveRegs()) {
3911     // If the array member was split into multiple registers, the first
3912     // needs to be aligned to the size of the full type.  (Except for
3913     // ppcf128, which is only aligned as its f64 components.)
3914     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3915       Alignment = Align(OrigVT.getStoreSize());
3916     else
3917       Alignment = Align(ArgVT.getStoreSize());
3918   }
3919 
3920   return Alignment;
3921 }
3922 
3923 /// CalculateStackSlotUsed - Return whether this argument will use its
3924 /// stack slot (instead of being passed in registers).  ArgOffset,
3925 /// AvailableFPRs, and AvailableVRs must hold the current argument
3926 /// position, and will be updated to account for this argument.
3927 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags,
3928                                    unsigned PtrByteSize, unsigned LinkageSize,
3929                                    unsigned ParamAreaSize, unsigned &ArgOffset,
3930                                    unsigned &AvailableFPRs,
3931                                    unsigned &AvailableVRs) {
3932   bool UseMemory = false;
3933 
3934   // Respect alignment of argument on the stack.
3935   Align Alignment =
3936       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3937   ArgOffset = alignTo(ArgOffset, Alignment);
3938   // If there's no space left in the argument save area, we must
3939   // use memory (this check also catches zero-sized arguments).
3940   if (ArgOffset >= LinkageSize + ParamAreaSize)
3941     UseMemory = true;
3942 
3943   // Allocate argument on the stack.
3944   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3945   if (Flags.isInConsecutiveRegsLast())
3946     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3947   // If we overran the argument save area, we must use memory
3948   // (this check catches arguments passed partially in memory)
3949   if (ArgOffset > LinkageSize + ParamAreaSize)
3950     UseMemory = true;
3951 
3952   // However, if the argument is actually passed in an FPR or a VR,
3953   // we don't use memory after all.
3954   if (!Flags.isByVal()) {
3955     if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
3956       if (AvailableFPRs > 0) {
3957         --AvailableFPRs;
3958         return false;
3959       }
3960     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3961         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3962         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3963         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3964       if (AvailableVRs > 0) {
3965         --AvailableVRs;
3966         return false;
3967       }
3968   }
3969 
3970   return UseMemory;
3971 }
3972 
3973 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3974 /// ensure minimum alignment required for target.
3975 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3976                                      unsigned NumBytes) {
3977   return alignTo(NumBytes, Lowering->getStackAlign());
3978 }
3979 
3980 SDValue PPCTargetLowering::LowerFormalArguments(
3981     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3982     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3983     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3984   if (Subtarget.isAIXABI())
3985     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3986                                     InVals);
3987   if (Subtarget.is64BitELFABI())
3988     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3989                                        InVals);
3990   assert(Subtarget.is32BitELFABI());
3991   return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3992                                      InVals);
3993 }
3994 
3995 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3996     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3997     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3998     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3999 
4000   // 32-bit SVR4 ABI Stack Frame Layout:
4001   //              +-----------------------------------+
4002   //        +-->  |            Back chain             |
4003   //        |     +-----------------------------------+
4004   //        |     | Floating-point register save area |
4005   //        |     +-----------------------------------+
4006   //        |     |    General register save area     |
4007   //        |     +-----------------------------------+
4008   //        |     |          CR save word             |
4009   //        |     +-----------------------------------+
4010   //        |     |         VRSAVE save word          |
4011   //        |     +-----------------------------------+
4012   //        |     |         Alignment padding         |
4013   //        |     +-----------------------------------+
4014   //        |     |     Vector register save area     |
4015   //        |     +-----------------------------------+
4016   //        |     |       Local variable space        |
4017   //        |     +-----------------------------------+
4018   //        |     |        Parameter list area        |
4019   //        |     +-----------------------------------+
4020   //        |     |           LR save word            |
4021   //        |     +-----------------------------------+
4022   // SP-->  +---  |            Back chain             |
4023   //              +-----------------------------------+
4024   //
4025   // Specifications:
4026   //   System V Application Binary Interface PowerPC Processor Supplement
4027   //   AltiVec Technology Programming Interface Manual
4028 
4029   MachineFunction &MF = DAG.getMachineFunction();
4030   MachineFrameInfo &MFI = MF.getFrameInfo();
4031   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4032 
4033   EVT PtrVT = getPointerTy(MF.getDataLayout());
4034   // Potential tail calls could cause overwriting of argument stack slots.
4035   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4036                        (CallConv == CallingConv::Fast));
4037   const Align PtrAlign(4);
4038 
4039   // Assign locations to all of the incoming arguments.
4040   SmallVector<CCValAssign, 16> ArgLocs;
4041   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4042                  *DAG.getContext());
4043 
4044   // Reserve space for the linkage area on the stack.
4045   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4046   CCInfo.AllocateStack(LinkageSize, PtrAlign);
4047   if (useSoftFloat())
4048     CCInfo.PreAnalyzeFormalArguments(Ins);
4049 
4050   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
4051   CCInfo.clearWasPPCF128();
4052 
4053   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4054     CCValAssign &VA = ArgLocs[i];
4055 
4056     // Arguments stored in registers.
4057     if (VA.isRegLoc()) {
4058       const TargetRegisterClass *RC;
4059       EVT ValVT = VA.getValVT();
4060 
4061       switch (ValVT.getSimpleVT().SimpleTy) {
4062         default:
4063           llvm_unreachable("ValVT not supported by formal arguments Lowering");
4064         case MVT::i1:
4065         case MVT::i32:
4066           RC = &PPC::GPRCRegClass;
4067           break;
4068         case MVT::f32:
4069           if (Subtarget.hasP8Vector())
4070             RC = &PPC::VSSRCRegClass;
4071           else if (Subtarget.hasSPE())
4072             RC = &PPC::GPRCRegClass;
4073           else
4074             RC = &PPC::F4RCRegClass;
4075           break;
4076         case MVT::f64:
4077           if (Subtarget.hasVSX())
4078             RC = &PPC::VSFRCRegClass;
4079           else if (Subtarget.hasSPE())
4080             // SPE passes doubles in GPR pairs.
4081             RC = &PPC::GPRCRegClass;
4082           else
4083             RC = &PPC::F8RCRegClass;
4084           break;
4085         case MVT::v16i8:
4086         case MVT::v8i16:
4087         case MVT::v4i32:
4088           RC = &PPC::VRRCRegClass;
4089           break;
4090         case MVT::v4f32:
4091           RC = &PPC::VRRCRegClass;
4092           break;
4093         case MVT::v2f64:
4094         case MVT::v2i64:
4095           RC = &PPC::VRRCRegClass;
4096           break;
4097       }
4098 
4099       SDValue ArgValue;
4100       // Transform the arguments stored in physical registers into
4101       // virtual ones.
4102       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
4103         assert(i + 1 < e && "No second half of double precision argument");
4104         Register RegLo = MF.addLiveIn(VA.getLocReg(), RC);
4105         Register RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
4106         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
4107         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
4108         if (!Subtarget.isLittleEndian())
4109           std::swap (ArgValueLo, ArgValueHi);
4110         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
4111                                ArgValueHi);
4112       } else {
4113         Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
4114         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
4115                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
4116         if (ValVT == MVT::i1)
4117           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
4118       }
4119 
4120       InVals.push_back(ArgValue);
4121     } else {
4122       // Argument stored in memory.
4123       assert(VA.isMemLoc());
4124 
4125       // Get the extended size of the argument type in stack
4126       unsigned ArgSize = VA.getLocVT().getStoreSize();
4127       // Get the actual size of the argument type
4128       unsigned ObjSize = VA.getValVT().getStoreSize();
4129       unsigned ArgOffset = VA.getLocMemOffset();
4130       // Stack objects in PPC32 are right justified.
4131       ArgOffset += ArgSize - ObjSize;
4132       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
4133 
4134       // Create load nodes to retrieve arguments from the stack.
4135       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4136       InVals.push_back(
4137           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
4138     }
4139   }
4140 
4141   // Assign locations to all of the incoming aggregate by value arguments.
4142   // Aggregates passed by value are stored in the local variable space of the
4143   // caller's stack frame, right above the parameter list area.
4144   SmallVector<CCValAssign, 16> ByValArgLocs;
4145   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4146                       ByValArgLocs, *DAG.getContext());
4147 
4148   // Reserve stack space for the allocations in CCInfo.
4149   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
4150 
4151   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
4152 
4153   // Area that is at least reserved in the caller of this function.
4154   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
4155   MinReservedArea = std::max(MinReservedArea, LinkageSize);
4156 
4157   // Set the size that is at least reserved in caller of this function.  Tail
4158   // call optimized function's reserved stack space needs to be aligned so that
4159   // taking the difference between two stack areas will result in an aligned
4160   // stack.
4161   MinReservedArea =
4162       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4163   FuncInfo->setMinReservedArea(MinReservedArea);
4164 
4165   SmallVector<SDValue, 8> MemOps;
4166 
4167   // If the function takes variable number of arguments, make a frame index for
4168   // the start of the first vararg value... for expansion of llvm.va_start.
4169   if (isVarArg) {
4170     static const MCPhysReg GPArgRegs[] = {
4171       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4172       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4173     };
4174     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
4175 
4176     static const MCPhysReg FPArgRegs[] = {
4177       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
4178       PPC::F8
4179     };
4180     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
4181 
4182     if (useSoftFloat() || hasSPE())
4183        NumFPArgRegs = 0;
4184 
4185     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
4186     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
4187 
4188     // Make room for NumGPArgRegs and NumFPArgRegs.
4189     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
4190                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
4191 
4192     FuncInfo->setVarArgsStackOffset(
4193       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4194                             CCInfo.getNextStackOffset(), true));
4195 
4196     FuncInfo->setVarArgsFrameIndex(
4197         MFI.CreateStackObject(Depth, Align(8), false));
4198     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4199 
4200     // The fixed integer arguments of a variadic function are stored to the
4201     // VarArgsFrameIndex on the stack so that they may be loaded by
4202     // dereferencing the result of va_next.
4203     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
4204       // Get an existing live-in vreg, or add a new one.
4205       Register VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
4206       if (!VReg)
4207         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
4208 
4209       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4210       SDValue Store =
4211           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4212       MemOps.push_back(Store);
4213       // Increment the address by four for the next argument to store
4214       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4215       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4216     }
4217 
4218     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
4219     // is set.
4220     // The double arguments are stored to the VarArgsFrameIndex
4221     // on the stack.
4222     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
4223       // Get an existing live-in vreg, or add a new one.
4224       Register VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
4225       if (!VReg)
4226         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
4227 
4228       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
4229       SDValue Store =
4230           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4231       MemOps.push_back(Store);
4232       // Increment the address by eight for the next argument to store
4233       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
4234                                          PtrVT);
4235       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4236     }
4237   }
4238 
4239   if (!MemOps.empty())
4240     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4241 
4242   return Chain;
4243 }
4244 
4245 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4246 // value to MVT::i64 and then truncate to the correct register size.
4247 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
4248                                              EVT ObjectVT, SelectionDAG &DAG,
4249                                              SDValue ArgVal,
4250                                              const SDLoc &dl) const {
4251   if (Flags.isSExt())
4252     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
4253                          DAG.getValueType(ObjectVT));
4254   else if (Flags.isZExt())
4255     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
4256                          DAG.getValueType(ObjectVT));
4257 
4258   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
4259 }
4260 
4261 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
4262     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4263     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4264     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4265   // TODO: add description of PPC stack frame format, or at least some docs.
4266   //
4267   bool isELFv2ABI = Subtarget.isELFv2ABI();
4268   bool isLittleEndian = Subtarget.isLittleEndian();
4269   MachineFunction &MF = DAG.getMachineFunction();
4270   MachineFrameInfo &MFI = MF.getFrameInfo();
4271   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4272 
4273   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
4274          "fastcc not supported on varargs functions");
4275 
4276   EVT PtrVT = getPointerTy(MF.getDataLayout());
4277   // Potential tail calls could cause overwriting of argument stack slots.
4278   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4279                        (CallConv == CallingConv::Fast));
4280   unsigned PtrByteSize = 8;
4281   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4282 
4283   static const MCPhysReg GPR[] = {
4284     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4285     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4286   };
4287   static const MCPhysReg VR[] = {
4288     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4289     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4290   };
4291 
4292   const unsigned Num_GPR_Regs = array_lengthof(GPR);
4293   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4294   const unsigned Num_VR_Regs  = array_lengthof(VR);
4295 
4296   // Do a first pass over the arguments to determine whether the ABI
4297   // guarantees that our caller has allocated the parameter save area
4298   // on its stack frame.  In the ELFv1 ABI, this is always the case;
4299   // in the ELFv2 ABI, it is true if this is a vararg function or if
4300   // any parameter is located in a stack slot.
4301 
4302   bool HasParameterArea = !isELFv2ABI || isVarArg;
4303   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
4304   unsigned NumBytes = LinkageSize;
4305   unsigned AvailableFPRs = Num_FPR_Regs;
4306   unsigned AvailableVRs = Num_VR_Regs;
4307   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
4308     if (Ins[i].Flags.isNest())
4309       continue;
4310 
4311     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
4312                                PtrByteSize, LinkageSize, ParamAreaSize,
4313                                NumBytes, AvailableFPRs, AvailableVRs))
4314       HasParameterArea = true;
4315   }
4316 
4317   // Add DAG nodes to load the arguments or copy them out of registers.  On
4318   // entry to a function on PPC, the arguments start after the linkage area,
4319   // although the first ones are often in registers.
4320 
4321   unsigned ArgOffset = LinkageSize;
4322   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4323   SmallVector<SDValue, 8> MemOps;
4324   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4325   unsigned CurArgIdx = 0;
4326   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4327     SDValue ArgVal;
4328     bool needsLoad = false;
4329     EVT ObjectVT = Ins[ArgNo].VT;
4330     EVT OrigVT = Ins[ArgNo].ArgVT;
4331     unsigned ObjSize = ObjectVT.getStoreSize();
4332     unsigned ArgSize = ObjSize;
4333     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4334     if (Ins[ArgNo].isOrigArg()) {
4335       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4336       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4337     }
4338     // We re-align the argument offset for each argument, except when using the
4339     // fast calling convention, when we need to make sure we do that only when
4340     // we'll actually use a stack slot.
4341     unsigned CurArgOffset;
4342     Align Alignment;
4343     auto ComputeArgOffset = [&]() {
4344       /* Respect alignment of argument on the stack.  */
4345       Alignment =
4346           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
4347       ArgOffset = alignTo(ArgOffset, Alignment);
4348       CurArgOffset = ArgOffset;
4349     };
4350 
4351     if (CallConv != CallingConv::Fast) {
4352       ComputeArgOffset();
4353 
4354       /* Compute GPR index associated with argument offset.  */
4355       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4356       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
4357     }
4358 
4359     // FIXME the codegen can be much improved in some cases.
4360     // We do not have to keep everything in memory.
4361     if (Flags.isByVal()) {
4362       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4363 
4364       if (CallConv == CallingConv::Fast)
4365         ComputeArgOffset();
4366 
4367       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4368       ObjSize = Flags.getByValSize();
4369       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4370       // Empty aggregate parameters do not take up registers.  Examples:
4371       //   struct { } a;
4372       //   union  { } b;
4373       //   int c[0];
4374       // etc.  However, we have to provide a place-holder in InVals, so
4375       // pretend we have an 8-byte item at the current address for that
4376       // purpose.
4377       if (!ObjSize) {
4378         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4379         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4380         InVals.push_back(FIN);
4381         continue;
4382       }
4383 
4384       // Create a stack object covering all stack doublewords occupied
4385       // by the argument.  If the argument is (fully or partially) on
4386       // the stack, or if the argument is fully in registers but the
4387       // caller has allocated the parameter save anyway, we can refer
4388       // directly to the caller's stack frame.  Otherwise, create a
4389       // local copy in our own frame.
4390       int FI;
4391       if (HasParameterArea ||
4392           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
4393         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
4394       else
4395         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
4396       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4397 
4398       // Handle aggregates smaller than 8 bytes.
4399       if (ObjSize < PtrByteSize) {
4400         // The value of the object is its address, which differs from the
4401         // address of the enclosing doubleword on big-endian systems.
4402         SDValue Arg = FIN;
4403         if (!isLittleEndian) {
4404           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
4405           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
4406         }
4407         InVals.push_back(Arg);
4408 
4409         if (GPR_idx != Num_GPR_Regs) {
4410           Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4411           FuncInfo->addLiveInAttr(VReg, Flags);
4412           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4413           EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), ObjSize * 8);
4414           SDValue Store =
4415               DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
4416                                 MachinePointerInfo(&*FuncArg), ObjType);
4417           MemOps.push_back(Store);
4418         }
4419         // Whether we copied from a register or not, advance the offset
4420         // into the parameter save area by a full doubleword.
4421         ArgOffset += PtrByteSize;
4422         continue;
4423       }
4424 
4425       // The value of the object is its address, which is the address of
4426       // its first stack doubleword.
4427       InVals.push_back(FIN);
4428 
4429       // Store whatever pieces of the object are in registers to memory.
4430       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4431         if (GPR_idx == Num_GPR_Regs)
4432           break;
4433 
4434         Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4435         FuncInfo->addLiveInAttr(VReg, Flags);
4436         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4437         SDValue Addr = FIN;
4438         if (j) {
4439           SDValue Off = DAG.getConstant(j, dl, PtrVT);
4440           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4441         }
4442         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
4443                                      MachinePointerInfo(&*FuncArg, j));
4444         MemOps.push_back(Store);
4445         ++GPR_idx;
4446       }
4447       ArgOffset += ArgSize;
4448       continue;
4449     }
4450 
4451     switch (ObjectVT.getSimpleVT().SimpleTy) {
4452     default: llvm_unreachable("Unhandled argument type!");
4453     case MVT::i1:
4454     case MVT::i32:
4455     case MVT::i64:
4456       if (Flags.isNest()) {
4457         // The 'nest' parameter, if any, is passed in R11.
4458         Register VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4459         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4460 
4461         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4462           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4463 
4464         break;
4465       }
4466 
4467       // These can be scalar arguments or elements of an integer array type
4468       // passed directly.  Clang may use those instead of "byval" aggregate
4469       // types to avoid forcing arguments to memory unnecessarily.
4470       if (GPR_idx != Num_GPR_Regs) {
4471         Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4472         FuncInfo->addLiveInAttr(VReg, Flags);
4473         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4474 
4475         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4476           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4477           // value to MVT::i64 and then truncate to the correct register size.
4478           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4479       } else {
4480         if (CallConv == CallingConv::Fast)
4481           ComputeArgOffset();
4482 
4483         needsLoad = true;
4484         ArgSize = PtrByteSize;
4485       }
4486       if (CallConv != CallingConv::Fast || needsLoad)
4487         ArgOffset += 8;
4488       break;
4489 
4490     case MVT::f32:
4491     case MVT::f64:
4492       // These can be scalar arguments or elements of a float array type
4493       // passed directly.  The latter are used to implement ELFv2 homogenous
4494       // float aggregates.
4495       if (FPR_idx != Num_FPR_Regs) {
4496         unsigned VReg;
4497 
4498         if (ObjectVT == MVT::f32)
4499           VReg = MF.addLiveIn(FPR[FPR_idx],
4500                               Subtarget.hasP8Vector()
4501                                   ? &PPC::VSSRCRegClass
4502                                   : &PPC::F4RCRegClass);
4503         else
4504           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4505                                                 ? &PPC::VSFRCRegClass
4506                                                 : &PPC::F8RCRegClass);
4507 
4508         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4509         ++FPR_idx;
4510       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4511         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4512         // once we support fp <-> gpr moves.
4513 
4514         // This can only ever happen in the presence of f32 array types,
4515         // since otherwise we never run out of FPRs before running out
4516         // of GPRs.
4517         Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4518         FuncInfo->addLiveInAttr(VReg, Flags);
4519         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4520 
4521         if (ObjectVT == MVT::f32) {
4522           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4523             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4524                                  DAG.getConstant(32, dl, MVT::i32));
4525           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4526         }
4527 
4528         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4529       } else {
4530         if (CallConv == CallingConv::Fast)
4531           ComputeArgOffset();
4532 
4533         needsLoad = true;
4534       }
4535 
4536       // When passing an array of floats, the array occupies consecutive
4537       // space in the argument area; only round up to the next doubleword
4538       // at the end of the array.  Otherwise, each float takes 8 bytes.
4539       if (CallConv != CallingConv::Fast || needsLoad) {
4540         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4541         ArgOffset += ArgSize;
4542         if (Flags.isInConsecutiveRegsLast())
4543           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4544       }
4545       break;
4546     case MVT::v4f32:
4547     case MVT::v4i32:
4548     case MVT::v8i16:
4549     case MVT::v16i8:
4550     case MVT::v2f64:
4551     case MVT::v2i64:
4552     case MVT::v1i128:
4553     case MVT::f128:
4554       // These can be scalar arguments or elements of a vector array type
4555       // passed directly.  The latter are used to implement ELFv2 homogenous
4556       // vector aggregates.
4557       if (VR_idx != Num_VR_Regs) {
4558         Register VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4559         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4560         ++VR_idx;
4561       } else {
4562         if (CallConv == CallingConv::Fast)
4563           ComputeArgOffset();
4564         needsLoad = true;
4565       }
4566       if (CallConv != CallingConv::Fast || needsLoad)
4567         ArgOffset += 16;
4568       break;
4569     }
4570 
4571     // We need to load the argument to a virtual register if we determined
4572     // above that we ran out of physical registers of the appropriate type.
4573     if (needsLoad) {
4574       if (ObjSize < ArgSize && !isLittleEndian)
4575         CurArgOffset += ArgSize - ObjSize;
4576       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4577       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4578       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4579     }
4580 
4581     InVals.push_back(ArgVal);
4582   }
4583 
4584   // Area that is at least reserved in the caller of this function.
4585   unsigned MinReservedArea;
4586   if (HasParameterArea)
4587     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4588   else
4589     MinReservedArea = LinkageSize;
4590 
4591   // Set the size that is at least reserved in caller of this function.  Tail
4592   // call optimized functions' reserved stack space needs to be aligned so that
4593   // taking the difference between two stack areas will result in an aligned
4594   // stack.
4595   MinReservedArea =
4596       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4597   FuncInfo->setMinReservedArea(MinReservedArea);
4598 
4599   // If the function takes variable number of arguments, make a frame index for
4600   // the start of the first vararg value... for expansion of llvm.va_start.
4601   // On ELFv2ABI spec, it writes:
4602   // C programs that are intended to be *portable* across different compilers
4603   // and architectures must use the header file <stdarg.h> to deal with variable
4604   // argument lists.
4605   if (isVarArg && MFI.hasVAStart()) {
4606     int Depth = ArgOffset;
4607 
4608     FuncInfo->setVarArgsFrameIndex(
4609       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4610     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4611 
4612     // If this function is vararg, store any remaining integer argument regs
4613     // to their spots on the stack so that they may be loaded by dereferencing
4614     // the result of va_next.
4615     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4616          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4617       Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4618       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4619       SDValue Store =
4620           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4621       MemOps.push_back(Store);
4622       // Increment the address by four for the next argument to store
4623       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4624       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4625     }
4626   }
4627 
4628   if (!MemOps.empty())
4629     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4630 
4631   return Chain;
4632 }
4633 
4634 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4635 /// adjusted to accommodate the arguments for the tailcall.
4636 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4637                                    unsigned ParamSize) {
4638 
4639   if (!isTailCall) return 0;
4640 
4641   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4642   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4643   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4644   // Remember only if the new adjustment is bigger.
4645   if (SPDiff < FI->getTailCallSPDelta())
4646     FI->setTailCallSPDelta(SPDiff);
4647 
4648   return SPDiff;
4649 }
4650 
4651 static bool isFunctionGlobalAddress(SDValue Callee);
4652 
4653 static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
4654                               const TargetMachine &TM) {
4655   // It does not make sense to call callsShareTOCBase() with a caller that
4656   // is PC Relative since PC Relative callers do not have a TOC.
4657 #ifndef NDEBUG
4658   const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
4659   assert(!STICaller->isUsingPCRelativeCalls() &&
4660          "PC Relative callers do not have a TOC and cannot share a TOC Base");
4661 #endif
4662 
4663   // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4664   // don't have enough information to determine if the caller and callee share
4665   // the same  TOC base, so we have to pessimistically assume they don't for
4666   // correctness.
4667   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4668   if (!G)
4669     return false;
4670 
4671   const GlobalValue *GV = G->getGlobal();
4672 
4673   // If the callee is preemptable, then the static linker will use a plt-stub
4674   // which saves the toc to the stack, and needs a nop after the call
4675   // instruction to convert to a toc-restore.
4676   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4677     return false;
4678 
4679   // Functions with PC Relative enabled may clobber the TOC in the same DSO.
4680   // We may need a TOC restore in the situation where the caller requires a
4681   // valid TOC but the callee is PC Relative and does not.
4682   const Function *F = dyn_cast<Function>(GV);
4683   const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);
4684 
4685   // If we have an Alias we can try to get the function from there.
4686   if (Alias) {
4687     const GlobalObject *GlobalObj = Alias->getAliaseeObject();
4688     F = dyn_cast<Function>(GlobalObj);
4689   }
4690 
4691   // If we still have no valid function pointer we do not have enough
4692   // information to determine if the callee uses PC Relative calls so we must
4693   // assume that it does.
4694   if (!F)
4695     return false;
4696 
4697   // If the callee uses PC Relative we cannot guarantee that the callee won't
4698   // clobber the TOC of the caller and so we must assume that the two
4699   // functions do not share a TOC base.
4700   const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
4701   if (STICallee->isUsingPCRelativeCalls())
4702     return false;
4703 
4704   // If the GV is not a strong definition then we need to assume it can be
4705   // replaced by another function at link time. The function that replaces
4706   // it may not share the same TOC as the caller since the callee may be
4707   // replaced by a PC Relative version of the same function.
4708   if (!GV->isStrongDefinitionForLinker())
4709     return false;
4710 
4711   // The medium and large code models are expected to provide a sufficiently
4712   // large TOC to provide all data addressing needs of a module with a
4713   // single TOC.
4714   if (CodeModel::Medium == TM.getCodeModel() ||
4715       CodeModel::Large == TM.getCodeModel())
4716     return true;
4717 
4718   // Any explicitly-specified sections and section prefixes must also match.
4719   // Also, if we're using -ffunction-sections, then each function is always in
4720   // a different section (the same is true for COMDAT functions).
4721   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4722       GV->getSection() != Caller->getSection())
4723     return false;
4724   if (const auto *F = dyn_cast<Function>(GV)) {
4725     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4726       return false;
4727   }
4728 
4729   return true;
4730 }
4731 
4732 static bool
4733 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4734                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4735   assert(Subtarget.is64BitELFABI());
4736 
4737   const unsigned PtrByteSize = 8;
4738   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4739 
4740   static const MCPhysReg GPR[] = {
4741     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4742     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4743   };
4744   static const MCPhysReg VR[] = {
4745     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4746     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4747   };
4748 
4749   const unsigned NumGPRs = array_lengthof(GPR);
4750   const unsigned NumFPRs = 13;
4751   const unsigned NumVRs = array_lengthof(VR);
4752   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4753 
4754   unsigned NumBytes = LinkageSize;
4755   unsigned AvailableFPRs = NumFPRs;
4756   unsigned AvailableVRs = NumVRs;
4757 
4758   for (const ISD::OutputArg& Param : Outs) {
4759     if (Param.Flags.isNest()) continue;
4760 
4761     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize,
4762                                LinkageSize, ParamAreaSize, NumBytes,
4763                                AvailableFPRs, AvailableVRs))
4764       return true;
4765   }
4766   return false;
4767 }
4768 
4769 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4770   if (CB.arg_size() != CallerFn->arg_size())
4771     return false;
4772 
4773   auto CalleeArgIter = CB.arg_begin();
4774   auto CalleeArgEnd = CB.arg_end();
4775   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4776 
4777   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4778     const Value* CalleeArg = *CalleeArgIter;
4779     const Value* CallerArg = &(*CallerArgIter);
4780     if (CalleeArg == CallerArg)
4781       continue;
4782 
4783     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4784     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4785     //      }
4786     // 1st argument of callee is undef and has the same type as caller.
4787     if (CalleeArg->getType() == CallerArg->getType() &&
4788         isa<UndefValue>(CalleeArg))
4789       continue;
4790 
4791     return false;
4792   }
4793 
4794   return true;
4795 }
4796 
4797 // Returns true if TCO is possible between the callers and callees
4798 // calling conventions.
4799 static bool
4800 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4801                                     CallingConv::ID CalleeCC) {
4802   // Tail calls are possible with fastcc and ccc.
4803   auto isTailCallableCC  = [] (CallingConv::ID CC){
4804       return  CC == CallingConv::C || CC == CallingConv::Fast;
4805   };
4806   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4807     return false;
4808 
4809   // We can safely tail call both fastcc and ccc callees from a c calling
4810   // convention caller. If the caller is fastcc, we may have less stack space
4811   // than a non-fastcc caller with the same signature so disable tail-calls in
4812   // that case.
4813   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4814 }
4815 
4816 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4817     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4818     const SmallVectorImpl<ISD::OutputArg> &Outs,
4819     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4820   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4821 
4822   if (DisableSCO && !TailCallOpt) return false;
4823 
4824   // Variadic argument functions are not supported.
4825   if (isVarArg) return false;
4826 
4827   auto &Caller = DAG.getMachineFunction().getFunction();
4828   // Check that the calling conventions are compatible for tco.
4829   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4830     return false;
4831 
4832   // Caller contains any byval parameter is not supported.
4833   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4834     return false;
4835 
4836   // Callee contains any byval parameter is not supported, too.
4837   // Note: This is a quick work around, because in some cases, e.g.
4838   // caller's stack size > callee's stack size, we are still able to apply
4839   // sibling call optimization. For example, gcc is able to do SCO for caller1
4840   // in the following example, but not for caller2.
4841   //   struct test {
4842   //     long int a;
4843   //     char ary[56];
4844   //   } gTest;
4845   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4846   //     b->a = v.a;
4847   //     return 0;
4848   //   }
4849   //   void caller1(struct test a, struct test c, struct test *b) {
4850   //     callee(gTest, b); }
4851   //   void caller2(struct test *b) { callee(gTest, b); }
4852   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4853     return false;
4854 
4855   // If callee and caller use different calling conventions, we cannot pass
4856   // parameters on stack since offsets for the parameter area may be different.
4857   if (Caller.getCallingConv() != CalleeCC &&
4858       needStackSlotPassParameters(Subtarget, Outs))
4859     return false;
4860 
4861   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4862   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4863   // callee potentially have different TOC bases then we cannot tail call since
4864   // we need to restore the TOC pointer after the call.
4865   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4866   // We cannot guarantee this for indirect calls or calls to external functions.
4867   // When PC-Relative addressing is used, the concept of the TOC is no longer
4868   // applicable so this check is not required.
4869   // Check first for indirect calls.
4870   if (!Subtarget.isUsingPCRelativeCalls() &&
4871       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4872     return false;
4873 
4874   // Check if we share the TOC base.
4875   if (!Subtarget.isUsingPCRelativeCalls() &&
4876       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4877     return false;
4878 
4879   // TCO allows altering callee ABI, so we don't have to check further.
4880   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4881     return true;
4882 
4883   if (DisableSCO) return false;
4884 
4885   // If callee use the same argument list that caller is using, then we can
4886   // apply SCO on this case. If it is not, then we need to check if callee needs
4887   // stack for passing arguments.
4888   // PC Relative tail calls may not have a CallBase.
4889   // If there is no CallBase we cannot verify if we have the same argument
4890   // list so assume that we don't have the same argument list.
4891   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4892       needStackSlotPassParameters(Subtarget, Outs))
4893     return false;
4894   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4895     return false;
4896 
4897   return true;
4898 }
4899 
4900 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4901 /// for tail call optimization. Targets which want to do tail call
4902 /// optimization should implement this function.
4903 bool
4904 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4905                                                      CallingConv::ID CalleeCC,
4906                                                      bool isVarArg,
4907                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4908                                                      SelectionDAG& DAG) const {
4909   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4910     return false;
4911 
4912   // Variable argument functions are not supported.
4913   if (isVarArg)
4914     return false;
4915 
4916   MachineFunction &MF = DAG.getMachineFunction();
4917   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4918   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4919     // Functions containing by val parameters are not supported.
4920     for (unsigned i = 0; i != Ins.size(); i++) {
4921        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4922        if (Flags.isByVal()) return false;
4923     }
4924 
4925     // Non-PIC/GOT tail calls are supported.
4926     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4927       return true;
4928 
4929     // At the moment we can only do local tail calls (in same module, hidden
4930     // or protected) if we are generating PIC.
4931     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4932       return G->getGlobal()->hasHiddenVisibility()
4933           || G->getGlobal()->hasProtectedVisibility();
4934   }
4935 
4936   return false;
4937 }
4938 
4939 /// isCallCompatibleAddress - Return the immediate to use if the specified
4940 /// 32-bit value is representable in the immediate field of a BxA instruction.
4941 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4942   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4943   if (!C) return nullptr;
4944 
4945   int Addr = C->getZExtValue();
4946   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4947       SignExtend32<26>(Addr) != Addr)
4948     return nullptr;  // Top 6 bits have to be sext of immediate.
4949 
4950   return DAG
4951       .getConstant(
4952           (int)C->getZExtValue() >> 2, SDLoc(Op),
4953           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4954       .getNode();
4955 }
4956 
4957 namespace {
4958 
4959 struct TailCallArgumentInfo {
4960   SDValue Arg;
4961   SDValue FrameIdxOp;
4962   int FrameIdx = 0;
4963 
4964   TailCallArgumentInfo() = default;
4965 };
4966 
4967 } // end anonymous namespace
4968 
4969 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4970 static void StoreTailCallArgumentsToStackSlot(
4971     SelectionDAG &DAG, SDValue Chain,
4972     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4973     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4974   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4975     SDValue Arg = TailCallArgs[i].Arg;
4976     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4977     int FI = TailCallArgs[i].FrameIdx;
4978     // Store relative to framepointer.
4979     MemOpChains.push_back(DAG.getStore(
4980         Chain, dl, Arg, FIN,
4981         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4982   }
4983 }
4984 
4985 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4986 /// the appropriate stack slot for the tail call optimized function call.
4987 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4988                                              SDValue OldRetAddr, SDValue OldFP,
4989                                              int SPDiff, const SDLoc &dl) {
4990   if (SPDiff) {
4991     // Calculate the new stack slot for the return address.
4992     MachineFunction &MF = DAG.getMachineFunction();
4993     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4994     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4995     bool isPPC64 = Subtarget.isPPC64();
4996     int SlotSize = isPPC64 ? 8 : 4;
4997     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4998     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4999                                                          NewRetAddrLoc, true);
5000     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5001     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
5002     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
5003                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
5004   }
5005   return Chain;
5006 }
5007 
5008 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
5009 /// the position of the argument.
5010 static void
5011 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
5012                          SDValue Arg, int SPDiff, unsigned ArgOffset,
5013                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
5014   int Offset = ArgOffset + SPDiff;
5015   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
5016   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
5017   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5018   SDValue FIN = DAG.getFrameIndex(FI, VT);
5019   TailCallArgumentInfo Info;
5020   Info.Arg = Arg;
5021   Info.FrameIdxOp = FIN;
5022   Info.FrameIdx = FI;
5023   TailCallArguments.push_back(Info);
5024 }
5025 
5026 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
5027 /// stack slot. Returns the chain as result and the loaded frame pointers in
5028 /// LROpOut/FPOpout. Used when tail calling.
5029 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
5030     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
5031     SDValue &FPOpOut, const SDLoc &dl) const {
5032   if (SPDiff) {
5033     // Load the LR and FP stack slot for later adjusting.
5034     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5035     LROpOut = getReturnAddrFrameIndex(DAG);
5036     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
5037     Chain = SDValue(LROpOut.getNode(), 1);
5038   }
5039   return Chain;
5040 }
5041 
5042 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
5043 /// by "Src" to address "Dst" of size "Size".  Alignment information is
5044 /// specified by the specific parameter attribute. The copy will be passed as
5045 /// a byval function parameter.
5046 /// Sometimes what we are copying is the end of a larger object, the part that
5047 /// does not fit in registers.
5048 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
5049                                          SDValue Chain, ISD::ArgFlagsTy Flags,
5050                                          SelectionDAG &DAG, const SDLoc &dl) {
5051   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
5052   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
5053                        Flags.getNonZeroByValAlign(), false, false, false,
5054                        MachinePointerInfo(), MachinePointerInfo());
5055 }
5056 
5057 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
5058 /// tail calls.
5059 static void LowerMemOpCallTo(
5060     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
5061     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
5062     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
5063     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
5064   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5065   if (!isTailCall) {
5066     if (isVector) {
5067       SDValue StackPtr;
5068       if (isPPC64)
5069         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5070       else
5071         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5072       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5073                            DAG.getConstant(ArgOffset, dl, PtrVT));
5074     }
5075     MemOpChains.push_back(
5076         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5077     // Calculate and remember argument location.
5078   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
5079                                   TailCallArguments);
5080 }
5081 
5082 static void
5083 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
5084                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
5085                 SDValue FPOp,
5086                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
5087   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
5088   // might overwrite each other in case of tail call optimization.
5089   SmallVector<SDValue, 8> MemOpChains2;
5090   // Do not flag preceding copytoreg stuff together with the following stuff.
5091   InFlag = SDValue();
5092   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
5093                                     MemOpChains2, dl);
5094   if (!MemOpChains2.empty())
5095     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
5096 
5097   // Store the return address to the appropriate stack slot.
5098   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
5099 
5100   // Emit callseq_end just before tailcall node.
5101   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5102                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
5103   InFlag = Chain.getValue(1);
5104 }
5105 
5106 // Is this global address that of a function that can be called by name? (as
5107 // opposed to something that must hold a descriptor for an indirect call).
5108 static bool isFunctionGlobalAddress(SDValue Callee) {
5109   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5110     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
5111         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
5112       return false;
5113 
5114     return G->getGlobal()->getValueType()->isFunctionTy();
5115   }
5116 
5117   return false;
5118 }
5119 
5120 SDValue PPCTargetLowering::LowerCallResult(
5121     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5122     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5123     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5124   SmallVector<CCValAssign, 16> RVLocs;
5125   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5126                     *DAG.getContext());
5127 
5128   CCRetInfo.AnalyzeCallResult(
5129       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5130                ? RetCC_PPC_Cold
5131                : RetCC_PPC);
5132 
5133   // Copy all of the result registers out of their specified physreg.
5134   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5135     CCValAssign &VA = RVLocs[i];
5136     assert(VA.isRegLoc() && "Can only return in registers!");
5137 
5138     SDValue Val;
5139 
5140     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5141       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5142                                       InFlag);
5143       Chain = Lo.getValue(1);
5144       InFlag = Lo.getValue(2);
5145       VA = RVLocs[++i]; // skip ahead to next loc
5146       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5147                                       InFlag);
5148       Chain = Hi.getValue(1);
5149       InFlag = Hi.getValue(2);
5150       if (!Subtarget.isLittleEndian())
5151         std::swap (Lo, Hi);
5152       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5153     } else {
5154       Val = DAG.getCopyFromReg(Chain, dl,
5155                                VA.getLocReg(), VA.getLocVT(), InFlag);
5156       Chain = Val.getValue(1);
5157       InFlag = Val.getValue(2);
5158     }
5159 
5160     switch (VA.getLocInfo()) {
5161     default: llvm_unreachable("Unknown loc info!");
5162     case CCValAssign::Full: break;
5163     case CCValAssign::AExt:
5164       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5165       break;
5166     case CCValAssign::ZExt:
5167       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5168                         DAG.getValueType(VA.getValVT()));
5169       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5170       break;
5171     case CCValAssign::SExt:
5172       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5173                         DAG.getValueType(VA.getValVT()));
5174       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5175       break;
5176     }
5177 
5178     InVals.push_back(Val);
5179   }
5180 
5181   return Chain;
5182 }
5183 
5184 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5185                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5186   // PatchPoint calls are not indirect.
5187   if (isPatchPoint)
5188     return false;
5189 
5190   if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee))
5191     return false;
5192 
5193   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5194   // becuase the immediate function pointer points to a descriptor instead of
5195   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5196   // pointer immediate points to the global entry point, while the BLA would
5197   // need to jump to the local entry point (see rL211174).
5198   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5199       isBLACompatibleAddress(Callee, DAG))
5200     return false;
5201 
5202   return true;
5203 }
5204 
5205 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
5206 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
5207   return Subtarget.isAIXABI() ||
5208          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
5209 }
5210 
5211 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5212                               const Function &Caller, const SDValue &Callee,
5213                               const PPCSubtarget &Subtarget,
5214                               const TargetMachine &TM,
5215                               bool IsStrictFPCall = false) {
5216   if (CFlags.IsTailCall)
5217     return PPCISD::TC_RETURN;
5218 
5219   unsigned RetOpc = 0;
5220   // This is a call through a function pointer.
5221   if (CFlags.IsIndirect) {
5222     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5223     // indirect calls. The save of the caller's TOC pointer to the stack will be
5224     // inserted into the DAG as part of call lowering. The restore of the TOC
5225     // pointer is modeled by using a pseudo instruction for the call opcode that
5226     // represents the 2 instruction sequence of an indirect branch and link,
5227     // immediately followed by a load of the TOC pointer from the the stack save
5228     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5229     // as it is not saved or used.
5230     RetOpc = isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5231                                                  : PPCISD::BCTRL;
5232   } else if (Subtarget.isUsingPCRelativeCalls()) {
5233     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5234     RetOpc = PPCISD::CALL_NOTOC;
5235   } else if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5236     // The ABIs that maintain a TOC pointer accross calls need to have a nop
5237     // immediately following the call instruction if the caller and callee may
5238     // have different TOC bases. At link time if the linker determines the calls
5239     // may not share a TOC base, the call is redirected to a trampoline inserted
5240     // by the linker. The trampoline will (among other things) save the callers
5241     // TOC pointer at an ABI designated offset in the linkage area and the
5242     // linker will rewrite the nop to be a load of the TOC pointer from the
5243     // linkage area into gpr2.
5244     RetOpc = callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5245                                                     : PPCISD::CALL_NOP;
5246   else
5247     RetOpc = PPCISD::CALL;
5248   if (IsStrictFPCall) {
5249     switch (RetOpc) {
5250     default:
5251       llvm_unreachable("Unknown call opcode");
5252     case PPCISD::BCTRL_LOAD_TOC:
5253       RetOpc = PPCISD::BCTRL_LOAD_TOC_RM;
5254       break;
5255     case PPCISD::BCTRL:
5256       RetOpc = PPCISD::BCTRL_RM;
5257       break;
5258     case PPCISD::CALL_NOTOC:
5259       RetOpc = PPCISD::CALL_NOTOC_RM;
5260       break;
5261     case PPCISD::CALL:
5262       RetOpc = PPCISD::CALL_RM;
5263       break;
5264     case PPCISD::CALL_NOP:
5265       RetOpc = PPCISD::CALL_NOP_RM;
5266       break;
5267     }
5268   }
5269   return RetOpc;
5270 }
5271 
5272 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5273                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5274   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5275     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5276       return SDValue(Dest, 0);
5277 
5278   // Returns true if the callee is local, and false otherwise.
5279   auto isLocalCallee = [&]() {
5280     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5281     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5282     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5283 
5284     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5285            !isa_and_nonnull<GlobalIFunc>(GV);
5286   };
5287 
5288   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5289   // a static relocation model causes some versions of GNU LD (2.17.50, at
5290   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5291   // built with secure-PLT.
5292   bool UsePlt =
5293       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5294       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5295 
5296   const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) {
5297     const TargetMachine &TM = Subtarget.getTargetMachine();
5298     const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering();
5299     MCSymbolXCOFF *S =
5300         cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM));
5301 
5302     MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5303     return DAG.getMCSymbol(S, PtrVT);
5304   };
5305 
5306   if (isFunctionGlobalAddress(Callee)) {
5307     const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5308 
5309     if (Subtarget.isAIXABI()) {
5310       assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5311       return getAIXFuncEntryPointSymbolSDNode(GV);
5312     }
5313     return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5314                                       UsePlt ? PPCII::MO_PLT : 0);
5315   }
5316 
5317   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5318     const char *SymName = S->getSymbol();
5319     if (Subtarget.isAIXABI()) {
5320       // If there exists a user-declared function whose name is the same as the
5321       // ExternalSymbol's, then we pick up the user-declared version.
5322       const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5323       if (const Function *F =
5324               dyn_cast_or_null<Function>(Mod->getNamedValue(SymName)))
5325         return getAIXFuncEntryPointSymbolSDNode(F);
5326 
5327       // On AIX, direct function calls reference the symbol for the function's
5328       // entry point, which is named by prepending a "." before the function's
5329       // C-linkage name. A Qualname is returned here because an external
5330       // function entry point is a csect with XTY_ER property.
5331       const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) {
5332         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5333         MCSectionXCOFF *Sec = Context.getXCOFFSection(
5334             (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(),
5335             XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER));
5336         return Sec->getQualNameSymbol();
5337       };
5338 
5339       SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data();
5340     }
5341     return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5342                                        UsePlt ? PPCII::MO_PLT : 0);
5343   }
5344 
5345   // No transformation needed.
5346   assert(Callee.getNode() && "What no callee?");
5347   return Callee;
5348 }
5349 
5350 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5351   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5352          "Expected a CALLSEQ_STARTSDNode.");
5353 
5354   // The last operand is the chain, except when the node has glue. If the node
5355   // has glue, then the last operand is the glue, and the chain is the second
5356   // last operand.
5357   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5358   if (LastValue.getValueType() != MVT::Glue)
5359     return LastValue;
5360 
5361   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5362 }
5363 
5364 // Creates the node that moves a functions address into the count register
5365 // to prepare for an indirect call instruction.
5366 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5367                                 SDValue &Glue, SDValue &Chain,
5368                                 const SDLoc &dl) {
5369   SDValue MTCTROps[] = {Chain, Callee, Glue};
5370   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5371   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5372                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5373   // The glue is the second value produced.
5374   Glue = Chain.getValue(1);
5375 }
5376 
5377 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5378                                           SDValue &Glue, SDValue &Chain,
5379                                           SDValue CallSeqStart,
5380                                           const CallBase *CB, const SDLoc &dl,
5381                                           bool hasNest,
5382                                           const PPCSubtarget &Subtarget) {
5383   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5384   // entry point, but to the function descriptor (the function entry point
5385   // address is part of the function descriptor though).
5386   // The function descriptor is a three doubleword structure with the
5387   // following fields: function entry point, TOC base address and
5388   // environment pointer.
5389   // Thus for a call through a function pointer, the following actions need
5390   // to be performed:
5391   //   1. Save the TOC of the caller in the TOC save area of its stack
5392   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5393   //   2. Load the address of the function entry point from the function
5394   //      descriptor.
5395   //   3. Load the TOC of the callee from the function descriptor into r2.
5396   //   4. Load the environment pointer from the function descriptor into
5397   //      r11.
5398   //   5. Branch to the function entry point address.
5399   //   6. On return of the callee, the TOC of the caller needs to be
5400   //      restored (this is done in FinishCall()).
5401   //
5402   // The loads are scheduled at the beginning of the call sequence, and the
5403   // register copies are flagged together to ensure that no other
5404   // operations can be scheduled in between. E.g. without flagging the
5405   // copies together, a TOC access in the caller could be scheduled between
5406   // the assignment of the callee TOC and the branch to the callee, which leads
5407   // to incorrect code.
5408 
5409   // Start by loading the function address from the descriptor.
5410   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5411   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5412                       ? (MachineMemOperand::MODereferenceable |
5413                          MachineMemOperand::MOInvariant)
5414                       : MachineMemOperand::MONone;
5415 
5416   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5417 
5418   // Registers used in building the DAG.
5419   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5420   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5421 
5422   // Offsets of descriptor members.
5423   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5424   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5425 
5426   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5427   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5428 
5429   // One load for the functions entry point address.
5430   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5431                                     Alignment, MMOFlags);
5432 
5433   // One for loading the TOC anchor for the module that contains the called
5434   // function.
5435   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5436   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5437   SDValue TOCPtr =
5438       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5439                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5440 
5441   // One for loading the environment pointer.
5442   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5443   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5444   SDValue LoadEnvPtr =
5445       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5446                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5447 
5448 
5449   // Then copy the newly loaded TOC anchor to the TOC pointer.
5450   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5451   Chain = TOCVal.getValue(0);
5452   Glue = TOCVal.getValue(1);
5453 
5454   // If the function call has an explicit 'nest' parameter, it takes the
5455   // place of the environment pointer.
5456   assert((!hasNest || !Subtarget.isAIXABI()) &&
5457          "Nest parameter is not supported on AIX.");
5458   if (!hasNest) {
5459     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5460     Chain = EnvVal.getValue(0);
5461     Glue = EnvVal.getValue(1);
5462   }
5463 
5464   // The rest of the indirect call sequence is the same as the non-descriptor
5465   // DAG.
5466   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5467 }
5468 
5469 static void
5470 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5471                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5472                   SelectionDAG &DAG,
5473                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5474                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5475                   const PPCSubtarget &Subtarget) {
5476   const bool IsPPC64 = Subtarget.isPPC64();
5477   // MVT for a general purpose register.
5478   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5479 
5480   // First operand is always the chain.
5481   Ops.push_back(Chain);
5482 
5483   // If it's a direct call pass the callee as the second operand.
5484   if (!CFlags.IsIndirect)
5485     Ops.push_back(Callee);
5486   else {
5487     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5488 
5489     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5490     // on the stack (this would have been done in `LowerCall_64SVR4` or
5491     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5492     // represents both the indirect branch and a load that restores the TOC
5493     // pointer from the linkage area. The operand for the TOC restore is an add
5494     // of the TOC save offset to the stack pointer. This must be the second
5495     // operand: after the chain input but before any other variadic arguments.
5496     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5497     // saved or used.
5498     if (isTOCSaveRestoreRequired(Subtarget)) {
5499       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5500 
5501       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5502       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5503       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5504       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5505       Ops.push_back(AddTOC);
5506     }
5507 
5508     // Add the register used for the environment pointer.
5509     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5510       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5511                                     RegVT));
5512 
5513 
5514     // Add CTR register as callee so a bctr can be emitted later.
5515     if (CFlags.IsTailCall)
5516       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5517   }
5518 
5519   // If this is a tail call add stack pointer delta.
5520   if (CFlags.IsTailCall)
5521     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5522 
5523   // Add argument registers to the end of the list so that they are known live
5524   // into the call.
5525   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5526     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5527                                   RegsToPass[i].second.getValueType()));
5528 
5529   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5530   // no way to mark dependencies as implicit here.
5531   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5532   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5533        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5534     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5535 
5536   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5537   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5538     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5539 
5540   // Add a register mask operand representing the call-preserved registers.
5541   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5542   const uint32_t *Mask =
5543       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5544   assert(Mask && "Missing call preserved mask for calling convention");
5545   Ops.push_back(DAG.getRegisterMask(Mask));
5546 
5547   // If the glue is valid, it is the last operand.
5548   if (Glue.getNode())
5549     Ops.push_back(Glue);
5550 }
5551 
5552 SDValue PPCTargetLowering::FinishCall(
5553     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5554     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5555     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5556     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5557     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5558 
5559   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5560       Subtarget.isAIXABI())
5561     setUsesTOCBasePtr(DAG);
5562 
5563   unsigned CallOpc =
5564       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5565                     Subtarget, DAG.getTarget(), CB ? CB->isStrictFP() : false);
5566 
5567   if (!CFlags.IsIndirect)
5568     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5569   else if (Subtarget.usesFunctionDescriptors())
5570     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5571                                   dl, CFlags.HasNest, Subtarget);
5572   else
5573     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5574 
5575   // Build the operand list for the call instruction.
5576   SmallVector<SDValue, 8> Ops;
5577   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5578                     SPDiff, Subtarget);
5579 
5580   // Emit tail call.
5581   if (CFlags.IsTailCall) {
5582     // Indirect tail call when using PC Relative calls do not have the same
5583     // constraints.
5584     assert(((Callee.getOpcode() == ISD::Register &&
5585              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5586             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5587             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5588             isa<ConstantSDNode>(Callee) ||
5589             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5590            "Expecting a global address, external symbol, absolute value, "
5591            "register or an indirect tail call when PC Relative calls are "
5592            "used.");
5593     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5594     assert(CallOpc == PPCISD::TC_RETURN &&
5595            "Unexpected call opcode for a tail call.");
5596     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5597     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5598   }
5599 
5600   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5601   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5602   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5603   Glue = Chain.getValue(1);
5604 
5605   // When performing tail call optimization the callee pops its arguments off
5606   // the stack. Account for this here so these bytes can be pushed back on in
5607   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5608   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5609                          getTargetMachine().Options.GuaranteedTailCallOpt)
5610                             ? NumBytes
5611                             : 0;
5612 
5613   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5614                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5615                              Glue, dl);
5616   Glue = Chain.getValue(1);
5617 
5618   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5619                          DAG, InVals);
5620 }
5621 
5622 SDValue
5623 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5624                              SmallVectorImpl<SDValue> &InVals) const {
5625   SelectionDAG &DAG                     = CLI.DAG;
5626   SDLoc &dl                             = CLI.DL;
5627   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5628   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5629   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5630   SDValue Chain                         = CLI.Chain;
5631   SDValue Callee                        = CLI.Callee;
5632   bool &isTailCall                      = CLI.IsTailCall;
5633   CallingConv::ID CallConv              = CLI.CallConv;
5634   bool isVarArg                         = CLI.IsVarArg;
5635   bool isPatchPoint                     = CLI.IsPatchPoint;
5636   const CallBase *CB                    = CLI.CB;
5637 
5638   if (isTailCall) {
5639     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5640       isTailCall = false;
5641     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5642       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5643           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5644     else
5645       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5646                                                      Ins, DAG);
5647     if (isTailCall) {
5648       ++NumTailCalls;
5649       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5650         ++NumSiblingCalls;
5651 
5652       // PC Relative calls no longer guarantee that the callee is a Global
5653       // Address Node. The callee could be an indirect tail call in which
5654       // case the SDValue for the callee could be a load (to load the address
5655       // of a function pointer) or it may be a register copy (to move the
5656       // address of the callee from a function parameter into a virtual
5657       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5658       assert((Subtarget.isUsingPCRelativeCalls() ||
5659               isa<GlobalAddressSDNode>(Callee)) &&
5660              "Callee should be an llvm::Function object.");
5661 
5662       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5663                         << "\nTCO callee: ");
5664       LLVM_DEBUG(Callee.dump());
5665     }
5666   }
5667 
5668   if (!isTailCall && CB && CB->isMustTailCall())
5669     report_fatal_error("failed to perform tail call elimination on a call "
5670                        "site marked musttail");
5671 
5672   // When long calls (i.e. indirect calls) are always used, calls are always
5673   // made via function pointer. If we have a function name, first translate it
5674   // into a pointer.
5675   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5676       !isTailCall)
5677     Callee = LowerGlobalAddress(Callee, DAG);
5678 
5679   CallFlags CFlags(
5680       CallConv, isTailCall, isVarArg, isPatchPoint,
5681       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5682       // hasNest
5683       Subtarget.is64BitELFABI() &&
5684           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5685       CLI.NoMerge);
5686 
5687   if (Subtarget.isAIXABI())
5688     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5689                          InVals, CB);
5690 
5691   assert(Subtarget.isSVR4ABI());
5692   if (Subtarget.isPPC64())
5693     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5694                             InVals, CB);
5695   return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5696                           InVals, CB);
5697 }
5698 
5699 SDValue PPCTargetLowering::LowerCall_32SVR4(
5700     SDValue Chain, SDValue Callee, CallFlags CFlags,
5701     const SmallVectorImpl<ISD::OutputArg> &Outs,
5702     const SmallVectorImpl<SDValue> &OutVals,
5703     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5704     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5705     const CallBase *CB) const {
5706   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5707   // of the 32-bit SVR4 ABI stack frame layout.
5708 
5709   const CallingConv::ID CallConv = CFlags.CallConv;
5710   const bool IsVarArg = CFlags.IsVarArg;
5711   const bool IsTailCall = CFlags.IsTailCall;
5712 
5713   assert((CallConv == CallingConv::C ||
5714           CallConv == CallingConv::Cold ||
5715           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5716 
5717   const Align PtrAlign(4);
5718 
5719   MachineFunction &MF = DAG.getMachineFunction();
5720 
5721   // Mark this function as potentially containing a function that contains a
5722   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5723   // and restoring the callers stack pointer in this functions epilog. This is
5724   // done because by tail calling the called function might overwrite the value
5725   // in this function's (MF) stack pointer stack slot 0(SP).
5726   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5727       CallConv == CallingConv::Fast)
5728     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5729 
5730   // Count how many bytes are to be pushed on the stack, including the linkage
5731   // area, parameter list area and the part of the local variable space which
5732   // contains copies of aggregates which are passed by value.
5733 
5734   // Assign locations to all of the outgoing arguments.
5735   SmallVector<CCValAssign, 16> ArgLocs;
5736   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5737 
5738   // Reserve space for the linkage area on the stack.
5739   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5740                        PtrAlign);
5741   if (useSoftFloat())
5742     CCInfo.PreAnalyzeCallOperands(Outs);
5743 
5744   if (IsVarArg) {
5745     // Handle fixed and variable vector arguments differently.
5746     // Fixed vector arguments go into registers as long as registers are
5747     // available. Variable vector arguments always go into memory.
5748     unsigned NumArgs = Outs.size();
5749 
5750     for (unsigned i = 0; i != NumArgs; ++i) {
5751       MVT ArgVT = Outs[i].VT;
5752       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5753       bool Result;
5754 
5755       if (Outs[i].IsFixed) {
5756         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5757                                CCInfo);
5758       } else {
5759         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5760                                       ArgFlags, CCInfo);
5761       }
5762 
5763       if (Result) {
5764 #ifndef NDEBUG
5765         errs() << "Call operand #" << i << " has unhandled type "
5766              << EVT(ArgVT).getEVTString() << "\n";
5767 #endif
5768         llvm_unreachable(nullptr);
5769       }
5770     }
5771   } else {
5772     // All arguments are treated the same.
5773     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5774   }
5775   CCInfo.clearWasPPCF128();
5776 
5777   // Assign locations to all of the outgoing aggregate by value arguments.
5778   SmallVector<CCValAssign, 16> ByValArgLocs;
5779   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5780 
5781   // Reserve stack space for the allocations in CCInfo.
5782   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5783 
5784   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5785 
5786   // Size of the linkage area, parameter list area and the part of the local
5787   // space variable where copies of aggregates which are passed by value are
5788   // stored.
5789   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5790 
5791   // Calculate by how many bytes the stack has to be adjusted in case of tail
5792   // call optimization.
5793   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5794 
5795   // Adjust the stack pointer for the new arguments...
5796   // These operations are automatically eliminated by the prolog/epilog pass
5797   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5798   SDValue CallSeqStart = Chain;
5799 
5800   // Load the return address and frame pointer so it can be moved somewhere else
5801   // later.
5802   SDValue LROp, FPOp;
5803   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5804 
5805   // Set up a copy of the stack pointer for use loading and storing any
5806   // arguments that may not fit in the registers available for argument
5807   // passing.
5808   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5809 
5810   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5811   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5812   SmallVector<SDValue, 8> MemOpChains;
5813 
5814   bool seenFloatArg = false;
5815   // Walk the register/memloc assignments, inserting copies/loads.
5816   // i - Tracks the index into the list of registers allocated for the call
5817   // RealArgIdx - Tracks the index into the list of actual function arguments
5818   // j - Tracks the index into the list of byval arguments
5819   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5820        i != e;
5821        ++i, ++RealArgIdx) {
5822     CCValAssign &VA = ArgLocs[i];
5823     SDValue Arg = OutVals[RealArgIdx];
5824     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5825 
5826     if (Flags.isByVal()) {
5827       // Argument is an aggregate which is passed by value, thus we need to
5828       // create a copy of it in the local variable space of the current stack
5829       // frame (which is the stack frame of the caller) and pass the address of
5830       // this copy to the callee.
5831       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5832       CCValAssign &ByValVA = ByValArgLocs[j++];
5833       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5834 
5835       // Memory reserved in the local variable space of the callers stack frame.
5836       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5837 
5838       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5839       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5840                            StackPtr, PtrOff);
5841 
5842       // Create a copy of the argument in the local area of the current
5843       // stack frame.
5844       SDValue MemcpyCall =
5845         CreateCopyOfByValArgument(Arg, PtrOff,
5846                                   CallSeqStart.getNode()->getOperand(0),
5847                                   Flags, DAG, dl);
5848 
5849       // This must go outside the CALLSEQ_START..END.
5850       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5851                                                      SDLoc(MemcpyCall));
5852       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5853                              NewCallSeqStart.getNode());
5854       Chain = CallSeqStart = NewCallSeqStart;
5855 
5856       // Pass the address of the aggregate copy on the stack either in a
5857       // physical register or in the parameter list area of the current stack
5858       // frame to the callee.
5859       Arg = PtrOff;
5860     }
5861 
5862     // When useCRBits() is true, there can be i1 arguments.
5863     // It is because getRegisterType(MVT::i1) => MVT::i1,
5864     // and for other integer types getRegisterType() => MVT::i32.
5865     // Extend i1 and ensure callee will get i32.
5866     if (Arg.getValueType() == MVT::i1)
5867       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5868                         dl, MVT::i32, Arg);
5869 
5870     if (VA.isRegLoc()) {
5871       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5872       // Put argument in a physical register.
5873       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5874         bool IsLE = Subtarget.isLittleEndian();
5875         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5876                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5877         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5878         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5879                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5880         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5881                              SVal.getValue(0)));
5882       } else
5883         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5884     } else {
5885       // Put argument in the parameter list area of the current stack frame.
5886       assert(VA.isMemLoc());
5887       unsigned LocMemOffset = VA.getLocMemOffset();
5888 
5889       if (!IsTailCall) {
5890         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5891         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5892                              StackPtr, PtrOff);
5893 
5894         MemOpChains.push_back(
5895             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5896       } else {
5897         // Calculate and remember argument location.
5898         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5899                                  TailCallArguments);
5900       }
5901     }
5902   }
5903 
5904   if (!MemOpChains.empty())
5905     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5906 
5907   // Build a sequence of copy-to-reg nodes chained together with token chain
5908   // and flag operands which copy the outgoing args into the appropriate regs.
5909   SDValue InFlag;
5910   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5911     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5912                              RegsToPass[i].second, InFlag);
5913     InFlag = Chain.getValue(1);
5914   }
5915 
5916   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5917   // registers.
5918   if (IsVarArg) {
5919     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5920     SDValue Ops[] = { Chain, InFlag };
5921 
5922     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5923                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5924 
5925     InFlag = Chain.getValue(1);
5926   }
5927 
5928   if (IsTailCall)
5929     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5930                     TailCallArguments);
5931 
5932   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5933                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5934 }
5935 
5936 // Copy an argument into memory, being careful to do this outside the
5937 // call sequence for the call to which the argument belongs.
5938 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5939     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5940     SelectionDAG &DAG, const SDLoc &dl) const {
5941   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5942                         CallSeqStart.getNode()->getOperand(0),
5943                         Flags, DAG, dl);
5944   // The MEMCPY must go outside the CALLSEQ_START..END.
5945   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5946   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5947                                                  SDLoc(MemcpyCall));
5948   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5949                          NewCallSeqStart.getNode());
5950   return NewCallSeqStart;
5951 }
5952 
5953 SDValue PPCTargetLowering::LowerCall_64SVR4(
5954     SDValue Chain, SDValue Callee, CallFlags CFlags,
5955     const SmallVectorImpl<ISD::OutputArg> &Outs,
5956     const SmallVectorImpl<SDValue> &OutVals,
5957     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5958     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5959     const CallBase *CB) const {
5960   bool isELFv2ABI = Subtarget.isELFv2ABI();
5961   bool isLittleEndian = Subtarget.isLittleEndian();
5962   unsigned NumOps = Outs.size();
5963   bool IsSibCall = false;
5964   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5965 
5966   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5967   unsigned PtrByteSize = 8;
5968 
5969   MachineFunction &MF = DAG.getMachineFunction();
5970 
5971   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5972     IsSibCall = true;
5973 
5974   // Mark this function as potentially containing a function that contains a
5975   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5976   // and restoring the callers stack pointer in this functions epilog. This is
5977   // done because by tail calling the called function might overwrite the value
5978   // in this function's (MF) stack pointer stack slot 0(SP).
5979   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5980     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5981 
5982   assert(!(IsFastCall && CFlags.IsVarArg) &&
5983          "fastcc not supported on varargs functions");
5984 
5985   // Count how many bytes are to be pushed on the stack, including the linkage
5986   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5987   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5988   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5989   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5990   unsigned NumBytes = LinkageSize;
5991   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5992 
5993   static const MCPhysReg GPR[] = {
5994     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5995     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5996   };
5997   static const MCPhysReg VR[] = {
5998     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5999     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6000   };
6001 
6002   const unsigned NumGPRs = array_lengthof(GPR);
6003   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
6004   const unsigned NumVRs  = array_lengthof(VR);
6005 
6006   // On ELFv2, we can avoid allocating the parameter area if all the arguments
6007   // can be passed to the callee in registers.
6008   // For the fast calling convention, there is another check below.
6009   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
6010   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
6011   if (!HasParameterArea) {
6012     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
6013     unsigned AvailableFPRs = NumFPRs;
6014     unsigned AvailableVRs = NumVRs;
6015     unsigned NumBytesTmp = NumBytes;
6016     for (unsigned i = 0; i != NumOps; ++i) {
6017       if (Outs[i].Flags.isNest()) continue;
6018       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
6019                                  PtrByteSize, LinkageSize, ParamAreaSize,
6020                                  NumBytesTmp, AvailableFPRs, AvailableVRs))
6021         HasParameterArea = true;
6022     }
6023   }
6024 
6025   // When using the fast calling convention, we don't provide backing for
6026   // arguments that will be in registers.
6027   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
6028 
6029   // Avoid allocating parameter area for fastcc functions if all the arguments
6030   // can be passed in the registers.
6031   if (IsFastCall)
6032     HasParameterArea = false;
6033 
6034   // Add up all the space actually used.
6035   for (unsigned i = 0; i != NumOps; ++i) {
6036     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6037     EVT ArgVT = Outs[i].VT;
6038     EVT OrigVT = Outs[i].ArgVT;
6039 
6040     if (Flags.isNest())
6041       continue;
6042 
6043     if (IsFastCall) {
6044       if (Flags.isByVal()) {
6045         NumGPRsUsed += (Flags.getByValSize()+7)/8;
6046         if (NumGPRsUsed > NumGPRs)
6047           HasParameterArea = true;
6048       } else {
6049         switch (ArgVT.getSimpleVT().SimpleTy) {
6050         default: llvm_unreachable("Unexpected ValueType for argument!");
6051         case MVT::i1:
6052         case MVT::i32:
6053         case MVT::i64:
6054           if (++NumGPRsUsed <= NumGPRs)
6055             continue;
6056           break;
6057         case MVT::v4i32:
6058         case MVT::v8i16:
6059         case MVT::v16i8:
6060         case MVT::v2f64:
6061         case MVT::v2i64:
6062         case MVT::v1i128:
6063         case MVT::f128:
6064           if (++NumVRsUsed <= NumVRs)
6065             continue;
6066           break;
6067         case MVT::v4f32:
6068           if (++NumVRsUsed <= NumVRs)
6069             continue;
6070           break;
6071         case MVT::f32:
6072         case MVT::f64:
6073           if (++NumFPRsUsed <= NumFPRs)
6074             continue;
6075           break;
6076         }
6077         HasParameterArea = true;
6078       }
6079     }
6080 
6081     /* Respect alignment of argument on the stack.  */
6082     auto Alignement =
6083         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6084     NumBytes = alignTo(NumBytes, Alignement);
6085 
6086     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6087     if (Flags.isInConsecutiveRegsLast())
6088       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6089   }
6090 
6091   unsigned NumBytesActuallyUsed = NumBytes;
6092 
6093   // In the old ELFv1 ABI,
6094   // the prolog code of the callee may store up to 8 GPR argument registers to
6095   // the stack, allowing va_start to index over them in memory if its varargs.
6096   // Because we cannot tell if this is needed on the caller side, we have to
6097   // conservatively assume that it is needed.  As such, make sure we have at
6098   // least enough stack space for the caller to store the 8 GPRs.
6099   // In the ELFv2 ABI, we allocate the parameter area iff a callee
6100   // really requires memory operands, e.g. a vararg function.
6101   if (HasParameterArea)
6102     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6103   else
6104     NumBytes = LinkageSize;
6105 
6106   // Tail call needs the stack to be aligned.
6107   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6108     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6109 
6110   int SPDiff = 0;
6111 
6112   // Calculate by how many bytes the stack has to be adjusted in case of tail
6113   // call optimization.
6114   if (!IsSibCall)
6115     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6116 
6117   // To protect arguments on the stack from being clobbered in a tail call,
6118   // force all the loads to happen before doing any other lowering.
6119   if (CFlags.IsTailCall)
6120     Chain = DAG.getStackArgumentTokenFactor(Chain);
6121 
6122   // Adjust the stack pointer for the new arguments...
6123   // These operations are automatically eliminated by the prolog/epilog pass
6124   if (!IsSibCall)
6125     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6126   SDValue CallSeqStart = Chain;
6127 
6128   // Load the return address and frame pointer so it can be move somewhere else
6129   // later.
6130   SDValue LROp, FPOp;
6131   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6132 
6133   // Set up a copy of the stack pointer for use loading and storing any
6134   // arguments that may not fit in the registers available for argument
6135   // passing.
6136   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6137 
6138   // Figure out which arguments are going to go in registers, and which in
6139   // memory.  Also, if this is a vararg function, floating point operations
6140   // must be stored to our stack, and loaded into integer regs as well, if
6141   // any integer regs are available for argument passing.
6142   unsigned ArgOffset = LinkageSize;
6143 
6144   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6145   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6146 
6147   SmallVector<SDValue, 8> MemOpChains;
6148   for (unsigned i = 0; i != NumOps; ++i) {
6149     SDValue Arg = OutVals[i];
6150     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6151     EVT ArgVT = Outs[i].VT;
6152     EVT OrigVT = Outs[i].ArgVT;
6153 
6154     // PtrOff will be used to store the current argument to the stack if a
6155     // register cannot be found for it.
6156     SDValue PtrOff;
6157 
6158     // We re-align the argument offset for each argument, except when using the
6159     // fast calling convention, when we need to make sure we do that only when
6160     // we'll actually use a stack slot.
6161     auto ComputePtrOff = [&]() {
6162       /* Respect alignment of argument on the stack.  */
6163       auto Alignment =
6164           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6165       ArgOffset = alignTo(ArgOffset, Alignment);
6166 
6167       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6168 
6169       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6170     };
6171 
6172     if (!IsFastCall) {
6173       ComputePtrOff();
6174 
6175       /* Compute GPR index associated with argument offset.  */
6176       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6177       GPR_idx = std::min(GPR_idx, NumGPRs);
6178     }
6179 
6180     // Promote integers to 64-bit values.
6181     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6182       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6183       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6184       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6185     }
6186 
6187     // FIXME memcpy is used way more than necessary.  Correctness first.
6188     // Note: "by value" is code for passing a structure by value, not
6189     // basic types.
6190     if (Flags.isByVal()) {
6191       // Note: Size includes alignment padding, so
6192       //   struct x { short a; char b; }
6193       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6194       // These are the proper values we need for right-justifying the
6195       // aggregate in a parameter register.
6196       unsigned Size = Flags.getByValSize();
6197 
6198       // An empty aggregate parameter takes up no storage and no
6199       // registers.
6200       if (Size == 0)
6201         continue;
6202 
6203       if (IsFastCall)
6204         ComputePtrOff();
6205 
6206       // All aggregates smaller than 8 bytes must be passed right-justified.
6207       if (Size==1 || Size==2 || Size==4) {
6208         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6209         if (GPR_idx != NumGPRs) {
6210           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6211                                         MachinePointerInfo(), VT);
6212           MemOpChains.push_back(Load.getValue(1));
6213           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6214 
6215           ArgOffset += PtrByteSize;
6216           continue;
6217         }
6218       }
6219 
6220       if (GPR_idx == NumGPRs && Size < 8) {
6221         SDValue AddPtr = PtrOff;
6222         if (!isLittleEndian) {
6223           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6224                                           PtrOff.getValueType());
6225           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6226         }
6227         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6228                                                           CallSeqStart,
6229                                                           Flags, DAG, dl);
6230         ArgOffset += PtrByteSize;
6231         continue;
6232       }
6233       // Copy the object to parameter save area if it can not be entirely passed
6234       // by registers.
6235       // FIXME: we only need to copy the parts which need to be passed in
6236       // parameter save area. For the parts passed by registers, we don't need
6237       // to copy them to the stack although we need to allocate space for them
6238       // in parameter save area.
6239       if ((NumGPRs - GPR_idx) * PtrByteSize < Size)
6240         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6241                                                           CallSeqStart,
6242                                                           Flags, DAG, dl);
6243 
6244       // When a register is available, pass a small aggregate right-justified.
6245       if (Size < 8 && GPR_idx != NumGPRs) {
6246         // The easiest way to get this right-justified in a register
6247         // is to copy the structure into the rightmost portion of a
6248         // local variable slot, then load the whole slot into the
6249         // register.
6250         // FIXME: The memcpy seems to produce pretty awful code for
6251         // small aggregates, particularly for packed ones.
6252         // FIXME: It would be preferable to use the slot in the
6253         // parameter save area instead of a new local variable.
6254         SDValue AddPtr = PtrOff;
6255         if (!isLittleEndian) {
6256           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6257           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6258         }
6259         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6260                                                           CallSeqStart,
6261                                                           Flags, DAG, dl);
6262 
6263         // Load the slot into the register.
6264         SDValue Load =
6265             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6266         MemOpChains.push_back(Load.getValue(1));
6267         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6268 
6269         // Done with this argument.
6270         ArgOffset += PtrByteSize;
6271         continue;
6272       }
6273 
6274       // For aggregates larger than PtrByteSize, copy the pieces of the
6275       // object that fit into registers from the parameter save area.
6276       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6277         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6278         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6279         if (GPR_idx != NumGPRs) {
6280           SDValue Load =
6281               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6282           MemOpChains.push_back(Load.getValue(1));
6283           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6284           ArgOffset += PtrByteSize;
6285         } else {
6286           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6287           break;
6288         }
6289       }
6290       continue;
6291     }
6292 
6293     switch (Arg.getSimpleValueType().SimpleTy) {
6294     default: llvm_unreachable("Unexpected ValueType for argument!");
6295     case MVT::i1:
6296     case MVT::i32:
6297     case MVT::i64:
6298       if (Flags.isNest()) {
6299         // The 'nest' parameter, if any, is passed in R11.
6300         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6301         break;
6302       }
6303 
6304       // These can be scalar arguments or elements of an integer array type
6305       // passed directly.  Clang may use those instead of "byval" aggregate
6306       // types to avoid forcing arguments to memory unnecessarily.
6307       if (GPR_idx != NumGPRs) {
6308         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6309       } else {
6310         if (IsFastCall)
6311           ComputePtrOff();
6312 
6313         assert(HasParameterArea &&
6314                "Parameter area must exist to pass an argument in memory.");
6315         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6316                          true, CFlags.IsTailCall, false, MemOpChains,
6317                          TailCallArguments, dl);
6318         if (IsFastCall)
6319           ArgOffset += PtrByteSize;
6320       }
6321       if (!IsFastCall)
6322         ArgOffset += PtrByteSize;
6323       break;
6324     case MVT::f32:
6325     case MVT::f64: {
6326       // These can be scalar arguments or elements of a float array type
6327       // passed directly.  The latter are used to implement ELFv2 homogenous
6328       // float aggregates.
6329 
6330       // Named arguments go into FPRs first, and once they overflow, the
6331       // remaining arguments go into GPRs and then the parameter save area.
6332       // Unnamed arguments for vararg functions always go to GPRs and
6333       // then the parameter save area.  For now, put all arguments to vararg
6334       // routines always in both locations (FPR *and* GPR or stack slot).
6335       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6336       bool NeededLoad = false;
6337 
6338       // First load the argument into the next available FPR.
6339       if (FPR_idx != NumFPRs)
6340         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6341 
6342       // Next, load the argument into GPR or stack slot if needed.
6343       if (!NeedGPROrStack)
6344         ;
6345       else if (GPR_idx != NumGPRs && !IsFastCall) {
6346         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6347         // once we support fp <-> gpr moves.
6348 
6349         // In the non-vararg case, this can only ever happen in the
6350         // presence of f32 array types, since otherwise we never run
6351         // out of FPRs before running out of GPRs.
6352         SDValue ArgVal;
6353 
6354         // Double values are always passed in a single GPR.
6355         if (Arg.getValueType() != MVT::f32) {
6356           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6357 
6358         // Non-array float values are extended and passed in a GPR.
6359         } else if (!Flags.isInConsecutiveRegs()) {
6360           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6361           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6362 
6363         // If we have an array of floats, we collect every odd element
6364         // together with its predecessor into one GPR.
6365         } else if (ArgOffset % PtrByteSize != 0) {
6366           SDValue Lo, Hi;
6367           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6368           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6369           if (!isLittleEndian)
6370             std::swap(Lo, Hi);
6371           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6372 
6373         // The final element, if even, goes into the first half of a GPR.
6374         } else if (Flags.isInConsecutiveRegsLast()) {
6375           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6376           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6377           if (!isLittleEndian)
6378             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6379                                  DAG.getConstant(32, dl, MVT::i32));
6380 
6381         // Non-final even elements are skipped; they will be handled
6382         // together the with subsequent argument on the next go-around.
6383         } else
6384           ArgVal = SDValue();
6385 
6386         if (ArgVal.getNode())
6387           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6388       } else {
6389         if (IsFastCall)
6390           ComputePtrOff();
6391 
6392         // Single-precision floating-point values are mapped to the
6393         // second (rightmost) word of the stack doubleword.
6394         if (Arg.getValueType() == MVT::f32 &&
6395             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6396           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6397           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6398         }
6399 
6400         assert(HasParameterArea &&
6401                "Parameter area must exist to pass an argument in memory.");
6402         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6403                          true, CFlags.IsTailCall, false, MemOpChains,
6404                          TailCallArguments, dl);
6405 
6406         NeededLoad = true;
6407       }
6408       // When passing an array of floats, the array occupies consecutive
6409       // space in the argument area; only round up to the next doubleword
6410       // at the end of the array.  Otherwise, each float takes 8 bytes.
6411       if (!IsFastCall || NeededLoad) {
6412         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6413                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6414         if (Flags.isInConsecutiveRegsLast())
6415           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6416       }
6417       break;
6418     }
6419     case MVT::v4f32:
6420     case MVT::v4i32:
6421     case MVT::v8i16:
6422     case MVT::v16i8:
6423     case MVT::v2f64:
6424     case MVT::v2i64:
6425     case MVT::v1i128:
6426     case MVT::f128:
6427       // These can be scalar arguments or elements of a vector array type
6428       // passed directly.  The latter are used to implement ELFv2 homogenous
6429       // vector aggregates.
6430 
6431       // For a varargs call, named arguments go into VRs or on the stack as
6432       // usual; unnamed arguments always go to the stack or the corresponding
6433       // GPRs when within range.  For now, we always put the value in both
6434       // locations (or even all three).
6435       if (CFlags.IsVarArg) {
6436         assert(HasParameterArea &&
6437                "Parameter area must exist if we have a varargs call.");
6438         // We could elide this store in the case where the object fits
6439         // entirely in R registers.  Maybe later.
6440         SDValue Store =
6441             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6442         MemOpChains.push_back(Store);
6443         if (VR_idx != NumVRs) {
6444           SDValue Load =
6445               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6446           MemOpChains.push_back(Load.getValue(1));
6447           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6448         }
6449         ArgOffset += 16;
6450         for (unsigned i=0; i<16; i+=PtrByteSize) {
6451           if (GPR_idx == NumGPRs)
6452             break;
6453           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6454                                    DAG.getConstant(i, dl, PtrVT));
6455           SDValue Load =
6456               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6457           MemOpChains.push_back(Load.getValue(1));
6458           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6459         }
6460         break;
6461       }
6462 
6463       // Non-varargs Altivec params go into VRs or on the stack.
6464       if (VR_idx != NumVRs) {
6465         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6466       } else {
6467         if (IsFastCall)
6468           ComputePtrOff();
6469 
6470         assert(HasParameterArea &&
6471                "Parameter area must exist to pass an argument in memory.");
6472         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6473                          true, CFlags.IsTailCall, true, MemOpChains,
6474                          TailCallArguments, dl);
6475         if (IsFastCall)
6476           ArgOffset += 16;
6477       }
6478 
6479       if (!IsFastCall)
6480         ArgOffset += 16;
6481       break;
6482     }
6483   }
6484 
6485   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6486          "mismatch in size of parameter area");
6487   (void)NumBytesActuallyUsed;
6488 
6489   if (!MemOpChains.empty())
6490     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6491 
6492   // Check if this is an indirect call (MTCTR/BCTRL).
6493   // See prepareDescriptorIndirectCall and buildCallOperands for more
6494   // information about calls through function pointers in the 64-bit SVR4 ABI.
6495   if (CFlags.IsIndirect) {
6496     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6497     // caller in the TOC save area.
6498     if (isTOCSaveRestoreRequired(Subtarget)) {
6499       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6500       // Load r2 into a virtual register and store it to the TOC save area.
6501       setUsesTOCBasePtr(DAG);
6502       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6503       // TOC save area offset.
6504       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6505       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6506       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6507       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6508                            MachinePointerInfo::getStack(
6509                                DAG.getMachineFunction(), TOCSaveOffset));
6510     }
6511     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6512     // This does not mean the MTCTR instruction must use R12; it's easier
6513     // to model this as an extra parameter, so do that.
6514     if (isELFv2ABI && !CFlags.IsPatchPoint)
6515       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6516   }
6517 
6518   // Build a sequence of copy-to-reg nodes chained together with token chain
6519   // and flag operands which copy the outgoing args into the appropriate regs.
6520   SDValue InFlag;
6521   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6522     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6523                              RegsToPass[i].second, InFlag);
6524     InFlag = Chain.getValue(1);
6525   }
6526 
6527   if (CFlags.IsTailCall && !IsSibCall)
6528     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6529                     TailCallArguments);
6530 
6531   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6532                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6533 }
6534 
6535 // Returns true when the shadow of a general purpose argument register
6536 // in the parameter save area is aligned to at least 'RequiredAlign'.
6537 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) {
6538   assert(RequiredAlign.value() <= 16 &&
6539          "Required alignment greater than stack alignment.");
6540   switch (Reg) {
6541   default:
6542     report_fatal_error("called on invalid register.");
6543   case PPC::R5:
6544   case PPC::R9:
6545   case PPC::X3:
6546   case PPC::X5:
6547   case PPC::X7:
6548   case PPC::X9:
6549     // These registers are 16 byte aligned which is the most strict aligment
6550     // we can support.
6551     return true;
6552   case PPC::R3:
6553   case PPC::R7:
6554   case PPC::X4:
6555   case PPC::X6:
6556   case PPC::X8:
6557   case PPC::X10:
6558     // The shadow of these registers in the PSA is 8 byte aligned.
6559     return RequiredAlign <= 8;
6560   case PPC::R4:
6561   case PPC::R6:
6562   case PPC::R8:
6563   case PPC::R10:
6564     return RequiredAlign <= 4;
6565   }
6566 }
6567 
6568 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6569                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6570                    CCState &S) {
6571   AIXCCState &State = static_cast<AIXCCState &>(S);
6572   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6573       State.getMachineFunction().getSubtarget());
6574   const bool IsPPC64 = Subtarget.isPPC64();
6575   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
6576   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6577 
6578   if (ValVT == MVT::f128)
6579     report_fatal_error("f128 is unimplemented on AIX.");
6580 
6581   if (ArgFlags.isNest())
6582     report_fatal_error("Nest arguments are unimplemented.");
6583 
6584   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6585                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6586                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6587   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6588                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6589                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6590 
6591   static const MCPhysReg VR[] = {// Vector registers.
6592                                  PPC::V2,  PPC::V3,  PPC::V4,  PPC::V5,
6593                                  PPC::V6,  PPC::V7,  PPC::V8,  PPC::V9,
6594                                  PPC::V10, PPC::V11, PPC::V12, PPC::V13};
6595 
6596   if (ArgFlags.isByVal()) {
6597     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
6598       report_fatal_error("Pass-by-value arguments with alignment greater than "
6599                          "register width are not supported.");
6600 
6601     const unsigned ByValSize = ArgFlags.getByValSize();
6602 
6603     // An empty aggregate parameter takes up no storage and no registers,
6604     // but needs a MemLoc for a stack slot for the formal arguments side.
6605     if (ByValSize == 0) {
6606       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6607                                        State.getNextStackOffset(), RegVT,
6608                                        LocInfo));
6609       return false;
6610     }
6611 
6612     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
6613     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
6614     for (const unsigned E = Offset + StackSize; Offset < E;
6615          Offset += PtrAlign.value()) {
6616       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6617         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6618       else {
6619         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6620                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
6621                                          LocInfo));
6622         break;
6623       }
6624     }
6625     return false;
6626   }
6627 
6628   // Arguments always reserve parameter save area.
6629   switch (ValVT.SimpleTy) {
6630   default:
6631     report_fatal_error("Unhandled value type for argument.");
6632   case MVT::i64:
6633     // i64 arguments should have been split to i32 for PPC32.
6634     assert(IsPPC64 && "PPC32 should have split i64 values.");
6635     LLVM_FALLTHROUGH;
6636   case MVT::i1:
6637   case MVT::i32: {
6638     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
6639     // AIX integer arguments are always passed in register width.
6640     if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits())
6641       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6642                                   : CCValAssign::LocInfo::ZExt;
6643     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6644       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6645     else
6646       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
6647 
6648     return false;
6649   }
6650   case MVT::f32:
6651   case MVT::f64: {
6652     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6653     const unsigned StoreSize = LocVT.getStoreSize();
6654     // Floats are always 4-byte aligned in the PSA on AIX.
6655     // This includes f64 in 64-bit mode for ABI compatibility.
6656     const unsigned Offset =
6657         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
6658     unsigned FReg = State.AllocateReg(FPR);
6659     if (FReg)
6660       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
6661 
6662     // Reserve and initialize GPRs or initialize the PSA as required.
6663     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
6664       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6665         assert(FReg && "An FPR should be available when a GPR is reserved.");
6666         if (State.isVarArg()) {
6667           // Successfully reserved GPRs are only initialized for vararg calls.
6668           // Custom handling is required for:
6669           //   f64 in PPC32 needs to be split into 2 GPRs.
6670           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6671           State.addLoc(
6672               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6673         }
6674       } else {
6675         // If there are insufficient GPRs, the PSA needs to be initialized.
6676         // Initialization occurs even if an FPR was initialized for
6677         // compatibility with the AIX XL compiler. The full memory for the
6678         // argument will be initialized even if a prior word is saved in GPR.
6679         // A custom memLoc is used when the argument also passes in FPR so
6680         // that the callee handling can skip over it easily.
6681         State.addLoc(
6682             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
6683                                              LocInfo)
6684                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6685         break;
6686       }
6687     }
6688 
6689     return false;
6690   }
6691   case MVT::v4f32:
6692   case MVT::v4i32:
6693   case MVT::v8i16:
6694   case MVT::v16i8:
6695   case MVT::v2i64:
6696   case MVT::v2f64:
6697   case MVT::v1i128: {
6698     const unsigned VecSize = 16;
6699     const Align VecAlign(VecSize);
6700 
6701     if (!State.isVarArg()) {
6702       // If there are vector registers remaining we don't consume any stack
6703       // space.
6704       if (unsigned VReg = State.AllocateReg(VR)) {
6705         State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6706         return false;
6707       }
6708       // Vectors passed on the stack do not shadow GPRs or FPRs even though they
6709       // might be allocated in the portion of the PSA that is shadowed by the
6710       // GPRs.
6711       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6712       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6713       return false;
6714     }
6715 
6716     const unsigned PtrSize = IsPPC64 ? 8 : 4;
6717     ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32;
6718 
6719     unsigned NextRegIndex = State.getFirstUnallocated(GPRs);
6720     // Burn any underaligned registers and their shadowed stack space until
6721     // we reach the required alignment.
6722     while (NextRegIndex != GPRs.size() &&
6723            !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) {
6724       // Shadow allocate register and its stack shadow.
6725       unsigned Reg = State.AllocateReg(GPRs);
6726       State.AllocateStack(PtrSize, PtrAlign);
6727       assert(Reg && "Allocating register unexpectedly failed.");
6728       (void)Reg;
6729       NextRegIndex = State.getFirstUnallocated(GPRs);
6730     }
6731 
6732     // Vectors that are passed as fixed arguments are handled differently.
6733     // They are passed in VRs if any are available (unlike arguments passed
6734     // through ellipses) and shadow GPRs (unlike arguments to non-vaarg
6735     // functions)
6736     if (State.isFixed(ValNo)) {
6737       if (unsigned VReg = State.AllocateReg(VR)) {
6738         State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6739         // Shadow allocate GPRs and stack space even though we pass in a VR.
6740         for (unsigned I = 0; I != VecSize; I += PtrSize)
6741           State.AllocateReg(GPRs);
6742         State.AllocateStack(VecSize, VecAlign);
6743         return false;
6744       }
6745       // No vector registers remain so pass on the stack.
6746       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6747       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6748       return false;
6749     }
6750 
6751     // If all GPRS are consumed then we pass the argument fully on the stack.
6752     if (NextRegIndex == GPRs.size()) {
6753       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6754       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6755       return false;
6756     }
6757 
6758     // Corner case for 32-bit codegen. We have 2 registers to pass the first
6759     // half of the argument, and then need to pass the remaining half on the
6760     // stack.
6761     if (GPRs[NextRegIndex] == PPC::R9) {
6762       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6763       State.addLoc(
6764           CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6765 
6766       const unsigned FirstReg = State.AllocateReg(PPC::R9);
6767       const unsigned SecondReg = State.AllocateReg(PPC::R10);
6768       assert(FirstReg && SecondReg &&
6769              "Allocating R9 or R10 unexpectedly failed.");
6770       State.addLoc(
6771           CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo));
6772       State.addLoc(
6773           CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo));
6774       return false;
6775     }
6776 
6777     // We have enough GPRs to fully pass the vector argument, and we have
6778     // already consumed any underaligned registers. Start with the custom
6779     // MemLoc and then the custom RegLocs.
6780     const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6781     State.addLoc(
6782         CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6783     for (unsigned I = 0; I != VecSize; I += PtrSize) {
6784       const unsigned Reg = State.AllocateReg(GPRs);
6785       assert(Reg && "Failed to allocated register for vararg vector argument");
6786       State.addLoc(
6787           CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6788     }
6789     return false;
6790   }
6791   }
6792   return true;
6793 }
6794 
6795 // So far, this function is only used by LowerFormalArguments_AIX()
6796 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6797                                                     bool IsPPC64,
6798                                                     bool HasP8Vector,
6799                                                     bool HasVSX) {
6800   assert((IsPPC64 || SVT != MVT::i64) &&
6801          "i64 should have been split for 32-bit codegen.");
6802 
6803   switch (SVT) {
6804   default:
6805     report_fatal_error("Unexpected value type for formal argument");
6806   case MVT::i1:
6807   case MVT::i32:
6808   case MVT::i64:
6809     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6810   case MVT::f32:
6811     return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass;
6812   case MVT::f64:
6813     return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass;
6814   case MVT::v4f32:
6815   case MVT::v4i32:
6816   case MVT::v8i16:
6817   case MVT::v16i8:
6818   case MVT::v2i64:
6819   case MVT::v2f64:
6820   case MVT::v1i128:
6821     return &PPC::VRRCRegClass;
6822   }
6823 }
6824 
6825 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6826                                         SelectionDAG &DAG, SDValue ArgValue,
6827                                         MVT LocVT, const SDLoc &dl) {
6828   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
6829   assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits());
6830 
6831   if (Flags.isSExt())
6832     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
6833                            DAG.getValueType(ValVT));
6834   else if (Flags.isZExt())
6835     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
6836                            DAG.getValueType(ValVT));
6837 
6838   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
6839 }
6840 
6841 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
6842   const unsigned LASize = FL->getLinkageSize();
6843 
6844   if (PPC::GPRCRegClass.contains(Reg)) {
6845     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
6846            "Reg must be a valid argument register!");
6847     return LASize + 4 * (Reg - PPC::R3);
6848   }
6849 
6850   if (PPC::G8RCRegClass.contains(Reg)) {
6851     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
6852            "Reg must be a valid argument register!");
6853     return LASize + 8 * (Reg - PPC::X3);
6854   }
6855 
6856   llvm_unreachable("Only general purpose registers expected.");
6857 }
6858 
6859 //   AIX ABI Stack Frame Layout:
6860 //
6861 //   Low Memory +--------------------------------------------+
6862 //   SP   +---> | Back chain                                 | ---+
6863 //        |     +--------------------------------------------+    |
6864 //        |     | Saved Condition Register                   |    |
6865 //        |     +--------------------------------------------+    |
6866 //        |     | Saved Linkage Register                     |    |
6867 //        |     +--------------------------------------------+    | Linkage Area
6868 //        |     | Reserved for compilers                     |    |
6869 //        |     +--------------------------------------------+    |
6870 //        |     | Reserved for binders                       |    |
6871 //        |     +--------------------------------------------+    |
6872 //        |     | Saved TOC pointer                          | ---+
6873 //        |     +--------------------------------------------+
6874 //        |     | Parameter save area                        |
6875 //        |     +--------------------------------------------+
6876 //        |     | Alloca space                               |
6877 //        |     +--------------------------------------------+
6878 //        |     | Local variable space                       |
6879 //        |     +--------------------------------------------+
6880 //        |     | Float/int conversion temporary             |
6881 //        |     +--------------------------------------------+
6882 //        |     | Save area for AltiVec registers            |
6883 //        |     +--------------------------------------------+
6884 //        |     | AltiVec alignment padding                  |
6885 //        |     +--------------------------------------------+
6886 //        |     | Save area for VRSAVE register              |
6887 //        |     +--------------------------------------------+
6888 //        |     | Save area for General Purpose registers    |
6889 //        |     +--------------------------------------------+
6890 //        |     | Save area for Floating Point registers     |
6891 //        |     +--------------------------------------------+
6892 //        +---- | Back chain                                 |
6893 // High Memory  +--------------------------------------------+
6894 //
6895 //  Specifications:
6896 //  AIX 7.2 Assembler Language Reference
6897 //  Subroutine linkage convention
6898 
6899 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
6900     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
6901     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6902     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
6903 
6904   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
6905           CallConv == CallingConv::Fast) &&
6906          "Unexpected calling convention!");
6907 
6908   if (getTargetMachine().Options.GuaranteedTailCallOpt)
6909     report_fatal_error("Tail call support is unimplemented on AIX.");
6910 
6911   if (useSoftFloat())
6912     report_fatal_error("Soft float support is unimplemented on AIX.");
6913 
6914   const PPCSubtarget &Subtarget =
6915       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
6916 
6917   const bool IsPPC64 = Subtarget.isPPC64();
6918   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6919 
6920   // Assign locations to all of the incoming arguments.
6921   SmallVector<CCValAssign, 16> ArgLocs;
6922   MachineFunction &MF = DAG.getMachineFunction();
6923   MachineFrameInfo &MFI = MF.getFrameInfo();
6924   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
6925   AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
6926 
6927   const EVT PtrVT = getPointerTy(MF.getDataLayout());
6928   // Reserve space for the linkage area on the stack.
6929   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6930   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
6931   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
6932 
6933   SmallVector<SDValue, 8> MemOps;
6934 
6935   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
6936     CCValAssign &VA = ArgLocs[I++];
6937     MVT LocVT = VA.getLocVT();
6938     MVT ValVT = VA.getValVT();
6939     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
6940     // For compatibility with the AIX XL compiler, the float args in the
6941     // parameter save area are initialized even if the argument is available
6942     // in register.  The caller is required to initialize both the register
6943     // and memory, however, the callee can choose to expect it in either.
6944     // The memloc is dismissed here because the argument is retrieved from
6945     // the register.
6946     if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint())
6947       continue;
6948 
6949     auto HandleMemLoc = [&]() {
6950       const unsigned LocSize = LocVT.getStoreSize();
6951       const unsigned ValSize = ValVT.getStoreSize();
6952       assert((ValSize <= LocSize) &&
6953              "Object size is larger than size of MemLoc");
6954       int CurArgOffset = VA.getLocMemOffset();
6955       // Objects are right-justified because AIX is big-endian.
6956       if (LocSize > ValSize)
6957         CurArgOffset += LocSize - ValSize;
6958       // Potential tail calls could cause overwriting of argument stack slots.
6959       const bool IsImmutable =
6960           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
6961             (CallConv == CallingConv::Fast));
6962       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
6963       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6964       SDValue ArgValue =
6965           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
6966       InVals.push_back(ArgValue);
6967     };
6968 
6969     // Vector arguments to VaArg functions are passed both on the stack, and
6970     // in any available GPRs. Load the value from the stack and add the GPRs
6971     // as live ins.
6972     if (VA.isMemLoc() && VA.needsCustom()) {
6973       assert(ValVT.isVector() && "Unexpected Custom MemLoc type.");
6974       assert(isVarArg && "Only use custom memloc for vararg.");
6975       // ValNo of the custom MemLoc, so we can compare it to the ValNo of the
6976       // matching custom RegLocs.
6977       const unsigned OriginalValNo = VA.getValNo();
6978       (void)OriginalValNo;
6979 
6980       auto HandleCustomVecRegLoc = [&]() {
6981         assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
6982                "Missing custom RegLoc.");
6983         VA = ArgLocs[I++];
6984         assert(VA.getValVT().isVector() &&
6985                "Unexpected Val type for custom RegLoc.");
6986         assert(VA.getValNo() == OriginalValNo &&
6987                "ValNo mismatch between custom MemLoc and RegLoc.");
6988         MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy;
6989         MF.addLiveIn(VA.getLocReg(),
6990                      getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(),
6991                                        Subtarget.hasVSX()));
6992       };
6993 
6994       HandleMemLoc();
6995       // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
6996       // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
6997       // R10.
6998       HandleCustomVecRegLoc();
6999       HandleCustomVecRegLoc();
7000 
7001       // If we are targeting 32-bit, there might be 2 extra custom RegLocs if
7002       // we passed the vector in R5, R6, R7 and R8.
7003       if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) {
7004         assert(!IsPPC64 &&
7005                "Only 2 custom RegLocs expected for 64-bit codegen.");
7006         HandleCustomVecRegLoc();
7007         HandleCustomVecRegLoc();
7008       }
7009 
7010       continue;
7011     }
7012 
7013     if (VA.isRegLoc()) {
7014       if (VA.getValVT().isScalarInteger())
7015         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
7016       else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) {
7017         switch (VA.getValVT().SimpleTy) {
7018         default:
7019           report_fatal_error("Unhandled value type for argument.");
7020         case MVT::f32:
7021           FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint);
7022           break;
7023         case MVT::f64:
7024           FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint);
7025           break;
7026         }
7027       } else if (VA.getValVT().isVector()) {
7028         switch (VA.getValVT().SimpleTy) {
7029         default:
7030           report_fatal_error("Unhandled value type for argument.");
7031         case MVT::v16i8:
7032           FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar);
7033           break;
7034         case MVT::v8i16:
7035           FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort);
7036           break;
7037         case MVT::v4i32:
7038         case MVT::v2i64:
7039         case MVT::v1i128:
7040           FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt);
7041           break;
7042         case MVT::v4f32:
7043         case MVT::v2f64:
7044           FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat);
7045           break;
7046         }
7047       }
7048     }
7049 
7050     if (Flags.isByVal() && VA.isMemLoc()) {
7051       const unsigned Size =
7052           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
7053                   PtrByteSize);
7054       const int FI = MF.getFrameInfo().CreateFixedObject(
7055           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
7056           /* IsAliased */ true);
7057       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7058       InVals.push_back(FIN);
7059 
7060       continue;
7061     }
7062 
7063     if (Flags.isByVal()) {
7064       assert(VA.isRegLoc() && "MemLocs should already be handled.");
7065 
7066       const MCPhysReg ArgReg = VA.getLocReg();
7067       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
7068 
7069       if (Flags.getNonZeroByValAlign() > PtrByteSize)
7070         report_fatal_error("Over aligned byvals not supported yet.");
7071 
7072       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
7073       const int FI = MF.getFrameInfo().CreateFixedObject(
7074           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
7075           /* IsAliased */ true);
7076       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7077       InVals.push_back(FIN);
7078 
7079       // Add live ins for all the RegLocs for the same ByVal.
7080       const TargetRegisterClass *RegClass =
7081           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7082 
7083       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
7084                                                unsigned Offset) {
7085         const Register VReg = MF.addLiveIn(PhysReg, RegClass);
7086         // Since the callers side has left justified the aggregate in the
7087         // register, we can simply store the entire register into the stack
7088         // slot.
7089         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7090         // The store to the fixedstack object is needed becuase accessing a
7091         // field of the ByVal will use a gep and load. Ideally we will optimize
7092         // to extracting the value from the register directly, and elide the
7093         // stores when the arguments address is not taken, but that will need to
7094         // be future work.
7095         SDValue Store = DAG.getStore(
7096             CopyFrom.getValue(1), dl, CopyFrom,
7097             DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)),
7098             MachinePointerInfo::getFixedStack(MF, FI, Offset));
7099 
7100         MemOps.push_back(Store);
7101       };
7102 
7103       unsigned Offset = 0;
7104       HandleRegLoc(VA.getLocReg(), Offset);
7105       Offset += PtrByteSize;
7106       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
7107            Offset += PtrByteSize) {
7108         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7109                "RegLocs should be for ByVal argument.");
7110 
7111         const CCValAssign RL = ArgLocs[I++];
7112         HandleRegLoc(RL.getLocReg(), Offset);
7113         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
7114       }
7115 
7116       if (Offset != StackSize) {
7117         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7118                "Expected MemLoc for remaining bytes.");
7119         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
7120         // Consume the MemLoc.The InVal has already been emitted, so nothing
7121         // more needs to be done.
7122         ++I;
7123       }
7124 
7125       continue;
7126     }
7127 
7128     if (VA.isRegLoc() && !VA.needsCustom()) {
7129       MVT::SimpleValueType SVT = ValVT.SimpleTy;
7130       Register VReg =
7131           MF.addLiveIn(VA.getLocReg(),
7132                        getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(),
7133                                          Subtarget.hasVSX()));
7134       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7135       if (ValVT.isScalarInteger() &&
7136           (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) {
7137         ArgValue =
7138             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7139       }
7140       InVals.push_back(ArgValue);
7141       continue;
7142     }
7143     if (VA.isMemLoc()) {
7144       HandleMemLoc();
7145       continue;
7146     }
7147   }
7148 
7149   // On AIX a minimum of 8 words is saved to the parameter save area.
7150   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7151   // Area that is at least reserved in the caller of this function.
7152   unsigned CallerReservedArea =
7153       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
7154 
7155   // Set the size that is at least reserved in caller of this function. Tail
7156   // call optimized function's reserved stack space needs to be aligned so
7157   // that taking the difference between two stack areas will result in an
7158   // aligned stack.
7159   CallerReservedArea =
7160       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7161   FuncInfo->setMinReservedArea(CallerReservedArea);
7162 
7163   if (isVarArg) {
7164     FuncInfo->setVarArgsFrameIndex(
7165         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
7166     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
7167 
7168     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7169                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7170 
7171     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7172                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7173     const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
7174 
7175     // The fixed integer arguments of a variadic function are stored to the
7176     // VarArgsFrameIndex on the stack so that they may be loaded by
7177     // dereferencing the result of va_next.
7178     for (unsigned GPRIndex =
7179              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
7180          GPRIndex < NumGPArgRegs; ++GPRIndex) {
7181 
7182       const Register VReg =
7183           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7184                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7185 
7186       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
7187       SDValue Store =
7188           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
7189       MemOps.push_back(Store);
7190       // Increment the address for the next argument to store.
7191       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
7192       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
7193     }
7194   }
7195 
7196   if (!MemOps.empty())
7197     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
7198 
7199   return Chain;
7200 }
7201 
7202 SDValue PPCTargetLowering::LowerCall_AIX(
7203     SDValue Chain, SDValue Callee, CallFlags CFlags,
7204     const SmallVectorImpl<ISD::OutputArg> &Outs,
7205     const SmallVectorImpl<SDValue> &OutVals,
7206     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7207     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7208     const CallBase *CB) const {
7209   // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
7210   // AIX ABI stack frame layout.
7211 
7212   assert((CFlags.CallConv == CallingConv::C ||
7213           CFlags.CallConv == CallingConv::Cold ||
7214           CFlags.CallConv == CallingConv::Fast) &&
7215          "Unexpected calling convention!");
7216 
7217   if (CFlags.IsPatchPoint)
7218     report_fatal_error("This call type is unimplemented on AIX.");
7219 
7220   const PPCSubtarget& Subtarget =
7221       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7222 
7223   MachineFunction &MF = DAG.getMachineFunction();
7224   SmallVector<CCValAssign, 16> ArgLocs;
7225   AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7226                     *DAG.getContext());
7227 
7228   // Reserve space for the linkage save area (LSA) on the stack.
7229   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7230   //   [SP][CR][LR][2 x reserved][TOC].
7231   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7232   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7233   const bool IsPPC64 = Subtarget.isPPC64();
7234   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7235   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7236   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7237   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7238 
7239   // The prolog code of the callee may store up to 8 GPR argument registers to
7240   // the stack, allowing va_start to index over them in memory if the callee
7241   // is variadic.
7242   // Because we cannot tell if this is needed on the caller side, we have to
7243   // conservatively assume that it is needed.  As such, make sure we have at
7244   // least enough stack space for the caller to store the 8 GPRs.
7245   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7246   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7247                                      CCInfo.getNextStackOffset());
7248 
7249   // Adjust the stack pointer for the new arguments...
7250   // These operations are automatically eliminated by the prolog/epilog pass.
7251   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7252   SDValue CallSeqStart = Chain;
7253 
7254   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7255   SmallVector<SDValue, 8> MemOpChains;
7256 
7257   // Set up a copy of the stack pointer for loading and storing any
7258   // arguments that may not fit in the registers available for argument
7259   // passing.
7260   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7261                                    : DAG.getRegister(PPC::R1, MVT::i32);
7262 
7263   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7264     const unsigned ValNo = ArgLocs[I].getValNo();
7265     SDValue Arg = OutVals[ValNo];
7266     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
7267 
7268     if (Flags.isByVal()) {
7269       const unsigned ByValSize = Flags.getByValSize();
7270 
7271       // Nothing to do for zero-sized ByVals on the caller side.
7272       if (!ByValSize) {
7273         ++I;
7274         continue;
7275       }
7276 
7277       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7278         return DAG.getExtLoad(
7279             ISD::ZEXTLOAD, dl, PtrVT, Chain,
7280             (LoadOffset != 0)
7281                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7282                 : Arg,
7283             MachinePointerInfo(), VT);
7284       };
7285 
7286       unsigned LoadOffset = 0;
7287 
7288       // Initialize registers, which are fully occupied by the by-val argument.
7289       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7290         SDValue Load = GetLoad(PtrVT, LoadOffset);
7291         MemOpChains.push_back(Load.getValue(1));
7292         LoadOffset += PtrByteSize;
7293         const CCValAssign &ByValVA = ArgLocs[I++];
7294         assert(ByValVA.getValNo() == ValNo &&
7295                "Unexpected location for pass-by-value argument.");
7296         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7297       }
7298 
7299       if (LoadOffset == ByValSize)
7300         continue;
7301 
7302       // There must be one more loc to handle the remainder.
7303       assert(ArgLocs[I].getValNo() == ValNo &&
7304              "Expected additional location for by-value argument.");
7305 
7306       if (ArgLocs[I].isMemLoc()) {
7307         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7308         const CCValAssign &ByValVA = ArgLocs[I++];
7309         ISD::ArgFlagsTy MemcpyFlags = Flags;
7310         // Only memcpy the bytes that don't pass in register.
7311         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7312         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7313             (LoadOffset != 0)
7314                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7315                 : Arg,
7316             DAG.getObjectPtrOffset(dl, StackPtr,
7317                                    TypeSize::Fixed(ByValVA.getLocMemOffset())),
7318             CallSeqStart, MemcpyFlags, DAG, dl);
7319         continue;
7320       }
7321 
7322       // Initialize the final register residue.
7323       // Any residue that occupies the final by-val arg register must be
7324       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7325       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7326       // 2 and 1 byte loads.
7327       const unsigned ResidueBytes = ByValSize % PtrByteSize;
7328       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7329              "Unexpected register residue for by-value argument.");
7330       SDValue ResidueVal;
7331       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7332         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
7333         const MVT VT =
7334             N == 1 ? MVT::i8
7335                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7336         SDValue Load = GetLoad(VT, LoadOffset);
7337         MemOpChains.push_back(Load.getValue(1));
7338         LoadOffset += N;
7339         Bytes += N;
7340 
7341         // By-val arguments are passed left-justfied in register.
7342         // Every load here needs to be shifted, otherwise a full register load
7343         // should have been used.
7344         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7345                "Unexpected load emitted during handling of pass-by-value "
7346                "argument.");
7347         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7348         EVT ShiftAmountTy =
7349             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7350         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7351         SDValue ShiftedLoad =
7352             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7353         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7354                                               ShiftedLoad)
7355                                 : ShiftedLoad;
7356       }
7357 
7358       const CCValAssign &ByValVA = ArgLocs[I++];
7359       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7360       continue;
7361     }
7362 
7363     CCValAssign &VA = ArgLocs[I++];
7364     const MVT LocVT = VA.getLocVT();
7365     const MVT ValVT = VA.getValVT();
7366 
7367     switch (VA.getLocInfo()) {
7368     default:
7369       report_fatal_error("Unexpected argument extension type.");
7370     case CCValAssign::Full:
7371       break;
7372     case CCValAssign::ZExt:
7373       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7374       break;
7375     case CCValAssign::SExt:
7376       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7377       break;
7378     }
7379 
7380     if (VA.isRegLoc() && !VA.needsCustom()) {
7381       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7382       continue;
7383     }
7384 
7385     // Vector arguments passed to VarArg functions need custom handling when
7386     // they are passed (at least partially) in GPRs.
7387     if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) {
7388       assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args.");
7389       // Store value to its stack slot.
7390       SDValue PtrOff =
7391           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7392       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7393       SDValue Store =
7394           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
7395       MemOpChains.push_back(Store);
7396       const unsigned OriginalValNo = VA.getValNo();
7397       // Then load the GPRs from the stack
7398       unsigned LoadOffset = 0;
7399       auto HandleCustomVecRegLoc = [&]() {
7400         assert(I != E && "Unexpected end of CCvalAssigns.");
7401         assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7402                "Expected custom RegLoc.");
7403         CCValAssign RegVA = ArgLocs[I++];
7404         assert(RegVA.getValNo() == OriginalValNo &&
7405                "Custom MemLoc ValNo and custom RegLoc ValNo must match.");
7406         SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
7407                                   DAG.getConstant(LoadOffset, dl, PtrVT));
7408         SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo());
7409         MemOpChains.push_back(Load.getValue(1));
7410         RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load));
7411         LoadOffset += PtrByteSize;
7412       };
7413 
7414       // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
7415       // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
7416       // R10.
7417       HandleCustomVecRegLoc();
7418       HandleCustomVecRegLoc();
7419 
7420       if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7421           ArgLocs[I].getValNo() == OriginalValNo) {
7422         assert(!IsPPC64 &&
7423                "Only 2 custom RegLocs expected for 64-bit codegen.");
7424         HandleCustomVecRegLoc();
7425         HandleCustomVecRegLoc();
7426       }
7427 
7428       continue;
7429     }
7430 
7431     if (VA.isMemLoc()) {
7432       SDValue PtrOff =
7433           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7434       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7435       MemOpChains.push_back(
7436           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7437 
7438       continue;
7439     }
7440 
7441     if (!ValVT.isFloatingPoint())
7442       report_fatal_error(
7443           "Unexpected register handling for calling convention.");
7444 
7445     // Custom handling is used for GPR initializations for vararg float
7446     // arguments.
7447     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7448            LocVT.isInteger() &&
7449            "Custom register handling only expected for VarArg.");
7450 
7451     SDValue ArgAsInt =
7452         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7453 
7454     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7455       // f32 in 32-bit GPR
7456       // f64 in 64-bit GPR
7457       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7458     else if (Arg.getValueType().getFixedSizeInBits() <
7459              LocVT.getFixedSizeInBits())
7460       // f32 in 64-bit GPR.
7461       RegsToPass.push_back(std::make_pair(
7462           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7463     else {
7464       // f64 in two 32-bit GPRs
7465       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7466       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7467              "Unexpected custom register for argument!");
7468       CCValAssign &GPR1 = VA;
7469       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7470                                      DAG.getConstant(32, dl, MVT::i8));
7471       RegsToPass.push_back(std::make_pair(
7472           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7473 
7474       if (I != E) {
7475         // If only 1 GPR was available, there will only be one custom GPR and
7476         // the argument will also pass in memory.
7477         CCValAssign &PeekArg = ArgLocs[I];
7478         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7479           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7480           CCValAssign &GPR2 = ArgLocs[I++];
7481           RegsToPass.push_back(std::make_pair(
7482               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7483         }
7484       }
7485     }
7486   }
7487 
7488   if (!MemOpChains.empty())
7489     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7490 
7491   // For indirect calls, we need to save the TOC base to the stack for
7492   // restoration after the call.
7493   if (CFlags.IsIndirect) {
7494     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7495     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7496     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7497     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7498     const unsigned TOCSaveOffset =
7499         Subtarget.getFrameLowering()->getTOCSaveOffset();
7500 
7501     setUsesTOCBasePtr(DAG);
7502     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7503     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7504     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7505     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7506     Chain = DAG.getStore(
7507         Val.getValue(1), dl, Val, AddPtr,
7508         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7509   }
7510 
7511   // Build a sequence of copy-to-reg nodes chained together with token chain
7512   // and flag operands which copy the outgoing args into the appropriate regs.
7513   SDValue InFlag;
7514   for (auto Reg : RegsToPass) {
7515     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7516     InFlag = Chain.getValue(1);
7517   }
7518 
7519   const int SPDiff = 0;
7520   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7521                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7522 }
7523 
7524 bool
7525 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7526                                   MachineFunction &MF, bool isVarArg,
7527                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7528                                   LLVMContext &Context) const {
7529   SmallVector<CCValAssign, 16> RVLocs;
7530   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7531   return CCInfo.CheckReturn(
7532       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7533                 ? RetCC_PPC_Cold
7534                 : RetCC_PPC);
7535 }
7536 
7537 SDValue
7538 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7539                                bool isVarArg,
7540                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7541                                const SmallVectorImpl<SDValue> &OutVals,
7542                                const SDLoc &dl, SelectionDAG &DAG) const {
7543   SmallVector<CCValAssign, 16> RVLocs;
7544   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7545                  *DAG.getContext());
7546   CCInfo.AnalyzeReturn(Outs,
7547                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7548                            ? RetCC_PPC_Cold
7549                            : RetCC_PPC);
7550 
7551   SDValue Flag;
7552   SmallVector<SDValue, 4> RetOps(1, Chain);
7553 
7554   // Copy the result values into the output registers.
7555   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7556     CCValAssign &VA = RVLocs[i];
7557     assert(VA.isRegLoc() && "Can only return in registers!");
7558 
7559     SDValue Arg = OutVals[RealResIdx];
7560 
7561     switch (VA.getLocInfo()) {
7562     default: llvm_unreachable("Unknown loc info!");
7563     case CCValAssign::Full: break;
7564     case CCValAssign::AExt:
7565       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7566       break;
7567     case CCValAssign::ZExt:
7568       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7569       break;
7570     case CCValAssign::SExt:
7571       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7572       break;
7573     }
7574     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7575       bool isLittleEndian = Subtarget.isLittleEndian();
7576       // Legalize ret f64 -> ret 2 x i32.
7577       SDValue SVal =
7578           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7579                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7580       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7581       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7582       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7583                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7584       Flag = Chain.getValue(1);
7585       VA = RVLocs[++i]; // skip ahead to next loc
7586       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7587     } else
7588       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7589     Flag = Chain.getValue(1);
7590     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7591   }
7592 
7593   RetOps[0] = Chain;  // Update chain.
7594 
7595   // Add the flag if we have it.
7596   if (Flag.getNode())
7597     RetOps.push_back(Flag);
7598 
7599   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7600 }
7601 
7602 SDValue
7603 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7604                                                 SelectionDAG &DAG) const {
7605   SDLoc dl(Op);
7606 
7607   // Get the correct type for integers.
7608   EVT IntVT = Op.getValueType();
7609 
7610   // Get the inputs.
7611   SDValue Chain = Op.getOperand(0);
7612   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7613   // Build a DYNAREAOFFSET node.
7614   SDValue Ops[2] = {Chain, FPSIdx};
7615   SDVTList VTs = DAG.getVTList(IntVT);
7616   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7617 }
7618 
7619 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7620                                              SelectionDAG &DAG) const {
7621   // When we pop the dynamic allocation we need to restore the SP link.
7622   SDLoc dl(Op);
7623 
7624   // Get the correct type for pointers.
7625   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7626 
7627   // Construct the stack pointer operand.
7628   bool isPPC64 = Subtarget.isPPC64();
7629   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7630   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7631 
7632   // Get the operands for the STACKRESTORE.
7633   SDValue Chain = Op.getOperand(0);
7634   SDValue SaveSP = Op.getOperand(1);
7635 
7636   // Load the old link SP.
7637   SDValue LoadLinkSP =
7638       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7639 
7640   // Restore the stack pointer.
7641   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7642 
7643   // Store the old link SP.
7644   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7645 }
7646 
7647 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7648   MachineFunction &MF = DAG.getMachineFunction();
7649   bool isPPC64 = Subtarget.isPPC64();
7650   EVT PtrVT = getPointerTy(MF.getDataLayout());
7651 
7652   // Get current frame pointer save index.  The users of this index will be
7653   // primarily DYNALLOC instructions.
7654   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7655   int RASI = FI->getReturnAddrSaveIndex();
7656 
7657   // If the frame pointer save index hasn't been defined yet.
7658   if (!RASI) {
7659     // Find out what the fix offset of the frame pointer save area.
7660     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7661     // Allocate the frame index for frame pointer save area.
7662     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7663     // Save the result.
7664     FI->setReturnAddrSaveIndex(RASI);
7665   }
7666   return DAG.getFrameIndex(RASI, PtrVT);
7667 }
7668 
7669 SDValue
7670 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7671   MachineFunction &MF = DAG.getMachineFunction();
7672   bool isPPC64 = Subtarget.isPPC64();
7673   EVT PtrVT = getPointerTy(MF.getDataLayout());
7674 
7675   // Get current frame pointer save index.  The users of this index will be
7676   // primarily DYNALLOC instructions.
7677   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7678   int FPSI = FI->getFramePointerSaveIndex();
7679 
7680   // If the frame pointer save index hasn't been defined yet.
7681   if (!FPSI) {
7682     // Find out what the fix offset of the frame pointer save area.
7683     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7684     // Allocate the frame index for frame pointer save area.
7685     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7686     // Save the result.
7687     FI->setFramePointerSaveIndex(FPSI);
7688   }
7689   return DAG.getFrameIndex(FPSI, PtrVT);
7690 }
7691 
7692 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7693                                                    SelectionDAG &DAG) const {
7694   MachineFunction &MF = DAG.getMachineFunction();
7695   // Get the inputs.
7696   SDValue Chain = Op.getOperand(0);
7697   SDValue Size  = Op.getOperand(1);
7698   SDLoc dl(Op);
7699 
7700   // Get the correct type for pointers.
7701   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7702   // Negate the size.
7703   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7704                                 DAG.getConstant(0, dl, PtrVT), Size);
7705   // Construct a node for the frame pointer save index.
7706   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7707   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7708   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7709   if (hasInlineStackProbe(MF))
7710     return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
7711   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7712 }
7713 
7714 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7715                                                      SelectionDAG &DAG) const {
7716   MachineFunction &MF = DAG.getMachineFunction();
7717 
7718   bool isPPC64 = Subtarget.isPPC64();
7719   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7720 
7721   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7722   return DAG.getFrameIndex(FI, PtrVT);
7723 }
7724 
7725 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7726                                                SelectionDAG &DAG) const {
7727   SDLoc DL(Op);
7728   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7729                      DAG.getVTList(MVT::i32, MVT::Other),
7730                      Op.getOperand(0), Op.getOperand(1));
7731 }
7732 
7733 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7734                                                 SelectionDAG &DAG) const {
7735   SDLoc DL(Op);
7736   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7737                      Op.getOperand(0), Op.getOperand(1));
7738 }
7739 
7740 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7741   if (Op.getValueType().isVector())
7742     return LowerVectorLoad(Op, DAG);
7743 
7744   assert(Op.getValueType() == MVT::i1 &&
7745          "Custom lowering only for i1 loads");
7746 
7747   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7748 
7749   SDLoc dl(Op);
7750   LoadSDNode *LD = cast<LoadSDNode>(Op);
7751 
7752   SDValue Chain = LD->getChain();
7753   SDValue BasePtr = LD->getBasePtr();
7754   MachineMemOperand *MMO = LD->getMemOperand();
7755 
7756   SDValue NewLD =
7757       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7758                      BasePtr, MVT::i8, MMO);
7759   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7760 
7761   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7762   return DAG.getMergeValues(Ops, dl);
7763 }
7764 
7765 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7766   if (Op.getOperand(1).getValueType().isVector())
7767     return LowerVectorStore(Op, DAG);
7768 
7769   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7770          "Custom lowering only for i1 stores");
7771 
7772   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7773 
7774   SDLoc dl(Op);
7775   StoreSDNode *ST = cast<StoreSDNode>(Op);
7776 
7777   SDValue Chain = ST->getChain();
7778   SDValue BasePtr = ST->getBasePtr();
7779   SDValue Value = ST->getValue();
7780   MachineMemOperand *MMO = ST->getMemOperand();
7781 
7782   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7783                       Value);
7784   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7785 }
7786 
7787 // FIXME: Remove this once the ANDI glue bug is fixed:
7788 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7789   assert(Op.getValueType() == MVT::i1 &&
7790          "Custom lowering only for i1 results");
7791 
7792   SDLoc DL(Op);
7793   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7794 }
7795 
7796 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7797                                                SelectionDAG &DAG) const {
7798 
7799   // Implements a vector truncate that fits in a vector register as a shuffle.
7800   // We want to legalize vector truncates down to where the source fits in
7801   // a vector register (and target is therefore smaller than vector register
7802   // size).  At that point legalization will try to custom lower the sub-legal
7803   // result and get here - where we can contain the truncate as a single target
7804   // operation.
7805 
7806   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7807   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7808   //
7809   // We will implement it for big-endian ordering as this (where x denotes
7810   // undefined):
7811   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7812   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7813   //
7814   // The same operation in little-endian ordering will be:
7815   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7816   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7817 
7818   EVT TrgVT = Op.getValueType();
7819   assert(TrgVT.isVector() && "Vector type expected.");
7820   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7821   EVT EltVT = TrgVT.getVectorElementType();
7822   if (!isOperationCustom(Op.getOpcode(), TrgVT) ||
7823       TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) ||
7824       !isPowerOf2_32(EltVT.getSizeInBits()))
7825     return SDValue();
7826 
7827   SDValue N1 = Op.getOperand(0);
7828   EVT SrcVT = N1.getValueType();
7829   unsigned SrcSize = SrcVT.getSizeInBits();
7830   if (SrcSize > 256 ||
7831       !isPowerOf2_32(SrcVT.getVectorNumElements()) ||
7832       !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits()))
7833     return SDValue();
7834   if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2)
7835     return SDValue();
7836 
7837   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7838   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7839 
7840   SDLoc DL(Op);
7841   SDValue Op1, Op2;
7842   if (SrcSize == 256) {
7843     EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout());
7844     EVT SplitVT =
7845         N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
7846     unsigned SplitNumElts = SplitVT.getVectorNumElements();
7847     Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7848                       DAG.getConstant(0, DL, VecIdxTy));
7849     Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7850                       DAG.getConstant(SplitNumElts, DL, VecIdxTy));
7851   }
7852   else {
7853     Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7854     Op2 = DAG.getUNDEF(WideVT);
7855   }
7856 
7857   // First list the elements we want to keep.
7858   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7859   SmallVector<int, 16> ShuffV;
7860   if (Subtarget.isLittleEndian())
7861     for (unsigned i = 0; i < TrgNumElts; ++i)
7862       ShuffV.push_back(i * SizeMult);
7863   else
7864     for (unsigned i = 1; i <= TrgNumElts; ++i)
7865       ShuffV.push_back(i * SizeMult - 1);
7866 
7867   // Populate the remaining elements with undefs.
7868   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7869     // ShuffV.push_back(i + WideNumElts);
7870     ShuffV.push_back(WideNumElts + 1);
7871 
7872   Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1);
7873   Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2);
7874   return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV);
7875 }
7876 
7877 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7878 /// possible.
7879 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7880   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7881   EVT ResVT = Op.getValueType();
7882   EVT CmpVT = Op.getOperand(0).getValueType();
7883   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7884   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7885   SDLoc dl(Op);
7886 
7887   // Without power9-vector, we don't have native instruction for f128 comparison.
7888   // Following transformation to libcall is needed for setcc:
7889   // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE
7890   if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) {
7891     SDValue Z = DAG.getSetCC(
7892         dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT),
7893         LHS, RHS, CC);
7894     SDValue Zero = DAG.getConstant(0, dl, Z.getValueType());
7895     return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE);
7896   }
7897 
7898   // Not FP, or using SPE? Not a fsel.
7899   if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() ||
7900       Subtarget.hasSPE())
7901     return Op;
7902 
7903   SDNodeFlags Flags = Op.getNode()->getFlags();
7904 
7905   // We have xsmaxc[dq]p/xsminc[dq]p which are OK to emit even in the
7906   // presence of infinities.
7907   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7908     switch (CC) {
7909     default:
7910       break;
7911     case ISD::SETOGT:
7912     case ISD::SETGT:
7913       return DAG.getNode(PPCISD::XSMAXC, dl, Op.getValueType(), LHS, RHS);
7914     case ISD::SETOLT:
7915     case ISD::SETLT:
7916       return DAG.getNode(PPCISD::XSMINC, dl, Op.getValueType(), LHS, RHS);
7917     }
7918   }
7919 
7920   // We might be able to do better than this under some circumstances, but in
7921   // general, fsel-based lowering of select is a finite-math-only optimization.
7922   // For more information, see section F.3 of the 2.06 ISA specification.
7923   // With ISA 3.0
7924   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
7925       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
7926     return Op;
7927 
7928   // If the RHS of the comparison is a 0.0, we don't need to do the
7929   // subtraction at all.
7930   SDValue Sel1;
7931   if (isFloatingPointZero(RHS))
7932     switch (CC) {
7933     default: break;       // SETUO etc aren't handled by fsel.
7934     case ISD::SETNE:
7935       std::swap(TV, FV);
7936       LLVM_FALLTHROUGH;
7937     case ISD::SETEQ:
7938       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7939         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7940       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7941       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7942         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7943       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7944                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7945     case ISD::SETULT:
7946     case ISD::SETLT:
7947       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7948       LLVM_FALLTHROUGH;
7949     case ISD::SETOGE:
7950     case ISD::SETGE:
7951       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7952         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7953       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7954     case ISD::SETUGT:
7955     case ISD::SETGT:
7956       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7957       LLVM_FALLTHROUGH;
7958     case ISD::SETOLE:
7959     case ISD::SETLE:
7960       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7961         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7962       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7963                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7964     }
7965 
7966   SDValue Cmp;
7967   switch (CC) {
7968   default: break;       // SETUO etc aren't handled by fsel.
7969   case ISD::SETNE:
7970     std::swap(TV, FV);
7971     LLVM_FALLTHROUGH;
7972   case ISD::SETEQ:
7973     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7974     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7975       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7976     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7977     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7978       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7979     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7980                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7981   case ISD::SETULT:
7982   case ISD::SETLT:
7983     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7984     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7985       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7986     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7987   case ISD::SETOGE:
7988   case ISD::SETGE:
7989     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7990     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7991       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7992     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7993   case ISD::SETUGT:
7994   case ISD::SETGT:
7995     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7996     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7997       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7998     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7999   case ISD::SETOLE:
8000   case ISD::SETLE:
8001     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8002     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8003       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8004     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8005   }
8006   return Op;
8007 }
8008 
8009 static unsigned getPPCStrictOpcode(unsigned Opc) {
8010   switch (Opc) {
8011   default:
8012     llvm_unreachable("No strict version of this opcode!");
8013   case PPCISD::FCTIDZ:
8014     return PPCISD::STRICT_FCTIDZ;
8015   case PPCISD::FCTIWZ:
8016     return PPCISD::STRICT_FCTIWZ;
8017   case PPCISD::FCTIDUZ:
8018     return PPCISD::STRICT_FCTIDUZ;
8019   case PPCISD::FCTIWUZ:
8020     return PPCISD::STRICT_FCTIWUZ;
8021   case PPCISD::FCFID:
8022     return PPCISD::STRICT_FCFID;
8023   case PPCISD::FCFIDU:
8024     return PPCISD::STRICT_FCFIDU;
8025   case PPCISD::FCFIDS:
8026     return PPCISD::STRICT_FCFIDS;
8027   case PPCISD::FCFIDUS:
8028     return PPCISD::STRICT_FCFIDUS;
8029   }
8030 }
8031 
8032 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG,
8033                               const PPCSubtarget &Subtarget) {
8034   SDLoc dl(Op);
8035   bool IsStrict = Op->isStrictFPOpcode();
8036   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8037                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8038 
8039   // TODO: Any other flags to propagate?
8040   SDNodeFlags Flags;
8041   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8042 
8043   // For strict nodes, source is the second operand.
8044   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8045   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
8046   assert(Src.getValueType().isFloatingPoint());
8047   if (Src.getValueType() == MVT::f32) {
8048     if (IsStrict) {
8049       Src =
8050           DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
8051                       DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags);
8052       Chain = Src.getValue(1);
8053     } else
8054       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8055   }
8056   SDValue Conv;
8057   unsigned Opc = ISD::DELETED_NODE;
8058   switch (Op.getSimpleValueType().SimpleTy) {
8059   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8060   case MVT::i32:
8061     Opc = IsSigned ? PPCISD::FCTIWZ
8062                    : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ);
8063     break;
8064   case MVT::i64:
8065     assert((IsSigned || Subtarget.hasFPCVT()) &&
8066            "i64 FP_TO_UINT is supported only with FPCVT");
8067     Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ;
8068   }
8069   if (IsStrict) {
8070     Opc = getPPCStrictOpcode(Opc);
8071     Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other),
8072                        {Chain, Src}, Flags);
8073   } else {
8074     Conv = DAG.getNode(Opc, dl, MVT::f64, Src);
8075   }
8076   return Conv;
8077 }
8078 
8079 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
8080                                                SelectionDAG &DAG,
8081                                                const SDLoc &dl) const {
8082   SDValue Tmp = convertFPToInt(Op, DAG, Subtarget);
8083   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8084                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8085   bool IsStrict = Op->isStrictFPOpcode();
8086 
8087   // Convert the FP value to an int value through memory.
8088   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
8089                   (IsSigned || Subtarget.hasFPCVT());
8090   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
8091   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
8092   MachinePointerInfo MPI =
8093       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
8094 
8095   // Emit a store to the stack slot.
8096   SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode();
8097   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
8098   if (i32Stack) {
8099     MachineFunction &MF = DAG.getMachineFunction();
8100     Alignment = Align(4);
8101     MachineMemOperand *MMO =
8102         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
8103     SDValue Ops[] = { Chain, Tmp, FIPtr };
8104     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8105               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
8106   } else
8107     Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment);
8108 
8109   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
8110   // add in a bias on big endian.
8111   if (Op.getValueType() == MVT::i32 && !i32Stack) {
8112     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
8113                         DAG.getConstant(4, dl, FIPtr.getValueType()));
8114     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
8115   }
8116 
8117   RLI.Chain = Chain;
8118   RLI.Ptr = FIPtr;
8119   RLI.MPI = MPI;
8120   RLI.Alignment = Alignment;
8121 }
8122 
8123 /// Custom lowers floating point to integer conversions to use
8124 /// the direct move instructions available in ISA 2.07 to avoid the
8125 /// need for load/store combinations.
8126 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
8127                                                     SelectionDAG &DAG,
8128                                                     const SDLoc &dl) const {
8129   SDValue Conv = convertFPToInt(Op, DAG, Subtarget);
8130   SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv);
8131   if (Op->isStrictFPOpcode())
8132     return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl);
8133   else
8134     return Mov;
8135 }
8136 
8137 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
8138                                           const SDLoc &dl) const {
8139   bool IsStrict = Op->isStrictFPOpcode();
8140   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8141                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8142   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8143   EVT SrcVT = Src.getValueType();
8144   EVT DstVT = Op.getValueType();
8145 
8146   // FP to INT conversions are legal for f128.
8147   if (SrcVT == MVT::f128)
8148     return Subtarget.hasP9Vector() ? Op : SDValue();
8149 
8150   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8151   // PPC (the libcall is not available).
8152   if (SrcVT == MVT::ppcf128) {
8153     if (DstVT == MVT::i32) {
8154       // TODO: Conservatively pass only nofpexcept flag here. Need to check and
8155       // set other fast-math flags to FP operations in both strict and
8156       // non-strict cases. (FP_TO_SINT, FSUB)
8157       SDNodeFlags Flags;
8158       Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8159 
8160       if (IsSigned) {
8161         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8162                                  DAG.getIntPtrConstant(0, dl));
8163         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8164                                  DAG.getIntPtrConstant(1, dl));
8165 
8166         // Add the two halves of the long double in round-to-zero mode, and use
8167         // a smaller FP_TO_SINT.
8168         if (IsStrict) {
8169           SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl,
8170                                     DAG.getVTList(MVT::f64, MVT::Other),
8171                                     {Op.getOperand(0), Lo, Hi}, Flags);
8172           return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8173                              DAG.getVTList(MVT::i32, MVT::Other),
8174                              {Res.getValue(1), Res}, Flags);
8175         } else {
8176           SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8177           return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
8178         }
8179       } else {
8180         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8181         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
8182         SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8183         SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT);
8184         if (IsStrict) {
8185           // Sel = Src < 0x80000000
8186           // FltOfs = select Sel, 0.0, 0x80000000
8187           // IntOfs = select Sel, 0, 0x80000000
8188           // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8189           SDValue Chain = Op.getOperand(0);
8190           EVT SetCCVT =
8191               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8192           EVT DstSetCCVT =
8193               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8194           SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8195                                      Chain, true);
8196           Chain = Sel.getValue(1);
8197 
8198           SDValue FltOfs = DAG.getSelect(
8199               dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8200           Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8201 
8202           SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl,
8203                                     DAG.getVTList(SrcVT, MVT::Other),
8204                                     {Chain, Src, FltOfs}, Flags);
8205           Chain = Val.getValue(1);
8206           SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8207                                      DAG.getVTList(DstVT, MVT::Other),
8208                                      {Chain, Val}, Flags);
8209           Chain = SInt.getValue(1);
8210           SDValue IntOfs = DAG.getSelect(
8211               dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask);
8212           SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8213           return DAG.getMergeValues({Result, Chain}, dl);
8214         } else {
8215           // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8216           // FIXME: generated code sucks.
8217           SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst);
8218           True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
8219           True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask);
8220           SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src);
8221           return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE);
8222         }
8223       }
8224     }
8225 
8226     return SDValue();
8227   }
8228 
8229   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
8230     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
8231 
8232   ReuseLoadInfo RLI;
8233   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8234 
8235   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8236                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8237 }
8238 
8239 // We're trying to insert a regular store, S, and then a load, L. If the
8240 // incoming value, O, is a load, we might just be able to have our load use the
8241 // address used by O. However, we don't know if anything else will store to
8242 // that address before we can load from it. To prevent this situation, we need
8243 // to insert our load, L, into the chain as a peer of O. To do this, we give L
8244 // the same chain operand as O, we create a token factor from the chain results
8245 // of O and L, and we replace all uses of O's chain result with that token
8246 // factor (see spliceIntoChain below for this last part).
8247 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
8248                                             ReuseLoadInfo &RLI,
8249                                             SelectionDAG &DAG,
8250                                             ISD::LoadExtType ET) const {
8251   // Conservatively skip reusing for constrained FP nodes.
8252   if (Op->isStrictFPOpcode())
8253     return false;
8254 
8255   SDLoc dl(Op);
8256   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
8257                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
8258   if (ET == ISD::NON_EXTLOAD &&
8259       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
8260       isOperationLegalOrCustom(Op.getOpcode(),
8261                                Op.getOperand(0).getValueType())) {
8262 
8263     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8264     return true;
8265   }
8266 
8267   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
8268   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
8269       LD->isNonTemporal())
8270     return false;
8271   if (LD->getMemoryVT() != MemVT)
8272     return false;
8273 
8274   // If the result of the load is an illegal type, then we can't build a
8275   // valid chain for reuse since the legalised loads and token factor node that
8276   // ties the legalised loads together uses a different output chain then the
8277   // illegal load.
8278   if (!isTypeLegal(LD->getValueType(0)))
8279     return false;
8280 
8281   RLI.Ptr = LD->getBasePtr();
8282   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8283     assert(LD->getAddressingMode() == ISD::PRE_INC &&
8284            "Non-pre-inc AM on PPC?");
8285     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8286                           LD->getOffset());
8287   }
8288 
8289   RLI.Chain = LD->getChain();
8290   RLI.MPI = LD->getPointerInfo();
8291   RLI.IsDereferenceable = LD->isDereferenceable();
8292   RLI.IsInvariant = LD->isInvariant();
8293   RLI.Alignment = LD->getAlign();
8294   RLI.AAInfo = LD->getAAInfo();
8295   RLI.Ranges = LD->getRanges();
8296 
8297   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8298   return true;
8299 }
8300 
8301 // Given the head of the old chain, ResChain, insert a token factor containing
8302 // it and NewResChain, and make users of ResChain now be users of that token
8303 // factor.
8304 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8305 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8306                                         SDValue NewResChain,
8307                                         SelectionDAG &DAG) const {
8308   if (!ResChain)
8309     return;
8310 
8311   SDLoc dl(NewResChain);
8312 
8313   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8314                            NewResChain, DAG.getUNDEF(MVT::Other));
8315   assert(TF.getNode() != NewResChain.getNode() &&
8316          "A new TF really is required here");
8317 
8318   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8319   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8320 }
8321 
8322 /// Analyze profitability of direct move
8323 /// prefer float load to int load plus direct move
8324 /// when there is no integer use of int load
8325 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8326   SDNode *Origin = Op.getOperand(0).getNode();
8327   if (Origin->getOpcode() != ISD::LOAD)
8328     return true;
8329 
8330   // If there is no LXSIBZX/LXSIHZX, like Power8,
8331   // prefer direct move if the memory size is 1 or 2 bytes.
8332   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8333   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8334     return true;
8335 
8336   for (SDNode::use_iterator UI = Origin->use_begin(),
8337                             UE = Origin->use_end();
8338        UI != UE; ++UI) {
8339 
8340     // Only look at the users of the loaded value.
8341     if (UI.getUse().get().getResNo() != 0)
8342       continue;
8343 
8344     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8345         UI->getOpcode() != ISD::UINT_TO_FP &&
8346         UI->getOpcode() != ISD::STRICT_SINT_TO_FP &&
8347         UI->getOpcode() != ISD::STRICT_UINT_TO_FP)
8348       return true;
8349   }
8350 
8351   return false;
8352 }
8353 
8354 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG,
8355                               const PPCSubtarget &Subtarget,
8356                               SDValue Chain = SDValue()) {
8357   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8358                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8359   SDLoc dl(Op);
8360 
8361   // TODO: Any other flags to propagate?
8362   SDNodeFlags Flags;
8363   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8364 
8365   // If we have FCFIDS, then use it when converting to single-precision.
8366   // Otherwise, convert to double-precision and then round.
8367   bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT();
8368   unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS)
8369                               : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU);
8370   EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64;
8371   if (Op->isStrictFPOpcode()) {
8372     if (!Chain)
8373       Chain = Op.getOperand(0);
8374     return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl,
8375                        DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags);
8376   } else
8377     return DAG.getNode(ConvOpc, dl, ConvTy, Src);
8378 }
8379 
8380 /// Custom lowers integer to floating point conversions to use
8381 /// the direct move instructions available in ISA 2.07 to avoid the
8382 /// need for load/store combinations.
8383 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8384                                                     SelectionDAG &DAG,
8385                                                     const SDLoc &dl) const {
8386   assert((Op.getValueType() == MVT::f32 ||
8387           Op.getValueType() == MVT::f64) &&
8388          "Invalid floating point type as target of conversion");
8389   assert(Subtarget.hasFPCVT() &&
8390          "Int to FP conversions with direct moves require FPCVT");
8391   SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0);
8392   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8393   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP ||
8394                 Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8395   unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA;
8396   SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src);
8397   return convertIntToFP(Op, Mov, DAG, Subtarget);
8398 }
8399 
8400 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8401 
8402   EVT VecVT = Vec.getValueType();
8403   assert(VecVT.isVector() && "Expected a vector type.");
8404   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8405 
8406   EVT EltVT = VecVT.getVectorElementType();
8407   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8408   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8409 
8410   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8411   SmallVector<SDValue, 16> Ops(NumConcat);
8412   Ops[0] = Vec;
8413   SDValue UndefVec = DAG.getUNDEF(VecVT);
8414   for (unsigned i = 1; i < NumConcat; ++i)
8415     Ops[i] = UndefVec;
8416 
8417   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8418 }
8419 
8420 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8421                                                 const SDLoc &dl) const {
8422   bool IsStrict = Op->isStrictFPOpcode();
8423   unsigned Opc = Op.getOpcode();
8424   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8425   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP ||
8426           Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) &&
8427          "Unexpected conversion type");
8428   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8429          "Supports conversions to v2f64/v4f32 only.");
8430 
8431   // TODO: Any other flags to propagate?
8432   SDNodeFlags Flags;
8433   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8434 
8435   bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP;
8436   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8437 
8438   SDValue Wide = widenVec(DAG, Src, dl);
8439   EVT WideVT = Wide.getValueType();
8440   unsigned WideNumElts = WideVT.getVectorNumElements();
8441   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8442 
8443   SmallVector<int, 16> ShuffV;
8444   for (unsigned i = 0; i < WideNumElts; ++i)
8445     ShuffV.push_back(i + WideNumElts);
8446 
8447   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8448   int SaveElts = FourEltRes ? 4 : 2;
8449   if (Subtarget.isLittleEndian())
8450     for (int i = 0; i < SaveElts; i++)
8451       ShuffV[i * Stride] = i;
8452   else
8453     for (int i = 1; i <= SaveElts; i++)
8454       ShuffV[i * Stride - 1] = i - 1;
8455 
8456   SDValue ShuffleSrc2 =
8457       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8458   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8459 
8460   SDValue Extend;
8461   if (SignedConv) {
8462     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8463     EVT ExtVT = Src.getValueType();
8464     if (Subtarget.hasP9Altivec())
8465       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8466                                IntermediateVT.getVectorNumElements());
8467 
8468     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8469                          DAG.getValueType(ExtVT));
8470   } else
8471     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8472 
8473   if (IsStrict)
8474     return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
8475                        {Op.getOperand(0), Extend}, Flags);
8476 
8477   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8478 }
8479 
8480 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8481                                           SelectionDAG &DAG) const {
8482   SDLoc dl(Op);
8483   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8484                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8485   bool IsStrict = Op->isStrictFPOpcode();
8486   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8487   SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
8488 
8489   // TODO: Any other flags to propagate?
8490   SDNodeFlags Flags;
8491   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8492 
8493   EVT InVT = Src.getValueType();
8494   EVT OutVT = Op.getValueType();
8495   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8496       isOperationCustom(Op.getOpcode(), InVT))
8497     return LowerINT_TO_FPVector(Op, DAG, dl);
8498 
8499   // Conversions to f128 are legal.
8500   if (Op.getValueType() == MVT::f128)
8501     return Subtarget.hasP9Vector() ? Op : SDValue();
8502 
8503   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8504   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8505     return SDValue();
8506 
8507   if (Src.getValueType() == MVT::i1) {
8508     SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src,
8509                               DAG.getConstantFP(1.0, dl, Op.getValueType()),
8510                               DAG.getConstantFP(0.0, dl, Op.getValueType()));
8511     if (IsStrict)
8512       return DAG.getMergeValues({Sel, Chain}, dl);
8513     else
8514       return Sel;
8515   }
8516 
8517   // If we have direct moves, we can do all the conversion, skip the store/load
8518   // however, without FPCVT we can't do most conversions.
8519   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8520       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8521     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8522 
8523   assert((IsSigned || Subtarget.hasFPCVT()) &&
8524          "UINT_TO_FP is supported only with FPCVT");
8525 
8526   if (Src.getValueType() == MVT::i64) {
8527     SDValue SINT = Src;
8528     // When converting to single-precision, we actually need to convert
8529     // to double-precision first and then round to single-precision.
8530     // To avoid double-rounding effects during that operation, we have
8531     // to prepare the input operand.  Bits that might be truncated when
8532     // converting to double-precision are replaced by a bit that won't
8533     // be lost at this stage, but is below the single-precision rounding
8534     // position.
8535     //
8536     // However, if -enable-unsafe-fp-math is in effect, accept double
8537     // rounding to avoid the extra overhead.
8538     if (Op.getValueType() == MVT::f32 &&
8539         !Subtarget.hasFPCVT() &&
8540         !DAG.getTarget().Options.UnsafeFPMath) {
8541 
8542       // Twiddle input to make sure the low 11 bits are zero.  (If this
8543       // is the case, we are guaranteed the value will fit into the 53 bit
8544       // mantissa of an IEEE double-precision value without rounding.)
8545       // If any of those low 11 bits were not zero originally, make sure
8546       // bit 12 (value 2048) is set instead, so that the final rounding
8547       // to single-precision gets the correct result.
8548       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8549                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8550       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8551                           Round, DAG.getConstant(2047, dl, MVT::i64));
8552       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8553       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8554                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8555 
8556       // However, we cannot use that value unconditionally: if the magnitude
8557       // of the input value is small, the bit-twiddling we did above might
8558       // end up visibly changing the output.  Fortunately, in that case, we
8559       // don't need to twiddle bits since the original input will convert
8560       // exactly to double-precision floating-point already.  Therefore,
8561       // construct a conditional to use the original value if the top 11
8562       // bits are all sign-bit copies, and use the rounded value computed
8563       // above otherwise.
8564       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8565                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8566       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8567                          Cond, DAG.getConstant(1, dl, MVT::i64));
8568       Cond = DAG.getSetCC(
8569           dl,
8570           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8571           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8572 
8573       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8574     }
8575 
8576     ReuseLoadInfo RLI;
8577     SDValue Bits;
8578 
8579     MachineFunction &MF = DAG.getMachineFunction();
8580     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8581       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8582                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8583       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8584     } else if (Subtarget.hasLFIWAX() &&
8585                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8586       MachineMemOperand *MMO =
8587         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8588                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8589       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8590       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8591                                      DAG.getVTList(MVT::f64, MVT::Other),
8592                                      Ops, MVT::i32, MMO);
8593       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8594     } else if (Subtarget.hasFPCVT() &&
8595                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8596       MachineMemOperand *MMO =
8597         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8598                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8599       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8600       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8601                                      DAG.getVTList(MVT::f64, MVT::Other),
8602                                      Ops, MVT::i32, MMO);
8603       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8604     } else if (((Subtarget.hasLFIWAX() &&
8605                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8606                 (Subtarget.hasFPCVT() &&
8607                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8608                SINT.getOperand(0).getValueType() == MVT::i32) {
8609       MachineFrameInfo &MFI = MF.getFrameInfo();
8610       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8611 
8612       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8613       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8614 
8615       SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx,
8616                                    MachinePointerInfo::getFixedStack(
8617                                        DAG.getMachineFunction(), FrameIdx));
8618       Chain = Store;
8619 
8620       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8621              "Expected an i32 store");
8622 
8623       RLI.Ptr = FIdx;
8624       RLI.Chain = Chain;
8625       RLI.MPI =
8626           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8627       RLI.Alignment = Align(4);
8628 
8629       MachineMemOperand *MMO =
8630         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8631                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8632       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8633       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8634                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8635                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8636                                      Ops, MVT::i32, MMO);
8637       Chain = Bits.getValue(1);
8638     } else
8639       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8640 
8641     SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain);
8642     if (IsStrict)
8643       Chain = FP.getValue(1);
8644 
8645     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8646       if (IsStrict)
8647         FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8648                          DAG.getVTList(MVT::f32, MVT::Other),
8649                          {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8650       else
8651         FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8652                          DAG.getIntPtrConstant(0, dl));
8653     }
8654     return FP;
8655   }
8656 
8657   assert(Src.getValueType() == MVT::i32 &&
8658          "Unhandled INT_TO_FP type in custom expander!");
8659   // Since we only generate this in 64-bit mode, we can take advantage of
8660   // 64-bit registers.  In particular, sign extend the input value into the
8661   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8662   // then lfd it and fcfid it.
8663   MachineFunction &MF = DAG.getMachineFunction();
8664   MachineFrameInfo &MFI = MF.getFrameInfo();
8665   EVT PtrVT = getPointerTy(MF.getDataLayout());
8666 
8667   SDValue Ld;
8668   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8669     ReuseLoadInfo RLI;
8670     bool ReusingLoad;
8671     if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) {
8672       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8673       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8674 
8675       SDValue Store = DAG.getStore(Chain, dl, Src, FIdx,
8676                                    MachinePointerInfo::getFixedStack(
8677                                        DAG.getMachineFunction(), FrameIdx));
8678       Chain = Store;
8679 
8680       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8681              "Expected an i32 store");
8682 
8683       RLI.Ptr = FIdx;
8684       RLI.Chain = Chain;
8685       RLI.MPI =
8686           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8687       RLI.Alignment = Align(4);
8688     }
8689 
8690     MachineMemOperand *MMO =
8691       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8692                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8693     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8694     Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl,
8695                                  DAG.getVTList(MVT::f64, MVT::Other), Ops,
8696                                  MVT::i32, MMO);
8697     Chain = Ld.getValue(1);
8698     if (ReusingLoad)
8699       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8700   } else {
8701     assert(Subtarget.isPPC64() &&
8702            "i32->FP without LFIWAX supported only on PPC64");
8703 
8704     int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
8705     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8706 
8707     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src);
8708 
8709     // STD the extended value into the stack slot.
8710     SDValue Store = DAG.getStore(
8711         Chain, dl, Ext64, FIdx,
8712         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8713     Chain = Store;
8714 
8715     // Load the value as a double.
8716     Ld = DAG.getLoad(
8717         MVT::f64, dl, Chain, FIdx,
8718         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8719     Chain = Ld.getValue(1);
8720   }
8721 
8722   // FCFID it and return it.
8723   SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain);
8724   if (IsStrict)
8725     Chain = FP.getValue(1);
8726   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8727     if (IsStrict)
8728       FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8729                        DAG.getVTList(MVT::f32, MVT::Other),
8730                        {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8731     else
8732       FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8733                        DAG.getIntPtrConstant(0, dl));
8734   }
8735   return FP;
8736 }
8737 
8738 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8739                                             SelectionDAG &DAG) const {
8740   SDLoc dl(Op);
8741   /*
8742    The rounding mode is in bits 30:31 of FPSR, and has the following
8743    settings:
8744      00 Round to nearest
8745      01 Round to 0
8746      10 Round to +inf
8747      11 Round to -inf
8748 
8749   FLT_ROUNDS, on the other hand, expects the following:
8750     -1 Undefined
8751      0 Round to 0
8752      1 Round to nearest
8753      2 Round to +inf
8754      3 Round to -inf
8755 
8756   To perform the conversion, we do:
8757     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8758   */
8759 
8760   MachineFunction &MF = DAG.getMachineFunction();
8761   EVT VT = Op.getValueType();
8762   EVT PtrVT = getPointerTy(MF.getDataLayout());
8763 
8764   // Save FP Control Word to register
8765   SDValue Chain = Op.getOperand(0);
8766   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8767   Chain = MFFS.getValue(1);
8768 
8769   SDValue CWD;
8770   if (isTypeLegal(MVT::i64)) {
8771     CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
8772                       DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS));
8773   } else {
8774     // Save FP register to stack slot
8775     int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
8776     SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8777     Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8778 
8779     // Load FP Control Word from low 32 bits of stack slot.
8780     assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) &&
8781            "Stack slot adjustment is valid only on big endian subtargets!");
8782     SDValue Four = DAG.getConstant(4, dl, PtrVT);
8783     SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8784     CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8785     Chain = CWD.getValue(1);
8786   }
8787 
8788   // Transform as necessary
8789   SDValue CWD1 =
8790     DAG.getNode(ISD::AND, dl, MVT::i32,
8791                 CWD, DAG.getConstant(3, dl, MVT::i32));
8792   SDValue CWD2 =
8793     DAG.getNode(ISD::SRL, dl, MVT::i32,
8794                 DAG.getNode(ISD::AND, dl, MVT::i32,
8795                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8796                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8797                             DAG.getConstant(3, dl, MVT::i32)),
8798                 DAG.getConstant(1, dl, MVT::i32));
8799 
8800   SDValue RetVal =
8801     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8802 
8803   RetVal =
8804       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8805                   dl, VT, RetVal);
8806 
8807   return DAG.getMergeValues({RetVal, Chain}, dl);
8808 }
8809 
8810 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8811   EVT VT = Op.getValueType();
8812   unsigned BitWidth = VT.getSizeInBits();
8813   SDLoc dl(Op);
8814   assert(Op.getNumOperands() == 3 &&
8815          VT == Op.getOperand(1).getValueType() &&
8816          "Unexpected SHL!");
8817 
8818   // Expand into a bunch of logical ops.  Note that these ops
8819   // depend on the PPC behavior for oversized shift amounts.
8820   SDValue Lo = Op.getOperand(0);
8821   SDValue Hi = Op.getOperand(1);
8822   SDValue Amt = Op.getOperand(2);
8823   EVT AmtVT = Amt.getValueType();
8824 
8825   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8826                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8827   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8828   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8829   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8830   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8831                              DAG.getConstant(-BitWidth, dl, AmtVT));
8832   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8833   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8834   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8835   SDValue OutOps[] = { OutLo, OutHi };
8836   return DAG.getMergeValues(OutOps, dl);
8837 }
8838 
8839 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8840   EVT VT = Op.getValueType();
8841   SDLoc dl(Op);
8842   unsigned BitWidth = VT.getSizeInBits();
8843   assert(Op.getNumOperands() == 3 &&
8844          VT == Op.getOperand(1).getValueType() &&
8845          "Unexpected SRL!");
8846 
8847   // Expand into a bunch of logical ops.  Note that these ops
8848   // depend on the PPC behavior for oversized shift amounts.
8849   SDValue Lo = Op.getOperand(0);
8850   SDValue Hi = Op.getOperand(1);
8851   SDValue Amt = Op.getOperand(2);
8852   EVT AmtVT = Amt.getValueType();
8853 
8854   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8855                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8856   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8857   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8858   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8859   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8860                              DAG.getConstant(-BitWidth, dl, AmtVT));
8861   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8862   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8863   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8864   SDValue OutOps[] = { OutLo, OutHi };
8865   return DAG.getMergeValues(OutOps, dl);
8866 }
8867 
8868 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8869   SDLoc dl(Op);
8870   EVT VT = Op.getValueType();
8871   unsigned BitWidth = VT.getSizeInBits();
8872   assert(Op.getNumOperands() == 3 &&
8873          VT == Op.getOperand(1).getValueType() &&
8874          "Unexpected SRA!");
8875 
8876   // Expand into a bunch of logical ops, followed by a select_cc.
8877   SDValue Lo = Op.getOperand(0);
8878   SDValue Hi = Op.getOperand(1);
8879   SDValue Amt = Op.getOperand(2);
8880   EVT AmtVT = Amt.getValueType();
8881 
8882   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8883                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8884   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8885   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8886   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8887   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8888                              DAG.getConstant(-BitWidth, dl, AmtVT));
8889   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8890   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8891   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8892                                   Tmp4, Tmp6, ISD::SETLE);
8893   SDValue OutOps[] = { OutLo, OutHi };
8894   return DAG.getMergeValues(OutOps, dl);
8895 }
8896 
8897 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op,
8898                                             SelectionDAG &DAG) const {
8899   SDLoc dl(Op);
8900   EVT VT = Op.getValueType();
8901   unsigned BitWidth = VT.getSizeInBits();
8902 
8903   bool IsFSHL = Op.getOpcode() == ISD::FSHL;
8904   SDValue X = Op.getOperand(0);
8905   SDValue Y = Op.getOperand(1);
8906   SDValue Z = Op.getOperand(2);
8907   EVT AmtVT = Z.getValueType();
8908 
8909   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
8910   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
8911   // This is simpler than TargetLowering::expandFunnelShift because we can rely
8912   // on PowerPC shift by BW being well defined.
8913   Z = DAG.getNode(ISD::AND, dl, AmtVT, Z,
8914                   DAG.getConstant(BitWidth - 1, dl, AmtVT));
8915   SDValue SubZ =
8916       DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z);
8917   X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ);
8918   Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z);
8919   return DAG.getNode(ISD::OR, dl, VT, X, Y);
8920 }
8921 
8922 //===----------------------------------------------------------------------===//
8923 // Vector related lowering.
8924 //
8925 
8926 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
8927 /// element size of SplatSize. Cast the result to VT.
8928 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
8929                                       SelectionDAG &DAG, const SDLoc &dl) {
8930   static const MVT VTys[] = { // canonical VT to use for each size.
8931     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8932   };
8933 
8934   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8935 
8936   // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
8937   if (Val == ((1LLU << (SplatSize * 8)) - 1)) {
8938     SplatSize = 1;
8939     Val = 0xFF;
8940   }
8941 
8942   EVT CanonicalVT = VTys[SplatSize-1];
8943 
8944   // Build a canonical splat for this value.
8945   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8946 }
8947 
8948 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8949 /// specified intrinsic ID.
8950 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8951                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8952   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8953   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8954                      DAG.getConstant(IID, dl, MVT::i32), Op);
8955 }
8956 
8957 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8958 /// specified intrinsic ID.
8959 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8960                                 SelectionDAG &DAG, const SDLoc &dl,
8961                                 EVT DestVT = MVT::Other) {
8962   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8963   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8964                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8965 }
8966 
8967 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8968 /// specified intrinsic ID.
8969 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8970                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8971                                 EVT DestVT = MVT::Other) {
8972   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8973   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8974                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8975 }
8976 
8977 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8978 /// amount.  The result has the specified value type.
8979 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8980                            SelectionDAG &DAG, const SDLoc &dl) {
8981   // Force LHS/RHS to be the right type.
8982   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8983   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8984 
8985   int Ops[16];
8986   for (unsigned i = 0; i != 16; ++i)
8987     Ops[i] = i + Amt;
8988   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8989   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8990 }
8991 
8992 /// Do we have an efficient pattern in a .td file for this node?
8993 ///
8994 /// \param V - pointer to the BuildVectorSDNode being matched
8995 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8996 ///
8997 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8998 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8999 /// the opposite is true (expansion is beneficial) are:
9000 /// - The node builds a vector out of integers that are not 32 or 64-bits
9001 /// - The node builds a vector out of constants
9002 /// - The node is a "load-and-splat"
9003 /// In all other cases, we will choose to keep the BUILD_VECTOR.
9004 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
9005                                             bool HasDirectMove,
9006                                             bool HasP8Vector) {
9007   EVT VecVT = V->getValueType(0);
9008   bool RightType = VecVT == MVT::v2f64 ||
9009     (HasP8Vector && VecVT == MVT::v4f32) ||
9010     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
9011   if (!RightType)
9012     return false;
9013 
9014   bool IsSplat = true;
9015   bool IsLoad = false;
9016   SDValue Op0 = V->getOperand(0);
9017 
9018   // This function is called in a block that confirms the node is not a constant
9019   // splat. So a constant BUILD_VECTOR here means the vector is built out of
9020   // different constants.
9021   if (V->isConstant())
9022     return false;
9023   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
9024     if (V->getOperand(i).isUndef())
9025       return false;
9026     // We want to expand nodes that represent load-and-splat even if the
9027     // loaded value is a floating point truncation or conversion to int.
9028     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
9029         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
9030          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9031         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
9032          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9033         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
9034          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
9035       IsLoad = true;
9036     // If the operands are different or the input is not a load and has more
9037     // uses than just this BV node, then it isn't a splat.
9038     if (V->getOperand(i) != Op0 ||
9039         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
9040       IsSplat = false;
9041   }
9042   return !(IsSplat && IsLoad);
9043 }
9044 
9045 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
9046 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
9047 
9048   SDLoc dl(Op);
9049   SDValue Op0 = Op->getOperand(0);
9050 
9051   if ((Op.getValueType() != MVT::f128) ||
9052       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
9053       (Op0.getOperand(0).getValueType() != MVT::i64) ||
9054       (Op0.getOperand(1).getValueType() != MVT::i64))
9055     return SDValue();
9056 
9057   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
9058                      Op0.getOperand(1));
9059 }
9060 
9061 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
9062   const SDValue *InputLoad = &Op;
9063   if (InputLoad->getOpcode() == ISD::BITCAST)
9064     InputLoad = &InputLoad->getOperand(0);
9065   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
9066       InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
9067     IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
9068     InputLoad = &InputLoad->getOperand(0);
9069   }
9070   if (InputLoad->getOpcode() != ISD::LOAD)
9071     return nullptr;
9072   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9073   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
9074 }
9075 
9076 // Convert the argument APFloat to a single precision APFloat if there is no
9077 // loss in information during the conversion to single precision APFloat and the
9078 // resulting number is not a denormal number. Return true if successful.
9079 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
9080   APFloat APFloatToConvert = ArgAPFloat;
9081   bool LosesInfo = true;
9082   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9083                            &LosesInfo);
9084   bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
9085   if (Success)
9086     ArgAPFloat = APFloatToConvert;
9087   return Success;
9088 }
9089 
9090 // Bitcast the argument APInt to a double and convert it to a single precision
9091 // APFloat, bitcast the APFloat to an APInt and assign it to the original
9092 // argument if there is no loss in information during the conversion from
9093 // double to single precision APFloat and the resulting number is not a denormal
9094 // number. Return true if successful.
9095 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
9096   double DpValue = ArgAPInt.bitsToDouble();
9097   APFloat APFloatDp(DpValue);
9098   bool Success = convertToNonDenormSingle(APFloatDp);
9099   if (Success)
9100     ArgAPInt = APFloatDp.bitcastToAPInt();
9101   return Success;
9102 }
9103 
9104 // Nondestructive check for convertTonNonDenormSingle.
9105 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) {
9106   // Only convert if it loses info, since XXSPLTIDP should
9107   // handle the other case.
9108   APFloat APFloatToConvert = ArgAPFloat;
9109   bool LosesInfo = true;
9110   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9111                            &LosesInfo);
9112 
9113   return (!LosesInfo && !APFloatToConvert.isDenormal());
9114 }
9115 
9116 static bool isValidSplatLoad(const PPCSubtarget &Subtarget, const SDValue &Op,
9117                              unsigned &Opcode) {
9118   LoadSDNode *InputNode = dyn_cast<LoadSDNode>(Op.getOperand(0));
9119   if (!InputNode || !Subtarget.hasVSX() || !ISD::isUNINDEXEDLoad(InputNode))
9120     return false;
9121 
9122   EVT Ty = Op->getValueType(0);
9123   // For v2f64, v4f32 and v4i32 types, we require the load to be non-extending
9124   // as we cannot handle extending loads for these types.
9125   if ((Ty == MVT::v2f64 || Ty == MVT::v4f32 || Ty == MVT::v4i32) &&
9126       ISD::isNON_EXTLoad(InputNode))
9127     return true;
9128 
9129   EVT MemVT = InputNode->getMemoryVT();
9130   // For v8i16 and v16i8 types, extending loads can be handled as long as the
9131   // memory VT is the same vector element VT type.
9132   // The loads feeding into the v8i16 and v16i8 types will be extending because
9133   // scalar i8/i16 are not legal types.
9134   if ((Ty == MVT::v8i16 || Ty == MVT::v16i8) && ISD::isEXTLoad(InputNode) &&
9135       (MemVT == Ty.getVectorElementType()))
9136     return true;
9137 
9138   if (Ty == MVT::v2i64) {
9139     // Check the extend type, when the input type is i32, and the output vector
9140     // type is v2i64.
9141     if (MemVT == MVT::i32) {
9142       if (ISD::isZEXTLoad(InputNode))
9143         Opcode = PPCISD::ZEXT_LD_SPLAT;
9144       if (ISD::isSEXTLoad(InputNode))
9145         Opcode = PPCISD::SEXT_LD_SPLAT;
9146     }
9147     return true;
9148   }
9149   return false;
9150 }
9151 
9152 // If this is a case we can't handle, return null and let the default
9153 // expansion code take care of it.  If we CAN select this case, and if it
9154 // selects to a single instruction, return Op.  Otherwise, if we can codegen
9155 // this case more efficiently than a constant pool load, lower it to the
9156 // sequence of ops that should be used.
9157 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
9158                                              SelectionDAG &DAG) const {
9159   SDLoc dl(Op);
9160   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9161   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
9162 
9163   // Check if this is a splat of a constant value.
9164   APInt APSplatBits, APSplatUndef;
9165   unsigned SplatBitSize;
9166   bool HasAnyUndefs;
9167   bool BVNIsConstantSplat =
9168       BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
9169                            HasAnyUndefs, 0, !Subtarget.isLittleEndian());
9170 
9171   // If it is a splat of a double, check if we can shrink it to a 32 bit
9172   // non-denormal float which when converted back to double gives us the same
9173   // double. This is to exploit the XXSPLTIDP instruction.
9174   // If we lose precision, we use XXSPLTI32DX.
9175   if (BVNIsConstantSplat && (SplatBitSize == 64) &&
9176       Subtarget.hasPrefixInstrs()) {
9177     // Check the type first to short-circuit so we don't modify APSplatBits if
9178     // this block isn't executed.
9179     if ((Op->getValueType(0) == MVT::v2f64) &&
9180         convertToNonDenormSingle(APSplatBits)) {
9181       SDValue SplatNode = DAG.getNode(
9182           PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
9183           DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
9184       return DAG.getBitcast(Op.getValueType(), SplatNode);
9185     } else {
9186       // We may lose precision, so we have to use XXSPLTI32DX.
9187 
9188       uint32_t Hi =
9189           (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32);
9190       uint32_t Lo =
9191           (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF);
9192       SDValue SplatNode = DAG.getUNDEF(MVT::v2i64);
9193 
9194       if (!Hi || !Lo)
9195         // If either load is 0, then we should generate XXLXOR to set to 0.
9196         SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64);
9197 
9198       if (Hi)
9199         SplatNode = DAG.getNode(
9200             PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
9201             DAG.getTargetConstant(0, dl, MVT::i32),
9202             DAG.getTargetConstant(Hi, dl, MVT::i32));
9203 
9204       if (Lo)
9205         SplatNode =
9206             DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
9207                         DAG.getTargetConstant(1, dl, MVT::i32),
9208                         DAG.getTargetConstant(Lo, dl, MVT::i32));
9209 
9210       return DAG.getBitcast(Op.getValueType(), SplatNode);
9211     }
9212   }
9213 
9214   if (!BVNIsConstantSplat || SplatBitSize > 32) {
9215     unsigned NewOpcode = PPCISD::LD_SPLAT;
9216 
9217     // Handle load-and-splat patterns as we have instructions that will do this
9218     // in one go.
9219     if (DAG.isSplatValue(Op, true) &&
9220         isValidSplatLoad(Subtarget, Op, NewOpcode)) {
9221       const SDValue *InputLoad = &Op.getOperand(0);
9222       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9223 
9224       // If the input load is an extending load, it will be an i32 -> i64
9225       // extending load and isValidSplatLoad() will update NewOpcode.
9226       unsigned MemorySize = LD->getMemoryVT().getScalarSizeInBits();
9227       unsigned ElementSize =
9228           MemorySize * ((NewOpcode == PPCISD::LD_SPLAT) ? 1 : 2);
9229 
9230       assert(((ElementSize == 2 * MemorySize)
9231                   ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT ||
9232                      NewOpcode == PPCISD::SEXT_LD_SPLAT)
9233                   : (NewOpcode == PPCISD::LD_SPLAT)) &&
9234              "Unmatched element size and opcode!\n");
9235 
9236       // Checking for a single use of this load, we have to check for vector
9237       // width (128 bits) / ElementSize uses (since each operand of the
9238       // BUILD_VECTOR is a separate use of the value.
9239       unsigned NumUsesOfInputLD = 128 / ElementSize;
9240       for (SDValue BVInOp : Op->ops())
9241         if (BVInOp.isUndef())
9242           NumUsesOfInputLD--;
9243 
9244       // Exclude somes case where LD_SPLAT is worse than scalar_to_vector:
9245       // Below cases should also happen for "lfiwzx/lfiwax + LE target + index
9246       // 1" and "lxvrhx + BE target + index 7" and "lxvrbx + BE target + index
9247       // 15", but funciton IsValidSplatLoad() now will only return true when
9248       // the data at index 0 is not nullptr. So we will not get into trouble for
9249       // these cases.
9250       //
9251       // case 1 - lfiwzx/lfiwax
9252       // 1.1: load result is i32 and is sign/zero extend to i64;
9253       // 1.2: build a v2i64 vector type with above loaded value;
9254       // 1.3: the vector has only one value at index 0, others are all undef;
9255       // 1.4: on BE target, so that lfiwzx/lfiwax does not need any permute.
9256       if (NumUsesOfInputLD == 1 &&
9257           (Op->getValueType(0) == MVT::v2i64 && NewOpcode != PPCISD::LD_SPLAT &&
9258            !Subtarget.isLittleEndian() && Subtarget.hasVSX() &&
9259            Subtarget.hasLFIWAX()))
9260         return SDValue();
9261 
9262       // case 2 - lxvr[hb]x
9263       // 2.1: load result is at most i16;
9264       // 2.2: build a vector with above loaded value;
9265       // 2.3: the vector has only one value at index 0, others are all undef;
9266       // 2.4: on LE target, so that lxvr[hb]x does not need any permute.
9267       if (NumUsesOfInputLD == 1 && Subtarget.isLittleEndian() &&
9268           Subtarget.isISA3_1() && ElementSize <= 16)
9269         return SDValue();
9270 
9271       assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?");
9272       if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) &&
9273           Subtarget.hasVSX()) {
9274         SDValue Ops[] = {
9275           LD->getChain(),    // Chain
9276           LD->getBasePtr(),  // Ptr
9277           DAG.getValueType(Op.getValueType()) // VT
9278         };
9279         SDValue LdSplt = DAG.getMemIntrinsicNode(
9280             NewOpcode, dl, DAG.getVTList(Op.getValueType(), MVT::Other), Ops,
9281             LD->getMemoryVT(), LD->getMemOperand());
9282         // Replace all uses of the output chain of the original load with the
9283         // output chain of the new load.
9284         DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1),
9285                                       LdSplt.getValue(1));
9286         return LdSplt;
9287       }
9288     }
9289 
9290     // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to
9291     // 32-bits can be lowered to VSX instructions under certain conditions.
9292     // Without VSX, there is no pattern more efficient than expanding the node.
9293     if (Subtarget.hasVSX() && Subtarget.isPPC64() &&
9294         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
9295                                         Subtarget.hasP8Vector()))
9296       return Op;
9297     return SDValue();
9298   }
9299 
9300   uint64_t SplatBits = APSplatBits.getZExtValue();
9301   uint64_t SplatUndef = APSplatUndef.getZExtValue();
9302   unsigned SplatSize = SplatBitSize / 8;
9303 
9304   // First, handle single instruction cases.
9305 
9306   // All zeros?
9307   if (SplatBits == 0) {
9308     // Canonicalize all zero vectors to be v4i32.
9309     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
9310       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
9311       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
9312     }
9313     return Op;
9314   }
9315 
9316   // We have XXSPLTIW for constant splats four bytes wide.
9317   // Given vector length is a multiple of 4, 2-byte splats can be replaced
9318   // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
9319   // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
9320   // turned into a 4-byte splat of 0xABABABAB.
9321   if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
9322     return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2,
9323                                   Op.getValueType(), DAG, dl);
9324 
9325   if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
9326     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9327                                   dl);
9328 
9329   // We have XXSPLTIB for constant splats one byte wide.
9330   if (Subtarget.hasP9Vector() && SplatSize == 1)
9331     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9332                                   dl);
9333 
9334   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
9335   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
9336                     (32-SplatBitSize));
9337   if (SextVal >= -16 && SextVal <= 15)
9338     return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
9339                                   dl);
9340 
9341   // Two instruction sequences.
9342 
9343   // If this value is in the range [-32,30] and is even, use:
9344   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
9345   // If this value is in the range [17,31] and is odd, use:
9346   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
9347   // If this value is in the range [-31,-17] and is odd, use:
9348   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
9349   // Note the last two are three-instruction sequences.
9350   if (SextVal >= -32 && SextVal <= 31) {
9351     // To avoid having these optimizations undone by constant folding,
9352     // we convert to a pseudo that will be expanded later into one of
9353     // the above forms.
9354     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
9355     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
9356               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
9357     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
9358     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
9359     if (VT == Op.getValueType())
9360       return RetVal;
9361     else
9362       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
9363   }
9364 
9365   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
9366   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
9367   // for fneg/fabs.
9368   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9369     // Make -1 and vspltisw -1:
9370     SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
9371 
9372     // Make the VSLW intrinsic, computing 0x8000_0000.
9373     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
9374                                    OnesV, DAG, dl);
9375 
9376     // xor by OnesV to invert it.
9377     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
9378     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9379   }
9380 
9381   // Check to see if this is a wide variety of vsplti*, binop self cases.
9382   static const signed char SplatCsts[] = {
9383     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9384     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9385   };
9386 
9387   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
9388     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9389     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9390     int i = SplatCsts[idx];
9391 
9392     // Figure out what shift amount will be used by altivec if shifted by i in
9393     // this splat size.
9394     unsigned TypeShiftAmt = i & (SplatBitSize-1);
9395 
9396     // vsplti + shl self.
9397     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9398       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9399       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9400         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9401         Intrinsic::ppc_altivec_vslw
9402       };
9403       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9404       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9405     }
9406 
9407     // vsplti + srl self.
9408     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9409       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9410       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9411         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9412         Intrinsic::ppc_altivec_vsrw
9413       };
9414       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9415       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9416     }
9417 
9418     // vsplti + rol self.
9419     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9420                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9421       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9422       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9423         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9424         Intrinsic::ppc_altivec_vrlw
9425       };
9426       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9427       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9428     }
9429 
9430     // t = vsplti c, result = vsldoi t, t, 1
9431     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9432       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9433       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9434       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9435     }
9436     // t = vsplti c, result = vsldoi t, t, 2
9437     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9438       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9439       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9440       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9441     }
9442     // t = vsplti c, result = vsldoi t, t, 3
9443     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9444       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9445       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9446       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9447     }
9448   }
9449 
9450   return SDValue();
9451 }
9452 
9453 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9454 /// the specified operations to build the shuffle.
9455 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9456                                       SDValue RHS, SelectionDAG &DAG,
9457                                       const SDLoc &dl) {
9458   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9459   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9460   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9461 
9462   enum {
9463     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9464     OP_VMRGHW,
9465     OP_VMRGLW,
9466     OP_VSPLTISW0,
9467     OP_VSPLTISW1,
9468     OP_VSPLTISW2,
9469     OP_VSPLTISW3,
9470     OP_VSLDOI4,
9471     OP_VSLDOI8,
9472     OP_VSLDOI12
9473   };
9474 
9475   if (OpNum == OP_COPY) {
9476     if (LHSID == (1*9+2)*9+3) return LHS;
9477     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9478     return RHS;
9479   }
9480 
9481   SDValue OpLHS, OpRHS;
9482   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9483   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9484 
9485   int ShufIdxs[16];
9486   switch (OpNum) {
9487   default: llvm_unreachable("Unknown i32 permute!");
9488   case OP_VMRGHW:
9489     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9490     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9491     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9492     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9493     break;
9494   case OP_VMRGLW:
9495     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9496     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9497     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9498     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9499     break;
9500   case OP_VSPLTISW0:
9501     for (unsigned i = 0; i != 16; ++i)
9502       ShufIdxs[i] = (i&3)+0;
9503     break;
9504   case OP_VSPLTISW1:
9505     for (unsigned i = 0; i != 16; ++i)
9506       ShufIdxs[i] = (i&3)+4;
9507     break;
9508   case OP_VSPLTISW2:
9509     for (unsigned i = 0; i != 16; ++i)
9510       ShufIdxs[i] = (i&3)+8;
9511     break;
9512   case OP_VSPLTISW3:
9513     for (unsigned i = 0; i != 16; ++i)
9514       ShufIdxs[i] = (i&3)+12;
9515     break;
9516   case OP_VSLDOI4:
9517     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9518   case OP_VSLDOI8:
9519     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9520   case OP_VSLDOI12:
9521     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9522   }
9523   EVT VT = OpLHS.getValueType();
9524   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9525   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9526   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9527   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9528 }
9529 
9530 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9531 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9532 /// SDValue.
9533 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9534                                            SelectionDAG &DAG) const {
9535   const unsigned BytesInVector = 16;
9536   bool IsLE = Subtarget.isLittleEndian();
9537   SDLoc dl(N);
9538   SDValue V1 = N->getOperand(0);
9539   SDValue V2 = N->getOperand(1);
9540   unsigned ShiftElts = 0, InsertAtByte = 0;
9541   bool Swap = false;
9542 
9543   // Shifts required to get the byte we want at element 7.
9544   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9545                                    0, 15, 14, 13, 12, 11, 10, 9};
9546   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9547                                 1, 2,  3,  4,  5,  6,  7,  8};
9548 
9549   ArrayRef<int> Mask = N->getMask();
9550   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9551 
9552   // For each mask element, find out if we're just inserting something
9553   // from V2 into V1 or vice versa.
9554   // Possible permutations inserting an element from V2 into V1:
9555   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9556   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9557   //   ...
9558   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9559   // Inserting from V1 into V2 will be similar, except mask range will be
9560   // [16,31].
9561 
9562   bool FoundCandidate = false;
9563   // If both vector operands for the shuffle are the same vector, the mask
9564   // will contain only elements from the first one and the second one will be
9565   // undef.
9566   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9567   // Go through the mask of half-words to find an element that's being moved
9568   // from one vector to the other.
9569   for (unsigned i = 0; i < BytesInVector; ++i) {
9570     unsigned CurrentElement = Mask[i];
9571     // If 2nd operand is undefined, we should only look for element 7 in the
9572     // Mask.
9573     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9574       continue;
9575 
9576     bool OtherElementsInOrder = true;
9577     // Examine the other elements in the Mask to see if they're in original
9578     // order.
9579     for (unsigned j = 0; j < BytesInVector; ++j) {
9580       if (j == i)
9581         continue;
9582       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9583       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9584       // in which we always assume we're always picking from the 1st operand.
9585       int MaskOffset =
9586           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9587       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9588         OtherElementsInOrder = false;
9589         break;
9590       }
9591     }
9592     // If other elements are in original order, we record the number of shifts
9593     // we need to get the element we want into element 7. Also record which byte
9594     // in the vector we should insert into.
9595     if (OtherElementsInOrder) {
9596       // If 2nd operand is undefined, we assume no shifts and no swapping.
9597       if (V2.isUndef()) {
9598         ShiftElts = 0;
9599         Swap = false;
9600       } else {
9601         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9602         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9603                          : BigEndianShifts[CurrentElement & 0xF];
9604         Swap = CurrentElement < BytesInVector;
9605       }
9606       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9607       FoundCandidate = true;
9608       break;
9609     }
9610   }
9611 
9612   if (!FoundCandidate)
9613     return SDValue();
9614 
9615   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9616   // optionally with VECSHL if shift is required.
9617   if (Swap)
9618     std::swap(V1, V2);
9619   if (V2.isUndef())
9620     V2 = V1;
9621   if (ShiftElts) {
9622     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9623                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9624     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9625                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9626   }
9627   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9628                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9629 }
9630 
9631 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9632 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9633 /// SDValue.
9634 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9635                                            SelectionDAG &DAG) const {
9636   const unsigned NumHalfWords = 8;
9637   const unsigned BytesInVector = NumHalfWords * 2;
9638   // Check that the shuffle is on half-words.
9639   if (!isNByteElemShuffleMask(N, 2, 1))
9640     return SDValue();
9641 
9642   bool IsLE = Subtarget.isLittleEndian();
9643   SDLoc dl(N);
9644   SDValue V1 = N->getOperand(0);
9645   SDValue V2 = N->getOperand(1);
9646   unsigned ShiftElts = 0, InsertAtByte = 0;
9647   bool Swap = false;
9648 
9649   // Shifts required to get the half-word we want at element 3.
9650   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9651   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9652 
9653   uint32_t Mask = 0;
9654   uint32_t OriginalOrderLow = 0x1234567;
9655   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9656   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9657   // 32-bit space, only need 4-bit nibbles per element.
9658   for (unsigned i = 0; i < NumHalfWords; ++i) {
9659     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9660     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9661   }
9662 
9663   // For each mask element, find out if we're just inserting something
9664   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9665   // from V2 into V1:
9666   //   X, 1, 2, 3, 4, 5, 6, 7
9667   //   0, X, 2, 3, 4, 5, 6, 7
9668   //   0, 1, X, 3, 4, 5, 6, 7
9669   //   0, 1, 2, X, 4, 5, 6, 7
9670   //   0, 1, 2, 3, X, 5, 6, 7
9671   //   0, 1, 2, 3, 4, X, 6, 7
9672   //   0, 1, 2, 3, 4, 5, X, 7
9673   //   0, 1, 2, 3, 4, 5, 6, X
9674   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9675 
9676   bool FoundCandidate = false;
9677   // Go through the mask of half-words to find an element that's being moved
9678   // from one vector to the other.
9679   for (unsigned i = 0; i < NumHalfWords; ++i) {
9680     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9681     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9682     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9683     uint32_t TargetOrder = 0x0;
9684 
9685     // If both vector operands for the shuffle are the same vector, the mask
9686     // will contain only elements from the first one and the second one will be
9687     // undef.
9688     if (V2.isUndef()) {
9689       ShiftElts = 0;
9690       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9691       TargetOrder = OriginalOrderLow;
9692       Swap = false;
9693       // Skip if not the correct element or mask of other elements don't equal
9694       // to our expected order.
9695       if (MaskOneElt == VINSERTHSrcElem &&
9696           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9697         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9698         FoundCandidate = true;
9699         break;
9700       }
9701     } else { // If both operands are defined.
9702       // Target order is [8,15] if the current mask is between [0,7].
9703       TargetOrder =
9704           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9705       // Skip if mask of other elements don't equal our expected order.
9706       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9707         // We only need the last 3 bits for the number of shifts.
9708         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9709                          : BigEndianShifts[MaskOneElt & 0x7];
9710         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9711         Swap = MaskOneElt < NumHalfWords;
9712         FoundCandidate = true;
9713         break;
9714       }
9715     }
9716   }
9717 
9718   if (!FoundCandidate)
9719     return SDValue();
9720 
9721   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9722   // optionally with VECSHL if shift is required.
9723   if (Swap)
9724     std::swap(V1, V2);
9725   if (V2.isUndef())
9726     V2 = V1;
9727   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9728   if (ShiftElts) {
9729     // Double ShiftElts because we're left shifting on v16i8 type.
9730     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9731                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9732     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9733     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9734                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9735     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9736   }
9737   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9738   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9739                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9740   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9741 }
9742 
9743 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
9744 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
9745 /// return the default SDValue.
9746 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
9747                                               SelectionDAG &DAG) const {
9748   // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
9749   // to v16i8. Peek through the bitcasts to get the actual operands.
9750   SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
9751   SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
9752 
9753   auto ShuffleMask = SVN->getMask();
9754   SDValue VecShuffle(SVN, 0);
9755   SDLoc DL(SVN);
9756 
9757   // Check that we have a four byte shuffle.
9758   if (!isNByteElemShuffleMask(SVN, 4, 1))
9759     return SDValue();
9760 
9761   // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
9762   if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
9763     std::swap(LHS, RHS);
9764     VecShuffle = DAG.getCommutedVectorShuffle(*SVN);
9765     ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask();
9766   }
9767 
9768   // Ensure that the RHS is a vector of constants.
9769   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
9770   if (!BVN)
9771     return SDValue();
9772 
9773   // Check if RHS is a splat of 4-bytes (or smaller).
9774   APInt APSplatValue, APSplatUndef;
9775   unsigned SplatBitSize;
9776   bool HasAnyUndefs;
9777   if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
9778                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9779       SplatBitSize > 32)
9780     return SDValue();
9781 
9782   // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
9783   // The instruction splats a constant C into two words of the source vector
9784   // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
9785   // Thus we check that the shuffle mask is the equivalent  of
9786   // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
9787   // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
9788   // within each word are consecutive, so we only need to check the first byte.
9789   SDValue Index;
9790   bool IsLE = Subtarget.isLittleEndian();
9791   if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
9792       (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
9793        ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
9794     Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
9795   else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
9796            (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
9797             ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
9798     Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
9799   else
9800     return SDValue();
9801 
9802   // If the splat is narrower than 32-bits, we need to get the 32-bit value
9803   // for XXSPLTI32DX.
9804   unsigned SplatVal = APSplatValue.getZExtValue();
9805   for (; SplatBitSize < 32; SplatBitSize <<= 1)
9806     SplatVal |= (SplatVal << SplatBitSize);
9807 
9808   SDValue SplatNode = DAG.getNode(
9809       PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
9810       Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
9811   return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
9812 }
9813 
9814 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9815 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9816 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9817 /// i.e (or (shl x, C1), (srl x, 128-C1)).
9818 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9819   assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9820   assert(Op.getValueType() == MVT::v1i128 &&
9821          "Only set v1i128 as custom, other type shouldn't reach here!");
9822   SDLoc dl(Op);
9823   SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9824   SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9825   unsigned SHLAmt = N1.getConstantOperandVal(0);
9826   if (SHLAmt % 8 == 0) {
9827     std::array<int, 16> Mask;
9828     std::iota(Mask.begin(), Mask.end(), 0);
9829     std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9830     if (SDValue Shuffle =
9831             DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9832                                  DAG.getUNDEF(MVT::v16i8), Mask))
9833       return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
9834   }
9835   SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
9836   SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
9837                               DAG.getConstant(SHLAmt, dl, MVT::i32));
9838   SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
9839                               DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
9840   SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
9841   return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
9842 }
9843 
9844 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9845 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9846 /// return the code it can be lowered into.  Worst case, it can always be
9847 /// lowered into a vperm.
9848 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9849                                                SelectionDAG &DAG) const {
9850   SDLoc dl(Op);
9851   SDValue V1 = Op.getOperand(0);
9852   SDValue V2 = Op.getOperand(1);
9853   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9854 
9855   // Any nodes that were combined in the target-independent combiner prior
9856   // to vector legalization will not be sent to the target combine. Try to
9857   // combine it here.
9858   if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
9859     if (!isa<ShuffleVectorSDNode>(NewShuffle))
9860       return NewShuffle;
9861     Op = NewShuffle;
9862     SVOp = cast<ShuffleVectorSDNode>(Op);
9863     V1 = Op.getOperand(0);
9864     V2 = Op.getOperand(1);
9865   }
9866   EVT VT = Op.getValueType();
9867   bool isLittleEndian = Subtarget.isLittleEndian();
9868 
9869   unsigned ShiftElts, InsertAtByte;
9870   bool Swap = false;
9871 
9872   // If this is a load-and-splat, we can do that with a single instruction
9873   // in some cases. However if the load has multiple uses, we don't want to
9874   // combine it because that will just produce multiple loads.
9875   bool IsPermutedLoad = false;
9876   const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
9877   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9878       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9879       InputLoad->hasOneUse()) {
9880     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9881     int SplatIdx =
9882       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9883 
9884     // The splat index for permuted loads will be in the left half of the vector
9885     // which is strictly wider than the loaded value by 8 bytes. So we need to
9886     // adjust the splat index to point to the correct address in memory.
9887     if (IsPermutedLoad) {
9888       assert((isLittleEndian || IsFourByte) &&
9889              "Unexpected size for permuted load on big endian target");
9890       SplatIdx += IsFourByte ? 2 : 1;
9891       assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
9892              "Splat of a value outside of the loaded memory");
9893     }
9894 
9895     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9896     // For 4-byte load-and-splat, we need Power9.
9897     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9898       uint64_t Offset = 0;
9899       if (IsFourByte)
9900         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9901       else
9902         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9903 
9904       // If the width of the load is the same as the width of the splat,
9905       // loading with an offset would load the wrong memory.
9906       if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64))
9907         Offset = 0;
9908 
9909       SDValue BasePtr = LD->getBasePtr();
9910       if (Offset != 0)
9911         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9912                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9913       SDValue Ops[] = {
9914         LD->getChain(),    // Chain
9915         BasePtr,           // BasePtr
9916         DAG.getValueType(Op.getValueType()) // VT
9917       };
9918       SDVTList VTL =
9919         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9920       SDValue LdSplt =
9921         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9922                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9923       DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1));
9924       if (LdSplt.getValueType() != SVOp->getValueType(0))
9925         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9926       return LdSplt;
9927     }
9928   }
9929   if (Subtarget.hasP9Vector() &&
9930       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9931                            isLittleEndian)) {
9932     if (Swap)
9933       std::swap(V1, V2);
9934     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9935     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9936     if (ShiftElts) {
9937       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9938                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9939       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9940                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9941       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9942     }
9943     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9944                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9945     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9946   }
9947 
9948   if (Subtarget.hasPrefixInstrs()) {
9949     SDValue SplatInsertNode;
9950     if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
9951       return SplatInsertNode;
9952   }
9953 
9954   if (Subtarget.hasP9Altivec()) {
9955     SDValue NewISDNode;
9956     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9957       return NewISDNode;
9958 
9959     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9960       return NewISDNode;
9961   }
9962 
9963   if (Subtarget.hasVSX() &&
9964       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9965     if (Swap)
9966       std::swap(V1, V2);
9967     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9968     SDValue Conv2 =
9969         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9970 
9971     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9972                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9973     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9974   }
9975 
9976   if (Subtarget.hasVSX() &&
9977     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9978     if (Swap)
9979       std::swap(V1, V2);
9980     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9981     SDValue Conv2 =
9982         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9983 
9984     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9985                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9986     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9987   }
9988 
9989   if (Subtarget.hasP9Vector()) {
9990      if (PPC::isXXBRHShuffleMask(SVOp)) {
9991       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9992       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9993       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9994     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9995       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9996       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9997       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9998     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9999       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
10000       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
10001       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
10002     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
10003       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
10004       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
10005       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
10006     }
10007   }
10008 
10009   if (Subtarget.hasVSX()) {
10010     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
10011       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
10012 
10013       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
10014       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
10015                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
10016       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
10017     }
10018 
10019     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
10020     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
10021       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
10022       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
10023       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
10024     }
10025   }
10026 
10027   // Cases that are handled by instructions that take permute immediates
10028   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
10029   // selected by the instruction selector.
10030   if (V2.isUndef()) {
10031     if (PPC::isSplatShuffleMask(SVOp, 1) ||
10032         PPC::isSplatShuffleMask(SVOp, 2) ||
10033         PPC::isSplatShuffleMask(SVOp, 4) ||
10034         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
10035         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
10036         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
10037         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
10038         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
10039         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
10040         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
10041         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
10042         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
10043         (Subtarget.hasP8Altivec() && (
10044          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
10045          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
10046          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
10047       return Op;
10048     }
10049   }
10050 
10051   // Altivec has a variety of "shuffle immediates" that take two vector inputs
10052   // and produce a fixed permutation.  If any of these match, do not lower to
10053   // VPERM.
10054   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
10055   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10056       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10057       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
10058       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
10059       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
10060       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
10061       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
10062       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
10063       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
10064       (Subtarget.hasP8Altivec() && (
10065        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10066        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
10067        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
10068     return Op;
10069 
10070   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
10071   // perfect shuffle table to emit an optimal matching sequence.
10072   ArrayRef<int> PermMask = SVOp->getMask();
10073 
10074   unsigned PFIndexes[4];
10075   bool isFourElementShuffle = true;
10076   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
10077     unsigned EltNo = 8;   // Start out undef.
10078     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
10079       if (PermMask[i*4+j] < 0)
10080         continue;   // Undef, ignore it.
10081 
10082       unsigned ByteSource = PermMask[i*4+j];
10083       if ((ByteSource & 3) != j) {
10084         isFourElementShuffle = false;
10085         break;
10086       }
10087 
10088       if (EltNo == 8) {
10089         EltNo = ByteSource/4;
10090       } else if (EltNo != ByteSource/4) {
10091         isFourElementShuffle = false;
10092         break;
10093       }
10094     }
10095     PFIndexes[i] = EltNo;
10096   }
10097 
10098   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
10099   // perfect shuffle vector to determine if it is cost effective to do this as
10100   // discrete instructions, or whether we should use a vperm.
10101   // For now, we skip this for little endian until such time as we have a
10102   // little-endian perfect shuffle table.
10103   if (isFourElementShuffle && !isLittleEndian) {
10104     // Compute the index in the perfect shuffle table.
10105     unsigned PFTableIndex =
10106       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
10107 
10108     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
10109     unsigned Cost  = (PFEntry >> 30);
10110 
10111     // Determining when to avoid vperm is tricky.  Many things affect the cost
10112     // of vperm, particularly how many times the perm mask needs to be computed.
10113     // For example, if the perm mask can be hoisted out of a loop or is already
10114     // used (perhaps because there are multiple permutes with the same shuffle
10115     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
10116     // the loop requires an extra register.
10117     //
10118     // As a compromise, we only emit discrete instructions if the shuffle can be
10119     // generated in 3 or fewer operations.  When we have loop information
10120     // available, if this block is within a loop, we should avoid using vperm
10121     // for 3-operation perms and use a constant pool load instead.
10122     if (Cost < 3)
10123       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
10124   }
10125 
10126   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
10127   // vector that will get spilled to the constant pool.
10128   if (V2.isUndef()) V2 = V1;
10129 
10130   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
10131   // that it is in input element units, not in bytes.  Convert now.
10132 
10133   // For little endian, the order of the input vectors is reversed, and
10134   // the permutation mask is complemented with respect to 31.  This is
10135   // necessary to produce proper semantics with the big-endian-biased vperm
10136   // instruction.
10137   EVT EltVT = V1.getValueType().getVectorElementType();
10138   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
10139 
10140   SmallVector<SDValue, 16> ResultMask;
10141   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
10142     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
10143 
10144     for (unsigned j = 0; j != BytesPerElement; ++j)
10145       if (isLittleEndian)
10146         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
10147                                              dl, MVT::i32));
10148       else
10149         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
10150                                              MVT::i32));
10151   }
10152 
10153   ShufflesHandledWithVPERM++;
10154   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
10155   LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
10156   LLVM_DEBUG(SVOp->dump());
10157   LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
10158   LLVM_DEBUG(VPermMask.dump());
10159 
10160   if (isLittleEndian)
10161     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10162                        V2, V1, VPermMask);
10163   else
10164     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10165                        V1, V2, VPermMask);
10166 }
10167 
10168 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
10169 /// vector comparison.  If it is, return true and fill in Opc/isDot with
10170 /// information about the intrinsic.
10171 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
10172                                  bool &isDot, const PPCSubtarget &Subtarget) {
10173   unsigned IntrinsicID =
10174       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
10175   CompareOpc = -1;
10176   isDot = false;
10177   switch (IntrinsicID) {
10178   default:
10179     return false;
10180   // Comparison predicates.
10181   case Intrinsic::ppc_altivec_vcmpbfp_p:
10182     CompareOpc = 966;
10183     isDot = true;
10184     break;
10185   case Intrinsic::ppc_altivec_vcmpeqfp_p:
10186     CompareOpc = 198;
10187     isDot = true;
10188     break;
10189   case Intrinsic::ppc_altivec_vcmpequb_p:
10190     CompareOpc = 6;
10191     isDot = true;
10192     break;
10193   case Intrinsic::ppc_altivec_vcmpequh_p:
10194     CompareOpc = 70;
10195     isDot = true;
10196     break;
10197   case Intrinsic::ppc_altivec_vcmpequw_p:
10198     CompareOpc = 134;
10199     isDot = true;
10200     break;
10201   case Intrinsic::ppc_altivec_vcmpequd_p:
10202     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10203       CompareOpc = 199;
10204       isDot = true;
10205     } else
10206       return false;
10207     break;
10208   case Intrinsic::ppc_altivec_vcmpneb_p:
10209   case Intrinsic::ppc_altivec_vcmpneh_p:
10210   case Intrinsic::ppc_altivec_vcmpnew_p:
10211   case Intrinsic::ppc_altivec_vcmpnezb_p:
10212   case Intrinsic::ppc_altivec_vcmpnezh_p:
10213   case Intrinsic::ppc_altivec_vcmpnezw_p:
10214     if (Subtarget.hasP9Altivec()) {
10215       switch (IntrinsicID) {
10216       default:
10217         llvm_unreachable("Unknown comparison intrinsic.");
10218       case Intrinsic::ppc_altivec_vcmpneb_p:
10219         CompareOpc = 7;
10220         break;
10221       case Intrinsic::ppc_altivec_vcmpneh_p:
10222         CompareOpc = 71;
10223         break;
10224       case Intrinsic::ppc_altivec_vcmpnew_p:
10225         CompareOpc = 135;
10226         break;
10227       case Intrinsic::ppc_altivec_vcmpnezb_p:
10228         CompareOpc = 263;
10229         break;
10230       case Intrinsic::ppc_altivec_vcmpnezh_p:
10231         CompareOpc = 327;
10232         break;
10233       case Intrinsic::ppc_altivec_vcmpnezw_p:
10234         CompareOpc = 391;
10235         break;
10236       }
10237       isDot = true;
10238     } else
10239       return false;
10240     break;
10241   case Intrinsic::ppc_altivec_vcmpgefp_p:
10242     CompareOpc = 454;
10243     isDot = true;
10244     break;
10245   case Intrinsic::ppc_altivec_vcmpgtfp_p:
10246     CompareOpc = 710;
10247     isDot = true;
10248     break;
10249   case Intrinsic::ppc_altivec_vcmpgtsb_p:
10250     CompareOpc = 774;
10251     isDot = true;
10252     break;
10253   case Intrinsic::ppc_altivec_vcmpgtsh_p:
10254     CompareOpc = 838;
10255     isDot = true;
10256     break;
10257   case Intrinsic::ppc_altivec_vcmpgtsw_p:
10258     CompareOpc = 902;
10259     isDot = true;
10260     break;
10261   case Intrinsic::ppc_altivec_vcmpgtsd_p:
10262     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10263       CompareOpc = 967;
10264       isDot = true;
10265     } else
10266       return false;
10267     break;
10268   case Intrinsic::ppc_altivec_vcmpgtub_p:
10269     CompareOpc = 518;
10270     isDot = true;
10271     break;
10272   case Intrinsic::ppc_altivec_vcmpgtuh_p:
10273     CompareOpc = 582;
10274     isDot = true;
10275     break;
10276   case Intrinsic::ppc_altivec_vcmpgtuw_p:
10277     CompareOpc = 646;
10278     isDot = true;
10279     break;
10280   case Intrinsic::ppc_altivec_vcmpgtud_p:
10281     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10282       CompareOpc = 711;
10283       isDot = true;
10284     } else
10285       return false;
10286     break;
10287 
10288   case Intrinsic::ppc_altivec_vcmpequq:
10289   case Intrinsic::ppc_altivec_vcmpgtsq:
10290   case Intrinsic::ppc_altivec_vcmpgtuq:
10291     if (!Subtarget.isISA3_1())
10292       return false;
10293     switch (IntrinsicID) {
10294     default:
10295       llvm_unreachable("Unknown comparison intrinsic.");
10296     case Intrinsic::ppc_altivec_vcmpequq:
10297       CompareOpc = 455;
10298       break;
10299     case Intrinsic::ppc_altivec_vcmpgtsq:
10300       CompareOpc = 903;
10301       break;
10302     case Intrinsic::ppc_altivec_vcmpgtuq:
10303       CompareOpc = 647;
10304       break;
10305     }
10306     break;
10307 
10308   // VSX predicate comparisons use the same infrastructure
10309   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10310   case Intrinsic::ppc_vsx_xvcmpgedp_p:
10311   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10312   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10313   case Intrinsic::ppc_vsx_xvcmpgesp_p:
10314   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10315     if (Subtarget.hasVSX()) {
10316       switch (IntrinsicID) {
10317       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10318         CompareOpc = 99;
10319         break;
10320       case Intrinsic::ppc_vsx_xvcmpgedp_p:
10321         CompareOpc = 115;
10322         break;
10323       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10324         CompareOpc = 107;
10325         break;
10326       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10327         CompareOpc = 67;
10328         break;
10329       case Intrinsic::ppc_vsx_xvcmpgesp_p:
10330         CompareOpc = 83;
10331         break;
10332       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10333         CompareOpc = 75;
10334         break;
10335       }
10336       isDot = true;
10337     } else
10338       return false;
10339     break;
10340 
10341   // Normal Comparisons.
10342   case Intrinsic::ppc_altivec_vcmpbfp:
10343     CompareOpc = 966;
10344     break;
10345   case Intrinsic::ppc_altivec_vcmpeqfp:
10346     CompareOpc = 198;
10347     break;
10348   case Intrinsic::ppc_altivec_vcmpequb:
10349     CompareOpc = 6;
10350     break;
10351   case Intrinsic::ppc_altivec_vcmpequh:
10352     CompareOpc = 70;
10353     break;
10354   case Intrinsic::ppc_altivec_vcmpequw:
10355     CompareOpc = 134;
10356     break;
10357   case Intrinsic::ppc_altivec_vcmpequd:
10358     if (Subtarget.hasP8Altivec())
10359       CompareOpc = 199;
10360     else
10361       return false;
10362     break;
10363   case Intrinsic::ppc_altivec_vcmpneb:
10364   case Intrinsic::ppc_altivec_vcmpneh:
10365   case Intrinsic::ppc_altivec_vcmpnew:
10366   case Intrinsic::ppc_altivec_vcmpnezb:
10367   case Intrinsic::ppc_altivec_vcmpnezh:
10368   case Intrinsic::ppc_altivec_vcmpnezw:
10369     if (Subtarget.hasP9Altivec())
10370       switch (IntrinsicID) {
10371       default:
10372         llvm_unreachable("Unknown comparison intrinsic.");
10373       case Intrinsic::ppc_altivec_vcmpneb:
10374         CompareOpc = 7;
10375         break;
10376       case Intrinsic::ppc_altivec_vcmpneh:
10377         CompareOpc = 71;
10378         break;
10379       case Intrinsic::ppc_altivec_vcmpnew:
10380         CompareOpc = 135;
10381         break;
10382       case Intrinsic::ppc_altivec_vcmpnezb:
10383         CompareOpc = 263;
10384         break;
10385       case Intrinsic::ppc_altivec_vcmpnezh:
10386         CompareOpc = 327;
10387         break;
10388       case Intrinsic::ppc_altivec_vcmpnezw:
10389         CompareOpc = 391;
10390         break;
10391       }
10392     else
10393       return false;
10394     break;
10395   case Intrinsic::ppc_altivec_vcmpgefp:
10396     CompareOpc = 454;
10397     break;
10398   case Intrinsic::ppc_altivec_vcmpgtfp:
10399     CompareOpc = 710;
10400     break;
10401   case Intrinsic::ppc_altivec_vcmpgtsb:
10402     CompareOpc = 774;
10403     break;
10404   case Intrinsic::ppc_altivec_vcmpgtsh:
10405     CompareOpc = 838;
10406     break;
10407   case Intrinsic::ppc_altivec_vcmpgtsw:
10408     CompareOpc = 902;
10409     break;
10410   case Intrinsic::ppc_altivec_vcmpgtsd:
10411     if (Subtarget.hasP8Altivec())
10412       CompareOpc = 967;
10413     else
10414       return false;
10415     break;
10416   case Intrinsic::ppc_altivec_vcmpgtub:
10417     CompareOpc = 518;
10418     break;
10419   case Intrinsic::ppc_altivec_vcmpgtuh:
10420     CompareOpc = 582;
10421     break;
10422   case Intrinsic::ppc_altivec_vcmpgtuw:
10423     CompareOpc = 646;
10424     break;
10425   case Intrinsic::ppc_altivec_vcmpgtud:
10426     if (Subtarget.hasP8Altivec())
10427       CompareOpc = 711;
10428     else
10429       return false;
10430     break;
10431   case Intrinsic::ppc_altivec_vcmpequq_p:
10432   case Intrinsic::ppc_altivec_vcmpgtsq_p:
10433   case Intrinsic::ppc_altivec_vcmpgtuq_p:
10434     if (!Subtarget.isISA3_1())
10435       return false;
10436     switch (IntrinsicID) {
10437     default:
10438       llvm_unreachable("Unknown comparison intrinsic.");
10439     case Intrinsic::ppc_altivec_vcmpequq_p:
10440       CompareOpc = 455;
10441       break;
10442     case Intrinsic::ppc_altivec_vcmpgtsq_p:
10443       CompareOpc = 903;
10444       break;
10445     case Intrinsic::ppc_altivec_vcmpgtuq_p:
10446       CompareOpc = 647;
10447       break;
10448     }
10449     isDot = true;
10450     break;
10451   }
10452   return true;
10453 }
10454 
10455 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10456 /// lower, do it, otherwise return null.
10457 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10458                                                    SelectionDAG &DAG) const {
10459   unsigned IntrinsicID =
10460     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10461 
10462   SDLoc dl(Op);
10463 
10464   switch (IntrinsicID) {
10465   case Intrinsic::thread_pointer:
10466     // Reads the thread pointer register, used for __builtin_thread_pointer.
10467     if (Subtarget.isPPC64())
10468       return DAG.getRegister(PPC::X13, MVT::i64);
10469     return DAG.getRegister(PPC::R2, MVT::i32);
10470 
10471   case Intrinsic::ppc_mma_disassemble_acc:
10472   case Intrinsic::ppc_vsx_disassemble_pair: {
10473     int NumVecs = 2;
10474     SDValue WideVec = Op.getOperand(1);
10475     if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) {
10476       NumVecs = 4;
10477       WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec);
10478     }
10479     SmallVector<SDValue, 4> RetOps;
10480     for (int VecNo = 0; VecNo < NumVecs; VecNo++) {
10481       SDValue Extract = DAG.getNode(
10482           PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec,
10483           DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo
10484                                                      : VecNo,
10485                           dl, getPointerTy(DAG.getDataLayout())));
10486       RetOps.push_back(Extract);
10487     }
10488     return DAG.getMergeValues(RetOps, dl);
10489   }
10490 
10491   case Intrinsic::ppc_unpack_longdouble: {
10492     auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10493     assert(Idx && (Idx->getSExtValue() == 0 || Idx->getSExtValue() == 1) &&
10494            "Argument of long double unpack must be 0 or 1!");
10495     return DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Op.getOperand(1),
10496                        DAG.getConstant(!!(Idx->getSExtValue()), dl,
10497                                        Idx->getValueType(0)));
10498   }
10499 
10500   case Intrinsic::ppc_compare_exp_lt:
10501   case Intrinsic::ppc_compare_exp_gt:
10502   case Intrinsic::ppc_compare_exp_eq:
10503   case Intrinsic::ppc_compare_exp_uo: {
10504     unsigned Pred;
10505     switch (IntrinsicID) {
10506     case Intrinsic::ppc_compare_exp_lt:
10507       Pred = PPC::PRED_LT;
10508       break;
10509     case Intrinsic::ppc_compare_exp_gt:
10510       Pred = PPC::PRED_GT;
10511       break;
10512     case Intrinsic::ppc_compare_exp_eq:
10513       Pred = PPC::PRED_EQ;
10514       break;
10515     case Intrinsic::ppc_compare_exp_uo:
10516       Pred = PPC::PRED_UN;
10517       break;
10518     }
10519     return SDValue(
10520         DAG.getMachineNode(
10521             PPC::SELECT_CC_I4, dl, MVT::i32,
10522             {SDValue(DAG.getMachineNode(PPC::XSCMPEXPDP, dl, MVT::i32,
10523                                         Op.getOperand(1), Op.getOperand(2)),
10524                      0),
10525              DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32),
10526              DAG.getTargetConstant(Pred, dl, MVT::i32)}),
10527         0);
10528   }
10529   case Intrinsic::ppc_test_data_class_d:
10530   case Intrinsic::ppc_test_data_class_f: {
10531     unsigned CmprOpc = PPC::XSTSTDCDP;
10532     if (IntrinsicID == Intrinsic::ppc_test_data_class_f)
10533       CmprOpc = PPC::XSTSTDCSP;
10534     return SDValue(
10535         DAG.getMachineNode(
10536             PPC::SELECT_CC_I4, dl, MVT::i32,
10537             {SDValue(DAG.getMachineNode(CmprOpc, dl, MVT::i32, Op.getOperand(2),
10538                                         Op.getOperand(1)),
10539                      0),
10540              DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32),
10541              DAG.getTargetConstant(PPC::PRED_EQ, dl, MVT::i32)}),
10542         0);
10543   }
10544   case Intrinsic::ppc_convert_f128_to_ppcf128:
10545   case Intrinsic::ppc_convert_ppcf128_to_f128: {
10546     RTLIB::Libcall LC = IntrinsicID == Intrinsic::ppc_convert_ppcf128_to_f128
10547                             ? RTLIB::CONVERT_PPCF128_F128
10548                             : RTLIB::CONVERT_F128_PPCF128;
10549     MakeLibCallOptions CallOptions;
10550     std::pair<SDValue, SDValue> Result =
10551         makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(1), CallOptions,
10552                     dl, SDValue());
10553     return Result.first;
10554   }
10555   }
10556 
10557   // If this is a lowered altivec predicate compare, CompareOpc is set to the
10558   // opcode number of the comparison.
10559   int CompareOpc;
10560   bool isDot;
10561   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10562     return SDValue();    // Don't custom lower most intrinsics.
10563 
10564   // If this is a non-dot comparison, make the VCMP node and we are done.
10565   if (!isDot) {
10566     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10567                               Op.getOperand(1), Op.getOperand(2),
10568                               DAG.getConstant(CompareOpc, dl, MVT::i32));
10569     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10570   }
10571 
10572   // Create the PPCISD altivec 'dot' comparison node.
10573   SDValue Ops[] = {
10574     Op.getOperand(2),  // LHS
10575     Op.getOperand(3),  // RHS
10576     DAG.getConstant(CompareOpc, dl, MVT::i32)
10577   };
10578   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10579   SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
10580 
10581   // Now that we have the comparison, emit a copy from the CR to a GPR.
10582   // This is flagged to the above dot comparison.
10583   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10584                                 DAG.getRegister(PPC::CR6, MVT::i32),
10585                                 CompNode.getValue(1));
10586 
10587   // Unpack the result based on how the target uses it.
10588   unsigned BitNo;   // Bit # of CR6.
10589   bool InvertBit;   // Invert result?
10590   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
10591   default:  // Can't happen, don't crash on invalid number though.
10592   case 0:   // Return the value of the EQ bit of CR6.
10593     BitNo = 0; InvertBit = false;
10594     break;
10595   case 1:   // Return the inverted value of the EQ bit of CR6.
10596     BitNo = 0; InvertBit = true;
10597     break;
10598   case 2:   // Return the value of the LT bit of CR6.
10599     BitNo = 2; InvertBit = false;
10600     break;
10601   case 3:   // Return the inverted value of the LT bit of CR6.
10602     BitNo = 2; InvertBit = true;
10603     break;
10604   }
10605 
10606   // Shift the bit into the low position.
10607   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10608                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10609   // Isolate the bit.
10610   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10611                       DAG.getConstant(1, dl, MVT::i32));
10612 
10613   // If we are supposed to, toggle the bit.
10614   if (InvertBit)
10615     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10616                         DAG.getConstant(1, dl, MVT::i32));
10617   return Flags;
10618 }
10619 
10620 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10621                                                SelectionDAG &DAG) const {
10622   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10623   // the beginning of the argument list.
10624   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10625   SDLoc DL(Op);
10626   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
10627   case Intrinsic::ppc_cfence: {
10628     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10629     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
10630     SDValue Val = Op.getOperand(ArgStart + 1);
10631     EVT Ty = Val.getValueType();
10632     if (Ty == MVT::i128) {
10633       // FIXME: Testing one of two paired registers is sufficient to guarantee
10634       // ordering?
10635       Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val);
10636     }
10637     return SDValue(
10638         DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
10639                            DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val),
10640                            Op.getOperand(0)),
10641         0);
10642   }
10643   default:
10644     break;
10645   }
10646   return SDValue();
10647 }
10648 
10649 // Lower scalar BSWAP64 to xxbrd.
10650 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
10651   SDLoc dl(Op);
10652   if (!Subtarget.isPPC64())
10653     return Op;
10654   // MTVSRDD
10655   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
10656                    Op.getOperand(0));
10657   // XXBRD
10658   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
10659   // MFVSRD
10660   int VectorIndex = 0;
10661   if (Subtarget.isLittleEndian())
10662     VectorIndex = 1;
10663   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
10664                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
10665   return Op;
10666 }
10667 
10668 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10669 // compared to a value that is atomically loaded (atomic loads zero-extend).
10670 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
10671                                                 SelectionDAG &DAG) const {
10672   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
10673          "Expecting an atomic compare-and-swap here.");
10674   SDLoc dl(Op);
10675   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10676   EVT MemVT = AtomicNode->getMemoryVT();
10677   if (MemVT.getSizeInBits() >= 32)
10678     return Op;
10679 
10680   SDValue CmpOp = Op.getOperand(2);
10681   // If this is already correctly zero-extended, leave it alone.
10682   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10683   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10684     return Op;
10685 
10686   // Clear the high bits of the compare operand.
10687   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10688   SDValue NewCmpOp =
10689     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10690                 DAG.getConstant(MaskVal, dl, MVT::i32));
10691 
10692   // Replace the existing compare operand with the properly zero-extended one.
10693   SmallVector<SDValue, 4> Ops;
10694   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10695     Ops.push_back(AtomicNode->getOperand(i));
10696   Ops[2] = NewCmpOp;
10697   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10698   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10699   auto NodeTy =
10700     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10701   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10702 }
10703 
10704 SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op,
10705                                                   SelectionDAG &DAG) const {
10706   AtomicSDNode *N = cast<AtomicSDNode>(Op.getNode());
10707   EVT MemVT = N->getMemoryVT();
10708   assert(MemVT.getSimpleVT() == MVT::i128 &&
10709          "Expect quadword atomic operations");
10710   SDLoc dl(N);
10711   unsigned Opc = N->getOpcode();
10712   switch (Opc) {
10713   case ISD::ATOMIC_LOAD: {
10714     // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be
10715     // lowered to ppc instructions by pattern matching instruction selector.
10716     SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other);
10717     SmallVector<SDValue, 4> Ops{
10718         N->getOperand(0),
10719         DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)};
10720     for (int I = 1, E = N->getNumOperands(); I < E; ++I)
10721       Ops.push_back(N->getOperand(I));
10722     SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys,
10723                                                 Ops, MemVT, N->getMemOperand());
10724     SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal);
10725     SDValue ValHi =
10726         DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1));
10727     ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi,
10728                         DAG.getConstant(64, dl, MVT::i32));
10729     SDValue Val =
10730         DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi});
10731     return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other},
10732                        {Val, LoadedVal.getValue(2)});
10733   }
10734   case ISD::ATOMIC_STORE: {
10735     // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be
10736     // lowered to ppc instructions by pattern matching instruction selector.
10737     SDVTList Tys = DAG.getVTList(MVT::Other);
10738     SmallVector<SDValue, 4> Ops{
10739         N->getOperand(0),
10740         DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)};
10741     SDValue Val = N->getOperand(2);
10742     SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val);
10743     SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val,
10744                                 DAG.getConstant(64, dl, MVT::i32));
10745     ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi);
10746     Ops.push_back(ValLo);
10747     Ops.push_back(ValHi);
10748     Ops.push_back(N->getOperand(1));
10749     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT,
10750                                    N->getMemOperand());
10751   }
10752   default:
10753     llvm_unreachable("Unexpected atomic opcode");
10754   }
10755 }
10756 
10757 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10758                                                  SelectionDAG &DAG) const {
10759   SDLoc dl(Op);
10760   // Create a stack slot that is 16-byte aligned.
10761   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10762   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10763   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10764   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10765 
10766   // Store the input value into Value#0 of the stack slot.
10767   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10768                                MachinePointerInfo());
10769   // Load it out.
10770   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10771 }
10772 
10773 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10774                                                   SelectionDAG &DAG) const {
10775   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10776          "Should only be called for ISD::INSERT_VECTOR_ELT");
10777 
10778   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10779 
10780   EVT VT = Op.getValueType();
10781   SDLoc dl(Op);
10782   SDValue V1 = Op.getOperand(0);
10783   SDValue V2 = Op.getOperand(1);
10784 
10785   if (VT == MVT::v2f64 && C)
10786     return Op;
10787 
10788   if (Subtarget.hasP9Vector()) {
10789     // A f32 load feeding into a v4f32 insert_vector_elt is handled in this way
10790     // because on P10, it allows this specific insert_vector_elt load pattern to
10791     // utilize the refactored load and store infrastructure in order to exploit
10792     // prefixed loads.
10793     // On targets with inexpensive direct moves (Power9 and up), a
10794     // (insert_vector_elt v4f32:$vec, (f32 load)) is always better as an integer
10795     // load since a single precision load will involve conversion to double
10796     // precision on the load followed by another conversion to single precision.
10797     if ((VT == MVT::v4f32) && (V2.getValueType() == MVT::f32) &&
10798         (isa<LoadSDNode>(V2))) {
10799       SDValue BitcastVector = DAG.getBitcast(MVT::v4i32, V1);
10800       SDValue BitcastLoad = DAG.getBitcast(MVT::i32, V2);
10801       SDValue InsVecElt =
10802           DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v4i32, BitcastVector,
10803                       BitcastLoad, Op.getOperand(2));
10804       return DAG.getBitcast(MVT::v4f32, InsVecElt);
10805     }
10806   }
10807 
10808   if (Subtarget.isISA3_1()) {
10809     if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64())
10810       return SDValue();
10811     // On P10, we have legal lowering for constant and variable indices for
10812     // all vectors.
10813     if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
10814         VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64)
10815       return Op;
10816   }
10817 
10818   // Before P10, we have legal lowering for constant indices but not for
10819   // variable ones.
10820   if (!C)
10821     return SDValue();
10822 
10823   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10824   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10825     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10826     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10827     unsigned InsertAtElement = C->getZExtValue();
10828     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10829     if (Subtarget.isLittleEndian()) {
10830       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10831     }
10832     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10833                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10834   }
10835   return Op;
10836 }
10837 
10838 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
10839                                            SelectionDAG &DAG) const {
10840   SDLoc dl(Op);
10841   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
10842   SDValue LoadChain = LN->getChain();
10843   SDValue BasePtr = LN->getBasePtr();
10844   EVT VT = Op.getValueType();
10845 
10846   if (VT != MVT::v256i1 && VT != MVT::v512i1)
10847     return Op;
10848 
10849   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10850   // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in
10851   // 2 or 4 vsx registers.
10852   assert((VT != MVT::v512i1 || Subtarget.hasMMA()) &&
10853          "Type unsupported without MMA");
10854   assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10855          "Type unsupported without paired vector support");
10856   Align Alignment = LN->getAlign();
10857   SmallVector<SDValue, 4> Loads;
10858   SmallVector<SDValue, 4> LoadChains;
10859   unsigned NumVecs = VT.getSizeInBits() / 128;
10860   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10861     SDValue Load =
10862         DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr,
10863                     LN->getPointerInfo().getWithOffset(Idx * 16),
10864                     commonAlignment(Alignment, Idx * 16),
10865                     LN->getMemOperand()->getFlags(), LN->getAAInfo());
10866     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10867                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10868     Loads.push_back(Load);
10869     LoadChains.push_back(Load.getValue(1));
10870   }
10871   if (Subtarget.isLittleEndian()) {
10872     std::reverse(Loads.begin(), Loads.end());
10873     std::reverse(LoadChains.begin(), LoadChains.end());
10874   }
10875   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10876   SDValue Value =
10877       DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD,
10878                   dl, VT, Loads);
10879   SDValue RetOps[] = {Value, TF};
10880   return DAG.getMergeValues(RetOps, dl);
10881 }
10882 
10883 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10884                                             SelectionDAG &DAG) const {
10885   SDLoc dl(Op);
10886   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10887   SDValue StoreChain = SN->getChain();
10888   SDValue BasePtr = SN->getBasePtr();
10889   SDValue Value = SN->getValue();
10890   EVT StoreVT = Value.getValueType();
10891 
10892   if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1)
10893     return Op;
10894 
10895   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10896   // Here we create 2 or 4 v16i8 stores to store the pair or accumulator
10897   // underlying registers individually.
10898   assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) &&
10899          "Type unsupported without MMA");
10900   assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10901          "Type unsupported without paired vector support");
10902   Align Alignment = SN->getAlign();
10903   SmallVector<SDValue, 4> Stores;
10904   unsigned NumVecs = 2;
10905   if (StoreVT == MVT::v512i1) {
10906     Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value);
10907     NumVecs = 4;
10908   }
10909   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10910     unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx;
10911     SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value,
10912                               DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout())));
10913     SDValue Store =
10914         DAG.getStore(StoreChain, dl, Elt, BasePtr,
10915                      SN->getPointerInfo().getWithOffset(Idx * 16),
10916                      commonAlignment(Alignment, Idx * 16),
10917                      SN->getMemOperand()->getFlags(), SN->getAAInfo());
10918     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10919                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10920     Stores.push_back(Store);
10921   }
10922   SDValue TF = DAG.getTokenFactor(dl, Stores);
10923   return TF;
10924 }
10925 
10926 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10927   SDLoc dl(Op);
10928   if (Op.getValueType() == MVT::v4i32) {
10929     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10930 
10931     SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
10932     // +16 as shift amt.
10933     SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
10934     SDValue RHSSwap =   // = vrlw RHS, 16
10935       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10936 
10937     // Shrinkify inputs to v8i16.
10938     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10939     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10940     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10941 
10942     // Low parts multiplied together, generating 32-bit results (we ignore the
10943     // top parts).
10944     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10945                                         LHS, RHS, DAG, dl, MVT::v4i32);
10946 
10947     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10948                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10949     // Shift the high parts up 16 bits.
10950     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10951                               Neg16, DAG, dl);
10952     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10953   } else if (Op.getValueType() == MVT::v16i8) {
10954     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10955     bool isLittleEndian = Subtarget.isLittleEndian();
10956 
10957     // Multiply the even 8-bit parts, producing 16-bit sums.
10958     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10959                                            LHS, RHS, DAG, dl, MVT::v8i16);
10960     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10961 
10962     // Multiply the odd 8-bit parts, producing 16-bit sums.
10963     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10964                                           LHS, RHS, DAG, dl, MVT::v8i16);
10965     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10966 
10967     // Merge the results together.  Because vmuleub and vmuloub are
10968     // instructions with a big-endian bias, we must reverse the
10969     // element numbering and reverse the meaning of "odd" and "even"
10970     // when generating little endian code.
10971     int Ops[16];
10972     for (unsigned i = 0; i != 8; ++i) {
10973       if (isLittleEndian) {
10974         Ops[i*2  ] = 2*i;
10975         Ops[i*2+1] = 2*i+16;
10976       } else {
10977         Ops[i*2  ] = 2*i+1;
10978         Ops[i*2+1] = 2*i+1+16;
10979       }
10980     }
10981     if (isLittleEndian)
10982       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10983     else
10984       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10985   } else {
10986     llvm_unreachable("Unknown mul to lower!");
10987   }
10988 }
10989 
10990 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
10991   bool IsStrict = Op->isStrictFPOpcode();
10992   if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 &&
10993       !Subtarget.hasP9Vector())
10994     return SDValue();
10995 
10996   return Op;
10997 }
10998 
10999 // Custom lowering for fpext vf32 to v2f64
11000 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
11001 
11002   assert(Op.getOpcode() == ISD::FP_EXTEND &&
11003          "Should only be called for ISD::FP_EXTEND");
11004 
11005   // FIXME: handle extends from half precision float vectors on P9.
11006   // We only want to custom lower an extend from v2f32 to v2f64.
11007   if (Op.getValueType() != MVT::v2f64 ||
11008       Op.getOperand(0).getValueType() != MVT::v2f32)
11009     return SDValue();
11010 
11011   SDLoc dl(Op);
11012   SDValue Op0 = Op.getOperand(0);
11013 
11014   switch (Op0.getOpcode()) {
11015   default:
11016     return SDValue();
11017   case ISD::EXTRACT_SUBVECTOR: {
11018     assert(Op0.getNumOperands() == 2 &&
11019            isa<ConstantSDNode>(Op0->getOperand(1)) &&
11020            "Node should have 2 operands with second one being a constant!");
11021 
11022     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
11023       return SDValue();
11024 
11025     // Custom lower is only done for high or low doubleword.
11026     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
11027     if (Idx % 2 != 0)
11028       return SDValue();
11029 
11030     // Since input is v4f32, at this point Idx is either 0 or 2.
11031     // Shift to get the doubleword position we want.
11032     int DWord = Idx >> 1;
11033 
11034     // High and low word positions are different on little endian.
11035     if (Subtarget.isLittleEndian())
11036       DWord ^= 0x1;
11037 
11038     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
11039                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
11040   }
11041   case ISD::FADD:
11042   case ISD::FMUL:
11043   case ISD::FSUB: {
11044     SDValue NewLoad[2];
11045     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
11046       // Ensure both input are loads.
11047       SDValue LdOp = Op0.getOperand(i);
11048       if (LdOp.getOpcode() != ISD::LOAD)
11049         return SDValue();
11050       // Generate new load node.
11051       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
11052       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
11053       NewLoad[i] = DAG.getMemIntrinsicNode(
11054           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
11055           LD->getMemoryVT(), LD->getMemOperand());
11056     }
11057     SDValue NewOp =
11058         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
11059                     NewLoad[1], Op0.getNode()->getFlags());
11060     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
11061                        DAG.getConstant(0, dl, MVT::i32));
11062   }
11063   case ISD::LOAD: {
11064     LoadSDNode *LD = cast<LoadSDNode>(Op0);
11065     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
11066     SDValue NewLd = DAG.getMemIntrinsicNode(
11067         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
11068         LD->getMemoryVT(), LD->getMemOperand());
11069     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
11070                        DAG.getConstant(0, dl, MVT::i32));
11071   }
11072   }
11073   llvm_unreachable("ERROR:Should return for all cases within swtich.");
11074 }
11075 
11076 /// LowerOperation - Provide custom lowering hooks for some operations.
11077 ///
11078 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11079   switch (Op.getOpcode()) {
11080   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
11081   case ISD::FPOW:               return lowerPow(Op, DAG);
11082   case ISD::FSIN:               return lowerSin(Op, DAG);
11083   case ISD::FCOS:               return lowerCos(Op, DAG);
11084   case ISD::FLOG:               return lowerLog(Op, DAG);
11085   case ISD::FLOG10:             return lowerLog10(Op, DAG);
11086   case ISD::FEXP:               return lowerExp(Op, DAG);
11087   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
11088   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
11089   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
11090   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
11091   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
11092   case ISD::STRICT_FSETCC:
11093   case ISD::STRICT_FSETCCS:
11094   case ISD::SETCC:              return LowerSETCC(Op, DAG);
11095   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
11096   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
11097 
11098   case ISD::INLINEASM:
11099   case ISD::INLINEASM_BR:       return LowerINLINEASM(Op, DAG);
11100   // Variable argument lowering.
11101   case ISD::VASTART:            return LowerVASTART(Op, DAG);
11102   case ISD::VAARG:              return LowerVAARG(Op, DAG);
11103   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
11104 
11105   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
11106   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
11107   case ISD::GET_DYNAMIC_AREA_OFFSET:
11108     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
11109 
11110   // Exception handling lowering.
11111   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
11112   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
11113   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
11114 
11115   case ISD::LOAD:               return LowerLOAD(Op, DAG);
11116   case ISD::STORE:              return LowerSTORE(Op, DAG);
11117   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
11118   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
11119   case ISD::STRICT_FP_TO_UINT:
11120   case ISD::STRICT_FP_TO_SINT:
11121   case ISD::FP_TO_UINT:
11122   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
11123   case ISD::STRICT_UINT_TO_FP:
11124   case ISD::STRICT_SINT_TO_FP:
11125   case ISD::UINT_TO_FP:
11126   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
11127   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
11128 
11129   // Lower 64-bit shifts.
11130   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
11131   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
11132   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
11133 
11134   case ISD::FSHL:               return LowerFunnelShift(Op, DAG);
11135   case ISD::FSHR:               return LowerFunnelShift(Op, DAG);
11136 
11137   // Vector-related lowering.
11138   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
11139   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
11140   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
11141   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
11142   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
11143   case ISD::MUL:                return LowerMUL(Op, DAG);
11144   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
11145   case ISD::STRICT_FP_ROUND:
11146   case ISD::FP_ROUND:
11147     return LowerFP_ROUND(Op, DAG);
11148   case ISD::ROTL:               return LowerROTL(Op, DAG);
11149 
11150   // For counter-based loop handling.
11151   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
11152 
11153   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
11154 
11155   // Frame & Return address.
11156   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
11157   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
11158 
11159   case ISD::INTRINSIC_VOID:
11160     return LowerINTRINSIC_VOID(Op, DAG);
11161   case ISD::BSWAP:
11162     return LowerBSWAP(Op, DAG);
11163   case ISD::ATOMIC_CMP_SWAP:
11164     return LowerATOMIC_CMP_SWAP(Op, DAG);
11165   case ISD::ATOMIC_STORE:
11166     return LowerATOMIC_LOAD_STORE(Op, DAG);
11167   }
11168 }
11169 
11170 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
11171                                            SmallVectorImpl<SDValue>&Results,
11172                                            SelectionDAG &DAG) const {
11173   SDLoc dl(N);
11174   switch (N->getOpcode()) {
11175   default:
11176     llvm_unreachable("Do not know how to custom type legalize this operation!");
11177   case ISD::ATOMIC_LOAD: {
11178     SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG);
11179     Results.push_back(Res);
11180     Results.push_back(Res.getValue(1));
11181     break;
11182   }
11183   case ISD::READCYCLECOUNTER: {
11184     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11185     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
11186 
11187     Results.push_back(
11188         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
11189     Results.push_back(RTB.getValue(2));
11190     break;
11191   }
11192   case ISD::INTRINSIC_W_CHAIN: {
11193     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
11194         Intrinsic::loop_decrement)
11195       break;
11196 
11197     assert(N->getValueType(0) == MVT::i1 &&
11198            "Unexpected result type for CTR decrement intrinsic");
11199     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
11200                                  N->getValueType(0));
11201     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
11202     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
11203                                  N->getOperand(1));
11204 
11205     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
11206     Results.push_back(NewInt.getValue(1));
11207     break;
11208   }
11209   case ISD::INTRINSIC_WO_CHAIN: {
11210     switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) {
11211     case Intrinsic::ppc_pack_longdouble:
11212       Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
11213                                     N->getOperand(2), N->getOperand(1)));
11214       break;
11215     case Intrinsic::ppc_convert_f128_to_ppcf128:
11216       Results.push_back(LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), DAG));
11217       break;
11218     }
11219     break;
11220   }
11221   case ISD::VAARG: {
11222     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
11223       return;
11224 
11225     EVT VT = N->getValueType(0);
11226 
11227     if (VT == MVT::i64) {
11228       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
11229 
11230       Results.push_back(NewNode);
11231       Results.push_back(NewNode.getValue(1));
11232     }
11233     return;
11234   }
11235   case ISD::STRICT_FP_TO_SINT:
11236   case ISD::STRICT_FP_TO_UINT:
11237   case ISD::FP_TO_SINT:
11238   case ISD::FP_TO_UINT: {
11239     // LowerFP_TO_INT() can only handle f32 and f64.
11240     if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() ==
11241         MVT::ppcf128)
11242       return;
11243     SDValue LoweredValue = LowerFP_TO_INT(SDValue(N, 0), DAG, dl);
11244     Results.push_back(LoweredValue);
11245     if (N->isStrictFPOpcode())
11246       Results.push_back(LoweredValue.getValue(1));
11247     return;
11248   }
11249   case ISD::TRUNCATE: {
11250     if (!N->getValueType(0).isVector())
11251       return;
11252     SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG);
11253     if (Lowered)
11254       Results.push_back(Lowered);
11255     return;
11256   }
11257   case ISD::FSHL:
11258   case ISD::FSHR:
11259     // Don't handle funnel shifts here.
11260     return;
11261   case ISD::BITCAST:
11262     // Don't handle bitcast here.
11263     return;
11264   case ISD::FP_EXTEND:
11265     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
11266     if (Lowered)
11267       Results.push_back(Lowered);
11268     return;
11269   }
11270 }
11271 
11272 //===----------------------------------------------------------------------===//
11273 //  Other Lowering Code
11274 //===----------------------------------------------------------------------===//
11275 
11276 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) {
11277   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11278   Function *Func = Intrinsic::getDeclaration(M, Id);
11279   return Builder.CreateCall(Func, {});
11280 }
11281 
11282 // The mappings for emitLeading/TrailingFence is taken from
11283 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
11284 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11285                                                  Instruction *Inst,
11286                                                  AtomicOrdering Ord) const {
11287   if (Ord == AtomicOrdering::SequentiallyConsistent)
11288     return callIntrinsic(Builder, Intrinsic::ppc_sync);
11289   if (isReleaseOrStronger(Ord))
11290     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11291   return nullptr;
11292 }
11293 
11294 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11295                                                   Instruction *Inst,
11296                                                   AtomicOrdering Ord) const {
11297   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
11298     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
11299     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
11300     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
11301     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
11302       return Builder.CreateCall(
11303           Intrinsic::getDeclaration(
11304               Builder.GetInsertBlock()->getParent()->getParent(),
11305               Intrinsic::ppc_cfence, {Inst->getType()}),
11306           {Inst});
11307     // FIXME: Can use isync for rmw operation.
11308     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11309   }
11310   return nullptr;
11311 }
11312 
11313 MachineBasicBlock *
11314 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
11315                                     unsigned AtomicSize,
11316                                     unsigned BinOpcode,
11317                                     unsigned CmpOpcode,
11318                                     unsigned CmpPred) const {
11319   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11320   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11321 
11322   auto LoadMnemonic = PPC::LDARX;
11323   auto StoreMnemonic = PPC::STDCX;
11324   switch (AtomicSize) {
11325   default:
11326     llvm_unreachable("Unexpected size of atomic entity");
11327   case 1:
11328     LoadMnemonic = PPC::LBARX;
11329     StoreMnemonic = PPC::STBCX;
11330     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11331     break;
11332   case 2:
11333     LoadMnemonic = PPC::LHARX;
11334     StoreMnemonic = PPC::STHCX;
11335     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11336     break;
11337   case 4:
11338     LoadMnemonic = PPC::LWARX;
11339     StoreMnemonic = PPC::STWCX;
11340     break;
11341   case 8:
11342     LoadMnemonic = PPC::LDARX;
11343     StoreMnemonic = PPC::STDCX;
11344     break;
11345   }
11346 
11347   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11348   MachineFunction *F = BB->getParent();
11349   MachineFunction::iterator It = ++BB->getIterator();
11350 
11351   Register dest = MI.getOperand(0).getReg();
11352   Register ptrA = MI.getOperand(1).getReg();
11353   Register ptrB = MI.getOperand(2).getReg();
11354   Register incr = MI.getOperand(3).getReg();
11355   DebugLoc dl = MI.getDebugLoc();
11356 
11357   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11358   MachineBasicBlock *loop2MBB =
11359     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11360   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11361   F->insert(It, loopMBB);
11362   if (CmpOpcode)
11363     F->insert(It, loop2MBB);
11364   F->insert(It, exitMBB);
11365   exitMBB->splice(exitMBB->begin(), BB,
11366                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11367   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11368 
11369   MachineRegisterInfo &RegInfo = F->getRegInfo();
11370   Register TmpReg = (!BinOpcode) ? incr :
11371     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
11372                                            : &PPC::GPRCRegClass);
11373 
11374   //  thisMBB:
11375   //   ...
11376   //   fallthrough --> loopMBB
11377   BB->addSuccessor(loopMBB);
11378 
11379   //  loopMBB:
11380   //   l[wd]arx dest, ptr
11381   //   add r0, dest, incr
11382   //   st[wd]cx. r0, ptr
11383   //   bne- loopMBB
11384   //   fallthrough --> exitMBB
11385 
11386   // For max/min...
11387   //  loopMBB:
11388   //   l[wd]arx dest, ptr
11389   //   cmpl?[wd] incr, dest
11390   //   bgt exitMBB
11391   //  loop2MBB:
11392   //   st[wd]cx. dest, ptr
11393   //   bne- loopMBB
11394   //   fallthrough --> exitMBB
11395 
11396   BB = loopMBB;
11397   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
11398     .addReg(ptrA).addReg(ptrB);
11399   if (BinOpcode)
11400     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
11401   if (CmpOpcode) {
11402     // Signed comparisons of byte or halfword values must be sign-extended.
11403     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
11404       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11405       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
11406               ExtReg).addReg(dest);
11407       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11408         .addReg(incr).addReg(ExtReg);
11409     } else
11410       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11411         .addReg(incr).addReg(dest);
11412 
11413     BuildMI(BB, dl, TII->get(PPC::BCC))
11414       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
11415     BB->addSuccessor(loop2MBB);
11416     BB->addSuccessor(exitMBB);
11417     BB = loop2MBB;
11418   }
11419   BuildMI(BB, dl, TII->get(StoreMnemonic))
11420     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
11421   BuildMI(BB, dl, TII->get(PPC::BCC))
11422     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
11423   BB->addSuccessor(loopMBB);
11424   BB->addSuccessor(exitMBB);
11425 
11426   //  exitMBB:
11427   //   ...
11428   BB = exitMBB;
11429   return BB;
11430 }
11431 
11432 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) {
11433   switch(MI.getOpcode()) {
11434   default:
11435     return false;
11436   case PPC::COPY:
11437     return TII->isSignExtended(MI);
11438   case PPC::LHA:
11439   case PPC::LHA8:
11440   case PPC::LHAU:
11441   case PPC::LHAU8:
11442   case PPC::LHAUX:
11443   case PPC::LHAUX8:
11444   case PPC::LHAX:
11445   case PPC::LHAX8:
11446   case PPC::LWA:
11447   case PPC::LWAUX:
11448   case PPC::LWAX:
11449   case PPC::LWAX_32:
11450   case PPC::LWA_32:
11451   case PPC::PLHA:
11452   case PPC::PLHA8:
11453   case PPC::PLHA8pc:
11454   case PPC::PLHApc:
11455   case PPC::PLWA:
11456   case PPC::PLWA8:
11457   case PPC::PLWA8pc:
11458   case PPC::PLWApc:
11459   case PPC::EXTSB:
11460   case PPC::EXTSB8:
11461   case PPC::EXTSB8_32_64:
11462   case PPC::EXTSB8_rec:
11463   case PPC::EXTSB_rec:
11464   case PPC::EXTSH:
11465   case PPC::EXTSH8:
11466   case PPC::EXTSH8_32_64:
11467   case PPC::EXTSH8_rec:
11468   case PPC::EXTSH_rec:
11469   case PPC::EXTSW:
11470   case PPC::EXTSWSLI:
11471   case PPC::EXTSWSLI_32_64:
11472   case PPC::EXTSWSLI_32_64_rec:
11473   case PPC::EXTSWSLI_rec:
11474   case PPC::EXTSW_32:
11475   case PPC::EXTSW_32_64:
11476   case PPC::EXTSW_32_64_rec:
11477   case PPC::EXTSW_rec:
11478   case PPC::SRAW:
11479   case PPC::SRAWI:
11480   case PPC::SRAWI_rec:
11481   case PPC::SRAW_rec:
11482     return true;
11483   }
11484   return false;
11485 }
11486 
11487 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
11488     MachineInstr &MI, MachineBasicBlock *BB,
11489     bool is8bit, // operation
11490     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
11491   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11492   const PPCInstrInfo *TII = Subtarget.getInstrInfo();
11493 
11494   // If this is a signed comparison and the value being compared is not known
11495   // to be sign extended, sign extend it here.
11496   DebugLoc dl = MI.getDebugLoc();
11497   MachineFunction *F = BB->getParent();
11498   MachineRegisterInfo &RegInfo = F->getRegInfo();
11499   Register incr = MI.getOperand(3).getReg();
11500   bool IsSignExtended = Register::isVirtualRegister(incr) &&
11501     isSignExtended(*RegInfo.getVRegDef(incr), TII);
11502 
11503   if (CmpOpcode == PPC::CMPW && !IsSignExtended) {
11504     Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11505     BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg)
11506         .addReg(MI.getOperand(3).getReg());
11507     MI.getOperand(3).setReg(ValueReg);
11508   }
11509   // If we support part-word atomic mnemonics, just use them
11510   if (Subtarget.hasPartwordAtomics())
11511     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
11512                             CmpPred);
11513 
11514   // In 64 bit mode we have to use 64 bits for addresses, even though the
11515   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
11516   // registers without caring whether they're 32 or 64, but here we're
11517   // doing actual arithmetic on the addresses.
11518   bool is64bit = Subtarget.isPPC64();
11519   bool isLittleEndian = Subtarget.isLittleEndian();
11520   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11521 
11522   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11523   MachineFunction::iterator It = ++BB->getIterator();
11524 
11525   Register dest = MI.getOperand(0).getReg();
11526   Register ptrA = MI.getOperand(1).getReg();
11527   Register ptrB = MI.getOperand(2).getReg();
11528 
11529   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11530   MachineBasicBlock *loop2MBB =
11531       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11532   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11533   F->insert(It, loopMBB);
11534   if (CmpOpcode)
11535     F->insert(It, loop2MBB);
11536   F->insert(It, exitMBB);
11537   exitMBB->splice(exitMBB->begin(), BB,
11538                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11539   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11540 
11541   const TargetRegisterClass *RC =
11542       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11543   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11544 
11545   Register PtrReg = RegInfo.createVirtualRegister(RC);
11546   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11547   Register ShiftReg =
11548       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11549   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
11550   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11551   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11552   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11553   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11554   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
11555   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11556   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11557   Register SrwDestReg = RegInfo.createVirtualRegister(GPRC);
11558   Register Ptr1Reg;
11559   Register TmpReg =
11560       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
11561 
11562   //  thisMBB:
11563   //   ...
11564   //   fallthrough --> loopMBB
11565   BB->addSuccessor(loopMBB);
11566 
11567   // The 4-byte load must be aligned, while a char or short may be
11568   // anywhere in the word.  Hence all this nasty bookkeeping code.
11569   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11570   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11571   //   xori shift, shift1, 24 [16]
11572   //   rlwinm ptr, ptr1, 0, 0, 29
11573   //   slw incr2, incr, shift
11574   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11575   //   slw mask, mask2, shift
11576   //  loopMBB:
11577   //   lwarx tmpDest, ptr
11578   //   add tmp, tmpDest, incr2
11579   //   andc tmp2, tmpDest, mask
11580   //   and tmp3, tmp, mask
11581   //   or tmp4, tmp3, tmp2
11582   //   stwcx. tmp4, ptr
11583   //   bne- loopMBB
11584   //   fallthrough --> exitMBB
11585   //   srw SrwDest, tmpDest, shift
11586   //   rlwinm SrwDest, SrwDest, 0, 24 [16], 31
11587   if (ptrA != ZeroReg) {
11588     Ptr1Reg = RegInfo.createVirtualRegister(RC);
11589     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11590         .addReg(ptrA)
11591         .addReg(ptrB);
11592   } else {
11593     Ptr1Reg = ptrB;
11594   }
11595   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11596   // mode.
11597   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11598       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11599       .addImm(3)
11600       .addImm(27)
11601       .addImm(is8bit ? 28 : 27);
11602   if (!isLittleEndian)
11603     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11604         .addReg(Shift1Reg)
11605         .addImm(is8bit ? 24 : 16);
11606   if (is64bit)
11607     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11608         .addReg(Ptr1Reg)
11609         .addImm(0)
11610         .addImm(61);
11611   else
11612     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11613         .addReg(Ptr1Reg)
11614         .addImm(0)
11615         .addImm(0)
11616         .addImm(29);
11617   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
11618   if (is8bit)
11619     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11620   else {
11621     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11622     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11623         .addReg(Mask3Reg)
11624         .addImm(65535);
11625   }
11626   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11627       .addReg(Mask2Reg)
11628       .addReg(ShiftReg);
11629 
11630   BB = loopMBB;
11631   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11632       .addReg(ZeroReg)
11633       .addReg(PtrReg);
11634   if (BinOpcode)
11635     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
11636         .addReg(Incr2Reg)
11637         .addReg(TmpDestReg);
11638   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11639       .addReg(TmpDestReg)
11640       .addReg(MaskReg);
11641   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
11642   if (CmpOpcode) {
11643     // For unsigned comparisons, we can directly compare the shifted values.
11644     // For signed comparisons we shift and sign extend.
11645     Register SReg = RegInfo.createVirtualRegister(GPRC);
11646     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
11647         .addReg(TmpDestReg)
11648         .addReg(MaskReg);
11649     unsigned ValueReg = SReg;
11650     unsigned CmpReg = Incr2Reg;
11651     if (CmpOpcode == PPC::CMPW) {
11652       ValueReg = RegInfo.createVirtualRegister(GPRC);
11653       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
11654           .addReg(SReg)
11655           .addReg(ShiftReg);
11656       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
11657       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
11658           .addReg(ValueReg);
11659       ValueReg = ValueSReg;
11660       CmpReg = incr;
11661     }
11662     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11663         .addReg(CmpReg)
11664         .addReg(ValueReg);
11665     BuildMI(BB, dl, TII->get(PPC::BCC))
11666         .addImm(CmpPred)
11667         .addReg(PPC::CR0)
11668         .addMBB(exitMBB);
11669     BB->addSuccessor(loop2MBB);
11670     BB->addSuccessor(exitMBB);
11671     BB = loop2MBB;
11672   }
11673   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
11674   BuildMI(BB, dl, TII->get(PPC::STWCX))
11675       .addReg(Tmp4Reg)
11676       .addReg(ZeroReg)
11677       .addReg(PtrReg);
11678   BuildMI(BB, dl, TII->get(PPC::BCC))
11679       .addImm(PPC::PRED_NE)
11680       .addReg(PPC::CR0)
11681       .addMBB(loopMBB);
11682   BB->addSuccessor(loopMBB);
11683   BB->addSuccessor(exitMBB);
11684 
11685   //  exitMBB:
11686   //   ...
11687   BB = exitMBB;
11688   // Since the shift amount is not a constant, we need to clear
11689   // the upper bits with a separate RLWINM.
11690   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest)
11691       .addReg(SrwDestReg)
11692       .addImm(0)
11693       .addImm(is8bit ? 24 : 16)
11694       .addImm(31);
11695   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg)
11696       .addReg(TmpDestReg)
11697       .addReg(ShiftReg);
11698   return BB;
11699 }
11700 
11701 llvm::MachineBasicBlock *
11702 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
11703                                     MachineBasicBlock *MBB) const {
11704   DebugLoc DL = MI.getDebugLoc();
11705   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11706   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11707 
11708   MachineFunction *MF = MBB->getParent();
11709   MachineRegisterInfo &MRI = MF->getRegInfo();
11710 
11711   const BasicBlock *BB = MBB->getBasicBlock();
11712   MachineFunction::iterator I = ++MBB->getIterator();
11713 
11714   Register DstReg = MI.getOperand(0).getReg();
11715   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
11716   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
11717   Register mainDstReg = MRI.createVirtualRegister(RC);
11718   Register restoreDstReg = MRI.createVirtualRegister(RC);
11719 
11720   MVT PVT = getPointerTy(MF->getDataLayout());
11721   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11722          "Invalid Pointer Size!");
11723   // For v = setjmp(buf), we generate
11724   //
11725   // thisMBB:
11726   //  SjLjSetup mainMBB
11727   //  bl mainMBB
11728   //  v_restore = 1
11729   //  b sinkMBB
11730   //
11731   // mainMBB:
11732   //  buf[LabelOffset] = LR
11733   //  v_main = 0
11734   //
11735   // sinkMBB:
11736   //  v = phi(main, restore)
11737   //
11738 
11739   MachineBasicBlock *thisMBB = MBB;
11740   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
11741   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
11742   MF->insert(I, mainMBB);
11743   MF->insert(I, sinkMBB);
11744 
11745   MachineInstrBuilder MIB;
11746 
11747   // Transfer the remainder of BB and its successor edges to sinkMBB.
11748   sinkMBB->splice(sinkMBB->begin(), MBB,
11749                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11750   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
11751 
11752   // Note that the structure of the jmp_buf used here is not compatible
11753   // with that used by libc, and is not designed to be. Specifically, it
11754   // stores only those 'reserved' registers that LLVM does not otherwise
11755   // understand how to spill. Also, by convention, by the time this
11756   // intrinsic is called, Clang has already stored the frame address in the
11757   // first slot of the buffer and stack address in the third. Following the
11758   // X86 target code, we'll store the jump address in the second slot. We also
11759   // need to save the TOC pointer (R2) to handle jumps between shared
11760   // libraries, and that will be stored in the fourth slot. The thread
11761   // identifier (R13) is not affected.
11762 
11763   // thisMBB:
11764   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11765   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11766   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11767 
11768   // Prepare IP either in reg.
11769   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11770   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11771   Register BufReg = MI.getOperand(1).getReg();
11772 
11773   if (Subtarget.is64BitELFABI()) {
11774     setUsesTOCBasePtr(*MBB->getParent());
11775     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11776               .addReg(PPC::X2)
11777               .addImm(TOCOffset)
11778               .addReg(BufReg)
11779               .cloneMemRefs(MI);
11780   }
11781 
11782   // Naked functions never have a base pointer, and so we use r1. For all
11783   // other functions, this decision must be delayed until during PEI.
11784   unsigned BaseReg;
11785   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11786     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11787   else
11788     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11789 
11790   MIB = BuildMI(*thisMBB, MI, DL,
11791                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11792             .addReg(BaseReg)
11793             .addImm(BPOffset)
11794             .addReg(BufReg)
11795             .cloneMemRefs(MI);
11796 
11797   // Setup
11798   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11799   MIB.addRegMask(TRI->getNoPreservedMask());
11800 
11801   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11802 
11803   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11804           .addMBB(mainMBB);
11805   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11806 
11807   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11808   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11809 
11810   // mainMBB:
11811   //  mainDstReg = 0
11812   MIB =
11813       BuildMI(mainMBB, DL,
11814               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11815 
11816   // Store IP
11817   if (Subtarget.isPPC64()) {
11818     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11819             .addReg(LabelReg)
11820             .addImm(LabelOffset)
11821             .addReg(BufReg);
11822   } else {
11823     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11824             .addReg(LabelReg)
11825             .addImm(LabelOffset)
11826             .addReg(BufReg);
11827   }
11828   MIB.cloneMemRefs(MI);
11829 
11830   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11831   mainMBB->addSuccessor(sinkMBB);
11832 
11833   // sinkMBB:
11834   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11835           TII->get(PPC::PHI), DstReg)
11836     .addReg(mainDstReg).addMBB(mainMBB)
11837     .addReg(restoreDstReg).addMBB(thisMBB);
11838 
11839   MI.eraseFromParent();
11840   return sinkMBB;
11841 }
11842 
11843 MachineBasicBlock *
11844 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11845                                      MachineBasicBlock *MBB) const {
11846   DebugLoc DL = MI.getDebugLoc();
11847   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11848 
11849   MachineFunction *MF = MBB->getParent();
11850   MachineRegisterInfo &MRI = MF->getRegInfo();
11851 
11852   MVT PVT = getPointerTy(MF->getDataLayout());
11853   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11854          "Invalid Pointer Size!");
11855 
11856   const TargetRegisterClass *RC =
11857     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11858   Register Tmp = MRI.createVirtualRegister(RC);
11859   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11860   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11861   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11862   unsigned BP =
11863       (PVT == MVT::i64)
11864           ? PPC::X30
11865           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11866                                                               : PPC::R30);
11867 
11868   MachineInstrBuilder MIB;
11869 
11870   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11871   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11872   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11873   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11874 
11875   Register BufReg = MI.getOperand(0).getReg();
11876 
11877   // Reload FP (the jumped-to function may not have had a
11878   // frame pointer, and if so, then its r31 will be restored
11879   // as necessary).
11880   if (PVT == MVT::i64) {
11881     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11882             .addImm(0)
11883             .addReg(BufReg);
11884   } else {
11885     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11886             .addImm(0)
11887             .addReg(BufReg);
11888   }
11889   MIB.cloneMemRefs(MI);
11890 
11891   // Reload IP
11892   if (PVT == MVT::i64) {
11893     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11894             .addImm(LabelOffset)
11895             .addReg(BufReg);
11896   } else {
11897     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11898             .addImm(LabelOffset)
11899             .addReg(BufReg);
11900   }
11901   MIB.cloneMemRefs(MI);
11902 
11903   // Reload SP
11904   if (PVT == MVT::i64) {
11905     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11906             .addImm(SPOffset)
11907             .addReg(BufReg);
11908   } else {
11909     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11910             .addImm(SPOffset)
11911             .addReg(BufReg);
11912   }
11913   MIB.cloneMemRefs(MI);
11914 
11915   // Reload BP
11916   if (PVT == MVT::i64) {
11917     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11918             .addImm(BPOffset)
11919             .addReg(BufReg);
11920   } else {
11921     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11922             .addImm(BPOffset)
11923             .addReg(BufReg);
11924   }
11925   MIB.cloneMemRefs(MI);
11926 
11927   // Reload TOC
11928   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11929     setUsesTOCBasePtr(*MBB->getParent());
11930     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11931               .addImm(TOCOffset)
11932               .addReg(BufReg)
11933               .cloneMemRefs(MI);
11934   }
11935 
11936   // Jump
11937   BuildMI(*MBB, MI, DL,
11938           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11939   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11940 
11941   MI.eraseFromParent();
11942   return MBB;
11943 }
11944 
11945 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
11946   // If the function specifically requests inline stack probes, emit them.
11947   if (MF.getFunction().hasFnAttribute("probe-stack"))
11948     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
11949            "inline-asm";
11950   return false;
11951 }
11952 
11953 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const {
11954   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
11955   unsigned StackAlign = TFI->getStackAlignment();
11956   assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
11957          "Unexpected stack alignment");
11958   // The default stack probe size is 4096 if the function has no
11959   // stack-probe-size attribute.
11960   unsigned StackProbeSize = 4096;
11961   const Function &Fn = MF.getFunction();
11962   if (Fn.hasFnAttribute("stack-probe-size"))
11963     Fn.getFnAttribute("stack-probe-size")
11964         .getValueAsString()
11965         .getAsInteger(0, StackProbeSize);
11966   // Round down to the stack alignment.
11967   StackProbeSize &= ~(StackAlign - 1);
11968   return StackProbeSize ? StackProbeSize : StackAlign;
11969 }
11970 
11971 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
11972 // into three phases. In the first phase, it uses pseudo instruction
11973 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
11974 // FinalStackPtr. In the second phase, it generates a loop for probing blocks.
11975 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
11976 // MaxCallFrameSize so that it can calculate correct data area pointer.
11977 MachineBasicBlock *
11978 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
11979                                     MachineBasicBlock *MBB) const {
11980   const bool isPPC64 = Subtarget.isPPC64();
11981   MachineFunction *MF = MBB->getParent();
11982   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11983   DebugLoc DL = MI.getDebugLoc();
11984   const unsigned ProbeSize = getStackProbeSize(*MF);
11985   const BasicBlock *ProbedBB = MBB->getBasicBlock();
11986   MachineRegisterInfo &MRI = MF->getRegInfo();
11987   // The CFG of probing stack looks as
11988   //         +-----+
11989   //         | MBB |
11990   //         +--+--+
11991   //            |
11992   //       +----v----+
11993   //  +--->+ TestMBB +---+
11994   //  |    +----+----+   |
11995   //  |         |        |
11996   //  |   +-----v----+   |
11997   //  +---+ BlockMBB |   |
11998   //      +----------+   |
11999   //                     |
12000   //       +---------+   |
12001   //       | TailMBB +<--+
12002   //       +---------+
12003   // In MBB, calculate previous frame pointer and final stack pointer.
12004   // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
12005   // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
12006   // TailMBB is spliced via \p MI.
12007   MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
12008   MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
12009   MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
12010 
12011   MachineFunction::iterator MBBIter = ++MBB->getIterator();
12012   MF->insert(MBBIter, TestMBB);
12013   MF->insert(MBBIter, BlockMBB);
12014   MF->insert(MBBIter, TailMBB);
12015 
12016   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
12017   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12018 
12019   Register DstReg = MI.getOperand(0).getReg();
12020   Register NegSizeReg = MI.getOperand(1).getReg();
12021   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
12022   Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12023   Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12024   Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12025 
12026   // Since value of NegSizeReg might be realigned in prologepilog, insert a
12027   // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
12028   // NegSize.
12029   unsigned ProbeOpc;
12030   if (!MRI.hasOneNonDBGUse(NegSizeReg))
12031     ProbeOpc =
12032         isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
12033   else
12034     // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
12035     // and NegSizeReg will be allocated in the same phyreg to avoid
12036     // redundant copy when NegSizeReg has only one use which is current MI and
12037     // will be replaced by PREPARE_PROBED_ALLOCA then.
12038     ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
12039                        : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
12040   BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
12041       .addDef(ActualNegSizeReg)
12042       .addReg(NegSizeReg)
12043       .add(MI.getOperand(2))
12044       .add(MI.getOperand(3));
12045 
12046   // Calculate final stack pointer, which equals to SP + ActualNegSize.
12047   BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
12048           FinalStackPtr)
12049       .addReg(SPReg)
12050       .addReg(ActualNegSizeReg);
12051 
12052   // Materialize a scratch register for update.
12053   int64_t NegProbeSize = -(int64_t)ProbeSize;
12054   assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
12055   Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12056   if (!isInt<16>(NegProbeSize)) {
12057     Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12058     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
12059         .addImm(NegProbeSize >> 16);
12060     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
12061             ScratchReg)
12062         .addReg(TempReg)
12063         .addImm(NegProbeSize & 0xFFFF);
12064   } else
12065     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
12066         .addImm(NegProbeSize);
12067 
12068   {
12069     // Probing leading residual part.
12070     Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12071     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
12072         .addReg(ActualNegSizeReg)
12073         .addReg(ScratchReg);
12074     Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12075     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
12076         .addReg(Div)
12077         .addReg(ScratchReg);
12078     Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12079     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
12080         .addReg(Mul)
12081         .addReg(ActualNegSizeReg);
12082     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
12083         .addReg(FramePointer)
12084         .addReg(SPReg)
12085         .addReg(NegMod);
12086   }
12087 
12088   {
12089     // Remaining part should be multiple of ProbeSize.
12090     Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
12091     BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
12092         .addReg(SPReg)
12093         .addReg(FinalStackPtr);
12094     BuildMI(TestMBB, DL, TII->get(PPC::BCC))
12095         .addImm(PPC::PRED_EQ)
12096         .addReg(CmpResult)
12097         .addMBB(TailMBB);
12098     TestMBB->addSuccessor(BlockMBB);
12099     TestMBB->addSuccessor(TailMBB);
12100   }
12101 
12102   {
12103     // Touch the block.
12104     // |P...|P...|P...
12105     BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
12106         .addReg(FramePointer)
12107         .addReg(SPReg)
12108         .addReg(ScratchReg);
12109     BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
12110     BlockMBB->addSuccessor(TestMBB);
12111   }
12112 
12113   // Calculation of MaxCallFrameSize is deferred to prologepilog, use
12114   // DYNAREAOFFSET pseudo instruction to get the future result.
12115   Register MaxCallFrameSizeReg =
12116       MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12117   BuildMI(TailMBB, DL,
12118           TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
12119           MaxCallFrameSizeReg)
12120       .add(MI.getOperand(2))
12121       .add(MI.getOperand(3));
12122   BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
12123       .addReg(SPReg)
12124       .addReg(MaxCallFrameSizeReg);
12125 
12126   // Splice instructions after MI to TailMBB.
12127   TailMBB->splice(TailMBB->end(), MBB,
12128                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
12129   TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
12130   MBB->addSuccessor(TestMBB);
12131 
12132   // Delete the pseudo instruction.
12133   MI.eraseFromParent();
12134 
12135   ++NumDynamicAllocaProbed;
12136   return TailMBB;
12137 }
12138 
12139 MachineBasicBlock *
12140 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
12141                                                MachineBasicBlock *BB) const {
12142   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
12143       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
12144     if (Subtarget.is64BitELFABI() &&
12145         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
12146         !Subtarget.isUsingPCRelativeCalls()) {
12147       // Call lowering should have added an r2 operand to indicate a dependence
12148       // on the TOC base pointer value. It can't however, because there is no
12149       // way to mark the dependence as implicit there, and so the stackmap code
12150       // will confuse it with a regular operand. Instead, add the dependence
12151       // here.
12152       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
12153     }
12154 
12155     return emitPatchPoint(MI, BB);
12156   }
12157 
12158   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
12159       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
12160     return emitEHSjLjSetJmp(MI, BB);
12161   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
12162              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
12163     return emitEHSjLjLongJmp(MI, BB);
12164   }
12165 
12166   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
12167 
12168   // To "insert" these instructions we actually have to insert their
12169   // control-flow patterns.
12170   const BasicBlock *LLVM_BB = BB->getBasicBlock();
12171   MachineFunction::iterator It = ++BB->getIterator();
12172 
12173   MachineFunction *F = BB->getParent();
12174   MachineRegisterInfo &MRI = F->getRegInfo();
12175 
12176   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
12177       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
12178       MI.getOpcode() == PPC::SELECT_I8) {
12179     SmallVector<MachineOperand, 2> Cond;
12180     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
12181         MI.getOpcode() == PPC::SELECT_CC_I8)
12182       Cond.push_back(MI.getOperand(4));
12183     else
12184       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
12185     Cond.push_back(MI.getOperand(1));
12186 
12187     DebugLoc dl = MI.getDebugLoc();
12188     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
12189                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
12190   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
12191              MI.getOpcode() == PPC::SELECT_CC_F8 ||
12192              MI.getOpcode() == PPC::SELECT_CC_F16 ||
12193              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
12194              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
12195              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
12196              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
12197              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
12198              MI.getOpcode() == PPC::SELECT_CC_SPE ||
12199              MI.getOpcode() == PPC::SELECT_F4 ||
12200              MI.getOpcode() == PPC::SELECT_F8 ||
12201              MI.getOpcode() == PPC::SELECT_F16 ||
12202              MI.getOpcode() == PPC::SELECT_SPE ||
12203              MI.getOpcode() == PPC::SELECT_SPE4 ||
12204              MI.getOpcode() == PPC::SELECT_VRRC ||
12205              MI.getOpcode() == PPC::SELECT_VSFRC ||
12206              MI.getOpcode() == PPC::SELECT_VSSRC ||
12207              MI.getOpcode() == PPC::SELECT_VSRC) {
12208     // The incoming instruction knows the destination vreg to set, the
12209     // condition code register to branch on, the true/false values to
12210     // select between, and a branch opcode to use.
12211 
12212     //  thisMBB:
12213     //  ...
12214     //   TrueVal = ...
12215     //   cmpTY ccX, r1, r2
12216     //   bCC copy1MBB
12217     //   fallthrough --> copy0MBB
12218     MachineBasicBlock *thisMBB = BB;
12219     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12220     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12221     DebugLoc dl = MI.getDebugLoc();
12222     F->insert(It, copy0MBB);
12223     F->insert(It, sinkMBB);
12224 
12225     // Transfer the remainder of BB and its successor edges to sinkMBB.
12226     sinkMBB->splice(sinkMBB->begin(), BB,
12227                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12228     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12229 
12230     // Next, add the true and fallthrough blocks as its successors.
12231     BB->addSuccessor(copy0MBB);
12232     BB->addSuccessor(sinkMBB);
12233 
12234     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
12235         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
12236         MI.getOpcode() == PPC::SELECT_F16 ||
12237         MI.getOpcode() == PPC::SELECT_SPE4 ||
12238         MI.getOpcode() == PPC::SELECT_SPE ||
12239         MI.getOpcode() == PPC::SELECT_VRRC ||
12240         MI.getOpcode() == PPC::SELECT_VSFRC ||
12241         MI.getOpcode() == PPC::SELECT_VSSRC ||
12242         MI.getOpcode() == PPC::SELECT_VSRC) {
12243       BuildMI(BB, dl, TII->get(PPC::BC))
12244           .addReg(MI.getOperand(1).getReg())
12245           .addMBB(sinkMBB);
12246     } else {
12247       unsigned SelectPred = MI.getOperand(4).getImm();
12248       BuildMI(BB, dl, TII->get(PPC::BCC))
12249           .addImm(SelectPred)
12250           .addReg(MI.getOperand(1).getReg())
12251           .addMBB(sinkMBB);
12252     }
12253 
12254     //  copy0MBB:
12255     //   %FalseValue = ...
12256     //   # fallthrough to sinkMBB
12257     BB = copy0MBB;
12258 
12259     // Update machine-CFG edges
12260     BB->addSuccessor(sinkMBB);
12261 
12262     //  sinkMBB:
12263     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12264     //  ...
12265     BB = sinkMBB;
12266     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
12267         .addReg(MI.getOperand(3).getReg())
12268         .addMBB(copy0MBB)
12269         .addReg(MI.getOperand(2).getReg())
12270         .addMBB(thisMBB);
12271   } else if (MI.getOpcode() == PPC::ReadTB) {
12272     // To read the 64-bit time-base register on a 32-bit target, we read the
12273     // two halves. Should the counter have wrapped while it was being read, we
12274     // need to try again.
12275     // ...
12276     // readLoop:
12277     // mfspr Rx,TBU # load from TBU
12278     // mfspr Ry,TB  # load from TB
12279     // mfspr Rz,TBU # load from TBU
12280     // cmpw crX,Rx,Rz # check if 'old'='new'
12281     // bne readLoop   # branch if they're not equal
12282     // ...
12283 
12284     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
12285     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12286     DebugLoc dl = MI.getDebugLoc();
12287     F->insert(It, readMBB);
12288     F->insert(It, sinkMBB);
12289 
12290     // Transfer the remainder of BB and its successor edges to sinkMBB.
12291     sinkMBB->splice(sinkMBB->begin(), BB,
12292                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12293     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12294 
12295     BB->addSuccessor(readMBB);
12296     BB = readMBB;
12297 
12298     MachineRegisterInfo &RegInfo = F->getRegInfo();
12299     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
12300     Register LoReg = MI.getOperand(0).getReg();
12301     Register HiReg = MI.getOperand(1).getReg();
12302 
12303     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
12304     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
12305     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
12306 
12307     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12308 
12309     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
12310         .addReg(HiReg)
12311         .addReg(ReadAgainReg);
12312     BuildMI(BB, dl, TII->get(PPC::BCC))
12313         .addImm(PPC::PRED_NE)
12314         .addReg(CmpReg)
12315         .addMBB(readMBB);
12316 
12317     BB->addSuccessor(readMBB);
12318     BB->addSuccessor(sinkMBB);
12319   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
12320     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
12321   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
12322     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
12323   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
12324     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
12325   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
12326     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
12327 
12328   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
12329     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
12330   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
12331     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
12332   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
12333     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
12334   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
12335     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
12336 
12337   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
12338     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
12339   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
12340     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
12341   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
12342     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
12343   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
12344     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
12345 
12346   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
12347     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
12348   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
12349     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
12350   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
12351     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
12352   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
12353     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
12354 
12355   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
12356     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
12357   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
12358     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
12359   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
12360     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
12361   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
12362     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
12363 
12364   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
12365     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
12366   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
12367     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
12368   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
12369     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
12370   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
12371     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
12372 
12373   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
12374     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
12375   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
12376     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
12377   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
12378     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
12379   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
12380     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
12381 
12382   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
12383     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
12384   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
12385     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
12386   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
12387     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
12388   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
12389     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
12390 
12391   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
12392     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
12393   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
12394     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
12395   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
12396     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
12397   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
12398     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
12399 
12400   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
12401     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
12402   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
12403     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
12404   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
12405     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
12406   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
12407     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
12408 
12409   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
12410     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
12411   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
12412     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
12413   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
12414     BB = EmitAtomicBinary(MI, BB, 4, 0);
12415   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
12416     BB = EmitAtomicBinary(MI, BB, 8, 0);
12417   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
12418            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
12419            (Subtarget.hasPartwordAtomics() &&
12420             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
12421            (Subtarget.hasPartwordAtomics() &&
12422             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
12423     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
12424 
12425     auto LoadMnemonic = PPC::LDARX;
12426     auto StoreMnemonic = PPC::STDCX;
12427     switch (MI.getOpcode()) {
12428     default:
12429       llvm_unreachable("Compare and swap of unknown size");
12430     case PPC::ATOMIC_CMP_SWAP_I8:
12431       LoadMnemonic = PPC::LBARX;
12432       StoreMnemonic = PPC::STBCX;
12433       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12434       break;
12435     case PPC::ATOMIC_CMP_SWAP_I16:
12436       LoadMnemonic = PPC::LHARX;
12437       StoreMnemonic = PPC::STHCX;
12438       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12439       break;
12440     case PPC::ATOMIC_CMP_SWAP_I32:
12441       LoadMnemonic = PPC::LWARX;
12442       StoreMnemonic = PPC::STWCX;
12443       break;
12444     case PPC::ATOMIC_CMP_SWAP_I64:
12445       LoadMnemonic = PPC::LDARX;
12446       StoreMnemonic = PPC::STDCX;
12447       break;
12448     }
12449     Register dest = MI.getOperand(0).getReg();
12450     Register ptrA = MI.getOperand(1).getReg();
12451     Register ptrB = MI.getOperand(2).getReg();
12452     Register oldval = MI.getOperand(3).getReg();
12453     Register newval = MI.getOperand(4).getReg();
12454     DebugLoc dl = MI.getDebugLoc();
12455 
12456     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12457     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12458     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12459     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12460     F->insert(It, loop1MBB);
12461     F->insert(It, loop2MBB);
12462     F->insert(It, midMBB);
12463     F->insert(It, exitMBB);
12464     exitMBB->splice(exitMBB->begin(), BB,
12465                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12466     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12467 
12468     //  thisMBB:
12469     //   ...
12470     //   fallthrough --> loopMBB
12471     BB->addSuccessor(loop1MBB);
12472 
12473     // loop1MBB:
12474     //   l[bhwd]arx dest, ptr
12475     //   cmp[wd] dest, oldval
12476     //   bne- midMBB
12477     // loop2MBB:
12478     //   st[bhwd]cx. newval, ptr
12479     //   bne- loopMBB
12480     //   b exitBB
12481     // midMBB:
12482     //   st[bhwd]cx. dest, ptr
12483     // exitBB:
12484     BB = loop1MBB;
12485     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
12486     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
12487         .addReg(oldval)
12488         .addReg(dest);
12489     BuildMI(BB, dl, TII->get(PPC::BCC))
12490         .addImm(PPC::PRED_NE)
12491         .addReg(PPC::CR0)
12492         .addMBB(midMBB);
12493     BB->addSuccessor(loop2MBB);
12494     BB->addSuccessor(midMBB);
12495 
12496     BB = loop2MBB;
12497     BuildMI(BB, dl, TII->get(StoreMnemonic))
12498         .addReg(newval)
12499         .addReg(ptrA)
12500         .addReg(ptrB);
12501     BuildMI(BB, dl, TII->get(PPC::BCC))
12502         .addImm(PPC::PRED_NE)
12503         .addReg(PPC::CR0)
12504         .addMBB(loop1MBB);
12505     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12506     BB->addSuccessor(loop1MBB);
12507     BB->addSuccessor(exitMBB);
12508 
12509     BB = midMBB;
12510     BuildMI(BB, dl, TII->get(StoreMnemonic))
12511         .addReg(dest)
12512         .addReg(ptrA)
12513         .addReg(ptrB);
12514     BB->addSuccessor(exitMBB);
12515 
12516     //  exitMBB:
12517     //   ...
12518     BB = exitMBB;
12519   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
12520              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
12521     // We must use 64-bit registers for addresses when targeting 64-bit,
12522     // since we're actually doing arithmetic on them.  Other registers
12523     // can be 32-bit.
12524     bool is64bit = Subtarget.isPPC64();
12525     bool isLittleEndian = Subtarget.isLittleEndian();
12526     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
12527 
12528     Register dest = MI.getOperand(0).getReg();
12529     Register ptrA = MI.getOperand(1).getReg();
12530     Register ptrB = MI.getOperand(2).getReg();
12531     Register oldval = MI.getOperand(3).getReg();
12532     Register newval = MI.getOperand(4).getReg();
12533     DebugLoc dl = MI.getDebugLoc();
12534 
12535     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12536     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12537     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12538     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12539     F->insert(It, loop1MBB);
12540     F->insert(It, loop2MBB);
12541     F->insert(It, midMBB);
12542     F->insert(It, exitMBB);
12543     exitMBB->splice(exitMBB->begin(), BB,
12544                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12545     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12546 
12547     MachineRegisterInfo &RegInfo = F->getRegInfo();
12548     const TargetRegisterClass *RC =
12549         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
12550     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12551 
12552     Register PtrReg = RegInfo.createVirtualRegister(RC);
12553     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
12554     Register ShiftReg =
12555         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
12556     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
12557     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
12558     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
12559     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
12560     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
12561     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
12562     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
12563     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
12564     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
12565     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
12566     Register Ptr1Reg;
12567     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
12568     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
12569     //  thisMBB:
12570     //   ...
12571     //   fallthrough --> loopMBB
12572     BB->addSuccessor(loop1MBB);
12573 
12574     // The 4-byte load must be aligned, while a char or short may be
12575     // anywhere in the word.  Hence all this nasty bookkeeping code.
12576     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
12577     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
12578     //   xori shift, shift1, 24 [16]
12579     //   rlwinm ptr, ptr1, 0, 0, 29
12580     //   slw newval2, newval, shift
12581     //   slw oldval2, oldval,shift
12582     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
12583     //   slw mask, mask2, shift
12584     //   and newval3, newval2, mask
12585     //   and oldval3, oldval2, mask
12586     // loop1MBB:
12587     //   lwarx tmpDest, ptr
12588     //   and tmp, tmpDest, mask
12589     //   cmpw tmp, oldval3
12590     //   bne- midMBB
12591     // loop2MBB:
12592     //   andc tmp2, tmpDest, mask
12593     //   or tmp4, tmp2, newval3
12594     //   stwcx. tmp4, ptr
12595     //   bne- loop1MBB
12596     //   b exitBB
12597     // midMBB:
12598     //   stwcx. tmpDest, ptr
12599     // exitBB:
12600     //   srw dest, tmpDest, shift
12601     if (ptrA != ZeroReg) {
12602       Ptr1Reg = RegInfo.createVirtualRegister(RC);
12603       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
12604           .addReg(ptrA)
12605           .addReg(ptrB);
12606     } else {
12607       Ptr1Reg = ptrB;
12608     }
12609 
12610     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
12611     // mode.
12612     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
12613         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
12614         .addImm(3)
12615         .addImm(27)
12616         .addImm(is8bit ? 28 : 27);
12617     if (!isLittleEndian)
12618       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
12619           .addReg(Shift1Reg)
12620           .addImm(is8bit ? 24 : 16);
12621     if (is64bit)
12622       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
12623           .addReg(Ptr1Reg)
12624           .addImm(0)
12625           .addImm(61);
12626     else
12627       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
12628           .addReg(Ptr1Reg)
12629           .addImm(0)
12630           .addImm(0)
12631           .addImm(29);
12632     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
12633         .addReg(newval)
12634         .addReg(ShiftReg);
12635     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
12636         .addReg(oldval)
12637         .addReg(ShiftReg);
12638     if (is8bit)
12639       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
12640     else {
12641       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
12642       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
12643           .addReg(Mask3Reg)
12644           .addImm(65535);
12645     }
12646     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
12647         .addReg(Mask2Reg)
12648         .addReg(ShiftReg);
12649     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
12650         .addReg(NewVal2Reg)
12651         .addReg(MaskReg);
12652     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
12653         .addReg(OldVal2Reg)
12654         .addReg(MaskReg);
12655 
12656     BB = loop1MBB;
12657     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
12658         .addReg(ZeroReg)
12659         .addReg(PtrReg);
12660     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
12661         .addReg(TmpDestReg)
12662         .addReg(MaskReg);
12663     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
12664         .addReg(TmpReg)
12665         .addReg(OldVal3Reg);
12666     BuildMI(BB, dl, TII->get(PPC::BCC))
12667         .addImm(PPC::PRED_NE)
12668         .addReg(PPC::CR0)
12669         .addMBB(midMBB);
12670     BB->addSuccessor(loop2MBB);
12671     BB->addSuccessor(midMBB);
12672 
12673     BB = loop2MBB;
12674     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
12675         .addReg(TmpDestReg)
12676         .addReg(MaskReg);
12677     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
12678         .addReg(Tmp2Reg)
12679         .addReg(NewVal3Reg);
12680     BuildMI(BB, dl, TII->get(PPC::STWCX))
12681         .addReg(Tmp4Reg)
12682         .addReg(ZeroReg)
12683         .addReg(PtrReg);
12684     BuildMI(BB, dl, TII->get(PPC::BCC))
12685         .addImm(PPC::PRED_NE)
12686         .addReg(PPC::CR0)
12687         .addMBB(loop1MBB);
12688     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12689     BB->addSuccessor(loop1MBB);
12690     BB->addSuccessor(exitMBB);
12691 
12692     BB = midMBB;
12693     BuildMI(BB, dl, TII->get(PPC::STWCX))
12694         .addReg(TmpDestReg)
12695         .addReg(ZeroReg)
12696         .addReg(PtrReg);
12697     BB->addSuccessor(exitMBB);
12698 
12699     //  exitMBB:
12700     //   ...
12701     BB = exitMBB;
12702     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
12703         .addReg(TmpReg)
12704         .addReg(ShiftReg);
12705   } else if (MI.getOpcode() == PPC::FADDrtz) {
12706     // This pseudo performs an FADD with rounding mode temporarily forced
12707     // to round-to-zero.  We emit this via custom inserter since the FPSCR
12708     // is not modeled at the SelectionDAG level.
12709     Register Dest = MI.getOperand(0).getReg();
12710     Register Src1 = MI.getOperand(1).getReg();
12711     Register Src2 = MI.getOperand(2).getReg();
12712     DebugLoc dl = MI.getDebugLoc();
12713 
12714     MachineRegisterInfo &RegInfo = F->getRegInfo();
12715     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12716 
12717     // Save FPSCR value.
12718     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
12719 
12720     // Set rounding mode to round-to-zero.
12721     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1))
12722         .addImm(31)
12723         .addReg(PPC::RM, RegState::ImplicitDefine);
12724 
12725     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0))
12726         .addImm(30)
12727         .addReg(PPC::RM, RegState::ImplicitDefine);
12728 
12729     // Perform addition.
12730     auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest)
12731                    .addReg(Src1)
12732                    .addReg(Src2);
12733     if (MI.getFlag(MachineInstr::NoFPExcept))
12734       MIB.setMIFlag(MachineInstr::NoFPExcept);
12735 
12736     // Restore FPSCR value.
12737     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
12738   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12739              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
12740              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12741              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
12742     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12743                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
12744                           ? PPC::ANDI8_rec
12745                           : PPC::ANDI_rec;
12746     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12747                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
12748 
12749     MachineRegisterInfo &RegInfo = F->getRegInfo();
12750     Register Dest = RegInfo.createVirtualRegister(
12751         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
12752 
12753     DebugLoc Dl = MI.getDebugLoc();
12754     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
12755         .addReg(MI.getOperand(1).getReg())
12756         .addImm(1);
12757     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12758             MI.getOperand(0).getReg())
12759         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
12760   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
12761     DebugLoc Dl = MI.getDebugLoc();
12762     MachineRegisterInfo &RegInfo = F->getRegInfo();
12763     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12764     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
12765     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12766             MI.getOperand(0).getReg())
12767         .addReg(CRReg);
12768   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
12769     DebugLoc Dl = MI.getDebugLoc();
12770     unsigned Imm = MI.getOperand(1).getImm();
12771     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
12772     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12773             MI.getOperand(0).getReg())
12774         .addReg(PPC::CR0EQ);
12775   } else if (MI.getOpcode() == PPC::SETRNDi) {
12776     DebugLoc dl = MI.getDebugLoc();
12777     Register OldFPSCRReg = MI.getOperand(0).getReg();
12778 
12779     // Save FPSCR value.
12780     if (MRI.use_empty(OldFPSCRReg))
12781       BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg);
12782     else
12783       BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12784 
12785     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
12786     // the following settings:
12787     //   00 Round to nearest
12788     //   01 Round to 0
12789     //   10 Round to +inf
12790     //   11 Round to -inf
12791 
12792     // When the operand is immediate, using the two least significant bits of
12793     // the immediate to set the bits 62:63 of FPSCR.
12794     unsigned Mode = MI.getOperand(1).getImm();
12795     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
12796         .addImm(31)
12797         .addReg(PPC::RM, RegState::ImplicitDefine);
12798 
12799     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
12800         .addImm(30)
12801         .addReg(PPC::RM, RegState::ImplicitDefine);
12802   } else if (MI.getOpcode() == PPC::SETRND) {
12803     DebugLoc dl = MI.getDebugLoc();
12804 
12805     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
12806     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
12807     // If the target doesn't have DirectMove, we should use stack to do the
12808     // conversion, because the target doesn't have the instructions like mtvsrd
12809     // or mfvsrd to do this conversion directly.
12810     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
12811       if (Subtarget.hasDirectMove()) {
12812         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
12813           .addReg(SrcReg);
12814       } else {
12815         // Use stack to do the register copy.
12816         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
12817         MachineRegisterInfo &RegInfo = F->getRegInfo();
12818         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
12819         if (RC == &PPC::F8RCRegClass) {
12820           // Copy register from F8RCRegClass to G8RCRegclass.
12821           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
12822                  "Unsupported RegClass.");
12823 
12824           StoreOp = PPC::STFD;
12825           LoadOp = PPC::LD;
12826         } else {
12827           // Copy register from G8RCRegClass to F8RCRegclass.
12828           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
12829                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
12830                  "Unsupported RegClass.");
12831         }
12832 
12833         MachineFrameInfo &MFI = F->getFrameInfo();
12834         int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
12835 
12836         MachineMemOperand *MMOStore = F->getMachineMemOperand(
12837             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12838             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
12839             MFI.getObjectAlign(FrameIdx));
12840 
12841         // Store the SrcReg into the stack.
12842         BuildMI(*BB, MI, dl, TII->get(StoreOp))
12843           .addReg(SrcReg)
12844           .addImm(0)
12845           .addFrameIndex(FrameIdx)
12846           .addMemOperand(MMOStore);
12847 
12848         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
12849             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12850             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
12851             MFI.getObjectAlign(FrameIdx));
12852 
12853         // Load from the stack where SrcReg is stored, and save to DestReg,
12854         // so we have done the RegClass conversion from RegClass::SrcReg to
12855         // RegClass::DestReg.
12856         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
12857           .addImm(0)
12858           .addFrameIndex(FrameIdx)
12859           .addMemOperand(MMOLoad);
12860       }
12861     };
12862 
12863     Register OldFPSCRReg = MI.getOperand(0).getReg();
12864 
12865     // Save FPSCR value.
12866     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12867 
12868     // When the operand is gprc register, use two least significant bits of the
12869     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12870     //
12871     // copy OldFPSCRTmpReg, OldFPSCRReg
12872     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12873     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12874     // copy NewFPSCRReg, NewFPSCRTmpReg
12875     // mtfsf 255, NewFPSCRReg
12876     MachineOperand SrcOp = MI.getOperand(1);
12877     MachineRegisterInfo &RegInfo = F->getRegInfo();
12878     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12879 
12880     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12881 
12882     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12883     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12884 
12885     // The first operand of INSERT_SUBREG should be a register which has
12886     // subregisters, we only care about its RegClass, so we should use an
12887     // IMPLICIT_DEF register.
12888     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12889     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12890       .addReg(ImDefReg)
12891       .add(SrcOp)
12892       .addImm(1);
12893 
12894     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12895     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12896       .addReg(OldFPSCRTmpReg)
12897       .addReg(ExtSrcReg)
12898       .addImm(0)
12899       .addImm(62);
12900 
12901     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12902     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12903 
12904     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12905     // bits of FPSCR.
12906     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12907       .addImm(255)
12908       .addReg(NewFPSCRReg)
12909       .addImm(0)
12910       .addImm(0);
12911   } else if (MI.getOpcode() == PPC::SETFLM) {
12912     DebugLoc Dl = MI.getDebugLoc();
12913 
12914     // Result of setflm is previous FPSCR content, so we need to save it first.
12915     Register OldFPSCRReg = MI.getOperand(0).getReg();
12916     if (MRI.use_empty(OldFPSCRReg))
12917       BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg);
12918     else
12919       BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg);
12920 
12921     // Put bits in 32:63 to FPSCR.
12922     Register NewFPSCRReg = MI.getOperand(1).getReg();
12923     BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF))
12924         .addImm(255)
12925         .addReg(NewFPSCRReg)
12926         .addImm(0)
12927         .addImm(0);
12928   } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
12929              MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
12930     return emitProbedAlloca(MI, BB);
12931   } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) {
12932     DebugLoc DL = MI.getDebugLoc();
12933     Register Src = MI.getOperand(2).getReg();
12934     Register Lo = MI.getOperand(0).getReg();
12935     Register Hi = MI.getOperand(1).getReg();
12936     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY))
12937         .addDef(Lo)
12938         .addUse(Src, 0, PPC::sub_gp8_x1);
12939     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY))
12940         .addDef(Hi)
12941         .addUse(Src, 0, PPC::sub_gp8_x0);
12942   } else if (MI.getOpcode() == PPC::LQX_PSEUDO ||
12943              MI.getOpcode() == PPC::STQX_PSEUDO) {
12944     DebugLoc DL = MI.getDebugLoc();
12945     // Ptr is used as the ptr_rc_no_r0 part
12946     // of LQ/STQ's memory operand and adding result of RA and RB,
12947     // so it has to be g8rc_and_g8rc_nox0.
12948     Register Ptr =
12949         F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
12950     Register Val = MI.getOperand(0).getReg();
12951     Register RA = MI.getOperand(1).getReg();
12952     Register RB = MI.getOperand(2).getReg();
12953     BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB);
12954     BuildMI(*BB, MI, DL,
12955             MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ)
12956                                               : TII->get(PPC::STQ))
12957         .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0)
12958         .addImm(0)
12959         .addReg(Ptr);
12960   } else {
12961     llvm_unreachable("Unexpected instr type to insert");
12962   }
12963 
12964   MI.eraseFromParent(); // The pseudo instruction is gone now.
12965   return BB;
12966 }
12967 
12968 //===----------------------------------------------------------------------===//
12969 // Target Optimization Hooks
12970 //===----------------------------------------------------------------------===//
12971 
12972 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
12973   // For the estimates, convergence is quadratic, so we essentially double the
12974   // number of digits correct after every iteration. For both FRE and FRSQRTE,
12975   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
12976   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
12977   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
12978   if (VT.getScalarType() == MVT::f64)
12979     RefinementSteps++;
12980   return RefinementSteps;
12981 }
12982 
12983 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
12984                                             const DenormalMode &Mode) const {
12985   // We only have VSX Vector Test for software Square Root.
12986   EVT VT = Op.getValueType();
12987   if (!isTypeLegal(MVT::i1) ||
12988       (VT != MVT::f64 &&
12989        ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())))
12990     return TargetLowering::getSqrtInputTest(Op, DAG, Mode);
12991 
12992   SDLoc DL(Op);
12993   // The output register of FTSQRT is CR field.
12994   SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op);
12995   // ftsqrt BF,FRB
12996   // Let e_b be the unbiased exponent of the double-precision
12997   // floating-point operand in register FRB.
12998   // fe_flag is set to 1 if either of the following conditions occurs.
12999   //   - The double-precision floating-point operand in register FRB is a zero,
13000   //     a NaN, or an infinity, or a negative value.
13001   //   - e_b is less than or equal to -970.
13002   // Otherwise fe_flag is set to 0.
13003   // Both VSX and non-VSX versions would set EQ bit in the CR if the number is
13004   // not eligible for iteration. (zero/negative/infinity/nan or unbiased
13005   // exponent is less than -970)
13006   SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32);
13007   return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1,
13008                                     FTSQRT, SRIdxVal),
13009                  0);
13010 }
13011 
13012 SDValue
13013 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op,
13014                                                SelectionDAG &DAG) const {
13015   // We only have VSX Vector Square Root.
13016   EVT VT = Op.getValueType();
13017   if (VT != MVT::f64 &&
13018       ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))
13019     return TargetLowering::getSqrtResultForDenormInput(Op, DAG);
13020 
13021   return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op);
13022 }
13023 
13024 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
13025                                            int Enabled, int &RefinementSteps,
13026                                            bool &UseOneConstNR,
13027                                            bool Reciprocal) const {
13028   EVT VT = Operand.getValueType();
13029   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
13030       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
13031       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
13032       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
13033     if (RefinementSteps == ReciprocalEstimate::Unspecified)
13034       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
13035 
13036     // The Newton-Raphson computation with a single constant does not provide
13037     // enough accuracy on some CPUs.
13038     UseOneConstNR = !Subtarget.needsTwoConstNR();
13039     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
13040   }
13041   return SDValue();
13042 }
13043 
13044 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
13045                                             int Enabled,
13046                                             int &RefinementSteps) const {
13047   EVT VT = Operand.getValueType();
13048   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
13049       (VT == MVT::f64 && Subtarget.hasFRE()) ||
13050       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
13051       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
13052     if (RefinementSteps == ReciprocalEstimate::Unspecified)
13053       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
13054     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
13055   }
13056   return SDValue();
13057 }
13058 
13059 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
13060   // Note: This functionality is used only when unsafe-fp-math is enabled, and
13061   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
13062   // enabled for division), this functionality is redundant with the default
13063   // combiner logic (once the division -> reciprocal/multiply transformation
13064   // has taken place). As a result, this matters more for older cores than for
13065   // newer ones.
13066 
13067   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
13068   // reciprocal if there are two or more FDIVs (for embedded cores with only
13069   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
13070   switch (Subtarget.getCPUDirective()) {
13071   default:
13072     return 3;
13073   case PPC::DIR_440:
13074   case PPC::DIR_A2:
13075   case PPC::DIR_E500:
13076   case PPC::DIR_E500mc:
13077   case PPC::DIR_E5500:
13078     return 2;
13079   }
13080 }
13081 
13082 // isConsecutiveLSLoc needs to work even if all adds have not yet been
13083 // collapsed, and so we need to look through chains of them.
13084 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
13085                                      int64_t& Offset, SelectionDAG &DAG) {
13086   if (DAG.isBaseWithConstantOffset(Loc)) {
13087     Base = Loc.getOperand(0);
13088     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
13089 
13090     // The base might itself be a base plus an offset, and if so, accumulate
13091     // that as well.
13092     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
13093   }
13094 }
13095 
13096 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
13097                             unsigned Bytes, int Dist,
13098                             SelectionDAG &DAG) {
13099   if (VT.getSizeInBits() / 8 != Bytes)
13100     return false;
13101 
13102   SDValue BaseLoc = Base->getBasePtr();
13103   if (Loc.getOpcode() == ISD::FrameIndex) {
13104     if (BaseLoc.getOpcode() != ISD::FrameIndex)
13105       return false;
13106     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
13107     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
13108     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
13109     int FS  = MFI.getObjectSize(FI);
13110     int BFS = MFI.getObjectSize(BFI);
13111     if (FS != BFS || FS != (int)Bytes) return false;
13112     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
13113   }
13114 
13115   SDValue Base1 = Loc, Base2 = BaseLoc;
13116   int64_t Offset1 = 0, Offset2 = 0;
13117   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
13118   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
13119   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
13120     return true;
13121 
13122   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13123   const GlobalValue *GV1 = nullptr;
13124   const GlobalValue *GV2 = nullptr;
13125   Offset1 = 0;
13126   Offset2 = 0;
13127   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
13128   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
13129   if (isGA1 && isGA2 && GV1 == GV2)
13130     return Offset1 == (Offset2 + Dist*Bytes);
13131   return false;
13132 }
13133 
13134 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
13135 // not enforce equality of the chain operands.
13136 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
13137                             unsigned Bytes, int Dist,
13138                             SelectionDAG &DAG) {
13139   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
13140     EVT VT = LS->getMemoryVT();
13141     SDValue Loc = LS->getBasePtr();
13142     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
13143   }
13144 
13145   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
13146     EVT VT;
13147     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13148     default: return false;
13149     case Intrinsic::ppc_altivec_lvx:
13150     case Intrinsic::ppc_altivec_lvxl:
13151     case Intrinsic::ppc_vsx_lxvw4x:
13152     case Intrinsic::ppc_vsx_lxvw4x_be:
13153       VT = MVT::v4i32;
13154       break;
13155     case Intrinsic::ppc_vsx_lxvd2x:
13156     case Intrinsic::ppc_vsx_lxvd2x_be:
13157       VT = MVT::v2f64;
13158       break;
13159     case Intrinsic::ppc_altivec_lvebx:
13160       VT = MVT::i8;
13161       break;
13162     case Intrinsic::ppc_altivec_lvehx:
13163       VT = MVT::i16;
13164       break;
13165     case Intrinsic::ppc_altivec_lvewx:
13166       VT = MVT::i32;
13167       break;
13168     }
13169 
13170     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
13171   }
13172 
13173   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
13174     EVT VT;
13175     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13176     default: return false;
13177     case Intrinsic::ppc_altivec_stvx:
13178     case Intrinsic::ppc_altivec_stvxl:
13179     case Intrinsic::ppc_vsx_stxvw4x:
13180       VT = MVT::v4i32;
13181       break;
13182     case Intrinsic::ppc_vsx_stxvd2x:
13183       VT = MVT::v2f64;
13184       break;
13185     case Intrinsic::ppc_vsx_stxvw4x_be:
13186       VT = MVT::v4i32;
13187       break;
13188     case Intrinsic::ppc_vsx_stxvd2x_be:
13189       VT = MVT::v2f64;
13190       break;
13191     case Intrinsic::ppc_altivec_stvebx:
13192       VT = MVT::i8;
13193       break;
13194     case Intrinsic::ppc_altivec_stvehx:
13195       VT = MVT::i16;
13196       break;
13197     case Intrinsic::ppc_altivec_stvewx:
13198       VT = MVT::i32;
13199       break;
13200     }
13201 
13202     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
13203   }
13204 
13205   return false;
13206 }
13207 
13208 // Return true is there is a nearyby consecutive load to the one provided
13209 // (regardless of alignment). We search up and down the chain, looking though
13210 // token factors and other loads (but nothing else). As a result, a true result
13211 // indicates that it is safe to create a new consecutive load adjacent to the
13212 // load provided.
13213 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
13214   SDValue Chain = LD->getChain();
13215   EVT VT = LD->getMemoryVT();
13216 
13217   SmallSet<SDNode *, 16> LoadRoots;
13218   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
13219   SmallSet<SDNode *, 16> Visited;
13220 
13221   // First, search up the chain, branching to follow all token-factor operands.
13222   // If we find a consecutive load, then we're done, otherwise, record all
13223   // nodes just above the top-level loads and token factors.
13224   while (!Queue.empty()) {
13225     SDNode *ChainNext = Queue.pop_back_val();
13226     if (!Visited.insert(ChainNext).second)
13227       continue;
13228 
13229     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
13230       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
13231         return true;
13232 
13233       if (!Visited.count(ChainLD->getChain().getNode()))
13234         Queue.push_back(ChainLD->getChain().getNode());
13235     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
13236       for (const SDUse &O : ChainNext->ops())
13237         if (!Visited.count(O.getNode()))
13238           Queue.push_back(O.getNode());
13239     } else
13240       LoadRoots.insert(ChainNext);
13241   }
13242 
13243   // Second, search down the chain, starting from the top-level nodes recorded
13244   // in the first phase. These top-level nodes are the nodes just above all
13245   // loads and token factors. Starting with their uses, recursively look though
13246   // all loads (just the chain uses) and token factors to find a consecutive
13247   // load.
13248   Visited.clear();
13249   Queue.clear();
13250 
13251   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
13252        IE = LoadRoots.end(); I != IE; ++I) {
13253     Queue.push_back(*I);
13254 
13255     while (!Queue.empty()) {
13256       SDNode *LoadRoot = Queue.pop_back_val();
13257       if (!Visited.insert(LoadRoot).second)
13258         continue;
13259 
13260       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
13261         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
13262           return true;
13263 
13264       for (SDNode *U : LoadRoot->uses())
13265         if (((isa<MemSDNode>(U) &&
13266               cast<MemSDNode>(U)->getChain().getNode() == LoadRoot) ||
13267              U->getOpcode() == ISD::TokenFactor) &&
13268             !Visited.count(U))
13269           Queue.push_back(U);
13270     }
13271   }
13272 
13273   return false;
13274 }
13275 
13276 /// This function is called when we have proved that a SETCC node can be replaced
13277 /// by subtraction (and other supporting instructions) so that the result of
13278 /// comparison is kept in a GPR instead of CR. This function is purely for
13279 /// codegen purposes and has some flags to guide the codegen process.
13280 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
13281                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
13282   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
13283 
13284   // Zero extend the operands to the largest legal integer. Originally, they
13285   // must be of a strictly smaller size.
13286   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
13287                          DAG.getConstant(Size, DL, MVT::i32));
13288   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
13289                          DAG.getConstant(Size, DL, MVT::i32));
13290 
13291   // Swap if needed. Depends on the condition code.
13292   if (Swap)
13293     std::swap(Op0, Op1);
13294 
13295   // Subtract extended integers.
13296   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
13297 
13298   // Move the sign bit to the least significant position and zero out the rest.
13299   // Now the least significant bit carries the result of original comparison.
13300   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
13301                              DAG.getConstant(Size - 1, DL, MVT::i32));
13302   auto Final = Shifted;
13303 
13304   // Complement the result if needed. Based on the condition code.
13305   if (Complement)
13306     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
13307                         DAG.getConstant(1, DL, MVT::i64));
13308 
13309   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
13310 }
13311 
13312 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
13313                                                   DAGCombinerInfo &DCI) const {
13314   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
13315 
13316   SelectionDAG &DAG = DCI.DAG;
13317   SDLoc DL(N);
13318 
13319   // Size of integers being compared has a critical role in the following
13320   // analysis, so we prefer to do this when all types are legal.
13321   if (!DCI.isAfterLegalizeDAG())
13322     return SDValue();
13323 
13324   // If all users of SETCC extend its value to a legal integer type
13325   // then we replace SETCC with a subtraction
13326   for (const SDNode *U : N->uses())
13327     if (U->getOpcode() != ISD::ZERO_EXTEND)
13328       return SDValue();
13329 
13330   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13331   auto OpSize = N->getOperand(0).getValueSizeInBits();
13332 
13333   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
13334 
13335   if (OpSize < Size) {
13336     switch (CC) {
13337     default: break;
13338     case ISD::SETULT:
13339       return generateEquivalentSub(N, Size, false, false, DL, DAG);
13340     case ISD::SETULE:
13341       return generateEquivalentSub(N, Size, true, true, DL, DAG);
13342     case ISD::SETUGT:
13343       return generateEquivalentSub(N, Size, false, true, DL, DAG);
13344     case ISD::SETUGE:
13345       return generateEquivalentSub(N, Size, true, false, DL, DAG);
13346     }
13347   }
13348 
13349   return SDValue();
13350 }
13351 
13352 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
13353                                                   DAGCombinerInfo &DCI) const {
13354   SelectionDAG &DAG = DCI.DAG;
13355   SDLoc dl(N);
13356 
13357   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
13358   // If we're tracking CR bits, we need to be careful that we don't have:
13359   //   trunc(binary-ops(zext(x), zext(y)))
13360   // or
13361   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
13362   // such that we're unnecessarily moving things into GPRs when it would be
13363   // better to keep them in CR bits.
13364 
13365   // Note that trunc here can be an actual i1 trunc, or can be the effective
13366   // truncation that comes from a setcc or select_cc.
13367   if (N->getOpcode() == ISD::TRUNCATE &&
13368       N->getValueType(0) != MVT::i1)
13369     return SDValue();
13370 
13371   if (N->getOperand(0).getValueType() != MVT::i32 &&
13372       N->getOperand(0).getValueType() != MVT::i64)
13373     return SDValue();
13374 
13375   if (N->getOpcode() == ISD::SETCC ||
13376       N->getOpcode() == ISD::SELECT_CC) {
13377     // If we're looking at a comparison, then we need to make sure that the
13378     // high bits (all except for the first) don't matter the result.
13379     ISD::CondCode CC =
13380       cast<CondCodeSDNode>(N->getOperand(
13381         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
13382     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
13383 
13384     if (ISD::isSignedIntSetCC(CC)) {
13385       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
13386           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
13387         return SDValue();
13388     } else if (ISD::isUnsignedIntSetCC(CC)) {
13389       if (!DAG.MaskedValueIsZero(N->getOperand(0),
13390                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
13391           !DAG.MaskedValueIsZero(N->getOperand(1),
13392                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
13393         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
13394                                              : SDValue());
13395     } else {
13396       // This is neither a signed nor an unsigned comparison, just make sure
13397       // that the high bits are equal.
13398       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
13399       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
13400 
13401       // We don't really care about what is known about the first bit (if
13402       // anything), so pretend that it is known zero for both to ensure they can
13403       // be compared as constants.
13404       Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0);
13405       Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0);
13406 
13407       if (!Op1Known.isConstant() || !Op2Known.isConstant() ||
13408           Op1Known.getConstant() != Op2Known.getConstant())
13409         return SDValue();
13410     }
13411   }
13412 
13413   // We now know that the higher-order bits are irrelevant, we just need to
13414   // make sure that all of the intermediate operations are bit operations, and
13415   // all inputs are extensions.
13416   if (N->getOperand(0).getOpcode() != ISD::AND &&
13417       N->getOperand(0).getOpcode() != ISD::OR  &&
13418       N->getOperand(0).getOpcode() != ISD::XOR &&
13419       N->getOperand(0).getOpcode() != ISD::SELECT &&
13420       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
13421       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
13422       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
13423       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
13424       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
13425     return SDValue();
13426 
13427   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
13428       N->getOperand(1).getOpcode() != ISD::AND &&
13429       N->getOperand(1).getOpcode() != ISD::OR  &&
13430       N->getOperand(1).getOpcode() != ISD::XOR &&
13431       N->getOperand(1).getOpcode() != ISD::SELECT &&
13432       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
13433       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
13434       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
13435       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
13436       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
13437     return SDValue();
13438 
13439   SmallVector<SDValue, 4> Inputs;
13440   SmallVector<SDValue, 8> BinOps, PromOps;
13441   SmallPtrSet<SDNode *, 16> Visited;
13442 
13443   for (unsigned i = 0; i < 2; ++i) {
13444     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13445           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13446           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13447           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13448         isa<ConstantSDNode>(N->getOperand(i)))
13449       Inputs.push_back(N->getOperand(i));
13450     else
13451       BinOps.push_back(N->getOperand(i));
13452 
13453     if (N->getOpcode() == ISD::TRUNCATE)
13454       break;
13455   }
13456 
13457   // Visit all inputs, collect all binary operations (and, or, xor and
13458   // select) that are all fed by extensions.
13459   while (!BinOps.empty()) {
13460     SDValue BinOp = BinOps.pop_back_val();
13461 
13462     if (!Visited.insert(BinOp.getNode()).second)
13463       continue;
13464 
13465     PromOps.push_back(BinOp);
13466 
13467     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13468       // The condition of the select is not promoted.
13469       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13470         continue;
13471       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13472         continue;
13473 
13474       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13475             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13476             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13477            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13478           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13479         Inputs.push_back(BinOp.getOperand(i));
13480       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13481                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13482                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13483                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13484                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
13485                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13486                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13487                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13488                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
13489         BinOps.push_back(BinOp.getOperand(i));
13490       } else {
13491         // We have an input that is not an extension or another binary
13492         // operation; we'll abort this transformation.
13493         return SDValue();
13494       }
13495     }
13496   }
13497 
13498   // Make sure that this is a self-contained cluster of operations (which
13499   // is not quite the same thing as saying that everything has only one
13500   // use).
13501   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13502     if (isa<ConstantSDNode>(Inputs[i]))
13503       continue;
13504 
13505     for (const SDNode *User : Inputs[i].getNode()->uses()) {
13506       if (User != N && !Visited.count(User))
13507         return SDValue();
13508 
13509       // Make sure that we're not going to promote the non-output-value
13510       // operand(s) or SELECT or SELECT_CC.
13511       // FIXME: Although we could sometimes handle this, and it does occur in
13512       // practice that one of the condition inputs to the select is also one of
13513       // the outputs, we currently can't deal with this.
13514       if (User->getOpcode() == ISD::SELECT) {
13515         if (User->getOperand(0) == Inputs[i])
13516           return SDValue();
13517       } else if (User->getOpcode() == ISD::SELECT_CC) {
13518         if (User->getOperand(0) == Inputs[i] ||
13519             User->getOperand(1) == Inputs[i])
13520           return SDValue();
13521       }
13522     }
13523   }
13524 
13525   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13526     for (const SDNode *User : PromOps[i].getNode()->uses()) {
13527       if (User != N && !Visited.count(User))
13528         return SDValue();
13529 
13530       // Make sure that we're not going to promote the non-output-value
13531       // operand(s) or SELECT or SELECT_CC.
13532       // FIXME: Although we could sometimes handle this, and it does occur in
13533       // practice that one of the condition inputs to the select is also one of
13534       // the outputs, we currently can't deal with this.
13535       if (User->getOpcode() == ISD::SELECT) {
13536         if (User->getOperand(0) == PromOps[i])
13537           return SDValue();
13538       } else if (User->getOpcode() == ISD::SELECT_CC) {
13539         if (User->getOperand(0) == PromOps[i] ||
13540             User->getOperand(1) == PromOps[i])
13541           return SDValue();
13542       }
13543     }
13544   }
13545 
13546   // Replace all inputs with the extension operand.
13547   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13548     // Constants may have users outside the cluster of to-be-promoted nodes,
13549     // and so we need to replace those as we do the promotions.
13550     if (isa<ConstantSDNode>(Inputs[i]))
13551       continue;
13552     else
13553       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
13554   }
13555 
13556   std::list<HandleSDNode> PromOpHandles;
13557   for (auto &PromOp : PromOps)
13558     PromOpHandles.emplace_back(PromOp);
13559 
13560   // Replace all operations (these are all the same, but have a different
13561   // (i1) return type). DAG.getNode will validate that the types of
13562   // a binary operator match, so go through the list in reverse so that
13563   // we've likely promoted both operands first. Any intermediate truncations or
13564   // extensions disappear.
13565   while (!PromOpHandles.empty()) {
13566     SDValue PromOp = PromOpHandles.back().getValue();
13567     PromOpHandles.pop_back();
13568 
13569     if (PromOp.getOpcode() == ISD::TRUNCATE ||
13570         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
13571         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
13572         PromOp.getOpcode() == ISD::ANY_EXTEND) {
13573       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
13574           PromOp.getOperand(0).getValueType() != MVT::i1) {
13575         // The operand is not yet ready (see comment below).
13576         PromOpHandles.emplace_front(PromOp);
13577         continue;
13578       }
13579 
13580       SDValue RepValue = PromOp.getOperand(0);
13581       if (isa<ConstantSDNode>(RepValue))
13582         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
13583 
13584       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
13585       continue;
13586     }
13587 
13588     unsigned C;
13589     switch (PromOp.getOpcode()) {
13590     default:             C = 0; break;
13591     case ISD::SELECT:    C = 1; break;
13592     case ISD::SELECT_CC: C = 2; break;
13593     }
13594 
13595     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13596          PromOp.getOperand(C).getValueType() != MVT::i1) ||
13597         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13598          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
13599       // The to-be-promoted operands of this node have not yet been
13600       // promoted (this should be rare because we're going through the
13601       // list backward, but if one of the operands has several users in
13602       // this cluster of to-be-promoted nodes, it is possible).
13603       PromOpHandles.emplace_front(PromOp);
13604       continue;
13605     }
13606 
13607     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13608                                 PromOp.getNode()->op_end());
13609 
13610     // If there are any constant inputs, make sure they're replaced now.
13611     for (unsigned i = 0; i < 2; ++i)
13612       if (isa<ConstantSDNode>(Ops[C+i]))
13613         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
13614 
13615     DAG.ReplaceAllUsesOfValueWith(PromOp,
13616       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
13617   }
13618 
13619   // Now we're left with the initial truncation itself.
13620   if (N->getOpcode() == ISD::TRUNCATE)
13621     return N->getOperand(0);
13622 
13623   // Otherwise, this is a comparison. The operands to be compared have just
13624   // changed type (to i1), but everything else is the same.
13625   return SDValue(N, 0);
13626 }
13627 
13628 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
13629                                                   DAGCombinerInfo &DCI) const {
13630   SelectionDAG &DAG = DCI.DAG;
13631   SDLoc dl(N);
13632 
13633   // If we're tracking CR bits, we need to be careful that we don't have:
13634   //   zext(binary-ops(trunc(x), trunc(y)))
13635   // or
13636   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
13637   // such that we're unnecessarily moving things into CR bits that can more
13638   // efficiently stay in GPRs. Note that if we're not certain that the high
13639   // bits are set as required by the final extension, we still may need to do
13640   // some masking to get the proper behavior.
13641 
13642   // This same functionality is important on PPC64 when dealing with
13643   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
13644   // the return values of functions. Because it is so similar, it is handled
13645   // here as well.
13646 
13647   if (N->getValueType(0) != MVT::i32 &&
13648       N->getValueType(0) != MVT::i64)
13649     return SDValue();
13650 
13651   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
13652         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
13653     return SDValue();
13654 
13655   if (N->getOperand(0).getOpcode() != ISD::AND &&
13656       N->getOperand(0).getOpcode() != ISD::OR  &&
13657       N->getOperand(0).getOpcode() != ISD::XOR &&
13658       N->getOperand(0).getOpcode() != ISD::SELECT &&
13659       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
13660     return SDValue();
13661 
13662   SmallVector<SDValue, 4> Inputs;
13663   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
13664   SmallPtrSet<SDNode *, 16> Visited;
13665 
13666   // Visit all inputs, collect all binary operations (and, or, xor and
13667   // select) that are all fed by truncations.
13668   while (!BinOps.empty()) {
13669     SDValue BinOp = BinOps.pop_back_val();
13670 
13671     if (!Visited.insert(BinOp.getNode()).second)
13672       continue;
13673 
13674     PromOps.push_back(BinOp);
13675 
13676     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13677       // The condition of the select is not promoted.
13678       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13679         continue;
13680       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13681         continue;
13682 
13683       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13684           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13685         Inputs.push_back(BinOp.getOperand(i));
13686       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13687                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13688                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13689                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13690                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
13691         BinOps.push_back(BinOp.getOperand(i));
13692       } else {
13693         // We have an input that is not a truncation or another binary
13694         // operation; we'll abort this transformation.
13695         return SDValue();
13696       }
13697     }
13698   }
13699 
13700   // The operands of a select that must be truncated when the select is
13701   // promoted because the operand is actually part of the to-be-promoted set.
13702   DenseMap<SDNode *, EVT> SelectTruncOp[2];
13703 
13704   // Make sure that this is a self-contained cluster of operations (which
13705   // is not quite the same thing as saying that everything has only one
13706   // use).
13707   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13708     if (isa<ConstantSDNode>(Inputs[i]))
13709       continue;
13710 
13711     for (SDNode *User : Inputs[i].getNode()->uses()) {
13712       if (User != N && !Visited.count(User))
13713         return SDValue();
13714 
13715       // If we're going to promote the non-output-value operand(s) or SELECT or
13716       // SELECT_CC, record them for truncation.
13717       if (User->getOpcode() == ISD::SELECT) {
13718         if (User->getOperand(0) == Inputs[i])
13719           SelectTruncOp[0].insert(std::make_pair(User,
13720                                     User->getOperand(0).getValueType()));
13721       } else if (User->getOpcode() == ISD::SELECT_CC) {
13722         if (User->getOperand(0) == Inputs[i])
13723           SelectTruncOp[0].insert(std::make_pair(User,
13724                                     User->getOperand(0).getValueType()));
13725         if (User->getOperand(1) == Inputs[i])
13726           SelectTruncOp[1].insert(std::make_pair(User,
13727                                     User->getOperand(1).getValueType()));
13728       }
13729     }
13730   }
13731 
13732   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13733     for (SDNode *User : PromOps[i].getNode()->uses()) {
13734       if (User != N && !Visited.count(User))
13735         return SDValue();
13736 
13737       // If we're going to promote the non-output-value operand(s) or SELECT or
13738       // SELECT_CC, record them for truncation.
13739       if (User->getOpcode() == ISD::SELECT) {
13740         if (User->getOperand(0) == PromOps[i])
13741           SelectTruncOp[0].insert(std::make_pair(User,
13742                                     User->getOperand(0).getValueType()));
13743       } else if (User->getOpcode() == ISD::SELECT_CC) {
13744         if (User->getOperand(0) == PromOps[i])
13745           SelectTruncOp[0].insert(std::make_pair(User,
13746                                     User->getOperand(0).getValueType()));
13747         if (User->getOperand(1) == PromOps[i])
13748           SelectTruncOp[1].insert(std::make_pair(User,
13749                                     User->getOperand(1).getValueType()));
13750       }
13751     }
13752   }
13753 
13754   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
13755   bool ReallyNeedsExt = false;
13756   if (N->getOpcode() != ISD::ANY_EXTEND) {
13757     // If all of the inputs are not already sign/zero extended, then
13758     // we'll still need to do that at the end.
13759     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13760       if (isa<ConstantSDNode>(Inputs[i]))
13761         continue;
13762 
13763       unsigned OpBits =
13764         Inputs[i].getOperand(0).getValueSizeInBits();
13765       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
13766 
13767       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
13768            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
13769                                   APInt::getHighBitsSet(OpBits,
13770                                                         OpBits-PromBits))) ||
13771           (N->getOpcode() == ISD::SIGN_EXTEND &&
13772            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
13773              (OpBits-(PromBits-1)))) {
13774         ReallyNeedsExt = true;
13775         break;
13776       }
13777     }
13778   }
13779 
13780   // Replace all inputs, either with the truncation operand, or a
13781   // truncation or extension to the final output type.
13782   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13783     // Constant inputs need to be replaced with the to-be-promoted nodes that
13784     // use them because they might have users outside of the cluster of
13785     // promoted nodes.
13786     if (isa<ConstantSDNode>(Inputs[i]))
13787       continue;
13788 
13789     SDValue InSrc = Inputs[i].getOperand(0);
13790     if (Inputs[i].getValueType() == N->getValueType(0))
13791       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
13792     else if (N->getOpcode() == ISD::SIGN_EXTEND)
13793       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13794         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
13795     else if (N->getOpcode() == ISD::ZERO_EXTEND)
13796       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13797         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
13798     else
13799       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13800         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
13801   }
13802 
13803   std::list<HandleSDNode> PromOpHandles;
13804   for (auto &PromOp : PromOps)
13805     PromOpHandles.emplace_back(PromOp);
13806 
13807   // Replace all operations (these are all the same, but have a different
13808   // (promoted) return type). DAG.getNode will validate that the types of
13809   // a binary operator match, so go through the list in reverse so that
13810   // we've likely promoted both operands first.
13811   while (!PromOpHandles.empty()) {
13812     SDValue PromOp = PromOpHandles.back().getValue();
13813     PromOpHandles.pop_back();
13814 
13815     unsigned C;
13816     switch (PromOp.getOpcode()) {
13817     default:             C = 0; break;
13818     case ISD::SELECT:    C = 1; break;
13819     case ISD::SELECT_CC: C = 2; break;
13820     }
13821 
13822     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13823          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
13824         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13825          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
13826       // The to-be-promoted operands of this node have not yet been
13827       // promoted (this should be rare because we're going through the
13828       // list backward, but if one of the operands has several users in
13829       // this cluster of to-be-promoted nodes, it is possible).
13830       PromOpHandles.emplace_front(PromOp);
13831       continue;
13832     }
13833 
13834     // For SELECT and SELECT_CC nodes, we do a similar check for any
13835     // to-be-promoted comparison inputs.
13836     if (PromOp.getOpcode() == ISD::SELECT ||
13837         PromOp.getOpcode() == ISD::SELECT_CC) {
13838       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
13839            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
13840           (SelectTruncOp[1].count(PromOp.getNode()) &&
13841            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
13842         PromOpHandles.emplace_front(PromOp);
13843         continue;
13844       }
13845     }
13846 
13847     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13848                                 PromOp.getNode()->op_end());
13849 
13850     // If this node has constant inputs, then they'll need to be promoted here.
13851     for (unsigned i = 0; i < 2; ++i) {
13852       if (!isa<ConstantSDNode>(Ops[C+i]))
13853         continue;
13854       if (Ops[C+i].getValueType() == N->getValueType(0))
13855         continue;
13856 
13857       if (N->getOpcode() == ISD::SIGN_EXTEND)
13858         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13859       else if (N->getOpcode() == ISD::ZERO_EXTEND)
13860         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13861       else
13862         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13863     }
13864 
13865     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
13866     // truncate them again to the original value type.
13867     if (PromOp.getOpcode() == ISD::SELECT ||
13868         PromOp.getOpcode() == ISD::SELECT_CC) {
13869       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
13870       if (SI0 != SelectTruncOp[0].end())
13871         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
13872       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
13873       if (SI1 != SelectTruncOp[1].end())
13874         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
13875     }
13876 
13877     DAG.ReplaceAllUsesOfValueWith(PromOp,
13878       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
13879   }
13880 
13881   // Now we're left with the initial extension itself.
13882   if (!ReallyNeedsExt)
13883     return N->getOperand(0);
13884 
13885   // To zero extend, just mask off everything except for the first bit (in the
13886   // i1 case).
13887   if (N->getOpcode() == ISD::ZERO_EXTEND)
13888     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
13889                        DAG.getConstant(APInt::getLowBitsSet(
13890                                          N->getValueSizeInBits(0), PromBits),
13891                                        dl, N->getValueType(0)));
13892 
13893   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
13894          "Invalid extension type");
13895   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
13896   SDValue ShiftCst =
13897       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
13898   return DAG.getNode(
13899       ISD::SRA, dl, N->getValueType(0),
13900       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
13901       ShiftCst);
13902 }
13903 
13904 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
13905                                         DAGCombinerInfo &DCI) const {
13906   assert(N->getOpcode() == ISD::SETCC &&
13907          "Should be called with a SETCC node");
13908 
13909   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13910   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13911     SDValue LHS = N->getOperand(0);
13912     SDValue RHS = N->getOperand(1);
13913 
13914     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13915     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13916         LHS.hasOneUse())
13917       std::swap(LHS, RHS);
13918 
13919     // x == 0-y --> x+y == 0
13920     // x != 0-y --> x+y != 0
13921     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13922         RHS.hasOneUse()) {
13923       SDLoc DL(N);
13924       SelectionDAG &DAG = DCI.DAG;
13925       EVT VT = N->getValueType(0);
13926       EVT OpVT = LHS.getValueType();
13927       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13928       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13929     }
13930   }
13931 
13932   return DAGCombineTruncBoolExt(N, DCI);
13933 }
13934 
13935 // Is this an extending load from an f32 to an f64?
13936 static bool isFPExtLoad(SDValue Op) {
13937   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13938     return LD->getExtensionType() == ISD::EXTLOAD &&
13939       Op.getValueType() == MVT::f64;
13940   return false;
13941 }
13942 
13943 /// Reduces the number of fp-to-int conversion when building a vector.
13944 ///
13945 /// If this vector is built out of floating to integer conversions,
13946 /// transform it to a vector built out of floating point values followed by a
13947 /// single floating to integer conversion of the vector.
13948 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
13949 /// becomes (fptosi (build_vector ($A, $B, ...)))
13950 SDValue PPCTargetLowering::
13951 combineElementTruncationToVectorTruncation(SDNode *N,
13952                                            DAGCombinerInfo &DCI) const {
13953   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13954          "Should be called with a BUILD_VECTOR node");
13955 
13956   SelectionDAG &DAG = DCI.DAG;
13957   SDLoc dl(N);
13958 
13959   SDValue FirstInput = N->getOperand(0);
13960   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
13961          "The input operand must be an fp-to-int conversion.");
13962 
13963   // This combine happens after legalization so the fp_to_[su]i nodes are
13964   // already converted to PPCSISD nodes.
13965   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
13966   if (FirstConversion == PPCISD::FCTIDZ ||
13967       FirstConversion == PPCISD::FCTIDUZ ||
13968       FirstConversion == PPCISD::FCTIWZ ||
13969       FirstConversion == PPCISD::FCTIWUZ) {
13970     bool IsSplat = true;
13971     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
13972       FirstConversion == PPCISD::FCTIWUZ;
13973     EVT SrcVT = FirstInput.getOperand(0).getValueType();
13974     SmallVector<SDValue, 4> Ops;
13975     EVT TargetVT = N->getValueType(0);
13976     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13977       SDValue NextOp = N->getOperand(i);
13978       if (NextOp.getOpcode() != PPCISD::MFVSR)
13979         return SDValue();
13980       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
13981       if (NextConversion != FirstConversion)
13982         return SDValue();
13983       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13984       // This is not valid if the input was originally double precision. It is
13985       // also not profitable to do unless this is an extending load in which
13986       // case doing this combine will allow us to combine consecutive loads.
13987       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
13988         return SDValue();
13989       if (N->getOperand(i) != FirstInput)
13990         IsSplat = false;
13991     }
13992 
13993     // If this is a splat, we leave it as-is since there will be only a single
13994     // fp-to-int conversion followed by a splat of the integer. This is better
13995     // for 32-bit and smaller ints and neutral for 64-bit ints.
13996     if (IsSplat)
13997       return SDValue();
13998 
13999     // Now that we know we have the right type of node, get its operands
14000     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
14001       SDValue In = N->getOperand(i).getOperand(0);
14002       if (Is32Bit) {
14003         // For 32-bit values, we need to add an FP_ROUND node (if we made it
14004         // here, we know that all inputs are extending loads so this is safe).
14005         if (In.isUndef())
14006           Ops.push_back(DAG.getUNDEF(SrcVT));
14007         else {
14008           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
14009                                       MVT::f32, In.getOperand(0),
14010                                       DAG.getIntPtrConstant(1, dl));
14011           Ops.push_back(Trunc);
14012         }
14013       } else
14014         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
14015     }
14016 
14017     unsigned Opcode;
14018     if (FirstConversion == PPCISD::FCTIDZ ||
14019         FirstConversion == PPCISD::FCTIWZ)
14020       Opcode = ISD::FP_TO_SINT;
14021     else
14022       Opcode = ISD::FP_TO_UINT;
14023 
14024     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
14025     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
14026     return DAG.getNode(Opcode, dl, TargetVT, BV);
14027   }
14028   return SDValue();
14029 }
14030 
14031 /// Reduce the number of loads when building a vector.
14032 ///
14033 /// Building a vector out of multiple loads can be converted to a load
14034 /// of the vector type if the loads are consecutive. If the loads are
14035 /// consecutive but in descending order, a shuffle is added at the end
14036 /// to reorder the vector.
14037 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
14038   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
14039          "Should be called with a BUILD_VECTOR node");
14040 
14041   SDLoc dl(N);
14042 
14043   // Return early for non byte-sized type, as they can't be consecutive.
14044   if (!N->getValueType(0).getVectorElementType().isByteSized())
14045     return SDValue();
14046 
14047   bool InputsAreConsecutiveLoads = true;
14048   bool InputsAreReverseConsecutive = true;
14049   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
14050   SDValue FirstInput = N->getOperand(0);
14051   bool IsRoundOfExtLoad = false;
14052 
14053   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
14054       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
14055     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
14056     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
14057   }
14058   // Not a build vector of (possibly fp_rounded) loads.
14059   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
14060       N->getNumOperands() == 1)
14061     return SDValue();
14062 
14063   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
14064     // If any inputs are fp_round(extload), they all must be.
14065     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
14066       return SDValue();
14067 
14068     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
14069       N->getOperand(i);
14070     if (NextInput.getOpcode() != ISD::LOAD)
14071       return SDValue();
14072 
14073     SDValue PreviousInput =
14074       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
14075     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
14076     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
14077 
14078     // If any inputs are fp_round(extload), they all must be.
14079     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
14080       return SDValue();
14081 
14082     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
14083       InputsAreConsecutiveLoads = false;
14084     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
14085       InputsAreReverseConsecutive = false;
14086 
14087     // Exit early if the loads are neither consecutive nor reverse consecutive.
14088     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
14089       return SDValue();
14090   }
14091 
14092   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
14093          "The loads cannot be both consecutive and reverse consecutive.");
14094 
14095   SDValue FirstLoadOp =
14096     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
14097   SDValue LastLoadOp =
14098     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
14099                        N->getOperand(N->getNumOperands()-1);
14100 
14101   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
14102   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
14103   if (InputsAreConsecutiveLoads) {
14104     assert(LD1 && "Input needs to be a LoadSDNode.");
14105     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
14106                        LD1->getBasePtr(), LD1->getPointerInfo(),
14107                        LD1->getAlignment());
14108   }
14109   if (InputsAreReverseConsecutive) {
14110     assert(LDL && "Input needs to be a LoadSDNode.");
14111     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
14112                                LDL->getBasePtr(), LDL->getPointerInfo(),
14113                                LDL->getAlignment());
14114     SmallVector<int, 16> Ops;
14115     for (int i = N->getNumOperands() - 1; i >= 0; i--)
14116       Ops.push_back(i);
14117 
14118     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
14119                                 DAG.getUNDEF(N->getValueType(0)), Ops);
14120   }
14121   return SDValue();
14122 }
14123 
14124 // This function adds the required vector_shuffle needed to get
14125 // the elements of the vector extract in the correct position
14126 // as specified by the CorrectElems encoding.
14127 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
14128                                       SDValue Input, uint64_t Elems,
14129                                       uint64_t CorrectElems) {
14130   SDLoc dl(N);
14131 
14132   unsigned NumElems = Input.getValueType().getVectorNumElements();
14133   SmallVector<int, 16> ShuffleMask(NumElems, -1);
14134 
14135   // Knowing the element indices being extracted from the original
14136   // vector and the order in which they're being inserted, just put
14137   // them at element indices required for the instruction.
14138   for (unsigned i = 0; i < N->getNumOperands(); i++) {
14139     if (DAG.getDataLayout().isLittleEndian())
14140       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
14141     else
14142       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
14143     CorrectElems = CorrectElems >> 8;
14144     Elems = Elems >> 8;
14145   }
14146 
14147   SDValue Shuffle =
14148       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
14149                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
14150 
14151   EVT VT = N->getValueType(0);
14152   SDValue Conv = DAG.getBitcast(VT, Shuffle);
14153 
14154   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
14155                                Input.getValueType().getVectorElementType(),
14156                                VT.getVectorNumElements());
14157   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
14158                      DAG.getValueType(ExtVT));
14159 }
14160 
14161 // Look for build vector patterns where input operands come from sign
14162 // extended vector_extract elements of specific indices. If the correct indices
14163 // aren't used, add a vector shuffle to fix up the indices and create
14164 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
14165 // during instruction selection.
14166 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
14167   // This array encodes the indices that the vector sign extend instructions
14168   // extract from when extending from one type to another for both BE and LE.
14169   // The right nibble of each byte corresponds to the LE incides.
14170   // and the left nibble of each byte corresponds to the BE incides.
14171   // For example: 0x3074B8FC  byte->word
14172   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
14173   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
14174   // For example: 0x000070F8  byte->double word
14175   // For LE: the allowed indices are: 0x0,0x8
14176   // For BE: the allowed indices are: 0x7,0xF
14177   uint64_t TargetElems[] = {
14178       0x3074B8FC, // b->w
14179       0x000070F8, // b->d
14180       0x10325476, // h->w
14181       0x00003074, // h->d
14182       0x00001032, // w->d
14183   };
14184 
14185   uint64_t Elems = 0;
14186   int Index;
14187   SDValue Input;
14188 
14189   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
14190     if (!Op)
14191       return false;
14192     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
14193         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
14194       return false;
14195 
14196     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
14197     // of the right width.
14198     SDValue Extract = Op.getOperand(0);
14199     if (Extract.getOpcode() == ISD::ANY_EXTEND)
14200       Extract = Extract.getOperand(0);
14201     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14202       return false;
14203 
14204     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
14205     if (!ExtOp)
14206       return false;
14207 
14208     Index = ExtOp->getZExtValue();
14209     if (Input && Input != Extract.getOperand(0))
14210       return false;
14211 
14212     if (!Input)
14213       Input = Extract.getOperand(0);
14214 
14215     Elems = Elems << 8;
14216     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
14217     Elems |= Index;
14218 
14219     return true;
14220   };
14221 
14222   // If the build vector operands aren't sign extended vector extracts,
14223   // of the same input vector, then return.
14224   for (unsigned i = 0; i < N->getNumOperands(); i++) {
14225     if (!isSExtOfVecExtract(N->getOperand(i))) {
14226       return SDValue();
14227     }
14228   }
14229 
14230   // If the vector extract indicies are not correct, add the appropriate
14231   // vector_shuffle.
14232   int TgtElemArrayIdx;
14233   int InputSize = Input.getValueType().getScalarSizeInBits();
14234   int OutputSize = N->getValueType(0).getScalarSizeInBits();
14235   if (InputSize + OutputSize == 40)
14236     TgtElemArrayIdx = 0;
14237   else if (InputSize + OutputSize == 72)
14238     TgtElemArrayIdx = 1;
14239   else if (InputSize + OutputSize == 48)
14240     TgtElemArrayIdx = 2;
14241   else if (InputSize + OutputSize == 80)
14242     TgtElemArrayIdx = 3;
14243   else if (InputSize + OutputSize == 96)
14244     TgtElemArrayIdx = 4;
14245   else
14246     return SDValue();
14247 
14248   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
14249   CorrectElems = DAG.getDataLayout().isLittleEndian()
14250                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
14251                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
14252   if (Elems != CorrectElems) {
14253     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
14254   }
14255 
14256   // Regular lowering will catch cases where a shuffle is not needed.
14257   return SDValue();
14258 }
14259 
14260 // Look for the pattern of a load from a narrow width to i128, feeding
14261 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node
14262 // (LXVRZX). This node represents a zero extending load that will be matched
14263 // to the Load VSX Vector Rightmost instructions.
14264 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) {
14265   SDLoc DL(N);
14266 
14267   // This combine is only eligible for a BUILD_VECTOR of v1i128.
14268   if (N->getValueType(0) != MVT::v1i128)
14269     return SDValue();
14270 
14271   SDValue Operand = N->getOperand(0);
14272   // Proceed with the transformation if the operand to the BUILD_VECTOR
14273   // is a load instruction.
14274   if (Operand.getOpcode() != ISD::LOAD)
14275     return SDValue();
14276 
14277   auto *LD = cast<LoadSDNode>(Operand);
14278   EVT MemoryType = LD->getMemoryVT();
14279 
14280   // This transformation is only valid if the we are loading either a byte,
14281   // halfword, word, or doubleword.
14282   bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 ||
14283                      MemoryType == MVT::i32 || MemoryType == MVT::i64;
14284 
14285   // Ensure that the load from the narrow width is being zero extended to i128.
14286   if (!ValidLDType ||
14287       (LD->getExtensionType() != ISD::ZEXTLOAD &&
14288        LD->getExtensionType() != ISD::EXTLOAD))
14289     return SDValue();
14290 
14291   SDValue LoadOps[] = {
14292       LD->getChain(), LD->getBasePtr(),
14293       DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)};
14294 
14295   return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL,
14296                                  DAG.getVTList(MVT::v1i128, MVT::Other),
14297                                  LoadOps, MemoryType, LD->getMemOperand());
14298 }
14299 
14300 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
14301                                                  DAGCombinerInfo &DCI) const {
14302   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
14303          "Should be called with a BUILD_VECTOR node");
14304 
14305   SelectionDAG &DAG = DCI.DAG;
14306   SDLoc dl(N);
14307 
14308   if (!Subtarget.hasVSX())
14309     return SDValue();
14310 
14311   // The target independent DAG combiner will leave a build_vector of
14312   // float-to-int conversions intact. We can generate MUCH better code for
14313   // a float-to-int conversion of a vector of floats.
14314   SDValue FirstInput = N->getOperand(0);
14315   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
14316     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
14317     if (Reduced)
14318       return Reduced;
14319   }
14320 
14321   // If we're building a vector out of consecutive loads, just load that
14322   // vector type.
14323   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
14324   if (Reduced)
14325     return Reduced;
14326 
14327   // If we're building a vector out of extended elements from another vector
14328   // we have P9 vector integer extend instructions. The code assumes legal
14329   // input types (i.e. it can't handle things like v4i16) so do not run before
14330   // legalization.
14331   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
14332     Reduced = combineBVOfVecSExt(N, DAG);
14333     if (Reduced)
14334       return Reduced;
14335   }
14336 
14337   // On Power10, the Load VSX Vector Rightmost instructions can be utilized
14338   // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR
14339   // is a load from <valid narrow width> to i128.
14340   if (Subtarget.isISA3_1()) {
14341     SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG);
14342     if (BVOfZLoad)
14343       return BVOfZLoad;
14344   }
14345 
14346   if (N->getValueType(0) != MVT::v2f64)
14347     return SDValue();
14348 
14349   // Looking for:
14350   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
14351   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
14352       FirstInput.getOpcode() != ISD::UINT_TO_FP)
14353     return SDValue();
14354   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
14355       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
14356     return SDValue();
14357   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
14358     return SDValue();
14359 
14360   SDValue Ext1 = FirstInput.getOperand(0);
14361   SDValue Ext2 = N->getOperand(1).getOperand(0);
14362   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
14363      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14364     return SDValue();
14365 
14366   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
14367   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
14368   if (!Ext1Op || !Ext2Op)
14369     return SDValue();
14370   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
14371       Ext1.getOperand(0) != Ext2.getOperand(0))
14372     return SDValue();
14373 
14374   int FirstElem = Ext1Op->getZExtValue();
14375   int SecondElem = Ext2Op->getZExtValue();
14376   int SubvecIdx;
14377   if (FirstElem == 0 && SecondElem == 1)
14378     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
14379   else if (FirstElem == 2 && SecondElem == 3)
14380     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
14381   else
14382     return SDValue();
14383 
14384   SDValue SrcVec = Ext1.getOperand(0);
14385   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
14386     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
14387   return DAG.getNode(NodeType, dl, MVT::v2f64,
14388                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
14389 }
14390 
14391 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
14392                                               DAGCombinerInfo &DCI) const {
14393   assert((N->getOpcode() == ISD::SINT_TO_FP ||
14394           N->getOpcode() == ISD::UINT_TO_FP) &&
14395          "Need an int -> FP conversion node here");
14396 
14397   if (useSoftFloat() || !Subtarget.has64BitSupport())
14398     return SDValue();
14399 
14400   SelectionDAG &DAG = DCI.DAG;
14401   SDLoc dl(N);
14402   SDValue Op(N, 0);
14403 
14404   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
14405   // from the hardware.
14406   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
14407     return SDValue();
14408   if (!Op.getOperand(0).getValueType().isSimple())
14409     return SDValue();
14410   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
14411       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
14412     return SDValue();
14413 
14414   SDValue FirstOperand(Op.getOperand(0));
14415   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
14416     (FirstOperand.getValueType() == MVT::i8 ||
14417      FirstOperand.getValueType() == MVT::i16);
14418   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
14419     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
14420     bool DstDouble = Op.getValueType() == MVT::f64;
14421     unsigned ConvOp = Signed ?
14422       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
14423       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
14424     SDValue WidthConst =
14425       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
14426                             dl, false);
14427     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
14428     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
14429     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
14430                                          DAG.getVTList(MVT::f64, MVT::Other),
14431                                          Ops, MVT::i8, LDN->getMemOperand());
14432 
14433     // For signed conversion, we need to sign-extend the value in the VSR
14434     if (Signed) {
14435       SDValue ExtOps[] = { Ld, WidthConst };
14436       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
14437       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
14438     } else
14439       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
14440   }
14441 
14442 
14443   // For i32 intermediate values, unfortunately, the conversion functions
14444   // leave the upper 32 bits of the value are undefined. Within the set of
14445   // scalar instructions, we have no method for zero- or sign-extending the
14446   // value. Thus, we cannot handle i32 intermediate values here.
14447   if (Op.getOperand(0).getValueType() == MVT::i32)
14448     return SDValue();
14449 
14450   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
14451          "UINT_TO_FP is supported only with FPCVT");
14452 
14453   // If we have FCFIDS, then use it when converting to single-precision.
14454   // Otherwise, convert to double-precision and then round.
14455   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14456                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
14457                                                             : PPCISD::FCFIDS)
14458                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
14459                                                             : PPCISD::FCFID);
14460   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14461                   ? MVT::f32
14462                   : MVT::f64;
14463 
14464   // If we're converting from a float, to an int, and back to a float again,
14465   // then we don't need the store/load pair at all.
14466   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
14467        Subtarget.hasFPCVT()) ||
14468       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
14469     SDValue Src = Op.getOperand(0).getOperand(0);
14470     if (Src.getValueType() == MVT::f32) {
14471       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
14472       DCI.AddToWorklist(Src.getNode());
14473     } else if (Src.getValueType() != MVT::f64) {
14474       // Make sure that we don't pick up a ppc_fp128 source value.
14475       return SDValue();
14476     }
14477 
14478     unsigned FCTOp =
14479       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
14480                                                         PPCISD::FCTIDUZ;
14481 
14482     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
14483     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
14484 
14485     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
14486       FP = DAG.getNode(ISD::FP_ROUND, dl,
14487                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
14488       DCI.AddToWorklist(FP.getNode());
14489     }
14490 
14491     return FP;
14492   }
14493 
14494   return SDValue();
14495 }
14496 
14497 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
14498 // builtins) into loads with swaps.
14499 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
14500                                               DAGCombinerInfo &DCI) const {
14501   SelectionDAG &DAG = DCI.DAG;
14502   SDLoc dl(N);
14503   SDValue Chain;
14504   SDValue Base;
14505   MachineMemOperand *MMO;
14506 
14507   switch (N->getOpcode()) {
14508   default:
14509     llvm_unreachable("Unexpected opcode for little endian VSX load");
14510   case ISD::LOAD: {
14511     LoadSDNode *LD = cast<LoadSDNode>(N);
14512     Chain = LD->getChain();
14513     Base = LD->getBasePtr();
14514     MMO = LD->getMemOperand();
14515     // If the MMO suggests this isn't a load of a full vector, leave
14516     // things alone.  For a built-in, we have to make the change for
14517     // correctness, so if there is a size problem that will be a bug.
14518     if (MMO->getSize() < 16)
14519       return SDValue();
14520     break;
14521   }
14522   case ISD::INTRINSIC_W_CHAIN: {
14523     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14524     Chain = Intrin->getChain();
14525     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
14526     // us what we want. Get operand 2 instead.
14527     Base = Intrin->getOperand(2);
14528     MMO = Intrin->getMemOperand();
14529     break;
14530   }
14531   }
14532 
14533   MVT VecTy = N->getValueType(0).getSimpleVT();
14534 
14535   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
14536   // aligned and the type is a vector with elements up to 4 bytes
14537   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14538       VecTy.getScalarSizeInBits() <= 32) {
14539     return SDValue();
14540   }
14541 
14542   SDValue LoadOps[] = { Chain, Base };
14543   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
14544                                          DAG.getVTList(MVT::v2f64, MVT::Other),
14545                                          LoadOps, MVT::v2f64, MMO);
14546 
14547   DCI.AddToWorklist(Load.getNode());
14548   Chain = Load.getValue(1);
14549   SDValue Swap = DAG.getNode(
14550       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
14551   DCI.AddToWorklist(Swap.getNode());
14552 
14553   // Add a bitcast if the resulting load type doesn't match v2f64.
14554   if (VecTy != MVT::v2f64) {
14555     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
14556     DCI.AddToWorklist(N.getNode());
14557     // Package {bitcast value, swap's chain} to match Load's shape.
14558     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
14559                        N, Swap.getValue(1));
14560   }
14561 
14562   return Swap;
14563 }
14564 
14565 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
14566 // builtins) into stores with swaps.
14567 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
14568                                                DAGCombinerInfo &DCI) const {
14569   SelectionDAG &DAG = DCI.DAG;
14570   SDLoc dl(N);
14571   SDValue Chain;
14572   SDValue Base;
14573   unsigned SrcOpnd;
14574   MachineMemOperand *MMO;
14575 
14576   switch (N->getOpcode()) {
14577   default:
14578     llvm_unreachable("Unexpected opcode for little endian VSX store");
14579   case ISD::STORE: {
14580     StoreSDNode *ST = cast<StoreSDNode>(N);
14581     Chain = ST->getChain();
14582     Base = ST->getBasePtr();
14583     MMO = ST->getMemOperand();
14584     SrcOpnd = 1;
14585     // If the MMO suggests this isn't a store of a full vector, leave
14586     // things alone.  For a built-in, we have to make the change for
14587     // correctness, so if there is a size problem that will be a bug.
14588     if (MMO->getSize() < 16)
14589       return SDValue();
14590     break;
14591   }
14592   case ISD::INTRINSIC_VOID: {
14593     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14594     Chain = Intrin->getChain();
14595     // Intrin->getBasePtr() oddly does not get what we want.
14596     Base = Intrin->getOperand(3);
14597     MMO = Intrin->getMemOperand();
14598     SrcOpnd = 2;
14599     break;
14600   }
14601   }
14602 
14603   SDValue Src = N->getOperand(SrcOpnd);
14604   MVT VecTy = Src.getValueType().getSimpleVT();
14605 
14606   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
14607   // aligned and the type is a vector with elements up to 4 bytes
14608   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14609       VecTy.getScalarSizeInBits() <= 32) {
14610     return SDValue();
14611   }
14612 
14613   // All stores are done as v2f64 and possible bit cast.
14614   if (VecTy != MVT::v2f64) {
14615     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
14616     DCI.AddToWorklist(Src.getNode());
14617   }
14618 
14619   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
14620                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
14621   DCI.AddToWorklist(Swap.getNode());
14622   Chain = Swap.getValue(1);
14623   SDValue StoreOps[] = { Chain, Swap, Base };
14624   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
14625                                           DAG.getVTList(MVT::Other),
14626                                           StoreOps, VecTy, MMO);
14627   DCI.AddToWorklist(Store.getNode());
14628   return Store;
14629 }
14630 
14631 // Handle DAG combine for STORE (FP_TO_INT F).
14632 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
14633                                                DAGCombinerInfo &DCI) const {
14634 
14635   SelectionDAG &DAG = DCI.DAG;
14636   SDLoc dl(N);
14637   unsigned Opcode = N->getOperand(1).getOpcode();
14638 
14639   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
14640          && "Not a FP_TO_INT Instruction!");
14641 
14642   SDValue Val = N->getOperand(1).getOperand(0);
14643   EVT Op1VT = N->getOperand(1).getValueType();
14644   EVT ResVT = Val.getValueType();
14645 
14646   if (!isTypeLegal(ResVT))
14647     return SDValue();
14648 
14649   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
14650   bool ValidTypeForStoreFltAsInt =
14651         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
14652          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
14653 
14654   if (ResVT == MVT::f128 && !Subtarget.hasP9Vector())
14655     return SDValue();
14656 
14657   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
14658       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
14659     return SDValue();
14660 
14661   // Extend f32 values to f64
14662   if (ResVT.getScalarSizeInBits() == 32) {
14663     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
14664     DCI.AddToWorklist(Val.getNode());
14665   }
14666 
14667   // Set signed or unsigned conversion opcode.
14668   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
14669                           PPCISD::FP_TO_SINT_IN_VSR :
14670                           PPCISD::FP_TO_UINT_IN_VSR;
14671 
14672   Val = DAG.getNode(ConvOpcode,
14673                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
14674   DCI.AddToWorklist(Val.getNode());
14675 
14676   // Set number of bytes being converted.
14677   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
14678   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
14679                     DAG.getIntPtrConstant(ByteSize, dl, false),
14680                     DAG.getValueType(Op1VT) };
14681 
14682   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
14683           DAG.getVTList(MVT::Other), Ops,
14684           cast<StoreSDNode>(N)->getMemoryVT(),
14685           cast<StoreSDNode>(N)->getMemOperand());
14686 
14687   DCI.AddToWorklist(Val.getNode());
14688   return Val;
14689 }
14690 
14691 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
14692   // Check that the source of the element keeps flipping
14693   // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
14694   bool PrevElemFromFirstVec = Mask[0] < NumElts;
14695   for (int i = 1, e = Mask.size(); i < e; i++) {
14696     if (PrevElemFromFirstVec && Mask[i] < NumElts)
14697       return false;
14698     if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
14699       return false;
14700     PrevElemFromFirstVec = !PrevElemFromFirstVec;
14701   }
14702   return true;
14703 }
14704 
14705 static bool isSplatBV(SDValue Op) {
14706   if (Op.getOpcode() != ISD::BUILD_VECTOR)
14707     return false;
14708   SDValue FirstOp;
14709 
14710   // Find first non-undef input.
14711   for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
14712     FirstOp = Op.getOperand(i);
14713     if (!FirstOp.isUndef())
14714       break;
14715   }
14716 
14717   // All inputs are undef or the same as the first non-undef input.
14718   for (int i = 1, e = Op.getNumOperands(); i < e; i++)
14719     if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
14720       return false;
14721   return true;
14722 }
14723 
14724 static SDValue isScalarToVec(SDValue Op) {
14725   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14726     return Op;
14727   if (Op.getOpcode() != ISD::BITCAST)
14728     return SDValue();
14729   Op = Op.getOperand(0);
14730   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14731     return Op;
14732   return SDValue();
14733 }
14734 
14735 // Fix up the shuffle mask to account for the fact that the result of
14736 // scalar_to_vector is not in lane zero. This just takes all values in
14737 // the ranges specified by the min/max indices and adds the number of
14738 // elements required to ensure each element comes from the respective
14739 // position in the valid lane.
14740 // On little endian, that's just the corresponding element in the other
14741 // half of the vector. On big endian, it is in the same half but right
14742 // justified rather than left justified in that half.
14743 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
14744                                             int LHSMaxIdx, int RHSMinIdx,
14745                                             int RHSMaxIdx, int HalfVec,
14746                                             unsigned ValidLaneWidth,
14747                                             const PPCSubtarget &Subtarget) {
14748   for (int i = 0, e = ShuffV.size(); i < e; i++) {
14749     int Idx = ShuffV[i];
14750     if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
14751       ShuffV[i] +=
14752           Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth;
14753   }
14754 }
14755 
14756 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
14757 // the original is:
14758 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
14759 // In such a case, just change the shuffle mask to extract the element
14760 // from the permuted index.
14761 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG,
14762                                const PPCSubtarget &Subtarget) {
14763   SDLoc dl(OrigSToV);
14764   EVT VT = OrigSToV.getValueType();
14765   assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
14766          "Expecting a SCALAR_TO_VECTOR here");
14767   SDValue Input = OrigSToV.getOperand(0);
14768 
14769   if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14770     ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
14771     SDValue OrigVector = Input.getOperand(0);
14772 
14773     // Can't handle non-const element indices or different vector types
14774     // for the input to the extract and the output of the scalar_to_vector.
14775     if (Idx && VT == OrigVector.getValueType()) {
14776       unsigned NumElts = VT.getVectorNumElements();
14777       assert(
14778           NumElts > 1 &&
14779           "Cannot produce a permuted scalar_to_vector for one element vector");
14780       SmallVector<int, 16> NewMask(NumElts, -1);
14781       unsigned ResultInElt = NumElts / 2;
14782       ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1;
14783       NewMask[ResultInElt] = Idx->getZExtValue();
14784       return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
14785     }
14786   }
14787   return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
14788                      OrigSToV.getOperand(0));
14789 }
14790 
14791 // On little endian subtargets, combine shuffles such as:
14792 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
14793 // into:
14794 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
14795 // because the latter can be matched to a single instruction merge.
14796 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
14797 // to put the value into element zero. Adjust the shuffle mask so that the
14798 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
14799 // On big endian targets, this is still useful for SCALAR_TO_VECTOR
14800 // nodes with elements smaller than doubleword because all the ways
14801 // of getting scalar data into a vector register put the value in the
14802 // rightmost element of the left half of the vector.
14803 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
14804                                                 SelectionDAG &DAG) const {
14805   SDValue LHS = SVN->getOperand(0);
14806   SDValue RHS = SVN->getOperand(1);
14807   auto Mask = SVN->getMask();
14808   int NumElts = LHS.getValueType().getVectorNumElements();
14809   SDValue Res(SVN, 0);
14810   SDLoc dl(SVN);
14811   bool IsLittleEndian = Subtarget.isLittleEndian();
14812 
14813   // On big endian targets this is only useful for subtargets with direct moves.
14814   // On little endian targets it would be useful for all subtargets with VSX.
14815   // However adding special handling for LE subtargets without direct moves
14816   // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8)
14817   // which includes direct moves.
14818   if (!Subtarget.hasDirectMove())
14819     return Res;
14820 
14821   // If this is not a shuffle of a shuffle and the first element comes from
14822   // the second vector, canonicalize to the commuted form. This will make it
14823   // more likely to match one of the single instruction patterns.
14824   if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14825       RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
14826     std::swap(LHS, RHS);
14827     Res = DAG.getCommutedVectorShuffle(*SVN);
14828     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14829   }
14830 
14831   // Adjust the shuffle mask if either input vector comes from a
14832   // SCALAR_TO_VECTOR and keep the respective input vector in permuted
14833   // form (to prevent the need for a swap).
14834   SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
14835   SDValue SToVLHS = isScalarToVec(LHS);
14836   SDValue SToVRHS = isScalarToVec(RHS);
14837   if (SToVLHS || SToVRHS) {
14838     int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
14839                             : SToVRHS.getValueType().getVectorNumElements();
14840     int NumEltsOut = ShuffV.size();
14841     // The width of the "valid lane" (i.e. the lane that contains the value that
14842     // is vectorized) needs to be expressed in terms of the number of elements
14843     // of the shuffle. It is thereby the ratio of the values before and after
14844     // any bitcast.
14845     unsigned ValidLaneWidth =
14846         SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() /
14847                       LHS.getValueType().getScalarSizeInBits()
14848                 : SToVRHS.getValueType().getScalarSizeInBits() /
14849                       RHS.getValueType().getScalarSizeInBits();
14850 
14851     // Initially assume that neither input is permuted. These will be adjusted
14852     // accordingly if either input is.
14853     int LHSMaxIdx = -1;
14854     int RHSMinIdx = -1;
14855     int RHSMaxIdx = -1;
14856     int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
14857 
14858     // Get the permuted scalar to vector nodes for the source(s) that come from
14859     // ISD::SCALAR_TO_VECTOR.
14860     // On big endian systems, this only makes sense for element sizes smaller
14861     // than 64 bits since for 64-bit elements, all instructions already put
14862     // the value into element zero. Since scalar size of LHS and RHS may differ
14863     // after isScalarToVec, this should be checked using their own sizes.
14864     if (SToVLHS) {
14865       if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64)
14866         return Res;
14867       // Set up the values for the shuffle vector fixup.
14868       LHSMaxIdx = NumEltsOut / NumEltsIn;
14869       SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget);
14870       if (SToVLHS.getValueType() != LHS.getValueType())
14871         SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
14872       LHS = SToVLHS;
14873     }
14874     if (SToVRHS) {
14875       if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64)
14876         return Res;
14877       RHSMinIdx = NumEltsOut;
14878       RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
14879       SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget);
14880       if (SToVRHS.getValueType() != RHS.getValueType())
14881         SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
14882       RHS = SToVRHS;
14883     }
14884 
14885     // Fix up the shuffle mask to reflect where the desired element actually is.
14886     // The minimum and maximum indices that correspond to element zero for both
14887     // the LHS and RHS are computed and will control which shuffle mask entries
14888     // are to be changed. For example, if the RHS is permuted, any shuffle mask
14889     // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted.
14890     fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
14891                                     HalfVec, ValidLaneWidth, Subtarget);
14892     Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14893 
14894     // We may have simplified away the shuffle. We won't be able to do anything
14895     // further with it here.
14896     if (!isa<ShuffleVectorSDNode>(Res))
14897       return Res;
14898     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14899   }
14900 
14901   SDValue TheSplat = IsLittleEndian ? RHS : LHS;
14902   // The common case after we commuted the shuffle is that the RHS is a splat
14903   // and we have elements coming in from the splat at indices that are not
14904   // conducive to using a merge.
14905   // Example:
14906   // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
14907   if (!isSplatBV(TheSplat))
14908     return Res;
14909 
14910   // We are looking for a mask such that all even elements are from
14911   // one vector and all odd elements from the other.
14912   if (!isAlternatingShuffMask(Mask, NumElts))
14913     return Res;
14914 
14915   // Adjust the mask so we are pulling in the same index from the splat
14916   // as the index from the interesting vector in consecutive elements.
14917   if (IsLittleEndian) {
14918     // Example (even elements from first vector):
14919     // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
14920     if (Mask[0] < NumElts)
14921       for (int i = 1, e = Mask.size(); i < e; i += 2)
14922         ShuffV[i] = (ShuffV[i - 1] + NumElts);
14923     // Example (odd elements from first vector):
14924     // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
14925     else
14926       for (int i = 0, e = Mask.size(); i < e; i += 2)
14927         ShuffV[i] = (ShuffV[i + 1] + NumElts);
14928   } else {
14929     // Example (even elements from first vector):
14930     // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1
14931     if (Mask[0] < NumElts)
14932       for (int i = 0, e = Mask.size(); i < e; i += 2)
14933         ShuffV[i] = ShuffV[i + 1] - NumElts;
14934     // Example (odd elements from first vector):
14935     // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1
14936     else
14937       for (int i = 1, e = Mask.size(); i < e; i += 2)
14938         ShuffV[i] = ShuffV[i - 1] - NumElts;
14939   }
14940 
14941   // If the RHS has undefs, we need to remove them since we may have created
14942   // a shuffle that adds those instead of the splat value.
14943   SDValue SplatVal =
14944       cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue();
14945   TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal);
14946 
14947   if (IsLittleEndian)
14948     RHS = TheSplat;
14949   else
14950     LHS = TheSplat;
14951   return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14952 }
14953 
14954 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
14955                                                 LSBaseSDNode *LSBase,
14956                                                 DAGCombinerInfo &DCI) const {
14957   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
14958         "Not a reverse memop pattern!");
14959 
14960   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
14961     auto Mask = SVN->getMask();
14962     int i = 0;
14963     auto I = Mask.rbegin();
14964     auto E = Mask.rend();
14965 
14966     for (; I != E; ++I) {
14967       if (*I != i)
14968         return false;
14969       i++;
14970     }
14971     return true;
14972   };
14973 
14974   SelectionDAG &DAG = DCI.DAG;
14975   EVT VT = SVN->getValueType(0);
14976 
14977   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14978     return SDValue();
14979 
14980   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
14981   // See comment in PPCVSXSwapRemoval.cpp.
14982   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
14983   if (!Subtarget.hasP9Vector())
14984     return SDValue();
14985 
14986   if(!IsElementReverse(SVN))
14987     return SDValue();
14988 
14989   if (LSBase->getOpcode() == ISD::LOAD) {
14990     // If the load return value 0 has more than one user except the
14991     // shufflevector instruction, it is not profitable to replace the
14992     // shufflevector with a reverse load.
14993     for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end();
14994          UI != UE; ++UI)
14995       if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE)
14996         return SDValue();
14997 
14998     SDLoc dl(LSBase);
14999     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
15000     return DAG.getMemIntrinsicNode(
15001         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
15002         LSBase->getMemoryVT(), LSBase->getMemOperand());
15003   }
15004 
15005   if (LSBase->getOpcode() == ISD::STORE) {
15006     // If there are other uses of the shuffle, the swap cannot be avoided.
15007     // Forcing the use of an X-Form (since swapped stores only have
15008     // X-Forms) without removing the swap is unprofitable.
15009     if (!SVN->hasOneUse())
15010       return SDValue();
15011 
15012     SDLoc dl(LSBase);
15013     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
15014                           LSBase->getBasePtr()};
15015     return DAG.getMemIntrinsicNode(
15016         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
15017         LSBase->getMemoryVT(), LSBase->getMemOperand());
15018   }
15019 
15020   llvm_unreachable("Expected a load or store node here");
15021 }
15022 
15023 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
15024                                              DAGCombinerInfo &DCI) const {
15025   SelectionDAG &DAG = DCI.DAG;
15026   SDLoc dl(N);
15027   switch (N->getOpcode()) {
15028   default: break;
15029   case ISD::ADD:
15030     return combineADD(N, DCI);
15031   case ISD::SHL:
15032     return combineSHL(N, DCI);
15033   case ISD::SRA:
15034     return combineSRA(N, DCI);
15035   case ISD::SRL:
15036     return combineSRL(N, DCI);
15037   case ISD::MUL:
15038     return combineMUL(N, DCI);
15039   case ISD::FMA:
15040   case PPCISD::FNMSUB:
15041     return combineFMALike(N, DCI);
15042   case PPCISD::SHL:
15043     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
15044         return N->getOperand(0);
15045     break;
15046   case PPCISD::SRL:
15047     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
15048         return N->getOperand(0);
15049     break;
15050   case PPCISD::SRA:
15051     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
15052       if (C->isZero() ||  //  0 >>s V -> 0.
15053           C->isAllOnes()) // -1 >>s V -> -1.
15054         return N->getOperand(0);
15055     }
15056     break;
15057   case ISD::SIGN_EXTEND:
15058   case ISD::ZERO_EXTEND:
15059   case ISD::ANY_EXTEND:
15060     return DAGCombineExtBoolTrunc(N, DCI);
15061   case ISD::TRUNCATE:
15062     return combineTRUNCATE(N, DCI);
15063   case ISD::SETCC:
15064     if (SDValue CSCC = combineSetCC(N, DCI))
15065       return CSCC;
15066     LLVM_FALLTHROUGH;
15067   case ISD::SELECT_CC:
15068     return DAGCombineTruncBoolExt(N, DCI);
15069   case ISD::SINT_TO_FP:
15070   case ISD::UINT_TO_FP:
15071     return combineFPToIntToFP(N, DCI);
15072   case ISD::VECTOR_SHUFFLE:
15073     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
15074       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
15075       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
15076     }
15077     return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
15078   case ISD::STORE: {
15079 
15080     EVT Op1VT = N->getOperand(1).getValueType();
15081     unsigned Opcode = N->getOperand(1).getOpcode();
15082 
15083     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
15084       SDValue Val= combineStoreFPToInt(N, DCI);
15085       if (Val)
15086         return Val;
15087     }
15088 
15089     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
15090       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
15091       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
15092       if (Val)
15093         return Val;
15094     }
15095 
15096     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
15097     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
15098         N->getOperand(1).getNode()->hasOneUse() &&
15099         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
15100          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
15101 
15102       // STBRX can only handle simple types and it makes no sense to store less
15103       // two bytes in byte-reversed order.
15104       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
15105       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
15106         break;
15107 
15108       SDValue BSwapOp = N->getOperand(1).getOperand(0);
15109       // Do an any-extend to 32-bits if this is a half-word input.
15110       if (BSwapOp.getValueType() == MVT::i16)
15111         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
15112 
15113       // If the type of BSWAP operand is wider than stored memory width
15114       // it need to be shifted to the right side before STBRX.
15115       if (Op1VT.bitsGT(mVT)) {
15116         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
15117         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
15118                               DAG.getConstant(Shift, dl, MVT::i32));
15119         // Need to truncate if this is a bswap of i64 stored as i32/i16.
15120         if (Op1VT == MVT::i64)
15121           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
15122       }
15123 
15124       SDValue Ops[] = {
15125         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
15126       };
15127       return
15128         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
15129                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
15130                                 cast<StoreSDNode>(N)->getMemOperand());
15131     }
15132 
15133     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
15134     // So it can increase the chance of CSE constant construction.
15135     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
15136         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
15137       // Need to sign-extended to 64-bits to handle negative values.
15138       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
15139       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
15140                                     MemVT.getSizeInBits());
15141       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
15142 
15143       // DAG.getTruncStore() can't be used here because it doesn't accept
15144       // the general (base + offset) addressing mode.
15145       // So we use UpdateNodeOperands and setTruncatingStore instead.
15146       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
15147                              N->getOperand(3));
15148       cast<StoreSDNode>(N)->setTruncatingStore(true);
15149       return SDValue(N, 0);
15150     }
15151 
15152     // For little endian, VSX stores require generating xxswapd/lxvd2x.
15153     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
15154     if (Op1VT.isSimple()) {
15155       MVT StoreVT = Op1VT.getSimpleVT();
15156       if (Subtarget.needsSwapsForVSXMemOps() &&
15157           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
15158            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
15159         return expandVSXStoreForLE(N, DCI);
15160     }
15161     break;
15162   }
15163   case ISD::LOAD: {
15164     LoadSDNode *LD = cast<LoadSDNode>(N);
15165     EVT VT = LD->getValueType(0);
15166 
15167     // For little endian, VSX loads require generating lxvd2x/xxswapd.
15168     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
15169     if (VT.isSimple()) {
15170       MVT LoadVT = VT.getSimpleVT();
15171       if (Subtarget.needsSwapsForVSXMemOps() &&
15172           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
15173            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
15174         return expandVSXLoadForLE(N, DCI);
15175     }
15176 
15177     // We sometimes end up with a 64-bit integer load, from which we extract
15178     // two single-precision floating-point numbers. This happens with
15179     // std::complex<float>, and other similar structures, because of the way we
15180     // canonicalize structure copies. However, if we lack direct moves,
15181     // then the final bitcasts from the extracted integer values to the
15182     // floating-point numbers turn into store/load pairs. Even with direct moves,
15183     // just loading the two floating-point numbers is likely better.
15184     auto ReplaceTwoFloatLoad = [&]() {
15185       if (VT != MVT::i64)
15186         return false;
15187 
15188       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
15189           LD->isVolatile())
15190         return false;
15191 
15192       //  We're looking for a sequence like this:
15193       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
15194       //      t16: i64 = srl t13, Constant:i32<32>
15195       //    t17: i32 = truncate t16
15196       //  t18: f32 = bitcast t17
15197       //    t19: i32 = truncate t13
15198       //  t20: f32 = bitcast t19
15199 
15200       if (!LD->hasNUsesOfValue(2, 0))
15201         return false;
15202 
15203       auto UI = LD->use_begin();
15204       while (UI.getUse().getResNo() != 0) ++UI;
15205       SDNode *Trunc = *UI++;
15206       while (UI.getUse().getResNo() != 0) ++UI;
15207       SDNode *RightShift = *UI;
15208       if (Trunc->getOpcode() != ISD::TRUNCATE)
15209         std::swap(Trunc, RightShift);
15210 
15211       if (Trunc->getOpcode() != ISD::TRUNCATE ||
15212           Trunc->getValueType(0) != MVT::i32 ||
15213           !Trunc->hasOneUse())
15214         return false;
15215       if (RightShift->getOpcode() != ISD::SRL ||
15216           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
15217           RightShift->getConstantOperandVal(1) != 32 ||
15218           !RightShift->hasOneUse())
15219         return false;
15220 
15221       SDNode *Trunc2 = *RightShift->use_begin();
15222       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
15223           Trunc2->getValueType(0) != MVT::i32 ||
15224           !Trunc2->hasOneUse())
15225         return false;
15226 
15227       SDNode *Bitcast = *Trunc->use_begin();
15228       SDNode *Bitcast2 = *Trunc2->use_begin();
15229 
15230       if (Bitcast->getOpcode() != ISD::BITCAST ||
15231           Bitcast->getValueType(0) != MVT::f32)
15232         return false;
15233       if (Bitcast2->getOpcode() != ISD::BITCAST ||
15234           Bitcast2->getValueType(0) != MVT::f32)
15235         return false;
15236 
15237       if (Subtarget.isLittleEndian())
15238         std::swap(Bitcast, Bitcast2);
15239 
15240       // Bitcast has the second float (in memory-layout order) and Bitcast2
15241       // has the first one.
15242 
15243       SDValue BasePtr = LD->getBasePtr();
15244       if (LD->isIndexed()) {
15245         assert(LD->getAddressingMode() == ISD::PRE_INC &&
15246                "Non-pre-inc AM on PPC?");
15247         BasePtr =
15248           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
15249                       LD->getOffset());
15250       }
15251 
15252       auto MMOFlags =
15253           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
15254       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
15255                                       LD->getPointerInfo(), LD->getAlignment(),
15256                                       MMOFlags, LD->getAAInfo());
15257       SDValue AddPtr =
15258         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
15259                     BasePtr, DAG.getIntPtrConstant(4, dl));
15260       SDValue FloatLoad2 = DAG.getLoad(
15261           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
15262           LD->getPointerInfo().getWithOffset(4),
15263           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
15264 
15265       if (LD->isIndexed()) {
15266         // Note that DAGCombine should re-form any pre-increment load(s) from
15267         // what is produced here if that makes sense.
15268         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
15269       }
15270 
15271       DCI.CombineTo(Bitcast2, FloatLoad);
15272       DCI.CombineTo(Bitcast, FloatLoad2);
15273 
15274       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
15275                                     SDValue(FloatLoad2.getNode(), 1));
15276       return true;
15277     };
15278 
15279     if (ReplaceTwoFloatLoad())
15280       return SDValue(N, 0);
15281 
15282     EVT MemVT = LD->getMemoryVT();
15283     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
15284     Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
15285     if (LD->isUnindexed() && VT.isVector() &&
15286         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
15287           // P8 and later hardware should just use LOAD.
15288           !Subtarget.hasP8Vector() &&
15289           (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
15290            VT == MVT::v4f32))) &&
15291         LD->getAlign() < ABIAlignment) {
15292       // This is a type-legal unaligned Altivec load.
15293       SDValue Chain = LD->getChain();
15294       SDValue Ptr = LD->getBasePtr();
15295       bool isLittleEndian = Subtarget.isLittleEndian();
15296 
15297       // This implements the loading of unaligned vectors as described in
15298       // the venerable Apple Velocity Engine overview. Specifically:
15299       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
15300       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
15301       //
15302       // The general idea is to expand a sequence of one or more unaligned
15303       // loads into an alignment-based permutation-control instruction (lvsl
15304       // or lvsr), a series of regular vector loads (which always truncate
15305       // their input address to an aligned address), and a series of
15306       // permutations.  The results of these permutations are the requested
15307       // loaded values.  The trick is that the last "extra" load is not taken
15308       // from the address you might suspect (sizeof(vector) bytes after the
15309       // last requested load), but rather sizeof(vector) - 1 bytes after the
15310       // last requested vector. The point of this is to avoid a page fault if
15311       // the base address happened to be aligned. This works because if the
15312       // base address is aligned, then adding less than a full vector length
15313       // will cause the last vector in the sequence to be (re)loaded.
15314       // Otherwise, the next vector will be fetched as you might suspect was
15315       // necessary.
15316 
15317       // We might be able to reuse the permutation generation from
15318       // a different base address offset from this one by an aligned amount.
15319       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
15320       // optimization later.
15321       Intrinsic::ID Intr, IntrLD, IntrPerm;
15322       MVT PermCntlTy, PermTy, LDTy;
15323       Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15324                             : Intrinsic::ppc_altivec_lvsl;
15325       IntrLD = Intrinsic::ppc_altivec_lvx;
15326       IntrPerm = Intrinsic::ppc_altivec_vperm;
15327       PermCntlTy = MVT::v16i8;
15328       PermTy = MVT::v4i32;
15329       LDTy = MVT::v4i32;
15330 
15331       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
15332 
15333       // Create the new MMO for the new base load. It is like the original MMO,
15334       // but represents an area in memory almost twice the vector size centered
15335       // on the original address. If the address is unaligned, we might start
15336       // reading up to (sizeof(vector)-1) bytes below the address of the
15337       // original unaligned load.
15338       MachineFunction &MF = DAG.getMachineFunction();
15339       MachineMemOperand *BaseMMO =
15340         MF.getMachineMemOperand(LD->getMemOperand(),
15341                                 -(long)MemVT.getStoreSize()+1,
15342                                 2*MemVT.getStoreSize()-1);
15343 
15344       // Create the new base load.
15345       SDValue LDXIntID =
15346           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
15347       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
15348       SDValue BaseLoad =
15349         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15350                                 DAG.getVTList(PermTy, MVT::Other),
15351                                 BaseLoadOps, LDTy, BaseMMO);
15352 
15353       // Note that the value of IncOffset (which is provided to the next
15354       // load's pointer info offset value, and thus used to calculate the
15355       // alignment), and the value of IncValue (which is actually used to
15356       // increment the pointer value) are different! This is because we
15357       // require the next load to appear to be aligned, even though it
15358       // is actually offset from the base pointer by a lesser amount.
15359       int IncOffset = VT.getSizeInBits() / 8;
15360       int IncValue = IncOffset;
15361 
15362       // Walk (both up and down) the chain looking for another load at the real
15363       // (aligned) offset (the alignment of the other load does not matter in
15364       // this case). If found, then do not use the offset reduction trick, as
15365       // that will prevent the loads from being later combined (as they would
15366       // otherwise be duplicates).
15367       if (!findConsecutiveLoad(LD, DAG))
15368         --IncValue;
15369 
15370       SDValue Increment =
15371           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
15372       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15373 
15374       MachineMemOperand *ExtraMMO =
15375         MF.getMachineMemOperand(LD->getMemOperand(),
15376                                 1, 2*MemVT.getStoreSize()-1);
15377       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
15378       SDValue ExtraLoad =
15379         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15380                                 DAG.getVTList(PermTy, MVT::Other),
15381                                 ExtraLoadOps, LDTy, ExtraMMO);
15382 
15383       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15384         BaseLoad.getValue(1), ExtraLoad.getValue(1));
15385 
15386       // Because vperm has a big-endian bias, we must reverse the order
15387       // of the input vectors and complement the permute control vector
15388       // when generating little endian code.  We have already handled the
15389       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
15390       // and ExtraLoad here.
15391       SDValue Perm;
15392       if (isLittleEndian)
15393         Perm = BuildIntrinsicOp(IntrPerm,
15394                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
15395       else
15396         Perm = BuildIntrinsicOp(IntrPerm,
15397                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
15398 
15399       if (VT != PermTy)
15400         Perm = Subtarget.hasAltivec()
15401                    ? DAG.getNode(ISD::BITCAST, dl, VT, Perm)
15402                    : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm,
15403                                  DAG.getTargetConstant(1, dl, MVT::i64));
15404                                // second argument is 1 because this rounding
15405                                // is always exact.
15406 
15407       // The output of the permutation is our loaded result, the TokenFactor is
15408       // our new chain.
15409       DCI.CombineTo(N, Perm, TF);
15410       return SDValue(N, 0);
15411     }
15412     }
15413     break;
15414     case ISD::INTRINSIC_WO_CHAIN: {
15415       bool isLittleEndian = Subtarget.isLittleEndian();
15416       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
15417       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15418                                            : Intrinsic::ppc_altivec_lvsl);
15419       if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) {
15420         SDValue Add = N->getOperand(1);
15421 
15422         int Bits = 4 /* 16 byte alignment */;
15423 
15424         if (DAG.MaskedValueIsZero(Add->getOperand(1),
15425                                   APInt::getAllOnes(Bits /* alignment */)
15426                                       .zext(Add.getScalarValueSizeInBits()))) {
15427           SDNode *BasePtr = Add->getOperand(0).getNode();
15428           for (SDNode *U : BasePtr->uses()) {
15429             if (U->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15430                 cast<ConstantSDNode>(U->getOperand(0))->getZExtValue() == IID) {
15431               // We've found another LVSL/LVSR, and this address is an aligned
15432               // multiple of that one. The results will be the same, so use the
15433               // one we've just found instead.
15434 
15435               return SDValue(U, 0);
15436             }
15437           }
15438         }
15439 
15440         if (isa<ConstantSDNode>(Add->getOperand(1))) {
15441           SDNode *BasePtr = Add->getOperand(0).getNode();
15442           for (SDNode *U : BasePtr->uses()) {
15443             if (U->getOpcode() == ISD::ADD &&
15444                 isa<ConstantSDNode>(U->getOperand(1)) &&
15445                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
15446                  cast<ConstantSDNode>(U->getOperand(1))->getZExtValue()) %
15447                         (1ULL << Bits) ==
15448                     0) {
15449               SDNode *OtherAdd = U;
15450               for (SDNode *V : OtherAdd->uses()) {
15451                 if (V->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15452                     cast<ConstantSDNode>(V->getOperand(0))->getZExtValue() ==
15453                         IID) {
15454                   return SDValue(V, 0);
15455                 }
15456               }
15457             }
15458           }
15459         }
15460       }
15461 
15462       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
15463       // Expose the vabsduw/h/b opportunity for down stream
15464       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
15465           (IID == Intrinsic::ppc_altivec_vmaxsw ||
15466            IID == Intrinsic::ppc_altivec_vmaxsh ||
15467            IID == Intrinsic::ppc_altivec_vmaxsb)) {
15468         SDValue V1 = N->getOperand(1);
15469         SDValue V2 = N->getOperand(2);
15470         if ((V1.getSimpleValueType() == MVT::v4i32 ||
15471              V1.getSimpleValueType() == MVT::v8i16 ||
15472              V1.getSimpleValueType() == MVT::v16i8) &&
15473             V1.getSimpleValueType() == V2.getSimpleValueType()) {
15474           // (0-a, a)
15475           if (V1.getOpcode() == ISD::SUB &&
15476               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
15477               V1.getOperand(1) == V2) {
15478             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
15479           }
15480           // (a, 0-a)
15481           if (V2.getOpcode() == ISD::SUB &&
15482               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
15483               V2.getOperand(1) == V1) {
15484             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15485           }
15486           // (x-y, y-x)
15487           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
15488               V1.getOperand(0) == V2.getOperand(1) &&
15489               V1.getOperand(1) == V2.getOperand(0)) {
15490             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15491           }
15492         }
15493       }
15494     }
15495 
15496     break;
15497   case ISD::INTRINSIC_W_CHAIN:
15498     // For little endian, VSX loads require generating lxvd2x/xxswapd.
15499     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
15500     if (Subtarget.needsSwapsForVSXMemOps()) {
15501       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15502       default:
15503         break;
15504       case Intrinsic::ppc_vsx_lxvw4x:
15505       case Intrinsic::ppc_vsx_lxvd2x:
15506         return expandVSXLoadForLE(N, DCI);
15507       }
15508     }
15509     break;
15510   case ISD::INTRINSIC_VOID:
15511     // For little endian, VSX stores require generating xxswapd/stxvd2x.
15512     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
15513     if (Subtarget.needsSwapsForVSXMemOps()) {
15514       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15515       default:
15516         break;
15517       case Intrinsic::ppc_vsx_stxvw4x:
15518       case Intrinsic::ppc_vsx_stxvd2x:
15519         return expandVSXStoreForLE(N, DCI);
15520       }
15521     }
15522     break;
15523   case ISD::BSWAP: {
15524     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
15525     // For subtargets without LDBRX, we can still do better than the default
15526     // expansion even for 64-bit BSWAP (LOAD).
15527     bool Is64BitBswapOn64BitTgt =
15528         Subtarget.isPPC64() && N->getValueType(0) == MVT::i64;
15529     bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) &&
15530                                N->getOperand(0).hasOneUse();
15531     if (IsSingleUseNormalLd &&
15532         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
15533          (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) {
15534       SDValue Load = N->getOperand(0);
15535       LoadSDNode *LD = cast<LoadSDNode>(Load);
15536       // Create the byte-swapping load.
15537       SDValue Ops[] = {
15538         LD->getChain(),    // Chain
15539         LD->getBasePtr(),  // Ptr
15540         DAG.getValueType(N->getValueType(0)) // VT
15541       };
15542       SDValue BSLoad =
15543         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
15544                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
15545                                               MVT::i64 : MVT::i32, MVT::Other),
15546                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
15547 
15548       // If this is an i16 load, insert the truncate.
15549       SDValue ResVal = BSLoad;
15550       if (N->getValueType(0) == MVT::i16)
15551         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
15552 
15553       // First, combine the bswap away.  This makes the value produced by the
15554       // load dead.
15555       DCI.CombineTo(N, ResVal);
15556 
15557       // Next, combine the load away, we give it a bogus result value but a real
15558       // chain result.  The result value is dead because the bswap is dead.
15559       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
15560 
15561       // Return N so it doesn't get rechecked!
15562       return SDValue(N, 0);
15563     }
15564     // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only
15565     // before legalization so that the BUILD_PAIR is handled correctly.
15566     if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt ||
15567         !IsSingleUseNormalLd)
15568       return SDValue();
15569     LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0));
15570 
15571     // Can't split volatile or atomic loads.
15572     if (!LD->isSimple())
15573       return SDValue();
15574     SDValue BasePtr = LD->getBasePtr();
15575     SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr,
15576                              LD->getPointerInfo(), LD->getAlignment());
15577     Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo);
15578     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
15579                           DAG.getIntPtrConstant(4, dl));
15580     MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand(
15581         LD->getMemOperand(), 4, 4);
15582     SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO);
15583     Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi);
15584     SDValue Res;
15585     if (Subtarget.isLittleEndian())
15586       Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo);
15587     else
15588       Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
15589     SDValue TF =
15590         DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15591                     Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1));
15592     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF);
15593     return Res;
15594   }
15595   case PPCISD::VCMP:
15596     // If a VCMP_rec node already exists with exactly the same operands as this
15597     // node, use its result instead of this node (VCMP_rec computes both a CR6
15598     // and a normal output).
15599     //
15600     if (!N->getOperand(0).hasOneUse() &&
15601         !N->getOperand(1).hasOneUse() &&
15602         !N->getOperand(2).hasOneUse()) {
15603 
15604       // Scan all of the users of the LHS, looking for VCMP_rec's that match.
15605       SDNode *VCMPrecNode = nullptr;
15606 
15607       SDNode *LHSN = N->getOperand(0).getNode();
15608       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
15609            UI != E; ++UI)
15610         if (UI->getOpcode() == PPCISD::VCMP_rec &&
15611             UI->getOperand(1) == N->getOperand(1) &&
15612             UI->getOperand(2) == N->getOperand(2) &&
15613             UI->getOperand(0) == N->getOperand(0)) {
15614           VCMPrecNode = *UI;
15615           break;
15616         }
15617 
15618       // If there is no VCMP_rec node, or if the flag value has a single use,
15619       // don't transform this.
15620       if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1))
15621         break;
15622 
15623       // Look at the (necessarily single) use of the flag value.  If it has a
15624       // chain, this transformation is more complex.  Note that multiple things
15625       // could use the value result, which we should ignore.
15626       SDNode *FlagUser = nullptr;
15627       for (SDNode::use_iterator UI = VCMPrecNode->use_begin();
15628            FlagUser == nullptr; ++UI) {
15629         assert(UI != VCMPrecNode->use_end() && "Didn't find user!");
15630         SDNode *User = *UI;
15631         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
15632           if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) {
15633             FlagUser = User;
15634             break;
15635           }
15636         }
15637       }
15638 
15639       // If the user is a MFOCRF instruction, we know this is safe.
15640       // Otherwise we give up for right now.
15641       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
15642         return SDValue(VCMPrecNode, 0);
15643     }
15644     break;
15645   case ISD::BRCOND: {
15646     SDValue Cond = N->getOperand(1);
15647     SDValue Target = N->getOperand(2);
15648 
15649     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15650         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
15651           Intrinsic::loop_decrement) {
15652 
15653       // We now need to make the intrinsic dead (it cannot be instruction
15654       // selected).
15655       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
15656       assert(Cond.getNode()->hasOneUse() &&
15657              "Counter decrement has more than one use");
15658 
15659       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
15660                          N->getOperand(0), Target);
15661     }
15662   }
15663   break;
15664   case ISD::BR_CC: {
15665     // If this is a branch on an altivec predicate comparison, lower this so
15666     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
15667     // lowering is done pre-legalize, because the legalizer lowers the predicate
15668     // compare down to code that is difficult to reassemble.
15669     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
15670     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
15671 
15672     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
15673     // value. If so, pass-through the AND to get to the intrinsic.
15674     if (LHS.getOpcode() == ISD::AND &&
15675         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15676         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
15677           Intrinsic::loop_decrement &&
15678         isa<ConstantSDNode>(LHS.getOperand(1)) &&
15679         !isNullConstant(LHS.getOperand(1)))
15680       LHS = LHS.getOperand(0);
15681 
15682     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15683         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
15684           Intrinsic::loop_decrement &&
15685         isa<ConstantSDNode>(RHS)) {
15686       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
15687              "Counter decrement comparison is not EQ or NE");
15688 
15689       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15690       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
15691                     (CC == ISD::SETNE && !Val);
15692 
15693       // We now need to make the intrinsic dead (it cannot be instruction
15694       // selected).
15695       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
15696       assert(LHS.getNode()->hasOneUse() &&
15697              "Counter decrement has more than one use");
15698 
15699       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
15700                          N->getOperand(0), N->getOperand(4));
15701     }
15702 
15703     int CompareOpc;
15704     bool isDot;
15705 
15706     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15707         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
15708         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
15709       assert(isDot && "Can't compare against a vector result!");
15710 
15711       // If this is a comparison against something other than 0/1, then we know
15712       // that the condition is never/always true.
15713       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15714       if (Val != 0 && Val != 1) {
15715         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
15716           return N->getOperand(0);
15717         // Always !=, turn it into an unconditional branch.
15718         return DAG.getNode(ISD::BR, dl, MVT::Other,
15719                            N->getOperand(0), N->getOperand(4));
15720       }
15721 
15722       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
15723 
15724       // Create the PPCISD altivec 'dot' comparison node.
15725       SDValue Ops[] = {
15726         LHS.getOperand(2),  // LHS of compare
15727         LHS.getOperand(3),  // RHS of compare
15728         DAG.getConstant(CompareOpc, dl, MVT::i32)
15729       };
15730       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
15731       SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
15732 
15733       // Unpack the result based on how the target uses it.
15734       PPC::Predicate CompOpc;
15735       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
15736       default:  // Can't happen, don't crash on invalid number though.
15737       case 0:   // Branch on the value of the EQ bit of CR6.
15738         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
15739         break;
15740       case 1:   // Branch on the inverted value of the EQ bit of CR6.
15741         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
15742         break;
15743       case 2:   // Branch on the value of the LT bit of CR6.
15744         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
15745         break;
15746       case 3:   // Branch on the inverted value of the LT bit of CR6.
15747         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
15748         break;
15749       }
15750 
15751       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
15752                          DAG.getConstant(CompOpc, dl, MVT::i32),
15753                          DAG.getRegister(PPC::CR6, MVT::i32),
15754                          N->getOperand(4), CompNode.getValue(1));
15755     }
15756     break;
15757   }
15758   case ISD::BUILD_VECTOR:
15759     return DAGCombineBuildVector(N, DCI);
15760   case ISD::ABS:
15761     return combineABS(N, DCI);
15762   case ISD::VSELECT:
15763     return combineVSelect(N, DCI);
15764   }
15765 
15766   return SDValue();
15767 }
15768 
15769 SDValue
15770 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
15771                                  SelectionDAG &DAG,
15772                                  SmallVectorImpl<SDNode *> &Created) const {
15773   // fold (sdiv X, pow2)
15774   EVT VT = N->getValueType(0);
15775   if (VT == MVT::i64 && !Subtarget.isPPC64())
15776     return SDValue();
15777   if ((VT != MVT::i32 && VT != MVT::i64) ||
15778       !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()))
15779     return SDValue();
15780 
15781   SDLoc DL(N);
15782   SDValue N0 = N->getOperand(0);
15783 
15784   bool IsNegPow2 = Divisor.isNegatedPowerOf2();
15785   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
15786   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
15787 
15788   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
15789   Created.push_back(Op.getNode());
15790 
15791   if (IsNegPow2) {
15792     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
15793     Created.push_back(Op.getNode());
15794   }
15795 
15796   return Op;
15797 }
15798 
15799 //===----------------------------------------------------------------------===//
15800 // Inline Assembly Support
15801 //===----------------------------------------------------------------------===//
15802 
15803 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
15804                                                       KnownBits &Known,
15805                                                       const APInt &DemandedElts,
15806                                                       const SelectionDAG &DAG,
15807                                                       unsigned Depth) const {
15808   Known.resetAll();
15809   switch (Op.getOpcode()) {
15810   default: break;
15811   case PPCISD::LBRX: {
15812     // lhbrx is known to have the top bits cleared out.
15813     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
15814       Known.Zero = 0xFFFF0000;
15815     break;
15816   }
15817   case ISD::INTRINSIC_WO_CHAIN: {
15818     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
15819     default: break;
15820     case Intrinsic::ppc_altivec_vcmpbfp_p:
15821     case Intrinsic::ppc_altivec_vcmpeqfp_p:
15822     case Intrinsic::ppc_altivec_vcmpequb_p:
15823     case Intrinsic::ppc_altivec_vcmpequh_p:
15824     case Intrinsic::ppc_altivec_vcmpequw_p:
15825     case Intrinsic::ppc_altivec_vcmpequd_p:
15826     case Intrinsic::ppc_altivec_vcmpequq_p:
15827     case Intrinsic::ppc_altivec_vcmpgefp_p:
15828     case Intrinsic::ppc_altivec_vcmpgtfp_p:
15829     case Intrinsic::ppc_altivec_vcmpgtsb_p:
15830     case Intrinsic::ppc_altivec_vcmpgtsh_p:
15831     case Intrinsic::ppc_altivec_vcmpgtsw_p:
15832     case Intrinsic::ppc_altivec_vcmpgtsd_p:
15833     case Intrinsic::ppc_altivec_vcmpgtsq_p:
15834     case Intrinsic::ppc_altivec_vcmpgtub_p:
15835     case Intrinsic::ppc_altivec_vcmpgtuh_p:
15836     case Intrinsic::ppc_altivec_vcmpgtuw_p:
15837     case Intrinsic::ppc_altivec_vcmpgtud_p:
15838     case Intrinsic::ppc_altivec_vcmpgtuq_p:
15839       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
15840       break;
15841     }
15842     break;
15843   }
15844   case ISD::INTRINSIC_W_CHAIN: {
15845     switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
15846     default:
15847       break;
15848     case Intrinsic::ppc_load2r:
15849       // Top bits are cleared for load2r (which is the same as lhbrx).
15850       Known.Zero = 0xFFFF0000;
15851       break;
15852     }
15853     break;
15854   }
15855   }
15856 }
15857 
15858 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
15859   switch (Subtarget.getCPUDirective()) {
15860   default: break;
15861   case PPC::DIR_970:
15862   case PPC::DIR_PWR4:
15863   case PPC::DIR_PWR5:
15864   case PPC::DIR_PWR5X:
15865   case PPC::DIR_PWR6:
15866   case PPC::DIR_PWR6X:
15867   case PPC::DIR_PWR7:
15868   case PPC::DIR_PWR8:
15869   case PPC::DIR_PWR9:
15870   case PPC::DIR_PWR10:
15871   case PPC::DIR_PWR_FUTURE: {
15872     if (!ML)
15873       break;
15874 
15875     if (!DisableInnermostLoopAlign32) {
15876       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
15877       // so that we can decrease cache misses and branch-prediction misses.
15878       // Actual alignment of the loop will depend on the hotness check and other
15879       // logic in alignBlocks.
15880       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
15881         return Align(32);
15882     }
15883 
15884     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
15885 
15886     // For small loops (between 5 and 8 instructions), align to a 32-byte
15887     // boundary so that the entire loop fits in one instruction-cache line.
15888     uint64_t LoopSize = 0;
15889     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
15890       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
15891         LoopSize += TII->getInstSizeInBytes(*J);
15892         if (LoopSize > 32)
15893           break;
15894       }
15895 
15896     if (LoopSize > 16 && LoopSize <= 32)
15897       return Align(32);
15898 
15899     break;
15900   }
15901   }
15902 
15903   return TargetLowering::getPrefLoopAlignment(ML);
15904 }
15905 
15906 /// getConstraintType - Given a constraint, return the type of
15907 /// constraint it is for this target.
15908 PPCTargetLowering::ConstraintType
15909 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
15910   if (Constraint.size() == 1) {
15911     switch (Constraint[0]) {
15912     default: break;
15913     case 'b':
15914     case 'r':
15915     case 'f':
15916     case 'd':
15917     case 'v':
15918     case 'y':
15919       return C_RegisterClass;
15920     case 'Z':
15921       // FIXME: While Z does indicate a memory constraint, it specifically
15922       // indicates an r+r address (used in conjunction with the 'y' modifier
15923       // in the replacement string). Currently, we're forcing the base
15924       // register to be r0 in the asm printer (which is interpreted as zero)
15925       // and forming the complete address in the second register. This is
15926       // suboptimal.
15927       return C_Memory;
15928     }
15929   } else if (Constraint == "wc") { // individual CR bits.
15930     return C_RegisterClass;
15931   } else if (Constraint == "wa" || Constraint == "wd" ||
15932              Constraint == "wf" || Constraint == "ws" ||
15933              Constraint == "wi" || Constraint == "ww") {
15934     return C_RegisterClass; // VSX registers.
15935   }
15936   return TargetLowering::getConstraintType(Constraint);
15937 }
15938 
15939 /// Examine constraint type and operand type and determine a weight value.
15940 /// This object must already have been set up with the operand type
15941 /// and the current alternative constraint selected.
15942 TargetLowering::ConstraintWeight
15943 PPCTargetLowering::getSingleConstraintMatchWeight(
15944     AsmOperandInfo &info, const char *constraint) const {
15945   ConstraintWeight weight = CW_Invalid;
15946   Value *CallOperandVal = info.CallOperandVal;
15947     // If we don't have a value, we can't do a match,
15948     // but allow it at the lowest weight.
15949   if (!CallOperandVal)
15950     return CW_Default;
15951   Type *type = CallOperandVal->getType();
15952 
15953   // Look at the constraint type.
15954   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
15955     return CW_Register; // an individual CR bit.
15956   else if ((StringRef(constraint) == "wa" ||
15957             StringRef(constraint) == "wd" ||
15958             StringRef(constraint) == "wf") &&
15959            type->isVectorTy())
15960     return CW_Register;
15961   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
15962     return CW_Register; // just hold 64-bit integers data.
15963   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
15964     return CW_Register;
15965   else if (StringRef(constraint) == "ww" && type->isFloatTy())
15966     return CW_Register;
15967 
15968   switch (*constraint) {
15969   default:
15970     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15971     break;
15972   case 'b':
15973     if (type->isIntegerTy())
15974       weight = CW_Register;
15975     break;
15976   case 'f':
15977     if (type->isFloatTy())
15978       weight = CW_Register;
15979     break;
15980   case 'd':
15981     if (type->isDoubleTy())
15982       weight = CW_Register;
15983     break;
15984   case 'v':
15985     if (type->isVectorTy())
15986       weight = CW_Register;
15987     break;
15988   case 'y':
15989     weight = CW_Register;
15990     break;
15991   case 'Z':
15992     weight = CW_Memory;
15993     break;
15994   }
15995   return weight;
15996 }
15997 
15998 std::pair<unsigned, const TargetRegisterClass *>
15999 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
16000                                                 StringRef Constraint,
16001                                                 MVT VT) const {
16002   if (Constraint.size() == 1) {
16003     // GCC RS6000 Constraint Letters
16004     switch (Constraint[0]) {
16005     case 'b':   // R1-R31
16006       if (VT == MVT::i64 && Subtarget.isPPC64())
16007         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
16008       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
16009     case 'r':   // R0-R31
16010       if (VT == MVT::i64 && Subtarget.isPPC64())
16011         return std::make_pair(0U, &PPC::G8RCRegClass);
16012       return std::make_pair(0U, &PPC::GPRCRegClass);
16013     // 'd' and 'f' constraints are both defined to be "the floating point
16014     // registers", where one is for 32-bit and the other for 64-bit. We don't
16015     // really care overly much here so just give them all the same reg classes.
16016     case 'd':
16017     case 'f':
16018       if (Subtarget.hasSPE()) {
16019         if (VT == MVT::f32 || VT == MVT::i32)
16020           return std::make_pair(0U, &PPC::GPRCRegClass);
16021         if (VT == MVT::f64 || VT == MVT::i64)
16022           return std::make_pair(0U, &PPC::SPERCRegClass);
16023       } else {
16024         if (VT == MVT::f32 || VT == MVT::i32)
16025           return std::make_pair(0U, &PPC::F4RCRegClass);
16026         if (VT == MVT::f64 || VT == MVT::i64)
16027           return std::make_pair(0U, &PPC::F8RCRegClass);
16028       }
16029       break;
16030     case 'v':
16031       if (Subtarget.hasAltivec() && VT.isVector())
16032         return std::make_pair(0U, &PPC::VRRCRegClass);
16033       else if (Subtarget.hasVSX())
16034         // Scalars in Altivec registers only make sense with VSX.
16035         return std::make_pair(0U, &PPC::VFRCRegClass);
16036       break;
16037     case 'y':   // crrc
16038       return std::make_pair(0U, &PPC::CRRCRegClass);
16039     }
16040   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
16041     // An individual CR bit.
16042     return std::make_pair(0U, &PPC::CRBITRCRegClass);
16043   } else if ((Constraint == "wa" || Constraint == "wd" ||
16044              Constraint == "wf" || Constraint == "wi") &&
16045              Subtarget.hasVSX()) {
16046     // A VSX register for either a scalar (FP) or vector. There is no
16047     // support for single precision scalars on subtargets prior to Power8.
16048     if (VT.isVector())
16049       return std::make_pair(0U, &PPC::VSRCRegClass);
16050     if (VT == MVT::f32 && Subtarget.hasP8Vector())
16051       return std::make_pair(0U, &PPC::VSSRCRegClass);
16052     return std::make_pair(0U, &PPC::VSFRCRegClass);
16053   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
16054     if (VT == MVT::f32 && Subtarget.hasP8Vector())
16055       return std::make_pair(0U, &PPC::VSSRCRegClass);
16056     else
16057       return std::make_pair(0U, &PPC::VSFRCRegClass);
16058   } else if (Constraint == "lr") {
16059     if (VT == MVT::i64)
16060       return std::make_pair(0U, &PPC::LR8RCRegClass);
16061     else
16062       return std::make_pair(0U, &PPC::LRRCRegClass);
16063   }
16064 
16065   // Handle special cases of physical registers that are not properly handled
16066   // by the base class.
16067   if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') {
16068     // If we name a VSX register, we can't defer to the base class because it
16069     // will not recognize the correct register (their names will be VSL{0-31}
16070     // and V{0-31} so they won't match). So we match them here.
16071     if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
16072       int VSNum = atoi(Constraint.data() + 3);
16073       assert(VSNum >= 0 && VSNum <= 63 &&
16074              "Attempted to access a vsr out of range");
16075       if (VSNum < 32)
16076         return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
16077       return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
16078     }
16079 
16080     // For float registers, we can't defer to the base class as it will match
16081     // the SPILLTOVSRRC class.
16082     if (Constraint.size() > 3 && Constraint[1] == 'f') {
16083       int RegNum = atoi(Constraint.data() + 2);
16084       if (RegNum > 31 || RegNum < 0)
16085         report_fatal_error("Invalid floating point register number");
16086       if (VT == MVT::f32 || VT == MVT::i32)
16087         return Subtarget.hasSPE()
16088                    ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass)
16089                    : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass);
16090       if (VT == MVT::f64 || VT == MVT::i64)
16091         return Subtarget.hasSPE()
16092                    ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass)
16093                    : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass);
16094     }
16095   }
16096 
16097   std::pair<unsigned, const TargetRegisterClass *> R =
16098       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
16099 
16100   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
16101   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
16102   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
16103   // register.
16104   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
16105   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
16106   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
16107       PPC::GPRCRegClass.contains(R.first))
16108     return std::make_pair(TRI->getMatchingSuperReg(R.first,
16109                             PPC::sub_32, &PPC::G8RCRegClass),
16110                           &PPC::G8RCRegClass);
16111 
16112   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
16113   if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) {
16114     R.first = PPC::CR0;
16115     R.second = &PPC::CRRCRegClass;
16116   }
16117   // FIXME: This warning should ideally be emitted in the front end.
16118   const auto &TM = getTargetMachine();
16119   if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) {
16120     if (((R.first >= PPC::V20 && R.first <= PPC::V31) ||
16121          (R.first >= PPC::VF20 && R.first <= PPC::VF31)) &&
16122         (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass))
16123       errs() << "warning: vector registers 20 to 32 are reserved in the "
16124                 "default AIX AltiVec ABI and cannot be used\n";
16125   }
16126 
16127   return R;
16128 }
16129 
16130 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
16131 /// vector.  If it is invalid, don't add anything to Ops.
16132 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
16133                                                      std::string &Constraint,
16134                                                      std::vector<SDValue>&Ops,
16135                                                      SelectionDAG &DAG) const {
16136   SDValue Result;
16137 
16138   // Only support length 1 constraints.
16139   if (Constraint.length() > 1) return;
16140 
16141   char Letter = Constraint[0];
16142   switch (Letter) {
16143   default: break;
16144   case 'I':
16145   case 'J':
16146   case 'K':
16147   case 'L':
16148   case 'M':
16149   case 'N':
16150   case 'O':
16151   case 'P': {
16152     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
16153     if (!CST) return; // Must be an immediate to match.
16154     SDLoc dl(Op);
16155     int64_t Value = CST->getSExtValue();
16156     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
16157                          // numbers are printed as such.
16158     switch (Letter) {
16159     default: llvm_unreachable("Unknown constraint letter!");
16160     case 'I':  // "I" is a signed 16-bit constant.
16161       if (isInt<16>(Value))
16162         Result = DAG.getTargetConstant(Value, dl, TCVT);
16163       break;
16164     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
16165       if (isShiftedUInt<16, 16>(Value))
16166         Result = DAG.getTargetConstant(Value, dl, TCVT);
16167       break;
16168     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
16169       if (isShiftedInt<16, 16>(Value))
16170         Result = DAG.getTargetConstant(Value, dl, TCVT);
16171       break;
16172     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
16173       if (isUInt<16>(Value))
16174         Result = DAG.getTargetConstant(Value, dl, TCVT);
16175       break;
16176     case 'M':  // "M" is a constant that is greater than 31.
16177       if (Value > 31)
16178         Result = DAG.getTargetConstant(Value, dl, TCVT);
16179       break;
16180     case 'N':  // "N" is a positive constant that is an exact power of two.
16181       if (Value > 0 && isPowerOf2_64(Value))
16182         Result = DAG.getTargetConstant(Value, dl, TCVT);
16183       break;
16184     case 'O':  // "O" is the constant zero.
16185       if (Value == 0)
16186         Result = DAG.getTargetConstant(Value, dl, TCVT);
16187       break;
16188     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
16189       if (isInt<16>(-Value))
16190         Result = DAG.getTargetConstant(Value, dl, TCVT);
16191       break;
16192     }
16193     break;
16194   }
16195   }
16196 
16197   if (Result.getNode()) {
16198     Ops.push_back(Result);
16199     return;
16200   }
16201 
16202   // Handle standard constraint letters.
16203   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
16204 }
16205 
16206 // isLegalAddressingMode - Return true if the addressing mode represented
16207 // by AM is legal for this target, for a load/store of the specified type.
16208 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
16209                                               const AddrMode &AM, Type *Ty,
16210                                               unsigned AS,
16211                                               Instruction *I) const {
16212   // Vector type r+i form is supported since power9 as DQ form. We don't check
16213   // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC,
16214   // imm form is preferred and the offset can be adjusted to use imm form later
16215   // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and
16216   // max offset to check legal addressing mode, we should be a little aggressive
16217   // to contain other offsets for that LSRUse.
16218   if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector())
16219     return false;
16220 
16221   // PPC allows a sign-extended 16-bit immediate field.
16222   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
16223     return false;
16224 
16225   // No global is ever allowed as a base.
16226   if (AM.BaseGV)
16227     return false;
16228 
16229   // PPC only support r+r,
16230   switch (AM.Scale) {
16231   case 0:  // "r+i" or just "i", depending on HasBaseReg.
16232     break;
16233   case 1:
16234     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
16235       return false;
16236     // Otherwise we have r+r or r+i.
16237     break;
16238   case 2:
16239     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
16240       return false;
16241     // Allow 2*r as r+r.
16242     break;
16243   default:
16244     // No other scales are supported.
16245     return false;
16246   }
16247 
16248   return true;
16249 }
16250 
16251 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
16252                                            SelectionDAG &DAG) const {
16253   MachineFunction &MF = DAG.getMachineFunction();
16254   MachineFrameInfo &MFI = MF.getFrameInfo();
16255   MFI.setReturnAddressIsTaken(true);
16256 
16257   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
16258     return SDValue();
16259 
16260   SDLoc dl(Op);
16261   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
16262 
16263   // Make sure the function does not optimize away the store of the RA to
16264   // the stack.
16265   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
16266   FuncInfo->setLRStoreRequired();
16267   bool isPPC64 = Subtarget.isPPC64();
16268   auto PtrVT = getPointerTy(MF.getDataLayout());
16269 
16270   if (Depth > 0) {
16271     // The link register (return address) is saved in the caller's frame
16272     // not the callee's stack frame. So we must get the caller's frame
16273     // address and load the return address at the LR offset from there.
16274     SDValue FrameAddr =
16275         DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
16276                     LowerFRAMEADDR(Op, DAG), MachinePointerInfo());
16277     SDValue Offset =
16278         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
16279                         isPPC64 ? MVT::i64 : MVT::i32);
16280     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
16281                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
16282                        MachinePointerInfo());
16283   }
16284 
16285   // Just load the return address off the stack.
16286   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
16287   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
16288                      MachinePointerInfo());
16289 }
16290 
16291 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
16292                                           SelectionDAG &DAG) const {
16293   SDLoc dl(Op);
16294   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
16295 
16296   MachineFunction &MF = DAG.getMachineFunction();
16297   MachineFrameInfo &MFI = MF.getFrameInfo();
16298   MFI.setFrameAddressIsTaken(true);
16299 
16300   EVT PtrVT = getPointerTy(MF.getDataLayout());
16301   bool isPPC64 = PtrVT == MVT::i64;
16302 
16303   // Naked functions never have a frame pointer, and so we use r1. For all
16304   // other functions, this decision must be delayed until during PEI.
16305   unsigned FrameReg;
16306   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
16307     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
16308   else
16309     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
16310 
16311   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
16312                                          PtrVT);
16313   while (Depth--)
16314     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
16315                             FrameAddr, MachinePointerInfo());
16316   return FrameAddr;
16317 }
16318 
16319 // FIXME? Maybe this could be a TableGen attribute on some registers and
16320 // this table could be generated automatically from RegInfo.
16321 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
16322                                               const MachineFunction &MF) const {
16323   bool isPPC64 = Subtarget.isPPC64();
16324 
16325   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
16326   if (!is64Bit && VT != LLT::scalar(32))
16327     report_fatal_error("Invalid register global variable type");
16328 
16329   Register Reg = StringSwitch<Register>(RegName)
16330                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
16331                      .Case("r2", isPPC64 ? Register() : PPC::R2)
16332                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
16333                      .Default(Register());
16334 
16335   if (Reg)
16336     return Reg;
16337   report_fatal_error("Invalid register name global variable");
16338 }
16339 
16340 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
16341   // 32-bit SVR4 ABI access everything as got-indirect.
16342   if (Subtarget.is32BitELFABI())
16343     return true;
16344 
16345   // AIX accesses everything indirectly through the TOC, which is similar to
16346   // the GOT.
16347   if (Subtarget.isAIXABI())
16348     return true;
16349 
16350   CodeModel::Model CModel = getTargetMachine().getCodeModel();
16351   // If it is small or large code model, module locals are accessed
16352   // indirectly by loading their address from .toc/.got.
16353   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
16354     return true;
16355 
16356   // JumpTable and BlockAddress are accessed as got-indirect.
16357   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
16358     return true;
16359 
16360   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
16361     return Subtarget.isGVIndirectSymbol(G->getGlobal());
16362 
16363   return false;
16364 }
16365 
16366 bool
16367 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
16368   // The PowerPC target isn't yet aware of offsets.
16369   return false;
16370 }
16371 
16372 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
16373                                            const CallInst &I,
16374                                            MachineFunction &MF,
16375                                            unsigned Intrinsic) const {
16376   switch (Intrinsic) {
16377   case Intrinsic::ppc_atomicrmw_xchg_i128:
16378   case Intrinsic::ppc_atomicrmw_add_i128:
16379   case Intrinsic::ppc_atomicrmw_sub_i128:
16380   case Intrinsic::ppc_atomicrmw_nand_i128:
16381   case Intrinsic::ppc_atomicrmw_and_i128:
16382   case Intrinsic::ppc_atomicrmw_or_i128:
16383   case Intrinsic::ppc_atomicrmw_xor_i128:
16384   case Intrinsic::ppc_cmpxchg_i128:
16385     Info.opc = ISD::INTRINSIC_W_CHAIN;
16386     Info.memVT = MVT::i128;
16387     Info.ptrVal = I.getArgOperand(0);
16388     Info.offset = 0;
16389     Info.align = Align(16);
16390     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
16391                  MachineMemOperand::MOVolatile;
16392     return true;
16393   case Intrinsic::ppc_atomic_load_i128:
16394     Info.opc = ISD::INTRINSIC_W_CHAIN;
16395     Info.memVT = MVT::i128;
16396     Info.ptrVal = I.getArgOperand(0);
16397     Info.offset = 0;
16398     Info.align = Align(16);
16399     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
16400     return true;
16401   case Intrinsic::ppc_atomic_store_i128:
16402     Info.opc = ISD::INTRINSIC_VOID;
16403     Info.memVT = MVT::i128;
16404     Info.ptrVal = I.getArgOperand(2);
16405     Info.offset = 0;
16406     Info.align = Align(16);
16407     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
16408     return true;
16409   case Intrinsic::ppc_altivec_lvx:
16410   case Intrinsic::ppc_altivec_lvxl:
16411   case Intrinsic::ppc_altivec_lvebx:
16412   case Intrinsic::ppc_altivec_lvehx:
16413   case Intrinsic::ppc_altivec_lvewx:
16414   case Intrinsic::ppc_vsx_lxvd2x:
16415   case Intrinsic::ppc_vsx_lxvw4x:
16416   case Intrinsic::ppc_vsx_lxvd2x_be:
16417   case Intrinsic::ppc_vsx_lxvw4x_be:
16418   case Intrinsic::ppc_vsx_lxvl:
16419   case Intrinsic::ppc_vsx_lxvll: {
16420     EVT VT;
16421     switch (Intrinsic) {
16422     case Intrinsic::ppc_altivec_lvebx:
16423       VT = MVT::i8;
16424       break;
16425     case Intrinsic::ppc_altivec_lvehx:
16426       VT = MVT::i16;
16427       break;
16428     case Intrinsic::ppc_altivec_lvewx:
16429       VT = MVT::i32;
16430       break;
16431     case Intrinsic::ppc_vsx_lxvd2x:
16432     case Intrinsic::ppc_vsx_lxvd2x_be:
16433       VT = MVT::v2f64;
16434       break;
16435     default:
16436       VT = MVT::v4i32;
16437       break;
16438     }
16439 
16440     Info.opc = ISD::INTRINSIC_W_CHAIN;
16441     Info.memVT = VT;
16442     Info.ptrVal = I.getArgOperand(0);
16443     Info.offset = -VT.getStoreSize()+1;
16444     Info.size = 2*VT.getStoreSize()-1;
16445     Info.align = Align(1);
16446     Info.flags = MachineMemOperand::MOLoad;
16447     return true;
16448   }
16449   case Intrinsic::ppc_altivec_stvx:
16450   case Intrinsic::ppc_altivec_stvxl:
16451   case Intrinsic::ppc_altivec_stvebx:
16452   case Intrinsic::ppc_altivec_stvehx:
16453   case Intrinsic::ppc_altivec_stvewx:
16454   case Intrinsic::ppc_vsx_stxvd2x:
16455   case Intrinsic::ppc_vsx_stxvw4x:
16456   case Intrinsic::ppc_vsx_stxvd2x_be:
16457   case Intrinsic::ppc_vsx_stxvw4x_be:
16458   case Intrinsic::ppc_vsx_stxvl:
16459   case Intrinsic::ppc_vsx_stxvll: {
16460     EVT VT;
16461     switch (Intrinsic) {
16462     case Intrinsic::ppc_altivec_stvebx:
16463       VT = MVT::i8;
16464       break;
16465     case Intrinsic::ppc_altivec_stvehx:
16466       VT = MVT::i16;
16467       break;
16468     case Intrinsic::ppc_altivec_stvewx:
16469       VT = MVT::i32;
16470       break;
16471     case Intrinsic::ppc_vsx_stxvd2x:
16472     case Intrinsic::ppc_vsx_stxvd2x_be:
16473       VT = MVT::v2f64;
16474       break;
16475     default:
16476       VT = MVT::v4i32;
16477       break;
16478     }
16479 
16480     Info.opc = ISD::INTRINSIC_VOID;
16481     Info.memVT = VT;
16482     Info.ptrVal = I.getArgOperand(1);
16483     Info.offset = -VT.getStoreSize()+1;
16484     Info.size = 2*VT.getStoreSize()-1;
16485     Info.align = Align(1);
16486     Info.flags = MachineMemOperand::MOStore;
16487     return true;
16488   }
16489   default:
16490     break;
16491   }
16492 
16493   return false;
16494 }
16495 
16496 /// It returns EVT::Other if the type should be determined using generic
16497 /// target-independent logic.
16498 EVT PPCTargetLowering::getOptimalMemOpType(
16499     const MemOp &Op, const AttributeList &FuncAttributes) const {
16500   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
16501     // We should use Altivec/VSX loads and stores when available. For unaligned
16502     // addresses, unaligned VSX loads are only fast starting with the P8.
16503     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
16504         (Op.isAligned(Align(16)) ||
16505          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
16506       return MVT::v4i32;
16507   }
16508 
16509   if (Subtarget.isPPC64()) {
16510     return MVT::i64;
16511   }
16512 
16513   return MVT::i32;
16514 }
16515 
16516 /// Returns true if it is beneficial to convert a load of a constant
16517 /// to just the constant itself.
16518 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
16519                                                           Type *Ty) const {
16520   assert(Ty->isIntegerTy());
16521 
16522   unsigned BitSize = Ty->getPrimitiveSizeInBits();
16523   return !(BitSize == 0 || BitSize > 64);
16524 }
16525 
16526 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
16527   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
16528     return false;
16529   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
16530   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
16531   return NumBits1 == 64 && NumBits2 == 32;
16532 }
16533 
16534 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
16535   if (!VT1.isInteger() || !VT2.isInteger())
16536     return false;
16537   unsigned NumBits1 = VT1.getSizeInBits();
16538   unsigned NumBits2 = VT2.getSizeInBits();
16539   return NumBits1 == 64 && NumBits2 == 32;
16540 }
16541 
16542 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
16543   // Generally speaking, zexts are not free, but they are free when they can be
16544   // folded with other operations.
16545   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
16546     EVT MemVT = LD->getMemoryVT();
16547     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
16548          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
16549         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
16550          LD->getExtensionType() == ISD::ZEXTLOAD))
16551       return true;
16552   }
16553 
16554   // FIXME: Add other cases...
16555   //  - 32-bit shifts with a zext to i64
16556   //  - zext after ctlz, bswap, etc.
16557   //  - zext after and by a constant mask
16558 
16559   return TargetLowering::isZExtFree(Val, VT2);
16560 }
16561 
16562 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
16563   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
16564          "invalid fpext types");
16565   // Extending to float128 is not free.
16566   if (DestVT == MVT::f128)
16567     return false;
16568   return true;
16569 }
16570 
16571 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
16572   return isInt<16>(Imm) || isUInt<16>(Imm);
16573 }
16574 
16575 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
16576   return isInt<16>(Imm) || isUInt<16>(Imm);
16577 }
16578 
16579 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align,
16580                                                        MachineMemOperand::Flags,
16581                                                        bool *Fast) const {
16582   if (DisablePPCUnaligned)
16583     return false;
16584 
16585   // PowerPC supports unaligned memory access for simple non-vector types.
16586   // Although accessing unaligned addresses is not as efficient as accessing
16587   // aligned addresses, it is generally more efficient than manual expansion,
16588   // and generally only traps for software emulation when crossing page
16589   // boundaries.
16590 
16591   if (!VT.isSimple())
16592     return false;
16593 
16594   if (VT.isFloatingPoint() && !VT.isVector() &&
16595       !Subtarget.allowsUnalignedFPAccess())
16596     return false;
16597 
16598   if (VT.getSimpleVT().isVector()) {
16599     if (Subtarget.hasVSX()) {
16600       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
16601           VT != MVT::v4f32 && VT != MVT::v4i32)
16602         return false;
16603     } else {
16604       return false;
16605     }
16606   }
16607 
16608   if (VT == MVT::ppcf128)
16609     return false;
16610 
16611   if (Fast)
16612     *Fast = true;
16613 
16614   return true;
16615 }
16616 
16617 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
16618                                                SDValue C) const {
16619   // Check integral scalar types.
16620   if (!VT.isScalarInteger())
16621     return false;
16622   if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
16623     if (!ConstNode->getAPIntValue().isSignedIntN(64))
16624       return false;
16625     // This transformation will generate >= 2 operations. But the following
16626     // cases will generate <= 2 instructions during ISEL. So exclude them.
16627     // 1. If the constant multiplier fits 16 bits, it can be handled by one
16628     // HW instruction, ie. MULLI
16629     // 2. If the multiplier after shifted fits 16 bits, an extra shift
16630     // instruction is needed than case 1, ie. MULLI and RLDICR
16631     int64_t Imm = ConstNode->getSExtValue();
16632     unsigned Shift = countTrailingZeros<uint64_t>(Imm);
16633     Imm >>= Shift;
16634     if (isInt<16>(Imm))
16635       return false;
16636     uint64_t UImm = static_cast<uint64_t>(Imm);
16637     if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) ||
16638         isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm))
16639       return true;
16640   }
16641   return false;
16642 }
16643 
16644 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
16645                                                    EVT VT) const {
16646   return isFMAFasterThanFMulAndFAdd(
16647       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
16648 }
16649 
16650 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
16651                                                    Type *Ty) const {
16652   switch (Ty->getScalarType()->getTypeID()) {
16653   case Type::FloatTyID:
16654   case Type::DoubleTyID:
16655     return true;
16656   case Type::FP128TyID:
16657     return Subtarget.hasP9Vector();
16658   default:
16659     return false;
16660   }
16661 }
16662 
16663 // FIXME: add more patterns which are not profitable to hoist.
16664 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
16665   if (!I->hasOneUse())
16666     return true;
16667 
16668   Instruction *User = I->user_back();
16669   assert(User && "A single use instruction with no uses.");
16670 
16671   switch (I->getOpcode()) {
16672   case Instruction::FMul: {
16673     // Don't break FMA, PowerPC prefers FMA.
16674     if (User->getOpcode() != Instruction::FSub &&
16675         User->getOpcode() != Instruction::FAdd)
16676       return true;
16677 
16678     const TargetOptions &Options = getTargetMachine().Options;
16679     const Function *F = I->getFunction();
16680     const DataLayout &DL = F->getParent()->getDataLayout();
16681     Type *Ty = User->getOperand(0)->getType();
16682 
16683     return !(
16684         isFMAFasterThanFMulAndFAdd(*F, Ty) &&
16685         isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
16686         (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
16687   }
16688   case Instruction::Load: {
16689     // Don't break "store (load float*)" pattern, this pattern will be combined
16690     // to "store (load int32)" in later InstCombine pass. See function
16691     // combineLoadToOperationType. On PowerPC, loading a float point takes more
16692     // cycles than loading a 32 bit integer.
16693     LoadInst *LI = cast<LoadInst>(I);
16694     // For the loads that combineLoadToOperationType does nothing, like
16695     // ordered load, it should be profitable to hoist them.
16696     // For swifterror load, it can only be used for pointer to pointer type, so
16697     // later type check should get rid of this case.
16698     if (!LI->isUnordered())
16699       return true;
16700 
16701     if (User->getOpcode() != Instruction::Store)
16702       return true;
16703 
16704     if (I->getType()->getTypeID() != Type::FloatTyID)
16705       return true;
16706 
16707     return false;
16708   }
16709   default:
16710     return true;
16711   }
16712   return true;
16713 }
16714 
16715 const MCPhysReg *
16716 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
16717   // LR is a callee-save register, but we must treat it as clobbered by any call
16718   // site. Hence we include LR in the scratch registers, which are in turn added
16719   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
16720   // to CTR, which is used by any indirect call.
16721   static const MCPhysReg ScratchRegs[] = {
16722     PPC::X12, PPC::LR8, PPC::CTR8, 0
16723   };
16724 
16725   return ScratchRegs;
16726 }
16727 
16728 Register PPCTargetLowering::getExceptionPointerRegister(
16729     const Constant *PersonalityFn) const {
16730   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
16731 }
16732 
16733 Register PPCTargetLowering::getExceptionSelectorRegister(
16734     const Constant *PersonalityFn) const {
16735   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
16736 }
16737 
16738 bool
16739 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
16740                      EVT VT , unsigned DefinedValues) const {
16741   if (VT == MVT::v2i64)
16742     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
16743 
16744   if (Subtarget.hasVSX())
16745     return true;
16746 
16747   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
16748 }
16749 
16750 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
16751   if (DisableILPPref || Subtarget.enableMachineScheduler())
16752     return TargetLowering::getSchedulingPreference(N);
16753 
16754   return Sched::ILP;
16755 }
16756 
16757 // Create a fast isel object.
16758 FastISel *
16759 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
16760                                   const TargetLibraryInfo *LibInfo) const {
16761   return PPC::createFastISel(FuncInfo, LibInfo);
16762 }
16763 
16764 // 'Inverted' means the FMA opcode after negating one multiplicand.
16765 // For example, (fma -a b c) = (fnmsub a b c)
16766 static unsigned invertFMAOpcode(unsigned Opc) {
16767   switch (Opc) {
16768   default:
16769     llvm_unreachable("Invalid FMA opcode for PowerPC!");
16770   case ISD::FMA:
16771     return PPCISD::FNMSUB;
16772   case PPCISD::FNMSUB:
16773     return ISD::FMA;
16774   }
16775 }
16776 
16777 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
16778                                                 bool LegalOps, bool OptForSize,
16779                                                 NegatibleCost &Cost,
16780                                                 unsigned Depth) const {
16781   if (Depth > SelectionDAG::MaxRecursionDepth)
16782     return SDValue();
16783 
16784   unsigned Opc = Op.getOpcode();
16785   EVT VT = Op.getValueType();
16786   SDNodeFlags Flags = Op.getNode()->getFlags();
16787 
16788   switch (Opc) {
16789   case PPCISD::FNMSUB:
16790     if (!Op.hasOneUse() || !isTypeLegal(VT))
16791       break;
16792 
16793     const TargetOptions &Options = getTargetMachine().Options;
16794     SDValue N0 = Op.getOperand(0);
16795     SDValue N1 = Op.getOperand(1);
16796     SDValue N2 = Op.getOperand(2);
16797     SDLoc Loc(Op);
16798 
16799     NegatibleCost N2Cost = NegatibleCost::Expensive;
16800     SDValue NegN2 =
16801         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
16802 
16803     if (!NegN2)
16804       return SDValue();
16805 
16806     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
16807     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
16808     // These transformations may change sign of zeroes. For example,
16809     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
16810     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
16811       // Try and choose the cheaper one to negate.
16812       NegatibleCost N0Cost = NegatibleCost::Expensive;
16813       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
16814                                            N0Cost, Depth + 1);
16815 
16816       NegatibleCost N1Cost = NegatibleCost::Expensive;
16817       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
16818                                            N1Cost, Depth + 1);
16819 
16820       if (NegN0 && N0Cost <= N1Cost) {
16821         Cost = std::min(N0Cost, N2Cost);
16822         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
16823       } else if (NegN1) {
16824         Cost = std::min(N1Cost, N2Cost);
16825         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
16826       }
16827     }
16828 
16829     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
16830     if (isOperationLegal(ISD::FMA, VT)) {
16831       Cost = N2Cost;
16832       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
16833     }
16834 
16835     break;
16836   }
16837 
16838   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
16839                                               Cost, Depth);
16840 }
16841 
16842 // Override to enable LOAD_STACK_GUARD lowering on Linux.
16843 bool PPCTargetLowering::useLoadStackGuardNode() const {
16844   if (!Subtarget.isTargetLinux())
16845     return TargetLowering::useLoadStackGuardNode();
16846   return true;
16847 }
16848 
16849 // Override to disable global variable loading on Linux and insert AIX canary
16850 // word declaration.
16851 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
16852   if (Subtarget.isAIXABI()) {
16853     M.getOrInsertGlobal(AIXSSPCanaryWordName,
16854                         Type::getInt8PtrTy(M.getContext()));
16855     return;
16856   }
16857   if (!Subtarget.isTargetLinux())
16858     return TargetLowering::insertSSPDeclarations(M);
16859 }
16860 
16861 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const {
16862   if (Subtarget.isAIXABI())
16863     return M.getGlobalVariable(AIXSSPCanaryWordName);
16864   return TargetLowering::getSDagStackGuard(M);
16865 }
16866 
16867 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
16868                                      bool ForCodeSize) const {
16869   if (!VT.isSimple() || !Subtarget.hasVSX())
16870     return false;
16871 
16872   switch(VT.getSimpleVT().SimpleTy) {
16873   default:
16874     // For FP types that are currently not supported by PPC backend, return
16875     // false. Examples: f16, f80.
16876     return false;
16877   case MVT::f32:
16878   case MVT::f64:
16879     if (Subtarget.hasPrefixInstrs()) {
16880       // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP.
16881       return true;
16882     }
16883     LLVM_FALLTHROUGH;
16884   case MVT::ppcf128:
16885     return Imm.isPosZero();
16886   }
16887 }
16888 
16889 // For vector shift operation op, fold
16890 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
16891 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
16892                                   SelectionDAG &DAG) {
16893   SDValue N0 = N->getOperand(0);
16894   SDValue N1 = N->getOperand(1);
16895   EVT VT = N0.getValueType();
16896   unsigned OpSizeInBits = VT.getScalarSizeInBits();
16897   unsigned Opcode = N->getOpcode();
16898   unsigned TargetOpcode;
16899 
16900   switch (Opcode) {
16901   default:
16902     llvm_unreachable("Unexpected shift operation");
16903   case ISD::SHL:
16904     TargetOpcode = PPCISD::SHL;
16905     break;
16906   case ISD::SRL:
16907     TargetOpcode = PPCISD::SRL;
16908     break;
16909   case ISD::SRA:
16910     TargetOpcode = PPCISD::SRA;
16911     break;
16912   }
16913 
16914   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
16915       N1->getOpcode() == ISD::AND)
16916     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
16917       if (Mask->getZExtValue() == OpSizeInBits - 1)
16918         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
16919 
16920   return SDValue();
16921 }
16922 
16923 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
16924   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16925     return Value;
16926 
16927   SDValue N0 = N->getOperand(0);
16928   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
16929   if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() ||
16930       N0.getOpcode() != ISD::SIGN_EXTEND ||
16931       N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr ||
16932       N->getValueType(0) != MVT::i64)
16933     return SDValue();
16934 
16935   // We can't save an operation here if the value is already extended, and
16936   // the existing shift is easier to combine.
16937   SDValue ExtsSrc = N0.getOperand(0);
16938   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
16939       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
16940     return SDValue();
16941 
16942   SDLoc DL(N0);
16943   SDValue ShiftBy = SDValue(CN1, 0);
16944   // We want the shift amount to be i32 on the extswli, but the shift could
16945   // have an i64.
16946   if (ShiftBy.getValueType() == MVT::i64)
16947     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
16948 
16949   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
16950                          ShiftBy);
16951 }
16952 
16953 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
16954   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16955     return Value;
16956 
16957   return SDValue();
16958 }
16959 
16960 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
16961   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16962     return Value;
16963 
16964   return SDValue();
16965 }
16966 
16967 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
16968 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
16969 // When C is zero, the equation (addi Z, -C) can be simplified to Z
16970 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
16971 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
16972                                  const PPCSubtarget &Subtarget) {
16973   if (!Subtarget.isPPC64())
16974     return SDValue();
16975 
16976   SDValue LHS = N->getOperand(0);
16977   SDValue RHS = N->getOperand(1);
16978 
16979   auto isZextOfCompareWithConstant = [](SDValue Op) {
16980     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
16981         Op.getValueType() != MVT::i64)
16982       return false;
16983 
16984     SDValue Cmp = Op.getOperand(0);
16985     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
16986         Cmp.getOperand(0).getValueType() != MVT::i64)
16987       return false;
16988 
16989     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
16990       int64_t NegConstant = 0 - Constant->getSExtValue();
16991       // Due to the limitations of the addi instruction,
16992       // -C is required to be [-32768, 32767].
16993       return isInt<16>(NegConstant);
16994     }
16995 
16996     return false;
16997   };
16998 
16999   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
17000   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
17001 
17002   // If there is a pattern, canonicalize a zext operand to the RHS.
17003   if (LHSHasPattern && !RHSHasPattern)
17004     std::swap(LHS, RHS);
17005   else if (!LHSHasPattern && !RHSHasPattern)
17006     return SDValue();
17007 
17008   SDLoc DL(N);
17009   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
17010   SDValue Cmp = RHS.getOperand(0);
17011   SDValue Z = Cmp.getOperand(0);
17012   auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1));
17013   int64_t NegConstant = 0 - Constant->getSExtValue();
17014 
17015   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
17016   default: break;
17017   case ISD::SETNE: {
17018     //                                 when C == 0
17019     //                             --> addze X, (addic Z, -1).carry
17020     //                            /
17021     // add X, (zext(setne Z, C))--
17022     //                            \    when -32768 <= -C <= 32767 && C != 0
17023     //                             --> addze X, (addic (addi Z, -C), -1).carry
17024     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
17025                               DAG.getConstant(NegConstant, DL, MVT::i64));
17026     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
17027     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
17028                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
17029     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
17030                        SDValue(Addc.getNode(), 1));
17031     }
17032   case ISD::SETEQ: {
17033     //                                 when C == 0
17034     //                             --> addze X, (subfic Z, 0).carry
17035     //                            /
17036     // add X, (zext(sete  Z, C))--
17037     //                            \    when -32768 <= -C <= 32767 && C != 0
17038     //                             --> addze X, (subfic (addi Z, -C), 0).carry
17039     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
17040                               DAG.getConstant(NegConstant, DL, MVT::i64));
17041     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
17042     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
17043                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
17044     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
17045                        SDValue(Subc.getNode(), 1));
17046     }
17047   }
17048 
17049   return SDValue();
17050 }
17051 
17052 // Transform
17053 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
17054 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
17055 // In this case both C1 and C2 must be known constants.
17056 // C1+C2 must fit into a 34 bit signed integer.
17057 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
17058                                           const PPCSubtarget &Subtarget) {
17059   if (!Subtarget.isUsingPCRelativeCalls())
17060     return SDValue();
17061 
17062   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
17063   // If we find that node try to cast the Global Address and the Constant.
17064   SDValue LHS = N->getOperand(0);
17065   SDValue RHS = N->getOperand(1);
17066 
17067   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
17068     std::swap(LHS, RHS);
17069 
17070   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
17071     return SDValue();
17072 
17073   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
17074   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
17075   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
17076 
17077   // Check that both casts succeeded.
17078   if (!GSDN || !ConstNode)
17079     return SDValue();
17080 
17081   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
17082   SDLoc DL(GSDN);
17083 
17084   // The signed int offset needs to fit in 34 bits.
17085   if (!isInt<34>(NewOffset))
17086     return SDValue();
17087 
17088   // The new global address is a copy of the old global address except
17089   // that it has the updated Offset.
17090   SDValue GA =
17091       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
17092                                  NewOffset, GSDN->getTargetFlags());
17093   SDValue MatPCRel =
17094       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
17095   return MatPCRel;
17096 }
17097 
17098 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
17099   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
17100     return Value;
17101 
17102   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
17103     return Value;
17104 
17105   return SDValue();
17106 }
17107 
17108 // Detect TRUNCATE operations on bitcasts of float128 values.
17109 // What we are looking for here is the situtation where we extract a subset
17110 // of bits from a 128 bit float.
17111 // This can be of two forms:
17112 // 1) BITCAST of f128 feeding TRUNCATE
17113 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
17114 // The reason this is required is because we do not have a legal i128 type
17115 // and so we want to prevent having to store the f128 and then reload part
17116 // of it.
17117 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
17118                                            DAGCombinerInfo &DCI) const {
17119   // If we are using CRBits then try that first.
17120   if (Subtarget.useCRBits()) {
17121     // Check if CRBits did anything and return that if it did.
17122     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
17123       return CRTruncValue;
17124   }
17125 
17126   SDLoc dl(N);
17127   SDValue Op0 = N->getOperand(0);
17128 
17129   // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
17130   if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
17131     EVT VT = N->getValueType(0);
17132     if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17133       return SDValue();
17134     SDValue Sub = Op0.getOperand(0);
17135     if (Sub.getOpcode() == ISD::SUB) {
17136       SDValue SubOp0 = Sub.getOperand(0);
17137       SDValue SubOp1 = Sub.getOperand(1);
17138       if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
17139           (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
17140         return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
17141                                SubOp1.getOperand(0),
17142                                DCI.DAG.getTargetConstant(0, dl, MVT::i32));
17143       }
17144     }
17145   }
17146 
17147   // Looking for a truncate of i128 to i64.
17148   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
17149     return SDValue();
17150 
17151   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
17152 
17153   // SRL feeding TRUNCATE.
17154   if (Op0.getOpcode() == ISD::SRL) {
17155     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
17156     // The right shift has to be by 64 bits.
17157     if (!ConstNode || ConstNode->getZExtValue() != 64)
17158       return SDValue();
17159 
17160     // Switch the element number to extract.
17161     EltToExtract = EltToExtract ? 0 : 1;
17162     // Update Op0 past the SRL.
17163     Op0 = Op0.getOperand(0);
17164   }
17165 
17166   // BITCAST feeding a TRUNCATE possibly via SRL.
17167   if (Op0.getOpcode() == ISD::BITCAST &&
17168       Op0.getValueType() == MVT::i128 &&
17169       Op0.getOperand(0).getValueType() == MVT::f128) {
17170     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
17171     return DCI.DAG.getNode(
17172         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
17173         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
17174   }
17175   return SDValue();
17176 }
17177 
17178 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
17179   SelectionDAG &DAG = DCI.DAG;
17180 
17181   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
17182   if (!ConstOpOrElement)
17183     return SDValue();
17184 
17185   // An imul is usually smaller than the alternative sequence for legal type.
17186   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
17187       isOperationLegal(ISD::MUL, N->getValueType(0)))
17188     return SDValue();
17189 
17190   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
17191     switch (this->Subtarget.getCPUDirective()) {
17192     default:
17193       // TODO: enhance the condition for subtarget before pwr8
17194       return false;
17195     case PPC::DIR_PWR8:
17196       //  type        mul     add    shl
17197       // scalar        4       1      1
17198       // vector        7       2      2
17199       return true;
17200     case PPC::DIR_PWR9:
17201     case PPC::DIR_PWR10:
17202     case PPC::DIR_PWR_FUTURE:
17203       //  type        mul     add    shl
17204       // scalar        5       2      2
17205       // vector        7       2      2
17206 
17207       // The cycle RATIO of related operations are showed as a table above.
17208       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
17209       // scalar and vector type. For 2 instrs patterns, add/sub + shl
17210       // are 4, it is always profitable; but for 3 instrs patterns
17211       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
17212       // So we should only do it for vector type.
17213       return IsAddOne && IsNeg ? VT.isVector() : true;
17214     }
17215   };
17216 
17217   EVT VT = N->getValueType(0);
17218   SDLoc DL(N);
17219 
17220   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
17221   bool IsNeg = MulAmt.isNegative();
17222   APInt MulAmtAbs = MulAmt.abs();
17223 
17224   if ((MulAmtAbs - 1).isPowerOf2()) {
17225     // (mul x, 2^N + 1) => (add (shl x, N), x)
17226     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
17227 
17228     if (!IsProfitable(IsNeg, true, VT))
17229       return SDValue();
17230 
17231     SDValue Op0 = N->getOperand(0);
17232     SDValue Op1 =
17233         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
17234                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
17235     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
17236 
17237     if (!IsNeg)
17238       return Res;
17239 
17240     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
17241   } else if ((MulAmtAbs + 1).isPowerOf2()) {
17242     // (mul x, 2^N - 1) => (sub (shl x, N), x)
17243     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
17244 
17245     if (!IsProfitable(IsNeg, false, VT))
17246       return SDValue();
17247 
17248     SDValue Op0 = N->getOperand(0);
17249     SDValue Op1 =
17250         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
17251                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
17252 
17253     if (!IsNeg)
17254       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
17255     else
17256       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
17257 
17258   } else {
17259     return SDValue();
17260   }
17261 }
17262 
17263 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
17264 // in combiner since we need to check SD flags and other subtarget features.
17265 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
17266                                           DAGCombinerInfo &DCI) const {
17267   SDValue N0 = N->getOperand(0);
17268   SDValue N1 = N->getOperand(1);
17269   SDValue N2 = N->getOperand(2);
17270   SDNodeFlags Flags = N->getFlags();
17271   EVT VT = N->getValueType(0);
17272   SelectionDAG &DAG = DCI.DAG;
17273   const TargetOptions &Options = getTargetMachine().Options;
17274   unsigned Opc = N->getOpcode();
17275   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
17276   bool LegalOps = !DCI.isBeforeLegalizeOps();
17277   SDLoc Loc(N);
17278 
17279   if (!isOperationLegal(ISD::FMA, VT))
17280     return SDValue();
17281 
17282   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
17283   // since (fnmsub a b c)=-0 while c-ab=+0.
17284   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
17285     return SDValue();
17286 
17287   // (fma (fneg a) b c) => (fnmsub a b c)
17288   // (fnmsub (fneg a) b c) => (fma a b c)
17289   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
17290     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
17291 
17292   // (fma a (fneg b) c) => (fnmsub a b c)
17293   // (fnmsub a (fneg b) c) => (fma a b c)
17294   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
17295     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
17296 
17297   return SDValue();
17298 }
17299 
17300 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
17301   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
17302   if (!Subtarget.is64BitELFABI())
17303     return false;
17304 
17305   // If not a tail call then no need to proceed.
17306   if (!CI->isTailCall())
17307     return false;
17308 
17309   // If sibling calls have been disabled and tail-calls aren't guaranteed
17310   // there is no reason to duplicate.
17311   auto &TM = getTargetMachine();
17312   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
17313     return false;
17314 
17315   // Can't tail call a function called indirectly, or if it has variadic args.
17316   const Function *Callee = CI->getCalledFunction();
17317   if (!Callee || Callee->isVarArg())
17318     return false;
17319 
17320   // Make sure the callee and caller calling conventions are eligible for tco.
17321   const Function *Caller = CI->getParent()->getParent();
17322   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
17323                                            CI->getCallingConv()))
17324       return false;
17325 
17326   // If the function is local then we have a good chance at tail-calling it
17327   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
17328 }
17329 
17330 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
17331   if (!Subtarget.hasVSX())
17332     return false;
17333   if (Subtarget.hasP9Vector() && VT == MVT::f128)
17334     return true;
17335   return VT == MVT::f32 || VT == MVT::f64 ||
17336     VT == MVT::v4f32 || VT == MVT::v2f64;
17337 }
17338 
17339 bool PPCTargetLowering::
17340 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
17341   const Value *Mask = AndI.getOperand(1);
17342   // If the mask is suitable for andi. or andis. we should sink the and.
17343   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
17344     // Can't handle constants wider than 64-bits.
17345     if (CI->getBitWidth() > 64)
17346       return false;
17347     int64_t ConstVal = CI->getZExtValue();
17348     return isUInt<16>(ConstVal) ||
17349       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
17350   }
17351 
17352   // For non-constant masks, we can always use the record-form and.
17353   return true;
17354 }
17355 
17356 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
17357 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
17358 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
17359 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
17360 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
17361 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
17362   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
17363   assert(Subtarget.hasP9Altivec() &&
17364          "Only combine this when P9 altivec supported!");
17365   EVT VT = N->getValueType(0);
17366   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17367     return SDValue();
17368 
17369   SelectionDAG &DAG = DCI.DAG;
17370   SDLoc dl(N);
17371   if (N->getOperand(0).getOpcode() == ISD::SUB) {
17372     // Even for signed integers, if it's known to be positive (as signed
17373     // integer) due to zero-extended inputs.
17374     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
17375     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
17376     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
17377          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
17378         (SubOpcd1 == ISD::ZERO_EXTEND ||
17379          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
17380       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
17381                          N->getOperand(0)->getOperand(0),
17382                          N->getOperand(0)->getOperand(1),
17383                          DAG.getTargetConstant(0, dl, MVT::i32));
17384     }
17385 
17386     // For type v4i32, it can be optimized with xvnegsp + vabsduw
17387     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
17388         N->getOperand(0).hasOneUse()) {
17389       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
17390                          N->getOperand(0)->getOperand(0),
17391                          N->getOperand(0)->getOperand(1),
17392                          DAG.getTargetConstant(1, dl, MVT::i32));
17393     }
17394   }
17395 
17396   return SDValue();
17397 }
17398 
17399 // For type v4i32/v8ii16/v16i8, transform
17400 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
17401 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
17402 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
17403 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
17404 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
17405                                           DAGCombinerInfo &DCI) const {
17406   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
17407   assert(Subtarget.hasP9Altivec() &&
17408          "Only combine this when P9 altivec supported!");
17409 
17410   SelectionDAG &DAG = DCI.DAG;
17411   SDLoc dl(N);
17412   SDValue Cond = N->getOperand(0);
17413   SDValue TrueOpnd = N->getOperand(1);
17414   SDValue FalseOpnd = N->getOperand(2);
17415   EVT VT = N->getOperand(1).getValueType();
17416 
17417   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
17418       FalseOpnd.getOpcode() != ISD::SUB)
17419     return SDValue();
17420 
17421   // ABSD only available for type v4i32/v8i16/v16i8
17422   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17423     return SDValue();
17424 
17425   // At least to save one more dependent computation
17426   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
17427     return SDValue();
17428 
17429   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
17430 
17431   // Can only handle unsigned comparison here
17432   switch (CC) {
17433   default:
17434     return SDValue();
17435   case ISD::SETUGT:
17436   case ISD::SETUGE:
17437     break;
17438   case ISD::SETULT:
17439   case ISD::SETULE:
17440     std::swap(TrueOpnd, FalseOpnd);
17441     break;
17442   }
17443 
17444   SDValue CmpOpnd1 = Cond.getOperand(0);
17445   SDValue CmpOpnd2 = Cond.getOperand(1);
17446 
17447   // SETCC CmpOpnd1 CmpOpnd2 cond
17448   // TrueOpnd = CmpOpnd1 - CmpOpnd2
17449   // FalseOpnd = CmpOpnd2 - CmpOpnd1
17450   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
17451       TrueOpnd.getOperand(1) == CmpOpnd2 &&
17452       FalseOpnd.getOperand(0) == CmpOpnd2 &&
17453       FalseOpnd.getOperand(1) == CmpOpnd1) {
17454     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
17455                        CmpOpnd1, CmpOpnd2,
17456                        DAG.getTargetConstant(0, dl, MVT::i32));
17457   }
17458 
17459   return SDValue();
17460 }
17461 
17462 /// getAddrModeForFlags - Based on the set of address flags, select the most
17463 /// optimal instruction format to match by.
17464 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const {
17465   // This is not a node we should be handling here.
17466   if (Flags == PPC::MOF_None)
17467     return PPC::AM_None;
17468   // Unaligned D-Forms are tried first, followed by the aligned D-Forms.
17469   for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm))
17470     if ((Flags & FlagSet) == FlagSet)
17471       return PPC::AM_DForm;
17472   for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm))
17473     if ((Flags & FlagSet) == FlagSet)
17474       return PPC::AM_DSForm;
17475   for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm))
17476     if ((Flags & FlagSet) == FlagSet)
17477       return PPC::AM_DQForm;
17478   for (auto FlagSet : AddrModesMap.at(PPC::AM_PrefixDForm))
17479     if ((Flags & FlagSet) == FlagSet)
17480       return PPC::AM_PrefixDForm;
17481   // If no other forms are selected, return an X-Form as it is the most
17482   // general addressing mode.
17483   return PPC::AM_XForm;
17484 }
17485 
17486 /// Set alignment flags based on whether or not the Frame Index is aligned.
17487 /// Utilized when computing flags for address computation when selecting
17488 /// load and store instructions.
17489 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet,
17490                                SelectionDAG &DAG) {
17491   bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR));
17492   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N);
17493   if (!FI)
17494     return;
17495   const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
17496   unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value();
17497   // If this is (add $FI, $S16Imm), the alignment flags are already set
17498   // based on the immediate. We just need to clear the alignment flags
17499   // if the FI alignment is weaker.
17500   if ((FrameIndexAlign % 4) != 0)
17501     FlagSet &= ~PPC::MOF_RPlusSImm16Mult4;
17502   if ((FrameIndexAlign % 16) != 0)
17503     FlagSet &= ~PPC::MOF_RPlusSImm16Mult16;
17504   // If the address is a plain FrameIndex, set alignment flags based on
17505   // FI alignment.
17506   if (!IsAdd) {
17507     if ((FrameIndexAlign % 4) == 0)
17508       FlagSet |= PPC::MOF_RPlusSImm16Mult4;
17509     if ((FrameIndexAlign % 16) == 0)
17510       FlagSet |= PPC::MOF_RPlusSImm16Mult16;
17511   }
17512 }
17513 
17514 /// Given a node, compute flags that are used for address computation when
17515 /// selecting load and store instructions. The flags computed are stored in
17516 /// FlagSet. This function takes into account whether the node is a constant,
17517 /// an ADD, OR, or a constant, and computes the address flags accordingly.
17518 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet,
17519                                               SelectionDAG &DAG) {
17520   // Set the alignment flags for the node depending on if the node is
17521   // 4-byte or 16-byte aligned.
17522   auto SetAlignFlagsForImm = [&](uint64_t Imm) {
17523     if ((Imm & 0x3) == 0)
17524       FlagSet |= PPC::MOF_RPlusSImm16Mult4;
17525     if ((Imm & 0xf) == 0)
17526       FlagSet |= PPC::MOF_RPlusSImm16Mult16;
17527   };
17528 
17529   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
17530     // All 32-bit constants can be computed as LIS + Disp.
17531     const APInt &ConstImm = CN->getAPIntValue();
17532     if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants.
17533       FlagSet |= PPC::MOF_AddrIsSImm32;
17534       SetAlignFlagsForImm(ConstImm.getZExtValue());
17535       setAlignFlagsForFI(N, FlagSet, DAG);
17536     }
17537     if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants.
17538       FlagSet |= PPC::MOF_RPlusSImm34;
17539     else // Let constant materialization handle large constants.
17540       FlagSet |= PPC::MOF_NotAddNorCst;
17541   } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) {
17542     // This address can be represented as an addition of:
17543     // - Register + Imm16 (possibly a multiple of 4/16)
17544     // - Register + Imm34
17545     // - Register + PPCISD::Lo
17546     // - Register + Register
17547     // In any case, we won't have to match this as Base + Zero.
17548     SDValue RHS = N.getOperand(1);
17549     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) {
17550       const APInt &ConstImm = CN->getAPIntValue();
17551       if (ConstImm.isSignedIntN(16)) {
17552         FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates.
17553         SetAlignFlagsForImm(ConstImm.getZExtValue());
17554         setAlignFlagsForFI(N, FlagSet, DAG);
17555       }
17556       if (ConstImm.isSignedIntN(34))
17557         FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates.
17558       else
17559         FlagSet |= PPC::MOF_RPlusR; // Register.
17560     } else if (RHS.getOpcode() == PPCISD::Lo &&
17561                !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue())
17562       FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo.
17563     else
17564       FlagSet |= PPC::MOF_RPlusR;
17565   } else { // The address computation is not a constant or an addition.
17566     setAlignFlagsForFI(N, FlagSet, DAG);
17567     FlagSet |= PPC::MOF_NotAddNorCst;
17568   }
17569 }
17570 
17571 static bool isPCRelNode(SDValue N) {
17572   return (N.getOpcode() == PPCISD::MAT_PCREL_ADDR ||
17573       isValidPCRelNode<ConstantPoolSDNode>(N) ||
17574       isValidPCRelNode<GlobalAddressSDNode>(N) ||
17575       isValidPCRelNode<JumpTableSDNode>(N) ||
17576       isValidPCRelNode<BlockAddressSDNode>(N));
17577 }
17578 
17579 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute
17580 /// the address flags of the load/store instruction that is to be matched.
17581 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N,
17582                                            SelectionDAG &DAG) const {
17583   unsigned FlagSet = PPC::MOF_None;
17584 
17585   // Compute subtarget flags.
17586   if (!Subtarget.hasP9Vector())
17587     FlagSet |= PPC::MOF_SubtargetBeforeP9;
17588   else {
17589     FlagSet |= PPC::MOF_SubtargetP9;
17590     if (Subtarget.hasPrefixInstrs())
17591       FlagSet |= PPC::MOF_SubtargetP10;
17592   }
17593   if (Subtarget.hasSPE())
17594     FlagSet |= PPC::MOF_SubtargetSPE;
17595 
17596   // Check if we have a PCRel node and return early.
17597   if ((FlagSet & PPC::MOF_SubtargetP10) && isPCRelNode(N))
17598     return FlagSet;
17599 
17600   // If the node is the paired load/store intrinsics, compute flags for
17601   // address computation and return early.
17602   unsigned ParentOp = Parent->getOpcode();
17603   if (Subtarget.isISA3_1() && ((ParentOp == ISD::INTRINSIC_W_CHAIN) ||
17604                                (ParentOp == ISD::INTRINSIC_VOID))) {
17605     unsigned ID = cast<ConstantSDNode>(Parent->getOperand(1))->getZExtValue();
17606     if ((ID == Intrinsic::ppc_vsx_lxvp) || (ID == Intrinsic::ppc_vsx_stxvp)) {
17607       SDValue IntrinOp = (ID == Intrinsic::ppc_vsx_lxvp)
17608                              ? Parent->getOperand(2)
17609                              : Parent->getOperand(3);
17610       computeFlagsForAddressComputation(IntrinOp, FlagSet, DAG);
17611       FlagSet |= PPC::MOF_Vector;
17612       return FlagSet;
17613     }
17614   }
17615 
17616   // Mark this as something we don't want to handle here if it is atomic
17617   // or pre-increment instruction.
17618   if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent))
17619     if (LSB->isIndexed())
17620       return PPC::MOF_None;
17621 
17622   // Compute in-memory type flags. This is based on if there are scalars,
17623   // floats or vectors.
17624   const MemSDNode *MN = dyn_cast<MemSDNode>(Parent);
17625   assert(MN && "Parent should be a MemSDNode!");
17626   EVT MemVT = MN->getMemoryVT();
17627   unsigned Size = MemVT.getSizeInBits();
17628   if (MemVT.isScalarInteger()) {
17629     assert(Size <= 128 &&
17630            "Not expecting scalar integers larger than 16 bytes!");
17631     if (Size < 32)
17632       FlagSet |= PPC::MOF_SubWordInt;
17633     else if (Size == 32)
17634       FlagSet |= PPC::MOF_WordInt;
17635     else
17636       FlagSet |= PPC::MOF_DoubleWordInt;
17637   } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors.
17638     if (Size == 128)
17639       FlagSet |= PPC::MOF_Vector;
17640     else if (Size == 256) {
17641       assert(Subtarget.pairedVectorMemops() &&
17642              "256-bit vectors are only available when paired vector memops is "
17643              "enabled!");
17644       FlagSet |= PPC::MOF_Vector;
17645     } else
17646       llvm_unreachable("Not expecting illegal vectors!");
17647   } else { // Floating point type: can be scalar, f128 or vector types.
17648     if (Size == 32 || Size == 64)
17649       FlagSet |= PPC::MOF_ScalarFloat;
17650     else if (MemVT == MVT::f128 || MemVT.isVector())
17651       FlagSet |= PPC::MOF_Vector;
17652     else
17653       llvm_unreachable("Not expecting illegal scalar floats!");
17654   }
17655 
17656   // Compute flags for address computation.
17657   computeFlagsForAddressComputation(N, FlagSet, DAG);
17658 
17659   // Compute type extension flags.
17660   if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) {
17661     switch (LN->getExtensionType()) {
17662     case ISD::SEXTLOAD:
17663       FlagSet |= PPC::MOF_SExt;
17664       break;
17665     case ISD::EXTLOAD:
17666     case ISD::ZEXTLOAD:
17667       FlagSet |= PPC::MOF_ZExt;
17668       break;
17669     case ISD::NON_EXTLOAD:
17670       FlagSet |= PPC::MOF_NoExt;
17671       break;
17672     }
17673   } else
17674     FlagSet |= PPC::MOF_NoExt;
17675 
17676   // For integers, no extension is the same as zero extension.
17677   // We set the extension mode to zero extension so we don't have
17678   // to add separate entries in AddrModesMap for loads and stores.
17679   if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) {
17680     FlagSet |= PPC::MOF_ZExt;
17681     FlagSet &= ~PPC::MOF_NoExt;
17682   }
17683 
17684   // If we don't have prefixed instructions, 34-bit constants should be
17685   // treated as PPC::MOF_NotAddNorCst so they can match D-Forms.
17686   bool IsNonP1034BitConst =
17687       ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) &
17688        FlagSet) == PPC::MOF_RPlusSImm34;
17689   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR &&
17690       IsNonP1034BitConst)
17691     FlagSet |= PPC::MOF_NotAddNorCst;
17692 
17693   return FlagSet;
17694 }
17695 
17696 /// SelectForceXFormMode - Given the specified address, force it to be
17697 /// represented as an indexed [r+r] operation (an XForm instruction).
17698 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp,
17699                                                       SDValue &Base,
17700                                                       SelectionDAG &DAG) const {
17701 
17702   PPC::AddrMode Mode = PPC::AM_XForm;
17703   int16_t ForceXFormImm = 0;
17704   if (provablyDisjointOr(DAG, N) &&
17705       !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) {
17706     Disp = N.getOperand(0);
17707     Base = N.getOperand(1);
17708     return Mode;
17709   }
17710 
17711   // If the address is the result of an add, we will utilize the fact that the
17712   // address calculation includes an implicit add.  However, we can reduce
17713   // register pressure if we do not materialize a constant just for use as the
17714   // index register.  We only get rid of the add if it is not an add of a
17715   // value and a 16-bit signed constant and both have a single use.
17716   if (N.getOpcode() == ISD::ADD &&
17717       (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) ||
17718        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
17719     Disp = N.getOperand(0);
17720     Base = N.getOperand(1);
17721     return Mode;
17722   }
17723 
17724   // Otherwise, use R0 as the base register.
17725   Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17726                          N.getValueType());
17727   Base = N;
17728 
17729   return Mode;
17730 }
17731 
17732 bool PPCTargetLowering::splitValueIntoRegisterParts(
17733     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
17734     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
17735   EVT ValVT = Val.getValueType();
17736   // If we are splitting a scalar integer into f64 parts (i.e. so they
17737   // can be placed into VFRC registers), we need to zero extend and
17738   // bitcast the values. This will ensure the value is placed into a
17739   // VSR using direct moves or stack operations as needed.
17740   if (PartVT == MVT::f64 &&
17741       (ValVT == MVT::i32 || ValVT == MVT::i16 || ValVT == MVT::i8)) {
17742     Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
17743     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Val);
17744     Parts[0] = Val;
17745     return true;
17746   }
17747   return false;
17748 }
17749 
17750 SDValue PPCTargetLowering::lowerToLibCall(const char *LibCallName, SDValue Op,
17751                                           SelectionDAG &DAG) const {
17752   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17753   TargetLowering::CallLoweringInfo CLI(DAG);
17754   EVT RetVT = Op.getValueType();
17755   SDValue Callee =
17756       DAG.getExternalSymbol(LibCallName, TLI.getPointerTy(DAG.getDataLayout()));
17757   bool SignExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, false);
17758   TargetLowering::ArgListTy Args;
17759   TargetLowering::ArgListEntry Entry;
17760   for (const SDValue &N : Op->op_values()) {
17761     EVT ArgVT = N.getValueType();
17762     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
17763     Entry.Node = N;
17764     Entry.Ty = ArgTy;
17765     Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, SignExtend);
17766     Entry.IsZExt = !Entry.IsSExt;
17767     Args.push_back(Entry);
17768   }
17769   CLI.setDebugLoc(SDLoc(Op))
17770       .setChain(DAG.getEntryNode())
17771       .setLibCallee(CallingConv::C, RetVT.getTypeForEVT(*DAG.getContext()),
17772                     Callee, std::move(Args))
17773       .setTailCall(true)
17774       .setSExtResult(SignExtend)
17775       .setZExtResult(!SignExtend)
17776       .setIsPostTypeLegalization(true);
17777   return TLI.LowerCallTo(CLI).first;
17778 }
17779 
17780 SDValue PPCTargetLowering::lowerLibCallBasedOnType(
17781     const char *LibCallFloatName, const char *LibCallDoubleName, SDValue Op,
17782     SelectionDAG &DAG) const {
17783   if (Op.getValueType() == MVT::f32)
17784     return lowerToLibCall(LibCallFloatName, Op, DAG);
17785 
17786   if (Op.getValueType() == MVT::f64)
17787     return lowerToLibCall(LibCallDoubleName, Op, DAG);
17788 
17789   return SDValue();
17790 }
17791 
17792 bool PPCTargetLowering::isLowringToMASSFiniteSafe(SDValue Op) const {
17793   SDNodeFlags Flags = Op.getNode()->getFlags();
17794   return isLowringToMASSSafe(Op) && Flags.hasNoSignedZeros() &&
17795          Flags.hasNoNaNs() && Flags.hasNoInfs();
17796 }
17797 
17798 bool PPCTargetLowering::isLowringToMASSSafe(SDValue Op) const {
17799   return Op.getNode()->getFlags().hasApproximateFuncs();
17800 }
17801 
17802 SDValue PPCTargetLowering::lowerLibCallBase(const char *LibCallDoubleName,
17803                                             const char *LibCallFloatName,
17804                                             const char *LibCallDoubleNameFinite,
17805                                             const char *LibCallFloatNameFinite,
17806                                             SDValue Op,
17807                                             SelectionDAG &DAG) const {
17808   if (!isLowringToMASSSafe(Op))
17809     return SDValue();
17810 
17811   if (!isLowringToMASSFiniteSafe(Op))
17812     return lowerLibCallBasedOnType(LibCallFloatName, LibCallDoubleName, Op,
17813                                    DAG);
17814 
17815   return lowerLibCallBasedOnType(LibCallFloatNameFinite,
17816                                  LibCallDoubleNameFinite, Op, DAG);
17817 }
17818 
17819 SDValue PPCTargetLowering::lowerPow(SDValue Op, SelectionDAG &DAG) const {
17820   return lowerLibCallBase("__xl_pow", "__xl_powf", "__xl_pow_finite",
17821                           "__xl_powf_finite", Op, DAG);
17822 }
17823 
17824 SDValue PPCTargetLowering::lowerSin(SDValue Op, SelectionDAG &DAG) const {
17825   return lowerLibCallBase("__xl_sin", "__xl_sinf", "__xl_sin_finite",
17826                           "__xl_sinf_finite", Op, DAG);
17827 }
17828 
17829 SDValue PPCTargetLowering::lowerCos(SDValue Op, SelectionDAG &DAG) const {
17830   return lowerLibCallBase("__xl_cos", "__xl_cosf", "__xl_cos_finite",
17831                           "__xl_cosf_finite", Op, DAG);
17832 }
17833 
17834 SDValue PPCTargetLowering::lowerLog(SDValue Op, SelectionDAG &DAG) const {
17835   return lowerLibCallBase("__xl_log", "__xl_logf", "__xl_log_finite",
17836                           "__xl_logf_finite", Op, DAG);
17837 }
17838 
17839 SDValue PPCTargetLowering::lowerLog10(SDValue Op, SelectionDAG &DAG) const {
17840   return lowerLibCallBase("__xl_log10", "__xl_log10f", "__xl_log10_finite",
17841                           "__xl_log10f_finite", Op, DAG);
17842 }
17843 
17844 SDValue PPCTargetLowering::lowerExp(SDValue Op, SelectionDAG &DAG) const {
17845   return lowerLibCallBase("__xl_exp", "__xl_expf", "__xl_exp_finite",
17846                           "__xl_expf_finite", Op, DAG);
17847 }
17848 
17849 // If we happen to match to an aligned D-Form, check if the Frame Index is
17850 // adequately aligned. If it is not, reset the mode to match to X-Form.
17851 static void setXFormForUnalignedFI(SDValue N, unsigned Flags,
17852                                    PPC::AddrMode &Mode) {
17853   if (!isa<FrameIndexSDNode>(N))
17854     return;
17855   if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) ||
17856       (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16)))
17857     Mode = PPC::AM_XForm;
17858 }
17859 
17860 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode),
17861 /// compute the address flags of the node, get the optimal address mode based
17862 /// on the flags, and set the Base and Disp based on the address mode.
17863 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent,
17864                                                        SDValue N, SDValue &Disp,
17865                                                        SDValue &Base,
17866                                                        SelectionDAG &DAG,
17867                                                        MaybeAlign Align) const {
17868   SDLoc DL(Parent);
17869 
17870   // Compute the address flags.
17871   unsigned Flags = computeMOFlags(Parent, N, DAG);
17872 
17873   // Get the optimal address mode based on the Flags.
17874   PPC::AddrMode Mode = getAddrModeForFlags(Flags);
17875 
17876   // If the address mode is DS-Form or DQ-Form, check if the FI is aligned.
17877   // Select an X-Form load if it is not.
17878   setXFormForUnalignedFI(N, Flags, Mode);
17879 
17880   // Set the mode to PC-Relative addressing mode if we have a valid PC-Rel node.
17881   if ((Mode == PPC::AM_XForm) && isPCRelNode(N)) {
17882     assert(Subtarget.isUsingPCRelativeCalls() &&
17883            "Must be using PC-Relative calls when a valid PC-Relative node is "
17884            "present!");
17885     Mode = PPC::AM_PCRel;
17886   }
17887 
17888   // Set Base and Disp accordingly depending on the address mode.
17889   switch (Mode) {
17890   case PPC::AM_DForm:
17891   case PPC::AM_DSForm:
17892   case PPC::AM_DQForm: {
17893     // This is a register plus a 16-bit immediate. The base will be the
17894     // register and the displacement will be the immediate unless it
17895     // isn't sufficiently aligned.
17896     if (Flags & PPC::MOF_RPlusSImm16) {
17897       SDValue Op0 = N.getOperand(0);
17898       SDValue Op1 = N.getOperand(1);
17899       int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue();
17900       if (!Align || isAligned(*Align, Imm)) {
17901         Disp = DAG.getTargetConstant(Imm, DL, N.getValueType());
17902         Base = Op0;
17903         if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) {
17904           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
17905           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
17906         }
17907         break;
17908       }
17909     }
17910     // This is a register plus the @lo relocation. The base is the register
17911     // and the displacement is the global address.
17912     else if (Flags & PPC::MOF_RPlusLo) {
17913       Disp = N.getOperand(1).getOperand(0); // The global address.
17914       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
17915              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
17916              Disp.getOpcode() == ISD::TargetConstantPool ||
17917              Disp.getOpcode() == ISD::TargetJumpTable);
17918       Base = N.getOperand(0);
17919       break;
17920     }
17921     // This is a constant address at most 32 bits. The base will be
17922     // zero or load-immediate-shifted and the displacement will be
17923     // the low 16 bits of the address.
17924     else if (Flags & PPC::MOF_AddrIsSImm32) {
17925       auto *CN = cast<ConstantSDNode>(N);
17926       EVT CNType = CN->getValueType(0);
17927       uint64_t CNImm = CN->getZExtValue();
17928       // If this address fits entirely in a 16-bit sext immediate field, codegen
17929       // this as "d, 0".
17930       int16_t Imm;
17931       if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) {
17932         Disp = DAG.getTargetConstant(Imm, DL, CNType);
17933         Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17934                                CNType);
17935         break;
17936       }
17937       // Handle 32-bit sext immediate with LIS + Addr mode.
17938       if ((CNType == MVT::i32 || isInt<32>(CNImm)) &&
17939           (!Align || isAligned(*Align, CNImm))) {
17940         int32_t Addr = (int32_t)CNImm;
17941         // Otherwise, break this down into LIS + Disp.
17942         Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32);
17943         Base =
17944             DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32);
17945         uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8;
17946         Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0);
17947         break;
17948       }
17949     }
17950     // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable.
17951     Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout()));
17952     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
17953       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
17954       fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
17955     } else
17956       Base = N;
17957     break;
17958   }
17959   case PPC::AM_PrefixDForm: {
17960     int64_t Imm34 = 0;
17961     unsigned Opcode = N.getOpcode();
17962     if (((Opcode == ISD::ADD) || (Opcode == ISD::OR)) &&
17963         (isIntS34Immediate(N.getOperand(1), Imm34))) {
17964       // N is an Add/OR Node, and it's operand is a 34-bit signed immediate.
17965       Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType());
17966       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
17967         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
17968       else
17969         Base = N.getOperand(0);
17970     } else if (isIntS34Immediate(N, Imm34)) {
17971       // The address is a 34-bit signed immediate.
17972       Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType());
17973       Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
17974     }
17975     break;
17976   }
17977   case PPC::AM_PCRel: {
17978     // When selecting PC-Relative instructions, "Base" is not utilized as
17979     // we select the address as [PC+imm].
17980     Disp = N;
17981     break;
17982   }
17983   case PPC::AM_None:
17984     break;
17985   default: { // By default, X-Form is always available to be selected.
17986     // When a frame index is not aligned, we also match by XForm.
17987     FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N);
17988     Base = FI ? N : N.getOperand(1);
17989     Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17990                                 N.getValueType())
17991               : N.getOperand(0);
17992     break;
17993   }
17994   }
17995   return Mode;
17996 }
17997 
17998 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC,
17999                                                  bool Return,
18000                                                  bool IsVarArg) const {
18001   switch (CC) {
18002   case CallingConv::Cold:
18003     return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS);
18004   default:
18005     return CC_PPC64_ELF_FIS;
18006   }
18007 }
18008 
18009 TargetLowering::AtomicExpansionKind
18010 PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
18011   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
18012   if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128)
18013     return AtomicExpansionKind::MaskedIntrinsic;
18014   return TargetLowering::shouldExpandAtomicRMWInIR(AI);
18015 }
18016 
18017 TargetLowering::AtomicExpansionKind
18018 PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
18019   unsigned Size = AI->getNewValOperand()->getType()->getPrimitiveSizeInBits();
18020   if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128)
18021     return AtomicExpansionKind::MaskedIntrinsic;
18022   return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI);
18023 }
18024 
18025 static Intrinsic::ID
18026 getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) {
18027   switch (BinOp) {
18028   default:
18029     llvm_unreachable("Unexpected AtomicRMW BinOp");
18030   case AtomicRMWInst::Xchg:
18031     return Intrinsic::ppc_atomicrmw_xchg_i128;
18032   case AtomicRMWInst::Add:
18033     return Intrinsic::ppc_atomicrmw_add_i128;
18034   case AtomicRMWInst::Sub:
18035     return Intrinsic::ppc_atomicrmw_sub_i128;
18036   case AtomicRMWInst::And:
18037     return Intrinsic::ppc_atomicrmw_and_i128;
18038   case AtomicRMWInst::Or:
18039     return Intrinsic::ppc_atomicrmw_or_i128;
18040   case AtomicRMWInst::Xor:
18041     return Intrinsic::ppc_atomicrmw_xor_i128;
18042   case AtomicRMWInst::Nand:
18043     return Intrinsic::ppc_atomicrmw_nand_i128;
18044   }
18045 }
18046 
18047 Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic(
18048     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
18049     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
18050   assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() &&
18051          "Only support quadword now");
18052   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
18053   Type *ValTy = Incr->getType();
18054   assert(ValTy->getPrimitiveSizeInBits() == 128);
18055   Function *RMW = Intrinsic::getDeclaration(
18056       M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation()));
18057   Type *Int64Ty = Type::getInt64Ty(M->getContext());
18058   Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo");
18059   Value *IncrHi =
18060       Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi");
18061   Value *Addr =
18062       Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext()));
18063   Value *LoHi = Builder.CreateCall(RMW, {Addr, IncrLo, IncrHi});
18064   Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
18065   Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
18066   Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
18067   Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
18068   return Builder.CreateOr(
18069       Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
18070 }
18071 
18072 Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
18073     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
18074     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
18075   assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() &&
18076          "Only support quadword now");
18077   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
18078   Type *ValTy = CmpVal->getType();
18079   assert(ValTy->getPrimitiveSizeInBits() == 128);
18080   Function *IntCmpXchg =
18081       Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128);
18082   Type *Int64Ty = Type::getInt64Ty(M->getContext());
18083   Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo");
18084   Value *CmpHi =
18085       Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi");
18086   Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo");
18087   Value *NewHi =
18088       Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi");
18089   Value *Addr =
18090       Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext()));
18091   emitLeadingFence(Builder, CI, Ord);
18092   Value *LoHi =
18093       Builder.CreateCall(IntCmpXchg, {Addr, CmpLo, CmpHi, NewLo, NewHi});
18094   emitTrailingFence(Builder, CI, Ord);
18095   Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
18096   Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
18097   Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
18098   Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
18099   return Builder.CreateOr(
18100       Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
18101 }
18102