1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSectionXCOFF.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 122 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 123 124 static cl::opt<bool> EnableQuadwordAtomics( 125 "ppc-quadword-atomics", 126 cl::desc("enable quadword lock-free atomic operations"), cl::init(false), 127 cl::Hidden); 128 129 static cl::opt<bool> 130 DisablePerfectShuffle("ppc-disable-perfect-shuffle", 131 cl::desc("disable vector permute decomposition"), 132 cl::init(false), cl::Hidden); 133 134 STATISTIC(NumTailCalls, "Number of tail calls"); 135 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 136 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 137 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 138 139 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 140 141 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 142 143 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word"; 144 145 // FIXME: Remove this once the bug has been fixed! 146 extern cl::opt<bool> ANDIGlueBug; 147 148 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 149 const PPCSubtarget &STI) 150 : TargetLowering(TM), Subtarget(STI) { 151 // Initialize map that relates the PPC addressing modes to the computed flags 152 // of a load/store instruction. The map is used to determine the optimal 153 // addressing mode when selecting load and stores. 154 initializeAddrModeMap(); 155 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 156 // arguments are at least 4/8 bytes aligned. 157 bool isPPC64 = Subtarget.isPPC64(); 158 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 159 160 // Set up the register classes. 161 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 162 if (!useSoftFloat()) { 163 if (hasSPE()) { 164 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 165 // EFPU2 APU only supports f32 166 if (!Subtarget.hasEFPU2()) 167 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 168 } else { 169 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 170 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 171 } 172 } 173 174 // Match BITREVERSE to customized fast code sequence in the td file. 175 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 176 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 177 178 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 179 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 180 181 // Custom lower inline assembly to check for special registers. 182 setOperationAction(ISD::INLINEASM, MVT::Other, Custom); 183 setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom); 184 185 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 186 for (MVT VT : MVT::integer_valuetypes()) { 187 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 188 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 189 } 190 191 if (Subtarget.isISA3_0()) { 192 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 193 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 194 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 195 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 196 } else { 197 // No extending loads from f16 or HW conversions back and forth. 198 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 199 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 200 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 201 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 202 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 203 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 204 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 205 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 206 } 207 208 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 209 210 // PowerPC has pre-inc load and store's. 211 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 212 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 213 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 214 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 215 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 216 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 217 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 218 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 219 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 220 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 221 if (!Subtarget.hasSPE()) { 222 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 223 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 224 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 225 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 226 } 227 228 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 229 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 230 for (MVT VT : ScalarIntVTs) { 231 setOperationAction(ISD::ADDC, VT, Legal); 232 setOperationAction(ISD::ADDE, VT, Legal); 233 setOperationAction(ISD::SUBC, VT, Legal); 234 setOperationAction(ISD::SUBE, VT, Legal); 235 } 236 237 if (Subtarget.useCRBits()) { 238 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 239 240 if (isPPC64 || Subtarget.hasFPCVT()) { 241 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); 242 AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, 243 isPPC64 ? MVT::i64 : MVT::i32); 244 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); 245 AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, 246 isPPC64 ? MVT::i64 : MVT::i32); 247 248 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 249 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 250 isPPC64 ? MVT::i64 : MVT::i32); 251 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 252 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 253 isPPC64 ? MVT::i64 : MVT::i32); 254 255 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote); 256 AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1, 257 isPPC64 ? MVT::i64 : MVT::i32); 258 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote); 259 AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1, 260 isPPC64 ? MVT::i64 : MVT::i32); 261 262 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); 263 AddPromotedToType(ISD::FP_TO_SINT, MVT::i1, 264 isPPC64 ? MVT::i64 : MVT::i32); 265 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); 266 AddPromotedToType(ISD::FP_TO_UINT, MVT::i1, 267 isPPC64 ? MVT::i64 : MVT::i32); 268 } else { 269 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); 270 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); 271 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 272 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 273 } 274 275 // PowerPC does not support direct load/store of condition registers. 276 setOperationAction(ISD::LOAD, MVT::i1, Custom); 277 setOperationAction(ISD::STORE, MVT::i1, Custom); 278 279 // FIXME: Remove this once the ANDI glue bug is fixed: 280 if (ANDIGlueBug) 281 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 282 283 for (MVT VT : MVT::integer_valuetypes()) { 284 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 285 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 286 setTruncStoreAction(VT, MVT::i1, Expand); 287 } 288 289 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 290 } 291 292 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 293 // PPC (the libcall is not available). 294 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 295 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 296 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); 297 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); 298 299 // We do not currently implement these libm ops for PowerPC. 300 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 301 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 302 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 303 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 304 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 305 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 306 307 // PowerPC has no SREM/UREM instructions unless we are on P9 308 // On P9 we may use a hardware instruction to compute the remainder. 309 // When the result of both the remainder and the division is required it is 310 // more efficient to compute the remainder from the result of the division 311 // rather than use the remainder instruction. The instructions are legalized 312 // directly because the DivRemPairsPass performs the transformation at the IR 313 // level. 314 if (Subtarget.isISA3_0()) { 315 setOperationAction(ISD::SREM, MVT::i32, Legal); 316 setOperationAction(ISD::UREM, MVT::i32, Legal); 317 setOperationAction(ISD::SREM, MVT::i64, Legal); 318 setOperationAction(ISD::UREM, MVT::i64, Legal); 319 } else { 320 setOperationAction(ISD::SREM, MVT::i32, Expand); 321 setOperationAction(ISD::UREM, MVT::i32, Expand); 322 setOperationAction(ISD::SREM, MVT::i64, Expand); 323 setOperationAction(ISD::UREM, MVT::i64, Expand); 324 } 325 326 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 327 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 328 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 329 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 330 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 331 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 332 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 333 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 334 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 335 336 // Handle constrained floating-point operations of scalar. 337 // TODO: Handle SPE specific operation. 338 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 339 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 340 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 341 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 342 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 343 344 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 345 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 346 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 347 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 348 349 if (!Subtarget.hasSPE()) { 350 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 351 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 352 } 353 354 if (Subtarget.hasVSX()) { 355 setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); 356 setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); 357 } 358 359 if (Subtarget.hasFSQRT()) { 360 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 361 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 362 } 363 364 if (Subtarget.hasFPRND()) { 365 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 366 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 367 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 368 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 369 370 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 371 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 372 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 373 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 374 } 375 376 // We don't support sin/cos/sqrt/fmod/pow 377 setOperationAction(ISD::FSIN , MVT::f64, Expand); 378 setOperationAction(ISD::FCOS , MVT::f64, Expand); 379 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 380 setOperationAction(ISD::FREM , MVT::f64, Expand); 381 setOperationAction(ISD::FPOW , MVT::f64, Expand); 382 setOperationAction(ISD::FSIN , MVT::f32, Expand); 383 setOperationAction(ISD::FCOS , MVT::f32, Expand); 384 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 385 setOperationAction(ISD::FREM , MVT::f32, Expand); 386 setOperationAction(ISD::FPOW , MVT::f32, Expand); 387 388 // MASS transformation for LLVM intrinsics with replicating fast-math flag 389 // to be consistent to PPCGenScalarMASSEntries pass 390 if (TM.getOptLevel() == CodeGenOpt::Aggressive && 391 TM.Options.PPCGenScalarMASSEntries) { 392 setOperationAction(ISD::FSIN , MVT::f64, Custom); 393 setOperationAction(ISD::FCOS , MVT::f64, Custom); 394 setOperationAction(ISD::FPOW , MVT::f64, Custom); 395 setOperationAction(ISD::FLOG, MVT::f64, Custom); 396 setOperationAction(ISD::FLOG10, MVT::f64, Custom); 397 setOperationAction(ISD::FEXP, MVT::f64, Custom); 398 setOperationAction(ISD::FSIN , MVT::f32, Custom); 399 setOperationAction(ISD::FCOS , MVT::f32, Custom); 400 setOperationAction(ISD::FPOW , MVT::f32, Custom); 401 setOperationAction(ISD::FLOG, MVT::f32, Custom); 402 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 403 setOperationAction(ISD::FEXP, MVT::f32, Custom); 404 } 405 406 if (Subtarget.hasSPE()) { 407 setOperationAction(ISD::FMA , MVT::f64, Expand); 408 setOperationAction(ISD::FMA , MVT::f32, Expand); 409 } else { 410 setOperationAction(ISD::FMA , MVT::f64, Legal); 411 setOperationAction(ISD::FMA , MVT::f32, Legal); 412 } 413 414 if (Subtarget.hasSPE()) 415 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 416 417 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 418 419 // If we're enabling GP optimizations, use hardware square root 420 if (!Subtarget.hasFSQRT() && 421 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 422 Subtarget.hasFRE())) 423 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 424 425 if (!Subtarget.hasFSQRT() && 426 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 427 Subtarget.hasFRES())) 428 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 429 430 if (Subtarget.hasFCPSGN()) { 431 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 432 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 433 } else { 434 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 435 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 436 } 437 438 if (Subtarget.hasFPRND()) { 439 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 440 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 441 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 442 setOperationAction(ISD::FROUND, MVT::f64, Legal); 443 444 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 445 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 446 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 447 setOperationAction(ISD::FROUND, MVT::f32, Legal); 448 } 449 450 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 451 // to speed up scalar BSWAP64. 452 // CTPOP or CTTZ were introduced in P8/P9 respectively 453 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 454 if (Subtarget.hasP9Vector() && Subtarget.isPPC64()) 455 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 456 else 457 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 458 if (Subtarget.isISA3_0()) { 459 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 460 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 461 } else { 462 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 463 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 464 } 465 466 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 467 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 468 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 469 } else { 470 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 471 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 472 } 473 474 // PowerPC does not have ROTR 475 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 476 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 477 478 if (!Subtarget.useCRBits()) { 479 // PowerPC does not have Select 480 setOperationAction(ISD::SELECT, MVT::i32, Expand); 481 setOperationAction(ISD::SELECT, MVT::i64, Expand); 482 setOperationAction(ISD::SELECT, MVT::f32, Expand); 483 setOperationAction(ISD::SELECT, MVT::f64, Expand); 484 } 485 486 // PowerPC wants to turn select_cc of FP into fsel when possible. 487 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 488 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 489 490 // PowerPC wants to optimize integer setcc a bit 491 if (!Subtarget.useCRBits()) 492 setOperationAction(ISD::SETCC, MVT::i32, Custom); 493 494 if (Subtarget.hasFPU()) { 495 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 496 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 497 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 498 499 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 500 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 501 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 502 } 503 504 // PowerPC does not have BRCOND which requires SetCC 505 if (!Subtarget.useCRBits()) 506 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 507 508 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 509 510 if (Subtarget.hasSPE()) { 511 // SPE has built-in conversions 512 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 513 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 514 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 515 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 516 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 517 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 518 519 // SPE supports signaling compare of f32/f64. 520 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 521 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 522 } else { 523 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 524 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 525 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 526 527 // PowerPC does not have [U|S]INT_TO_FP 528 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); 529 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); 530 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 531 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 532 } 533 534 if (Subtarget.hasDirectMove() && isPPC64) { 535 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 536 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 537 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 538 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 539 if (TM.Options.UnsafeFPMath) { 540 setOperationAction(ISD::LRINT, MVT::f64, Legal); 541 setOperationAction(ISD::LRINT, MVT::f32, Legal); 542 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 543 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 544 setOperationAction(ISD::LROUND, MVT::f64, Legal); 545 setOperationAction(ISD::LROUND, MVT::f32, Legal); 546 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 547 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 548 } 549 } else { 550 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 551 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 552 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 553 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 554 } 555 556 // We cannot sextinreg(i1). Expand to shifts. 557 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 558 559 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 560 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 561 // support continuation, user-level threading, and etc.. As a result, no 562 // other SjLj exception interfaces are implemented and please don't build 563 // your own exception handling based on them. 564 // LLVM/Clang supports zero-cost DWARF exception handling. 565 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 566 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 567 568 // We want to legalize GlobalAddress and ConstantPool nodes into the 569 // appropriate instructions to materialize the address. 570 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 571 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 572 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 573 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 574 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 575 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 576 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 577 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 578 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 579 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 580 581 // TRAP is legal. 582 setOperationAction(ISD::TRAP, MVT::Other, Legal); 583 584 // TRAMPOLINE is custom lowered. 585 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 586 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 587 588 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 589 setOperationAction(ISD::VASTART , MVT::Other, Custom); 590 591 if (Subtarget.is64BitELFABI()) { 592 // VAARG always uses double-word chunks, so promote anything smaller. 593 setOperationAction(ISD::VAARG, MVT::i1, Promote); 594 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 595 setOperationAction(ISD::VAARG, MVT::i8, Promote); 596 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 597 setOperationAction(ISD::VAARG, MVT::i16, Promote); 598 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 599 setOperationAction(ISD::VAARG, MVT::i32, Promote); 600 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 601 setOperationAction(ISD::VAARG, MVT::Other, Expand); 602 } else if (Subtarget.is32BitELFABI()) { 603 // VAARG is custom lowered with the 32-bit SVR4 ABI. 604 setOperationAction(ISD::VAARG, MVT::Other, Custom); 605 setOperationAction(ISD::VAARG, MVT::i64, Custom); 606 } else 607 setOperationAction(ISD::VAARG, MVT::Other, Expand); 608 609 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 610 if (Subtarget.is32BitELFABI()) 611 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 612 else 613 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 614 615 // Use the default implementation. 616 setOperationAction(ISD::VAEND , MVT::Other, Expand); 617 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 618 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 619 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 620 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 621 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 622 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 623 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 624 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 625 626 // We want to custom lower some of our intrinsics. 627 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 628 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f64, Custom); 629 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::ppcf128, Custom); 630 631 // To handle counter-based loop conditions. 632 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 633 634 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 635 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 636 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 637 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 638 639 // Comparisons that require checking two conditions. 640 if (Subtarget.hasSPE()) { 641 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 642 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 643 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 644 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 645 } 646 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 647 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 648 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 649 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 650 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 651 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 652 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 653 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 654 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 655 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 656 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 657 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 658 659 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 660 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 661 662 if (Subtarget.has64BitSupport()) { 663 // They also have instructions for converting between i64 and fp. 664 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 665 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); 666 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 667 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 668 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 669 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 670 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 671 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 672 // This is just the low 32 bits of a (signed) fp->i64 conversion. 673 // We cannot do this with Promote because i64 is not a legal type. 674 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 675 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 676 677 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { 678 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 679 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 680 } 681 } else { 682 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 683 if (Subtarget.hasSPE()) { 684 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 685 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 686 } else { 687 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); 688 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 689 } 690 } 691 692 // With the instructions enabled under FPCVT, we can do everything. 693 if (Subtarget.hasFPCVT()) { 694 if (Subtarget.has64BitSupport()) { 695 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 696 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 697 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 698 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 699 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 700 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 701 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 702 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 703 } 704 705 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 706 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 707 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 708 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 709 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 710 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 711 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 712 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 713 } 714 715 if (Subtarget.use64BitRegs()) { 716 // 64-bit PowerPC implementations can support i64 types directly 717 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 718 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 719 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 720 // 64-bit PowerPC wants to expand i128 shifts itself. 721 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 722 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 723 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 724 } else { 725 // 32-bit PowerPC wants to expand i64 shifts itself. 726 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 727 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 728 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 729 } 730 731 // PowerPC has better expansions for funnel shifts than the generic 732 // TargetLowering::expandFunnelShift. 733 if (Subtarget.has64BitSupport()) { 734 setOperationAction(ISD::FSHL, MVT::i64, Custom); 735 setOperationAction(ISD::FSHR, MVT::i64, Custom); 736 } 737 setOperationAction(ISD::FSHL, MVT::i32, Custom); 738 setOperationAction(ISD::FSHR, MVT::i32, Custom); 739 740 if (Subtarget.hasVSX()) { 741 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 742 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 743 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 744 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 745 } 746 747 if (Subtarget.hasAltivec()) { 748 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 749 setOperationAction(ISD::SADDSAT, VT, Legal); 750 setOperationAction(ISD::SSUBSAT, VT, Legal); 751 setOperationAction(ISD::UADDSAT, VT, Legal); 752 setOperationAction(ISD::USUBSAT, VT, Legal); 753 } 754 // First set operation action for all vector types to expand. Then we 755 // will selectively turn on ones that can be effectively codegen'd. 756 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 757 // add/sub are legal for all supported vector VT's. 758 setOperationAction(ISD::ADD, VT, Legal); 759 setOperationAction(ISD::SUB, VT, Legal); 760 761 // For v2i64, these are only valid with P8Vector. This is corrected after 762 // the loop. 763 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 764 setOperationAction(ISD::SMAX, VT, Legal); 765 setOperationAction(ISD::SMIN, VT, Legal); 766 setOperationAction(ISD::UMAX, VT, Legal); 767 setOperationAction(ISD::UMIN, VT, Legal); 768 } 769 else { 770 setOperationAction(ISD::SMAX, VT, Expand); 771 setOperationAction(ISD::SMIN, VT, Expand); 772 setOperationAction(ISD::UMAX, VT, Expand); 773 setOperationAction(ISD::UMIN, VT, Expand); 774 } 775 776 if (Subtarget.hasVSX()) { 777 setOperationAction(ISD::FMAXNUM, VT, Legal); 778 setOperationAction(ISD::FMINNUM, VT, Legal); 779 } 780 781 // Vector instructions introduced in P8 782 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 783 setOperationAction(ISD::CTPOP, VT, Legal); 784 setOperationAction(ISD::CTLZ, VT, Legal); 785 } 786 else { 787 setOperationAction(ISD::CTPOP, VT, Expand); 788 setOperationAction(ISD::CTLZ, VT, Expand); 789 } 790 791 // Vector instructions introduced in P9 792 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 793 setOperationAction(ISD::CTTZ, VT, Legal); 794 else 795 setOperationAction(ISD::CTTZ, VT, Expand); 796 797 // We promote all shuffles to v16i8. 798 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 799 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 800 801 // We promote all non-typed operations to v4i32. 802 setOperationAction(ISD::AND , VT, Promote); 803 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 804 setOperationAction(ISD::OR , VT, Promote); 805 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 806 setOperationAction(ISD::XOR , VT, Promote); 807 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 808 setOperationAction(ISD::LOAD , VT, Promote); 809 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 810 setOperationAction(ISD::SELECT, VT, Promote); 811 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 812 setOperationAction(ISD::VSELECT, VT, Legal); 813 setOperationAction(ISD::SELECT_CC, VT, Promote); 814 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 815 setOperationAction(ISD::STORE, VT, Promote); 816 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 817 818 // No other operations are legal. 819 setOperationAction(ISD::MUL , VT, Expand); 820 setOperationAction(ISD::SDIV, VT, Expand); 821 setOperationAction(ISD::SREM, VT, Expand); 822 setOperationAction(ISD::UDIV, VT, Expand); 823 setOperationAction(ISD::UREM, VT, Expand); 824 setOperationAction(ISD::FDIV, VT, Expand); 825 setOperationAction(ISD::FREM, VT, Expand); 826 setOperationAction(ISD::FNEG, VT, Expand); 827 setOperationAction(ISD::FSQRT, VT, Expand); 828 setOperationAction(ISD::FLOG, VT, Expand); 829 setOperationAction(ISD::FLOG10, VT, Expand); 830 setOperationAction(ISD::FLOG2, VT, Expand); 831 setOperationAction(ISD::FEXP, VT, Expand); 832 setOperationAction(ISD::FEXP2, VT, Expand); 833 setOperationAction(ISD::FSIN, VT, Expand); 834 setOperationAction(ISD::FCOS, VT, Expand); 835 setOperationAction(ISD::FABS, VT, Expand); 836 setOperationAction(ISD::FFLOOR, VT, Expand); 837 setOperationAction(ISD::FCEIL, VT, Expand); 838 setOperationAction(ISD::FTRUNC, VT, Expand); 839 setOperationAction(ISD::FRINT, VT, Expand); 840 setOperationAction(ISD::FNEARBYINT, VT, Expand); 841 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 842 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 843 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 844 setOperationAction(ISD::MULHU, VT, Expand); 845 setOperationAction(ISD::MULHS, VT, Expand); 846 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 847 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 848 setOperationAction(ISD::UDIVREM, VT, Expand); 849 setOperationAction(ISD::SDIVREM, VT, Expand); 850 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 851 setOperationAction(ISD::FPOW, VT, Expand); 852 setOperationAction(ISD::BSWAP, VT, Expand); 853 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 854 setOperationAction(ISD::ROTL, VT, Expand); 855 setOperationAction(ISD::ROTR, VT, Expand); 856 857 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 858 setTruncStoreAction(VT, InnerVT, Expand); 859 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 860 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 861 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 862 } 863 } 864 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 865 if (!Subtarget.hasP8Vector()) { 866 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 867 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 868 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 869 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 870 } 871 872 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 873 // with merges, splats, etc. 874 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 875 876 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 877 // are cheap, so handle them before they get expanded to scalar. 878 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 879 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 880 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 881 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 882 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 883 884 setOperationAction(ISD::AND , MVT::v4i32, Legal); 885 setOperationAction(ISD::OR , MVT::v4i32, Legal); 886 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 887 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 888 setOperationAction(ISD::SELECT, MVT::v4i32, 889 Subtarget.useCRBits() ? Legal : Expand); 890 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 891 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 892 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 893 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 894 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 895 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 896 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 897 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 898 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 899 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 900 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 901 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 902 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 903 904 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 905 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 906 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 907 if (Subtarget.hasAltivec()) 908 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 909 setOperationAction(ISD::ROTL, VT, Legal); 910 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 911 if (Subtarget.hasP8Altivec()) 912 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 913 914 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 915 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 916 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 917 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 918 919 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 920 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 921 922 if (Subtarget.hasVSX()) { 923 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 924 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 925 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 926 } 927 928 if (Subtarget.hasP8Altivec()) 929 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 930 else 931 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 932 933 if (Subtarget.isISA3_1()) { 934 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 935 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 936 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 937 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 938 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 939 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 940 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 941 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 942 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 943 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 944 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 945 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 946 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 947 setOperationAction(ISD::UREM, MVT::v1i128, Legal); 948 setOperationAction(ISD::SREM, MVT::v1i128, Legal); 949 setOperationAction(ISD::UDIV, MVT::v1i128, Legal); 950 setOperationAction(ISD::SDIV, MVT::v1i128, Legal); 951 setOperationAction(ISD::ROTL, MVT::v1i128, Legal); 952 } 953 954 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 955 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 956 957 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 958 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 959 960 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 961 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 962 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 963 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 964 965 // Altivec does not contain unordered floating-point compare instructions 966 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 967 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 968 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 969 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 970 971 if (Subtarget.hasVSX()) { 972 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 973 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 974 if (Subtarget.hasP8Vector()) { 975 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 976 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 977 } 978 if (Subtarget.hasDirectMove() && isPPC64) { 979 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 980 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 981 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 982 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 983 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 984 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 985 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 986 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 987 } 988 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 989 990 // The nearbyint variants are not allowed to raise the inexact exception 991 // so we can only code-gen them with unsafe math. 992 if (TM.Options.UnsafeFPMath) { 993 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 994 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 995 } 996 997 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 998 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 999 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 1000 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 1001 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 1002 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 1003 setOperationAction(ISD::FROUND, MVT::f64, Legal); 1004 setOperationAction(ISD::FRINT, MVT::f64, Legal); 1005 1006 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 1007 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 1008 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1009 setOperationAction(ISD::FROUND, MVT::f32, Legal); 1010 setOperationAction(ISD::FRINT, MVT::f32, Legal); 1011 1012 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 1013 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 1014 1015 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 1016 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 1017 1018 // Share the Altivec comparison restrictions. 1019 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 1020 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 1021 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 1022 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 1023 1024 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 1025 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 1026 1027 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 1028 1029 if (Subtarget.hasP8Vector()) 1030 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 1031 1032 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 1033 1034 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 1035 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 1036 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 1037 1038 if (Subtarget.hasP8Altivec()) { 1039 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 1040 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 1041 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 1042 1043 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1044 // SRL, but not for SRA because of the instructions available: 1045 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 1046 // doing 1047 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 1048 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 1049 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1050 1051 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 1052 } 1053 else { 1054 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 1055 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 1056 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 1057 1058 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 1059 1060 // VSX v2i64 only supports non-arithmetic operations. 1061 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 1062 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 1063 } 1064 1065 if (Subtarget.isISA3_1()) 1066 setOperationAction(ISD::SETCC, MVT::v1i128, Legal); 1067 else 1068 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 1069 1070 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 1071 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 1072 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 1073 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 1074 1075 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 1076 1077 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 1078 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 1079 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 1080 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 1081 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 1082 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 1083 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 1084 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 1085 1086 // Custom handling for partial vectors of integers converted to 1087 // floating point. We already have optimal handling for v2i32 through 1088 // the DAG combine, so those aren't necessary. 1089 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); 1090 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); 1091 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); 1092 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); 1093 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); 1094 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); 1095 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); 1096 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); 1097 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 1098 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 1099 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 1100 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 1101 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 1102 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 1103 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 1104 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 1105 1106 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 1107 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 1108 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 1109 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 1110 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1111 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 1112 1113 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1114 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1115 1116 // Handle constrained floating-point operations of vector. 1117 // The predictor is `hasVSX` because altivec instruction has 1118 // no exception but VSX vector instruction has. 1119 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1120 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1121 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1122 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1123 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1124 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1125 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1126 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1127 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 1128 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1129 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1130 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1131 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1132 1133 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1134 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1135 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1136 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1137 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1138 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1139 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1140 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1141 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 1142 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1143 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1144 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1145 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1146 1147 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1148 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1149 1150 for (MVT FPT : MVT::fp_valuetypes()) 1151 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1152 1153 // Expand the SELECT to SELECT_CC 1154 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1155 1156 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1157 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1158 1159 // No implementation for these ops for PowerPC. 1160 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1161 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1162 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1163 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1164 setOperationAction(ISD::FREM, MVT::f128, Expand); 1165 } 1166 1167 if (Subtarget.hasP8Altivec()) { 1168 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1169 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1170 } 1171 1172 if (Subtarget.hasP9Vector()) { 1173 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1174 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1175 1176 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1177 // SRL, but not for SRA because of the instructions available: 1178 // VS{RL} and VS{RL}O. 1179 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1180 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1181 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1182 1183 setOperationAction(ISD::FADD, MVT::f128, Legal); 1184 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1185 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1186 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1187 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1188 1189 setOperationAction(ISD::FMA, MVT::f128, Legal); 1190 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1191 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1192 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1193 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1194 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1195 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1196 1197 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1198 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1199 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1200 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1201 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1202 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1203 1204 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1205 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1206 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1207 1208 // Handle constrained floating-point operations of fp128 1209 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1210 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1211 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1212 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1213 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1214 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1215 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1216 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1217 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1218 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1219 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1220 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1221 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1222 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1223 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1224 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1225 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1226 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1227 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1228 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1229 } else if (Subtarget.hasVSX()) { 1230 setOperationAction(ISD::LOAD, MVT::f128, Promote); 1231 setOperationAction(ISD::STORE, MVT::f128, Promote); 1232 1233 AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32); 1234 AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32); 1235 1236 // Set FADD/FSUB as libcall to avoid the legalizer to expand the 1237 // fp_to_uint and int_to_fp. 1238 setOperationAction(ISD::FADD, MVT::f128, LibCall); 1239 setOperationAction(ISD::FSUB, MVT::f128, LibCall); 1240 1241 setOperationAction(ISD::FMUL, MVT::f128, Expand); 1242 setOperationAction(ISD::FDIV, MVT::f128, Expand); 1243 setOperationAction(ISD::FNEG, MVT::f128, Expand); 1244 setOperationAction(ISD::FABS, MVT::f128, Expand); 1245 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 1246 setOperationAction(ISD::FMA, MVT::f128, Expand); 1247 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1248 1249 // Expand the fp_extend if the target type is fp128. 1250 setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); 1251 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand); 1252 1253 // Expand the fp_round if the source type is fp128. 1254 for (MVT VT : {MVT::f32, MVT::f64}) { 1255 setOperationAction(ISD::FP_ROUND, VT, Custom); 1256 setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom); 1257 } 1258 1259 setOperationAction(ISD::SETCC, MVT::f128, Custom); 1260 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom); 1261 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom); 1262 setOperationAction(ISD::BR_CC, MVT::f128, Expand); 1263 1264 // Lower following f128 select_cc pattern: 1265 // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE 1266 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1267 1268 // We need to handle f128 SELECT_CC with integer result type. 1269 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1270 setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand); 1271 } 1272 1273 if (Subtarget.hasP9Altivec()) { 1274 if (Subtarget.isISA3_1()) { 1275 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal); 1276 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Legal); 1277 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Legal); 1278 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal); 1279 } else { 1280 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1281 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1282 } 1283 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1284 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1285 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1286 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1287 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1288 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1289 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1290 } 1291 1292 if (Subtarget.hasP10Vector()) { 1293 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1294 } 1295 } 1296 1297 if (Subtarget.pairedVectorMemops()) { 1298 addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); 1299 setOperationAction(ISD::LOAD, MVT::v256i1, Custom); 1300 setOperationAction(ISD::STORE, MVT::v256i1, Custom); 1301 } 1302 if (Subtarget.hasMMA()) { 1303 addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); 1304 setOperationAction(ISD::LOAD, MVT::v512i1, Custom); 1305 setOperationAction(ISD::STORE, MVT::v512i1, Custom); 1306 setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); 1307 } 1308 1309 if (Subtarget.has64BitSupport()) 1310 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1311 1312 if (Subtarget.isISA3_1()) 1313 setOperationAction(ISD::SRA, MVT::v1i128, Legal); 1314 1315 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1316 1317 if (!isPPC64) { 1318 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1319 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1320 } 1321 1322 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics()) { 1323 setMaxAtomicSizeInBitsSupported(128); 1324 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 1325 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 1326 setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom); 1327 } 1328 1329 setBooleanContents(ZeroOrOneBooleanContent); 1330 1331 if (Subtarget.hasAltivec()) { 1332 // Altivec instructions set fields to all zeros or all ones. 1333 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1334 } 1335 1336 if (!isPPC64) { 1337 // These libcalls are not available in 32-bit. 1338 setLibcallName(RTLIB::SHL_I128, nullptr); 1339 setLibcallName(RTLIB::SRL_I128, nullptr); 1340 setLibcallName(RTLIB::SRA_I128, nullptr); 1341 setLibcallName(RTLIB::MULO_I64, nullptr); 1342 } 1343 1344 if (!isPPC64) 1345 setMaxAtomicSizeInBitsSupported(32); 1346 1347 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1348 1349 // We have target-specific dag combine patterns for the following nodes: 1350 setTargetDAGCombine(ISD::ADD); 1351 setTargetDAGCombine(ISD::SHL); 1352 setTargetDAGCombine(ISD::SRA); 1353 setTargetDAGCombine(ISD::SRL); 1354 setTargetDAGCombine(ISD::MUL); 1355 setTargetDAGCombine(ISD::FMA); 1356 setTargetDAGCombine(ISD::SINT_TO_FP); 1357 setTargetDAGCombine(ISD::BUILD_VECTOR); 1358 if (Subtarget.hasFPCVT()) 1359 setTargetDAGCombine(ISD::UINT_TO_FP); 1360 setTargetDAGCombine(ISD::LOAD); 1361 setTargetDAGCombine(ISD::STORE); 1362 setTargetDAGCombine(ISD::BR_CC); 1363 if (Subtarget.useCRBits()) 1364 setTargetDAGCombine(ISD::BRCOND); 1365 setTargetDAGCombine(ISD::BSWAP); 1366 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1367 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1368 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1369 1370 setTargetDAGCombine(ISD::SIGN_EXTEND); 1371 setTargetDAGCombine(ISD::ZERO_EXTEND); 1372 setTargetDAGCombine(ISD::ANY_EXTEND); 1373 1374 setTargetDAGCombine(ISD::TRUNCATE); 1375 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1376 1377 1378 if (Subtarget.useCRBits()) { 1379 setTargetDAGCombine(ISD::TRUNCATE); 1380 setTargetDAGCombine(ISD::SETCC); 1381 setTargetDAGCombine(ISD::SELECT_CC); 1382 } 1383 1384 if (Subtarget.hasP9Altivec()) { 1385 setTargetDAGCombine(ISD::ABS); 1386 setTargetDAGCombine(ISD::VSELECT); 1387 } 1388 1389 setLibcallName(RTLIB::LOG_F128, "logf128"); 1390 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1391 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1392 setLibcallName(RTLIB::EXP_F128, "expf128"); 1393 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1394 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1395 setLibcallName(RTLIB::COS_F128, "cosf128"); 1396 setLibcallName(RTLIB::POW_F128, "powf128"); 1397 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1398 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1399 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1400 setLibcallName(RTLIB::SQRT_F128, "sqrtf128"); 1401 setLibcallName(RTLIB::CEIL_F128, "ceilf128"); 1402 setLibcallName(RTLIB::FLOOR_F128, "floorf128"); 1403 setLibcallName(RTLIB::TRUNC_F128, "truncf128"); 1404 setLibcallName(RTLIB::ROUND_F128, "roundf128"); 1405 setLibcallName(RTLIB::LROUND_F128, "lroundf128"); 1406 setLibcallName(RTLIB::LLROUND_F128, "llroundf128"); 1407 setLibcallName(RTLIB::RINT_F128, "rintf128"); 1408 setLibcallName(RTLIB::LRINT_F128, "lrintf128"); 1409 setLibcallName(RTLIB::LLRINT_F128, "llrintf128"); 1410 setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128"); 1411 setLibcallName(RTLIB::FMA_F128, "fmaf128"); 1412 1413 // With 32 condition bits, we don't need to sink (and duplicate) compares 1414 // aggressively in CodeGenPrep. 1415 if (Subtarget.useCRBits()) { 1416 setHasMultipleConditionRegisters(); 1417 setJumpIsExpensive(); 1418 } 1419 1420 setMinFunctionAlignment(Align(4)); 1421 1422 switch (Subtarget.getCPUDirective()) { 1423 default: break; 1424 case PPC::DIR_970: 1425 case PPC::DIR_A2: 1426 case PPC::DIR_E500: 1427 case PPC::DIR_E500mc: 1428 case PPC::DIR_E5500: 1429 case PPC::DIR_PWR4: 1430 case PPC::DIR_PWR5: 1431 case PPC::DIR_PWR5X: 1432 case PPC::DIR_PWR6: 1433 case PPC::DIR_PWR6X: 1434 case PPC::DIR_PWR7: 1435 case PPC::DIR_PWR8: 1436 case PPC::DIR_PWR9: 1437 case PPC::DIR_PWR10: 1438 case PPC::DIR_PWR_FUTURE: 1439 setPrefLoopAlignment(Align(16)); 1440 setPrefFunctionAlignment(Align(16)); 1441 break; 1442 } 1443 1444 if (Subtarget.enableMachineScheduler()) 1445 setSchedulingPreference(Sched::Source); 1446 else 1447 setSchedulingPreference(Sched::Hybrid); 1448 1449 computeRegisterProperties(STI.getRegisterInfo()); 1450 1451 // The Freescale cores do better with aggressive inlining of memcpy and 1452 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1453 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1454 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1455 MaxStoresPerMemset = 32; 1456 MaxStoresPerMemsetOptSize = 16; 1457 MaxStoresPerMemcpy = 32; 1458 MaxStoresPerMemcpyOptSize = 8; 1459 MaxStoresPerMemmove = 32; 1460 MaxStoresPerMemmoveOptSize = 8; 1461 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1462 // The A2 also benefits from (very) aggressive inlining of memcpy and 1463 // friends. The overhead of a the function call, even when warm, can be 1464 // over one hundred cycles. 1465 MaxStoresPerMemset = 128; 1466 MaxStoresPerMemcpy = 128; 1467 MaxStoresPerMemmove = 128; 1468 MaxLoadsPerMemcmp = 128; 1469 } else { 1470 MaxLoadsPerMemcmp = 8; 1471 MaxLoadsPerMemcmpOptSize = 4; 1472 } 1473 1474 IsStrictFPEnabled = true; 1475 1476 // Let the subtarget (CPU) decide if a predictable select is more expensive 1477 // than the corresponding branch. This information is used in CGP to decide 1478 // when to convert selects into branches. 1479 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1480 } 1481 1482 // *********************************** NOTE ************************************ 1483 // For selecting load and store instructions, the addressing modes are defined 1484 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD 1485 // patterns to match the load the store instructions. 1486 // 1487 // The TD definitions for the addressing modes correspond to their respective 1488 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely 1489 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the 1490 // address mode flags of a particular node. Afterwards, the computed address 1491 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal 1492 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement 1493 // accordingly, based on the preferred addressing mode. 1494 // 1495 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode. 1496 // MemOpFlags contains all the possible flags that can be used to compute the 1497 // optimal addressing mode for load and store instructions. 1498 // AddrMode contains all the possible load and store addressing modes available 1499 // on Power (such as DForm, DSForm, DQForm, XForm, etc.) 1500 // 1501 // When adding new load and store instructions, it is possible that new address 1502 // flags may need to be added into MemOpFlags, and a new addressing mode will 1503 // need to be added to AddrMode. An entry of the new addressing mode (consisting 1504 // of the minimal and main distinguishing address flags for the new load/store 1505 // instructions) will need to be added into initializeAddrModeMap() below. 1506 // Finally, when adding new addressing modes, the getAddrModeForFlags() will 1507 // need to be updated to account for selecting the optimal addressing mode. 1508 // ***************************************************************************** 1509 /// Initialize the map that relates the different addressing modes of the load 1510 /// and store instructions to a set of flags. This ensures the load/store 1511 /// instruction is correctly matched during instruction selection. 1512 void PPCTargetLowering::initializeAddrModeMap() { 1513 AddrModesMap[PPC::AM_DForm] = { 1514 // LWZ, STW 1515 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt, 1516 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt, 1517 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1518 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1519 // LBZ, LHZ, STB, STH 1520 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1521 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1522 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1523 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1524 // LHA 1525 PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1526 PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1527 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1528 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1529 // LFS, LFD, STFS, STFD 1530 PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1531 PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1532 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1533 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1534 }; 1535 AddrModesMap[PPC::AM_DSForm] = { 1536 // LWA 1537 PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt, 1538 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1539 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1540 // LD, STD 1541 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt, 1542 PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt, 1543 PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt, 1544 // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64 1545 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1546 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1547 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1548 }; 1549 AddrModesMap[PPC::AM_DQForm] = { 1550 // LXV, STXV 1551 PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1552 PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1553 PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1554 }; 1555 AddrModesMap[PPC::AM_PrefixDForm] = {PPC::MOF_RPlusSImm34 | 1556 PPC::MOF_SubtargetP10}; 1557 // TODO: Add mapping for quadword load/store. 1558 } 1559 1560 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1561 /// the desired ByVal argument alignment. 1562 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1563 if (MaxAlign == MaxMaxAlign) 1564 return; 1565 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1566 if (MaxMaxAlign >= 32 && 1567 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1568 MaxAlign = Align(32); 1569 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1570 MaxAlign < 16) 1571 MaxAlign = Align(16); 1572 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1573 Align EltAlign; 1574 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1575 if (EltAlign > MaxAlign) 1576 MaxAlign = EltAlign; 1577 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1578 for (auto *EltTy : STy->elements()) { 1579 Align EltAlign; 1580 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1581 if (EltAlign > MaxAlign) 1582 MaxAlign = EltAlign; 1583 if (MaxAlign == MaxMaxAlign) 1584 break; 1585 } 1586 } 1587 } 1588 1589 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1590 /// function arguments in the caller parameter area. 1591 uint64_t PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1592 const DataLayout &DL) const { 1593 // 16byte and wider vectors are passed on 16byte boundary. 1594 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1595 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1596 if (Subtarget.hasAltivec()) 1597 getMaxByValAlign(Ty, Alignment, Align(16)); 1598 return Alignment.value(); 1599 } 1600 1601 bool PPCTargetLowering::useSoftFloat() const { 1602 return Subtarget.useSoftFloat(); 1603 } 1604 1605 bool PPCTargetLowering::hasSPE() const { 1606 return Subtarget.hasSPE(); 1607 } 1608 1609 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1610 return VT.isScalarInteger(); 1611 } 1612 1613 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1614 switch ((PPCISD::NodeType)Opcode) { 1615 case PPCISD::FIRST_NUMBER: break; 1616 case PPCISD::FSEL: return "PPCISD::FSEL"; 1617 case PPCISD::XSMAXC: return "PPCISD::XSMAXC"; 1618 case PPCISD::XSMINC: return "PPCISD::XSMINC"; 1619 case PPCISD::FCFID: return "PPCISD::FCFID"; 1620 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1621 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1622 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1623 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1624 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1625 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1626 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1627 case PPCISD::FP_TO_UINT_IN_VSR: 1628 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1629 case PPCISD::FP_TO_SINT_IN_VSR: 1630 return "PPCISD::FP_TO_SINT_IN_VSR"; 1631 case PPCISD::FRE: return "PPCISD::FRE"; 1632 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1633 case PPCISD::FTSQRT: 1634 return "PPCISD::FTSQRT"; 1635 case PPCISD::FSQRT: 1636 return "PPCISD::FSQRT"; 1637 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1638 case PPCISD::VPERM: return "PPCISD::VPERM"; 1639 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1640 case PPCISD::XXSPLTI_SP_TO_DP: 1641 return "PPCISD::XXSPLTI_SP_TO_DP"; 1642 case PPCISD::XXSPLTI32DX: 1643 return "PPCISD::XXSPLTI32DX"; 1644 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1645 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1646 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1647 case PPCISD::CMPB: return "PPCISD::CMPB"; 1648 case PPCISD::Hi: return "PPCISD::Hi"; 1649 case PPCISD::Lo: return "PPCISD::Lo"; 1650 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1651 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1652 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1653 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1654 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1655 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1656 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1657 case PPCISD::SRL: return "PPCISD::SRL"; 1658 case PPCISD::SRA: return "PPCISD::SRA"; 1659 case PPCISD::SHL: return "PPCISD::SHL"; 1660 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1661 case PPCISD::CALL: return "PPCISD::CALL"; 1662 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1663 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1664 case PPCISD::CALL_RM: 1665 return "PPCISD::CALL_RM"; 1666 case PPCISD::CALL_NOP_RM: 1667 return "PPCISD::CALL_NOP_RM"; 1668 case PPCISD::CALL_NOTOC_RM: 1669 return "PPCISD::CALL_NOTOC_RM"; 1670 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1671 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1672 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1673 case PPCISD::BCTRL_RM: 1674 return "PPCISD::BCTRL_RM"; 1675 case PPCISD::BCTRL_LOAD_TOC_RM: 1676 return "PPCISD::BCTRL_LOAD_TOC_RM"; 1677 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1678 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1679 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1680 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1681 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1682 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1683 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1684 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1685 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1686 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1687 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1688 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1689 case PPCISD::ANDI_rec_1_EQ_BIT: 1690 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1691 case PPCISD::ANDI_rec_1_GT_BIT: 1692 return "PPCISD::ANDI_rec_1_GT_BIT"; 1693 case PPCISD::VCMP: return "PPCISD::VCMP"; 1694 case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; 1695 case PPCISD::LBRX: return "PPCISD::LBRX"; 1696 case PPCISD::STBRX: return "PPCISD::STBRX"; 1697 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1698 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1699 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1700 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1701 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1702 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1703 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1704 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1705 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1706 case PPCISD::ST_VSR_SCAL_INT: 1707 return "PPCISD::ST_VSR_SCAL_INT"; 1708 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1709 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1710 case PPCISD::BDZ: return "PPCISD::BDZ"; 1711 case PPCISD::MFFS: return "PPCISD::MFFS"; 1712 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1713 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1714 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1715 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1716 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1717 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1718 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1719 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1720 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1721 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1722 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1723 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1724 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1725 case PPCISD::TLSGD_AIX: return "PPCISD::TLSGD_AIX"; 1726 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1727 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1728 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1729 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1730 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1731 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1732 case PPCISD::PADDI_DTPREL: 1733 return "PPCISD::PADDI_DTPREL"; 1734 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1735 case PPCISD::SC: return "PPCISD::SC"; 1736 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1737 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1738 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1739 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1740 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1741 case PPCISD::VABSD: return "PPCISD::VABSD"; 1742 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1743 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1744 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1745 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1746 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1747 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1748 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1749 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: 1750 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; 1751 case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: 1752 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; 1753 case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; 1754 case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; 1755 case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; 1756 case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; 1757 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1758 case PPCISD::ZEXT_LD_SPLAT: return "PPCISD::ZEXT_LD_SPLAT"; 1759 case PPCISD::SEXT_LD_SPLAT: return "PPCISD::SEXT_LD_SPLAT"; 1760 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1761 case PPCISD::STRICT_FADDRTZ: 1762 return "PPCISD::STRICT_FADDRTZ"; 1763 case PPCISD::STRICT_FCTIDZ: 1764 return "PPCISD::STRICT_FCTIDZ"; 1765 case PPCISD::STRICT_FCTIWZ: 1766 return "PPCISD::STRICT_FCTIWZ"; 1767 case PPCISD::STRICT_FCTIDUZ: 1768 return "PPCISD::STRICT_FCTIDUZ"; 1769 case PPCISD::STRICT_FCTIWUZ: 1770 return "PPCISD::STRICT_FCTIWUZ"; 1771 case PPCISD::STRICT_FCFID: 1772 return "PPCISD::STRICT_FCFID"; 1773 case PPCISD::STRICT_FCFIDU: 1774 return "PPCISD::STRICT_FCFIDU"; 1775 case PPCISD::STRICT_FCFIDS: 1776 return "PPCISD::STRICT_FCFIDS"; 1777 case PPCISD::STRICT_FCFIDUS: 1778 return "PPCISD::STRICT_FCFIDUS"; 1779 case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; 1780 } 1781 return nullptr; 1782 } 1783 1784 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1785 EVT VT) const { 1786 if (!VT.isVector()) 1787 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1788 1789 return VT.changeVectorElementTypeToInteger(); 1790 } 1791 1792 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1793 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1794 return true; 1795 } 1796 1797 //===----------------------------------------------------------------------===// 1798 // Node matching predicates, for use by the tblgen matching code. 1799 //===----------------------------------------------------------------------===// 1800 1801 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1802 static bool isFloatingPointZero(SDValue Op) { 1803 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1804 return CFP->getValueAPF().isZero(); 1805 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1806 // Maybe this has already been legalized into the constant pool? 1807 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1808 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1809 return CFP->getValueAPF().isZero(); 1810 } 1811 return false; 1812 } 1813 1814 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1815 /// true if Op is undef or if it matches the specified value. 1816 static bool isConstantOrUndef(int Op, int Val) { 1817 return Op < 0 || Op == Val; 1818 } 1819 1820 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1821 /// VPKUHUM instruction. 1822 /// The ShuffleKind distinguishes between big-endian operations with 1823 /// two different inputs (0), either-endian operations with two identical 1824 /// inputs (1), and little-endian operations with two different inputs (2). 1825 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1826 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1827 SelectionDAG &DAG) { 1828 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1829 if (ShuffleKind == 0) { 1830 if (IsLE) 1831 return false; 1832 for (unsigned i = 0; i != 16; ++i) 1833 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1834 return false; 1835 } else if (ShuffleKind == 2) { 1836 if (!IsLE) 1837 return false; 1838 for (unsigned i = 0; i != 16; ++i) 1839 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1840 return false; 1841 } else if (ShuffleKind == 1) { 1842 unsigned j = IsLE ? 0 : 1; 1843 for (unsigned i = 0; i != 8; ++i) 1844 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1845 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1846 return false; 1847 } 1848 return true; 1849 } 1850 1851 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1852 /// VPKUWUM instruction. 1853 /// The ShuffleKind distinguishes between big-endian operations with 1854 /// two different inputs (0), either-endian operations with two identical 1855 /// inputs (1), and little-endian operations with two different inputs (2). 1856 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1857 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1858 SelectionDAG &DAG) { 1859 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1860 if (ShuffleKind == 0) { 1861 if (IsLE) 1862 return false; 1863 for (unsigned i = 0; i != 16; i += 2) 1864 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1865 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1866 return false; 1867 } else if (ShuffleKind == 2) { 1868 if (!IsLE) 1869 return false; 1870 for (unsigned i = 0; i != 16; i += 2) 1871 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1872 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1873 return false; 1874 } else if (ShuffleKind == 1) { 1875 unsigned j = IsLE ? 0 : 2; 1876 for (unsigned i = 0; i != 8; i += 2) 1877 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1878 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1879 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1880 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1881 return false; 1882 } 1883 return true; 1884 } 1885 1886 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1887 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1888 /// current subtarget. 1889 /// 1890 /// The ShuffleKind distinguishes between big-endian operations with 1891 /// two different inputs (0), either-endian operations with two identical 1892 /// inputs (1), and little-endian operations with two different inputs (2). 1893 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1894 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1895 SelectionDAG &DAG) { 1896 const PPCSubtarget& Subtarget = 1897 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1898 if (!Subtarget.hasP8Vector()) 1899 return false; 1900 1901 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1902 if (ShuffleKind == 0) { 1903 if (IsLE) 1904 return false; 1905 for (unsigned i = 0; i != 16; i += 4) 1906 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1907 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1908 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1909 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1910 return false; 1911 } else if (ShuffleKind == 2) { 1912 if (!IsLE) 1913 return false; 1914 for (unsigned i = 0; i != 16; i += 4) 1915 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1916 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1917 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1918 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1919 return false; 1920 } else if (ShuffleKind == 1) { 1921 unsigned j = IsLE ? 0 : 4; 1922 for (unsigned i = 0; i != 8; i += 4) 1923 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1924 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1925 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1926 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1927 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1928 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1929 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1930 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1931 return false; 1932 } 1933 return true; 1934 } 1935 1936 /// isVMerge - Common function, used to match vmrg* shuffles. 1937 /// 1938 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1939 unsigned LHSStart, unsigned RHSStart) { 1940 if (N->getValueType(0) != MVT::v16i8) 1941 return false; 1942 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1943 "Unsupported merge size!"); 1944 1945 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1946 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1947 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1948 LHSStart+j+i*UnitSize) || 1949 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1950 RHSStart+j+i*UnitSize)) 1951 return false; 1952 } 1953 return true; 1954 } 1955 1956 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1957 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1958 /// The ShuffleKind distinguishes between big-endian merges with two 1959 /// different inputs (0), either-endian merges with two identical inputs (1), 1960 /// and little-endian merges with two different inputs (2). For the latter, 1961 /// the input operands are swapped (see PPCInstrAltivec.td). 1962 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1963 unsigned ShuffleKind, SelectionDAG &DAG) { 1964 if (DAG.getDataLayout().isLittleEndian()) { 1965 if (ShuffleKind == 1) // unary 1966 return isVMerge(N, UnitSize, 0, 0); 1967 else if (ShuffleKind == 2) // swapped 1968 return isVMerge(N, UnitSize, 0, 16); 1969 else 1970 return false; 1971 } else { 1972 if (ShuffleKind == 1) // unary 1973 return isVMerge(N, UnitSize, 8, 8); 1974 else if (ShuffleKind == 0) // normal 1975 return isVMerge(N, UnitSize, 8, 24); 1976 else 1977 return false; 1978 } 1979 } 1980 1981 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1982 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1983 /// The ShuffleKind distinguishes between big-endian merges with two 1984 /// different inputs (0), either-endian merges with two identical inputs (1), 1985 /// and little-endian merges with two different inputs (2). For the latter, 1986 /// the input operands are swapped (see PPCInstrAltivec.td). 1987 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1988 unsigned ShuffleKind, SelectionDAG &DAG) { 1989 if (DAG.getDataLayout().isLittleEndian()) { 1990 if (ShuffleKind == 1) // unary 1991 return isVMerge(N, UnitSize, 8, 8); 1992 else if (ShuffleKind == 2) // swapped 1993 return isVMerge(N, UnitSize, 8, 24); 1994 else 1995 return false; 1996 } else { 1997 if (ShuffleKind == 1) // unary 1998 return isVMerge(N, UnitSize, 0, 0); 1999 else if (ShuffleKind == 0) // normal 2000 return isVMerge(N, UnitSize, 0, 16); 2001 else 2002 return false; 2003 } 2004 } 2005 2006 /** 2007 * Common function used to match vmrgew and vmrgow shuffles 2008 * 2009 * The indexOffset determines whether to look for even or odd words in 2010 * the shuffle mask. This is based on the of the endianness of the target 2011 * machine. 2012 * - Little Endian: 2013 * - Use offset of 0 to check for odd elements 2014 * - Use offset of 4 to check for even elements 2015 * - Big Endian: 2016 * - Use offset of 0 to check for even elements 2017 * - Use offset of 4 to check for odd elements 2018 * A detailed description of the vector element ordering for little endian and 2019 * big endian can be found at 2020 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 2021 * Targeting your applications - what little endian and big endian IBM XL C/C++ 2022 * compiler differences mean to you 2023 * 2024 * The mask to the shuffle vector instruction specifies the indices of the 2025 * elements from the two input vectors to place in the result. The elements are 2026 * numbered in array-access order, starting with the first vector. These vectors 2027 * are always of type v16i8, thus each vector will contain 16 elements of size 2028 * 8. More info on the shuffle vector can be found in the 2029 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 2030 * Language Reference. 2031 * 2032 * The RHSStartValue indicates whether the same input vectors are used (unary) 2033 * or two different input vectors are used, based on the following: 2034 * - If the instruction uses the same vector for both inputs, the range of the 2035 * indices will be 0 to 15. In this case, the RHSStart value passed should 2036 * be 0. 2037 * - If the instruction has two different vectors then the range of the 2038 * indices will be 0 to 31. In this case, the RHSStart value passed should 2039 * be 16 (indices 0-15 specify elements in the first vector while indices 16 2040 * to 31 specify elements in the second vector). 2041 * 2042 * \param[in] N The shuffle vector SD Node to analyze 2043 * \param[in] IndexOffset Specifies whether to look for even or odd elements 2044 * \param[in] RHSStartValue Specifies the starting index for the righthand input 2045 * vector to the shuffle_vector instruction 2046 * \return true iff this shuffle vector represents an even or odd word merge 2047 */ 2048 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 2049 unsigned RHSStartValue) { 2050 if (N->getValueType(0) != MVT::v16i8) 2051 return false; 2052 2053 for (unsigned i = 0; i < 2; ++i) 2054 for (unsigned j = 0; j < 4; ++j) 2055 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 2056 i*RHSStartValue+j+IndexOffset) || 2057 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 2058 i*RHSStartValue+j+IndexOffset+8)) 2059 return false; 2060 return true; 2061 } 2062 2063 /** 2064 * Determine if the specified shuffle mask is suitable for the vmrgew or 2065 * vmrgow instructions. 2066 * 2067 * \param[in] N The shuffle vector SD Node to analyze 2068 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 2069 * \param[in] ShuffleKind Identify the type of merge: 2070 * - 0 = big-endian merge with two different inputs; 2071 * - 1 = either-endian merge with two identical inputs; 2072 * - 2 = little-endian merge with two different inputs (inputs are swapped for 2073 * little-endian merges). 2074 * \param[in] DAG The current SelectionDAG 2075 * \return true iff this shuffle mask 2076 */ 2077 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 2078 unsigned ShuffleKind, SelectionDAG &DAG) { 2079 if (DAG.getDataLayout().isLittleEndian()) { 2080 unsigned indexOffset = CheckEven ? 4 : 0; 2081 if (ShuffleKind == 1) // Unary 2082 return isVMerge(N, indexOffset, 0); 2083 else if (ShuffleKind == 2) // swapped 2084 return isVMerge(N, indexOffset, 16); 2085 else 2086 return false; 2087 } 2088 else { 2089 unsigned indexOffset = CheckEven ? 0 : 4; 2090 if (ShuffleKind == 1) // Unary 2091 return isVMerge(N, indexOffset, 0); 2092 else if (ShuffleKind == 0) // Normal 2093 return isVMerge(N, indexOffset, 16); 2094 else 2095 return false; 2096 } 2097 return false; 2098 } 2099 2100 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 2101 /// amount, otherwise return -1. 2102 /// The ShuffleKind distinguishes between big-endian operations with two 2103 /// different inputs (0), either-endian operations with two identical inputs 2104 /// (1), and little-endian operations with two different inputs (2). For the 2105 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 2106 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 2107 SelectionDAG &DAG) { 2108 if (N->getValueType(0) != MVT::v16i8) 2109 return -1; 2110 2111 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2112 2113 // Find the first non-undef value in the shuffle mask. 2114 unsigned i; 2115 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 2116 /*search*/; 2117 2118 if (i == 16) return -1; // all undef. 2119 2120 // Otherwise, check to see if the rest of the elements are consecutively 2121 // numbered from this value. 2122 unsigned ShiftAmt = SVOp->getMaskElt(i); 2123 if (ShiftAmt < i) return -1; 2124 2125 ShiftAmt -= i; 2126 bool isLE = DAG.getDataLayout().isLittleEndian(); 2127 2128 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 2129 // Check the rest of the elements to see if they are consecutive. 2130 for (++i; i != 16; ++i) 2131 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2132 return -1; 2133 } else if (ShuffleKind == 1) { 2134 // Check the rest of the elements to see if they are consecutive. 2135 for (++i; i != 16; ++i) 2136 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 2137 return -1; 2138 } else 2139 return -1; 2140 2141 if (isLE) 2142 ShiftAmt = 16 - ShiftAmt; 2143 2144 return ShiftAmt; 2145 } 2146 2147 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 2148 /// specifies a splat of a single element that is suitable for input to 2149 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 2150 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 2151 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 2152 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 2153 2154 // The consecutive indices need to specify an element, not part of two 2155 // different elements. So abandon ship early if this isn't the case. 2156 if (N->getMaskElt(0) % EltSize != 0) 2157 return false; 2158 2159 // This is a splat operation if each element of the permute is the same, and 2160 // if the value doesn't reference the second vector. 2161 unsigned ElementBase = N->getMaskElt(0); 2162 2163 // FIXME: Handle UNDEF elements too! 2164 if (ElementBase >= 16) 2165 return false; 2166 2167 // Check that the indices are consecutive, in the case of a multi-byte element 2168 // splatted with a v16i8 mask. 2169 for (unsigned i = 1; i != EltSize; ++i) 2170 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 2171 return false; 2172 2173 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 2174 if (N->getMaskElt(i) < 0) continue; 2175 for (unsigned j = 0; j != EltSize; ++j) 2176 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 2177 return false; 2178 } 2179 return true; 2180 } 2181 2182 /// Check that the mask is shuffling N byte elements. Within each N byte 2183 /// element of the mask, the indices could be either in increasing or 2184 /// decreasing order as long as they are consecutive. 2185 /// \param[in] N the shuffle vector SD Node to analyze 2186 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 2187 /// Word/DoubleWord/QuadWord). 2188 /// \param[in] StepLen the delta indices number among the N byte element, if 2189 /// the mask is in increasing/decreasing order then it is 1/-1. 2190 /// \return true iff the mask is shuffling N byte elements. 2191 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 2192 int StepLen) { 2193 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 2194 "Unexpected element width."); 2195 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 2196 2197 unsigned NumOfElem = 16 / Width; 2198 unsigned MaskVal[16]; // Width is never greater than 16 2199 for (unsigned i = 0; i < NumOfElem; ++i) { 2200 MaskVal[0] = N->getMaskElt(i * Width); 2201 if ((StepLen == 1) && (MaskVal[0] % Width)) { 2202 return false; 2203 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2204 return false; 2205 } 2206 2207 for (unsigned int j = 1; j < Width; ++j) { 2208 MaskVal[j] = N->getMaskElt(i * Width + j); 2209 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2210 return false; 2211 } 2212 } 2213 } 2214 2215 return true; 2216 } 2217 2218 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2219 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2220 if (!isNByteElemShuffleMask(N, 4, 1)) 2221 return false; 2222 2223 // Now we look at mask elements 0,4,8,12 2224 unsigned M0 = N->getMaskElt(0) / 4; 2225 unsigned M1 = N->getMaskElt(4) / 4; 2226 unsigned M2 = N->getMaskElt(8) / 4; 2227 unsigned M3 = N->getMaskElt(12) / 4; 2228 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2229 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2230 2231 // Below, let H and L be arbitrary elements of the shuffle mask 2232 // where H is in the range [4,7] and L is in the range [0,3]. 2233 // H, 1, 2, 3 or L, 5, 6, 7 2234 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2235 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2236 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2237 InsertAtByte = IsLE ? 12 : 0; 2238 Swap = M0 < 4; 2239 return true; 2240 } 2241 // 0, H, 2, 3 or 4, L, 6, 7 2242 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2243 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2244 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2245 InsertAtByte = IsLE ? 8 : 4; 2246 Swap = M1 < 4; 2247 return true; 2248 } 2249 // 0, 1, H, 3 or 4, 5, L, 7 2250 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2251 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2252 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2253 InsertAtByte = IsLE ? 4 : 8; 2254 Swap = M2 < 4; 2255 return true; 2256 } 2257 // 0, 1, 2, H or 4, 5, 6, L 2258 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2259 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2260 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2261 InsertAtByte = IsLE ? 0 : 12; 2262 Swap = M3 < 4; 2263 return true; 2264 } 2265 2266 // If both vector operands for the shuffle are the same vector, the mask will 2267 // contain only elements from the first one and the second one will be undef. 2268 if (N->getOperand(1).isUndef()) { 2269 ShiftElts = 0; 2270 Swap = true; 2271 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2272 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2273 InsertAtByte = IsLE ? 12 : 0; 2274 return true; 2275 } 2276 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2277 InsertAtByte = IsLE ? 8 : 4; 2278 return true; 2279 } 2280 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2281 InsertAtByte = IsLE ? 4 : 8; 2282 return true; 2283 } 2284 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2285 InsertAtByte = IsLE ? 0 : 12; 2286 return true; 2287 } 2288 } 2289 2290 return false; 2291 } 2292 2293 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2294 bool &Swap, bool IsLE) { 2295 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2296 // Ensure each byte index of the word is consecutive. 2297 if (!isNByteElemShuffleMask(N, 4, 1)) 2298 return false; 2299 2300 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2301 unsigned M0 = N->getMaskElt(0) / 4; 2302 unsigned M1 = N->getMaskElt(4) / 4; 2303 unsigned M2 = N->getMaskElt(8) / 4; 2304 unsigned M3 = N->getMaskElt(12) / 4; 2305 2306 // If both vector operands for the shuffle are the same vector, the mask will 2307 // contain only elements from the first one and the second one will be undef. 2308 if (N->getOperand(1).isUndef()) { 2309 assert(M0 < 4 && "Indexing into an undef vector?"); 2310 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2311 return false; 2312 2313 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2314 Swap = false; 2315 return true; 2316 } 2317 2318 // Ensure each word index of the ShuffleVector Mask is consecutive. 2319 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2320 return false; 2321 2322 if (IsLE) { 2323 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2324 // Input vectors don't need to be swapped if the leading element 2325 // of the result is one of the 3 left elements of the second vector 2326 // (or if there is no shift to be done at all). 2327 Swap = false; 2328 ShiftElts = (8 - M0) % 8; 2329 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2330 // Input vectors need to be swapped if the leading element 2331 // of the result is one of the 3 left elements of the first vector 2332 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2333 Swap = true; 2334 ShiftElts = (4 - M0) % 4; 2335 } 2336 2337 return true; 2338 } else { // BE 2339 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2340 // Input vectors don't need to be swapped if the leading element 2341 // of the result is one of the 4 elements of the first vector. 2342 Swap = false; 2343 ShiftElts = M0; 2344 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2345 // Input vectors need to be swapped if the leading element 2346 // of the result is one of the 4 elements of the right vector. 2347 Swap = true; 2348 ShiftElts = M0 - 4; 2349 } 2350 2351 return true; 2352 } 2353 } 2354 2355 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2356 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2357 2358 if (!isNByteElemShuffleMask(N, Width, -1)) 2359 return false; 2360 2361 for (int i = 0; i < 16; i += Width) 2362 if (N->getMaskElt(i) != i + Width - 1) 2363 return false; 2364 2365 return true; 2366 } 2367 2368 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2369 return isXXBRShuffleMaskHelper(N, 2); 2370 } 2371 2372 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2373 return isXXBRShuffleMaskHelper(N, 4); 2374 } 2375 2376 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2377 return isXXBRShuffleMaskHelper(N, 8); 2378 } 2379 2380 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2381 return isXXBRShuffleMaskHelper(N, 16); 2382 } 2383 2384 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2385 /// if the inputs to the instruction should be swapped and set \p DM to the 2386 /// value for the immediate. 2387 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2388 /// AND element 0 of the result comes from the first input (LE) or second input 2389 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2390 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2391 /// mask. 2392 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2393 bool &Swap, bool IsLE) { 2394 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2395 2396 // Ensure each byte index of the double word is consecutive. 2397 if (!isNByteElemShuffleMask(N, 8, 1)) 2398 return false; 2399 2400 unsigned M0 = N->getMaskElt(0) / 8; 2401 unsigned M1 = N->getMaskElt(8) / 8; 2402 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2403 2404 // If both vector operands for the shuffle are the same vector, the mask will 2405 // contain only elements from the first one and the second one will be undef. 2406 if (N->getOperand(1).isUndef()) { 2407 if ((M0 | M1) < 2) { 2408 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2409 Swap = false; 2410 return true; 2411 } else 2412 return false; 2413 } 2414 2415 if (IsLE) { 2416 if (M0 > 1 && M1 < 2) { 2417 Swap = false; 2418 } else if (M0 < 2 && M1 > 1) { 2419 M0 = (M0 + 2) % 4; 2420 M1 = (M1 + 2) % 4; 2421 Swap = true; 2422 } else 2423 return false; 2424 2425 // Note: if control flow comes here that means Swap is already set above 2426 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2427 return true; 2428 } else { // BE 2429 if (M0 < 2 && M1 > 1) { 2430 Swap = false; 2431 } else if (M0 > 1 && M1 < 2) { 2432 M0 = (M0 + 2) % 4; 2433 M1 = (M1 + 2) % 4; 2434 Swap = true; 2435 } else 2436 return false; 2437 2438 // Note: if control flow comes here that means Swap is already set above 2439 DM = (M0 << 1) + (M1 & 1); 2440 return true; 2441 } 2442 } 2443 2444 2445 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2446 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2447 /// elements are counted from the left of the vector register). 2448 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2449 SelectionDAG &DAG) { 2450 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2451 assert(isSplatShuffleMask(SVOp, EltSize)); 2452 if (DAG.getDataLayout().isLittleEndian()) 2453 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2454 else 2455 return SVOp->getMaskElt(0) / EltSize; 2456 } 2457 2458 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2459 /// by using a vspltis[bhw] instruction of the specified element size, return 2460 /// the constant being splatted. The ByteSize field indicates the number of 2461 /// bytes of each element [124] -> [bhw]. 2462 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2463 SDValue OpVal; 2464 2465 // If ByteSize of the splat is bigger than the element size of the 2466 // build_vector, then we have a case where we are checking for a splat where 2467 // multiple elements of the buildvector are folded together into a single 2468 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2469 unsigned EltSize = 16/N->getNumOperands(); 2470 if (EltSize < ByteSize) { 2471 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2472 SDValue UniquedVals[4]; 2473 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2474 2475 // See if all of the elements in the buildvector agree across. 2476 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2477 if (N->getOperand(i).isUndef()) continue; 2478 // If the element isn't a constant, bail fully out. 2479 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2480 2481 if (!UniquedVals[i&(Multiple-1)].getNode()) 2482 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2483 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2484 return SDValue(); // no match. 2485 } 2486 2487 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2488 // either constant or undef values that are identical for each chunk. See 2489 // if these chunks can form into a larger vspltis*. 2490 2491 // Check to see if all of the leading entries are either 0 or -1. If 2492 // neither, then this won't fit into the immediate field. 2493 bool LeadingZero = true; 2494 bool LeadingOnes = true; 2495 for (unsigned i = 0; i != Multiple-1; ++i) { 2496 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2497 2498 LeadingZero &= isNullConstant(UniquedVals[i]); 2499 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2500 } 2501 // Finally, check the least significant entry. 2502 if (LeadingZero) { 2503 if (!UniquedVals[Multiple-1].getNode()) 2504 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2505 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2506 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2507 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2508 } 2509 if (LeadingOnes) { 2510 if (!UniquedVals[Multiple-1].getNode()) 2511 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2512 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2513 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2514 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2515 } 2516 2517 return SDValue(); 2518 } 2519 2520 // Check to see if this buildvec has a single non-undef value in its elements. 2521 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2522 if (N->getOperand(i).isUndef()) continue; 2523 if (!OpVal.getNode()) 2524 OpVal = N->getOperand(i); 2525 else if (OpVal != N->getOperand(i)) 2526 return SDValue(); 2527 } 2528 2529 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2530 2531 unsigned ValSizeInBytes = EltSize; 2532 uint64_t Value = 0; 2533 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2534 Value = CN->getZExtValue(); 2535 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2536 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2537 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2538 } 2539 2540 // If the splat value is larger than the element value, then we can never do 2541 // this splat. The only case that we could fit the replicated bits into our 2542 // immediate field for would be zero, and we prefer to use vxor for it. 2543 if (ValSizeInBytes < ByteSize) return SDValue(); 2544 2545 // If the element value is larger than the splat value, check if it consists 2546 // of a repeated bit pattern of size ByteSize. 2547 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2548 return SDValue(); 2549 2550 // Properly sign extend the value. 2551 int MaskVal = SignExtend32(Value, ByteSize * 8); 2552 2553 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2554 if (MaskVal == 0) return SDValue(); 2555 2556 // Finally, if this value fits in a 5 bit sext field, return it 2557 if (SignExtend32<5>(MaskVal) == MaskVal) 2558 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2559 return SDValue(); 2560 } 2561 2562 //===----------------------------------------------------------------------===// 2563 // Addressing Mode Selection 2564 //===----------------------------------------------------------------------===// 2565 2566 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2567 /// or 64-bit immediate, and if the value can be accurately represented as a 2568 /// sign extension from a 16-bit value. If so, this returns true and the 2569 /// immediate. 2570 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2571 if (!isa<ConstantSDNode>(N)) 2572 return false; 2573 2574 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2575 if (N->getValueType(0) == MVT::i32) 2576 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2577 else 2578 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2579 } 2580 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2581 return isIntS16Immediate(Op.getNode(), Imm); 2582 } 2583 2584 /// Used when computing address flags for selecting loads and stores. 2585 /// If we have an OR, check if the LHS and RHS are provably disjoint. 2586 /// An OR of two provably disjoint values is equivalent to an ADD. 2587 /// Most PPC load/store instructions compute the effective address as a sum, 2588 /// so doing this conversion is useful. 2589 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) { 2590 if (N.getOpcode() != ISD::OR) 2591 return false; 2592 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2593 if (!LHSKnown.Zero.getBoolValue()) 2594 return false; 2595 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2596 return (~(LHSKnown.Zero | RHSKnown.Zero) == 0); 2597 } 2598 2599 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2600 /// be represented as an indexed [r+r] operation. 2601 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2602 SDValue &Index, 2603 SelectionDAG &DAG) const { 2604 for (SDNode *U : N->uses()) { 2605 if (MemSDNode *Memop = dyn_cast<MemSDNode>(U)) { 2606 if (Memop->getMemoryVT() == MVT::f64) { 2607 Base = N.getOperand(0); 2608 Index = N.getOperand(1); 2609 return true; 2610 } 2611 } 2612 } 2613 return false; 2614 } 2615 2616 /// isIntS34Immediate - This method tests if value of node given can be 2617 /// accurately represented as a sign extension from a 34-bit value. If so, 2618 /// this returns true and the immediate. 2619 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) { 2620 if (!isa<ConstantSDNode>(N)) 2621 return false; 2622 2623 Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2624 return isInt<34>(Imm); 2625 } 2626 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) { 2627 return isIntS34Immediate(Op.getNode(), Imm); 2628 } 2629 2630 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2631 /// can be represented as an indexed [r+r] operation. Returns false if it 2632 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2633 /// non-zero and N can be represented by a base register plus a signed 16-bit 2634 /// displacement, make a more precise judgement by checking (displacement % \p 2635 /// EncodingAlignment). 2636 bool PPCTargetLowering::SelectAddressRegReg( 2637 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2638 MaybeAlign EncodingAlignment) const { 2639 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2640 // a [pc+imm]. 2641 if (SelectAddressPCRel(N, Base)) 2642 return false; 2643 2644 int16_t Imm = 0; 2645 if (N.getOpcode() == ISD::ADD) { 2646 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2647 // SPE load/store can only handle 8-bit offsets. 2648 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2649 return true; 2650 if (isIntS16Immediate(N.getOperand(1), Imm) && 2651 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2652 return false; // r+i 2653 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2654 return false; // r+i 2655 2656 Base = N.getOperand(0); 2657 Index = N.getOperand(1); 2658 return true; 2659 } else if (N.getOpcode() == ISD::OR) { 2660 if (isIntS16Immediate(N.getOperand(1), Imm) && 2661 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2662 return false; // r+i can fold it if we can. 2663 2664 // If this is an or of disjoint bitfields, we can codegen this as an add 2665 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2666 // disjoint. 2667 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2668 2669 if (LHSKnown.Zero.getBoolValue()) { 2670 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2671 // If all of the bits are known zero on the LHS or RHS, the add won't 2672 // carry. 2673 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2674 Base = N.getOperand(0); 2675 Index = N.getOperand(1); 2676 return true; 2677 } 2678 } 2679 } 2680 2681 return false; 2682 } 2683 2684 // If we happen to be doing an i64 load or store into a stack slot that has 2685 // less than a 4-byte alignment, then the frame-index elimination may need to 2686 // use an indexed load or store instruction (because the offset may not be a 2687 // multiple of 4). The extra register needed to hold the offset comes from the 2688 // register scavenger, and it is possible that the scavenger will need to use 2689 // an emergency spill slot. As a result, we need to make sure that a spill slot 2690 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2691 // stack slot. 2692 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2693 // FIXME: This does not handle the LWA case. 2694 if (VT != MVT::i64) 2695 return; 2696 2697 // NOTE: We'll exclude negative FIs here, which come from argument 2698 // lowering, because there are no known test cases triggering this problem 2699 // using packed structures (or similar). We can remove this exclusion if 2700 // we find such a test case. The reason why this is so test-case driven is 2701 // because this entire 'fixup' is only to prevent crashes (from the 2702 // register scavenger) on not-really-valid inputs. For example, if we have: 2703 // %a = alloca i1 2704 // %b = bitcast i1* %a to i64* 2705 // store i64* a, i64 b 2706 // then the store should really be marked as 'align 1', but is not. If it 2707 // were marked as 'align 1' then the indexed form would have been 2708 // instruction-selected initially, and the problem this 'fixup' is preventing 2709 // won't happen regardless. 2710 if (FrameIdx < 0) 2711 return; 2712 2713 MachineFunction &MF = DAG.getMachineFunction(); 2714 MachineFrameInfo &MFI = MF.getFrameInfo(); 2715 2716 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2717 return; 2718 2719 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2720 FuncInfo->setHasNonRISpills(); 2721 } 2722 2723 /// Returns true if the address N can be represented by a base register plus 2724 /// a signed 16-bit displacement [r+imm], and if it is not better 2725 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2726 /// displacements that are multiples of that value. 2727 bool PPCTargetLowering::SelectAddressRegImm( 2728 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2729 MaybeAlign EncodingAlignment) const { 2730 // FIXME dl should come from parent load or store, not from address 2731 SDLoc dl(N); 2732 2733 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2734 // a [pc+imm]. 2735 if (SelectAddressPCRel(N, Base)) 2736 return false; 2737 2738 // If this can be more profitably realized as r+r, fail. 2739 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2740 return false; 2741 2742 if (N.getOpcode() == ISD::ADD) { 2743 int16_t imm = 0; 2744 if (isIntS16Immediate(N.getOperand(1), imm) && 2745 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2746 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2747 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2748 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2749 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2750 } else { 2751 Base = N.getOperand(0); 2752 } 2753 return true; // [r+i] 2754 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2755 // Match LOAD (ADD (X, Lo(G))). 2756 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2757 && "Cannot handle constant offsets yet!"); 2758 Disp = N.getOperand(1).getOperand(0); // The global address. 2759 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2760 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2761 Disp.getOpcode() == ISD::TargetConstantPool || 2762 Disp.getOpcode() == ISD::TargetJumpTable); 2763 Base = N.getOperand(0); 2764 return true; // [&g+r] 2765 } 2766 } else if (N.getOpcode() == ISD::OR) { 2767 int16_t imm = 0; 2768 if (isIntS16Immediate(N.getOperand(1), imm) && 2769 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2770 // If this is an or of disjoint bitfields, we can codegen this as an add 2771 // (for better address arithmetic) if the LHS and RHS of the OR are 2772 // provably disjoint. 2773 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2774 2775 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2776 // If all of the bits are known zero on the LHS or RHS, the add won't 2777 // carry. 2778 if (FrameIndexSDNode *FI = 2779 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2780 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2781 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2782 } else { 2783 Base = N.getOperand(0); 2784 } 2785 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2786 return true; 2787 } 2788 } 2789 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2790 // Loading from a constant address. 2791 2792 // If this address fits entirely in a 16-bit sext immediate field, codegen 2793 // this as "d, 0" 2794 int16_t Imm; 2795 if (isIntS16Immediate(CN, Imm) && 2796 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2797 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2798 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2799 CN->getValueType(0)); 2800 return true; 2801 } 2802 2803 // Handle 32-bit sext immediates with LIS + addr mode. 2804 if ((CN->getValueType(0) == MVT::i32 || 2805 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2806 (!EncodingAlignment || 2807 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2808 int Addr = (int)CN->getZExtValue(); 2809 2810 // Otherwise, break this down into an LIS + disp. 2811 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2812 2813 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2814 MVT::i32); 2815 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2816 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2817 return true; 2818 } 2819 } 2820 2821 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2822 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2823 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2824 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2825 } else 2826 Base = N; 2827 return true; // [r+0] 2828 } 2829 2830 /// Similar to the 16-bit case but for instructions that take a 34-bit 2831 /// displacement field (prefixed loads/stores). 2832 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp, 2833 SDValue &Base, 2834 SelectionDAG &DAG) const { 2835 // Only on 64-bit targets. 2836 if (N.getValueType() != MVT::i64) 2837 return false; 2838 2839 SDLoc dl(N); 2840 int64_t Imm = 0; 2841 2842 if (N.getOpcode() == ISD::ADD) { 2843 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2844 return false; 2845 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2846 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2847 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2848 else 2849 Base = N.getOperand(0); 2850 return true; 2851 } 2852 2853 if (N.getOpcode() == ISD::OR) { 2854 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2855 return false; 2856 // If this is an or of disjoint bitfields, we can codegen this as an add 2857 // (for better address arithmetic) if the LHS and RHS of the OR are 2858 // provably disjoint. 2859 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2860 if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL) 2861 return false; 2862 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2863 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2864 else 2865 Base = N.getOperand(0); 2866 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2867 return true; 2868 } 2869 2870 if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const. 2871 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2872 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 2873 return true; 2874 } 2875 2876 return false; 2877 } 2878 2879 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2880 /// represented as an indexed [r+r] operation. 2881 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2882 SDValue &Index, 2883 SelectionDAG &DAG) const { 2884 // Check to see if we can easily represent this as an [r+r] address. This 2885 // will fail if it thinks that the address is more profitably represented as 2886 // reg+imm, e.g. where imm = 0. 2887 if (SelectAddressRegReg(N, Base, Index, DAG)) 2888 return true; 2889 2890 // If the address is the result of an add, we will utilize the fact that the 2891 // address calculation includes an implicit add. However, we can reduce 2892 // register pressure if we do not materialize a constant just for use as the 2893 // index register. We only get rid of the add if it is not an add of a 2894 // value and a 16-bit signed constant and both have a single use. 2895 int16_t imm = 0; 2896 if (N.getOpcode() == ISD::ADD && 2897 (!isIntS16Immediate(N.getOperand(1), imm) || 2898 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2899 Base = N.getOperand(0); 2900 Index = N.getOperand(1); 2901 return true; 2902 } 2903 2904 // Otherwise, do it the hard way, using R0 as the base register. 2905 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2906 N.getValueType()); 2907 Index = N; 2908 return true; 2909 } 2910 2911 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2912 Ty *PCRelCand = dyn_cast<Ty>(N); 2913 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2914 } 2915 2916 /// Returns true if this address is a PC Relative address. 2917 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2918 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2919 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2920 // This is a materialize PC Relative node. Always select this as PC Relative. 2921 Base = N; 2922 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2923 return true; 2924 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2925 isValidPCRelNode<GlobalAddressSDNode>(N) || 2926 isValidPCRelNode<JumpTableSDNode>(N) || 2927 isValidPCRelNode<BlockAddressSDNode>(N)) 2928 return true; 2929 return false; 2930 } 2931 2932 /// Returns true if we should use a direct load into vector instruction 2933 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2934 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2935 2936 // If there are any other uses other than scalar to vector, then we should 2937 // keep it as a scalar load -> direct move pattern to prevent multiple 2938 // loads. 2939 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2940 if (!LD) 2941 return false; 2942 2943 EVT MemVT = LD->getMemoryVT(); 2944 if (!MemVT.isSimple()) 2945 return false; 2946 switch(MemVT.getSimpleVT().SimpleTy) { 2947 case MVT::i64: 2948 break; 2949 case MVT::i32: 2950 if (!ST.hasP8Vector()) 2951 return false; 2952 break; 2953 case MVT::i16: 2954 case MVT::i8: 2955 if (!ST.hasP9Vector()) 2956 return false; 2957 break; 2958 default: 2959 return false; 2960 } 2961 2962 SDValue LoadedVal(N, 0); 2963 if (!LoadedVal.hasOneUse()) 2964 return false; 2965 2966 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2967 UI != UE; ++UI) 2968 if (UI.getUse().get().getResNo() == 0 && 2969 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2970 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2971 return false; 2972 2973 return true; 2974 } 2975 2976 /// getPreIndexedAddressParts - returns true by value, base pointer and 2977 /// offset pointer and addressing mode by reference if the node's address 2978 /// can be legally represented as pre-indexed load / store address. 2979 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2980 SDValue &Offset, 2981 ISD::MemIndexedMode &AM, 2982 SelectionDAG &DAG) const { 2983 if (DisablePPCPreinc) return false; 2984 2985 bool isLoad = true; 2986 SDValue Ptr; 2987 EVT VT; 2988 unsigned Alignment; 2989 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2990 Ptr = LD->getBasePtr(); 2991 VT = LD->getMemoryVT(); 2992 Alignment = LD->getAlignment(); 2993 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2994 Ptr = ST->getBasePtr(); 2995 VT = ST->getMemoryVT(); 2996 Alignment = ST->getAlignment(); 2997 isLoad = false; 2998 } else 2999 return false; 3000 3001 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 3002 // instructions because we can fold these into a more efficient instruction 3003 // instead, (such as LXSD). 3004 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 3005 return false; 3006 } 3007 3008 // PowerPC doesn't have preinc load/store instructions for vectors 3009 if (VT.isVector()) 3010 return false; 3011 3012 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 3013 // Common code will reject creating a pre-inc form if the base pointer 3014 // is a frame index, or if N is a store and the base pointer is either 3015 // the same as or a predecessor of the value being stored. Check for 3016 // those situations here, and try with swapped Base/Offset instead. 3017 bool Swap = false; 3018 3019 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 3020 Swap = true; 3021 else if (!isLoad) { 3022 SDValue Val = cast<StoreSDNode>(N)->getValue(); 3023 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 3024 Swap = true; 3025 } 3026 3027 if (Swap) 3028 std::swap(Base, Offset); 3029 3030 AM = ISD::PRE_INC; 3031 return true; 3032 } 3033 3034 // LDU/STU can only handle immediates that are a multiple of 4. 3035 if (VT != MVT::i64) { 3036 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 3037 return false; 3038 } else { 3039 // LDU/STU need an address with at least 4-byte alignment. 3040 if (Alignment < 4) 3041 return false; 3042 3043 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 3044 return false; 3045 } 3046 3047 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 3048 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 3049 // sext i32 to i64 when addr mode is r+i. 3050 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 3051 LD->getExtensionType() == ISD::SEXTLOAD && 3052 isa<ConstantSDNode>(Offset)) 3053 return false; 3054 } 3055 3056 AM = ISD::PRE_INC; 3057 return true; 3058 } 3059 3060 //===----------------------------------------------------------------------===// 3061 // LowerOperation implementation 3062 //===----------------------------------------------------------------------===// 3063 3064 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 3065 /// and LoOpFlags to the target MO flags. 3066 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 3067 unsigned &HiOpFlags, unsigned &LoOpFlags, 3068 const GlobalValue *GV = nullptr) { 3069 HiOpFlags = PPCII::MO_HA; 3070 LoOpFlags = PPCII::MO_LO; 3071 3072 // Don't use the pic base if not in PIC relocation model. 3073 if (IsPIC) { 3074 HiOpFlags |= PPCII::MO_PIC_FLAG; 3075 LoOpFlags |= PPCII::MO_PIC_FLAG; 3076 } 3077 } 3078 3079 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 3080 SelectionDAG &DAG) { 3081 SDLoc DL(HiPart); 3082 EVT PtrVT = HiPart.getValueType(); 3083 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 3084 3085 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 3086 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 3087 3088 // With PIC, the first instruction is actually "GR+hi(&G)". 3089 if (isPIC) 3090 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 3091 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 3092 3093 // Generate non-pic code that has direct accesses to the constant pool. 3094 // The address of the global is just (hi(&g)+lo(&g)). 3095 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 3096 } 3097 3098 static void setUsesTOCBasePtr(MachineFunction &MF) { 3099 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3100 FuncInfo->setUsesTOCBasePtr(); 3101 } 3102 3103 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 3104 setUsesTOCBasePtr(DAG.getMachineFunction()); 3105 } 3106 3107 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 3108 SDValue GA) const { 3109 const bool Is64Bit = Subtarget.isPPC64(); 3110 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 3111 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 3112 : Subtarget.isAIXABI() 3113 ? DAG.getRegister(PPC::R2, VT) 3114 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 3115 SDValue Ops[] = { GA, Reg }; 3116 return DAG.getMemIntrinsicNode( 3117 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 3118 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 3119 MachineMemOperand::MOLoad); 3120 } 3121 3122 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 3123 SelectionDAG &DAG) const { 3124 EVT PtrVT = Op.getValueType(); 3125 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 3126 const Constant *C = CP->getConstVal(); 3127 3128 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3129 // The actual address of the GlobalValue is stored in the TOC. 3130 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3131 if (Subtarget.isUsingPCRelativeCalls()) { 3132 SDLoc DL(CP); 3133 EVT Ty = getPointerTy(DAG.getDataLayout()); 3134 SDValue ConstPool = DAG.getTargetConstantPool( 3135 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 3136 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 3137 } 3138 setUsesTOCBasePtr(DAG); 3139 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 3140 return getTOCEntry(DAG, SDLoc(CP), GA); 3141 } 3142 3143 unsigned MOHiFlag, MOLoFlag; 3144 bool IsPIC = isPositionIndependent(); 3145 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3146 3147 if (IsPIC && Subtarget.isSVR4ABI()) { 3148 SDValue GA = 3149 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 3150 return getTOCEntry(DAG, SDLoc(CP), GA); 3151 } 3152 3153 SDValue CPIHi = 3154 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 3155 SDValue CPILo = 3156 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 3157 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 3158 } 3159 3160 // For 64-bit PowerPC, prefer the more compact relative encodings. 3161 // This trades 32 bits per jump table entry for one or two instructions 3162 // on the jump site. 3163 unsigned PPCTargetLowering::getJumpTableEncoding() const { 3164 if (isJumpTableRelative()) 3165 return MachineJumpTableInfo::EK_LabelDifference32; 3166 3167 return TargetLowering::getJumpTableEncoding(); 3168 } 3169 3170 bool PPCTargetLowering::isJumpTableRelative() const { 3171 if (UseAbsoluteJumpTables) 3172 return false; 3173 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 3174 return true; 3175 return TargetLowering::isJumpTableRelative(); 3176 } 3177 3178 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 3179 SelectionDAG &DAG) const { 3180 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3181 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3182 3183 switch (getTargetMachine().getCodeModel()) { 3184 case CodeModel::Small: 3185 case CodeModel::Medium: 3186 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3187 default: 3188 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 3189 getPointerTy(DAG.getDataLayout())); 3190 } 3191 } 3192 3193 const MCExpr * 3194 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 3195 unsigned JTI, 3196 MCContext &Ctx) const { 3197 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3198 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3199 3200 switch (getTargetMachine().getCodeModel()) { 3201 case CodeModel::Small: 3202 case CodeModel::Medium: 3203 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3204 default: 3205 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 3206 } 3207 } 3208 3209 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 3210 EVT PtrVT = Op.getValueType(); 3211 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 3212 3213 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3214 if (Subtarget.isUsingPCRelativeCalls()) { 3215 SDLoc DL(JT); 3216 EVT Ty = getPointerTy(DAG.getDataLayout()); 3217 SDValue GA = 3218 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 3219 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3220 return MatAddr; 3221 } 3222 3223 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3224 // The actual address of the GlobalValue is stored in the TOC. 3225 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3226 setUsesTOCBasePtr(DAG); 3227 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3228 return getTOCEntry(DAG, SDLoc(JT), GA); 3229 } 3230 3231 unsigned MOHiFlag, MOLoFlag; 3232 bool IsPIC = isPositionIndependent(); 3233 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3234 3235 if (IsPIC && Subtarget.isSVR4ABI()) { 3236 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 3237 PPCII::MO_PIC_FLAG); 3238 return getTOCEntry(DAG, SDLoc(GA), GA); 3239 } 3240 3241 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3242 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3243 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3244 } 3245 3246 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3247 SelectionDAG &DAG) const { 3248 EVT PtrVT = Op.getValueType(); 3249 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3250 const BlockAddress *BA = BASDN->getBlockAddress(); 3251 3252 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3253 if (Subtarget.isUsingPCRelativeCalls()) { 3254 SDLoc DL(BASDN); 3255 EVT Ty = getPointerTy(DAG.getDataLayout()); 3256 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3257 PPCII::MO_PCREL_FLAG); 3258 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3259 return MatAddr; 3260 } 3261 3262 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3263 // The actual BlockAddress is stored in the TOC. 3264 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3265 setUsesTOCBasePtr(DAG); 3266 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3267 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3268 } 3269 3270 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3271 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3272 return getTOCEntry( 3273 DAG, SDLoc(BASDN), 3274 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3275 3276 unsigned MOHiFlag, MOLoFlag; 3277 bool IsPIC = isPositionIndependent(); 3278 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3279 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3280 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3281 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3282 } 3283 3284 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3285 SelectionDAG &DAG) const { 3286 if (Subtarget.isAIXABI()) 3287 return LowerGlobalTLSAddressAIX(Op, DAG); 3288 3289 return LowerGlobalTLSAddressLinux(Op, DAG); 3290 } 3291 3292 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op, 3293 SelectionDAG &DAG) const { 3294 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3295 3296 if (DAG.getTarget().useEmulatedTLS()) 3297 report_fatal_error("Emulated TLS is not yet supported on AIX"); 3298 3299 SDLoc dl(GA); 3300 const GlobalValue *GV = GA->getGlobal(); 3301 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3302 3303 // The general-dynamic model is the only access model supported for now, so 3304 // all the GlobalTLSAddress nodes are lowered with this model. 3305 // We need to generate two TOC entries, one for the variable offset, one for 3306 // the region handle. The global address for the TOC entry of the region 3307 // handle is created with the MO_TLSGDM_FLAG flag and the global address 3308 // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG. 3309 SDValue VariableOffsetTGA = 3310 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG); 3311 SDValue RegionHandleTGA = 3312 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG); 3313 SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA); 3314 SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA); 3315 return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset, 3316 RegionHandle); 3317 } 3318 3319 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op, 3320 SelectionDAG &DAG) const { 3321 // FIXME: TLS addresses currently use medium model code sequences, 3322 // which is the most useful form. Eventually support for small and 3323 // large models could be added if users need it, at the cost of 3324 // additional complexity. 3325 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3326 if (DAG.getTarget().useEmulatedTLS()) 3327 return LowerToTLSEmulatedModel(GA, DAG); 3328 3329 SDLoc dl(GA); 3330 const GlobalValue *GV = GA->getGlobal(); 3331 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3332 bool is64bit = Subtarget.isPPC64(); 3333 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3334 PICLevel::Level picLevel = M->getPICLevel(); 3335 3336 const TargetMachine &TM = getTargetMachine(); 3337 TLSModel::Model Model = TM.getTLSModel(GV); 3338 3339 if (Model == TLSModel::LocalExec) { 3340 if (Subtarget.isUsingPCRelativeCalls()) { 3341 SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3342 SDValue TGA = DAG.getTargetGlobalAddress( 3343 GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG)); 3344 SDValue MatAddr = 3345 DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); 3346 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); 3347 } 3348 3349 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3350 PPCII::MO_TPREL_HA); 3351 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3352 PPCII::MO_TPREL_LO); 3353 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3354 : DAG.getRegister(PPC::R2, MVT::i32); 3355 3356 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3357 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3358 } 3359 3360 if (Model == TLSModel::InitialExec) { 3361 bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); 3362 SDValue TGA = DAG.getTargetGlobalAddress( 3363 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); 3364 SDValue TGATLS = DAG.getTargetGlobalAddress( 3365 GV, dl, PtrVT, 0, 3366 IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); 3367 SDValue TPOffset; 3368 if (IsPCRel) { 3369 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); 3370 TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, 3371 MachinePointerInfo()); 3372 } else { 3373 SDValue GOTPtr; 3374 if (is64bit) { 3375 setUsesTOCBasePtr(DAG); 3376 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3377 GOTPtr = 3378 DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); 3379 } else { 3380 if (!TM.isPositionIndependent()) 3381 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3382 else if (picLevel == PICLevel::SmallPIC) 3383 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3384 else 3385 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3386 } 3387 TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); 3388 } 3389 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3390 } 3391 3392 if (Model == TLSModel::GeneralDynamic) { 3393 if (Subtarget.isUsingPCRelativeCalls()) { 3394 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3395 PPCII::MO_GOT_TLSGD_PCREL_FLAG); 3396 return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3397 } 3398 3399 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3400 SDValue GOTPtr; 3401 if (is64bit) { 3402 setUsesTOCBasePtr(DAG); 3403 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3404 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3405 GOTReg, TGA); 3406 } else { 3407 if (picLevel == PICLevel::SmallPIC) 3408 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3409 else 3410 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3411 } 3412 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3413 GOTPtr, TGA, TGA); 3414 } 3415 3416 if (Model == TLSModel::LocalDynamic) { 3417 if (Subtarget.isUsingPCRelativeCalls()) { 3418 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3419 PPCII::MO_GOT_TLSLD_PCREL_FLAG); 3420 SDValue MatPCRel = 3421 DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3422 return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); 3423 } 3424 3425 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3426 SDValue GOTPtr; 3427 if (is64bit) { 3428 setUsesTOCBasePtr(DAG); 3429 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3430 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3431 GOTReg, TGA); 3432 } else { 3433 if (picLevel == PICLevel::SmallPIC) 3434 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3435 else 3436 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3437 } 3438 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3439 PtrVT, GOTPtr, TGA, TGA); 3440 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3441 PtrVT, TLSAddr, TGA); 3442 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3443 } 3444 3445 llvm_unreachable("Unknown TLS model!"); 3446 } 3447 3448 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3449 SelectionDAG &DAG) const { 3450 EVT PtrVT = Op.getValueType(); 3451 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3452 SDLoc DL(GSDN); 3453 const GlobalValue *GV = GSDN->getGlobal(); 3454 3455 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3456 // The actual address of the GlobalValue is stored in the TOC. 3457 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3458 if (Subtarget.isUsingPCRelativeCalls()) { 3459 EVT Ty = getPointerTy(DAG.getDataLayout()); 3460 if (isAccessedAsGotIndirect(Op)) { 3461 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3462 PPCII::MO_PCREL_FLAG | 3463 PPCII::MO_GOT_FLAG); 3464 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3465 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3466 MachinePointerInfo()); 3467 return Load; 3468 } else { 3469 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3470 PPCII::MO_PCREL_FLAG); 3471 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3472 } 3473 } 3474 setUsesTOCBasePtr(DAG); 3475 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3476 return getTOCEntry(DAG, DL, GA); 3477 } 3478 3479 unsigned MOHiFlag, MOLoFlag; 3480 bool IsPIC = isPositionIndependent(); 3481 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3482 3483 if (IsPIC && Subtarget.isSVR4ABI()) { 3484 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3485 GSDN->getOffset(), 3486 PPCII::MO_PIC_FLAG); 3487 return getTOCEntry(DAG, DL, GA); 3488 } 3489 3490 SDValue GAHi = 3491 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3492 SDValue GALo = 3493 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3494 3495 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3496 } 3497 3498 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3499 bool IsStrict = Op->isStrictFPOpcode(); 3500 ISD::CondCode CC = 3501 cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get(); 3502 SDValue LHS = Op.getOperand(IsStrict ? 1 : 0); 3503 SDValue RHS = Op.getOperand(IsStrict ? 2 : 1); 3504 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 3505 EVT LHSVT = LHS.getValueType(); 3506 SDLoc dl(Op); 3507 3508 // Soften the setcc with libcall if it is fp128. 3509 if (LHSVT == MVT::f128) { 3510 assert(!Subtarget.hasP9Vector() && 3511 "SETCC for f128 is already legal under Power9!"); 3512 softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain, 3513 Op->getOpcode() == ISD::STRICT_FSETCCS); 3514 if (RHS.getNode()) 3515 LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS, 3516 DAG.getCondCode(CC)); 3517 if (IsStrict) 3518 return DAG.getMergeValues({LHS, Chain}, dl); 3519 return LHS; 3520 } 3521 3522 assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!"); 3523 3524 if (Op.getValueType() == MVT::v2i64) { 3525 // When the operands themselves are v2i64 values, we need to do something 3526 // special because VSX has no underlying comparison operations for these. 3527 if (LHS.getValueType() == MVT::v2i64) { 3528 // Equality can be handled by casting to the legal type for Altivec 3529 // comparisons, everything else needs to be expanded. 3530 if (CC != ISD::SETEQ && CC != ISD::SETNE) 3531 return SDValue(); 3532 SDValue SetCC32 = DAG.getSetCC( 3533 dl, MVT::v4i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS), 3534 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC); 3535 int ShuffV[] = {1, 0, 3, 2}; 3536 SDValue Shuff = 3537 DAG.getVectorShuffle(MVT::v4i32, dl, SetCC32, SetCC32, ShuffV); 3538 return DAG.getBitcast(MVT::v2i64, 3539 DAG.getNode(CC == ISD::SETEQ ? ISD::AND : ISD::OR, 3540 dl, MVT::v4i32, Shuff, SetCC32)); 3541 } 3542 3543 // We handle most of these in the usual way. 3544 return Op; 3545 } 3546 3547 // If we're comparing for equality to zero, expose the fact that this is 3548 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3549 // fold the new nodes. 3550 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3551 return V; 3552 3553 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { 3554 // Leave comparisons against 0 and -1 alone for now, since they're usually 3555 // optimized. FIXME: revisit this when we can custom lower all setcc 3556 // optimizations. 3557 if (C->isAllOnes() || C->isZero()) 3558 return SDValue(); 3559 } 3560 3561 // If we have an integer seteq/setne, turn it into a compare against zero 3562 // by xor'ing the rhs with the lhs, which is faster than setting a 3563 // condition register, reading it back out, and masking the correct bit. The 3564 // normal approach here uses sub to do this instead of xor. Using xor exposes 3565 // the result to other bit-twiddling opportunities. 3566 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3567 EVT VT = Op.getValueType(); 3568 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS); 3569 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3570 } 3571 return SDValue(); 3572 } 3573 3574 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3575 SDNode *Node = Op.getNode(); 3576 EVT VT = Node->getValueType(0); 3577 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3578 SDValue InChain = Node->getOperand(0); 3579 SDValue VAListPtr = Node->getOperand(1); 3580 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3581 SDLoc dl(Node); 3582 3583 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3584 3585 // gpr_index 3586 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3587 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3588 InChain = GprIndex.getValue(1); 3589 3590 if (VT == MVT::i64) { 3591 // Check if GprIndex is even 3592 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3593 DAG.getConstant(1, dl, MVT::i32)); 3594 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3595 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3596 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3597 DAG.getConstant(1, dl, MVT::i32)); 3598 // Align GprIndex to be even if it isn't 3599 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3600 GprIndex); 3601 } 3602 3603 // fpr index is 1 byte after gpr 3604 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3605 DAG.getConstant(1, dl, MVT::i32)); 3606 3607 // fpr 3608 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3609 FprPtr, MachinePointerInfo(SV), MVT::i8); 3610 InChain = FprIndex.getValue(1); 3611 3612 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3613 DAG.getConstant(8, dl, MVT::i32)); 3614 3615 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3616 DAG.getConstant(4, dl, MVT::i32)); 3617 3618 // areas 3619 SDValue OverflowArea = 3620 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3621 InChain = OverflowArea.getValue(1); 3622 3623 SDValue RegSaveArea = 3624 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3625 InChain = RegSaveArea.getValue(1); 3626 3627 // select overflow_area if index > 8 3628 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3629 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3630 3631 // adjustment constant gpr_index * 4/8 3632 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3633 VT.isInteger() ? GprIndex : FprIndex, 3634 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3635 MVT::i32)); 3636 3637 // OurReg = RegSaveArea + RegConstant 3638 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3639 RegConstant); 3640 3641 // Floating types are 32 bytes into RegSaveArea 3642 if (VT.isFloatingPoint()) 3643 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3644 DAG.getConstant(32, dl, MVT::i32)); 3645 3646 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3647 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3648 VT.isInteger() ? GprIndex : FprIndex, 3649 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3650 MVT::i32)); 3651 3652 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3653 VT.isInteger() ? VAListPtr : FprPtr, 3654 MachinePointerInfo(SV), MVT::i8); 3655 3656 // determine if we should load from reg_save_area or overflow_area 3657 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3658 3659 // increase overflow_area by 4/8 if gpr/fpr > 8 3660 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3661 DAG.getConstant(VT.isInteger() ? 4 : 8, 3662 dl, MVT::i32)); 3663 3664 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3665 OverflowAreaPlusN); 3666 3667 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3668 MachinePointerInfo(), MVT::i32); 3669 3670 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3671 } 3672 3673 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3674 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3675 3676 // We have to copy the entire va_list struct: 3677 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3678 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3679 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3680 false, true, false, MachinePointerInfo(), 3681 MachinePointerInfo()); 3682 } 3683 3684 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3685 SelectionDAG &DAG) const { 3686 if (Subtarget.isAIXABI()) 3687 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3688 3689 return Op.getOperand(0); 3690 } 3691 3692 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { 3693 MachineFunction &MF = DAG.getMachineFunction(); 3694 PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>(); 3695 3696 assert((Op.getOpcode() == ISD::INLINEASM || 3697 Op.getOpcode() == ISD::INLINEASM_BR) && 3698 "Expecting Inline ASM node."); 3699 3700 // If an LR store is already known to be required then there is not point in 3701 // checking this ASM as well. 3702 if (MFI.isLRStoreRequired()) 3703 return Op; 3704 3705 // Inline ASM nodes have an optional last operand that is an incoming Flag of 3706 // type MVT::Glue. We want to ignore this last operand if that is the case. 3707 unsigned NumOps = Op.getNumOperands(); 3708 if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue) 3709 --NumOps; 3710 3711 // Check all operands that may contain the LR. 3712 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 3713 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue(); 3714 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 3715 ++i; // Skip the ID value. 3716 3717 switch (InlineAsm::getKind(Flags)) { 3718 default: 3719 llvm_unreachable("Bad flags!"); 3720 case InlineAsm::Kind_RegUse: 3721 case InlineAsm::Kind_Imm: 3722 case InlineAsm::Kind_Mem: 3723 i += NumVals; 3724 break; 3725 case InlineAsm::Kind_Clobber: 3726 case InlineAsm::Kind_RegDef: 3727 case InlineAsm::Kind_RegDefEarlyClobber: { 3728 for (; NumVals; --NumVals, ++i) { 3729 Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg(); 3730 if (Reg != PPC::LR && Reg != PPC::LR8) 3731 continue; 3732 MFI.setLRStoreRequired(); 3733 return Op; 3734 } 3735 break; 3736 } 3737 } 3738 } 3739 3740 return Op; 3741 } 3742 3743 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3744 SelectionDAG &DAG) const { 3745 if (Subtarget.isAIXABI()) 3746 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3747 3748 SDValue Chain = Op.getOperand(0); 3749 SDValue Trmp = Op.getOperand(1); // trampoline 3750 SDValue FPtr = Op.getOperand(2); // nested function 3751 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3752 SDLoc dl(Op); 3753 3754 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3755 bool isPPC64 = (PtrVT == MVT::i64); 3756 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3757 3758 TargetLowering::ArgListTy Args; 3759 TargetLowering::ArgListEntry Entry; 3760 3761 Entry.Ty = IntPtrTy; 3762 Entry.Node = Trmp; Args.push_back(Entry); 3763 3764 // TrampSize == (isPPC64 ? 48 : 40); 3765 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3766 isPPC64 ? MVT::i64 : MVT::i32); 3767 Args.push_back(Entry); 3768 3769 Entry.Node = FPtr; Args.push_back(Entry); 3770 Entry.Node = Nest; Args.push_back(Entry); 3771 3772 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3773 TargetLowering::CallLoweringInfo CLI(DAG); 3774 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3775 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3776 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3777 3778 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3779 return CallResult.second; 3780 } 3781 3782 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3783 MachineFunction &MF = DAG.getMachineFunction(); 3784 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3785 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3786 3787 SDLoc dl(Op); 3788 3789 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3790 // vastart just stores the address of the VarArgsFrameIndex slot into the 3791 // memory location argument. 3792 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3793 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3794 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3795 MachinePointerInfo(SV)); 3796 } 3797 3798 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3799 // We suppose the given va_list is already allocated. 3800 // 3801 // typedef struct { 3802 // char gpr; /* index into the array of 8 GPRs 3803 // * stored in the register save area 3804 // * gpr=0 corresponds to r3, 3805 // * gpr=1 to r4, etc. 3806 // */ 3807 // char fpr; /* index into the array of 8 FPRs 3808 // * stored in the register save area 3809 // * fpr=0 corresponds to f1, 3810 // * fpr=1 to f2, etc. 3811 // */ 3812 // char *overflow_arg_area; 3813 // /* location on stack that holds 3814 // * the next overflow argument 3815 // */ 3816 // char *reg_save_area; 3817 // /* where r3:r10 and f1:f8 (if saved) 3818 // * are stored 3819 // */ 3820 // } va_list[1]; 3821 3822 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3823 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3824 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3825 PtrVT); 3826 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3827 PtrVT); 3828 3829 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3830 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3831 3832 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3833 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3834 3835 uint64_t FPROffset = 1; 3836 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3837 3838 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3839 3840 // Store first byte : number of int regs 3841 SDValue firstStore = 3842 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3843 MachinePointerInfo(SV), MVT::i8); 3844 uint64_t nextOffset = FPROffset; 3845 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3846 ConstFPROffset); 3847 3848 // Store second byte : number of float regs 3849 SDValue secondStore = 3850 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3851 MachinePointerInfo(SV, nextOffset), MVT::i8); 3852 nextOffset += StackOffset; 3853 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3854 3855 // Store second word : arguments given on stack 3856 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3857 MachinePointerInfo(SV, nextOffset)); 3858 nextOffset += FrameOffset; 3859 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3860 3861 // Store third word : arguments given in registers 3862 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3863 MachinePointerInfo(SV, nextOffset)); 3864 } 3865 3866 /// FPR - The set of FP registers that should be allocated for arguments 3867 /// on Darwin and AIX. 3868 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3869 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3870 PPC::F11, PPC::F12, PPC::F13}; 3871 3872 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3873 /// the stack. 3874 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3875 unsigned PtrByteSize) { 3876 unsigned ArgSize = ArgVT.getStoreSize(); 3877 if (Flags.isByVal()) 3878 ArgSize = Flags.getByValSize(); 3879 3880 // Round up to multiples of the pointer size, except for array members, 3881 // which are always packed. 3882 if (!Flags.isInConsecutiveRegs()) 3883 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3884 3885 return ArgSize; 3886 } 3887 3888 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3889 /// on the stack. 3890 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3891 ISD::ArgFlagsTy Flags, 3892 unsigned PtrByteSize) { 3893 Align Alignment(PtrByteSize); 3894 3895 // Altivec parameters are padded to a 16 byte boundary. 3896 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3897 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3898 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3899 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3900 Alignment = Align(16); 3901 3902 // ByVal parameters are aligned as requested. 3903 if (Flags.isByVal()) { 3904 auto BVAlign = Flags.getNonZeroByValAlign(); 3905 if (BVAlign > PtrByteSize) { 3906 if (BVAlign.value() % PtrByteSize != 0) 3907 llvm_unreachable( 3908 "ByVal alignment is not a multiple of the pointer size"); 3909 3910 Alignment = BVAlign; 3911 } 3912 } 3913 3914 // Array members are always packed to their original alignment. 3915 if (Flags.isInConsecutiveRegs()) { 3916 // If the array member was split into multiple registers, the first 3917 // needs to be aligned to the size of the full type. (Except for 3918 // ppcf128, which is only aligned as its f64 components.) 3919 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3920 Alignment = Align(OrigVT.getStoreSize()); 3921 else 3922 Alignment = Align(ArgVT.getStoreSize()); 3923 } 3924 3925 return Alignment; 3926 } 3927 3928 /// CalculateStackSlotUsed - Return whether this argument will use its 3929 /// stack slot (instead of being passed in registers). ArgOffset, 3930 /// AvailableFPRs, and AvailableVRs must hold the current argument 3931 /// position, and will be updated to account for this argument. 3932 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 3933 unsigned PtrByteSize, unsigned LinkageSize, 3934 unsigned ParamAreaSize, unsigned &ArgOffset, 3935 unsigned &AvailableFPRs, 3936 unsigned &AvailableVRs) { 3937 bool UseMemory = false; 3938 3939 // Respect alignment of argument on the stack. 3940 Align Alignment = 3941 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3942 ArgOffset = alignTo(ArgOffset, Alignment); 3943 // If there's no space left in the argument save area, we must 3944 // use memory (this check also catches zero-sized arguments). 3945 if (ArgOffset >= LinkageSize + ParamAreaSize) 3946 UseMemory = true; 3947 3948 // Allocate argument on the stack. 3949 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3950 if (Flags.isInConsecutiveRegsLast()) 3951 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3952 // If we overran the argument save area, we must use memory 3953 // (this check catches arguments passed partially in memory) 3954 if (ArgOffset > LinkageSize + ParamAreaSize) 3955 UseMemory = true; 3956 3957 // However, if the argument is actually passed in an FPR or a VR, 3958 // we don't use memory after all. 3959 if (!Flags.isByVal()) { 3960 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 3961 if (AvailableFPRs > 0) { 3962 --AvailableFPRs; 3963 return false; 3964 } 3965 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3966 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3967 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3968 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3969 if (AvailableVRs > 0) { 3970 --AvailableVRs; 3971 return false; 3972 } 3973 } 3974 3975 return UseMemory; 3976 } 3977 3978 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3979 /// ensure minimum alignment required for target. 3980 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3981 unsigned NumBytes) { 3982 return alignTo(NumBytes, Lowering->getStackAlign()); 3983 } 3984 3985 SDValue PPCTargetLowering::LowerFormalArguments( 3986 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3987 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3988 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3989 if (Subtarget.isAIXABI()) 3990 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3991 InVals); 3992 if (Subtarget.is64BitELFABI()) 3993 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3994 InVals); 3995 assert(Subtarget.is32BitELFABI()); 3996 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3997 InVals); 3998 } 3999 4000 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 4001 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4002 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4003 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4004 4005 // 32-bit SVR4 ABI Stack Frame Layout: 4006 // +-----------------------------------+ 4007 // +--> | Back chain | 4008 // | +-----------------------------------+ 4009 // | | Floating-point register save area | 4010 // | +-----------------------------------+ 4011 // | | General register save area | 4012 // | +-----------------------------------+ 4013 // | | CR save word | 4014 // | +-----------------------------------+ 4015 // | | VRSAVE save word | 4016 // | +-----------------------------------+ 4017 // | | Alignment padding | 4018 // | +-----------------------------------+ 4019 // | | Vector register save area | 4020 // | +-----------------------------------+ 4021 // | | Local variable space | 4022 // | +-----------------------------------+ 4023 // | | Parameter list area | 4024 // | +-----------------------------------+ 4025 // | | LR save word | 4026 // | +-----------------------------------+ 4027 // SP--> +--- | Back chain | 4028 // +-----------------------------------+ 4029 // 4030 // Specifications: 4031 // System V Application Binary Interface PowerPC Processor Supplement 4032 // AltiVec Technology Programming Interface Manual 4033 4034 MachineFunction &MF = DAG.getMachineFunction(); 4035 MachineFrameInfo &MFI = MF.getFrameInfo(); 4036 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4037 4038 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4039 // Potential tail calls could cause overwriting of argument stack slots. 4040 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4041 (CallConv == CallingConv::Fast)); 4042 const Align PtrAlign(4); 4043 4044 // Assign locations to all of the incoming arguments. 4045 SmallVector<CCValAssign, 16> ArgLocs; 4046 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4047 *DAG.getContext()); 4048 4049 // Reserve space for the linkage area on the stack. 4050 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4051 CCInfo.AllocateStack(LinkageSize, PtrAlign); 4052 if (useSoftFloat()) 4053 CCInfo.PreAnalyzeFormalArguments(Ins); 4054 4055 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 4056 CCInfo.clearWasPPCF128(); 4057 4058 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 4059 CCValAssign &VA = ArgLocs[i]; 4060 4061 // Arguments stored in registers. 4062 if (VA.isRegLoc()) { 4063 const TargetRegisterClass *RC; 4064 EVT ValVT = VA.getValVT(); 4065 4066 switch (ValVT.getSimpleVT().SimpleTy) { 4067 default: 4068 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 4069 case MVT::i1: 4070 case MVT::i32: 4071 RC = &PPC::GPRCRegClass; 4072 break; 4073 case MVT::f32: 4074 if (Subtarget.hasP8Vector()) 4075 RC = &PPC::VSSRCRegClass; 4076 else if (Subtarget.hasSPE()) 4077 RC = &PPC::GPRCRegClass; 4078 else 4079 RC = &PPC::F4RCRegClass; 4080 break; 4081 case MVT::f64: 4082 if (Subtarget.hasVSX()) 4083 RC = &PPC::VSFRCRegClass; 4084 else if (Subtarget.hasSPE()) 4085 // SPE passes doubles in GPR pairs. 4086 RC = &PPC::GPRCRegClass; 4087 else 4088 RC = &PPC::F8RCRegClass; 4089 break; 4090 case MVT::v16i8: 4091 case MVT::v8i16: 4092 case MVT::v4i32: 4093 RC = &PPC::VRRCRegClass; 4094 break; 4095 case MVT::v4f32: 4096 RC = &PPC::VRRCRegClass; 4097 break; 4098 case MVT::v2f64: 4099 case MVT::v2i64: 4100 RC = &PPC::VRRCRegClass; 4101 break; 4102 } 4103 4104 SDValue ArgValue; 4105 // Transform the arguments stored in physical registers into 4106 // virtual ones. 4107 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 4108 assert(i + 1 < e && "No second half of double precision argument"); 4109 Register RegLo = MF.addLiveIn(VA.getLocReg(), RC); 4110 Register RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 4111 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 4112 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 4113 if (!Subtarget.isLittleEndian()) 4114 std::swap (ArgValueLo, ArgValueHi); 4115 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 4116 ArgValueHi); 4117 } else { 4118 Register Reg = MF.addLiveIn(VA.getLocReg(), RC); 4119 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 4120 ValVT == MVT::i1 ? MVT::i32 : ValVT); 4121 if (ValVT == MVT::i1) 4122 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 4123 } 4124 4125 InVals.push_back(ArgValue); 4126 } else { 4127 // Argument stored in memory. 4128 assert(VA.isMemLoc()); 4129 4130 // Get the extended size of the argument type in stack 4131 unsigned ArgSize = VA.getLocVT().getStoreSize(); 4132 // Get the actual size of the argument type 4133 unsigned ObjSize = VA.getValVT().getStoreSize(); 4134 unsigned ArgOffset = VA.getLocMemOffset(); 4135 // Stack objects in PPC32 are right justified. 4136 ArgOffset += ArgSize - ObjSize; 4137 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 4138 4139 // Create load nodes to retrieve arguments from the stack. 4140 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4141 InVals.push_back( 4142 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 4143 } 4144 } 4145 4146 // Assign locations to all of the incoming aggregate by value arguments. 4147 // Aggregates passed by value are stored in the local variable space of the 4148 // caller's stack frame, right above the parameter list area. 4149 SmallVector<CCValAssign, 16> ByValArgLocs; 4150 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4151 ByValArgLocs, *DAG.getContext()); 4152 4153 // Reserve stack space for the allocations in CCInfo. 4154 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 4155 4156 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 4157 4158 // Area that is at least reserved in the caller of this function. 4159 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 4160 MinReservedArea = std::max(MinReservedArea, LinkageSize); 4161 4162 // Set the size that is at least reserved in caller of this function. Tail 4163 // call optimized function's reserved stack space needs to be aligned so that 4164 // taking the difference between two stack areas will result in an aligned 4165 // stack. 4166 MinReservedArea = 4167 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4168 FuncInfo->setMinReservedArea(MinReservedArea); 4169 4170 SmallVector<SDValue, 8> MemOps; 4171 4172 // If the function takes variable number of arguments, make a frame index for 4173 // the start of the first vararg value... for expansion of llvm.va_start. 4174 if (isVarArg) { 4175 static const MCPhysReg GPArgRegs[] = { 4176 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4177 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4178 }; 4179 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 4180 4181 static const MCPhysReg FPArgRegs[] = { 4182 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 4183 PPC::F8 4184 }; 4185 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 4186 4187 if (useSoftFloat() || hasSPE()) 4188 NumFPArgRegs = 0; 4189 4190 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 4191 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 4192 4193 // Make room for NumGPArgRegs and NumFPArgRegs. 4194 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 4195 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 4196 4197 FuncInfo->setVarArgsStackOffset( 4198 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4199 CCInfo.getNextStackOffset(), true)); 4200 4201 FuncInfo->setVarArgsFrameIndex( 4202 MFI.CreateStackObject(Depth, Align(8), false)); 4203 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4204 4205 // The fixed integer arguments of a variadic function are stored to the 4206 // VarArgsFrameIndex on the stack so that they may be loaded by 4207 // dereferencing the result of va_next. 4208 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 4209 // Get an existing live-in vreg, or add a new one. 4210 Register VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 4211 if (!VReg) 4212 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 4213 4214 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4215 SDValue Store = 4216 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4217 MemOps.push_back(Store); 4218 // Increment the address by four for the next argument to store 4219 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4220 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4221 } 4222 4223 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 4224 // is set. 4225 // The double arguments are stored to the VarArgsFrameIndex 4226 // on the stack. 4227 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 4228 // Get an existing live-in vreg, or add a new one. 4229 Register VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 4230 if (!VReg) 4231 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 4232 4233 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 4234 SDValue Store = 4235 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4236 MemOps.push_back(Store); 4237 // Increment the address by eight for the next argument to store 4238 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 4239 PtrVT); 4240 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4241 } 4242 } 4243 4244 if (!MemOps.empty()) 4245 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4246 4247 return Chain; 4248 } 4249 4250 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4251 // value to MVT::i64 and then truncate to the correct register size. 4252 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 4253 EVT ObjectVT, SelectionDAG &DAG, 4254 SDValue ArgVal, 4255 const SDLoc &dl) const { 4256 if (Flags.isSExt()) 4257 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 4258 DAG.getValueType(ObjectVT)); 4259 else if (Flags.isZExt()) 4260 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 4261 DAG.getValueType(ObjectVT)); 4262 4263 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 4264 } 4265 4266 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 4267 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4268 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4269 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4270 // TODO: add description of PPC stack frame format, or at least some docs. 4271 // 4272 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4273 bool isLittleEndian = Subtarget.isLittleEndian(); 4274 MachineFunction &MF = DAG.getMachineFunction(); 4275 MachineFrameInfo &MFI = MF.getFrameInfo(); 4276 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4277 4278 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4279 "fastcc not supported on varargs functions"); 4280 4281 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4282 // Potential tail calls could cause overwriting of argument stack slots. 4283 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4284 (CallConv == CallingConv::Fast)); 4285 unsigned PtrByteSize = 8; 4286 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4287 4288 static const MCPhysReg GPR[] = { 4289 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4290 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4291 }; 4292 static const MCPhysReg VR[] = { 4293 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4294 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4295 }; 4296 4297 const unsigned Num_GPR_Regs = array_lengthof(GPR); 4298 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4299 const unsigned Num_VR_Regs = array_lengthof(VR); 4300 4301 // Do a first pass over the arguments to determine whether the ABI 4302 // guarantees that our caller has allocated the parameter save area 4303 // on its stack frame. In the ELFv1 ABI, this is always the case; 4304 // in the ELFv2 ABI, it is true if this is a vararg function or if 4305 // any parameter is located in a stack slot. 4306 4307 bool HasParameterArea = !isELFv2ABI || isVarArg; 4308 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 4309 unsigned NumBytes = LinkageSize; 4310 unsigned AvailableFPRs = Num_FPR_Regs; 4311 unsigned AvailableVRs = Num_VR_Regs; 4312 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 4313 if (Ins[i].Flags.isNest()) 4314 continue; 4315 4316 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 4317 PtrByteSize, LinkageSize, ParamAreaSize, 4318 NumBytes, AvailableFPRs, AvailableVRs)) 4319 HasParameterArea = true; 4320 } 4321 4322 // Add DAG nodes to load the arguments or copy them out of registers. On 4323 // entry to a function on PPC, the arguments start after the linkage area, 4324 // although the first ones are often in registers. 4325 4326 unsigned ArgOffset = LinkageSize; 4327 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4328 SmallVector<SDValue, 8> MemOps; 4329 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4330 unsigned CurArgIdx = 0; 4331 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4332 SDValue ArgVal; 4333 bool needsLoad = false; 4334 EVT ObjectVT = Ins[ArgNo].VT; 4335 EVT OrigVT = Ins[ArgNo].ArgVT; 4336 unsigned ObjSize = ObjectVT.getStoreSize(); 4337 unsigned ArgSize = ObjSize; 4338 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4339 if (Ins[ArgNo].isOrigArg()) { 4340 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4341 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4342 } 4343 // We re-align the argument offset for each argument, except when using the 4344 // fast calling convention, when we need to make sure we do that only when 4345 // we'll actually use a stack slot. 4346 unsigned CurArgOffset; 4347 Align Alignment; 4348 auto ComputeArgOffset = [&]() { 4349 /* Respect alignment of argument on the stack. */ 4350 Alignment = 4351 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 4352 ArgOffset = alignTo(ArgOffset, Alignment); 4353 CurArgOffset = ArgOffset; 4354 }; 4355 4356 if (CallConv != CallingConv::Fast) { 4357 ComputeArgOffset(); 4358 4359 /* Compute GPR index associated with argument offset. */ 4360 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4361 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4362 } 4363 4364 // FIXME the codegen can be much improved in some cases. 4365 // We do not have to keep everything in memory. 4366 if (Flags.isByVal()) { 4367 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4368 4369 if (CallConv == CallingConv::Fast) 4370 ComputeArgOffset(); 4371 4372 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4373 ObjSize = Flags.getByValSize(); 4374 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4375 // Empty aggregate parameters do not take up registers. Examples: 4376 // struct { } a; 4377 // union { } b; 4378 // int c[0]; 4379 // etc. However, we have to provide a place-holder in InVals, so 4380 // pretend we have an 8-byte item at the current address for that 4381 // purpose. 4382 if (!ObjSize) { 4383 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4384 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4385 InVals.push_back(FIN); 4386 continue; 4387 } 4388 4389 // Create a stack object covering all stack doublewords occupied 4390 // by the argument. If the argument is (fully or partially) on 4391 // the stack, or if the argument is fully in registers but the 4392 // caller has allocated the parameter save anyway, we can refer 4393 // directly to the caller's stack frame. Otherwise, create a 4394 // local copy in our own frame. 4395 int FI; 4396 if (HasParameterArea || 4397 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4398 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4399 else 4400 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4401 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4402 4403 // Handle aggregates smaller than 8 bytes. 4404 if (ObjSize < PtrByteSize) { 4405 // The value of the object is its address, which differs from the 4406 // address of the enclosing doubleword on big-endian systems. 4407 SDValue Arg = FIN; 4408 if (!isLittleEndian) { 4409 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4410 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4411 } 4412 InVals.push_back(Arg); 4413 4414 if (GPR_idx != Num_GPR_Regs) { 4415 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4416 FuncInfo->addLiveInAttr(VReg, Flags); 4417 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4418 EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), ObjSize * 8); 4419 SDValue Store = 4420 DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4421 MachinePointerInfo(&*FuncArg), ObjType); 4422 MemOps.push_back(Store); 4423 } 4424 // Whether we copied from a register or not, advance the offset 4425 // into the parameter save area by a full doubleword. 4426 ArgOffset += PtrByteSize; 4427 continue; 4428 } 4429 4430 // The value of the object is its address, which is the address of 4431 // its first stack doubleword. 4432 InVals.push_back(FIN); 4433 4434 // Store whatever pieces of the object are in registers to memory. 4435 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4436 if (GPR_idx == Num_GPR_Regs) 4437 break; 4438 4439 Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4440 FuncInfo->addLiveInAttr(VReg, Flags); 4441 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4442 SDValue Addr = FIN; 4443 if (j) { 4444 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4445 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4446 } 4447 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4448 MachinePointerInfo(&*FuncArg, j)); 4449 MemOps.push_back(Store); 4450 ++GPR_idx; 4451 } 4452 ArgOffset += ArgSize; 4453 continue; 4454 } 4455 4456 switch (ObjectVT.getSimpleVT().SimpleTy) { 4457 default: llvm_unreachable("Unhandled argument type!"); 4458 case MVT::i1: 4459 case MVT::i32: 4460 case MVT::i64: 4461 if (Flags.isNest()) { 4462 // The 'nest' parameter, if any, is passed in R11. 4463 Register VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4464 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4465 4466 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4467 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4468 4469 break; 4470 } 4471 4472 // These can be scalar arguments or elements of an integer array type 4473 // passed directly. Clang may use those instead of "byval" aggregate 4474 // types to avoid forcing arguments to memory unnecessarily. 4475 if (GPR_idx != Num_GPR_Regs) { 4476 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4477 FuncInfo->addLiveInAttr(VReg, Flags); 4478 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4479 4480 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4481 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4482 // value to MVT::i64 and then truncate to the correct register size. 4483 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4484 } else { 4485 if (CallConv == CallingConv::Fast) 4486 ComputeArgOffset(); 4487 4488 needsLoad = true; 4489 ArgSize = PtrByteSize; 4490 } 4491 if (CallConv != CallingConv::Fast || needsLoad) 4492 ArgOffset += 8; 4493 break; 4494 4495 case MVT::f32: 4496 case MVT::f64: 4497 // These can be scalar arguments or elements of a float array type 4498 // passed directly. The latter are used to implement ELFv2 homogenous 4499 // float aggregates. 4500 if (FPR_idx != Num_FPR_Regs) { 4501 unsigned VReg; 4502 4503 if (ObjectVT == MVT::f32) 4504 VReg = MF.addLiveIn(FPR[FPR_idx], 4505 Subtarget.hasP8Vector() 4506 ? &PPC::VSSRCRegClass 4507 : &PPC::F4RCRegClass); 4508 else 4509 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4510 ? &PPC::VSFRCRegClass 4511 : &PPC::F8RCRegClass); 4512 4513 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4514 ++FPR_idx; 4515 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4516 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4517 // once we support fp <-> gpr moves. 4518 4519 // This can only ever happen in the presence of f32 array types, 4520 // since otherwise we never run out of FPRs before running out 4521 // of GPRs. 4522 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4523 FuncInfo->addLiveInAttr(VReg, Flags); 4524 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4525 4526 if (ObjectVT == MVT::f32) { 4527 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4528 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4529 DAG.getConstant(32, dl, MVT::i32)); 4530 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4531 } 4532 4533 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4534 } else { 4535 if (CallConv == CallingConv::Fast) 4536 ComputeArgOffset(); 4537 4538 needsLoad = true; 4539 } 4540 4541 // When passing an array of floats, the array occupies consecutive 4542 // space in the argument area; only round up to the next doubleword 4543 // at the end of the array. Otherwise, each float takes 8 bytes. 4544 if (CallConv != CallingConv::Fast || needsLoad) { 4545 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4546 ArgOffset += ArgSize; 4547 if (Flags.isInConsecutiveRegsLast()) 4548 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4549 } 4550 break; 4551 case MVT::v4f32: 4552 case MVT::v4i32: 4553 case MVT::v8i16: 4554 case MVT::v16i8: 4555 case MVT::v2f64: 4556 case MVT::v2i64: 4557 case MVT::v1i128: 4558 case MVT::f128: 4559 // These can be scalar arguments or elements of a vector array type 4560 // passed directly. The latter are used to implement ELFv2 homogenous 4561 // vector aggregates. 4562 if (VR_idx != Num_VR_Regs) { 4563 Register VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4564 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4565 ++VR_idx; 4566 } else { 4567 if (CallConv == CallingConv::Fast) 4568 ComputeArgOffset(); 4569 needsLoad = true; 4570 } 4571 if (CallConv != CallingConv::Fast || needsLoad) 4572 ArgOffset += 16; 4573 break; 4574 } 4575 4576 // We need to load the argument to a virtual register if we determined 4577 // above that we ran out of physical registers of the appropriate type. 4578 if (needsLoad) { 4579 if (ObjSize < ArgSize && !isLittleEndian) 4580 CurArgOffset += ArgSize - ObjSize; 4581 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4582 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4583 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4584 } 4585 4586 InVals.push_back(ArgVal); 4587 } 4588 4589 // Area that is at least reserved in the caller of this function. 4590 unsigned MinReservedArea; 4591 if (HasParameterArea) 4592 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4593 else 4594 MinReservedArea = LinkageSize; 4595 4596 // Set the size that is at least reserved in caller of this function. Tail 4597 // call optimized functions' reserved stack space needs to be aligned so that 4598 // taking the difference between two stack areas will result in an aligned 4599 // stack. 4600 MinReservedArea = 4601 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4602 FuncInfo->setMinReservedArea(MinReservedArea); 4603 4604 // If the function takes variable number of arguments, make a frame index for 4605 // the start of the first vararg value... for expansion of llvm.va_start. 4606 // On ELFv2ABI spec, it writes: 4607 // C programs that are intended to be *portable* across different compilers 4608 // and architectures must use the header file <stdarg.h> to deal with variable 4609 // argument lists. 4610 if (isVarArg && MFI.hasVAStart()) { 4611 int Depth = ArgOffset; 4612 4613 FuncInfo->setVarArgsFrameIndex( 4614 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4615 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4616 4617 // If this function is vararg, store any remaining integer argument regs 4618 // to their spots on the stack so that they may be loaded by dereferencing 4619 // the result of va_next. 4620 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4621 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4622 Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4623 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4624 SDValue Store = 4625 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4626 MemOps.push_back(Store); 4627 // Increment the address by four for the next argument to store 4628 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4629 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4630 } 4631 } 4632 4633 if (!MemOps.empty()) 4634 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4635 4636 return Chain; 4637 } 4638 4639 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4640 /// adjusted to accommodate the arguments for the tailcall. 4641 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4642 unsigned ParamSize) { 4643 4644 if (!isTailCall) return 0; 4645 4646 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4647 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4648 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4649 // Remember only if the new adjustment is bigger. 4650 if (SPDiff < FI->getTailCallSPDelta()) 4651 FI->setTailCallSPDelta(SPDiff); 4652 4653 return SPDiff; 4654 } 4655 4656 static bool isFunctionGlobalAddress(SDValue Callee); 4657 4658 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4659 const TargetMachine &TM) { 4660 // It does not make sense to call callsShareTOCBase() with a caller that 4661 // is PC Relative since PC Relative callers do not have a TOC. 4662 #ifndef NDEBUG 4663 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4664 assert(!STICaller->isUsingPCRelativeCalls() && 4665 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4666 #endif 4667 4668 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4669 // don't have enough information to determine if the caller and callee share 4670 // the same TOC base, so we have to pessimistically assume they don't for 4671 // correctness. 4672 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4673 if (!G) 4674 return false; 4675 4676 const GlobalValue *GV = G->getGlobal(); 4677 4678 // If the callee is preemptable, then the static linker will use a plt-stub 4679 // which saves the toc to the stack, and needs a nop after the call 4680 // instruction to convert to a toc-restore. 4681 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4682 return false; 4683 4684 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4685 // We may need a TOC restore in the situation where the caller requires a 4686 // valid TOC but the callee is PC Relative and does not. 4687 const Function *F = dyn_cast<Function>(GV); 4688 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4689 4690 // If we have an Alias we can try to get the function from there. 4691 if (Alias) { 4692 const GlobalObject *GlobalObj = Alias->getAliaseeObject(); 4693 F = dyn_cast<Function>(GlobalObj); 4694 } 4695 4696 // If we still have no valid function pointer we do not have enough 4697 // information to determine if the callee uses PC Relative calls so we must 4698 // assume that it does. 4699 if (!F) 4700 return false; 4701 4702 // If the callee uses PC Relative we cannot guarantee that the callee won't 4703 // clobber the TOC of the caller and so we must assume that the two 4704 // functions do not share a TOC base. 4705 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4706 if (STICallee->isUsingPCRelativeCalls()) 4707 return false; 4708 4709 // If the GV is not a strong definition then we need to assume it can be 4710 // replaced by another function at link time. The function that replaces 4711 // it may not share the same TOC as the caller since the callee may be 4712 // replaced by a PC Relative version of the same function. 4713 if (!GV->isStrongDefinitionForLinker()) 4714 return false; 4715 4716 // The medium and large code models are expected to provide a sufficiently 4717 // large TOC to provide all data addressing needs of a module with a 4718 // single TOC. 4719 if (CodeModel::Medium == TM.getCodeModel() || 4720 CodeModel::Large == TM.getCodeModel()) 4721 return true; 4722 4723 // Any explicitly-specified sections and section prefixes must also match. 4724 // Also, if we're using -ffunction-sections, then each function is always in 4725 // a different section (the same is true for COMDAT functions). 4726 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4727 GV->getSection() != Caller->getSection()) 4728 return false; 4729 if (const auto *F = dyn_cast<Function>(GV)) { 4730 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4731 return false; 4732 } 4733 4734 return true; 4735 } 4736 4737 static bool 4738 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4739 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4740 assert(Subtarget.is64BitELFABI()); 4741 4742 const unsigned PtrByteSize = 8; 4743 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4744 4745 static const MCPhysReg GPR[] = { 4746 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4747 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4748 }; 4749 static const MCPhysReg VR[] = { 4750 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4751 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4752 }; 4753 4754 const unsigned NumGPRs = array_lengthof(GPR); 4755 const unsigned NumFPRs = 13; 4756 const unsigned NumVRs = array_lengthof(VR); 4757 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4758 4759 unsigned NumBytes = LinkageSize; 4760 unsigned AvailableFPRs = NumFPRs; 4761 unsigned AvailableVRs = NumVRs; 4762 4763 for (const ISD::OutputArg& Param : Outs) { 4764 if (Param.Flags.isNest()) continue; 4765 4766 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4767 LinkageSize, ParamAreaSize, NumBytes, 4768 AvailableFPRs, AvailableVRs)) 4769 return true; 4770 } 4771 return false; 4772 } 4773 4774 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4775 if (CB.arg_size() != CallerFn->arg_size()) 4776 return false; 4777 4778 auto CalleeArgIter = CB.arg_begin(); 4779 auto CalleeArgEnd = CB.arg_end(); 4780 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4781 4782 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4783 const Value* CalleeArg = *CalleeArgIter; 4784 const Value* CallerArg = &(*CallerArgIter); 4785 if (CalleeArg == CallerArg) 4786 continue; 4787 4788 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4789 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4790 // } 4791 // 1st argument of callee is undef and has the same type as caller. 4792 if (CalleeArg->getType() == CallerArg->getType() && 4793 isa<UndefValue>(CalleeArg)) 4794 continue; 4795 4796 return false; 4797 } 4798 4799 return true; 4800 } 4801 4802 // Returns true if TCO is possible between the callers and callees 4803 // calling conventions. 4804 static bool 4805 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4806 CallingConv::ID CalleeCC) { 4807 // Tail calls are possible with fastcc and ccc. 4808 auto isTailCallableCC = [] (CallingConv::ID CC){ 4809 return CC == CallingConv::C || CC == CallingConv::Fast; 4810 }; 4811 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4812 return false; 4813 4814 // We can safely tail call both fastcc and ccc callees from a c calling 4815 // convention caller. If the caller is fastcc, we may have less stack space 4816 // than a non-fastcc caller with the same signature so disable tail-calls in 4817 // that case. 4818 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4819 } 4820 4821 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4822 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4823 const SmallVectorImpl<ISD::OutputArg> &Outs, 4824 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4825 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4826 4827 if (DisableSCO && !TailCallOpt) return false; 4828 4829 // Variadic argument functions are not supported. 4830 if (isVarArg) return false; 4831 4832 auto &Caller = DAG.getMachineFunction().getFunction(); 4833 // Check that the calling conventions are compatible for tco. 4834 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4835 return false; 4836 4837 // Caller contains any byval parameter is not supported. 4838 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4839 return false; 4840 4841 // Callee contains any byval parameter is not supported, too. 4842 // Note: This is a quick work around, because in some cases, e.g. 4843 // caller's stack size > callee's stack size, we are still able to apply 4844 // sibling call optimization. For example, gcc is able to do SCO for caller1 4845 // in the following example, but not for caller2. 4846 // struct test { 4847 // long int a; 4848 // char ary[56]; 4849 // } gTest; 4850 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4851 // b->a = v.a; 4852 // return 0; 4853 // } 4854 // void caller1(struct test a, struct test c, struct test *b) { 4855 // callee(gTest, b); } 4856 // void caller2(struct test *b) { callee(gTest, b); } 4857 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4858 return false; 4859 4860 // If callee and caller use different calling conventions, we cannot pass 4861 // parameters on stack since offsets for the parameter area may be different. 4862 if (Caller.getCallingConv() != CalleeCC && 4863 needStackSlotPassParameters(Subtarget, Outs)) 4864 return false; 4865 4866 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4867 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4868 // callee potentially have different TOC bases then we cannot tail call since 4869 // we need to restore the TOC pointer after the call. 4870 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4871 // We cannot guarantee this for indirect calls or calls to external functions. 4872 // When PC-Relative addressing is used, the concept of the TOC is no longer 4873 // applicable so this check is not required. 4874 // Check first for indirect calls. 4875 if (!Subtarget.isUsingPCRelativeCalls() && 4876 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4877 return false; 4878 4879 // Check if we share the TOC base. 4880 if (!Subtarget.isUsingPCRelativeCalls() && 4881 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4882 return false; 4883 4884 // TCO allows altering callee ABI, so we don't have to check further. 4885 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4886 return true; 4887 4888 if (DisableSCO) return false; 4889 4890 // If callee use the same argument list that caller is using, then we can 4891 // apply SCO on this case. If it is not, then we need to check if callee needs 4892 // stack for passing arguments. 4893 // PC Relative tail calls may not have a CallBase. 4894 // If there is no CallBase we cannot verify if we have the same argument 4895 // list so assume that we don't have the same argument list. 4896 if (CB && !hasSameArgumentList(&Caller, *CB) && 4897 needStackSlotPassParameters(Subtarget, Outs)) 4898 return false; 4899 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4900 return false; 4901 4902 return true; 4903 } 4904 4905 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4906 /// for tail call optimization. Targets which want to do tail call 4907 /// optimization should implement this function. 4908 bool 4909 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4910 CallingConv::ID CalleeCC, 4911 bool isVarArg, 4912 const SmallVectorImpl<ISD::InputArg> &Ins, 4913 SelectionDAG& DAG) const { 4914 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4915 return false; 4916 4917 // Variable argument functions are not supported. 4918 if (isVarArg) 4919 return false; 4920 4921 MachineFunction &MF = DAG.getMachineFunction(); 4922 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4923 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4924 // Functions containing by val parameters are not supported. 4925 for (unsigned i = 0; i != Ins.size(); i++) { 4926 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4927 if (Flags.isByVal()) return false; 4928 } 4929 4930 // Non-PIC/GOT tail calls are supported. 4931 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4932 return true; 4933 4934 // At the moment we can only do local tail calls (in same module, hidden 4935 // or protected) if we are generating PIC. 4936 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4937 return G->getGlobal()->hasHiddenVisibility() 4938 || G->getGlobal()->hasProtectedVisibility(); 4939 } 4940 4941 return false; 4942 } 4943 4944 /// isCallCompatibleAddress - Return the immediate to use if the specified 4945 /// 32-bit value is representable in the immediate field of a BxA instruction. 4946 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4947 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4948 if (!C) return nullptr; 4949 4950 int Addr = C->getZExtValue(); 4951 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4952 SignExtend32<26>(Addr) != Addr) 4953 return nullptr; // Top 6 bits have to be sext of immediate. 4954 4955 return DAG 4956 .getConstant( 4957 (int)C->getZExtValue() >> 2, SDLoc(Op), 4958 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4959 .getNode(); 4960 } 4961 4962 namespace { 4963 4964 struct TailCallArgumentInfo { 4965 SDValue Arg; 4966 SDValue FrameIdxOp; 4967 int FrameIdx = 0; 4968 4969 TailCallArgumentInfo() = default; 4970 }; 4971 4972 } // end anonymous namespace 4973 4974 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4975 static void StoreTailCallArgumentsToStackSlot( 4976 SelectionDAG &DAG, SDValue Chain, 4977 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4978 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4979 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4980 SDValue Arg = TailCallArgs[i].Arg; 4981 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4982 int FI = TailCallArgs[i].FrameIdx; 4983 // Store relative to framepointer. 4984 MemOpChains.push_back(DAG.getStore( 4985 Chain, dl, Arg, FIN, 4986 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4987 } 4988 } 4989 4990 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4991 /// the appropriate stack slot for the tail call optimized function call. 4992 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4993 SDValue OldRetAddr, SDValue OldFP, 4994 int SPDiff, const SDLoc &dl) { 4995 if (SPDiff) { 4996 // Calculate the new stack slot for the return address. 4997 MachineFunction &MF = DAG.getMachineFunction(); 4998 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4999 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 5000 bool isPPC64 = Subtarget.isPPC64(); 5001 int SlotSize = isPPC64 ? 8 : 4; 5002 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 5003 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 5004 NewRetAddrLoc, true); 5005 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5006 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 5007 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 5008 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 5009 } 5010 return Chain; 5011 } 5012 5013 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 5014 /// the position of the argument. 5015 static void 5016 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 5017 SDValue Arg, int SPDiff, unsigned ArgOffset, 5018 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 5019 int Offset = ArgOffset + SPDiff; 5020 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 5021 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 5022 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5023 SDValue FIN = DAG.getFrameIndex(FI, VT); 5024 TailCallArgumentInfo Info; 5025 Info.Arg = Arg; 5026 Info.FrameIdxOp = FIN; 5027 Info.FrameIdx = FI; 5028 TailCallArguments.push_back(Info); 5029 } 5030 5031 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 5032 /// stack slot. Returns the chain as result and the loaded frame pointers in 5033 /// LROpOut/FPOpout. Used when tail calling. 5034 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 5035 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 5036 SDValue &FPOpOut, const SDLoc &dl) const { 5037 if (SPDiff) { 5038 // Load the LR and FP stack slot for later adjusting. 5039 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5040 LROpOut = getReturnAddrFrameIndex(DAG); 5041 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 5042 Chain = SDValue(LROpOut.getNode(), 1); 5043 } 5044 return Chain; 5045 } 5046 5047 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 5048 /// by "Src" to address "Dst" of size "Size". Alignment information is 5049 /// specified by the specific parameter attribute. The copy will be passed as 5050 /// a byval function parameter. 5051 /// Sometimes what we are copying is the end of a larger object, the part that 5052 /// does not fit in registers. 5053 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5054 SDValue Chain, ISD::ArgFlagsTy Flags, 5055 SelectionDAG &DAG, const SDLoc &dl) { 5056 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5057 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5058 Flags.getNonZeroByValAlign(), false, false, false, 5059 MachinePointerInfo(), MachinePointerInfo()); 5060 } 5061 5062 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5063 /// tail calls. 5064 static void LowerMemOpCallTo( 5065 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5066 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5067 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5068 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5069 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5070 if (!isTailCall) { 5071 if (isVector) { 5072 SDValue StackPtr; 5073 if (isPPC64) 5074 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5075 else 5076 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5077 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5078 DAG.getConstant(ArgOffset, dl, PtrVT)); 5079 } 5080 MemOpChains.push_back( 5081 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5082 // Calculate and remember argument location. 5083 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5084 TailCallArguments); 5085 } 5086 5087 static void 5088 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5089 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5090 SDValue FPOp, 5091 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5092 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5093 // might overwrite each other in case of tail call optimization. 5094 SmallVector<SDValue, 8> MemOpChains2; 5095 // Do not flag preceding copytoreg stuff together with the following stuff. 5096 InFlag = SDValue(); 5097 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5098 MemOpChains2, dl); 5099 if (!MemOpChains2.empty()) 5100 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5101 5102 // Store the return address to the appropriate stack slot. 5103 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5104 5105 // Emit callseq_end just before tailcall node. 5106 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5107 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5108 InFlag = Chain.getValue(1); 5109 } 5110 5111 // Is this global address that of a function that can be called by name? (as 5112 // opposed to something that must hold a descriptor for an indirect call). 5113 static bool isFunctionGlobalAddress(SDValue Callee) { 5114 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5115 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5116 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5117 return false; 5118 5119 return G->getGlobal()->getValueType()->isFunctionTy(); 5120 } 5121 5122 return false; 5123 } 5124 5125 SDValue PPCTargetLowering::LowerCallResult( 5126 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5127 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5128 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5129 SmallVector<CCValAssign, 16> RVLocs; 5130 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5131 *DAG.getContext()); 5132 5133 CCRetInfo.AnalyzeCallResult( 5134 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5135 ? RetCC_PPC_Cold 5136 : RetCC_PPC); 5137 5138 // Copy all of the result registers out of their specified physreg. 5139 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5140 CCValAssign &VA = RVLocs[i]; 5141 assert(VA.isRegLoc() && "Can only return in registers!"); 5142 5143 SDValue Val; 5144 5145 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5146 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5147 InFlag); 5148 Chain = Lo.getValue(1); 5149 InFlag = Lo.getValue(2); 5150 VA = RVLocs[++i]; // skip ahead to next loc 5151 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5152 InFlag); 5153 Chain = Hi.getValue(1); 5154 InFlag = Hi.getValue(2); 5155 if (!Subtarget.isLittleEndian()) 5156 std::swap (Lo, Hi); 5157 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5158 } else { 5159 Val = DAG.getCopyFromReg(Chain, dl, 5160 VA.getLocReg(), VA.getLocVT(), InFlag); 5161 Chain = Val.getValue(1); 5162 InFlag = Val.getValue(2); 5163 } 5164 5165 switch (VA.getLocInfo()) { 5166 default: llvm_unreachable("Unknown loc info!"); 5167 case CCValAssign::Full: break; 5168 case CCValAssign::AExt: 5169 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5170 break; 5171 case CCValAssign::ZExt: 5172 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5173 DAG.getValueType(VA.getValVT())); 5174 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5175 break; 5176 case CCValAssign::SExt: 5177 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5178 DAG.getValueType(VA.getValVT())); 5179 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5180 break; 5181 } 5182 5183 InVals.push_back(Val); 5184 } 5185 5186 return Chain; 5187 } 5188 5189 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5190 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5191 // PatchPoint calls are not indirect. 5192 if (isPatchPoint) 5193 return false; 5194 5195 if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee)) 5196 return false; 5197 5198 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5199 // becuase the immediate function pointer points to a descriptor instead of 5200 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5201 // pointer immediate points to the global entry point, while the BLA would 5202 // need to jump to the local entry point (see rL211174). 5203 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5204 isBLACompatibleAddress(Callee, DAG)) 5205 return false; 5206 5207 return true; 5208 } 5209 5210 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5211 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5212 return Subtarget.isAIXABI() || 5213 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5214 } 5215 5216 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5217 const Function &Caller, const SDValue &Callee, 5218 const PPCSubtarget &Subtarget, 5219 const TargetMachine &TM, 5220 bool IsStrictFPCall = false) { 5221 if (CFlags.IsTailCall) 5222 return PPCISD::TC_RETURN; 5223 5224 unsigned RetOpc = 0; 5225 // This is a call through a function pointer. 5226 if (CFlags.IsIndirect) { 5227 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5228 // indirect calls. The save of the caller's TOC pointer to the stack will be 5229 // inserted into the DAG as part of call lowering. The restore of the TOC 5230 // pointer is modeled by using a pseudo instruction for the call opcode that 5231 // represents the 2 instruction sequence of an indirect branch and link, 5232 // immediately followed by a load of the TOC pointer from the the stack save 5233 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5234 // as it is not saved or used. 5235 RetOpc = isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5236 : PPCISD::BCTRL; 5237 } else if (Subtarget.isUsingPCRelativeCalls()) { 5238 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5239 RetOpc = PPCISD::CALL_NOTOC; 5240 } else if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5241 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5242 // immediately following the call instruction if the caller and callee may 5243 // have different TOC bases. At link time if the linker determines the calls 5244 // may not share a TOC base, the call is redirected to a trampoline inserted 5245 // by the linker. The trampoline will (among other things) save the callers 5246 // TOC pointer at an ABI designated offset in the linkage area and the 5247 // linker will rewrite the nop to be a load of the TOC pointer from the 5248 // linkage area into gpr2. 5249 RetOpc = callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5250 : PPCISD::CALL_NOP; 5251 else 5252 RetOpc = PPCISD::CALL; 5253 if (IsStrictFPCall) { 5254 switch (RetOpc) { 5255 default: 5256 llvm_unreachable("Unknown call opcode"); 5257 case PPCISD::BCTRL_LOAD_TOC: 5258 RetOpc = PPCISD::BCTRL_LOAD_TOC_RM; 5259 break; 5260 case PPCISD::BCTRL: 5261 RetOpc = PPCISD::BCTRL_RM; 5262 break; 5263 case PPCISD::CALL_NOTOC: 5264 RetOpc = PPCISD::CALL_NOTOC_RM; 5265 break; 5266 case PPCISD::CALL: 5267 RetOpc = PPCISD::CALL_RM; 5268 break; 5269 case PPCISD::CALL_NOP: 5270 RetOpc = PPCISD::CALL_NOP_RM; 5271 break; 5272 } 5273 } 5274 return RetOpc; 5275 } 5276 5277 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5278 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5279 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5280 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5281 return SDValue(Dest, 0); 5282 5283 // Returns true if the callee is local, and false otherwise. 5284 auto isLocalCallee = [&]() { 5285 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5286 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5287 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5288 5289 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5290 !isa_and_nonnull<GlobalIFunc>(GV); 5291 }; 5292 5293 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5294 // a static relocation model causes some versions of GNU LD (2.17.50, at 5295 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5296 // built with secure-PLT. 5297 bool UsePlt = 5298 Subtarget.is32BitELFABI() && !isLocalCallee() && 5299 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5300 5301 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5302 const TargetMachine &TM = Subtarget.getTargetMachine(); 5303 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5304 MCSymbolXCOFF *S = 5305 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5306 5307 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5308 return DAG.getMCSymbol(S, PtrVT); 5309 }; 5310 5311 if (isFunctionGlobalAddress(Callee)) { 5312 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5313 5314 if (Subtarget.isAIXABI()) { 5315 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5316 return getAIXFuncEntryPointSymbolSDNode(GV); 5317 } 5318 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5319 UsePlt ? PPCII::MO_PLT : 0); 5320 } 5321 5322 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5323 const char *SymName = S->getSymbol(); 5324 if (Subtarget.isAIXABI()) { 5325 // If there exists a user-declared function whose name is the same as the 5326 // ExternalSymbol's, then we pick up the user-declared version. 5327 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5328 if (const Function *F = 5329 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5330 return getAIXFuncEntryPointSymbolSDNode(F); 5331 5332 // On AIX, direct function calls reference the symbol for the function's 5333 // entry point, which is named by prepending a "." before the function's 5334 // C-linkage name. A Qualname is returned here because an external 5335 // function entry point is a csect with XTY_ER property. 5336 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5337 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5338 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5339 (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(), 5340 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)); 5341 return Sec->getQualNameSymbol(); 5342 }; 5343 5344 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5345 } 5346 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5347 UsePlt ? PPCII::MO_PLT : 0); 5348 } 5349 5350 // No transformation needed. 5351 assert(Callee.getNode() && "What no callee?"); 5352 return Callee; 5353 } 5354 5355 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5356 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5357 "Expected a CALLSEQ_STARTSDNode."); 5358 5359 // The last operand is the chain, except when the node has glue. If the node 5360 // has glue, then the last operand is the glue, and the chain is the second 5361 // last operand. 5362 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5363 if (LastValue.getValueType() != MVT::Glue) 5364 return LastValue; 5365 5366 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5367 } 5368 5369 // Creates the node that moves a functions address into the count register 5370 // to prepare for an indirect call instruction. 5371 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5372 SDValue &Glue, SDValue &Chain, 5373 const SDLoc &dl) { 5374 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5375 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5376 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5377 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5378 // The glue is the second value produced. 5379 Glue = Chain.getValue(1); 5380 } 5381 5382 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5383 SDValue &Glue, SDValue &Chain, 5384 SDValue CallSeqStart, 5385 const CallBase *CB, const SDLoc &dl, 5386 bool hasNest, 5387 const PPCSubtarget &Subtarget) { 5388 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5389 // entry point, but to the function descriptor (the function entry point 5390 // address is part of the function descriptor though). 5391 // The function descriptor is a three doubleword structure with the 5392 // following fields: function entry point, TOC base address and 5393 // environment pointer. 5394 // Thus for a call through a function pointer, the following actions need 5395 // to be performed: 5396 // 1. Save the TOC of the caller in the TOC save area of its stack 5397 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5398 // 2. Load the address of the function entry point from the function 5399 // descriptor. 5400 // 3. Load the TOC of the callee from the function descriptor into r2. 5401 // 4. Load the environment pointer from the function descriptor into 5402 // r11. 5403 // 5. Branch to the function entry point address. 5404 // 6. On return of the callee, the TOC of the caller needs to be 5405 // restored (this is done in FinishCall()). 5406 // 5407 // The loads are scheduled at the beginning of the call sequence, and the 5408 // register copies are flagged together to ensure that no other 5409 // operations can be scheduled in between. E.g. without flagging the 5410 // copies together, a TOC access in the caller could be scheduled between 5411 // the assignment of the callee TOC and the branch to the callee, which leads 5412 // to incorrect code. 5413 5414 // Start by loading the function address from the descriptor. 5415 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5416 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5417 ? (MachineMemOperand::MODereferenceable | 5418 MachineMemOperand::MOInvariant) 5419 : MachineMemOperand::MONone; 5420 5421 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5422 5423 // Registers used in building the DAG. 5424 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5425 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5426 5427 // Offsets of descriptor members. 5428 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5429 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5430 5431 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5432 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5433 5434 // One load for the functions entry point address. 5435 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5436 Alignment, MMOFlags); 5437 5438 // One for loading the TOC anchor for the module that contains the called 5439 // function. 5440 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5441 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5442 SDValue TOCPtr = 5443 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5444 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5445 5446 // One for loading the environment pointer. 5447 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5448 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5449 SDValue LoadEnvPtr = 5450 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5451 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5452 5453 5454 // Then copy the newly loaded TOC anchor to the TOC pointer. 5455 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5456 Chain = TOCVal.getValue(0); 5457 Glue = TOCVal.getValue(1); 5458 5459 // If the function call has an explicit 'nest' parameter, it takes the 5460 // place of the environment pointer. 5461 assert((!hasNest || !Subtarget.isAIXABI()) && 5462 "Nest parameter is not supported on AIX."); 5463 if (!hasNest) { 5464 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5465 Chain = EnvVal.getValue(0); 5466 Glue = EnvVal.getValue(1); 5467 } 5468 5469 // The rest of the indirect call sequence is the same as the non-descriptor 5470 // DAG. 5471 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5472 } 5473 5474 static void 5475 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5476 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5477 SelectionDAG &DAG, 5478 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5479 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5480 const PPCSubtarget &Subtarget) { 5481 const bool IsPPC64 = Subtarget.isPPC64(); 5482 // MVT for a general purpose register. 5483 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5484 5485 // First operand is always the chain. 5486 Ops.push_back(Chain); 5487 5488 // If it's a direct call pass the callee as the second operand. 5489 if (!CFlags.IsIndirect) 5490 Ops.push_back(Callee); 5491 else { 5492 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5493 5494 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5495 // on the stack (this would have been done in `LowerCall_64SVR4` or 5496 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5497 // represents both the indirect branch and a load that restores the TOC 5498 // pointer from the linkage area. The operand for the TOC restore is an add 5499 // of the TOC save offset to the stack pointer. This must be the second 5500 // operand: after the chain input but before any other variadic arguments. 5501 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5502 // saved or used. 5503 if (isTOCSaveRestoreRequired(Subtarget)) { 5504 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5505 5506 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5507 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5508 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5509 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5510 Ops.push_back(AddTOC); 5511 } 5512 5513 // Add the register used for the environment pointer. 5514 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5515 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5516 RegVT)); 5517 5518 5519 // Add CTR register as callee so a bctr can be emitted later. 5520 if (CFlags.IsTailCall) 5521 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5522 } 5523 5524 // If this is a tail call add stack pointer delta. 5525 if (CFlags.IsTailCall) 5526 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5527 5528 // Add argument registers to the end of the list so that they are known live 5529 // into the call. 5530 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5531 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5532 RegsToPass[i].second.getValueType())); 5533 5534 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5535 // no way to mark dependencies as implicit here. 5536 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5537 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5538 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5539 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5540 5541 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5542 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5543 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5544 5545 // Add a register mask operand representing the call-preserved registers. 5546 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5547 const uint32_t *Mask = 5548 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5549 assert(Mask && "Missing call preserved mask for calling convention"); 5550 Ops.push_back(DAG.getRegisterMask(Mask)); 5551 5552 // If the glue is valid, it is the last operand. 5553 if (Glue.getNode()) 5554 Ops.push_back(Glue); 5555 } 5556 5557 SDValue PPCTargetLowering::FinishCall( 5558 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5559 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5560 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5561 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5562 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5563 5564 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5565 Subtarget.isAIXABI()) 5566 setUsesTOCBasePtr(DAG); 5567 5568 unsigned CallOpc = 5569 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5570 Subtarget, DAG.getTarget(), CB ? CB->isStrictFP() : false); 5571 5572 if (!CFlags.IsIndirect) 5573 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5574 else if (Subtarget.usesFunctionDescriptors()) 5575 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5576 dl, CFlags.HasNest, Subtarget); 5577 else 5578 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5579 5580 // Build the operand list for the call instruction. 5581 SmallVector<SDValue, 8> Ops; 5582 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5583 SPDiff, Subtarget); 5584 5585 // Emit tail call. 5586 if (CFlags.IsTailCall) { 5587 // Indirect tail call when using PC Relative calls do not have the same 5588 // constraints. 5589 assert(((Callee.getOpcode() == ISD::Register && 5590 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5591 Callee.getOpcode() == ISD::TargetExternalSymbol || 5592 Callee.getOpcode() == ISD::TargetGlobalAddress || 5593 isa<ConstantSDNode>(Callee) || 5594 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5595 "Expecting a global address, external symbol, absolute value, " 5596 "register or an indirect tail call when PC Relative calls are " 5597 "used."); 5598 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5599 assert(CallOpc == PPCISD::TC_RETURN && 5600 "Unexpected call opcode for a tail call."); 5601 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5602 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5603 } 5604 5605 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5606 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5607 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5608 Glue = Chain.getValue(1); 5609 5610 // When performing tail call optimization the callee pops its arguments off 5611 // the stack. Account for this here so these bytes can be pushed back on in 5612 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5613 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5614 getTargetMachine().Options.GuaranteedTailCallOpt) 5615 ? NumBytes 5616 : 0; 5617 5618 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5619 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5620 Glue, dl); 5621 Glue = Chain.getValue(1); 5622 5623 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5624 DAG, InVals); 5625 } 5626 5627 SDValue 5628 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5629 SmallVectorImpl<SDValue> &InVals) const { 5630 SelectionDAG &DAG = CLI.DAG; 5631 SDLoc &dl = CLI.DL; 5632 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5633 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5634 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5635 SDValue Chain = CLI.Chain; 5636 SDValue Callee = CLI.Callee; 5637 bool &isTailCall = CLI.IsTailCall; 5638 CallingConv::ID CallConv = CLI.CallConv; 5639 bool isVarArg = CLI.IsVarArg; 5640 bool isPatchPoint = CLI.IsPatchPoint; 5641 const CallBase *CB = CLI.CB; 5642 5643 if (isTailCall) { 5644 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5645 isTailCall = false; 5646 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5647 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5648 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5649 else 5650 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5651 Ins, DAG); 5652 if (isTailCall) { 5653 ++NumTailCalls; 5654 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5655 ++NumSiblingCalls; 5656 5657 // PC Relative calls no longer guarantee that the callee is a Global 5658 // Address Node. The callee could be an indirect tail call in which 5659 // case the SDValue for the callee could be a load (to load the address 5660 // of a function pointer) or it may be a register copy (to move the 5661 // address of the callee from a function parameter into a virtual 5662 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5663 assert((Subtarget.isUsingPCRelativeCalls() || 5664 isa<GlobalAddressSDNode>(Callee)) && 5665 "Callee should be an llvm::Function object."); 5666 5667 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5668 << "\nTCO callee: "); 5669 LLVM_DEBUG(Callee.dump()); 5670 } 5671 } 5672 5673 if (!isTailCall && CB && CB->isMustTailCall()) 5674 report_fatal_error("failed to perform tail call elimination on a call " 5675 "site marked musttail"); 5676 5677 // When long calls (i.e. indirect calls) are always used, calls are always 5678 // made via function pointer. If we have a function name, first translate it 5679 // into a pointer. 5680 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5681 !isTailCall) 5682 Callee = LowerGlobalAddress(Callee, DAG); 5683 5684 CallFlags CFlags( 5685 CallConv, isTailCall, isVarArg, isPatchPoint, 5686 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5687 // hasNest 5688 Subtarget.is64BitELFABI() && 5689 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5690 CLI.NoMerge); 5691 5692 if (Subtarget.isAIXABI()) 5693 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5694 InVals, CB); 5695 5696 assert(Subtarget.isSVR4ABI()); 5697 if (Subtarget.isPPC64()) 5698 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5699 InVals, CB); 5700 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5701 InVals, CB); 5702 } 5703 5704 SDValue PPCTargetLowering::LowerCall_32SVR4( 5705 SDValue Chain, SDValue Callee, CallFlags CFlags, 5706 const SmallVectorImpl<ISD::OutputArg> &Outs, 5707 const SmallVectorImpl<SDValue> &OutVals, 5708 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5709 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5710 const CallBase *CB) const { 5711 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5712 // of the 32-bit SVR4 ABI stack frame layout. 5713 5714 const CallingConv::ID CallConv = CFlags.CallConv; 5715 const bool IsVarArg = CFlags.IsVarArg; 5716 const bool IsTailCall = CFlags.IsTailCall; 5717 5718 assert((CallConv == CallingConv::C || 5719 CallConv == CallingConv::Cold || 5720 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5721 5722 const Align PtrAlign(4); 5723 5724 MachineFunction &MF = DAG.getMachineFunction(); 5725 5726 // Mark this function as potentially containing a function that contains a 5727 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5728 // and restoring the callers stack pointer in this functions epilog. This is 5729 // done because by tail calling the called function might overwrite the value 5730 // in this function's (MF) stack pointer stack slot 0(SP). 5731 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5732 CallConv == CallingConv::Fast) 5733 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5734 5735 // Count how many bytes are to be pushed on the stack, including the linkage 5736 // area, parameter list area and the part of the local variable space which 5737 // contains copies of aggregates which are passed by value. 5738 5739 // Assign locations to all of the outgoing arguments. 5740 SmallVector<CCValAssign, 16> ArgLocs; 5741 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5742 5743 // Reserve space for the linkage area on the stack. 5744 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5745 PtrAlign); 5746 if (useSoftFloat()) 5747 CCInfo.PreAnalyzeCallOperands(Outs); 5748 5749 if (IsVarArg) { 5750 // Handle fixed and variable vector arguments differently. 5751 // Fixed vector arguments go into registers as long as registers are 5752 // available. Variable vector arguments always go into memory. 5753 unsigned NumArgs = Outs.size(); 5754 5755 for (unsigned i = 0; i != NumArgs; ++i) { 5756 MVT ArgVT = Outs[i].VT; 5757 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5758 bool Result; 5759 5760 if (Outs[i].IsFixed) { 5761 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5762 CCInfo); 5763 } else { 5764 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5765 ArgFlags, CCInfo); 5766 } 5767 5768 if (Result) { 5769 #ifndef NDEBUG 5770 errs() << "Call operand #" << i << " has unhandled type " 5771 << EVT(ArgVT).getEVTString() << "\n"; 5772 #endif 5773 llvm_unreachable(nullptr); 5774 } 5775 } 5776 } else { 5777 // All arguments are treated the same. 5778 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5779 } 5780 CCInfo.clearWasPPCF128(); 5781 5782 // Assign locations to all of the outgoing aggregate by value arguments. 5783 SmallVector<CCValAssign, 16> ByValArgLocs; 5784 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5785 5786 // Reserve stack space for the allocations in CCInfo. 5787 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5788 5789 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5790 5791 // Size of the linkage area, parameter list area and the part of the local 5792 // space variable where copies of aggregates which are passed by value are 5793 // stored. 5794 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5795 5796 // Calculate by how many bytes the stack has to be adjusted in case of tail 5797 // call optimization. 5798 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5799 5800 // Adjust the stack pointer for the new arguments... 5801 // These operations are automatically eliminated by the prolog/epilog pass 5802 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5803 SDValue CallSeqStart = Chain; 5804 5805 // Load the return address and frame pointer so it can be moved somewhere else 5806 // later. 5807 SDValue LROp, FPOp; 5808 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5809 5810 // Set up a copy of the stack pointer for use loading and storing any 5811 // arguments that may not fit in the registers available for argument 5812 // passing. 5813 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5814 5815 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5816 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5817 SmallVector<SDValue, 8> MemOpChains; 5818 5819 bool seenFloatArg = false; 5820 // Walk the register/memloc assignments, inserting copies/loads. 5821 // i - Tracks the index into the list of registers allocated for the call 5822 // RealArgIdx - Tracks the index into the list of actual function arguments 5823 // j - Tracks the index into the list of byval arguments 5824 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5825 i != e; 5826 ++i, ++RealArgIdx) { 5827 CCValAssign &VA = ArgLocs[i]; 5828 SDValue Arg = OutVals[RealArgIdx]; 5829 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5830 5831 if (Flags.isByVal()) { 5832 // Argument is an aggregate which is passed by value, thus we need to 5833 // create a copy of it in the local variable space of the current stack 5834 // frame (which is the stack frame of the caller) and pass the address of 5835 // this copy to the callee. 5836 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5837 CCValAssign &ByValVA = ByValArgLocs[j++]; 5838 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5839 5840 // Memory reserved in the local variable space of the callers stack frame. 5841 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5842 5843 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5844 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5845 StackPtr, PtrOff); 5846 5847 // Create a copy of the argument in the local area of the current 5848 // stack frame. 5849 SDValue MemcpyCall = 5850 CreateCopyOfByValArgument(Arg, PtrOff, 5851 CallSeqStart.getNode()->getOperand(0), 5852 Flags, DAG, dl); 5853 5854 // This must go outside the CALLSEQ_START..END. 5855 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5856 SDLoc(MemcpyCall)); 5857 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5858 NewCallSeqStart.getNode()); 5859 Chain = CallSeqStart = NewCallSeqStart; 5860 5861 // Pass the address of the aggregate copy on the stack either in a 5862 // physical register or in the parameter list area of the current stack 5863 // frame to the callee. 5864 Arg = PtrOff; 5865 } 5866 5867 // When useCRBits() is true, there can be i1 arguments. 5868 // It is because getRegisterType(MVT::i1) => MVT::i1, 5869 // and for other integer types getRegisterType() => MVT::i32. 5870 // Extend i1 and ensure callee will get i32. 5871 if (Arg.getValueType() == MVT::i1) 5872 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5873 dl, MVT::i32, Arg); 5874 5875 if (VA.isRegLoc()) { 5876 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5877 // Put argument in a physical register. 5878 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5879 bool IsLE = Subtarget.isLittleEndian(); 5880 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5881 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5882 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5883 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5884 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5885 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5886 SVal.getValue(0))); 5887 } else 5888 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5889 } else { 5890 // Put argument in the parameter list area of the current stack frame. 5891 assert(VA.isMemLoc()); 5892 unsigned LocMemOffset = VA.getLocMemOffset(); 5893 5894 if (!IsTailCall) { 5895 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5896 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5897 StackPtr, PtrOff); 5898 5899 MemOpChains.push_back( 5900 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5901 } else { 5902 // Calculate and remember argument location. 5903 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5904 TailCallArguments); 5905 } 5906 } 5907 } 5908 5909 if (!MemOpChains.empty()) 5910 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5911 5912 // Build a sequence of copy-to-reg nodes chained together with token chain 5913 // and flag operands which copy the outgoing args into the appropriate regs. 5914 SDValue InFlag; 5915 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5916 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5917 RegsToPass[i].second, InFlag); 5918 InFlag = Chain.getValue(1); 5919 } 5920 5921 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5922 // registers. 5923 if (IsVarArg) { 5924 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5925 SDValue Ops[] = { Chain, InFlag }; 5926 5927 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5928 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5929 5930 InFlag = Chain.getValue(1); 5931 } 5932 5933 if (IsTailCall) 5934 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5935 TailCallArguments); 5936 5937 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5938 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5939 } 5940 5941 // Copy an argument into memory, being careful to do this outside the 5942 // call sequence for the call to which the argument belongs. 5943 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5944 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5945 SelectionDAG &DAG, const SDLoc &dl) const { 5946 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5947 CallSeqStart.getNode()->getOperand(0), 5948 Flags, DAG, dl); 5949 // The MEMCPY must go outside the CALLSEQ_START..END. 5950 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5951 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5952 SDLoc(MemcpyCall)); 5953 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5954 NewCallSeqStart.getNode()); 5955 return NewCallSeqStart; 5956 } 5957 5958 SDValue PPCTargetLowering::LowerCall_64SVR4( 5959 SDValue Chain, SDValue Callee, CallFlags CFlags, 5960 const SmallVectorImpl<ISD::OutputArg> &Outs, 5961 const SmallVectorImpl<SDValue> &OutVals, 5962 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5963 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5964 const CallBase *CB) const { 5965 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5966 bool isLittleEndian = Subtarget.isLittleEndian(); 5967 unsigned NumOps = Outs.size(); 5968 bool IsSibCall = false; 5969 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5970 5971 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5972 unsigned PtrByteSize = 8; 5973 5974 MachineFunction &MF = DAG.getMachineFunction(); 5975 5976 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5977 IsSibCall = true; 5978 5979 // Mark this function as potentially containing a function that contains a 5980 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5981 // and restoring the callers stack pointer in this functions epilog. This is 5982 // done because by tail calling the called function might overwrite the value 5983 // in this function's (MF) stack pointer stack slot 0(SP). 5984 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5985 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5986 5987 assert(!(IsFastCall && CFlags.IsVarArg) && 5988 "fastcc not supported on varargs functions"); 5989 5990 // Count how many bytes are to be pushed on the stack, including the linkage 5991 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5992 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5993 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5994 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5995 unsigned NumBytes = LinkageSize; 5996 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5997 5998 static const MCPhysReg GPR[] = { 5999 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6000 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6001 }; 6002 static const MCPhysReg VR[] = { 6003 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6004 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6005 }; 6006 6007 const unsigned NumGPRs = array_lengthof(GPR); 6008 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 6009 const unsigned NumVRs = array_lengthof(VR); 6010 6011 // On ELFv2, we can avoid allocating the parameter area if all the arguments 6012 // can be passed to the callee in registers. 6013 // For the fast calling convention, there is another check below. 6014 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 6015 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 6016 if (!HasParameterArea) { 6017 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 6018 unsigned AvailableFPRs = NumFPRs; 6019 unsigned AvailableVRs = NumVRs; 6020 unsigned NumBytesTmp = NumBytes; 6021 for (unsigned i = 0; i != NumOps; ++i) { 6022 if (Outs[i].Flags.isNest()) continue; 6023 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 6024 PtrByteSize, LinkageSize, ParamAreaSize, 6025 NumBytesTmp, AvailableFPRs, AvailableVRs)) 6026 HasParameterArea = true; 6027 } 6028 } 6029 6030 // When using the fast calling convention, we don't provide backing for 6031 // arguments that will be in registers. 6032 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 6033 6034 // Avoid allocating parameter area for fastcc functions if all the arguments 6035 // can be passed in the registers. 6036 if (IsFastCall) 6037 HasParameterArea = false; 6038 6039 // Add up all the space actually used. 6040 for (unsigned i = 0; i != NumOps; ++i) { 6041 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6042 EVT ArgVT = Outs[i].VT; 6043 EVT OrigVT = Outs[i].ArgVT; 6044 6045 if (Flags.isNest()) 6046 continue; 6047 6048 if (IsFastCall) { 6049 if (Flags.isByVal()) { 6050 NumGPRsUsed += (Flags.getByValSize()+7)/8; 6051 if (NumGPRsUsed > NumGPRs) 6052 HasParameterArea = true; 6053 } else { 6054 switch (ArgVT.getSimpleVT().SimpleTy) { 6055 default: llvm_unreachable("Unexpected ValueType for argument!"); 6056 case MVT::i1: 6057 case MVT::i32: 6058 case MVT::i64: 6059 if (++NumGPRsUsed <= NumGPRs) 6060 continue; 6061 break; 6062 case MVT::v4i32: 6063 case MVT::v8i16: 6064 case MVT::v16i8: 6065 case MVT::v2f64: 6066 case MVT::v2i64: 6067 case MVT::v1i128: 6068 case MVT::f128: 6069 if (++NumVRsUsed <= NumVRs) 6070 continue; 6071 break; 6072 case MVT::v4f32: 6073 if (++NumVRsUsed <= NumVRs) 6074 continue; 6075 break; 6076 case MVT::f32: 6077 case MVT::f64: 6078 if (++NumFPRsUsed <= NumFPRs) 6079 continue; 6080 break; 6081 } 6082 HasParameterArea = true; 6083 } 6084 } 6085 6086 /* Respect alignment of argument on the stack. */ 6087 auto Alignement = 6088 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6089 NumBytes = alignTo(NumBytes, Alignement); 6090 6091 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6092 if (Flags.isInConsecutiveRegsLast()) 6093 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6094 } 6095 6096 unsigned NumBytesActuallyUsed = NumBytes; 6097 6098 // In the old ELFv1 ABI, 6099 // the prolog code of the callee may store up to 8 GPR argument registers to 6100 // the stack, allowing va_start to index over them in memory if its varargs. 6101 // Because we cannot tell if this is needed on the caller side, we have to 6102 // conservatively assume that it is needed. As such, make sure we have at 6103 // least enough stack space for the caller to store the 8 GPRs. 6104 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6105 // really requires memory operands, e.g. a vararg function. 6106 if (HasParameterArea) 6107 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6108 else 6109 NumBytes = LinkageSize; 6110 6111 // Tail call needs the stack to be aligned. 6112 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6113 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6114 6115 int SPDiff = 0; 6116 6117 // Calculate by how many bytes the stack has to be adjusted in case of tail 6118 // call optimization. 6119 if (!IsSibCall) 6120 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6121 6122 // To protect arguments on the stack from being clobbered in a tail call, 6123 // force all the loads to happen before doing any other lowering. 6124 if (CFlags.IsTailCall) 6125 Chain = DAG.getStackArgumentTokenFactor(Chain); 6126 6127 // Adjust the stack pointer for the new arguments... 6128 // These operations are automatically eliminated by the prolog/epilog pass 6129 if (!IsSibCall) 6130 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6131 SDValue CallSeqStart = Chain; 6132 6133 // Load the return address and frame pointer so it can be move somewhere else 6134 // later. 6135 SDValue LROp, FPOp; 6136 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6137 6138 // Set up a copy of the stack pointer for use loading and storing any 6139 // arguments that may not fit in the registers available for argument 6140 // passing. 6141 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6142 6143 // Figure out which arguments are going to go in registers, and which in 6144 // memory. Also, if this is a vararg function, floating point operations 6145 // must be stored to our stack, and loaded into integer regs as well, if 6146 // any integer regs are available for argument passing. 6147 unsigned ArgOffset = LinkageSize; 6148 6149 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6150 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6151 6152 SmallVector<SDValue, 8> MemOpChains; 6153 for (unsigned i = 0; i != NumOps; ++i) { 6154 SDValue Arg = OutVals[i]; 6155 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6156 EVT ArgVT = Outs[i].VT; 6157 EVT OrigVT = Outs[i].ArgVT; 6158 6159 // PtrOff will be used to store the current argument to the stack if a 6160 // register cannot be found for it. 6161 SDValue PtrOff; 6162 6163 // We re-align the argument offset for each argument, except when using the 6164 // fast calling convention, when we need to make sure we do that only when 6165 // we'll actually use a stack slot. 6166 auto ComputePtrOff = [&]() { 6167 /* Respect alignment of argument on the stack. */ 6168 auto Alignment = 6169 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6170 ArgOffset = alignTo(ArgOffset, Alignment); 6171 6172 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6173 6174 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6175 }; 6176 6177 if (!IsFastCall) { 6178 ComputePtrOff(); 6179 6180 /* Compute GPR index associated with argument offset. */ 6181 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6182 GPR_idx = std::min(GPR_idx, NumGPRs); 6183 } 6184 6185 // Promote integers to 64-bit values. 6186 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6187 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6188 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6189 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6190 } 6191 6192 // FIXME memcpy is used way more than necessary. Correctness first. 6193 // Note: "by value" is code for passing a structure by value, not 6194 // basic types. 6195 if (Flags.isByVal()) { 6196 // Note: Size includes alignment padding, so 6197 // struct x { short a; char b; } 6198 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6199 // These are the proper values we need for right-justifying the 6200 // aggregate in a parameter register. 6201 unsigned Size = Flags.getByValSize(); 6202 6203 // An empty aggregate parameter takes up no storage and no 6204 // registers. 6205 if (Size == 0) 6206 continue; 6207 6208 if (IsFastCall) 6209 ComputePtrOff(); 6210 6211 // All aggregates smaller than 8 bytes must be passed right-justified. 6212 if (Size==1 || Size==2 || Size==4) { 6213 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6214 if (GPR_idx != NumGPRs) { 6215 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6216 MachinePointerInfo(), VT); 6217 MemOpChains.push_back(Load.getValue(1)); 6218 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6219 6220 ArgOffset += PtrByteSize; 6221 continue; 6222 } 6223 } 6224 6225 if (GPR_idx == NumGPRs && Size < 8) { 6226 SDValue AddPtr = PtrOff; 6227 if (!isLittleEndian) { 6228 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6229 PtrOff.getValueType()); 6230 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6231 } 6232 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6233 CallSeqStart, 6234 Flags, DAG, dl); 6235 ArgOffset += PtrByteSize; 6236 continue; 6237 } 6238 // Copy the object to parameter save area if it can not be entirely passed 6239 // by registers. 6240 // FIXME: we only need to copy the parts which need to be passed in 6241 // parameter save area. For the parts passed by registers, we don't need 6242 // to copy them to the stack although we need to allocate space for them 6243 // in parameter save area. 6244 if ((NumGPRs - GPR_idx) * PtrByteSize < Size) 6245 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6246 CallSeqStart, 6247 Flags, DAG, dl); 6248 6249 // When a register is available, pass a small aggregate right-justified. 6250 if (Size < 8 && GPR_idx != NumGPRs) { 6251 // The easiest way to get this right-justified in a register 6252 // is to copy the structure into the rightmost portion of a 6253 // local variable slot, then load the whole slot into the 6254 // register. 6255 // FIXME: The memcpy seems to produce pretty awful code for 6256 // small aggregates, particularly for packed ones. 6257 // FIXME: It would be preferable to use the slot in the 6258 // parameter save area instead of a new local variable. 6259 SDValue AddPtr = PtrOff; 6260 if (!isLittleEndian) { 6261 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6262 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6263 } 6264 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6265 CallSeqStart, 6266 Flags, DAG, dl); 6267 6268 // Load the slot into the register. 6269 SDValue Load = 6270 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6271 MemOpChains.push_back(Load.getValue(1)); 6272 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6273 6274 // Done with this argument. 6275 ArgOffset += PtrByteSize; 6276 continue; 6277 } 6278 6279 // For aggregates larger than PtrByteSize, copy the pieces of the 6280 // object that fit into registers from the parameter save area. 6281 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6282 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6283 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6284 if (GPR_idx != NumGPRs) { 6285 SDValue Load = 6286 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6287 MemOpChains.push_back(Load.getValue(1)); 6288 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6289 ArgOffset += PtrByteSize; 6290 } else { 6291 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6292 break; 6293 } 6294 } 6295 continue; 6296 } 6297 6298 switch (Arg.getSimpleValueType().SimpleTy) { 6299 default: llvm_unreachable("Unexpected ValueType for argument!"); 6300 case MVT::i1: 6301 case MVT::i32: 6302 case MVT::i64: 6303 if (Flags.isNest()) { 6304 // The 'nest' parameter, if any, is passed in R11. 6305 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6306 break; 6307 } 6308 6309 // These can be scalar arguments or elements of an integer array type 6310 // passed directly. Clang may use those instead of "byval" aggregate 6311 // types to avoid forcing arguments to memory unnecessarily. 6312 if (GPR_idx != NumGPRs) { 6313 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6314 } else { 6315 if (IsFastCall) 6316 ComputePtrOff(); 6317 6318 assert(HasParameterArea && 6319 "Parameter area must exist to pass an argument in memory."); 6320 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6321 true, CFlags.IsTailCall, false, MemOpChains, 6322 TailCallArguments, dl); 6323 if (IsFastCall) 6324 ArgOffset += PtrByteSize; 6325 } 6326 if (!IsFastCall) 6327 ArgOffset += PtrByteSize; 6328 break; 6329 case MVT::f32: 6330 case MVT::f64: { 6331 // These can be scalar arguments or elements of a float array type 6332 // passed directly. The latter are used to implement ELFv2 homogenous 6333 // float aggregates. 6334 6335 // Named arguments go into FPRs first, and once they overflow, the 6336 // remaining arguments go into GPRs and then the parameter save area. 6337 // Unnamed arguments for vararg functions always go to GPRs and 6338 // then the parameter save area. For now, put all arguments to vararg 6339 // routines always in both locations (FPR *and* GPR or stack slot). 6340 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6341 bool NeededLoad = false; 6342 6343 // First load the argument into the next available FPR. 6344 if (FPR_idx != NumFPRs) 6345 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6346 6347 // Next, load the argument into GPR or stack slot if needed. 6348 if (!NeedGPROrStack) 6349 ; 6350 else if (GPR_idx != NumGPRs && !IsFastCall) { 6351 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6352 // once we support fp <-> gpr moves. 6353 6354 // In the non-vararg case, this can only ever happen in the 6355 // presence of f32 array types, since otherwise we never run 6356 // out of FPRs before running out of GPRs. 6357 SDValue ArgVal; 6358 6359 // Double values are always passed in a single GPR. 6360 if (Arg.getValueType() != MVT::f32) { 6361 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6362 6363 // Non-array float values are extended and passed in a GPR. 6364 } else if (!Flags.isInConsecutiveRegs()) { 6365 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6366 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6367 6368 // If we have an array of floats, we collect every odd element 6369 // together with its predecessor into one GPR. 6370 } else if (ArgOffset % PtrByteSize != 0) { 6371 SDValue Lo, Hi; 6372 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6373 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6374 if (!isLittleEndian) 6375 std::swap(Lo, Hi); 6376 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6377 6378 // The final element, if even, goes into the first half of a GPR. 6379 } else if (Flags.isInConsecutiveRegsLast()) { 6380 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6381 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6382 if (!isLittleEndian) 6383 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6384 DAG.getConstant(32, dl, MVT::i32)); 6385 6386 // Non-final even elements are skipped; they will be handled 6387 // together the with subsequent argument on the next go-around. 6388 } else 6389 ArgVal = SDValue(); 6390 6391 if (ArgVal.getNode()) 6392 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6393 } else { 6394 if (IsFastCall) 6395 ComputePtrOff(); 6396 6397 // Single-precision floating-point values are mapped to the 6398 // second (rightmost) word of the stack doubleword. 6399 if (Arg.getValueType() == MVT::f32 && 6400 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6401 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6402 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6403 } 6404 6405 assert(HasParameterArea && 6406 "Parameter area must exist to pass an argument in memory."); 6407 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6408 true, CFlags.IsTailCall, false, MemOpChains, 6409 TailCallArguments, dl); 6410 6411 NeededLoad = true; 6412 } 6413 // When passing an array of floats, the array occupies consecutive 6414 // space in the argument area; only round up to the next doubleword 6415 // at the end of the array. Otherwise, each float takes 8 bytes. 6416 if (!IsFastCall || NeededLoad) { 6417 ArgOffset += (Arg.getValueType() == MVT::f32 && 6418 Flags.isInConsecutiveRegs()) ? 4 : 8; 6419 if (Flags.isInConsecutiveRegsLast()) 6420 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6421 } 6422 break; 6423 } 6424 case MVT::v4f32: 6425 case MVT::v4i32: 6426 case MVT::v8i16: 6427 case MVT::v16i8: 6428 case MVT::v2f64: 6429 case MVT::v2i64: 6430 case MVT::v1i128: 6431 case MVT::f128: 6432 // These can be scalar arguments or elements of a vector array type 6433 // passed directly. The latter are used to implement ELFv2 homogenous 6434 // vector aggregates. 6435 6436 // For a varargs call, named arguments go into VRs or on the stack as 6437 // usual; unnamed arguments always go to the stack or the corresponding 6438 // GPRs when within range. For now, we always put the value in both 6439 // locations (or even all three). 6440 if (CFlags.IsVarArg) { 6441 assert(HasParameterArea && 6442 "Parameter area must exist if we have a varargs call."); 6443 // We could elide this store in the case where the object fits 6444 // entirely in R registers. Maybe later. 6445 SDValue Store = 6446 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6447 MemOpChains.push_back(Store); 6448 if (VR_idx != NumVRs) { 6449 SDValue Load = 6450 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6451 MemOpChains.push_back(Load.getValue(1)); 6452 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6453 } 6454 ArgOffset += 16; 6455 for (unsigned i=0; i<16; i+=PtrByteSize) { 6456 if (GPR_idx == NumGPRs) 6457 break; 6458 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6459 DAG.getConstant(i, dl, PtrVT)); 6460 SDValue Load = 6461 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6462 MemOpChains.push_back(Load.getValue(1)); 6463 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6464 } 6465 break; 6466 } 6467 6468 // Non-varargs Altivec params go into VRs or on the stack. 6469 if (VR_idx != NumVRs) { 6470 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6471 } else { 6472 if (IsFastCall) 6473 ComputePtrOff(); 6474 6475 assert(HasParameterArea && 6476 "Parameter area must exist to pass an argument in memory."); 6477 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6478 true, CFlags.IsTailCall, true, MemOpChains, 6479 TailCallArguments, dl); 6480 if (IsFastCall) 6481 ArgOffset += 16; 6482 } 6483 6484 if (!IsFastCall) 6485 ArgOffset += 16; 6486 break; 6487 } 6488 } 6489 6490 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6491 "mismatch in size of parameter area"); 6492 (void)NumBytesActuallyUsed; 6493 6494 if (!MemOpChains.empty()) 6495 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6496 6497 // Check if this is an indirect call (MTCTR/BCTRL). 6498 // See prepareDescriptorIndirectCall and buildCallOperands for more 6499 // information about calls through function pointers in the 64-bit SVR4 ABI. 6500 if (CFlags.IsIndirect) { 6501 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6502 // caller in the TOC save area. 6503 if (isTOCSaveRestoreRequired(Subtarget)) { 6504 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6505 // Load r2 into a virtual register and store it to the TOC save area. 6506 setUsesTOCBasePtr(DAG); 6507 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6508 // TOC save area offset. 6509 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6510 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6511 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6512 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6513 MachinePointerInfo::getStack( 6514 DAG.getMachineFunction(), TOCSaveOffset)); 6515 } 6516 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6517 // This does not mean the MTCTR instruction must use R12; it's easier 6518 // to model this as an extra parameter, so do that. 6519 if (isELFv2ABI && !CFlags.IsPatchPoint) 6520 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6521 } 6522 6523 // Build a sequence of copy-to-reg nodes chained together with token chain 6524 // and flag operands which copy the outgoing args into the appropriate regs. 6525 SDValue InFlag; 6526 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6527 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6528 RegsToPass[i].second, InFlag); 6529 InFlag = Chain.getValue(1); 6530 } 6531 6532 if (CFlags.IsTailCall && !IsSibCall) 6533 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6534 TailCallArguments); 6535 6536 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6537 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6538 } 6539 6540 // Returns true when the shadow of a general purpose argument register 6541 // in the parameter save area is aligned to at least 'RequiredAlign'. 6542 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) { 6543 assert(RequiredAlign.value() <= 16 && 6544 "Required alignment greater than stack alignment."); 6545 switch (Reg) { 6546 default: 6547 report_fatal_error("called on invalid register."); 6548 case PPC::R5: 6549 case PPC::R9: 6550 case PPC::X3: 6551 case PPC::X5: 6552 case PPC::X7: 6553 case PPC::X9: 6554 // These registers are 16 byte aligned which is the most strict aligment 6555 // we can support. 6556 return true; 6557 case PPC::R3: 6558 case PPC::R7: 6559 case PPC::X4: 6560 case PPC::X6: 6561 case PPC::X8: 6562 case PPC::X10: 6563 // The shadow of these registers in the PSA is 8 byte aligned. 6564 return RequiredAlign <= 8; 6565 case PPC::R4: 6566 case PPC::R6: 6567 case PPC::R8: 6568 case PPC::R10: 6569 return RequiredAlign <= 4; 6570 } 6571 } 6572 6573 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6574 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6575 CCState &S) { 6576 AIXCCState &State = static_cast<AIXCCState &>(S); 6577 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6578 State.getMachineFunction().getSubtarget()); 6579 const bool IsPPC64 = Subtarget.isPPC64(); 6580 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6581 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6582 6583 if (ValVT == MVT::f128) 6584 report_fatal_error("f128 is unimplemented on AIX."); 6585 6586 if (ArgFlags.isNest()) 6587 report_fatal_error("Nest arguments are unimplemented."); 6588 6589 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6590 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6591 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6592 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6593 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6594 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6595 6596 static const MCPhysReg VR[] = {// Vector registers. 6597 PPC::V2, PPC::V3, PPC::V4, PPC::V5, 6598 PPC::V6, PPC::V7, PPC::V8, PPC::V9, 6599 PPC::V10, PPC::V11, PPC::V12, PPC::V13}; 6600 6601 if (ArgFlags.isByVal()) { 6602 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 6603 report_fatal_error("Pass-by-value arguments with alignment greater than " 6604 "register width are not supported."); 6605 6606 const unsigned ByValSize = ArgFlags.getByValSize(); 6607 6608 // An empty aggregate parameter takes up no storage and no registers, 6609 // but needs a MemLoc for a stack slot for the formal arguments side. 6610 if (ByValSize == 0) { 6611 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6612 State.getNextStackOffset(), RegVT, 6613 LocInfo)); 6614 return false; 6615 } 6616 6617 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 6618 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 6619 for (const unsigned E = Offset + StackSize; Offset < E; 6620 Offset += PtrAlign.value()) { 6621 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6622 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6623 else { 6624 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6625 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 6626 LocInfo)); 6627 break; 6628 } 6629 } 6630 return false; 6631 } 6632 6633 // Arguments always reserve parameter save area. 6634 switch (ValVT.SimpleTy) { 6635 default: 6636 report_fatal_error("Unhandled value type for argument."); 6637 case MVT::i64: 6638 // i64 arguments should have been split to i32 for PPC32. 6639 assert(IsPPC64 && "PPC32 should have split i64 values."); 6640 LLVM_FALLTHROUGH; 6641 case MVT::i1: 6642 case MVT::i32: { 6643 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 6644 // AIX integer arguments are always passed in register width. 6645 if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) 6646 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6647 : CCValAssign::LocInfo::ZExt; 6648 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6649 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6650 else 6651 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6652 6653 return false; 6654 } 6655 case MVT::f32: 6656 case MVT::f64: { 6657 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6658 const unsigned StoreSize = LocVT.getStoreSize(); 6659 // Floats are always 4-byte aligned in the PSA on AIX. 6660 // This includes f64 in 64-bit mode for ABI compatibility. 6661 const unsigned Offset = 6662 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 6663 unsigned FReg = State.AllocateReg(FPR); 6664 if (FReg) 6665 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6666 6667 // Reserve and initialize GPRs or initialize the PSA as required. 6668 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 6669 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6670 assert(FReg && "An FPR should be available when a GPR is reserved."); 6671 if (State.isVarArg()) { 6672 // Successfully reserved GPRs are only initialized for vararg calls. 6673 // Custom handling is required for: 6674 // f64 in PPC32 needs to be split into 2 GPRs. 6675 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6676 State.addLoc( 6677 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6678 } 6679 } else { 6680 // If there are insufficient GPRs, the PSA needs to be initialized. 6681 // Initialization occurs even if an FPR was initialized for 6682 // compatibility with the AIX XL compiler. The full memory for the 6683 // argument will be initialized even if a prior word is saved in GPR. 6684 // A custom memLoc is used when the argument also passes in FPR so 6685 // that the callee handling can skip over it easily. 6686 State.addLoc( 6687 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 6688 LocInfo) 6689 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6690 break; 6691 } 6692 } 6693 6694 return false; 6695 } 6696 case MVT::v4f32: 6697 case MVT::v4i32: 6698 case MVT::v8i16: 6699 case MVT::v16i8: 6700 case MVT::v2i64: 6701 case MVT::v2f64: 6702 case MVT::v1i128: { 6703 const unsigned VecSize = 16; 6704 const Align VecAlign(VecSize); 6705 6706 if (!State.isVarArg()) { 6707 // If there are vector registers remaining we don't consume any stack 6708 // space. 6709 if (unsigned VReg = State.AllocateReg(VR)) { 6710 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6711 return false; 6712 } 6713 // Vectors passed on the stack do not shadow GPRs or FPRs even though they 6714 // might be allocated in the portion of the PSA that is shadowed by the 6715 // GPRs. 6716 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6717 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6718 return false; 6719 } 6720 6721 const unsigned PtrSize = IsPPC64 ? 8 : 4; 6722 ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32; 6723 6724 unsigned NextRegIndex = State.getFirstUnallocated(GPRs); 6725 // Burn any underaligned registers and their shadowed stack space until 6726 // we reach the required alignment. 6727 while (NextRegIndex != GPRs.size() && 6728 !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) { 6729 // Shadow allocate register and its stack shadow. 6730 unsigned Reg = State.AllocateReg(GPRs); 6731 State.AllocateStack(PtrSize, PtrAlign); 6732 assert(Reg && "Allocating register unexpectedly failed."); 6733 (void)Reg; 6734 NextRegIndex = State.getFirstUnallocated(GPRs); 6735 } 6736 6737 // Vectors that are passed as fixed arguments are handled differently. 6738 // They are passed in VRs if any are available (unlike arguments passed 6739 // through ellipses) and shadow GPRs (unlike arguments to non-vaarg 6740 // functions) 6741 if (State.isFixed(ValNo)) { 6742 if (unsigned VReg = State.AllocateReg(VR)) { 6743 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6744 // Shadow allocate GPRs and stack space even though we pass in a VR. 6745 for (unsigned I = 0; I != VecSize; I += PtrSize) 6746 State.AllocateReg(GPRs); 6747 State.AllocateStack(VecSize, VecAlign); 6748 return false; 6749 } 6750 // No vector registers remain so pass on the stack. 6751 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6752 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6753 return false; 6754 } 6755 6756 // If all GPRS are consumed then we pass the argument fully on the stack. 6757 if (NextRegIndex == GPRs.size()) { 6758 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6759 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6760 return false; 6761 } 6762 6763 // Corner case for 32-bit codegen. We have 2 registers to pass the first 6764 // half of the argument, and then need to pass the remaining half on the 6765 // stack. 6766 if (GPRs[NextRegIndex] == PPC::R9) { 6767 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6768 State.addLoc( 6769 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6770 6771 const unsigned FirstReg = State.AllocateReg(PPC::R9); 6772 const unsigned SecondReg = State.AllocateReg(PPC::R10); 6773 assert(FirstReg && SecondReg && 6774 "Allocating R9 or R10 unexpectedly failed."); 6775 State.addLoc( 6776 CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo)); 6777 State.addLoc( 6778 CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo)); 6779 return false; 6780 } 6781 6782 // We have enough GPRs to fully pass the vector argument, and we have 6783 // already consumed any underaligned registers. Start with the custom 6784 // MemLoc and then the custom RegLocs. 6785 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6786 State.addLoc( 6787 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6788 for (unsigned I = 0; I != VecSize; I += PtrSize) { 6789 const unsigned Reg = State.AllocateReg(GPRs); 6790 assert(Reg && "Failed to allocated register for vararg vector argument"); 6791 State.addLoc( 6792 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6793 } 6794 return false; 6795 } 6796 } 6797 return true; 6798 } 6799 6800 // So far, this function is only used by LowerFormalArguments_AIX() 6801 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6802 bool IsPPC64, 6803 bool HasP8Vector, 6804 bool HasVSX) { 6805 assert((IsPPC64 || SVT != MVT::i64) && 6806 "i64 should have been split for 32-bit codegen."); 6807 6808 switch (SVT) { 6809 default: 6810 report_fatal_error("Unexpected value type for formal argument"); 6811 case MVT::i1: 6812 case MVT::i32: 6813 case MVT::i64: 6814 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6815 case MVT::f32: 6816 return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass; 6817 case MVT::f64: 6818 return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass; 6819 case MVT::v4f32: 6820 case MVT::v4i32: 6821 case MVT::v8i16: 6822 case MVT::v16i8: 6823 case MVT::v2i64: 6824 case MVT::v2f64: 6825 case MVT::v1i128: 6826 return &PPC::VRRCRegClass; 6827 } 6828 } 6829 6830 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6831 SelectionDAG &DAG, SDValue ArgValue, 6832 MVT LocVT, const SDLoc &dl) { 6833 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6834 assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); 6835 6836 if (Flags.isSExt()) 6837 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6838 DAG.getValueType(ValVT)); 6839 else if (Flags.isZExt()) 6840 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6841 DAG.getValueType(ValVT)); 6842 6843 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6844 } 6845 6846 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 6847 const unsigned LASize = FL->getLinkageSize(); 6848 6849 if (PPC::GPRCRegClass.contains(Reg)) { 6850 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 6851 "Reg must be a valid argument register!"); 6852 return LASize + 4 * (Reg - PPC::R3); 6853 } 6854 6855 if (PPC::G8RCRegClass.contains(Reg)) { 6856 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 6857 "Reg must be a valid argument register!"); 6858 return LASize + 8 * (Reg - PPC::X3); 6859 } 6860 6861 llvm_unreachable("Only general purpose registers expected."); 6862 } 6863 6864 // AIX ABI Stack Frame Layout: 6865 // 6866 // Low Memory +--------------------------------------------+ 6867 // SP +---> | Back chain | ---+ 6868 // | +--------------------------------------------+ | 6869 // | | Saved Condition Register | | 6870 // | +--------------------------------------------+ | 6871 // | | Saved Linkage Register | | 6872 // | +--------------------------------------------+ | Linkage Area 6873 // | | Reserved for compilers | | 6874 // | +--------------------------------------------+ | 6875 // | | Reserved for binders | | 6876 // | +--------------------------------------------+ | 6877 // | | Saved TOC pointer | ---+ 6878 // | +--------------------------------------------+ 6879 // | | Parameter save area | 6880 // | +--------------------------------------------+ 6881 // | | Alloca space | 6882 // | +--------------------------------------------+ 6883 // | | Local variable space | 6884 // | +--------------------------------------------+ 6885 // | | Float/int conversion temporary | 6886 // | +--------------------------------------------+ 6887 // | | Save area for AltiVec registers | 6888 // | +--------------------------------------------+ 6889 // | | AltiVec alignment padding | 6890 // | +--------------------------------------------+ 6891 // | | Save area for VRSAVE register | 6892 // | +--------------------------------------------+ 6893 // | | Save area for General Purpose registers | 6894 // | +--------------------------------------------+ 6895 // | | Save area for Floating Point registers | 6896 // | +--------------------------------------------+ 6897 // +---- | Back chain | 6898 // High Memory +--------------------------------------------+ 6899 // 6900 // Specifications: 6901 // AIX 7.2 Assembler Language Reference 6902 // Subroutine linkage convention 6903 6904 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 6905 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 6906 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6907 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 6908 6909 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 6910 CallConv == CallingConv::Fast) && 6911 "Unexpected calling convention!"); 6912 6913 if (getTargetMachine().Options.GuaranteedTailCallOpt) 6914 report_fatal_error("Tail call support is unimplemented on AIX."); 6915 6916 if (useSoftFloat()) 6917 report_fatal_error("Soft float support is unimplemented on AIX."); 6918 6919 const PPCSubtarget &Subtarget = 6920 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 6921 6922 const bool IsPPC64 = Subtarget.isPPC64(); 6923 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6924 6925 // Assign locations to all of the incoming arguments. 6926 SmallVector<CCValAssign, 16> ArgLocs; 6927 MachineFunction &MF = DAG.getMachineFunction(); 6928 MachineFrameInfo &MFI = MF.getFrameInfo(); 6929 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 6930 AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 6931 6932 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 6933 // Reserve space for the linkage area on the stack. 6934 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6935 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 6936 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 6937 6938 SmallVector<SDValue, 8> MemOps; 6939 6940 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 6941 CCValAssign &VA = ArgLocs[I++]; 6942 MVT LocVT = VA.getLocVT(); 6943 MVT ValVT = VA.getValVT(); 6944 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 6945 // For compatibility with the AIX XL compiler, the float args in the 6946 // parameter save area are initialized even if the argument is available 6947 // in register. The caller is required to initialize both the register 6948 // and memory, however, the callee can choose to expect it in either. 6949 // The memloc is dismissed here because the argument is retrieved from 6950 // the register. 6951 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint()) 6952 continue; 6953 6954 auto HandleMemLoc = [&]() { 6955 const unsigned LocSize = LocVT.getStoreSize(); 6956 const unsigned ValSize = ValVT.getStoreSize(); 6957 assert((ValSize <= LocSize) && 6958 "Object size is larger than size of MemLoc"); 6959 int CurArgOffset = VA.getLocMemOffset(); 6960 // Objects are right-justified because AIX is big-endian. 6961 if (LocSize > ValSize) 6962 CurArgOffset += LocSize - ValSize; 6963 // Potential tail calls could cause overwriting of argument stack slots. 6964 const bool IsImmutable = 6965 !(getTargetMachine().Options.GuaranteedTailCallOpt && 6966 (CallConv == CallingConv::Fast)); 6967 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 6968 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6969 SDValue ArgValue = 6970 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 6971 InVals.push_back(ArgValue); 6972 }; 6973 6974 // Vector arguments to VaArg functions are passed both on the stack, and 6975 // in any available GPRs. Load the value from the stack and add the GPRs 6976 // as live ins. 6977 if (VA.isMemLoc() && VA.needsCustom()) { 6978 assert(ValVT.isVector() && "Unexpected Custom MemLoc type."); 6979 assert(isVarArg && "Only use custom memloc for vararg."); 6980 // ValNo of the custom MemLoc, so we can compare it to the ValNo of the 6981 // matching custom RegLocs. 6982 const unsigned OriginalValNo = VA.getValNo(); 6983 (void)OriginalValNo; 6984 6985 auto HandleCustomVecRegLoc = [&]() { 6986 assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 6987 "Missing custom RegLoc."); 6988 VA = ArgLocs[I++]; 6989 assert(VA.getValVT().isVector() && 6990 "Unexpected Val type for custom RegLoc."); 6991 assert(VA.getValNo() == OriginalValNo && 6992 "ValNo mismatch between custom MemLoc and RegLoc."); 6993 MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy; 6994 MF.addLiveIn(VA.getLocReg(), 6995 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 6996 Subtarget.hasVSX())); 6997 }; 6998 6999 HandleMemLoc(); 7000 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 7001 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 7002 // R10. 7003 HandleCustomVecRegLoc(); 7004 HandleCustomVecRegLoc(); 7005 7006 // If we are targeting 32-bit, there might be 2 extra custom RegLocs if 7007 // we passed the vector in R5, R6, R7 and R8. 7008 if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) { 7009 assert(!IsPPC64 && 7010 "Only 2 custom RegLocs expected for 64-bit codegen."); 7011 HandleCustomVecRegLoc(); 7012 HandleCustomVecRegLoc(); 7013 } 7014 7015 continue; 7016 } 7017 7018 if (VA.isRegLoc()) { 7019 if (VA.getValVT().isScalarInteger()) 7020 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 7021 else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) { 7022 switch (VA.getValVT().SimpleTy) { 7023 default: 7024 report_fatal_error("Unhandled value type for argument."); 7025 case MVT::f32: 7026 FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint); 7027 break; 7028 case MVT::f64: 7029 FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint); 7030 break; 7031 } 7032 } else if (VA.getValVT().isVector()) { 7033 switch (VA.getValVT().SimpleTy) { 7034 default: 7035 report_fatal_error("Unhandled value type for argument."); 7036 case MVT::v16i8: 7037 FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar); 7038 break; 7039 case MVT::v8i16: 7040 FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort); 7041 break; 7042 case MVT::v4i32: 7043 case MVT::v2i64: 7044 case MVT::v1i128: 7045 FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt); 7046 break; 7047 case MVT::v4f32: 7048 case MVT::v2f64: 7049 FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat); 7050 break; 7051 } 7052 } 7053 } 7054 7055 if (Flags.isByVal() && VA.isMemLoc()) { 7056 const unsigned Size = 7057 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7058 PtrByteSize); 7059 const int FI = MF.getFrameInfo().CreateFixedObject( 7060 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7061 /* IsAliased */ true); 7062 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7063 InVals.push_back(FIN); 7064 7065 continue; 7066 } 7067 7068 if (Flags.isByVal()) { 7069 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7070 7071 const MCPhysReg ArgReg = VA.getLocReg(); 7072 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7073 7074 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7075 report_fatal_error("Over aligned byvals not supported yet."); 7076 7077 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7078 const int FI = MF.getFrameInfo().CreateFixedObject( 7079 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7080 /* IsAliased */ true); 7081 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7082 InVals.push_back(FIN); 7083 7084 // Add live ins for all the RegLocs for the same ByVal. 7085 const TargetRegisterClass *RegClass = 7086 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7087 7088 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7089 unsigned Offset) { 7090 const Register VReg = MF.addLiveIn(PhysReg, RegClass); 7091 // Since the callers side has left justified the aggregate in the 7092 // register, we can simply store the entire register into the stack 7093 // slot. 7094 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7095 // The store to the fixedstack object is needed becuase accessing a 7096 // field of the ByVal will use a gep and load. Ideally we will optimize 7097 // to extracting the value from the register directly, and elide the 7098 // stores when the arguments address is not taken, but that will need to 7099 // be future work. 7100 SDValue Store = DAG.getStore( 7101 CopyFrom.getValue(1), dl, CopyFrom, 7102 DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), 7103 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7104 7105 MemOps.push_back(Store); 7106 }; 7107 7108 unsigned Offset = 0; 7109 HandleRegLoc(VA.getLocReg(), Offset); 7110 Offset += PtrByteSize; 7111 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7112 Offset += PtrByteSize) { 7113 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7114 "RegLocs should be for ByVal argument."); 7115 7116 const CCValAssign RL = ArgLocs[I++]; 7117 HandleRegLoc(RL.getLocReg(), Offset); 7118 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 7119 } 7120 7121 if (Offset != StackSize) { 7122 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7123 "Expected MemLoc for remaining bytes."); 7124 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7125 // Consume the MemLoc.The InVal has already been emitted, so nothing 7126 // more needs to be done. 7127 ++I; 7128 } 7129 7130 continue; 7131 } 7132 7133 if (VA.isRegLoc() && !VA.needsCustom()) { 7134 MVT::SimpleValueType SVT = ValVT.SimpleTy; 7135 Register VReg = 7136 MF.addLiveIn(VA.getLocReg(), 7137 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 7138 Subtarget.hasVSX())); 7139 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7140 if (ValVT.isScalarInteger() && 7141 (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { 7142 ArgValue = 7143 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7144 } 7145 InVals.push_back(ArgValue); 7146 continue; 7147 } 7148 if (VA.isMemLoc()) { 7149 HandleMemLoc(); 7150 continue; 7151 } 7152 } 7153 7154 // On AIX a minimum of 8 words is saved to the parameter save area. 7155 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7156 // Area that is at least reserved in the caller of this function. 7157 unsigned CallerReservedArea = 7158 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7159 7160 // Set the size that is at least reserved in caller of this function. Tail 7161 // call optimized function's reserved stack space needs to be aligned so 7162 // that taking the difference between two stack areas will result in an 7163 // aligned stack. 7164 CallerReservedArea = 7165 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7166 FuncInfo->setMinReservedArea(CallerReservedArea); 7167 7168 if (isVarArg) { 7169 FuncInfo->setVarArgsFrameIndex( 7170 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7171 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7172 7173 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7174 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7175 7176 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7177 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7178 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7179 7180 // The fixed integer arguments of a variadic function are stored to the 7181 // VarArgsFrameIndex on the stack so that they may be loaded by 7182 // dereferencing the result of va_next. 7183 for (unsigned GPRIndex = 7184 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7185 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7186 7187 const Register VReg = 7188 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7189 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7190 7191 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7192 SDValue Store = 7193 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7194 MemOps.push_back(Store); 7195 // Increment the address for the next argument to store. 7196 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7197 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7198 } 7199 } 7200 7201 if (!MemOps.empty()) 7202 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7203 7204 return Chain; 7205 } 7206 7207 SDValue PPCTargetLowering::LowerCall_AIX( 7208 SDValue Chain, SDValue Callee, CallFlags CFlags, 7209 const SmallVectorImpl<ISD::OutputArg> &Outs, 7210 const SmallVectorImpl<SDValue> &OutVals, 7211 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7212 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7213 const CallBase *CB) const { 7214 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7215 // AIX ABI stack frame layout. 7216 7217 assert((CFlags.CallConv == CallingConv::C || 7218 CFlags.CallConv == CallingConv::Cold || 7219 CFlags.CallConv == CallingConv::Fast) && 7220 "Unexpected calling convention!"); 7221 7222 if (CFlags.IsPatchPoint) 7223 report_fatal_error("This call type is unimplemented on AIX."); 7224 7225 const PPCSubtarget& Subtarget = 7226 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7227 7228 MachineFunction &MF = DAG.getMachineFunction(); 7229 SmallVector<CCValAssign, 16> ArgLocs; 7230 AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7231 *DAG.getContext()); 7232 7233 // Reserve space for the linkage save area (LSA) on the stack. 7234 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7235 // [SP][CR][LR][2 x reserved][TOC]. 7236 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7237 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7238 const bool IsPPC64 = Subtarget.isPPC64(); 7239 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7240 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7241 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7242 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7243 7244 // The prolog code of the callee may store up to 8 GPR argument registers to 7245 // the stack, allowing va_start to index over them in memory if the callee 7246 // is variadic. 7247 // Because we cannot tell if this is needed on the caller side, we have to 7248 // conservatively assume that it is needed. As such, make sure we have at 7249 // least enough stack space for the caller to store the 8 GPRs. 7250 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7251 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7252 CCInfo.getNextStackOffset()); 7253 7254 // Adjust the stack pointer for the new arguments... 7255 // These operations are automatically eliminated by the prolog/epilog pass. 7256 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7257 SDValue CallSeqStart = Chain; 7258 7259 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7260 SmallVector<SDValue, 8> MemOpChains; 7261 7262 // Set up a copy of the stack pointer for loading and storing any 7263 // arguments that may not fit in the registers available for argument 7264 // passing. 7265 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7266 : DAG.getRegister(PPC::R1, MVT::i32); 7267 7268 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7269 const unsigned ValNo = ArgLocs[I].getValNo(); 7270 SDValue Arg = OutVals[ValNo]; 7271 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7272 7273 if (Flags.isByVal()) { 7274 const unsigned ByValSize = Flags.getByValSize(); 7275 7276 // Nothing to do for zero-sized ByVals on the caller side. 7277 if (!ByValSize) { 7278 ++I; 7279 continue; 7280 } 7281 7282 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7283 return DAG.getExtLoad( 7284 ISD::ZEXTLOAD, dl, PtrVT, Chain, 7285 (LoadOffset != 0) 7286 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7287 : Arg, 7288 MachinePointerInfo(), VT); 7289 }; 7290 7291 unsigned LoadOffset = 0; 7292 7293 // Initialize registers, which are fully occupied by the by-val argument. 7294 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7295 SDValue Load = GetLoad(PtrVT, LoadOffset); 7296 MemOpChains.push_back(Load.getValue(1)); 7297 LoadOffset += PtrByteSize; 7298 const CCValAssign &ByValVA = ArgLocs[I++]; 7299 assert(ByValVA.getValNo() == ValNo && 7300 "Unexpected location for pass-by-value argument."); 7301 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7302 } 7303 7304 if (LoadOffset == ByValSize) 7305 continue; 7306 7307 // There must be one more loc to handle the remainder. 7308 assert(ArgLocs[I].getValNo() == ValNo && 7309 "Expected additional location for by-value argument."); 7310 7311 if (ArgLocs[I].isMemLoc()) { 7312 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7313 const CCValAssign &ByValVA = ArgLocs[I++]; 7314 ISD::ArgFlagsTy MemcpyFlags = Flags; 7315 // Only memcpy the bytes that don't pass in register. 7316 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7317 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7318 (LoadOffset != 0) 7319 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7320 : Arg, 7321 DAG.getObjectPtrOffset(dl, StackPtr, 7322 TypeSize::Fixed(ByValVA.getLocMemOffset())), 7323 CallSeqStart, MemcpyFlags, DAG, dl); 7324 continue; 7325 } 7326 7327 // Initialize the final register residue. 7328 // Any residue that occupies the final by-val arg register must be 7329 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7330 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7331 // 2 and 1 byte loads. 7332 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7333 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7334 "Unexpected register residue for by-value argument."); 7335 SDValue ResidueVal; 7336 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7337 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7338 const MVT VT = 7339 N == 1 ? MVT::i8 7340 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7341 SDValue Load = GetLoad(VT, LoadOffset); 7342 MemOpChains.push_back(Load.getValue(1)); 7343 LoadOffset += N; 7344 Bytes += N; 7345 7346 // By-val arguments are passed left-justfied in register. 7347 // Every load here needs to be shifted, otherwise a full register load 7348 // should have been used. 7349 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7350 "Unexpected load emitted during handling of pass-by-value " 7351 "argument."); 7352 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7353 EVT ShiftAmountTy = 7354 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7355 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7356 SDValue ShiftedLoad = 7357 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7358 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7359 ShiftedLoad) 7360 : ShiftedLoad; 7361 } 7362 7363 const CCValAssign &ByValVA = ArgLocs[I++]; 7364 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7365 continue; 7366 } 7367 7368 CCValAssign &VA = ArgLocs[I++]; 7369 const MVT LocVT = VA.getLocVT(); 7370 const MVT ValVT = VA.getValVT(); 7371 7372 switch (VA.getLocInfo()) { 7373 default: 7374 report_fatal_error("Unexpected argument extension type."); 7375 case CCValAssign::Full: 7376 break; 7377 case CCValAssign::ZExt: 7378 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7379 break; 7380 case CCValAssign::SExt: 7381 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7382 break; 7383 } 7384 7385 if (VA.isRegLoc() && !VA.needsCustom()) { 7386 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7387 continue; 7388 } 7389 7390 // Vector arguments passed to VarArg functions need custom handling when 7391 // they are passed (at least partially) in GPRs. 7392 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) { 7393 assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args."); 7394 // Store value to its stack slot. 7395 SDValue PtrOff = 7396 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7397 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7398 SDValue Store = 7399 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 7400 MemOpChains.push_back(Store); 7401 const unsigned OriginalValNo = VA.getValNo(); 7402 // Then load the GPRs from the stack 7403 unsigned LoadOffset = 0; 7404 auto HandleCustomVecRegLoc = [&]() { 7405 assert(I != E && "Unexpected end of CCvalAssigns."); 7406 assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7407 "Expected custom RegLoc."); 7408 CCValAssign RegVA = ArgLocs[I++]; 7409 assert(RegVA.getValNo() == OriginalValNo && 7410 "Custom MemLoc ValNo and custom RegLoc ValNo must match."); 7411 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 7412 DAG.getConstant(LoadOffset, dl, PtrVT)); 7413 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo()); 7414 MemOpChains.push_back(Load.getValue(1)); 7415 RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load)); 7416 LoadOffset += PtrByteSize; 7417 }; 7418 7419 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 7420 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 7421 // R10. 7422 HandleCustomVecRegLoc(); 7423 HandleCustomVecRegLoc(); 7424 7425 if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7426 ArgLocs[I].getValNo() == OriginalValNo) { 7427 assert(!IsPPC64 && 7428 "Only 2 custom RegLocs expected for 64-bit codegen."); 7429 HandleCustomVecRegLoc(); 7430 HandleCustomVecRegLoc(); 7431 } 7432 7433 continue; 7434 } 7435 7436 if (VA.isMemLoc()) { 7437 SDValue PtrOff = 7438 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7439 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7440 MemOpChains.push_back( 7441 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7442 7443 continue; 7444 } 7445 7446 if (!ValVT.isFloatingPoint()) 7447 report_fatal_error( 7448 "Unexpected register handling for calling convention."); 7449 7450 // Custom handling is used for GPR initializations for vararg float 7451 // arguments. 7452 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7453 LocVT.isInteger() && 7454 "Custom register handling only expected for VarArg."); 7455 7456 SDValue ArgAsInt = 7457 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7458 7459 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7460 // f32 in 32-bit GPR 7461 // f64 in 64-bit GPR 7462 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7463 else if (Arg.getValueType().getFixedSizeInBits() < 7464 LocVT.getFixedSizeInBits()) 7465 // f32 in 64-bit GPR. 7466 RegsToPass.push_back(std::make_pair( 7467 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7468 else { 7469 // f64 in two 32-bit GPRs 7470 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7471 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7472 "Unexpected custom register for argument!"); 7473 CCValAssign &GPR1 = VA; 7474 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7475 DAG.getConstant(32, dl, MVT::i8)); 7476 RegsToPass.push_back(std::make_pair( 7477 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7478 7479 if (I != E) { 7480 // If only 1 GPR was available, there will only be one custom GPR and 7481 // the argument will also pass in memory. 7482 CCValAssign &PeekArg = ArgLocs[I]; 7483 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7484 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7485 CCValAssign &GPR2 = ArgLocs[I++]; 7486 RegsToPass.push_back(std::make_pair( 7487 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7488 } 7489 } 7490 } 7491 } 7492 7493 if (!MemOpChains.empty()) 7494 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7495 7496 // For indirect calls, we need to save the TOC base to the stack for 7497 // restoration after the call. 7498 if (CFlags.IsIndirect) { 7499 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7500 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7501 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7502 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7503 const unsigned TOCSaveOffset = 7504 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7505 7506 setUsesTOCBasePtr(DAG); 7507 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7508 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7509 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7510 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7511 Chain = DAG.getStore( 7512 Val.getValue(1), dl, Val, AddPtr, 7513 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7514 } 7515 7516 // Build a sequence of copy-to-reg nodes chained together with token chain 7517 // and flag operands which copy the outgoing args into the appropriate regs. 7518 SDValue InFlag; 7519 for (auto Reg : RegsToPass) { 7520 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7521 InFlag = Chain.getValue(1); 7522 } 7523 7524 const int SPDiff = 0; 7525 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7526 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7527 } 7528 7529 bool 7530 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7531 MachineFunction &MF, bool isVarArg, 7532 const SmallVectorImpl<ISD::OutputArg> &Outs, 7533 LLVMContext &Context) const { 7534 SmallVector<CCValAssign, 16> RVLocs; 7535 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7536 return CCInfo.CheckReturn( 7537 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7538 ? RetCC_PPC_Cold 7539 : RetCC_PPC); 7540 } 7541 7542 SDValue 7543 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7544 bool isVarArg, 7545 const SmallVectorImpl<ISD::OutputArg> &Outs, 7546 const SmallVectorImpl<SDValue> &OutVals, 7547 const SDLoc &dl, SelectionDAG &DAG) const { 7548 SmallVector<CCValAssign, 16> RVLocs; 7549 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7550 *DAG.getContext()); 7551 CCInfo.AnalyzeReturn(Outs, 7552 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7553 ? RetCC_PPC_Cold 7554 : RetCC_PPC); 7555 7556 SDValue Flag; 7557 SmallVector<SDValue, 4> RetOps(1, Chain); 7558 7559 // Copy the result values into the output registers. 7560 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7561 CCValAssign &VA = RVLocs[i]; 7562 assert(VA.isRegLoc() && "Can only return in registers!"); 7563 7564 SDValue Arg = OutVals[RealResIdx]; 7565 7566 switch (VA.getLocInfo()) { 7567 default: llvm_unreachable("Unknown loc info!"); 7568 case CCValAssign::Full: break; 7569 case CCValAssign::AExt: 7570 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7571 break; 7572 case CCValAssign::ZExt: 7573 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7574 break; 7575 case CCValAssign::SExt: 7576 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7577 break; 7578 } 7579 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7580 bool isLittleEndian = Subtarget.isLittleEndian(); 7581 // Legalize ret f64 -> ret 2 x i32. 7582 SDValue SVal = 7583 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7584 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7585 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7586 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7587 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7588 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7589 Flag = Chain.getValue(1); 7590 VA = RVLocs[++i]; // skip ahead to next loc 7591 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7592 } else 7593 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7594 Flag = Chain.getValue(1); 7595 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7596 } 7597 7598 RetOps[0] = Chain; // Update chain. 7599 7600 // Add the flag if we have it. 7601 if (Flag.getNode()) 7602 RetOps.push_back(Flag); 7603 7604 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7605 } 7606 7607 SDValue 7608 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7609 SelectionDAG &DAG) const { 7610 SDLoc dl(Op); 7611 7612 // Get the correct type for integers. 7613 EVT IntVT = Op.getValueType(); 7614 7615 // Get the inputs. 7616 SDValue Chain = Op.getOperand(0); 7617 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7618 // Build a DYNAREAOFFSET node. 7619 SDValue Ops[2] = {Chain, FPSIdx}; 7620 SDVTList VTs = DAG.getVTList(IntVT); 7621 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7622 } 7623 7624 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7625 SelectionDAG &DAG) const { 7626 // When we pop the dynamic allocation we need to restore the SP link. 7627 SDLoc dl(Op); 7628 7629 // Get the correct type for pointers. 7630 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7631 7632 // Construct the stack pointer operand. 7633 bool isPPC64 = Subtarget.isPPC64(); 7634 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7635 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7636 7637 // Get the operands for the STACKRESTORE. 7638 SDValue Chain = Op.getOperand(0); 7639 SDValue SaveSP = Op.getOperand(1); 7640 7641 // Load the old link SP. 7642 SDValue LoadLinkSP = 7643 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7644 7645 // Restore the stack pointer. 7646 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7647 7648 // Store the old link SP. 7649 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7650 } 7651 7652 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7653 MachineFunction &MF = DAG.getMachineFunction(); 7654 bool isPPC64 = Subtarget.isPPC64(); 7655 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7656 7657 // Get current frame pointer save index. The users of this index will be 7658 // primarily DYNALLOC instructions. 7659 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7660 int RASI = FI->getReturnAddrSaveIndex(); 7661 7662 // If the frame pointer save index hasn't been defined yet. 7663 if (!RASI) { 7664 // Find out what the fix offset of the frame pointer save area. 7665 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7666 // Allocate the frame index for frame pointer save area. 7667 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7668 // Save the result. 7669 FI->setReturnAddrSaveIndex(RASI); 7670 } 7671 return DAG.getFrameIndex(RASI, PtrVT); 7672 } 7673 7674 SDValue 7675 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7676 MachineFunction &MF = DAG.getMachineFunction(); 7677 bool isPPC64 = Subtarget.isPPC64(); 7678 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7679 7680 // Get current frame pointer save index. The users of this index will be 7681 // primarily DYNALLOC instructions. 7682 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7683 int FPSI = FI->getFramePointerSaveIndex(); 7684 7685 // If the frame pointer save index hasn't been defined yet. 7686 if (!FPSI) { 7687 // Find out what the fix offset of the frame pointer save area. 7688 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7689 // Allocate the frame index for frame pointer save area. 7690 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7691 // Save the result. 7692 FI->setFramePointerSaveIndex(FPSI); 7693 } 7694 return DAG.getFrameIndex(FPSI, PtrVT); 7695 } 7696 7697 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7698 SelectionDAG &DAG) const { 7699 MachineFunction &MF = DAG.getMachineFunction(); 7700 // Get the inputs. 7701 SDValue Chain = Op.getOperand(0); 7702 SDValue Size = Op.getOperand(1); 7703 SDLoc dl(Op); 7704 7705 // Get the correct type for pointers. 7706 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7707 // Negate the size. 7708 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7709 DAG.getConstant(0, dl, PtrVT), Size); 7710 // Construct a node for the frame pointer save index. 7711 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7712 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7713 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7714 if (hasInlineStackProbe(MF)) 7715 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7716 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7717 } 7718 7719 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7720 SelectionDAG &DAG) const { 7721 MachineFunction &MF = DAG.getMachineFunction(); 7722 7723 bool isPPC64 = Subtarget.isPPC64(); 7724 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7725 7726 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7727 return DAG.getFrameIndex(FI, PtrVT); 7728 } 7729 7730 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7731 SelectionDAG &DAG) const { 7732 SDLoc DL(Op); 7733 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7734 DAG.getVTList(MVT::i32, MVT::Other), 7735 Op.getOperand(0), Op.getOperand(1)); 7736 } 7737 7738 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7739 SelectionDAG &DAG) const { 7740 SDLoc DL(Op); 7741 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7742 Op.getOperand(0), Op.getOperand(1)); 7743 } 7744 7745 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7746 if (Op.getValueType().isVector()) 7747 return LowerVectorLoad(Op, DAG); 7748 7749 assert(Op.getValueType() == MVT::i1 && 7750 "Custom lowering only for i1 loads"); 7751 7752 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7753 7754 SDLoc dl(Op); 7755 LoadSDNode *LD = cast<LoadSDNode>(Op); 7756 7757 SDValue Chain = LD->getChain(); 7758 SDValue BasePtr = LD->getBasePtr(); 7759 MachineMemOperand *MMO = LD->getMemOperand(); 7760 7761 SDValue NewLD = 7762 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7763 BasePtr, MVT::i8, MMO); 7764 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7765 7766 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7767 return DAG.getMergeValues(Ops, dl); 7768 } 7769 7770 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7771 if (Op.getOperand(1).getValueType().isVector()) 7772 return LowerVectorStore(Op, DAG); 7773 7774 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7775 "Custom lowering only for i1 stores"); 7776 7777 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7778 7779 SDLoc dl(Op); 7780 StoreSDNode *ST = cast<StoreSDNode>(Op); 7781 7782 SDValue Chain = ST->getChain(); 7783 SDValue BasePtr = ST->getBasePtr(); 7784 SDValue Value = ST->getValue(); 7785 MachineMemOperand *MMO = ST->getMemOperand(); 7786 7787 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7788 Value); 7789 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7790 } 7791 7792 // FIXME: Remove this once the ANDI glue bug is fixed: 7793 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7794 assert(Op.getValueType() == MVT::i1 && 7795 "Custom lowering only for i1 results"); 7796 7797 SDLoc DL(Op); 7798 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7799 } 7800 7801 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7802 SelectionDAG &DAG) const { 7803 7804 // Implements a vector truncate that fits in a vector register as a shuffle. 7805 // We want to legalize vector truncates down to where the source fits in 7806 // a vector register (and target is therefore smaller than vector register 7807 // size). At that point legalization will try to custom lower the sub-legal 7808 // result and get here - where we can contain the truncate as a single target 7809 // operation. 7810 7811 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7812 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7813 // 7814 // We will implement it for big-endian ordering as this (where x denotes 7815 // undefined): 7816 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7817 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7818 // 7819 // The same operation in little-endian ordering will be: 7820 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7821 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7822 7823 EVT TrgVT = Op.getValueType(); 7824 assert(TrgVT.isVector() && "Vector type expected."); 7825 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7826 EVT EltVT = TrgVT.getVectorElementType(); 7827 if (!isOperationCustom(Op.getOpcode(), TrgVT) || 7828 TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || 7829 !isPowerOf2_32(EltVT.getSizeInBits())) 7830 return SDValue(); 7831 7832 SDValue N1 = Op.getOperand(0); 7833 EVT SrcVT = N1.getValueType(); 7834 unsigned SrcSize = SrcVT.getSizeInBits(); 7835 if (SrcSize > 256 || 7836 !isPowerOf2_32(SrcVT.getVectorNumElements()) || 7837 !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits())) 7838 return SDValue(); 7839 if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) 7840 return SDValue(); 7841 7842 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7843 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7844 7845 SDLoc DL(Op); 7846 SDValue Op1, Op2; 7847 if (SrcSize == 256) { 7848 EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); 7849 EVT SplitVT = 7850 N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 7851 unsigned SplitNumElts = SplitVT.getVectorNumElements(); 7852 Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7853 DAG.getConstant(0, DL, VecIdxTy)); 7854 Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7855 DAG.getConstant(SplitNumElts, DL, VecIdxTy)); 7856 } 7857 else { 7858 Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7859 Op2 = DAG.getUNDEF(WideVT); 7860 } 7861 7862 // First list the elements we want to keep. 7863 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7864 SmallVector<int, 16> ShuffV; 7865 if (Subtarget.isLittleEndian()) 7866 for (unsigned i = 0; i < TrgNumElts; ++i) 7867 ShuffV.push_back(i * SizeMult); 7868 else 7869 for (unsigned i = 1; i <= TrgNumElts; ++i) 7870 ShuffV.push_back(i * SizeMult - 1); 7871 7872 // Populate the remaining elements with undefs. 7873 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7874 // ShuffV.push_back(i + WideNumElts); 7875 ShuffV.push_back(WideNumElts + 1); 7876 7877 Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); 7878 Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); 7879 return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); 7880 } 7881 7882 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7883 /// possible. 7884 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7885 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7886 EVT ResVT = Op.getValueType(); 7887 EVT CmpVT = Op.getOperand(0).getValueType(); 7888 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7889 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7890 SDLoc dl(Op); 7891 7892 // Without power9-vector, we don't have native instruction for f128 comparison. 7893 // Following transformation to libcall is needed for setcc: 7894 // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE 7895 if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) { 7896 SDValue Z = DAG.getSetCC( 7897 dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT), 7898 LHS, RHS, CC); 7899 SDValue Zero = DAG.getConstant(0, dl, Z.getValueType()); 7900 return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE); 7901 } 7902 7903 // Not FP, or using SPE? Not a fsel. 7904 if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() || 7905 Subtarget.hasSPE()) 7906 return Op; 7907 7908 SDNodeFlags Flags = Op.getNode()->getFlags(); 7909 7910 // We have xsmaxc[dq]p/xsminc[dq]p which are OK to emit even in the 7911 // presence of infinities. 7912 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7913 switch (CC) { 7914 default: 7915 break; 7916 case ISD::SETOGT: 7917 case ISD::SETGT: 7918 return DAG.getNode(PPCISD::XSMAXC, dl, Op.getValueType(), LHS, RHS); 7919 case ISD::SETOLT: 7920 case ISD::SETLT: 7921 return DAG.getNode(PPCISD::XSMINC, dl, Op.getValueType(), LHS, RHS); 7922 } 7923 } 7924 7925 // We might be able to do better than this under some circumstances, but in 7926 // general, fsel-based lowering of select is a finite-math-only optimization. 7927 // For more information, see section F.3 of the 2.06 ISA specification. 7928 // With ISA 3.0 7929 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 7930 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 7931 return Op; 7932 7933 // If the RHS of the comparison is a 0.0, we don't need to do the 7934 // subtraction at all. 7935 SDValue Sel1; 7936 if (isFloatingPointZero(RHS)) 7937 switch (CC) { 7938 default: break; // SETUO etc aren't handled by fsel. 7939 case ISD::SETNE: 7940 std::swap(TV, FV); 7941 LLVM_FALLTHROUGH; 7942 case ISD::SETEQ: 7943 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7944 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7945 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7946 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7947 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7948 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7949 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7950 case ISD::SETULT: 7951 case ISD::SETLT: 7952 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7953 LLVM_FALLTHROUGH; 7954 case ISD::SETOGE: 7955 case ISD::SETGE: 7956 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7957 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7958 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7959 case ISD::SETUGT: 7960 case ISD::SETGT: 7961 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7962 LLVM_FALLTHROUGH; 7963 case ISD::SETOLE: 7964 case ISD::SETLE: 7965 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7966 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7967 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7968 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7969 } 7970 7971 SDValue Cmp; 7972 switch (CC) { 7973 default: break; // SETUO etc aren't handled by fsel. 7974 case ISD::SETNE: 7975 std::swap(TV, FV); 7976 LLVM_FALLTHROUGH; 7977 case ISD::SETEQ: 7978 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7979 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7980 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7981 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7982 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7983 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7984 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7985 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7986 case ISD::SETULT: 7987 case ISD::SETLT: 7988 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7989 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7990 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7991 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7992 case ISD::SETOGE: 7993 case ISD::SETGE: 7994 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7995 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7996 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7997 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7998 case ISD::SETUGT: 7999 case ISD::SETGT: 8000 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8001 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8002 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8003 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8004 case ISD::SETOLE: 8005 case ISD::SETLE: 8006 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8007 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8008 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8009 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8010 } 8011 return Op; 8012 } 8013 8014 static unsigned getPPCStrictOpcode(unsigned Opc) { 8015 switch (Opc) { 8016 default: 8017 llvm_unreachable("No strict version of this opcode!"); 8018 case PPCISD::FCTIDZ: 8019 return PPCISD::STRICT_FCTIDZ; 8020 case PPCISD::FCTIWZ: 8021 return PPCISD::STRICT_FCTIWZ; 8022 case PPCISD::FCTIDUZ: 8023 return PPCISD::STRICT_FCTIDUZ; 8024 case PPCISD::FCTIWUZ: 8025 return PPCISD::STRICT_FCTIWUZ; 8026 case PPCISD::FCFID: 8027 return PPCISD::STRICT_FCFID; 8028 case PPCISD::FCFIDU: 8029 return PPCISD::STRICT_FCFIDU; 8030 case PPCISD::FCFIDS: 8031 return PPCISD::STRICT_FCFIDS; 8032 case PPCISD::FCFIDUS: 8033 return PPCISD::STRICT_FCFIDUS; 8034 } 8035 } 8036 8037 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 8038 const PPCSubtarget &Subtarget) { 8039 SDLoc dl(Op); 8040 bool IsStrict = Op->isStrictFPOpcode(); 8041 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8042 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8043 8044 // TODO: Any other flags to propagate? 8045 SDNodeFlags Flags; 8046 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8047 8048 // For strict nodes, source is the second operand. 8049 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8050 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 8051 assert(Src.getValueType().isFloatingPoint()); 8052 if (Src.getValueType() == MVT::f32) { 8053 if (IsStrict) { 8054 Src = 8055 DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 8056 DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); 8057 Chain = Src.getValue(1); 8058 } else 8059 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8060 } 8061 SDValue Conv; 8062 unsigned Opc = ISD::DELETED_NODE; 8063 switch (Op.getSimpleValueType().SimpleTy) { 8064 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8065 case MVT::i32: 8066 Opc = IsSigned ? PPCISD::FCTIWZ 8067 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); 8068 break; 8069 case MVT::i64: 8070 assert((IsSigned || Subtarget.hasFPCVT()) && 8071 "i64 FP_TO_UINT is supported only with FPCVT"); 8072 Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; 8073 } 8074 if (IsStrict) { 8075 Opc = getPPCStrictOpcode(Opc); 8076 Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other), 8077 {Chain, Src}, Flags); 8078 } else { 8079 Conv = DAG.getNode(Opc, dl, MVT::f64, Src); 8080 } 8081 return Conv; 8082 } 8083 8084 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8085 SelectionDAG &DAG, 8086 const SDLoc &dl) const { 8087 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 8088 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8089 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8090 bool IsStrict = Op->isStrictFPOpcode(); 8091 8092 // Convert the FP value to an int value through memory. 8093 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8094 (IsSigned || Subtarget.hasFPCVT()); 8095 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8096 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8097 MachinePointerInfo MPI = 8098 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8099 8100 // Emit a store to the stack slot. 8101 SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); 8102 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8103 if (i32Stack) { 8104 MachineFunction &MF = DAG.getMachineFunction(); 8105 Alignment = Align(4); 8106 MachineMemOperand *MMO = 8107 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8108 SDValue Ops[] = { Chain, Tmp, FIPtr }; 8109 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8110 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8111 } else 8112 Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); 8113 8114 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8115 // add in a bias on big endian. 8116 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8117 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8118 DAG.getConstant(4, dl, FIPtr.getValueType())); 8119 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8120 } 8121 8122 RLI.Chain = Chain; 8123 RLI.Ptr = FIPtr; 8124 RLI.MPI = MPI; 8125 RLI.Alignment = Alignment; 8126 } 8127 8128 /// Custom lowers floating point to integer conversions to use 8129 /// the direct move instructions available in ISA 2.07 to avoid the 8130 /// need for load/store combinations. 8131 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8132 SelectionDAG &DAG, 8133 const SDLoc &dl) const { 8134 SDValue Conv = convertFPToInt(Op, DAG, Subtarget); 8135 SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); 8136 if (Op->isStrictFPOpcode()) 8137 return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); 8138 else 8139 return Mov; 8140 } 8141 8142 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8143 const SDLoc &dl) const { 8144 bool IsStrict = Op->isStrictFPOpcode(); 8145 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8146 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8147 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8148 EVT SrcVT = Src.getValueType(); 8149 EVT DstVT = Op.getValueType(); 8150 8151 // FP to INT conversions are legal for f128. 8152 if (SrcVT == MVT::f128) 8153 return Subtarget.hasP9Vector() ? Op : SDValue(); 8154 8155 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8156 // PPC (the libcall is not available). 8157 if (SrcVT == MVT::ppcf128) { 8158 if (DstVT == MVT::i32) { 8159 // TODO: Conservatively pass only nofpexcept flag here. Need to check and 8160 // set other fast-math flags to FP operations in both strict and 8161 // non-strict cases. (FP_TO_SINT, FSUB) 8162 SDNodeFlags Flags; 8163 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8164 8165 if (IsSigned) { 8166 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8167 DAG.getIntPtrConstant(0, dl)); 8168 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8169 DAG.getIntPtrConstant(1, dl)); 8170 8171 // Add the two halves of the long double in round-to-zero mode, and use 8172 // a smaller FP_TO_SINT. 8173 if (IsStrict) { 8174 SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, 8175 DAG.getVTList(MVT::f64, MVT::Other), 8176 {Op.getOperand(0), Lo, Hi}, Flags); 8177 return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8178 DAG.getVTList(MVT::i32, MVT::Other), 8179 {Res.getValue(1), Res}, Flags); 8180 } else { 8181 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8182 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8183 } 8184 } else { 8185 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8186 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8187 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8188 SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); 8189 if (IsStrict) { 8190 // Sel = Src < 0x80000000 8191 // FltOfs = select Sel, 0.0, 0x80000000 8192 // IntOfs = select Sel, 0, 0x80000000 8193 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8194 SDValue Chain = Op.getOperand(0); 8195 EVT SetCCVT = 8196 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8197 EVT DstSetCCVT = 8198 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8199 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8200 Chain, true); 8201 Chain = Sel.getValue(1); 8202 8203 SDValue FltOfs = DAG.getSelect( 8204 dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8205 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8206 8207 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, 8208 DAG.getVTList(SrcVT, MVT::Other), 8209 {Chain, Src, FltOfs}, Flags); 8210 Chain = Val.getValue(1); 8211 SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8212 DAG.getVTList(DstVT, MVT::Other), 8213 {Chain, Val}, Flags); 8214 Chain = SInt.getValue(1); 8215 SDValue IntOfs = DAG.getSelect( 8216 dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); 8217 SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8218 return DAG.getMergeValues({Result, Chain}, dl); 8219 } else { 8220 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8221 // FIXME: generated code sucks. 8222 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); 8223 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8224 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); 8225 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 8226 return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); 8227 } 8228 } 8229 } 8230 8231 return SDValue(); 8232 } 8233 8234 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8235 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8236 8237 ReuseLoadInfo RLI; 8238 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8239 8240 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8241 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8242 } 8243 8244 // We're trying to insert a regular store, S, and then a load, L. If the 8245 // incoming value, O, is a load, we might just be able to have our load use the 8246 // address used by O. However, we don't know if anything else will store to 8247 // that address before we can load from it. To prevent this situation, we need 8248 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8249 // the same chain operand as O, we create a token factor from the chain results 8250 // of O and L, and we replace all uses of O's chain result with that token 8251 // factor (see spliceIntoChain below for this last part). 8252 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8253 ReuseLoadInfo &RLI, 8254 SelectionDAG &DAG, 8255 ISD::LoadExtType ET) const { 8256 // Conservatively skip reusing for constrained FP nodes. 8257 if (Op->isStrictFPOpcode()) 8258 return false; 8259 8260 SDLoc dl(Op); 8261 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8262 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8263 if (ET == ISD::NON_EXTLOAD && 8264 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8265 isOperationLegalOrCustom(Op.getOpcode(), 8266 Op.getOperand(0).getValueType())) { 8267 8268 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8269 return true; 8270 } 8271 8272 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8273 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8274 LD->isNonTemporal()) 8275 return false; 8276 if (LD->getMemoryVT() != MemVT) 8277 return false; 8278 8279 // If the result of the load is an illegal type, then we can't build a 8280 // valid chain for reuse since the legalised loads and token factor node that 8281 // ties the legalised loads together uses a different output chain then the 8282 // illegal load. 8283 if (!isTypeLegal(LD->getValueType(0))) 8284 return false; 8285 8286 RLI.Ptr = LD->getBasePtr(); 8287 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8288 assert(LD->getAddressingMode() == ISD::PRE_INC && 8289 "Non-pre-inc AM on PPC?"); 8290 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8291 LD->getOffset()); 8292 } 8293 8294 RLI.Chain = LD->getChain(); 8295 RLI.MPI = LD->getPointerInfo(); 8296 RLI.IsDereferenceable = LD->isDereferenceable(); 8297 RLI.IsInvariant = LD->isInvariant(); 8298 RLI.Alignment = LD->getAlign(); 8299 RLI.AAInfo = LD->getAAInfo(); 8300 RLI.Ranges = LD->getRanges(); 8301 8302 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8303 return true; 8304 } 8305 8306 // Given the head of the old chain, ResChain, insert a token factor containing 8307 // it and NewResChain, and make users of ResChain now be users of that token 8308 // factor. 8309 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8310 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8311 SDValue NewResChain, 8312 SelectionDAG &DAG) const { 8313 if (!ResChain) 8314 return; 8315 8316 SDLoc dl(NewResChain); 8317 8318 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8319 NewResChain, DAG.getUNDEF(MVT::Other)); 8320 assert(TF.getNode() != NewResChain.getNode() && 8321 "A new TF really is required here"); 8322 8323 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8324 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8325 } 8326 8327 /// Analyze profitability of direct move 8328 /// prefer float load to int load plus direct move 8329 /// when there is no integer use of int load 8330 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8331 SDNode *Origin = Op.getOperand(0).getNode(); 8332 if (Origin->getOpcode() != ISD::LOAD) 8333 return true; 8334 8335 // If there is no LXSIBZX/LXSIHZX, like Power8, 8336 // prefer direct move if the memory size is 1 or 2 bytes. 8337 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8338 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8339 return true; 8340 8341 for (SDNode::use_iterator UI = Origin->use_begin(), 8342 UE = Origin->use_end(); 8343 UI != UE; ++UI) { 8344 8345 // Only look at the users of the loaded value. 8346 if (UI.getUse().get().getResNo() != 0) 8347 continue; 8348 8349 if (UI->getOpcode() != ISD::SINT_TO_FP && 8350 UI->getOpcode() != ISD::UINT_TO_FP && 8351 UI->getOpcode() != ISD::STRICT_SINT_TO_FP && 8352 UI->getOpcode() != ISD::STRICT_UINT_TO_FP) 8353 return true; 8354 } 8355 8356 return false; 8357 } 8358 8359 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 8360 const PPCSubtarget &Subtarget, 8361 SDValue Chain = SDValue()) { 8362 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8363 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8364 SDLoc dl(Op); 8365 8366 // TODO: Any other flags to propagate? 8367 SDNodeFlags Flags; 8368 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8369 8370 // If we have FCFIDS, then use it when converting to single-precision. 8371 // Otherwise, convert to double-precision and then round. 8372 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 8373 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 8374 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 8375 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 8376 if (Op->isStrictFPOpcode()) { 8377 if (!Chain) 8378 Chain = Op.getOperand(0); 8379 return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, 8380 DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); 8381 } else 8382 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 8383 } 8384 8385 /// Custom lowers integer to floating point conversions to use 8386 /// the direct move instructions available in ISA 2.07 to avoid the 8387 /// need for load/store combinations. 8388 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8389 SelectionDAG &DAG, 8390 const SDLoc &dl) const { 8391 assert((Op.getValueType() == MVT::f32 || 8392 Op.getValueType() == MVT::f64) && 8393 "Invalid floating point type as target of conversion"); 8394 assert(Subtarget.hasFPCVT() && 8395 "Int to FP conversions with direct moves require FPCVT"); 8396 SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); 8397 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8398 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || 8399 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8400 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 8401 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 8402 return convertIntToFP(Op, Mov, DAG, Subtarget); 8403 } 8404 8405 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8406 8407 EVT VecVT = Vec.getValueType(); 8408 assert(VecVT.isVector() && "Expected a vector type."); 8409 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8410 8411 EVT EltVT = VecVT.getVectorElementType(); 8412 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8413 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8414 8415 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8416 SmallVector<SDValue, 16> Ops(NumConcat); 8417 Ops[0] = Vec; 8418 SDValue UndefVec = DAG.getUNDEF(VecVT); 8419 for (unsigned i = 1; i < NumConcat; ++i) 8420 Ops[i] = UndefVec; 8421 8422 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8423 } 8424 8425 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8426 const SDLoc &dl) const { 8427 bool IsStrict = Op->isStrictFPOpcode(); 8428 unsigned Opc = Op.getOpcode(); 8429 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8430 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || 8431 Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && 8432 "Unexpected conversion type"); 8433 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8434 "Supports conversions to v2f64/v4f32 only."); 8435 8436 // TODO: Any other flags to propagate? 8437 SDNodeFlags Flags; 8438 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8439 8440 bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; 8441 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8442 8443 SDValue Wide = widenVec(DAG, Src, dl); 8444 EVT WideVT = Wide.getValueType(); 8445 unsigned WideNumElts = WideVT.getVectorNumElements(); 8446 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8447 8448 SmallVector<int, 16> ShuffV; 8449 for (unsigned i = 0; i < WideNumElts; ++i) 8450 ShuffV.push_back(i + WideNumElts); 8451 8452 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8453 int SaveElts = FourEltRes ? 4 : 2; 8454 if (Subtarget.isLittleEndian()) 8455 for (int i = 0; i < SaveElts; i++) 8456 ShuffV[i * Stride] = i; 8457 else 8458 for (int i = 1; i <= SaveElts; i++) 8459 ShuffV[i * Stride - 1] = i - 1; 8460 8461 SDValue ShuffleSrc2 = 8462 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8463 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8464 8465 SDValue Extend; 8466 if (SignedConv) { 8467 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8468 EVT ExtVT = Src.getValueType(); 8469 if (Subtarget.hasP9Altivec()) 8470 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8471 IntermediateVT.getVectorNumElements()); 8472 8473 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8474 DAG.getValueType(ExtVT)); 8475 } else 8476 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8477 8478 if (IsStrict) 8479 return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8480 {Op.getOperand(0), Extend}, Flags); 8481 8482 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8483 } 8484 8485 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8486 SelectionDAG &DAG) const { 8487 SDLoc dl(Op); 8488 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8489 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8490 bool IsStrict = Op->isStrictFPOpcode(); 8491 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8492 SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); 8493 8494 // TODO: Any other flags to propagate? 8495 SDNodeFlags Flags; 8496 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8497 8498 EVT InVT = Src.getValueType(); 8499 EVT OutVT = Op.getValueType(); 8500 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8501 isOperationCustom(Op.getOpcode(), InVT)) 8502 return LowerINT_TO_FPVector(Op, DAG, dl); 8503 8504 // Conversions to f128 are legal. 8505 if (Op.getValueType() == MVT::f128) 8506 return Subtarget.hasP9Vector() ? Op : SDValue(); 8507 8508 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8509 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8510 return SDValue(); 8511 8512 if (Src.getValueType() == MVT::i1) { 8513 SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 8514 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8515 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8516 if (IsStrict) 8517 return DAG.getMergeValues({Sel, Chain}, dl); 8518 else 8519 return Sel; 8520 } 8521 8522 // If we have direct moves, we can do all the conversion, skip the store/load 8523 // however, without FPCVT we can't do most conversions. 8524 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8525 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8526 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8527 8528 assert((IsSigned || Subtarget.hasFPCVT()) && 8529 "UINT_TO_FP is supported only with FPCVT"); 8530 8531 if (Src.getValueType() == MVT::i64) { 8532 SDValue SINT = Src; 8533 // When converting to single-precision, we actually need to convert 8534 // to double-precision first and then round to single-precision. 8535 // To avoid double-rounding effects during that operation, we have 8536 // to prepare the input operand. Bits that might be truncated when 8537 // converting to double-precision are replaced by a bit that won't 8538 // be lost at this stage, but is below the single-precision rounding 8539 // position. 8540 // 8541 // However, if -enable-unsafe-fp-math is in effect, accept double 8542 // rounding to avoid the extra overhead. 8543 if (Op.getValueType() == MVT::f32 && 8544 !Subtarget.hasFPCVT() && 8545 !DAG.getTarget().Options.UnsafeFPMath) { 8546 8547 // Twiddle input to make sure the low 11 bits are zero. (If this 8548 // is the case, we are guaranteed the value will fit into the 53 bit 8549 // mantissa of an IEEE double-precision value without rounding.) 8550 // If any of those low 11 bits were not zero originally, make sure 8551 // bit 12 (value 2048) is set instead, so that the final rounding 8552 // to single-precision gets the correct result. 8553 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8554 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8555 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8556 Round, DAG.getConstant(2047, dl, MVT::i64)); 8557 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8558 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8559 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8560 8561 // However, we cannot use that value unconditionally: if the magnitude 8562 // of the input value is small, the bit-twiddling we did above might 8563 // end up visibly changing the output. Fortunately, in that case, we 8564 // don't need to twiddle bits since the original input will convert 8565 // exactly to double-precision floating-point already. Therefore, 8566 // construct a conditional to use the original value if the top 11 8567 // bits are all sign-bit copies, and use the rounded value computed 8568 // above otherwise. 8569 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8570 SINT, DAG.getConstant(53, dl, MVT::i32)); 8571 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8572 Cond, DAG.getConstant(1, dl, MVT::i64)); 8573 Cond = DAG.getSetCC( 8574 dl, 8575 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8576 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8577 8578 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8579 } 8580 8581 ReuseLoadInfo RLI; 8582 SDValue Bits; 8583 8584 MachineFunction &MF = DAG.getMachineFunction(); 8585 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8586 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8587 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8588 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8589 } else if (Subtarget.hasLFIWAX() && 8590 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8591 MachineMemOperand *MMO = 8592 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8593 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8594 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8595 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8596 DAG.getVTList(MVT::f64, MVT::Other), 8597 Ops, MVT::i32, MMO); 8598 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8599 } else if (Subtarget.hasFPCVT() && 8600 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8601 MachineMemOperand *MMO = 8602 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8603 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8604 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8605 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8606 DAG.getVTList(MVT::f64, MVT::Other), 8607 Ops, MVT::i32, MMO); 8608 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8609 } else if (((Subtarget.hasLFIWAX() && 8610 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8611 (Subtarget.hasFPCVT() && 8612 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8613 SINT.getOperand(0).getValueType() == MVT::i32) { 8614 MachineFrameInfo &MFI = MF.getFrameInfo(); 8615 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8616 8617 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8618 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8619 8620 SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, 8621 MachinePointerInfo::getFixedStack( 8622 DAG.getMachineFunction(), FrameIdx)); 8623 Chain = Store; 8624 8625 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8626 "Expected an i32 store"); 8627 8628 RLI.Ptr = FIdx; 8629 RLI.Chain = Chain; 8630 RLI.MPI = 8631 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8632 RLI.Alignment = Align(4); 8633 8634 MachineMemOperand *MMO = 8635 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8636 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8637 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8638 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8639 PPCISD::LFIWZX : PPCISD::LFIWAX, 8640 dl, DAG.getVTList(MVT::f64, MVT::Other), 8641 Ops, MVT::i32, MMO); 8642 Chain = Bits.getValue(1); 8643 } else 8644 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8645 8646 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); 8647 if (IsStrict) 8648 Chain = FP.getValue(1); 8649 8650 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8651 if (IsStrict) 8652 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8653 DAG.getVTList(MVT::f32, MVT::Other), 8654 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8655 else 8656 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8657 DAG.getIntPtrConstant(0, dl)); 8658 } 8659 return FP; 8660 } 8661 8662 assert(Src.getValueType() == MVT::i32 && 8663 "Unhandled INT_TO_FP type in custom expander!"); 8664 // Since we only generate this in 64-bit mode, we can take advantage of 8665 // 64-bit registers. In particular, sign extend the input value into the 8666 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8667 // then lfd it and fcfid it. 8668 MachineFunction &MF = DAG.getMachineFunction(); 8669 MachineFrameInfo &MFI = MF.getFrameInfo(); 8670 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8671 8672 SDValue Ld; 8673 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8674 ReuseLoadInfo RLI; 8675 bool ReusingLoad; 8676 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8677 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8678 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8679 8680 SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, 8681 MachinePointerInfo::getFixedStack( 8682 DAG.getMachineFunction(), FrameIdx)); 8683 Chain = Store; 8684 8685 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8686 "Expected an i32 store"); 8687 8688 RLI.Ptr = FIdx; 8689 RLI.Chain = Chain; 8690 RLI.MPI = 8691 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8692 RLI.Alignment = Align(4); 8693 } 8694 8695 MachineMemOperand *MMO = 8696 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8697 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8698 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8699 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8700 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8701 MVT::i32, MMO); 8702 Chain = Ld.getValue(1); 8703 if (ReusingLoad) 8704 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8705 } else { 8706 assert(Subtarget.isPPC64() && 8707 "i32->FP without LFIWAX supported only on PPC64"); 8708 8709 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8710 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8711 8712 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8713 8714 // STD the extended value into the stack slot. 8715 SDValue Store = DAG.getStore( 8716 Chain, dl, Ext64, FIdx, 8717 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8718 Chain = Store; 8719 8720 // Load the value as a double. 8721 Ld = DAG.getLoad( 8722 MVT::f64, dl, Chain, FIdx, 8723 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8724 Chain = Ld.getValue(1); 8725 } 8726 8727 // FCFID it and return it. 8728 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); 8729 if (IsStrict) 8730 Chain = FP.getValue(1); 8731 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8732 if (IsStrict) 8733 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8734 DAG.getVTList(MVT::f32, MVT::Other), 8735 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8736 else 8737 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8738 DAG.getIntPtrConstant(0, dl)); 8739 } 8740 return FP; 8741 } 8742 8743 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8744 SelectionDAG &DAG) const { 8745 SDLoc dl(Op); 8746 /* 8747 The rounding mode is in bits 30:31 of FPSR, and has the following 8748 settings: 8749 00 Round to nearest 8750 01 Round to 0 8751 10 Round to +inf 8752 11 Round to -inf 8753 8754 FLT_ROUNDS, on the other hand, expects the following: 8755 -1 Undefined 8756 0 Round to 0 8757 1 Round to nearest 8758 2 Round to +inf 8759 3 Round to -inf 8760 8761 To perform the conversion, we do: 8762 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8763 */ 8764 8765 MachineFunction &MF = DAG.getMachineFunction(); 8766 EVT VT = Op.getValueType(); 8767 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8768 8769 // Save FP Control Word to register 8770 SDValue Chain = Op.getOperand(0); 8771 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8772 Chain = MFFS.getValue(1); 8773 8774 SDValue CWD; 8775 if (isTypeLegal(MVT::i64)) { 8776 CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, 8777 DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS)); 8778 } else { 8779 // Save FP register to stack slot 8780 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8781 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8782 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8783 8784 // Load FP Control Word from low 32 bits of stack slot. 8785 assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) && 8786 "Stack slot adjustment is valid only on big endian subtargets!"); 8787 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8788 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8789 CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8790 Chain = CWD.getValue(1); 8791 } 8792 8793 // Transform as necessary 8794 SDValue CWD1 = 8795 DAG.getNode(ISD::AND, dl, MVT::i32, 8796 CWD, DAG.getConstant(3, dl, MVT::i32)); 8797 SDValue CWD2 = 8798 DAG.getNode(ISD::SRL, dl, MVT::i32, 8799 DAG.getNode(ISD::AND, dl, MVT::i32, 8800 DAG.getNode(ISD::XOR, dl, MVT::i32, 8801 CWD, DAG.getConstant(3, dl, MVT::i32)), 8802 DAG.getConstant(3, dl, MVT::i32)), 8803 DAG.getConstant(1, dl, MVT::i32)); 8804 8805 SDValue RetVal = 8806 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8807 8808 RetVal = 8809 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8810 dl, VT, RetVal); 8811 8812 return DAG.getMergeValues({RetVal, Chain}, dl); 8813 } 8814 8815 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8816 EVT VT = Op.getValueType(); 8817 unsigned BitWidth = VT.getSizeInBits(); 8818 SDLoc dl(Op); 8819 assert(Op.getNumOperands() == 3 && 8820 VT == Op.getOperand(1).getValueType() && 8821 "Unexpected SHL!"); 8822 8823 // Expand into a bunch of logical ops. Note that these ops 8824 // depend on the PPC behavior for oversized shift amounts. 8825 SDValue Lo = Op.getOperand(0); 8826 SDValue Hi = Op.getOperand(1); 8827 SDValue Amt = Op.getOperand(2); 8828 EVT AmtVT = Amt.getValueType(); 8829 8830 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8831 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8832 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8833 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8834 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8835 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8836 DAG.getConstant(-BitWidth, dl, AmtVT)); 8837 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8838 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8839 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8840 SDValue OutOps[] = { OutLo, OutHi }; 8841 return DAG.getMergeValues(OutOps, dl); 8842 } 8843 8844 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8845 EVT VT = Op.getValueType(); 8846 SDLoc dl(Op); 8847 unsigned BitWidth = VT.getSizeInBits(); 8848 assert(Op.getNumOperands() == 3 && 8849 VT == Op.getOperand(1).getValueType() && 8850 "Unexpected SRL!"); 8851 8852 // Expand into a bunch of logical ops. Note that these ops 8853 // depend on the PPC behavior for oversized shift amounts. 8854 SDValue Lo = Op.getOperand(0); 8855 SDValue Hi = Op.getOperand(1); 8856 SDValue Amt = Op.getOperand(2); 8857 EVT AmtVT = Amt.getValueType(); 8858 8859 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8860 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8861 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8862 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8863 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8864 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8865 DAG.getConstant(-BitWidth, dl, AmtVT)); 8866 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8867 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8868 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8869 SDValue OutOps[] = { OutLo, OutHi }; 8870 return DAG.getMergeValues(OutOps, dl); 8871 } 8872 8873 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8874 SDLoc dl(Op); 8875 EVT VT = Op.getValueType(); 8876 unsigned BitWidth = VT.getSizeInBits(); 8877 assert(Op.getNumOperands() == 3 && 8878 VT == Op.getOperand(1).getValueType() && 8879 "Unexpected SRA!"); 8880 8881 // Expand into a bunch of logical ops, followed by a select_cc. 8882 SDValue Lo = Op.getOperand(0); 8883 SDValue Hi = Op.getOperand(1); 8884 SDValue Amt = Op.getOperand(2); 8885 EVT AmtVT = Amt.getValueType(); 8886 8887 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8888 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8889 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8890 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8891 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8892 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8893 DAG.getConstant(-BitWidth, dl, AmtVT)); 8894 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8895 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8896 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8897 Tmp4, Tmp6, ISD::SETLE); 8898 SDValue OutOps[] = { OutLo, OutHi }; 8899 return DAG.getMergeValues(OutOps, dl); 8900 } 8901 8902 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 8903 SelectionDAG &DAG) const { 8904 SDLoc dl(Op); 8905 EVT VT = Op.getValueType(); 8906 unsigned BitWidth = VT.getSizeInBits(); 8907 8908 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 8909 SDValue X = Op.getOperand(0); 8910 SDValue Y = Op.getOperand(1); 8911 SDValue Z = Op.getOperand(2); 8912 EVT AmtVT = Z.getValueType(); 8913 8914 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 8915 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 8916 // This is simpler than TargetLowering::expandFunnelShift because we can rely 8917 // on PowerPC shift by BW being well defined. 8918 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 8919 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 8920 SDValue SubZ = 8921 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 8922 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 8923 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 8924 return DAG.getNode(ISD::OR, dl, VT, X, Y); 8925 } 8926 8927 //===----------------------------------------------------------------------===// 8928 // Vector related lowering. 8929 // 8930 8931 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 8932 /// element size of SplatSize. Cast the result to VT. 8933 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 8934 SelectionDAG &DAG, const SDLoc &dl) { 8935 static const MVT VTys[] = { // canonical VT to use for each size. 8936 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8937 }; 8938 8939 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8940 8941 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 8942 if (Val == ((1LLU << (SplatSize * 8)) - 1)) { 8943 SplatSize = 1; 8944 Val = 0xFF; 8945 } 8946 8947 EVT CanonicalVT = VTys[SplatSize-1]; 8948 8949 // Build a canonical splat for this value. 8950 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8951 } 8952 8953 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8954 /// specified intrinsic ID. 8955 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8956 const SDLoc &dl, EVT DestVT = MVT::Other) { 8957 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8958 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8959 DAG.getConstant(IID, dl, MVT::i32), Op); 8960 } 8961 8962 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8963 /// specified intrinsic ID. 8964 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8965 SelectionDAG &DAG, const SDLoc &dl, 8966 EVT DestVT = MVT::Other) { 8967 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8968 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8969 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8970 } 8971 8972 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8973 /// specified intrinsic ID. 8974 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8975 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8976 EVT DestVT = MVT::Other) { 8977 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8978 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8979 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8980 } 8981 8982 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8983 /// amount. The result has the specified value type. 8984 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8985 SelectionDAG &DAG, const SDLoc &dl) { 8986 // Force LHS/RHS to be the right type. 8987 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8988 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8989 8990 int Ops[16]; 8991 for (unsigned i = 0; i != 16; ++i) 8992 Ops[i] = i + Amt; 8993 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8994 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8995 } 8996 8997 /// Do we have an efficient pattern in a .td file for this node? 8998 /// 8999 /// \param V - pointer to the BuildVectorSDNode being matched 9000 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 9001 /// 9002 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 9003 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 9004 /// the opposite is true (expansion is beneficial) are: 9005 /// - The node builds a vector out of integers that are not 32 or 64-bits 9006 /// - The node builds a vector out of constants 9007 /// - The node is a "load-and-splat" 9008 /// In all other cases, we will choose to keep the BUILD_VECTOR. 9009 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 9010 bool HasDirectMove, 9011 bool HasP8Vector) { 9012 EVT VecVT = V->getValueType(0); 9013 bool RightType = VecVT == MVT::v2f64 || 9014 (HasP8Vector && VecVT == MVT::v4f32) || 9015 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 9016 if (!RightType) 9017 return false; 9018 9019 bool IsSplat = true; 9020 bool IsLoad = false; 9021 SDValue Op0 = V->getOperand(0); 9022 9023 // This function is called in a block that confirms the node is not a constant 9024 // splat. So a constant BUILD_VECTOR here means the vector is built out of 9025 // different constants. 9026 if (V->isConstant()) 9027 return false; 9028 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 9029 if (V->getOperand(i).isUndef()) 9030 return false; 9031 // We want to expand nodes that represent load-and-splat even if the 9032 // loaded value is a floating point truncation or conversion to int. 9033 if (V->getOperand(i).getOpcode() == ISD::LOAD || 9034 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 9035 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9036 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 9037 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9038 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 9039 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 9040 IsLoad = true; 9041 // If the operands are different or the input is not a load and has more 9042 // uses than just this BV node, then it isn't a splat. 9043 if (V->getOperand(i) != Op0 || 9044 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 9045 IsSplat = false; 9046 } 9047 return !(IsSplat && IsLoad); 9048 } 9049 9050 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 9051 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 9052 9053 SDLoc dl(Op); 9054 SDValue Op0 = Op->getOperand(0); 9055 9056 if ((Op.getValueType() != MVT::f128) || 9057 (Op0.getOpcode() != ISD::BUILD_PAIR) || 9058 (Op0.getOperand(0).getValueType() != MVT::i64) || 9059 (Op0.getOperand(1).getValueType() != MVT::i64)) 9060 return SDValue(); 9061 9062 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 9063 Op0.getOperand(1)); 9064 } 9065 9066 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 9067 const SDValue *InputLoad = &Op; 9068 if (InputLoad->getOpcode() == ISD::BITCAST) 9069 InputLoad = &InputLoad->getOperand(0); 9070 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 9071 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 9072 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 9073 InputLoad = &InputLoad->getOperand(0); 9074 } 9075 if (InputLoad->getOpcode() != ISD::LOAD) 9076 return nullptr; 9077 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9078 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9079 } 9080 9081 // Convert the argument APFloat to a single precision APFloat if there is no 9082 // loss in information during the conversion to single precision APFloat and the 9083 // resulting number is not a denormal number. Return true if successful. 9084 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 9085 APFloat APFloatToConvert = ArgAPFloat; 9086 bool LosesInfo = true; 9087 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9088 &LosesInfo); 9089 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 9090 if (Success) 9091 ArgAPFloat = APFloatToConvert; 9092 return Success; 9093 } 9094 9095 // Bitcast the argument APInt to a double and convert it to a single precision 9096 // APFloat, bitcast the APFloat to an APInt and assign it to the original 9097 // argument if there is no loss in information during the conversion from 9098 // double to single precision APFloat and the resulting number is not a denormal 9099 // number. Return true if successful. 9100 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 9101 double DpValue = ArgAPInt.bitsToDouble(); 9102 APFloat APFloatDp(DpValue); 9103 bool Success = convertToNonDenormSingle(APFloatDp); 9104 if (Success) 9105 ArgAPInt = APFloatDp.bitcastToAPInt(); 9106 return Success; 9107 } 9108 9109 // Nondestructive check for convertTonNonDenormSingle. 9110 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) { 9111 // Only convert if it loses info, since XXSPLTIDP should 9112 // handle the other case. 9113 APFloat APFloatToConvert = ArgAPFloat; 9114 bool LosesInfo = true; 9115 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9116 &LosesInfo); 9117 9118 return (!LosesInfo && !APFloatToConvert.isDenormal()); 9119 } 9120 9121 static bool isValidSplatLoad(const PPCSubtarget &Subtarget, const SDValue &Op, 9122 unsigned &Opcode) { 9123 LoadSDNode *InputNode = dyn_cast<LoadSDNode>(Op.getOperand(0)); 9124 if (!InputNode || !Subtarget.hasVSX() || !ISD::isUNINDEXEDLoad(InputNode)) 9125 return false; 9126 9127 EVT Ty = Op->getValueType(0); 9128 // For v2f64, v4f32 and v4i32 types, we require the load to be non-extending 9129 // as we cannot handle extending loads for these types. 9130 if ((Ty == MVT::v2f64 || Ty == MVT::v4f32 || Ty == MVT::v4i32) && 9131 ISD::isNON_EXTLoad(InputNode)) 9132 return true; 9133 9134 EVT MemVT = InputNode->getMemoryVT(); 9135 // For v8i16 and v16i8 types, extending loads can be handled as long as the 9136 // memory VT is the same vector element VT type. 9137 // The loads feeding into the v8i16 and v16i8 types will be extending because 9138 // scalar i8/i16 are not legal types. 9139 if ((Ty == MVT::v8i16 || Ty == MVT::v16i8) && ISD::isEXTLoad(InputNode) && 9140 (MemVT == Ty.getVectorElementType())) 9141 return true; 9142 9143 if (Ty == MVT::v2i64) { 9144 // Check the extend type, when the input type is i32, and the output vector 9145 // type is v2i64. 9146 if (MemVT == MVT::i32) { 9147 if (ISD::isZEXTLoad(InputNode)) 9148 Opcode = PPCISD::ZEXT_LD_SPLAT; 9149 if (ISD::isSEXTLoad(InputNode)) 9150 Opcode = PPCISD::SEXT_LD_SPLAT; 9151 } 9152 return true; 9153 } 9154 return false; 9155 } 9156 9157 // If this is a case we can't handle, return null and let the default 9158 // expansion code take care of it. If we CAN select this case, and if it 9159 // selects to a single instruction, return Op. Otherwise, if we can codegen 9160 // this case more efficiently than a constant pool load, lower it to the 9161 // sequence of ops that should be used. 9162 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9163 SelectionDAG &DAG) const { 9164 SDLoc dl(Op); 9165 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9166 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9167 9168 // Check if this is a splat of a constant value. 9169 APInt APSplatBits, APSplatUndef; 9170 unsigned SplatBitSize; 9171 bool HasAnyUndefs; 9172 bool BVNIsConstantSplat = 9173 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9174 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 9175 9176 // If it is a splat of a double, check if we can shrink it to a 32 bit 9177 // non-denormal float which when converted back to double gives us the same 9178 // double. This is to exploit the XXSPLTIDP instruction. 9179 // If we lose precision, we use XXSPLTI32DX. 9180 if (BVNIsConstantSplat && (SplatBitSize == 64) && 9181 Subtarget.hasPrefixInstrs()) { 9182 // Check the type first to short-circuit so we don't modify APSplatBits if 9183 // this block isn't executed. 9184 if ((Op->getValueType(0) == MVT::v2f64) && 9185 convertToNonDenormSingle(APSplatBits)) { 9186 SDValue SplatNode = DAG.getNode( 9187 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 9188 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 9189 return DAG.getBitcast(Op.getValueType(), SplatNode); 9190 } else { 9191 // We may lose precision, so we have to use XXSPLTI32DX. 9192 9193 uint32_t Hi = 9194 (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32); 9195 uint32_t Lo = 9196 (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF); 9197 SDValue SplatNode = DAG.getUNDEF(MVT::v2i64); 9198 9199 if (!Hi || !Lo) 9200 // If either load is 0, then we should generate XXLXOR to set to 0. 9201 SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64); 9202 9203 if (Hi) 9204 SplatNode = DAG.getNode( 9205 PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9206 DAG.getTargetConstant(0, dl, MVT::i32), 9207 DAG.getTargetConstant(Hi, dl, MVT::i32)); 9208 9209 if (Lo) 9210 SplatNode = 9211 DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9212 DAG.getTargetConstant(1, dl, MVT::i32), 9213 DAG.getTargetConstant(Lo, dl, MVT::i32)); 9214 9215 return DAG.getBitcast(Op.getValueType(), SplatNode); 9216 } 9217 } 9218 9219 if (!BVNIsConstantSplat || SplatBitSize > 32) { 9220 unsigned NewOpcode = PPCISD::LD_SPLAT; 9221 9222 // Handle load-and-splat patterns as we have instructions that will do this 9223 // in one go. 9224 if (DAG.isSplatValue(Op, true) && 9225 isValidSplatLoad(Subtarget, Op, NewOpcode)) { 9226 const SDValue *InputLoad = &Op.getOperand(0); 9227 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9228 9229 // If the input load is an extending load, it will be an i32 -> i64 9230 // extending load and isValidSplatLoad() will update NewOpcode. 9231 unsigned MemorySize = LD->getMemoryVT().getScalarSizeInBits(); 9232 unsigned ElementSize = 9233 MemorySize * ((NewOpcode == PPCISD::LD_SPLAT) ? 1 : 2); 9234 9235 assert(((ElementSize == 2 * MemorySize) 9236 ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT || 9237 NewOpcode == PPCISD::SEXT_LD_SPLAT) 9238 : (NewOpcode == PPCISD::LD_SPLAT)) && 9239 "Unmatched element size and opcode!\n"); 9240 9241 // Checking for a single use of this load, we have to check for vector 9242 // width (128 bits) / ElementSize uses (since each operand of the 9243 // BUILD_VECTOR is a separate use of the value. 9244 unsigned NumUsesOfInputLD = 128 / ElementSize; 9245 for (SDValue BVInOp : Op->ops()) 9246 if (BVInOp.isUndef()) 9247 NumUsesOfInputLD--; 9248 9249 // Exclude somes case where LD_SPLAT is worse than scalar_to_vector: 9250 // Below cases should also happen for "lfiwzx/lfiwax + LE target + index 9251 // 1" and "lxvrhx + BE target + index 7" and "lxvrbx + BE target + index 9252 // 15", but funciton IsValidSplatLoad() now will only return true when 9253 // the data at index 0 is not nullptr. So we will not get into trouble for 9254 // these cases. 9255 // 9256 // case 1 - lfiwzx/lfiwax 9257 // 1.1: load result is i32 and is sign/zero extend to i64; 9258 // 1.2: build a v2i64 vector type with above loaded value; 9259 // 1.3: the vector has only one value at index 0, others are all undef; 9260 // 1.4: on BE target, so that lfiwzx/lfiwax does not need any permute. 9261 if (NumUsesOfInputLD == 1 && 9262 (Op->getValueType(0) == MVT::v2i64 && NewOpcode != PPCISD::LD_SPLAT && 9263 !Subtarget.isLittleEndian() && Subtarget.hasVSX() && 9264 Subtarget.hasLFIWAX())) 9265 return SDValue(); 9266 9267 // case 2 - lxvr[hb]x 9268 // 2.1: load result is at most i16; 9269 // 2.2: build a vector with above loaded value; 9270 // 2.3: the vector has only one value at index 0, others are all undef; 9271 // 2.4: on LE target, so that lxvr[hb]x does not need any permute. 9272 if (NumUsesOfInputLD == 1 && Subtarget.isLittleEndian() && 9273 Subtarget.isISA3_1() && ElementSize <= 16) 9274 return SDValue(); 9275 9276 assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?"); 9277 if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && 9278 Subtarget.hasVSX()) { 9279 SDValue Ops[] = { 9280 LD->getChain(), // Chain 9281 LD->getBasePtr(), // Ptr 9282 DAG.getValueType(Op.getValueType()) // VT 9283 }; 9284 SDValue LdSplt = DAG.getMemIntrinsicNode( 9285 NewOpcode, dl, DAG.getVTList(Op.getValueType(), MVT::Other), Ops, 9286 LD->getMemoryVT(), LD->getMemOperand()); 9287 // Replace all uses of the output chain of the original load with the 9288 // output chain of the new load. 9289 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), 9290 LdSplt.getValue(1)); 9291 return LdSplt; 9292 } 9293 } 9294 9295 // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to 9296 // 32-bits can be lowered to VSX instructions under certain conditions. 9297 // Without VSX, there is no pattern more efficient than expanding the node. 9298 if (Subtarget.hasVSX() && Subtarget.isPPC64() && 9299 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9300 Subtarget.hasP8Vector())) 9301 return Op; 9302 return SDValue(); 9303 } 9304 9305 uint64_t SplatBits = APSplatBits.getZExtValue(); 9306 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 9307 unsigned SplatSize = SplatBitSize / 8; 9308 9309 // First, handle single instruction cases. 9310 9311 // All zeros? 9312 if (SplatBits == 0) { 9313 // Canonicalize all zero vectors to be v4i32. 9314 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9315 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9316 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9317 } 9318 return Op; 9319 } 9320 9321 // We have XXSPLTIW for constant splats four bytes wide. 9322 // Given vector length is a multiple of 4, 2-byte splats can be replaced 9323 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 9324 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 9325 // turned into a 4-byte splat of 0xABABABAB. 9326 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 9327 return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2, 9328 Op.getValueType(), DAG, dl); 9329 9330 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 9331 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9332 dl); 9333 9334 // We have XXSPLTIB for constant splats one byte wide. 9335 if (Subtarget.hasP9Vector() && SplatSize == 1) 9336 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9337 dl); 9338 9339 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9340 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9341 (32-SplatBitSize)); 9342 if (SextVal >= -16 && SextVal <= 15) 9343 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 9344 dl); 9345 9346 // Two instruction sequences. 9347 9348 // If this value is in the range [-32,30] and is even, use: 9349 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9350 // If this value is in the range [17,31] and is odd, use: 9351 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9352 // If this value is in the range [-31,-17] and is odd, use: 9353 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9354 // Note the last two are three-instruction sequences. 9355 if (SextVal >= -32 && SextVal <= 31) { 9356 // To avoid having these optimizations undone by constant folding, 9357 // we convert to a pseudo that will be expanded later into one of 9358 // the above forms. 9359 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9360 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9361 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9362 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9363 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9364 if (VT == Op.getValueType()) 9365 return RetVal; 9366 else 9367 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9368 } 9369 9370 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9371 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9372 // for fneg/fabs. 9373 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9374 // Make -1 and vspltisw -1: 9375 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9376 9377 // Make the VSLW intrinsic, computing 0x8000_0000. 9378 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9379 OnesV, DAG, dl); 9380 9381 // xor by OnesV to invert it. 9382 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9383 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9384 } 9385 9386 // Check to see if this is a wide variety of vsplti*, binop self cases. 9387 static const signed char SplatCsts[] = { 9388 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9389 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9390 }; 9391 9392 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9393 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9394 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9395 int i = SplatCsts[idx]; 9396 9397 // Figure out what shift amount will be used by altivec if shifted by i in 9398 // this splat size. 9399 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9400 9401 // vsplti + shl self. 9402 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9403 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9404 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9405 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9406 Intrinsic::ppc_altivec_vslw 9407 }; 9408 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9409 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9410 } 9411 9412 // vsplti + srl self. 9413 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9414 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9415 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9416 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9417 Intrinsic::ppc_altivec_vsrw 9418 }; 9419 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9420 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9421 } 9422 9423 // vsplti + rol self. 9424 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9425 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9426 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9427 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9428 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9429 Intrinsic::ppc_altivec_vrlw 9430 }; 9431 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9432 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9433 } 9434 9435 // t = vsplti c, result = vsldoi t, t, 1 9436 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9437 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9438 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9439 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9440 } 9441 // t = vsplti c, result = vsldoi t, t, 2 9442 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9443 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9444 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9445 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9446 } 9447 // t = vsplti c, result = vsldoi t, t, 3 9448 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9449 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9450 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9451 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9452 } 9453 } 9454 9455 return SDValue(); 9456 } 9457 9458 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9459 /// the specified operations to build the shuffle. 9460 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9461 SDValue RHS, SelectionDAG &DAG, 9462 const SDLoc &dl) { 9463 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9464 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9465 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9466 9467 enum { 9468 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9469 OP_VMRGHW, 9470 OP_VMRGLW, 9471 OP_VSPLTISW0, 9472 OP_VSPLTISW1, 9473 OP_VSPLTISW2, 9474 OP_VSPLTISW3, 9475 OP_VSLDOI4, 9476 OP_VSLDOI8, 9477 OP_VSLDOI12 9478 }; 9479 9480 if (OpNum == OP_COPY) { 9481 if (LHSID == (1*9+2)*9+3) return LHS; 9482 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9483 return RHS; 9484 } 9485 9486 SDValue OpLHS, OpRHS; 9487 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9488 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9489 9490 int ShufIdxs[16]; 9491 switch (OpNum) { 9492 default: llvm_unreachable("Unknown i32 permute!"); 9493 case OP_VMRGHW: 9494 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9495 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9496 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9497 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9498 break; 9499 case OP_VMRGLW: 9500 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9501 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9502 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9503 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9504 break; 9505 case OP_VSPLTISW0: 9506 for (unsigned i = 0; i != 16; ++i) 9507 ShufIdxs[i] = (i&3)+0; 9508 break; 9509 case OP_VSPLTISW1: 9510 for (unsigned i = 0; i != 16; ++i) 9511 ShufIdxs[i] = (i&3)+4; 9512 break; 9513 case OP_VSPLTISW2: 9514 for (unsigned i = 0; i != 16; ++i) 9515 ShufIdxs[i] = (i&3)+8; 9516 break; 9517 case OP_VSPLTISW3: 9518 for (unsigned i = 0; i != 16; ++i) 9519 ShufIdxs[i] = (i&3)+12; 9520 break; 9521 case OP_VSLDOI4: 9522 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9523 case OP_VSLDOI8: 9524 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9525 case OP_VSLDOI12: 9526 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9527 } 9528 EVT VT = OpLHS.getValueType(); 9529 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9530 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9531 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9532 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9533 } 9534 9535 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9536 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9537 /// SDValue. 9538 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9539 SelectionDAG &DAG) const { 9540 const unsigned BytesInVector = 16; 9541 bool IsLE = Subtarget.isLittleEndian(); 9542 SDLoc dl(N); 9543 SDValue V1 = N->getOperand(0); 9544 SDValue V2 = N->getOperand(1); 9545 unsigned ShiftElts = 0, InsertAtByte = 0; 9546 bool Swap = false; 9547 9548 // Shifts required to get the byte we want at element 7. 9549 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9550 0, 15, 14, 13, 12, 11, 10, 9}; 9551 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9552 1, 2, 3, 4, 5, 6, 7, 8}; 9553 9554 ArrayRef<int> Mask = N->getMask(); 9555 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9556 9557 // For each mask element, find out if we're just inserting something 9558 // from V2 into V1 or vice versa. 9559 // Possible permutations inserting an element from V2 into V1: 9560 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9561 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9562 // ... 9563 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9564 // Inserting from V1 into V2 will be similar, except mask range will be 9565 // [16,31]. 9566 9567 bool FoundCandidate = false; 9568 // If both vector operands for the shuffle are the same vector, the mask 9569 // will contain only elements from the first one and the second one will be 9570 // undef. 9571 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9572 // Go through the mask of half-words to find an element that's being moved 9573 // from one vector to the other. 9574 for (unsigned i = 0; i < BytesInVector; ++i) { 9575 unsigned CurrentElement = Mask[i]; 9576 // If 2nd operand is undefined, we should only look for element 7 in the 9577 // Mask. 9578 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9579 continue; 9580 9581 bool OtherElementsInOrder = true; 9582 // Examine the other elements in the Mask to see if they're in original 9583 // order. 9584 for (unsigned j = 0; j < BytesInVector; ++j) { 9585 if (j == i) 9586 continue; 9587 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9588 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9589 // in which we always assume we're always picking from the 1st operand. 9590 int MaskOffset = 9591 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9592 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9593 OtherElementsInOrder = false; 9594 break; 9595 } 9596 } 9597 // If other elements are in original order, we record the number of shifts 9598 // we need to get the element we want into element 7. Also record which byte 9599 // in the vector we should insert into. 9600 if (OtherElementsInOrder) { 9601 // If 2nd operand is undefined, we assume no shifts and no swapping. 9602 if (V2.isUndef()) { 9603 ShiftElts = 0; 9604 Swap = false; 9605 } else { 9606 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9607 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9608 : BigEndianShifts[CurrentElement & 0xF]; 9609 Swap = CurrentElement < BytesInVector; 9610 } 9611 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9612 FoundCandidate = true; 9613 break; 9614 } 9615 } 9616 9617 if (!FoundCandidate) 9618 return SDValue(); 9619 9620 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9621 // optionally with VECSHL if shift is required. 9622 if (Swap) 9623 std::swap(V1, V2); 9624 if (V2.isUndef()) 9625 V2 = V1; 9626 if (ShiftElts) { 9627 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9628 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9629 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9630 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9631 } 9632 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9633 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9634 } 9635 9636 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9637 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9638 /// SDValue. 9639 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9640 SelectionDAG &DAG) const { 9641 const unsigned NumHalfWords = 8; 9642 const unsigned BytesInVector = NumHalfWords * 2; 9643 // Check that the shuffle is on half-words. 9644 if (!isNByteElemShuffleMask(N, 2, 1)) 9645 return SDValue(); 9646 9647 bool IsLE = Subtarget.isLittleEndian(); 9648 SDLoc dl(N); 9649 SDValue V1 = N->getOperand(0); 9650 SDValue V2 = N->getOperand(1); 9651 unsigned ShiftElts = 0, InsertAtByte = 0; 9652 bool Swap = false; 9653 9654 // Shifts required to get the half-word we want at element 3. 9655 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9656 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9657 9658 uint32_t Mask = 0; 9659 uint32_t OriginalOrderLow = 0x1234567; 9660 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9661 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9662 // 32-bit space, only need 4-bit nibbles per element. 9663 for (unsigned i = 0; i < NumHalfWords; ++i) { 9664 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9665 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9666 } 9667 9668 // For each mask element, find out if we're just inserting something 9669 // from V2 into V1 or vice versa. Possible permutations inserting an element 9670 // from V2 into V1: 9671 // X, 1, 2, 3, 4, 5, 6, 7 9672 // 0, X, 2, 3, 4, 5, 6, 7 9673 // 0, 1, X, 3, 4, 5, 6, 7 9674 // 0, 1, 2, X, 4, 5, 6, 7 9675 // 0, 1, 2, 3, X, 5, 6, 7 9676 // 0, 1, 2, 3, 4, X, 6, 7 9677 // 0, 1, 2, 3, 4, 5, X, 7 9678 // 0, 1, 2, 3, 4, 5, 6, X 9679 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9680 9681 bool FoundCandidate = false; 9682 // Go through the mask of half-words to find an element that's being moved 9683 // from one vector to the other. 9684 for (unsigned i = 0; i < NumHalfWords; ++i) { 9685 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9686 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9687 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9688 uint32_t TargetOrder = 0x0; 9689 9690 // If both vector operands for the shuffle are the same vector, the mask 9691 // will contain only elements from the first one and the second one will be 9692 // undef. 9693 if (V2.isUndef()) { 9694 ShiftElts = 0; 9695 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9696 TargetOrder = OriginalOrderLow; 9697 Swap = false; 9698 // Skip if not the correct element or mask of other elements don't equal 9699 // to our expected order. 9700 if (MaskOneElt == VINSERTHSrcElem && 9701 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9702 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9703 FoundCandidate = true; 9704 break; 9705 } 9706 } else { // If both operands are defined. 9707 // Target order is [8,15] if the current mask is between [0,7]. 9708 TargetOrder = 9709 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9710 // Skip if mask of other elements don't equal our expected order. 9711 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9712 // We only need the last 3 bits for the number of shifts. 9713 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9714 : BigEndianShifts[MaskOneElt & 0x7]; 9715 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9716 Swap = MaskOneElt < NumHalfWords; 9717 FoundCandidate = true; 9718 break; 9719 } 9720 } 9721 } 9722 9723 if (!FoundCandidate) 9724 return SDValue(); 9725 9726 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9727 // optionally with VECSHL if shift is required. 9728 if (Swap) 9729 std::swap(V1, V2); 9730 if (V2.isUndef()) 9731 V2 = V1; 9732 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9733 if (ShiftElts) { 9734 // Double ShiftElts because we're left shifting on v16i8 type. 9735 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9736 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9737 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9738 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9739 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9740 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9741 } 9742 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9743 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9744 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9745 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9746 } 9747 9748 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9749 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9750 /// return the default SDValue. 9751 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9752 SelectionDAG &DAG) const { 9753 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9754 // to v16i8. Peek through the bitcasts to get the actual operands. 9755 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9756 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9757 9758 auto ShuffleMask = SVN->getMask(); 9759 SDValue VecShuffle(SVN, 0); 9760 SDLoc DL(SVN); 9761 9762 // Check that we have a four byte shuffle. 9763 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9764 return SDValue(); 9765 9766 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9767 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9768 std::swap(LHS, RHS); 9769 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9770 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9771 } 9772 9773 // Ensure that the RHS is a vector of constants. 9774 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9775 if (!BVN) 9776 return SDValue(); 9777 9778 // Check if RHS is a splat of 4-bytes (or smaller). 9779 APInt APSplatValue, APSplatUndef; 9780 unsigned SplatBitSize; 9781 bool HasAnyUndefs; 9782 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9783 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9784 SplatBitSize > 32) 9785 return SDValue(); 9786 9787 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9788 // The instruction splats a constant C into two words of the source vector 9789 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9790 // Thus we check that the shuffle mask is the equivalent of 9791 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9792 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9793 // within each word are consecutive, so we only need to check the first byte. 9794 SDValue Index; 9795 bool IsLE = Subtarget.isLittleEndian(); 9796 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9797 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9798 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9799 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9800 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9801 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9802 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9803 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9804 else 9805 return SDValue(); 9806 9807 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9808 // for XXSPLTI32DX. 9809 unsigned SplatVal = APSplatValue.getZExtValue(); 9810 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9811 SplatVal |= (SplatVal << SplatBitSize); 9812 9813 SDValue SplatNode = DAG.getNode( 9814 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9815 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9816 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9817 } 9818 9819 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9820 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9821 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9822 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9823 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9824 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9825 assert(Op.getValueType() == MVT::v1i128 && 9826 "Only set v1i128 as custom, other type shouldn't reach here!"); 9827 SDLoc dl(Op); 9828 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9829 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9830 unsigned SHLAmt = N1.getConstantOperandVal(0); 9831 if (SHLAmt % 8 == 0) { 9832 std::array<int, 16> Mask; 9833 std::iota(Mask.begin(), Mask.end(), 0); 9834 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9835 if (SDValue Shuffle = 9836 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9837 DAG.getUNDEF(MVT::v16i8), Mask)) 9838 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9839 } 9840 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9841 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9842 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9843 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9844 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9845 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9846 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9847 } 9848 9849 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9850 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9851 /// return the code it can be lowered into. Worst case, it can always be 9852 /// lowered into a vperm. 9853 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9854 SelectionDAG &DAG) const { 9855 SDLoc dl(Op); 9856 SDValue V1 = Op.getOperand(0); 9857 SDValue V2 = Op.getOperand(1); 9858 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9859 9860 // Any nodes that were combined in the target-independent combiner prior 9861 // to vector legalization will not be sent to the target combine. Try to 9862 // combine it here. 9863 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9864 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9865 return NewShuffle; 9866 Op = NewShuffle; 9867 SVOp = cast<ShuffleVectorSDNode>(Op); 9868 V1 = Op.getOperand(0); 9869 V2 = Op.getOperand(1); 9870 } 9871 EVT VT = Op.getValueType(); 9872 bool isLittleEndian = Subtarget.isLittleEndian(); 9873 9874 unsigned ShiftElts, InsertAtByte; 9875 bool Swap = false; 9876 9877 // If this is a load-and-splat, we can do that with a single instruction 9878 // in some cases. However if the load has multiple uses, we don't want to 9879 // combine it because that will just produce multiple loads. 9880 bool IsPermutedLoad = false; 9881 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9882 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9883 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9884 InputLoad->hasOneUse()) { 9885 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9886 int SplatIdx = 9887 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9888 9889 // The splat index for permuted loads will be in the left half of the vector 9890 // which is strictly wider than the loaded value by 8 bytes. So we need to 9891 // adjust the splat index to point to the correct address in memory. 9892 if (IsPermutedLoad) { 9893 assert((isLittleEndian || IsFourByte) && 9894 "Unexpected size for permuted load on big endian target"); 9895 SplatIdx += IsFourByte ? 2 : 1; 9896 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9897 "Splat of a value outside of the loaded memory"); 9898 } 9899 9900 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9901 // For 4-byte load-and-splat, we need Power9. 9902 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9903 uint64_t Offset = 0; 9904 if (IsFourByte) 9905 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9906 else 9907 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9908 9909 // If the width of the load is the same as the width of the splat, 9910 // loading with an offset would load the wrong memory. 9911 if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64)) 9912 Offset = 0; 9913 9914 SDValue BasePtr = LD->getBasePtr(); 9915 if (Offset != 0) 9916 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9917 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9918 SDValue Ops[] = { 9919 LD->getChain(), // Chain 9920 BasePtr, // BasePtr 9921 DAG.getValueType(Op.getValueType()) // VT 9922 }; 9923 SDVTList VTL = 9924 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9925 SDValue LdSplt = 9926 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9927 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9928 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); 9929 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9930 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9931 return LdSplt; 9932 } 9933 } 9934 if (Subtarget.hasP9Vector() && 9935 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9936 isLittleEndian)) { 9937 if (Swap) 9938 std::swap(V1, V2); 9939 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9940 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9941 if (ShiftElts) { 9942 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9943 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9944 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9945 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9946 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9947 } 9948 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9949 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9950 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9951 } 9952 9953 if (Subtarget.hasPrefixInstrs()) { 9954 SDValue SplatInsertNode; 9955 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 9956 return SplatInsertNode; 9957 } 9958 9959 if (Subtarget.hasP9Altivec()) { 9960 SDValue NewISDNode; 9961 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9962 return NewISDNode; 9963 9964 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9965 return NewISDNode; 9966 } 9967 9968 if (Subtarget.hasVSX() && 9969 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9970 if (Swap) 9971 std::swap(V1, V2); 9972 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9973 SDValue Conv2 = 9974 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9975 9976 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9977 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9978 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9979 } 9980 9981 if (Subtarget.hasVSX() && 9982 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9983 if (Swap) 9984 std::swap(V1, V2); 9985 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9986 SDValue Conv2 = 9987 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9988 9989 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9990 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9991 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9992 } 9993 9994 if (Subtarget.hasP9Vector()) { 9995 if (PPC::isXXBRHShuffleMask(SVOp)) { 9996 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9997 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9998 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9999 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 10000 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10001 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 10002 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 10003 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 10004 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 10005 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 10006 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 10007 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 10008 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 10009 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 10010 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 10011 } 10012 } 10013 10014 if (Subtarget.hasVSX()) { 10015 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 10016 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 10017 10018 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10019 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 10020 DAG.getConstant(SplatIdx, dl, MVT::i32)); 10021 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 10022 } 10023 10024 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 10025 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 10026 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 10027 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 10028 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 10029 } 10030 } 10031 10032 // Cases that are handled by instructions that take permute immediates 10033 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 10034 // selected by the instruction selector. 10035 if (V2.isUndef()) { 10036 if (PPC::isSplatShuffleMask(SVOp, 1) || 10037 PPC::isSplatShuffleMask(SVOp, 2) || 10038 PPC::isSplatShuffleMask(SVOp, 4) || 10039 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 10040 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 10041 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 10042 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 10043 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 10044 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 10045 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 10046 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 10047 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 10048 (Subtarget.hasP8Altivec() && ( 10049 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 10050 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 10051 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 10052 return Op; 10053 } 10054 } 10055 10056 // Altivec has a variety of "shuffle immediates" that take two vector inputs 10057 // and produce a fixed permutation. If any of these match, do not lower to 10058 // VPERM. 10059 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 10060 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 10061 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 10062 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 10063 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10064 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10065 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10066 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10067 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10068 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10069 (Subtarget.hasP8Altivec() && ( 10070 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 10071 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 10072 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 10073 return Op; 10074 10075 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 10076 // perfect shuffle table to emit an optimal matching sequence. 10077 ArrayRef<int> PermMask = SVOp->getMask(); 10078 10079 if (!DisablePerfectShuffle && !isLittleEndian) { 10080 unsigned PFIndexes[4]; 10081 bool isFourElementShuffle = true; 10082 for (unsigned i = 0; i != 4 && isFourElementShuffle; 10083 ++i) { // Element number 10084 unsigned EltNo = 8; // Start out undef. 10085 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 10086 if (PermMask[i * 4 + j] < 0) 10087 continue; // Undef, ignore it. 10088 10089 unsigned ByteSource = PermMask[i * 4 + j]; 10090 if ((ByteSource & 3) != j) { 10091 isFourElementShuffle = false; 10092 break; 10093 } 10094 10095 if (EltNo == 8) { 10096 EltNo = ByteSource / 4; 10097 } else if (EltNo != ByteSource / 4) { 10098 isFourElementShuffle = false; 10099 break; 10100 } 10101 } 10102 PFIndexes[i] = EltNo; 10103 } 10104 10105 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 10106 // perfect shuffle vector to determine if it is cost effective to do this as 10107 // discrete instructions, or whether we should use a vperm. 10108 // For now, we skip this for little endian until such time as we have a 10109 // little-endian perfect shuffle table. 10110 if (isFourElementShuffle) { 10111 // Compute the index in the perfect shuffle table. 10112 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + 10113 PFIndexes[2] * 9 + PFIndexes[3]; 10114 10115 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 10116 unsigned Cost = (PFEntry >> 30); 10117 10118 // Determining when to avoid vperm is tricky. Many things affect the cost 10119 // of vperm, particularly how many times the perm mask needs to be 10120 // computed. For example, if the perm mask can be hoisted out of a loop or 10121 // is already used (perhaps because there are multiple permutes with the 10122 // same shuffle mask?) the vperm has a cost of 1. OTOH, hoisting the 10123 // permute mask out of the loop requires an extra register. 10124 // 10125 // As a compromise, we only emit discrete instructions if the shuffle can 10126 // be generated in 3 or fewer operations. When we have loop information 10127 // available, if this block is within a loop, we should avoid using vperm 10128 // for 3-operation perms and use a constant pool load instead. 10129 if (Cost < 3) 10130 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 10131 } 10132 } 10133 10134 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 10135 // vector that will get spilled to the constant pool. 10136 if (V2.isUndef()) V2 = V1; 10137 10138 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 10139 // that it is in input element units, not in bytes. Convert now. 10140 10141 // For little endian, the order of the input vectors is reversed, and 10142 // the permutation mask is complemented with respect to 31. This is 10143 // necessary to produce proper semantics with the big-endian-biased vperm 10144 // instruction. 10145 EVT EltVT = V1.getValueType().getVectorElementType(); 10146 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 10147 10148 SmallVector<SDValue, 16> ResultMask; 10149 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 10150 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 10151 10152 for (unsigned j = 0; j != BytesPerElement; ++j) 10153 if (isLittleEndian) 10154 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 10155 dl, MVT::i32)); 10156 else 10157 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 10158 MVT::i32)); 10159 } 10160 10161 ShufflesHandledWithVPERM++; 10162 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 10163 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 10164 LLVM_DEBUG(SVOp->dump()); 10165 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 10166 LLVM_DEBUG(VPermMask.dump()); 10167 10168 if (isLittleEndian) 10169 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10170 V2, V1, VPermMask); 10171 else 10172 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10173 V1, V2, VPermMask); 10174 } 10175 10176 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 10177 /// vector comparison. If it is, return true and fill in Opc/isDot with 10178 /// information about the intrinsic. 10179 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 10180 bool &isDot, const PPCSubtarget &Subtarget) { 10181 unsigned IntrinsicID = 10182 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 10183 CompareOpc = -1; 10184 isDot = false; 10185 switch (IntrinsicID) { 10186 default: 10187 return false; 10188 // Comparison predicates. 10189 case Intrinsic::ppc_altivec_vcmpbfp_p: 10190 CompareOpc = 966; 10191 isDot = true; 10192 break; 10193 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10194 CompareOpc = 198; 10195 isDot = true; 10196 break; 10197 case Intrinsic::ppc_altivec_vcmpequb_p: 10198 CompareOpc = 6; 10199 isDot = true; 10200 break; 10201 case Intrinsic::ppc_altivec_vcmpequh_p: 10202 CompareOpc = 70; 10203 isDot = true; 10204 break; 10205 case Intrinsic::ppc_altivec_vcmpequw_p: 10206 CompareOpc = 134; 10207 isDot = true; 10208 break; 10209 case Intrinsic::ppc_altivec_vcmpequd_p: 10210 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10211 CompareOpc = 199; 10212 isDot = true; 10213 } else 10214 return false; 10215 break; 10216 case Intrinsic::ppc_altivec_vcmpneb_p: 10217 case Intrinsic::ppc_altivec_vcmpneh_p: 10218 case Intrinsic::ppc_altivec_vcmpnew_p: 10219 case Intrinsic::ppc_altivec_vcmpnezb_p: 10220 case Intrinsic::ppc_altivec_vcmpnezh_p: 10221 case Intrinsic::ppc_altivec_vcmpnezw_p: 10222 if (Subtarget.hasP9Altivec()) { 10223 switch (IntrinsicID) { 10224 default: 10225 llvm_unreachable("Unknown comparison intrinsic."); 10226 case Intrinsic::ppc_altivec_vcmpneb_p: 10227 CompareOpc = 7; 10228 break; 10229 case Intrinsic::ppc_altivec_vcmpneh_p: 10230 CompareOpc = 71; 10231 break; 10232 case Intrinsic::ppc_altivec_vcmpnew_p: 10233 CompareOpc = 135; 10234 break; 10235 case Intrinsic::ppc_altivec_vcmpnezb_p: 10236 CompareOpc = 263; 10237 break; 10238 case Intrinsic::ppc_altivec_vcmpnezh_p: 10239 CompareOpc = 327; 10240 break; 10241 case Intrinsic::ppc_altivec_vcmpnezw_p: 10242 CompareOpc = 391; 10243 break; 10244 } 10245 isDot = true; 10246 } else 10247 return false; 10248 break; 10249 case Intrinsic::ppc_altivec_vcmpgefp_p: 10250 CompareOpc = 454; 10251 isDot = true; 10252 break; 10253 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10254 CompareOpc = 710; 10255 isDot = true; 10256 break; 10257 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10258 CompareOpc = 774; 10259 isDot = true; 10260 break; 10261 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10262 CompareOpc = 838; 10263 isDot = true; 10264 break; 10265 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10266 CompareOpc = 902; 10267 isDot = true; 10268 break; 10269 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10270 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10271 CompareOpc = 967; 10272 isDot = true; 10273 } else 10274 return false; 10275 break; 10276 case Intrinsic::ppc_altivec_vcmpgtub_p: 10277 CompareOpc = 518; 10278 isDot = true; 10279 break; 10280 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10281 CompareOpc = 582; 10282 isDot = true; 10283 break; 10284 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10285 CompareOpc = 646; 10286 isDot = true; 10287 break; 10288 case Intrinsic::ppc_altivec_vcmpgtud_p: 10289 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10290 CompareOpc = 711; 10291 isDot = true; 10292 } else 10293 return false; 10294 break; 10295 10296 case Intrinsic::ppc_altivec_vcmpequq: 10297 case Intrinsic::ppc_altivec_vcmpgtsq: 10298 case Intrinsic::ppc_altivec_vcmpgtuq: 10299 if (!Subtarget.isISA3_1()) 10300 return false; 10301 switch (IntrinsicID) { 10302 default: 10303 llvm_unreachable("Unknown comparison intrinsic."); 10304 case Intrinsic::ppc_altivec_vcmpequq: 10305 CompareOpc = 455; 10306 break; 10307 case Intrinsic::ppc_altivec_vcmpgtsq: 10308 CompareOpc = 903; 10309 break; 10310 case Intrinsic::ppc_altivec_vcmpgtuq: 10311 CompareOpc = 647; 10312 break; 10313 } 10314 break; 10315 10316 // VSX predicate comparisons use the same infrastructure 10317 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10318 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10319 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10320 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10321 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10322 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10323 if (Subtarget.hasVSX()) { 10324 switch (IntrinsicID) { 10325 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10326 CompareOpc = 99; 10327 break; 10328 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10329 CompareOpc = 115; 10330 break; 10331 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10332 CompareOpc = 107; 10333 break; 10334 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10335 CompareOpc = 67; 10336 break; 10337 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10338 CompareOpc = 83; 10339 break; 10340 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10341 CompareOpc = 75; 10342 break; 10343 } 10344 isDot = true; 10345 } else 10346 return false; 10347 break; 10348 10349 // Normal Comparisons. 10350 case Intrinsic::ppc_altivec_vcmpbfp: 10351 CompareOpc = 966; 10352 break; 10353 case Intrinsic::ppc_altivec_vcmpeqfp: 10354 CompareOpc = 198; 10355 break; 10356 case Intrinsic::ppc_altivec_vcmpequb: 10357 CompareOpc = 6; 10358 break; 10359 case Intrinsic::ppc_altivec_vcmpequh: 10360 CompareOpc = 70; 10361 break; 10362 case Intrinsic::ppc_altivec_vcmpequw: 10363 CompareOpc = 134; 10364 break; 10365 case Intrinsic::ppc_altivec_vcmpequd: 10366 if (Subtarget.hasP8Altivec()) 10367 CompareOpc = 199; 10368 else 10369 return false; 10370 break; 10371 case Intrinsic::ppc_altivec_vcmpneb: 10372 case Intrinsic::ppc_altivec_vcmpneh: 10373 case Intrinsic::ppc_altivec_vcmpnew: 10374 case Intrinsic::ppc_altivec_vcmpnezb: 10375 case Intrinsic::ppc_altivec_vcmpnezh: 10376 case Intrinsic::ppc_altivec_vcmpnezw: 10377 if (Subtarget.hasP9Altivec()) 10378 switch (IntrinsicID) { 10379 default: 10380 llvm_unreachable("Unknown comparison intrinsic."); 10381 case Intrinsic::ppc_altivec_vcmpneb: 10382 CompareOpc = 7; 10383 break; 10384 case Intrinsic::ppc_altivec_vcmpneh: 10385 CompareOpc = 71; 10386 break; 10387 case Intrinsic::ppc_altivec_vcmpnew: 10388 CompareOpc = 135; 10389 break; 10390 case Intrinsic::ppc_altivec_vcmpnezb: 10391 CompareOpc = 263; 10392 break; 10393 case Intrinsic::ppc_altivec_vcmpnezh: 10394 CompareOpc = 327; 10395 break; 10396 case Intrinsic::ppc_altivec_vcmpnezw: 10397 CompareOpc = 391; 10398 break; 10399 } 10400 else 10401 return false; 10402 break; 10403 case Intrinsic::ppc_altivec_vcmpgefp: 10404 CompareOpc = 454; 10405 break; 10406 case Intrinsic::ppc_altivec_vcmpgtfp: 10407 CompareOpc = 710; 10408 break; 10409 case Intrinsic::ppc_altivec_vcmpgtsb: 10410 CompareOpc = 774; 10411 break; 10412 case Intrinsic::ppc_altivec_vcmpgtsh: 10413 CompareOpc = 838; 10414 break; 10415 case Intrinsic::ppc_altivec_vcmpgtsw: 10416 CompareOpc = 902; 10417 break; 10418 case Intrinsic::ppc_altivec_vcmpgtsd: 10419 if (Subtarget.hasP8Altivec()) 10420 CompareOpc = 967; 10421 else 10422 return false; 10423 break; 10424 case Intrinsic::ppc_altivec_vcmpgtub: 10425 CompareOpc = 518; 10426 break; 10427 case Intrinsic::ppc_altivec_vcmpgtuh: 10428 CompareOpc = 582; 10429 break; 10430 case Intrinsic::ppc_altivec_vcmpgtuw: 10431 CompareOpc = 646; 10432 break; 10433 case Intrinsic::ppc_altivec_vcmpgtud: 10434 if (Subtarget.hasP8Altivec()) 10435 CompareOpc = 711; 10436 else 10437 return false; 10438 break; 10439 case Intrinsic::ppc_altivec_vcmpequq_p: 10440 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10441 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10442 if (!Subtarget.isISA3_1()) 10443 return false; 10444 switch (IntrinsicID) { 10445 default: 10446 llvm_unreachable("Unknown comparison intrinsic."); 10447 case Intrinsic::ppc_altivec_vcmpequq_p: 10448 CompareOpc = 455; 10449 break; 10450 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10451 CompareOpc = 903; 10452 break; 10453 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10454 CompareOpc = 647; 10455 break; 10456 } 10457 isDot = true; 10458 break; 10459 } 10460 return true; 10461 } 10462 10463 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10464 /// lower, do it, otherwise return null. 10465 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10466 SelectionDAG &DAG) const { 10467 unsigned IntrinsicID = 10468 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10469 10470 SDLoc dl(Op); 10471 10472 switch (IntrinsicID) { 10473 case Intrinsic::thread_pointer: 10474 // Reads the thread pointer register, used for __builtin_thread_pointer. 10475 if (Subtarget.isPPC64()) 10476 return DAG.getRegister(PPC::X13, MVT::i64); 10477 return DAG.getRegister(PPC::R2, MVT::i32); 10478 10479 case Intrinsic::ppc_mma_disassemble_acc: 10480 case Intrinsic::ppc_vsx_disassemble_pair: { 10481 int NumVecs = 2; 10482 SDValue WideVec = Op.getOperand(1); 10483 if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { 10484 NumVecs = 4; 10485 WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); 10486 } 10487 SmallVector<SDValue, 4> RetOps; 10488 for (int VecNo = 0; VecNo < NumVecs; VecNo++) { 10489 SDValue Extract = DAG.getNode( 10490 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, 10491 DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo 10492 : VecNo, 10493 dl, getPointerTy(DAG.getDataLayout()))); 10494 RetOps.push_back(Extract); 10495 } 10496 return DAG.getMergeValues(RetOps, dl); 10497 } 10498 10499 case Intrinsic::ppc_unpack_longdouble: { 10500 auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10501 assert(Idx && (Idx->getSExtValue() == 0 || Idx->getSExtValue() == 1) && 10502 "Argument of long double unpack must be 0 or 1!"); 10503 return DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Op.getOperand(1), 10504 DAG.getConstant(!!(Idx->getSExtValue()), dl, 10505 Idx->getValueType(0))); 10506 } 10507 10508 case Intrinsic::ppc_compare_exp_lt: 10509 case Intrinsic::ppc_compare_exp_gt: 10510 case Intrinsic::ppc_compare_exp_eq: 10511 case Intrinsic::ppc_compare_exp_uo: { 10512 unsigned Pred; 10513 switch (IntrinsicID) { 10514 case Intrinsic::ppc_compare_exp_lt: 10515 Pred = PPC::PRED_LT; 10516 break; 10517 case Intrinsic::ppc_compare_exp_gt: 10518 Pred = PPC::PRED_GT; 10519 break; 10520 case Intrinsic::ppc_compare_exp_eq: 10521 Pred = PPC::PRED_EQ; 10522 break; 10523 case Intrinsic::ppc_compare_exp_uo: 10524 Pred = PPC::PRED_UN; 10525 break; 10526 } 10527 return SDValue( 10528 DAG.getMachineNode( 10529 PPC::SELECT_CC_I4, dl, MVT::i32, 10530 {SDValue(DAG.getMachineNode(PPC::XSCMPEXPDP, dl, MVT::i32, 10531 Op.getOperand(1), Op.getOperand(2)), 10532 0), 10533 DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), 10534 DAG.getTargetConstant(Pred, dl, MVT::i32)}), 10535 0); 10536 } 10537 case Intrinsic::ppc_test_data_class_d: 10538 case Intrinsic::ppc_test_data_class_f: { 10539 unsigned CmprOpc = PPC::XSTSTDCDP; 10540 if (IntrinsicID == Intrinsic::ppc_test_data_class_f) 10541 CmprOpc = PPC::XSTSTDCSP; 10542 return SDValue( 10543 DAG.getMachineNode( 10544 PPC::SELECT_CC_I4, dl, MVT::i32, 10545 {SDValue(DAG.getMachineNode(CmprOpc, dl, MVT::i32, Op.getOperand(2), 10546 Op.getOperand(1)), 10547 0), 10548 DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), 10549 DAG.getTargetConstant(PPC::PRED_EQ, dl, MVT::i32)}), 10550 0); 10551 } 10552 case Intrinsic::ppc_convert_f128_to_ppcf128: 10553 case Intrinsic::ppc_convert_ppcf128_to_f128: { 10554 RTLIB::Libcall LC = IntrinsicID == Intrinsic::ppc_convert_ppcf128_to_f128 10555 ? RTLIB::CONVERT_PPCF128_F128 10556 : RTLIB::CONVERT_F128_PPCF128; 10557 MakeLibCallOptions CallOptions; 10558 std::pair<SDValue, SDValue> Result = 10559 makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(1), CallOptions, 10560 dl, SDValue()); 10561 return Result.first; 10562 } 10563 } 10564 10565 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10566 // opcode number of the comparison. 10567 int CompareOpc; 10568 bool isDot; 10569 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10570 return SDValue(); // Don't custom lower most intrinsics. 10571 10572 // If this is a non-dot comparison, make the VCMP node and we are done. 10573 if (!isDot) { 10574 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10575 Op.getOperand(1), Op.getOperand(2), 10576 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10577 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10578 } 10579 10580 // Create the PPCISD altivec 'dot' comparison node. 10581 SDValue Ops[] = { 10582 Op.getOperand(2), // LHS 10583 Op.getOperand(3), // RHS 10584 DAG.getConstant(CompareOpc, dl, MVT::i32) 10585 }; 10586 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10587 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 10588 10589 // Now that we have the comparison, emit a copy from the CR to a GPR. 10590 // This is flagged to the above dot comparison. 10591 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10592 DAG.getRegister(PPC::CR6, MVT::i32), 10593 CompNode.getValue(1)); 10594 10595 // Unpack the result based on how the target uses it. 10596 unsigned BitNo; // Bit # of CR6. 10597 bool InvertBit; // Invert result? 10598 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10599 default: // Can't happen, don't crash on invalid number though. 10600 case 0: // Return the value of the EQ bit of CR6. 10601 BitNo = 0; InvertBit = false; 10602 break; 10603 case 1: // Return the inverted value of the EQ bit of CR6. 10604 BitNo = 0; InvertBit = true; 10605 break; 10606 case 2: // Return the value of the LT bit of CR6. 10607 BitNo = 2; InvertBit = false; 10608 break; 10609 case 3: // Return the inverted value of the LT bit of CR6. 10610 BitNo = 2; InvertBit = true; 10611 break; 10612 } 10613 10614 // Shift the bit into the low position. 10615 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10616 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10617 // Isolate the bit. 10618 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10619 DAG.getConstant(1, dl, MVT::i32)); 10620 10621 // If we are supposed to, toggle the bit. 10622 if (InvertBit) 10623 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10624 DAG.getConstant(1, dl, MVT::i32)); 10625 return Flags; 10626 } 10627 10628 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10629 SelectionDAG &DAG) const { 10630 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10631 // the beginning of the argument list. 10632 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10633 SDLoc DL(Op); 10634 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10635 case Intrinsic::ppc_cfence: { 10636 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10637 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10638 SDValue Val = Op.getOperand(ArgStart + 1); 10639 EVT Ty = Val.getValueType(); 10640 if (Ty == MVT::i128) { 10641 // FIXME: Testing one of two paired registers is sufficient to guarantee 10642 // ordering? 10643 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val); 10644 } 10645 return SDValue( 10646 DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10647 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val), 10648 Op.getOperand(0)), 10649 0); 10650 } 10651 default: 10652 break; 10653 } 10654 return SDValue(); 10655 } 10656 10657 // Lower scalar BSWAP64 to xxbrd. 10658 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10659 SDLoc dl(Op); 10660 if (!Subtarget.isPPC64()) 10661 return Op; 10662 // MTVSRDD 10663 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10664 Op.getOperand(0)); 10665 // XXBRD 10666 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10667 // MFVSRD 10668 int VectorIndex = 0; 10669 if (Subtarget.isLittleEndian()) 10670 VectorIndex = 1; 10671 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10672 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10673 return Op; 10674 } 10675 10676 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10677 // compared to a value that is atomically loaded (atomic loads zero-extend). 10678 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10679 SelectionDAG &DAG) const { 10680 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10681 "Expecting an atomic compare-and-swap here."); 10682 SDLoc dl(Op); 10683 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10684 EVT MemVT = AtomicNode->getMemoryVT(); 10685 if (MemVT.getSizeInBits() >= 32) 10686 return Op; 10687 10688 SDValue CmpOp = Op.getOperand(2); 10689 // If this is already correctly zero-extended, leave it alone. 10690 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10691 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10692 return Op; 10693 10694 // Clear the high bits of the compare operand. 10695 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10696 SDValue NewCmpOp = 10697 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10698 DAG.getConstant(MaskVal, dl, MVT::i32)); 10699 10700 // Replace the existing compare operand with the properly zero-extended one. 10701 SmallVector<SDValue, 4> Ops; 10702 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10703 Ops.push_back(AtomicNode->getOperand(i)); 10704 Ops[2] = NewCmpOp; 10705 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10706 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10707 auto NodeTy = 10708 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10709 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10710 } 10711 10712 SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op, 10713 SelectionDAG &DAG) const { 10714 AtomicSDNode *N = cast<AtomicSDNode>(Op.getNode()); 10715 EVT MemVT = N->getMemoryVT(); 10716 assert(MemVT.getSimpleVT() == MVT::i128 && 10717 "Expect quadword atomic operations"); 10718 SDLoc dl(N); 10719 unsigned Opc = N->getOpcode(); 10720 switch (Opc) { 10721 case ISD::ATOMIC_LOAD: { 10722 // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be 10723 // lowered to ppc instructions by pattern matching instruction selector. 10724 SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other); 10725 SmallVector<SDValue, 4> Ops{ 10726 N->getOperand(0), 10727 DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)}; 10728 for (int I = 1, E = N->getNumOperands(); I < E; ++I) 10729 Ops.push_back(N->getOperand(I)); 10730 SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys, 10731 Ops, MemVT, N->getMemOperand()); 10732 SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal); 10733 SDValue ValHi = 10734 DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1)); 10735 ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi, 10736 DAG.getConstant(64, dl, MVT::i32)); 10737 SDValue Val = 10738 DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi}); 10739 return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other}, 10740 {Val, LoadedVal.getValue(2)}); 10741 } 10742 case ISD::ATOMIC_STORE: { 10743 // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be 10744 // lowered to ppc instructions by pattern matching instruction selector. 10745 SDVTList Tys = DAG.getVTList(MVT::Other); 10746 SmallVector<SDValue, 4> Ops{ 10747 N->getOperand(0), 10748 DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)}; 10749 SDValue Val = N->getOperand(2); 10750 SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val); 10751 SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val, 10752 DAG.getConstant(64, dl, MVT::i32)); 10753 ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi); 10754 Ops.push_back(ValLo); 10755 Ops.push_back(ValHi); 10756 Ops.push_back(N->getOperand(1)); 10757 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT, 10758 N->getMemOperand()); 10759 } 10760 default: 10761 llvm_unreachable("Unexpected atomic opcode"); 10762 } 10763 } 10764 10765 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10766 SelectionDAG &DAG) const { 10767 SDLoc dl(Op); 10768 // Create a stack slot that is 16-byte aligned. 10769 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10770 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10771 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10772 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10773 10774 // Store the input value into Value#0 of the stack slot. 10775 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10776 MachinePointerInfo()); 10777 // Load it out. 10778 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10779 } 10780 10781 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10782 SelectionDAG &DAG) const { 10783 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10784 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10785 10786 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10787 10788 EVT VT = Op.getValueType(); 10789 SDLoc dl(Op); 10790 SDValue V1 = Op.getOperand(0); 10791 SDValue V2 = Op.getOperand(1); 10792 10793 if (VT == MVT::v2f64 && C) 10794 return Op; 10795 10796 if (Subtarget.hasP9Vector()) { 10797 // A f32 load feeding into a v4f32 insert_vector_elt is handled in this way 10798 // because on P10, it allows this specific insert_vector_elt load pattern to 10799 // utilize the refactored load and store infrastructure in order to exploit 10800 // prefixed loads. 10801 // On targets with inexpensive direct moves (Power9 and up), a 10802 // (insert_vector_elt v4f32:$vec, (f32 load)) is always better as an integer 10803 // load since a single precision load will involve conversion to double 10804 // precision on the load followed by another conversion to single precision. 10805 if ((VT == MVT::v4f32) && (V2.getValueType() == MVT::f32) && 10806 (isa<LoadSDNode>(V2))) { 10807 SDValue BitcastVector = DAG.getBitcast(MVT::v4i32, V1); 10808 SDValue BitcastLoad = DAG.getBitcast(MVT::i32, V2); 10809 SDValue InsVecElt = 10810 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v4i32, BitcastVector, 10811 BitcastLoad, Op.getOperand(2)); 10812 return DAG.getBitcast(MVT::v4f32, InsVecElt); 10813 } 10814 } 10815 10816 if (Subtarget.isISA3_1()) { 10817 if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64()) 10818 return SDValue(); 10819 // On P10, we have legal lowering for constant and variable indices for 10820 // all vectors. 10821 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 10822 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64) 10823 return Op; 10824 } 10825 10826 // Before P10, we have legal lowering for constant indices but not for 10827 // variable ones. 10828 if (!C) 10829 return SDValue(); 10830 10831 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10832 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10833 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10834 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10835 unsigned InsertAtElement = C->getZExtValue(); 10836 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10837 if (Subtarget.isLittleEndian()) { 10838 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10839 } 10840 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10841 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10842 } 10843 return Op; 10844 } 10845 10846 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10847 SelectionDAG &DAG) const { 10848 SDLoc dl(Op); 10849 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10850 SDValue LoadChain = LN->getChain(); 10851 SDValue BasePtr = LN->getBasePtr(); 10852 EVT VT = Op.getValueType(); 10853 10854 if (VT != MVT::v256i1 && VT != MVT::v512i1) 10855 return Op; 10856 10857 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10858 // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in 10859 // 2 or 4 vsx registers. 10860 assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && 10861 "Type unsupported without MMA"); 10862 assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10863 "Type unsupported without paired vector support"); 10864 Align Alignment = LN->getAlign(); 10865 SmallVector<SDValue, 4> Loads; 10866 SmallVector<SDValue, 4> LoadChains; 10867 unsigned NumVecs = VT.getSizeInBits() / 128; 10868 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10869 SDValue Load = 10870 DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, 10871 LN->getPointerInfo().getWithOffset(Idx * 16), 10872 commonAlignment(Alignment, Idx * 16), 10873 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10874 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10875 DAG.getConstant(16, dl, BasePtr.getValueType())); 10876 Loads.push_back(Load); 10877 LoadChains.push_back(Load.getValue(1)); 10878 } 10879 if (Subtarget.isLittleEndian()) { 10880 std::reverse(Loads.begin(), Loads.end()); 10881 std::reverse(LoadChains.begin(), LoadChains.end()); 10882 } 10883 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10884 SDValue Value = 10885 DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, 10886 dl, VT, Loads); 10887 SDValue RetOps[] = {Value, TF}; 10888 return DAG.getMergeValues(RetOps, dl); 10889 } 10890 10891 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10892 SelectionDAG &DAG) const { 10893 SDLoc dl(Op); 10894 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10895 SDValue StoreChain = SN->getChain(); 10896 SDValue BasePtr = SN->getBasePtr(); 10897 SDValue Value = SN->getValue(); 10898 EVT StoreVT = Value.getValueType(); 10899 10900 if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) 10901 return Op; 10902 10903 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10904 // Here we create 2 or 4 v16i8 stores to store the pair or accumulator 10905 // underlying registers individually. 10906 assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && 10907 "Type unsupported without MMA"); 10908 assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10909 "Type unsupported without paired vector support"); 10910 Align Alignment = SN->getAlign(); 10911 SmallVector<SDValue, 4> Stores; 10912 unsigned NumVecs = 2; 10913 if (StoreVT == MVT::v512i1) { 10914 Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); 10915 NumVecs = 4; 10916 } 10917 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10918 unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; 10919 SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, 10920 DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout()))); 10921 SDValue Store = 10922 DAG.getStore(StoreChain, dl, Elt, BasePtr, 10923 SN->getPointerInfo().getWithOffset(Idx * 16), 10924 commonAlignment(Alignment, Idx * 16), 10925 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10926 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10927 DAG.getConstant(16, dl, BasePtr.getValueType())); 10928 Stores.push_back(Store); 10929 } 10930 SDValue TF = DAG.getTokenFactor(dl, Stores); 10931 return TF; 10932 } 10933 10934 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10935 SDLoc dl(Op); 10936 if (Op.getValueType() == MVT::v4i32) { 10937 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10938 10939 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10940 // +16 as shift amt. 10941 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10942 SDValue RHSSwap = // = vrlw RHS, 16 10943 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10944 10945 // Shrinkify inputs to v8i16. 10946 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10947 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10948 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10949 10950 // Low parts multiplied together, generating 32-bit results (we ignore the 10951 // top parts). 10952 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10953 LHS, RHS, DAG, dl, MVT::v4i32); 10954 10955 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10956 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10957 // Shift the high parts up 16 bits. 10958 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10959 Neg16, DAG, dl); 10960 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10961 } else if (Op.getValueType() == MVT::v16i8) { 10962 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10963 bool isLittleEndian = Subtarget.isLittleEndian(); 10964 10965 // Multiply the even 8-bit parts, producing 16-bit sums. 10966 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10967 LHS, RHS, DAG, dl, MVT::v8i16); 10968 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10969 10970 // Multiply the odd 8-bit parts, producing 16-bit sums. 10971 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10972 LHS, RHS, DAG, dl, MVT::v8i16); 10973 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10974 10975 // Merge the results together. Because vmuleub and vmuloub are 10976 // instructions with a big-endian bias, we must reverse the 10977 // element numbering and reverse the meaning of "odd" and "even" 10978 // when generating little endian code. 10979 int Ops[16]; 10980 for (unsigned i = 0; i != 8; ++i) { 10981 if (isLittleEndian) { 10982 Ops[i*2 ] = 2*i; 10983 Ops[i*2+1] = 2*i+16; 10984 } else { 10985 Ops[i*2 ] = 2*i+1; 10986 Ops[i*2+1] = 2*i+1+16; 10987 } 10988 } 10989 if (isLittleEndian) 10990 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10991 else 10992 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10993 } else { 10994 llvm_unreachable("Unknown mul to lower!"); 10995 } 10996 } 10997 10998 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 10999 bool IsStrict = Op->isStrictFPOpcode(); 11000 if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 && 11001 !Subtarget.hasP9Vector()) 11002 return SDValue(); 11003 11004 return Op; 11005 } 11006 11007 // Custom lowering for fpext vf32 to v2f64 11008 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 11009 11010 assert(Op.getOpcode() == ISD::FP_EXTEND && 11011 "Should only be called for ISD::FP_EXTEND"); 11012 11013 // FIXME: handle extends from half precision float vectors on P9. 11014 // We only want to custom lower an extend from v2f32 to v2f64. 11015 if (Op.getValueType() != MVT::v2f64 || 11016 Op.getOperand(0).getValueType() != MVT::v2f32) 11017 return SDValue(); 11018 11019 SDLoc dl(Op); 11020 SDValue Op0 = Op.getOperand(0); 11021 11022 switch (Op0.getOpcode()) { 11023 default: 11024 return SDValue(); 11025 case ISD::EXTRACT_SUBVECTOR: { 11026 assert(Op0.getNumOperands() == 2 && 11027 isa<ConstantSDNode>(Op0->getOperand(1)) && 11028 "Node should have 2 operands with second one being a constant!"); 11029 11030 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 11031 return SDValue(); 11032 11033 // Custom lower is only done for high or low doubleword. 11034 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 11035 if (Idx % 2 != 0) 11036 return SDValue(); 11037 11038 // Since input is v4f32, at this point Idx is either 0 or 2. 11039 // Shift to get the doubleword position we want. 11040 int DWord = Idx >> 1; 11041 11042 // High and low word positions are different on little endian. 11043 if (Subtarget.isLittleEndian()) 11044 DWord ^= 0x1; 11045 11046 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 11047 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 11048 } 11049 case ISD::FADD: 11050 case ISD::FMUL: 11051 case ISD::FSUB: { 11052 SDValue NewLoad[2]; 11053 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 11054 // Ensure both input are loads. 11055 SDValue LdOp = Op0.getOperand(i); 11056 if (LdOp.getOpcode() != ISD::LOAD) 11057 return SDValue(); 11058 // Generate new load node. 11059 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 11060 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 11061 NewLoad[i] = DAG.getMemIntrinsicNode( 11062 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 11063 LD->getMemoryVT(), LD->getMemOperand()); 11064 } 11065 SDValue NewOp = 11066 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 11067 NewLoad[1], Op0.getNode()->getFlags()); 11068 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 11069 DAG.getConstant(0, dl, MVT::i32)); 11070 } 11071 case ISD::LOAD: { 11072 LoadSDNode *LD = cast<LoadSDNode>(Op0); 11073 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 11074 SDValue NewLd = DAG.getMemIntrinsicNode( 11075 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 11076 LD->getMemoryVT(), LD->getMemOperand()); 11077 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 11078 DAG.getConstant(0, dl, MVT::i32)); 11079 } 11080 } 11081 llvm_unreachable("ERROR:Should return for all cases within swtich."); 11082 } 11083 11084 /// LowerOperation - Provide custom lowering hooks for some operations. 11085 /// 11086 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11087 switch (Op.getOpcode()) { 11088 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 11089 case ISD::FPOW: return lowerPow(Op, DAG); 11090 case ISD::FSIN: return lowerSin(Op, DAG); 11091 case ISD::FCOS: return lowerCos(Op, DAG); 11092 case ISD::FLOG: return lowerLog(Op, DAG); 11093 case ISD::FLOG10: return lowerLog10(Op, DAG); 11094 case ISD::FEXP: return lowerExp(Op, DAG); 11095 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 11096 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 11097 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 11098 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 11099 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 11100 case ISD::STRICT_FSETCC: 11101 case ISD::STRICT_FSETCCS: 11102 case ISD::SETCC: return LowerSETCC(Op, DAG); 11103 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 11104 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 11105 11106 case ISD::INLINEASM: 11107 case ISD::INLINEASM_BR: return LowerINLINEASM(Op, DAG); 11108 // Variable argument lowering. 11109 case ISD::VASTART: return LowerVASTART(Op, DAG); 11110 case ISD::VAARG: return LowerVAARG(Op, DAG); 11111 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 11112 11113 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 11114 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 11115 case ISD::GET_DYNAMIC_AREA_OFFSET: 11116 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 11117 11118 // Exception handling lowering. 11119 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 11120 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 11121 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 11122 11123 case ISD::LOAD: return LowerLOAD(Op, DAG); 11124 case ISD::STORE: return LowerSTORE(Op, DAG); 11125 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 11126 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 11127 case ISD::STRICT_FP_TO_UINT: 11128 case ISD::STRICT_FP_TO_SINT: 11129 case ISD::FP_TO_UINT: 11130 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 11131 case ISD::STRICT_UINT_TO_FP: 11132 case ISD::STRICT_SINT_TO_FP: 11133 case ISD::UINT_TO_FP: 11134 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 11135 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 11136 11137 // Lower 64-bit shifts. 11138 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 11139 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 11140 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 11141 11142 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 11143 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 11144 11145 // Vector-related lowering. 11146 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 11147 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 11148 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 11149 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 11150 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 11151 case ISD::MUL: return LowerMUL(Op, DAG); 11152 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 11153 case ISD::STRICT_FP_ROUND: 11154 case ISD::FP_ROUND: 11155 return LowerFP_ROUND(Op, DAG); 11156 case ISD::ROTL: return LowerROTL(Op, DAG); 11157 11158 // For counter-based loop handling. 11159 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 11160 11161 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 11162 11163 // Frame & Return address. 11164 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 11165 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 11166 11167 case ISD::INTRINSIC_VOID: 11168 return LowerINTRINSIC_VOID(Op, DAG); 11169 case ISD::BSWAP: 11170 return LowerBSWAP(Op, DAG); 11171 case ISD::ATOMIC_CMP_SWAP: 11172 return LowerATOMIC_CMP_SWAP(Op, DAG); 11173 case ISD::ATOMIC_STORE: 11174 return LowerATOMIC_LOAD_STORE(Op, DAG); 11175 } 11176 } 11177 11178 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 11179 SmallVectorImpl<SDValue>&Results, 11180 SelectionDAG &DAG) const { 11181 SDLoc dl(N); 11182 switch (N->getOpcode()) { 11183 default: 11184 llvm_unreachable("Do not know how to custom type legalize this operation!"); 11185 case ISD::ATOMIC_LOAD: { 11186 SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG); 11187 Results.push_back(Res); 11188 Results.push_back(Res.getValue(1)); 11189 break; 11190 } 11191 case ISD::READCYCLECOUNTER: { 11192 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 11193 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 11194 11195 Results.push_back( 11196 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 11197 Results.push_back(RTB.getValue(2)); 11198 break; 11199 } 11200 case ISD::INTRINSIC_W_CHAIN: { 11201 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 11202 Intrinsic::loop_decrement) 11203 break; 11204 11205 assert(N->getValueType(0) == MVT::i1 && 11206 "Unexpected result type for CTR decrement intrinsic"); 11207 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11208 N->getValueType(0)); 11209 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 11210 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 11211 N->getOperand(1)); 11212 11213 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 11214 Results.push_back(NewInt.getValue(1)); 11215 break; 11216 } 11217 case ISD::INTRINSIC_WO_CHAIN: { 11218 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 11219 case Intrinsic::ppc_pack_longdouble: 11220 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 11221 N->getOperand(2), N->getOperand(1))); 11222 break; 11223 case Intrinsic::ppc_convert_f128_to_ppcf128: 11224 Results.push_back(LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), DAG)); 11225 break; 11226 } 11227 break; 11228 } 11229 case ISD::VAARG: { 11230 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 11231 return; 11232 11233 EVT VT = N->getValueType(0); 11234 11235 if (VT == MVT::i64) { 11236 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 11237 11238 Results.push_back(NewNode); 11239 Results.push_back(NewNode.getValue(1)); 11240 } 11241 return; 11242 } 11243 case ISD::STRICT_FP_TO_SINT: 11244 case ISD::STRICT_FP_TO_UINT: 11245 case ISD::FP_TO_SINT: 11246 case ISD::FP_TO_UINT: { 11247 // LowerFP_TO_INT() can only handle f32 and f64. 11248 if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == 11249 MVT::ppcf128) 11250 return; 11251 SDValue LoweredValue = LowerFP_TO_INT(SDValue(N, 0), DAG, dl); 11252 Results.push_back(LoweredValue); 11253 if (N->isStrictFPOpcode()) 11254 Results.push_back(LoweredValue.getValue(1)); 11255 return; 11256 } 11257 case ISD::TRUNCATE: { 11258 if (!N->getValueType(0).isVector()) 11259 return; 11260 SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); 11261 if (Lowered) 11262 Results.push_back(Lowered); 11263 return; 11264 } 11265 case ISD::FSHL: 11266 case ISD::FSHR: 11267 // Don't handle funnel shifts here. 11268 return; 11269 case ISD::BITCAST: 11270 // Don't handle bitcast here. 11271 return; 11272 case ISD::FP_EXTEND: 11273 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 11274 if (Lowered) 11275 Results.push_back(Lowered); 11276 return; 11277 } 11278 } 11279 11280 //===----------------------------------------------------------------------===// 11281 // Other Lowering Code 11282 //===----------------------------------------------------------------------===// 11283 11284 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) { 11285 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 11286 Function *Func = Intrinsic::getDeclaration(M, Id); 11287 return Builder.CreateCall(Func, {}); 11288 } 11289 11290 // The mappings for emitLeading/TrailingFence is taken from 11291 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 11292 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 11293 Instruction *Inst, 11294 AtomicOrdering Ord) const { 11295 if (Ord == AtomicOrdering::SequentiallyConsistent) 11296 return callIntrinsic(Builder, Intrinsic::ppc_sync); 11297 if (isReleaseOrStronger(Ord)) 11298 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11299 return nullptr; 11300 } 11301 11302 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 11303 Instruction *Inst, 11304 AtomicOrdering Ord) const { 11305 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 11306 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 11307 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 11308 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 11309 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 11310 return Builder.CreateCall( 11311 Intrinsic::getDeclaration( 11312 Builder.GetInsertBlock()->getParent()->getParent(), 11313 Intrinsic::ppc_cfence, {Inst->getType()}), 11314 {Inst}); 11315 // FIXME: Can use isync for rmw operation. 11316 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11317 } 11318 return nullptr; 11319 } 11320 11321 MachineBasicBlock * 11322 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 11323 unsigned AtomicSize, 11324 unsigned BinOpcode, 11325 unsigned CmpOpcode, 11326 unsigned CmpPred) const { 11327 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11328 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11329 11330 auto LoadMnemonic = PPC::LDARX; 11331 auto StoreMnemonic = PPC::STDCX; 11332 switch (AtomicSize) { 11333 default: 11334 llvm_unreachable("Unexpected size of atomic entity"); 11335 case 1: 11336 LoadMnemonic = PPC::LBARX; 11337 StoreMnemonic = PPC::STBCX; 11338 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11339 break; 11340 case 2: 11341 LoadMnemonic = PPC::LHARX; 11342 StoreMnemonic = PPC::STHCX; 11343 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11344 break; 11345 case 4: 11346 LoadMnemonic = PPC::LWARX; 11347 StoreMnemonic = PPC::STWCX; 11348 break; 11349 case 8: 11350 LoadMnemonic = PPC::LDARX; 11351 StoreMnemonic = PPC::STDCX; 11352 break; 11353 } 11354 11355 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11356 MachineFunction *F = BB->getParent(); 11357 MachineFunction::iterator It = ++BB->getIterator(); 11358 11359 Register dest = MI.getOperand(0).getReg(); 11360 Register ptrA = MI.getOperand(1).getReg(); 11361 Register ptrB = MI.getOperand(2).getReg(); 11362 Register incr = MI.getOperand(3).getReg(); 11363 DebugLoc dl = MI.getDebugLoc(); 11364 11365 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11366 MachineBasicBlock *loop2MBB = 11367 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11368 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11369 F->insert(It, loopMBB); 11370 if (CmpOpcode) 11371 F->insert(It, loop2MBB); 11372 F->insert(It, exitMBB); 11373 exitMBB->splice(exitMBB->begin(), BB, 11374 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11375 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11376 11377 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11378 Register TmpReg = (!BinOpcode) ? incr : 11379 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11380 : &PPC::GPRCRegClass); 11381 11382 // thisMBB: 11383 // ... 11384 // fallthrough --> loopMBB 11385 BB->addSuccessor(loopMBB); 11386 11387 // loopMBB: 11388 // l[wd]arx dest, ptr 11389 // add r0, dest, incr 11390 // st[wd]cx. r0, ptr 11391 // bne- loopMBB 11392 // fallthrough --> exitMBB 11393 11394 // For max/min... 11395 // loopMBB: 11396 // l[wd]arx dest, ptr 11397 // cmpl?[wd] incr, dest 11398 // bgt exitMBB 11399 // loop2MBB: 11400 // st[wd]cx. dest, ptr 11401 // bne- loopMBB 11402 // fallthrough --> exitMBB 11403 11404 BB = loopMBB; 11405 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11406 .addReg(ptrA).addReg(ptrB); 11407 if (BinOpcode) 11408 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11409 if (CmpOpcode) { 11410 // Signed comparisons of byte or halfword values must be sign-extended. 11411 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11412 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11413 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11414 ExtReg).addReg(dest); 11415 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11416 .addReg(incr).addReg(ExtReg); 11417 } else 11418 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11419 .addReg(incr).addReg(dest); 11420 11421 BuildMI(BB, dl, TII->get(PPC::BCC)) 11422 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11423 BB->addSuccessor(loop2MBB); 11424 BB->addSuccessor(exitMBB); 11425 BB = loop2MBB; 11426 } 11427 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11428 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11429 BuildMI(BB, dl, TII->get(PPC::BCC)) 11430 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11431 BB->addSuccessor(loopMBB); 11432 BB->addSuccessor(exitMBB); 11433 11434 // exitMBB: 11435 // ... 11436 BB = exitMBB; 11437 return BB; 11438 } 11439 11440 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) { 11441 switch(MI.getOpcode()) { 11442 default: 11443 return false; 11444 case PPC::COPY: 11445 return TII->isSignExtended(MI); 11446 case PPC::LHA: 11447 case PPC::LHA8: 11448 case PPC::LHAU: 11449 case PPC::LHAU8: 11450 case PPC::LHAUX: 11451 case PPC::LHAUX8: 11452 case PPC::LHAX: 11453 case PPC::LHAX8: 11454 case PPC::LWA: 11455 case PPC::LWAUX: 11456 case PPC::LWAX: 11457 case PPC::LWAX_32: 11458 case PPC::LWA_32: 11459 case PPC::PLHA: 11460 case PPC::PLHA8: 11461 case PPC::PLHA8pc: 11462 case PPC::PLHApc: 11463 case PPC::PLWA: 11464 case PPC::PLWA8: 11465 case PPC::PLWA8pc: 11466 case PPC::PLWApc: 11467 case PPC::EXTSB: 11468 case PPC::EXTSB8: 11469 case PPC::EXTSB8_32_64: 11470 case PPC::EXTSB8_rec: 11471 case PPC::EXTSB_rec: 11472 case PPC::EXTSH: 11473 case PPC::EXTSH8: 11474 case PPC::EXTSH8_32_64: 11475 case PPC::EXTSH8_rec: 11476 case PPC::EXTSH_rec: 11477 case PPC::EXTSW: 11478 case PPC::EXTSWSLI: 11479 case PPC::EXTSWSLI_32_64: 11480 case PPC::EXTSWSLI_32_64_rec: 11481 case PPC::EXTSWSLI_rec: 11482 case PPC::EXTSW_32: 11483 case PPC::EXTSW_32_64: 11484 case PPC::EXTSW_32_64_rec: 11485 case PPC::EXTSW_rec: 11486 case PPC::SRAW: 11487 case PPC::SRAWI: 11488 case PPC::SRAWI_rec: 11489 case PPC::SRAW_rec: 11490 return true; 11491 } 11492 return false; 11493 } 11494 11495 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11496 MachineInstr &MI, MachineBasicBlock *BB, 11497 bool is8bit, // operation 11498 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11499 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11500 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 11501 11502 // If this is a signed comparison and the value being compared is not known 11503 // to be sign extended, sign extend it here. 11504 DebugLoc dl = MI.getDebugLoc(); 11505 MachineFunction *F = BB->getParent(); 11506 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11507 Register incr = MI.getOperand(3).getReg(); 11508 bool IsSignExtended = Register::isVirtualRegister(incr) && 11509 isSignExtended(*RegInfo.getVRegDef(incr), TII); 11510 11511 if (CmpOpcode == PPC::CMPW && !IsSignExtended) { 11512 Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11513 BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg) 11514 .addReg(MI.getOperand(3).getReg()); 11515 MI.getOperand(3).setReg(ValueReg); 11516 } 11517 // If we support part-word atomic mnemonics, just use them 11518 if (Subtarget.hasPartwordAtomics()) 11519 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11520 CmpPred); 11521 11522 // In 64 bit mode we have to use 64 bits for addresses, even though the 11523 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11524 // registers without caring whether they're 32 or 64, but here we're 11525 // doing actual arithmetic on the addresses. 11526 bool is64bit = Subtarget.isPPC64(); 11527 bool isLittleEndian = Subtarget.isLittleEndian(); 11528 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11529 11530 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11531 MachineFunction::iterator It = ++BB->getIterator(); 11532 11533 Register dest = MI.getOperand(0).getReg(); 11534 Register ptrA = MI.getOperand(1).getReg(); 11535 Register ptrB = MI.getOperand(2).getReg(); 11536 11537 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11538 MachineBasicBlock *loop2MBB = 11539 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11540 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11541 F->insert(It, loopMBB); 11542 if (CmpOpcode) 11543 F->insert(It, loop2MBB); 11544 F->insert(It, exitMBB); 11545 exitMBB->splice(exitMBB->begin(), BB, 11546 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11547 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11548 11549 const TargetRegisterClass *RC = 11550 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11551 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11552 11553 Register PtrReg = RegInfo.createVirtualRegister(RC); 11554 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11555 Register ShiftReg = 11556 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11557 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11558 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11559 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11560 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11561 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11562 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11563 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11564 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11565 Register SrwDestReg = RegInfo.createVirtualRegister(GPRC); 11566 Register Ptr1Reg; 11567 Register TmpReg = 11568 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11569 11570 // thisMBB: 11571 // ... 11572 // fallthrough --> loopMBB 11573 BB->addSuccessor(loopMBB); 11574 11575 // The 4-byte load must be aligned, while a char or short may be 11576 // anywhere in the word. Hence all this nasty bookkeeping code. 11577 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11578 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11579 // xori shift, shift1, 24 [16] 11580 // rlwinm ptr, ptr1, 0, 0, 29 11581 // slw incr2, incr, shift 11582 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11583 // slw mask, mask2, shift 11584 // loopMBB: 11585 // lwarx tmpDest, ptr 11586 // add tmp, tmpDest, incr2 11587 // andc tmp2, tmpDest, mask 11588 // and tmp3, tmp, mask 11589 // or tmp4, tmp3, tmp2 11590 // stwcx. tmp4, ptr 11591 // bne- loopMBB 11592 // fallthrough --> exitMBB 11593 // srw SrwDest, tmpDest, shift 11594 // rlwinm SrwDest, SrwDest, 0, 24 [16], 31 11595 if (ptrA != ZeroReg) { 11596 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11597 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11598 .addReg(ptrA) 11599 .addReg(ptrB); 11600 } else { 11601 Ptr1Reg = ptrB; 11602 } 11603 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11604 // mode. 11605 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11606 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11607 .addImm(3) 11608 .addImm(27) 11609 .addImm(is8bit ? 28 : 27); 11610 if (!isLittleEndian) 11611 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11612 .addReg(Shift1Reg) 11613 .addImm(is8bit ? 24 : 16); 11614 if (is64bit) 11615 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11616 .addReg(Ptr1Reg) 11617 .addImm(0) 11618 .addImm(61); 11619 else 11620 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11621 .addReg(Ptr1Reg) 11622 .addImm(0) 11623 .addImm(0) 11624 .addImm(29); 11625 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11626 if (is8bit) 11627 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11628 else { 11629 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11630 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11631 .addReg(Mask3Reg) 11632 .addImm(65535); 11633 } 11634 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11635 .addReg(Mask2Reg) 11636 .addReg(ShiftReg); 11637 11638 BB = loopMBB; 11639 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11640 .addReg(ZeroReg) 11641 .addReg(PtrReg); 11642 if (BinOpcode) 11643 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11644 .addReg(Incr2Reg) 11645 .addReg(TmpDestReg); 11646 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11647 .addReg(TmpDestReg) 11648 .addReg(MaskReg); 11649 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11650 if (CmpOpcode) { 11651 // For unsigned comparisons, we can directly compare the shifted values. 11652 // For signed comparisons we shift and sign extend. 11653 Register SReg = RegInfo.createVirtualRegister(GPRC); 11654 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11655 .addReg(TmpDestReg) 11656 .addReg(MaskReg); 11657 unsigned ValueReg = SReg; 11658 unsigned CmpReg = Incr2Reg; 11659 if (CmpOpcode == PPC::CMPW) { 11660 ValueReg = RegInfo.createVirtualRegister(GPRC); 11661 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11662 .addReg(SReg) 11663 .addReg(ShiftReg); 11664 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11665 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11666 .addReg(ValueReg); 11667 ValueReg = ValueSReg; 11668 CmpReg = incr; 11669 } 11670 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11671 .addReg(CmpReg) 11672 .addReg(ValueReg); 11673 BuildMI(BB, dl, TII->get(PPC::BCC)) 11674 .addImm(CmpPred) 11675 .addReg(PPC::CR0) 11676 .addMBB(exitMBB); 11677 BB->addSuccessor(loop2MBB); 11678 BB->addSuccessor(exitMBB); 11679 BB = loop2MBB; 11680 } 11681 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11682 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11683 .addReg(Tmp4Reg) 11684 .addReg(ZeroReg) 11685 .addReg(PtrReg); 11686 BuildMI(BB, dl, TII->get(PPC::BCC)) 11687 .addImm(PPC::PRED_NE) 11688 .addReg(PPC::CR0) 11689 .addMBB(loopMBB); 11690 BB->addSuccessor(loopMBB); 11691 BB->addSuccessor(exitMBB); 11692 11693 // exitMBB: 11694 // ... 11695 BB = exitMBB; 11696 // Since the shift amount is not a constant, we need to clear 11697 // the upper bits with a separate RLWINM. 11698 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest) 11699 .addReg(SrwDestReg) 11700 .addImm(0) 11701 .addImm(is8bit ? 24 : 16) 11702 .addImm(31); 11703 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg) 11704 .addReg(TmpDestReg) 11705 .addReg(ShiftReg); 11706 return BB; 11707 } 11708 11709 llvm::MachineBasicBlock * 11710 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11711 MachineBasicBlock *MBB) const { 11712 DebugLoc DL = MI.getDebugLoc(); 11713 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11714 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11715 11716 MachineFunction *MF = MBB->getParent(); 11717 MachineRegisterInfo &MRI = MF->getRegInfo(); 11718 11719 const BasicBlock *BB = MBB->getBasicBlock(); 11720 MachineFunction::iterator I = ++MBB->getIterator(); 11721 11722 Register DstReg = MI.getOperand(0).getReg(); 11723 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11724 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11725 Register mainDstReg = MRI.createVirtualRegister(RC); 11726 Register restoreDstReg = MRI.createVirtualRegister(RC); 11727 11728 MVT PVT = getPointerTy(MF->getDataLayout()); 11729 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11730 "Invalid Pointer Size!"); 11731 // For v = setjmp(buf), we generate 11732 // 11733 // thisMBB: 11734 // SjLjSetup mainMBB 11735 // bl mainMBB 11736 // v_restore = 1 11737 // b sinkMBB 11738 // 11739 // mainMBB: 11740 // buf[LabelOffset] = LR 11741 // v_main = 0 11742 // 11743 // sinkMBB: 11744 // v = phi(main, restore) 11745 // 11746 11747 MachineBasicBlock *thisMBB = MBB; 11748 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11749 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11750 MF->insert(I, mainMBB); 11751 MF->insert(I, sinkMBB); 11752 11753 MachineInstrBuilder MIB; 11754 11755 // Transfer the remainder of BB and its successor edges to sinkMBB. 11756 sinkMBB->splice(sinkMBB->begin(), MBB, 11757 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11758 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11759 11760 // Note that the structure of the jmp_buf used here is not compatible 11761 // with that used by libc, and is not designed to be. Specifically, it 11762 // stores only those 'reserved' registers that LLVM does not otherwise 11763 // understand how to spill. Also, by convention, by the time this 11764 // intrinsic is called, Clang has already stored the frame address in the 11765 // first slot of the buffer and stack address in the third. Following the 11766 // X86 target code, we'll store the jump address in the second slot. We also 11767 // need to save the TOC pointer (R2) to handle jumps between shared 11768 // libraries, and that will be stored in the fourth slot. The thread 11769 // identifier (R13) is not affected. 11770 11771 // thisMBB: 11772 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11773 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11774 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11775 11776 // Prepare IP either in reg. 11777 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11778 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11779 Register BufReg = MI.getOperand(1).getReg(); 11780 11781 if (Subtarget.is64BitELFABI()) { 11782 setUsesTOCBasePtr(*MBB->getParent()); 11783 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11784 .addReg(PPC::X2) 11785 .addImm(TOCOffset) 11786 .addReg(BufReg) 11787 .cloneMemRefs(MI); 11788 } 11789 11790 // Naked functions never have a base pointer, and so we use r1. For all 11791 // other functions, this decision must be delayed until during PEI. 11792 unsigned BaseReg; 11793 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11794 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11795 else 11796 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11797 11798 MIB = BuildMI(*thisMBB, MI, DL, 11799 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11800 .addReg(BaseReg) 11801 .addImm(BPOffset) 11802 .addReg(BufReg) 11803 .cloneMemRefs(MI); 11804 11805 // Setup 11806 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11807 MIB.addRegMask(TRI->getNoPreservedMask()); 11808 11809 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11810 11811 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11812 .addMBB(mainMBB); 11813 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11814 11815 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11816 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11817 11818 // mainMBB: 11819 // mainDstReg = 0 11820 MIB = 11821 BuildMI(mainMBB, DL, 11822 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11823 11824 // Store IP 11825 if (Subtarget.isPPC64()) { 11826 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11827 .addReg(LabelReg) 11828 .addImm(LabelOffset) 11829 .addReg(BufReg); 11830 } else { 11831 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11832 .addReg(LabelReg) 11833 .addImm(LabelOffset) 11834 .addReg(BufReg); 11835 } 11836 MIB.cloneMemRefs(MI); 11837 11838 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11839 mainMBB->addSuccessor(sinkMBB); 11840 11841 // sinkMBB: 11842 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11843 TII->get(PPC::PHI), DstReg) 11844 .addReg(mainDstReg).addMBB(mainMBB) 11845 .addReg(restoreDstReg).addMBB(thisMBB); 11846 11847 MI.eraseFromParent(); 11848 return sinkMBB; 11849 } 11850 11851 MachineBasicBlock * 11852 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11853 MachineBasicBlock *MBB) const { 11854 DebugLoc DL = MI.getDebugLoc(); 11855 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11856 11857 MachineFunction *MF = MBB->getParent(); 11858 MachineRegisterInfo &MRI = MF->getRegInfo(); 11859 11860 MVT PVT = getPointerTy(MF->getDataLayout()); 11861 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11862 "Invalid Pointer Size!"); 11863 11864 const TargetRegisterClass *RC = 11865 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11866 Register Tmp = MRI.createVirtualRegister(RC); 11867 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11868 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11869 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11870 unsigned BP = 11871 (PVT == MVT::i64) 11872 ? PPC::X30 11873 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11874 : PPC::R30); 11875 11876 MachineInstrBuilder MIB; 11877 11878 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11879 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11880 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11881 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11882 11883 Register BufReg = MI.getOperand(0).getReg(); 11884 11885 // Reload FP (the jumped-to function may not have had a 11886 // frame pointer, and if so, then its r31 will be restored 11887 // as necessary). 11888 if (PVT == MVT::i64) { 11889 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11890 .addImm(0) 11891 .addReg(BufReg); 11892 } else { 11893 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11894 .addImm(0) 11895 .addReg(BufReg); 11896 } 11897 MIB.cloneMemRefs(MI); 11898 11899 // Reload IP 11900 if (PVT == MVT::i64) { 11901 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11902 .addImm(LabelOffset) 11903 .addReg(BufReg); 11904 } else { 11905 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11906 .addImm(LabelOffset) 11907 .addReg(BufReg); 11908 } 11909 MIB.cloneMemRefs(MI); 11910 11911 // Reload SP 11912 if (PVT == MVT::i64) { 11913 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11914 .addImm(SPOffset) 11915 .addReg(BufReg); 11916 } else { 11917 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11918 .addImm(SPOffset) 11919 .addReg(BufReg); 11920 } 11921 MIB.cloneMemRefs(MI); 11922 11923 // Reload BP 11924 if (PVT == MVT::i64) { 11925 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11926 .addImm(BPOffset) 11927 .addReg(BufReg); 11928 } else { 11929 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11930 .addImm(BPOffset) 11931 .addReg(BufReg); 11932 } 11933 MIB.cloneMemRefs(MI); 11934 11935 // Reload TOC 11936 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11937 setUsesTOCBasePtr(*MBB->getParent()); 11938 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11939 .addImm(TOCOffset) 11940 .addReg(BufReg) 11941 .cloneMemRefs(MI); 11942 } 11943 11944 // Jump 11945 BuildMI(*MBB, MI, DL, 11946 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11947 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11948 11949 MI.eraseFromParent(); 11950 return MBB; 11951 } 11952 11953 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11954 // If the function specifically requests inline stack probes, emit them. 11955 if (MF.getFunction().hasFnAttribute("probe-stack")) 11956 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11957 "inline-asm"; 11958 return false; 11959 } 11960 11961 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11962 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11963 unsigned StackAlign = TFI->getStackAlignment(); 11964 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11965 "Unexpected stack alignment"); 11966 // The default stack probe size is 4096 if the function has no 11967 // stack-probe-size attribute. 11968 unsigned StackProbeSize = 4096; 11969 const Function &Fn = MF.getFunction(); 11970 if (Fn.hasFnAttribute("stack-probe-size")) 11971 Fn.getFnAttribute("stack-probe-size") 11972 .getValueAsString() 11973 .getAsInteger(0, StackProbeSize); 11974 // Round down to the stack alignment. 11975 StackProbeSize &= ~(StackAlign - 1); 11976 return StackProbeSize ? StackProbeSize : StackAlign; 11977 } 11978 11979 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 11980 // into three phases. In the first phase, it uses pseudo instruction 11981 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 11982 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 11983 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 11984 // MaxCallFrameSize so that it can calculate correct data area pointer. 11985 MachineBasicBlock * 11986 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 11987 MachineBasicBlock *MBB) const { 11988 const bool isPPC64 = Subtarget.isPPC64(); 11989 MachineFunction *MF = MBB->getParent(); 11990 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11991 DebugLoc DL = MI.getDebugLoc(); 11992 const unsigned ProbeSize = getStackProbeSize(*MF); 11993 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 11994 MachineRegisterInfo &MRI = MF->getRegInfo(); 11995 // The CFG of probing stack looks as 11996 // +-----+ 11997 // | MBB | 11998 // +--+--+ 11999 // | 12000 // +----v----+ 12001 // +--->+ TestMBB +---+ 12002 // | +----+----+ | 12003 // | | | 12004 // | +-----v----+ | 12005 // +---+ BlockMBB | | 12006 // +----------+ | 12007 // | 12008 // +---------+ | 12009 // | TailMBB +<--+ 12010 // +---------+ 12011 // In MBB, calculate previous frame pointer and final stack pointer. 12012 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 12013 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 12014 // TailMBB is spliced via \p MI. 12015 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 12016 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 12017 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 12018 12019 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 12020 MF->insert(MBBIter, TestMBB); 12021 MF->insert(MBBIter, BlockMBB); 12022 MF->insert(MBBIter, TailMBB); 12023 12024 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 12025 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12026 12027 Register DstReg = MI.getOperand(0).getReg(); 12028 Register NegSizeReg = MI.getOperand(1).getReg(); 12029 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 12030 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12031 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12032 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12033 12034 // Since value of NegSizeReg might be realigned in prologepilog, insert a 12035 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 12036 // NegSize. 12037 unsigned ProbeOpc; 12038 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 12039 ProbeOpc = 12040 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 12041 else 12042 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 12043 // and NegSizeReg will be allocated in the same phyreg to avoid 12044 // redundant copy when NegSizeReg has only one use which is current MI and 12045 // will be replaced by PREPARE_PROBED_ALLOCA then. 12046 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 12047 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 12048 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 12049 .addDef(ActualNegSizeReg) 12050 .addReg(NegSizeReg) 12051 .add(MI.getOperand(2)) 12052 .add(MI.getOperand(3)); 12053 12054 // Calculate final stack pointer, which equals to SP + ActualNegSize. 12055 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 12056 FinalStackPtr) 12057 .addReg(SPReg) 12058 .addReg(ActualNegSizeReg); 12059 12060 // Materialize a scratch register for update. 12061 int64_t NegProbeSize = -(int64_t)ProbeSize; 12062 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 12063 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12064 if (!isInt<16>(NegProbeSize)) { 12065 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12066 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 12067 .addImm(NegProbeSize >> 16); 12068 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 12069 ScratchReg) 12070 .addReg(TempReg) 12071 .addImm(NegProbeSize & 0xFFFF); 12072 } else 12073 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 12074 .addImm(NegProbeSize); 12075 12076 { 12077 // Probing leading residual part. 12078 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12079 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 12080 .addReg(ActualNegSizeReg) 12081 .addReg(ScratchReg); 12082 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12083 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 12084 .addReg(Div) 12085 .addReg(ScratchReg); 12086 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12087 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 12088 .addReg(Mul) 12089 .addReg(ActualNegSizeReg); 12090 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 12091 .addReg(FramePointer) 12092 .addReg(SPReg) 12093 .addReg(NegMod); 12094 } 12095 12096 { 12097 // Remaining part should be multiple of ProbeSize. 12098 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 12099 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 12100 .addReg(SPReg) 12101 .addReg(FinalStackPtr); 12102 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 12103 .addImm(PPC::PRED_EQ) 12104 .addReg(CmpResult) 12105 .addMBB(TailMBB); 12106 TestMBB->addSuccessor(BlockMBB); 12107 TestMBB->addSuccessor(TailMBB); 12108 } 12109 12110 { 12111 // Touch the block. 12112 // |P...|P...|P... 12113 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 12114 .addReg(FramePointer) 12115 .addReg(SPReg) 12116 .addReg(ScratchReg); 12117 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 12118 BlockMBB->addSuccessor(TestMBB); 12119 } 12120 12121 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 12122 // DYNAREAOFFSET pseudo instruction to get the future result. 12123 Register MaxCallFrameSizeReg = 12124 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12125 BuildMI(TailMBB, DL, 12126 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 12127 MaxCallFrameSizeReg) 12128 .add(MI.getOperand(2)) 12129 .add(MI.getOperand(3)); 12130 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 12131 .addReg(SPReg) 12132 .addReg(MaxCallFrameSizeReg); 12133 12134 // Splice instructions after MI to TailMBB. 12135 TailMBB->splice(TailMBB->end(), MBB, 12136 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 12137 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 12138 MBB->addSuccessor(TestMBB); 12139 12140 // Delete the pseudo instruction. 12141 MI.eraseFromParent(); 12142 12143 ++NumDynamicAllocaProbed; 12144 return TailMBB; 12145 } 12146 12147 MachineBasicBlock * 12148 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 12149 MachineBasicBlock *BB) const { 12150 if (MI.getOpcode() == TargetOpcode::STACKMAP || 12151 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 12152 if (Subtarget.is64BitELFABI() && 12153 MI.getOpcode() == TargetOpcode::PATCHPOINT && 12154 !Subtarget.isUsingPCRelativeCalls()) { 12155 // Call lowering should have added an r2 operand to indicate a dependence 12156 // on the TOC base pointer value. It can't however, because there is no 12157 // way to mark the dependence as implicit there, and so the stackmap code 12158 // will confuse it with a regular operand. Instead, add the dependence 12159 // here. 12160 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 12161 } 12162 12163 return emitPatchPoint(MI, BB); 12164 } 12165 12166 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 12167 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 12168 return emitEHSjLjSetJmp(MI, BB); 12169 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 12170 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 12171 return emitEHSjLjLongJmp(MI, BB); 12172 } 12173 12174 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12175 12176 // To "insert" these instructions we actually have to insert their 12177 // control-flow patterns. 12178 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 12179 MachineFunction::iterator It = ++BB->getIterator(); 12180 12181 MachineFunction *F = BB->getParent(); 12182 MachineRegisterInfo &MRI = F->getRegInfo(); 12183 12184 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12185 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 12186 MI.getOpcode() == PPC::SELECT_I8) { 12187 SmallVector<MachineOperand, 2> Cond; 12188 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12189 MI.getOpcode() == PPC::SELECT_CC_I8) 12190 Cond.push_back(MI.getOperand(4)); 12191 else 12192 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 12193 Cond.push_back(MI.getOperand(1)); 12194 12195 DebugLoc dl = MI.getDebugLoc(); 12196 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 12197 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 12198 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 12199 MI.getOpcode() == PPC::SELECT_CC_F8 || 12200 MI.getOpcode() == PPC::SELECT_CC_F16 || 12201 MI.getOpcode() == PPC::SELECT_CC_VRRC || 12202 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 12203 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 12204 MI.getOpcode() == PPC::SELECT_CC_VSRC || 12205 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 12206 MI.getOpcode() == PPC::SELECT_CC_SPE || 12207 MI.getOpcode() == PPC::SELECT_F4 || 12208 MI.getOpcode() == PPC::SELECT_F8 || 12209 MI.getOpcode() == PPC::SELECT_F16 || 12210 MI.getOpcode() == PPC::SELECT_SPE || 12211 MI.getOpcode() == PPC::SELECT_SPE4 || 12212 MI.getOpcode() == PPC::SELECT_VRRC || 12213 MI.getOpcode() == PPC::SELECT_VSFRC || 12214 MI.getOpcode() == PPC::SELECT_VSSRC || 12215 MI.getOpcode() == PPC::SELECT_VSRC) { 12216 // The incoming instruction knows the destination vreg to set, the 12217 // condition code register to branch on, the true/false values to 12218 // select between, and a branch opcode to use. 12219 12220 // thisMBB: 12221 // ... 12222 // TrueVal = ... 12223 // cmpTY ccX, r1, r2 12224 // bCC copy1MBB 12225 // fallthrough --> copy0MBB 12226 MachineBasicBlock *thisMBB = BB; 12227 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 12228 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12229 DebugLoc dl = MI.getDebugLoc(); 12230 F->insert(It, copy0MBB); 12231 F->insert(It, sinkMBB); 12232 12233 // Transfer the remainder of BB and its successor edges to sinkMBB. 12234 sinkMBB->splice(sinkMBB->begin(), BB, 12235 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12236 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12237 12238 // Next, add the true and fallthrough blocks as its successors. 12239 BB->addSuccessor(copy0MBB); 12240 BB->addSuccessor(sinkMBB); 12241 12242 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 12243 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 12244 MI.getOpcode() == PPC::SELECT_F16 || 12245 MI.getOpcode() == PPC::SELECT_SPE4 || 12246 MI.getOpcode() == PPC::SELECT_SPE || 12247 MI.getOpcode() == PPC::SELECT_VRRC || 12248 MI.getOpcode() == PPC::SELECT_VSFRC || 12249 MI.getOpcode() == PPC::SELECT_VSSRC || 12250 MI.getOpcode() == PPC::SELECT_VSRC) { 12251 BuildMI(BB, dl, TII->get(PPC::BC)) 12252 .addReg(MI.getOperand(1).getReg()) 12253 .addMBB(sinkMBB); 12254 } else { 12255 unsigned SelectPred = MI.getOperand(4).getImm(); 12256 BuildMI(BB, dl, TII->get(PPC::BCC)) 12257 .addImm(SelectPred) 12258 .addReg(MI.getOperand(1).getReg()) 12259 .addMBB(sinkMBB); 12260 } 12261 12262 // copy0MBB: 12263 // %FalseValue = ... 12264 // # fallthrough to sinkMBB 12265 BB = copy0MBB; 12266 12267 // Update machine-CFG edges 12268 BB->addSuccessor(sinkMBB); 12269 12270 // sinkMBB: 12271 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 12272 // ... 12273 BB = sinkMBB; 12274 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 12275 .addReg(MI.getOperand(3).getReg()) 12276 .addMBB(copy0MBB) 12277 .addReg(MI.getOperand(2).getReg()) 12278 .addMBB(thisMBB); 12279 } else if (MI.getOpcode() == PPC::ReadTB) { 12280 // To read the 64-bit time-base register on a 32-bit target, we read the 12281 // two halves. Should the counter have wrapped while it was being read, we 12282 // need to try again. 12283 // ... 12284 // readLoop: 12285 // mfspr Rx,TBU # load from TBU 12286 // mfspr Ry,TB # load from TB 12287 // mfspr Rz,TBU # load from TBU 12288 // cmpw crX,Rx,Rz # check if 'old'='new' 12289 // bne readLoop # branch if they're not equal 12290 // ... 12291 12292 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 12293 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12294 DebugLoc dl = MI.getDebugLoc(); 12295 F->insert(It, readMBB); 12296 F->insert(It, sinkMBB); 12297 12298 // Transfer the remainder of BB and its successor edges to sinkMBB. 12299 sinkMBB->splice(sinkMBB->begin(), BB, 12300 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12301 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12302 12303 BB->addSuccessor(readMBB); 12304 BB = readMBB; 12305 12306 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12307 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 12308 Register LoReg = MI.getOperand(0).getReg(); 12309 Register HiReg = MI.getOperand(1).getReg(); 12310 12311 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 12312 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 12313 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 12314 12315 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12316 12317 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 12318 .addReg(HiReg) 12319 .addReg(ReadAgainReg); 12320 BuildMI(BB, dl, TII->get(PPC::BCC)) 12321 .addImm(PPC::PRED_NE) 12322 .addReg(CmpReg) 12323 .addMBB(readMBB); 12324 12325 BB->addSuccessor(readMBB); 12326 BB->addSuccessor(sinkMBB); 12327 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 12328 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 12329 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 12330 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 12331 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 12332 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 12333 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 12334 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 12335 12336 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 12337 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 12338 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 12339 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 12340 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 12341 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 12342 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 12343 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 12344 12345 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 12346 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 12347 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 12348 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 12349 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 12350 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 12351 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 12352 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 12353 12354 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 12355 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 12356 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 12357 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 12358 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 12359 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 12360 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 12361 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 12362 12363 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 12364 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 12365 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 12366 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 12367 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 12368 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 12369 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 12370 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 12371 12372 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 12373 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 12374 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 12375 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 12376 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 12377 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 12378 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 12379 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 12380 12381 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 12382 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 12383 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 12384 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 12385 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 12386 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 12387 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 12388 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 12389 12390 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 12391 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 12392 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 12393 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 12394 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 12395 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 12396 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 12397 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 12398 12399 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 12400 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 12401 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 12402 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 12403 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 12404 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 12405 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 12406 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 12407 12408 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 12409 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 12410 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 12411 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 12412 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 12413 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 12414 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 12415 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 12416 12417 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 12418 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 12419 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 12420 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 12421 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 12422 BB = EmitAtomicBinary(MI, BB, 4, 0); 12423 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 12424 BB = EmitAtomicBinary(MI, BB, 8, 0); 12425 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 12426 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 12427 (Subtarget.hasPartwordAtomics() && 12428 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 12429 (Subtarget.hasPartwordAtomics() && 12430 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 12431 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 12432 12433 auto LoadMnemonic = PPC::LDARX; 12434 auto StoreMnemonic = PPC::STDCX; 12435 switch (MI.getOpcode()) { 12436 default: 12437 llvm_unreachable("Compare and swap of unknown size"); 12438 case PPC::ATOMIC_CMP_SWAP_I8: 12439 LoadMnemonic = PPC::LBARX; 12440 StoreMnemonic = PPC::STBCX; 12441 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12442 break; 12443 case PPC::ATOMIC_CMP_SWAP_I16: 12444 LoadMnemonic = PPC::LHARX; 12445 StoreMnemonic = PPC::STHCX; 12446 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12447 break; 12448 case PPC::ATOMIC_CMP_SWAP_I32: 12449 LoadMnemonic = PPC::LWARX; 12450 StoreMnemonic = PPC::STWCX; 12451 break; 12452 case PPC::ATOMIC_CMP_SWAP_I64: 12453 LoadMnemonic = PPC::LDARX; 12454 StoreMnemonic = PPC::STDCX; 12455 break; 12456 } 12457 Register dest = MI.getOperand(0).getReg(); 12458 Register ptrA = MI.getOperand(1).getReg(); 12459 Register ptrB = MI.getOperand(2).getReg(); 12460 Register oldval = MI.getOperand(3).getReg(); 12461 Register newval = MI.getOperand(4).getReg(); 12462 DebugLoc dl = MI.getDebugLoc(); 12463 12464 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12465 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12466 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12467 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12468 F->insert(It, loop1MBB); 12469 F->insert(It, loop2MBB); 12470 F->insert(It, midMBB); 12471 F->insert(It, exitMBB); 12472 exitMBB->splice(exitMBB->begin(), BB, 12473 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12474 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12475 12476 // thisMBB: 12477 // ... 12478 // fallthrough --> loopMBB 12479 BB->addSuccessor(loop1MBB); 12480 12481 // loop1MBB: 12482 // l[bhwd]arx dest, ptr 12483 // cmp[wd] dest, oldval 12484 // bne- midMBB 12485 // loop2MBB: 12486 // st[bhwd]cx. newval, ptr 12487 // bne- loopMBB 12488 // b exitBB 12489 // midMBB: 12490 // st[bhwd]cx. dest, ptr 12491 // exitBB: 12492 BB = loop1MBB; 12493 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 12494 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 12495 .addReg(oldval) 12496 .addReg(dest); 12497 BuildMI(BB, dl, TII->get(PPC::BCC)) 12498 .addImm(PPC::PRED_NE) 12499 .addReg(PPC::CR0) 12500 .addMBB(midMBB); 12501 BB->addSuccessor(loop2MBB); 12502 BB->addSuccessor(midMBB); 12503 12504 BB = loop2MBB; 12505 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12506 .addReg(newval) 12507 .addReg(ptrA) 12508 .addReg(ptrB); 12509 BuildMI(BB, dl, TII->get(PPC::BCC)) 12510 .addImm(PPC::PRED_NE) 12511 .addReg(PPC::CR0) 12512 .addMBB(loop1MBB); 12513 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12514 BB->addSuccessor(loop1MBB); 12515 BB->addSuccessor(exitMBB); 12516 12517 BB = midMBB; 12518 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12519 .addReg(dest) 12520 .addReg(ptrA) 12521 .addReg(ptrB); 12522 BB->addSuccessor(exitMBB); 12523 12524 // exitMBB: 12525 // ... 12526 BB = exitMBB; 12527 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 12528 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 12529 // We must use 64-bit registers for addresses when targeting 64-bit, 12530 // since we're actually doing arithmetic on them. Other registers 12531 // can be 32-bit. 12532 bool is64bit = Subtarget.isPPC64(); 12533 bool isLittleEndian = Subtarget.isLittleEndian(); 12534 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 12535 12536 Register dest = MI.getOperand(0).getReg(); 12537 Register ptrA = MI.getOperand(1).getReg(); 12538 Register ptrB = MI.getOperand(2).getReg(); 12539 Register oldval = MI.getOperand(3).getReg(); 12540 Register newval = MI.getOperand(4).getReg(); 12541 DebugLoc dl = MI.getDebugLoc(); 12542 12543 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12544 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12545 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12546 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12547 F->insert(It, loop1MBB); 12548 F->insert(It, loop2MBB); 12549 F->insert(It, midMBB); 12550 F->insert(It, exitMBB); 12551 exitMBB->splice(exitMBB->begin(), BB, 12552 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12553 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12554 12555 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12556 const TargetRegisterClass *RC = 12557 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12558 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12559 12560 Register PtrReg = RegInfo.createVirtualRegister(RC); 12561 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12562 Register ShiftReg = 12563 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12564 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12565 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12566 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12567 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12568 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12569 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12570 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12571 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12572 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12573 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12574 Register Ptr1Reg; 12575 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12576 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12577 // thisMBB: 12578 // ... 12579 // fallthrough --> loopMBB 12580 BB->addSuccessor(loop1MBB); 12581 12582 // The 4-byte load must be aligned, while a char or short may be 12583 // anywhere in the word. Hence all this nasty bookkeeping code. 12584 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12585 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12586 // xori shift, shift1, 24 [16] 12587 // rlwinm ptr, ptr1, 0, 0, 29 12588 // slw newval2, newval, shift 12589 // slw oldval2, oldval,shift 12590 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12591 // slw mask, mask2, shift 12592 // and newval3, newval2, mask 12593 // and oldval3, oldval2, mask 12594 // loop1MBB: 12595 // lwarx tmpDest, ptr 12596 // and tmp, tmpDest, mask 12597 // cmpw tmp, oldval3 12598 // bne- midMBB 12599 // loop2MBB: 12600 // andc tmp2, tmpDest, mask 12601 // or tmp4, tmp2, newval3 12602 // stwcx. tmp4, ptr 12603 // bne- loop1MBB 12604 // b exitBB 12605 // midMBB: 12606 // stwcx. tmpDest, ptr 12607 // exitBB: 12608 // srw dest, tmpDest, shift 12609 if (ptrA != ZeroReg) { 12610 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12611 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12612 .addReg(ptrA) 12613 .addReg(ptrB); 12614 } else { 12615 Ptr1Reg = ptrB; 12616 } 12617 12618 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12619 // mode. 12620 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12621 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12622 .addImm(3) 12623 .addImm(27) 12624 .addImm(is8bit ? 28 : 27); 12625 if (!isLittleEndian) 12626 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12627 .addReg(Shift1Reg) 12628 .addImm(is8bit ? 24 : 16); 12629 if (is64bit) 12630 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12631 .addReg(Ptr1Reg) 12632 .addImm(0) 12633 .addImm(61); 12634 else 12635 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12636 .addReg(Ptr1Reg) 12637 .addImm(0) 12638 .addImm(0) 12639 .addImm(29); 12640 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12641 .addReg(newval) 12642 .addReg(ShiftReg); 12643 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12644 .addReg(oldval) 12645 .addReg(ShiftReg); 12646 if (is8bit) 12647 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12648 else { 12649 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12650 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12651 .addReg(Mask3Reg) 12652 .addImm(65535); 12653 } 12654 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12655 .addReg(Mask2Reg) 12656 .addReg(ShiftReg); 12657 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12658 .addReg(NewVal2Reg) 12659 .addReg(MaskReg); 12660 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12661 .addReg(OldVal2Reg) 12662 .addReg(MaskReg); 12663 12664 BB = loop1MBB; 12665 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12666 .addReg(ZeroReg) 12667 .addReg(PtrReg); 12668 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12669 .addReg(TmpDestReg) 12670 .addReg(MaskReg); 12671 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12672 .addReg(TmpReg) 12673 .addReg(OldVal3Reg); 12674 BuildMI(BB, dl, TII->get(PPC::BCC)) 12675 .addImm(PPC::PRED_NE) 12676 .addReg(PPC::CR0) 12677 .addMBB(midMBB); 12678 BB->addSuccessor(loop2MBB); 12679 BB->addSuccessor(midMBB); 12680 12681 BB = loop2MBB; 12682 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12683 .addReg(TmpDestReg) 12684 .addReg(MaskReg); 12685 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12686 .addReg(Tmp2Reg) 12687 .addReg(NewVal3Reg); 12688 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12689 .addReg(Tmp4Reg) 12690 .addReg(ZeroReg) 12691 .addReg(PtrReg); 12692 BuildMI(BB, dl, TII->get(PPC::BCC)) 12693 .addImm(PPC::PRED_NE) 12694 .addReg(PPC::CR0) 12695 .addMBB(loop1MBB); 12696 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12697 BB->addSuccessor(loop1MBB); 12698 BB->addSuccessor(exitMBB); 12699 12700 BB = midMBB; 12701 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12702 .addReg(TmpDestReg) 12703 .addReg(ZeroReg) 12704 .addReg(PtrReg); 12705 BB->addSuccessor(exitMBB); 12706 12707 // exitMBB: 12708 // ... 12709 BB = exitMBB; 12710 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12711 .addReg(TmpReg) 12712 .addReg(ShiftReg); 12713 } else if (MI.getOpcode() == PPC::FADDrtz) { 12714 // This pseudo performs an FADD with rounding mode temporarily forced 12715 // to round-to-zero. We emit this via custom inserter since the FPSCR 12716 // is not modeled at the SelectionDAG level. 12717 Register Dest = MI.getOperand(0).getReg(); 12718 Register Src1 = MI.getOperand(1).getReg(); 12719 Register Src2 = MI.getOperand(2).getReg(); 12720 DebugLoc dl = MI.getDebugLoc(); 12721 12722 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12723 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12724 12725 // Save FPSCR value. 12726 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12727 12728 // Set rounding mode to round-to-zero. 12729 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 12730 .addImm(31) 12731 .addReg(PPC::RM, RegState::ImplicitDefine); 12732 12733 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 12734 .addImm(30) 12735 .addReg(PPC::RM, RegState::ImplicitDefine); 12736 12737 // Perform addition. 12738 auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) 12739 .addReg(Src1) 12740 .addReg(Src2); 12741 if (MI.getFlag(MachineInstr::NoFPExcept)) 12742 MIB.setMIFlag(MachineInstr::NoFPExcept); 12743 12744 // Restore FPSCR value. 12745 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12746 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12747 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12748 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12749 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12750 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12751 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12752 ? PPC::ANDI8_rec 12753 : PPC::ANDI_rec; 12754 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12755 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12756 12757 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12758 Register Dest = RegInfo.createVirtualRegister( 12759 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12760 12761 DebugLoc Dl = MI.getDebugLoc(); 12762 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12763 .addReg(MI.getOperand(1).getReg()) 12764 .addImm(1); 12765 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12766 MI.getOperand(0).getReg()) 12767 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12768 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12769 DebugLoc Dl = MI.getDebugLoc(); 12770 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12771 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12772 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12773 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12774 MI.getOperand(0).getReg()) 12775 .addReg(CRReg); 12776 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12777 DebugLoc Dl = MI.getDebugLoc(); 12778 unsigned Imm = MI.getOperand(1).getImm(); 12779 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12780 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12781 MI.getOperand(0).getReg()) 12782 .addReg(PPC::CR0EQ); 12783 } else if (MI.getOpcode() == PPC::SETRNDi) { 12784 DebugLoc dl = MI.getDebugLoc(); 12785 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12786 12787 // Save FPSCR value. 12788 if (MRI.use_empty(OldFPSCRReg)) 12789 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg); 12790 else 12791 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12792 12793 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12794 // the following settings: 12795 // 00 Round to nearest 12796 // 01 Round to 0 12797 // 10 Round to +inf 12798 // 11 Round to -inf 12799 12800 // When the operand is immediate, using the two least significant bits of 12801 // the immediate to set the bits 62:63 of FPSCR. 12802 unsigned Mode = MI.getOperand(1).getImm(); 12803 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12804 .addImm(31) 12805 .addReg(PPC::RM, RegState::ImplicitDefine); 12806 12807 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12808 .addImm(30) 12809 .addReg(PPC::RM, RegState::ImplicitDefine); 12810 } else if (MI.getOpcode() == PPC::SETRND) { 12811 DebugLoc dl = MI.getDebugLoc(); 12812 12813 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12814 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12815 // If the target doesn't have DirectMove, we should use stack to do the 12816 // conversion, because the target doesn't have the instructions like mtvsrd 12817 // or mfvsrd to do this conversion directly. 12818 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12819 if (Subtarget.hasDirectMove()) { 12820 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12821 .addReg(SrcReg); 12822 } else { 12823 // Use stack to do the register copy. 12824 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12825 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12826 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12827 if (RC == &PPC::F8RCRegClass) { 12828 // Copy register from F8RCRegClass to G8RCRegclass. 12829 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12830 "Unsupported RegClass."); 12831 12832 StoreOp = PPC::STFD; 12833 LoadOp = PPC::LD; 12834 } else { 12835 // Copy register from G8RCRegClass to F8RCRegclass. 12836 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12837 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12838 "Unsupported RegClass."); 12839 } 12840 12841 MachineFrameInfo &MFI = F->getFrameInfo(); 12842 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12843 12844 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12845 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12846 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12847 MFI.getObjectAlign(FrameIdx)); 12848 12849 // Store the SrcReg into the stack. 12850 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12851 .addReg(SrcReg) 12852 .addImm(0) 12853 .addFrameIndex(FrameIdx) 12854 .addMemOperand(MMOStore); 12855 12856 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12857 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12858 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12859 MFI.getObjectAlign(FrameIdx)); 12860 12861 // Load from the stack where SrcReg is stored, and save to DestReg, 12862 // so we have done the RegClass conversion from RegClass::SrcReg to 12863 // RegClass::DestReg. 12864 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12865 .addImm(0) 12866 .addFrameIndex(FrameIdx) 12867 .addMemOperand(MMOLoad); 12868 } 12869 }; 12870 12871 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12872 12873 // Save FPSCR value. 12874 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12875 12876 // When the operand is gprc register, use two least significant bits of the 12877 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12878 // 12879 // copy OldFPSCRTmpReg, OldFPSCRReg 12880 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12881 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12882 // copy NewFPSCRReg, NewFPSCRTmpReg 12883 // mtfsf 255, NewFPSCRReg 12884 MachineOperand SrcOp = MI.getOperand(1); 12885 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12886 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12887 12888 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12889 12890 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12891 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12892 12893 // The first operand of INSERT_SUBREG should be a register which has 12894 // subregisters, we only care about its RegClass, so we should use an 12895 // IMPLICIT_DEF register. 12896 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12897 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12898 .addReg(ImDefReg) 12899 .add(SrcOp) 12900 .addImm(1); 12901 12902 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12903 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12904 .addReg(OldFPSCRTmpReg) 12905 .addReg(ExtSrcReg) 12906 .addImm(0) 12907 .addImm(62); 12908 12909 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12910 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12911 12912 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12913 // bits of FPSCR. 12914 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12915 .addImm(255) 12916 .addReg(NewFPSCRReg) 12917 .addImm(0) 12918 .addImm(0); 12919 } else if (MI.getOpcode() == PPC::SETFLM) { 12920 DebugLoc Dl = MI.getDebugLoc(); 12921 12922 // Result of setflm is previous FPSCR content, so we need to save it first. 12923 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12924 if (MRI.use_empty(OldFPSCRReg)) 12925 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg); 12926 else 12927 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 12928 12929 // Put bits in 32:63 to FPSCR. 12930 Register NewFPSCRReg = MI.getOperand(1).getReg(); 12931 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 12932 .addImm(255) 12933 .addReg(NewFPSCRReg) 12934 .addImm(0) 12935 .addImm(0); 12936 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12937 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12938 return emitProbedAlloca(MI, BB); 12939 } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) { 12940 DebugLoc DL = MI.getDebugLoc(); 12941 Register Src = MI.getOperand(2).getReg(); 12942 Register Lo = MI.getOperand(0).getReg(); 12943 Register Hi = MI.getOperand(1).getReg(); 12944 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 12945 .addDef(Lo) 12946 .addUse(Src, 0, PPC::sub_gp8_x1); 12947 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 12948 .addDef(Hi) 12949 .addUse(Src, 0, PPC::sub_gp8_x0); 12950 } else if (MI.getOpcode() == PPC::LQX_PSEUDO || 12951 MI.getOpcode() == PPC::STQX_PSEUDO) { 12952 DebugLoc DL = MI.getDebugLoc(); 12953 // Ptr is used as the ptr_rc_no_r0 part 12954 // of LQ/STQ's memory operand and adding result of RA and RB, 12955 // so it has to be g8rc_and_g8rc_nox0. 12956 Register Ptr = 12957 F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 12958 Register Val = MI.getOperand(0).getReg(); 12959 Register RA = MI.getOperand(1).getReg(); 12960 Register RB = MI.getOperand(2).getReg(); 12961 BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB); 12962 BuildMI(*BB, MI, DL, 12963 MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ) 12964 : TII->get(PPC::STQ)) 12965 .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0) 12966 .addImm(0) 12967 .addReg(Ptr); 12968 } else { 12969 llvm_unreachable("Unexpected instr type to insert"); 12970 } 12971 12972 MI.eraseFromParent(); // The pseudo instruction is gone now. 12973 return BB; 12974 } 12975 12976 //===----------------------------------------------------------------------===// 12977 // Target Optimization Hooks 12978 //===----------------------------------------------------------------------===// 12979 12980 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12981 // For the estimates, convergence is quadratic, so we essentially double the 12982 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12983 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12984 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12985 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12986 if (VT.getScalarType() == MVT::f64) 12987 RefinementSteps++; 12988 return RefinementSteps; 12989 } 12990 12991 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 12992 const DenormalMode &Mode) const { 12993 // We only have VSX Vector Test for software Square Root. 12994 EVT VT = Op.getValueType(); 12995 if (!isTypeLegal(MVT::i1) || 12996 (VT != MVT::f64 && 12997 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))) 12998 return TargetLowering::getSqrtInputTest(Op, DAG, Mode); 12999 13000 SDLoc DL(Op); 13001 // The output register of FTSQRT is CR field. 13002 SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op); 13003 // ftsqrt BF,FRB 13004 // Let e_b be the unbiased exponent of the double-precision 13005 // floating-point operand in register FRB. 13006 // fe_flag is set to 1 if either of the following conditions occurs. 13007 // - The double-precision floating-point operand in register FRB is a zero, 13008 // a NaN, or an infinity, or a negative value. 13009 // - e_b is less than or equal to -970. 13010 // Otherwise fe_flag is set to 0. 13011 // Both VSX and non-VSX versions would set EQ bit in the CR if the number is 13012 // not eligible for iteration. (zero/negative/infinity/nan or unbiased 13013 // exponent is less than -970) 13014 SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32); 13015 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1, 13016 FTSQRT, SRIdxVal), 13017 0); 13018 } 13019 13020 SDValue 13021 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op, 13022 SelectionDAG &DAG) const { 13023 // We only have VSX Vector Square Root. 13024 EVT VT = Op.getValueType(); 13025 if (VT != MVT::f64 && 13026 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())) 13027 return TargetLowering::getSqrtResultForDenormInput(Op, DAG); 13028 13029 return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op); 13030 } 13031 13032 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 13033 int Enabled, int &RefinementSteps, 13034 bool &UseOneConstNR, 13035 bool Reciprocal) const { 13036 EVT VT = Operand.getValueType(); 13037 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 13038 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 13039 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 13040 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 13041 if (RefinementSteps == ReciprocalEstimate::Unspecified) 13042 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 13043 13044 // The Newton-Raphson computation with a single constant does not provide 13045 // enough accuracy on some CPUs. 13046 UseOneConstNR = !Subtarget.needsTwoConstNR(); 13047 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 13048 } 13049 return SDValue(); 13050 } 13051 13052 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 13053 int Enabled, 13054 int &RefinementSteps) const { 13055 EVT VT = Operand.getValueType(); 13056 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 13057 (VT == MVT::f64 && Subtarget.hasFRE()) || 13058 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 13059 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 13060 if (RefinementSteps == ReciprocalEstimate::Unspecified) 13061 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 13062 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 13063 } 13064 return SDValue(); 13065 } 13066 13067 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 13068 // Note: This functionality is used only when unsafe-fp-math is enabled, and 13069 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 13070 // enabled for division), this functionality is redundant with the default 13071 // combiner logic (once the division -> reciprocal/multiply transformation 13072 // has taken place). As a result, this matters more for older cores than for 13073 // newer ones. 13074 13075 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 13076 // reciprocal if there are two or more FDIVs (for embedded cores with only 13077 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 13078 switch (Subtarget.getCPUDirective()) { 13079 default: 13080 return 3; 13081 case PPC::DIR_440: 13082 case PPC::DIR_A2: 13083 case PPC::DIR_E500: 13084 case PPC::DIR_E500mc: 13085 case PPC::DIR_E5500: 13086 return 2; 13087 } 13088 } 13089 13090 // isConsecutiveLSLoc needs to work even if all adds have not yet been 13091 // collapsed, and so we need to look through chains of them. 13092 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 13093 int64_t& Offset, SelectionDAG &DAG) { 13094 if (DAG.isBaseWithConstantOffset(Loc)) { 13095 Base = Loc.getOperand(0); 13096 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 13097 13098 // The base might itself be a base plus an offset, and if so, accumulate 13099 // that as well. 13100 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 13101 } 13102 } 13103 13104 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 13105 unsigned Bytes, int Dist, 13106 SelectionDAG &DAG) { 13107 if (VT.getSizeInBits() / 8 != Bytes) 13108 return false; 13109 13110 SDValue BaseLoc = Base->getBasePtr(); 13111 if (Loc.getOpcode() == ISD::FrameIndex) { 13112 if (BaseLoc.getOpcode() != ISD::FrameIndex) 13113 return false; 13114 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 13115 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 13116 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 13117 int FS = MFI.getObjectSize(FI); 13118 int BFS = MFI.getObjectSize(BFI); 13119 if (FS != BFS || FS != (int)Bytes) return false; 13120 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 13121 } 13122 13123 SDValue Base1 = Loc, Base2 = BaseLoc; 13124 int64_t Offset1 = 0, Offset2 = 0; 13125 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 13126 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 13127 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 13128 return true; 13129 13130 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 13131 const GlobalValue *GV1 = nullptr; 13132 const GlobalValue *GV2 = nullptr; 13133 Offset1 = 0; 13134 Offset2 = 0; 13135 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 13136 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 13137 if (isGA1 && isGA2 && GV1 == GV2) 13138 return Offset1 == (Offset2 + Dist*Bytes); 13139 return false; 13140 } 13141 13142 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 13143 // not enforce equality of the chain operands. 13144 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 13145 unsigned Bytes, int Dist, 13146 SelectionDAG &DAG) { 13147 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 13148 EVT VT = LS->getMemoryVT(); 13149 SDValue Loc = LS->getBasePtr(); 13150 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 13151 } 13152 13153 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 13154 EVT VT; 13155 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13156 default: return false; 13157 case Intrinsic::ppc_altivec_lvx: 13158 case Intrinsic::ppc_altivec_lvxl: 13159 case Intrinsic::ppc_vsx_lxvw4x: 13160 case Intrinsic::ppc_vsx_lxvw4x_be: 13161 VT = MVT::v4i32; 13162 break; 13163 case Intrinsic::ppc_vsx_lxvd2x: 13164 case Intrinsic::ppc_vsx_lxvd2x_be: 13165 VT = MVT::v2f64; 13166 break; 13167 case Intrinsic::ppc_altivec_lvebx: 13168 VT = MVT::i8; 13169 break; 13170 case Intrinsic::ppc_altivec_lvehx: 13171 VT = MVT::i16; 13172 break; 13173 case Intrinsic::ppc_altivec_lvewx: 13174 VT = MVT::i32; 13175 break; 13176 } 13177 13178 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 13179 } 13180 13181 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 13182 EVT VT; 13183 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13184 default: return false; 13185 case Intrinsic::ppc_altivec_stvx: 13186 case Intrinsic::ppc_altivec_stvxl: 13187 case Intrinsic::ppc_vsx_stxvw4x: 13188 VT = MVT::v4i32; 13189 break; 13190 case Intrinsic::ppc_vsx_stxvd2x: 13191 VT = MVT::v2f64; 13192 break; 13193 case Intrinsic::ppc_vsx_stxvw4x_be: 13194 VT = MVT::v4i32; 13195 break; 13196 case Intrinsic::ppc_vsx_stxvd2x_be: 13197 VT = MVT::v2f64; 13198 break; 13199 case Intrinsic::ppc_altivec_stvebx: 13200 VT = MVT::i8; 13201 break; 13202 case Intrinsic::ppc_altivec_stvehx: 13203 VT = MVT::i16; 13204 break; 13205 case Intrinsic::ppc_altivec_stvewx: 13206 VT = MVT::i32; 13207 break; 13208 } 13209 13210 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 13211 } 13212 13213 return false; 13214 } 13215 13216 // Return true is there is a nearyby consecutive load to the one provided 13217 // (regardless of alignment). We search up and down the chain, looking though 13218 // token factors and other loads (but nothing else). As a result, a true result 13219 // indicates that it is safe to create a new consecutive load adjacent to the 13220 // load provided. 13221 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 13222 SDValue Chain = LD->getChain(); 13223 EVT VT = LD->getMemoryVT(); 13224 13225 SmallSet<SDNode *, 16> LoadRoots; 13226 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 13227 SmallSet<SDNode *, 16> Visited; 13228 13229 // First, search up the chain, branching to follow all token-factor operands. 13230 // If we find a consecutive load, then we're done, otherwise, record all 13231 // nodes just above the top-level loads and token factors. 13232 while (!Queue.empty()) { 13233 SDNode *ChainNext = Queue.pop_back_val(); 13234 if (!Visited.insert(ChainNext).second) 13235 continue; 13236 13237 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 13238 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13239 return true; 13240 13241 if (!Visited.count(ChainLD->getChain().getNode())) 13242 Queue.push_back(ChainLD->getChain().getNode()); 13243 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 13244 for (const SDUse &O : ChainNext->ops()) 13245 if (!Visited.count(O.getNode())) 13246 Queue.push_back(O.getNode()); 13247 } else 13248 LoadRoots.insert(ChainNext); 13249 } 13250 13251 // Second, search down the chain, starting from the top-level nodes recorded 13252 // in the first phase. These top-level nodes are the nodes just above all 13253 // loads and token factors. Starting with their uses, recursively look though 13254 // all loads (just the chain uses) and token factors to find a consecutive 13255 // load. 13256 Visited.clear(); 13257 Queue.clear(); 13258 13259 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 13260 IE = LoadRoots.end(); I != IE; ++I) { 13261 Queue.push_back(*I); 13262 13263 while (!Queue.empty()) { 13264 SDNode *LoadRoot = Queue.pop_back_val(); 13265 if (!Visited.insert(LoadRoot).second) 13266 continue; 13267 13268 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 13269 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13270 return true; 13271 13272 for (SDNode *U : LoadRoot->uses()) 13273 if (((isa<MemSDNode>(U) && 13274 cast<MemSDNode>(U)->getChain().getNode() == LoadRoot) || 13275 U->getOpcode() == ISD::TokenFactor) && 13276 !Visited.count(U)) 13277 Queue.push_back(U); 13278 } 13279 } 13280 13281 return false; 13282 } 13283 13284 /// This function is called when we have proved that a SETCC node can be replaced 13285 /// by subtraction (and other supporting instructions) so that the result of 13286 /// comparison is kept in a GPR instead of CR. This function is purely for 13287 /// codegen purposes and has some flags to guide the codegen process. 13288 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 13289 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 13290 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13291 13292 // Zero extend the operands to the largest legal integer. Originally, they 13293 // must be of a strictly smaller size. 13294 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 13295 DAG.getConstant(Size, DL, MVT::i32)); 13296 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 13297 DAG.getConstant(Size, DL, MVT::i32)); 13298 13299 // Swap if needed. Depends on the condition code. 13300 if (Swap) 13301 std::swap(Op0, Op1); 13302 13303 // Subtract extended integers. 13304 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 13305 13306 // Move the sign bit to the least significant position and zero out the rest. 13307 // Now the least significant bit carries the result of original comparison. 13308 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 13309 DAG.getConstant(Size - 1, DL, MVT::i32)); 13310 auto Final = Shifted; 13311 13312 // Complement the result if needed. Based on the condition code. 13313 if (Complement) 13314 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 13315 DAG.getConstant(1, DL, MVT::i64)); 13316 13317 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 13318 } 13319 13320 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 13321 DAGCombinerInfo &DCI) const { 13322 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13323 13324 SelectionDAG &DAG = DCI.DAG; 13325 SDLoc DL(N); 13326 13327 // Size of integers being compared has a critical role in the following 13328 // analysis, so we prefer to do this when all types are legal. 13329 if (!DCI.isAfterLegalizeDAG()) 13330 return SDValue(); 13331 13332 // If all users of SETCC extend its value to a legal integer type 13333 // then we replace SETCC with a subtraction 13334 for (const SDNode *U : N->uses()) 13335 if (U->getOpcode() != ISD::ZERO_EXTEND) 13336 return SDValue(); 13337 13338 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13339 auto OpSize = N->getOperand(0).getValueSizeInBits(); 13340 13341 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 13342 13343 if (OpSize < Size) { 13344 switch (CC) { 13345 default: break; 13346 case ISD::SETULT: 13347 return generateEquivalentSub(N, Size, false, false, DL, DAG); 13348 case ISD::SETULE: 13349 return generateEquivalentSub(N, Size, true, true, DL, DAG); 13350 case ISD::SETUGT: 13351 return generateEquivalentSub(N, Size, false, true, DL, DAG); 13352 case ISD::SETUGE: 13353 return generateEquivalentSub(N, Size, true, false, DL, DAG); 13354 } 13355 } 13356 13357 return SDValue(); 13358 } 13359 13360 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 13361 DAGCombinerInfo &DCI) const { 13362 SelectionDAG &DAG = DCI.DAG; 13363 SDLoc dl(N); 13364 13365 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 13366 // If we're tracking CR bits, we need to be careful that we don't have: 13367 // trunc(binary-ops(zext(x), zext(y))) 13368 // or 13369 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 13370 // such that we're unnecessarily moving things into GPRs when it would be 13371 // better to keep them in CR bits. 13372 13373 // Note that trunc here can be an actual i1 trunc, or can be the effective 13374 // truncation that comes from a setcc or select_cc. 13375 if (N->getOpcode() == ISD::TRUNCATE && 13376 N->getValueType(0) != MVT::i1) 13377 return SDValue(); 13378 13379 if (N->getOperand(0).getValueType() != MVT::i32 && 13380 N->getOperand(0).getValueType() != MVT::i64) 13381 return SDValue(); 13382 13383 if (N->getOpcode() == ISD::SETCC || 13384 N->getOpcode() == ISD::SELECT_CC) { 13385 // If we're looking at a comparison, then we need to make sure that the 13386 // high bits (all except for the first) don't matter the result. 13387 ISD::CondCode CC = 13388 cast<CondCodeSDNode>(N->getOperand( 13389 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 13390 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 13391 13392 if (ISD::isSignedIntSetCC(CC)) { 13393 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 13394 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 13395 return SDValue(); 13396 } else if (ISD::isUnsignedIntSetCC(CC)) { 13397 if (!DAG.MaskedValueIsZero(N->getOperand(0), 13398 APInt::getHighBitsSet(OpBits, OpBits-1)) || 13399 !DAG.MaskedValueIsZero(N->getOperand(1), 13400 APInt::getHighBitsSet(OpBits, OpBits-1))) 13401 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 13402 : SDValue()); 13403 } else { 13404 // This is neither a signed nor an unsigned comparison, just make sure 13405 // that the high bits are equal. 13406 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 13407 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 13408 13409 // We don't really care about what is known about the first bit (if 13410 // anything), so pretend that it is known zero for both to ensure they can 13411 // be compared as constants. 13412 Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0); 13413 Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0); 13414 13415 if (!Op1Known.isConstant() || !Op2Known.isConstant() || 13416 Op1Known.getConstant() != Op2Known.getConstant()) 13417 return SDValue(); 13418 } 13419 } 13420 13421 // We now know that the higher-order bits are irrelevant, we just need to 13422 // make sure that all of the intermediate operations are bit operations, and 13423 // all inputs are extensions. 13424 if (N->getOperand(0).getOpcode() != ISD::AND && 13425 N->getOperand(0).getOpcode() != ISD::OR && 13426 N->getOperand(0).getOpcode() != ISD::XOR && 13427 N->getOperand(0).getOpcode() != ISD::SELECT && 13428 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 13429 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 13430 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 13431 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 13432 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 13433 return SDValue(); 13434 13435 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 13436 N->getOperand(1).getOpcode() != ISD::AND && 13437 N->getOperand(1).getOpcode() != ISD::OR && 13438 N->getOperand(1).getOpcode() != ISD::XOR && 13439 N->getOperand(1).getOpcode() != ISD::SELECT && 13440 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 13441 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 13442 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 13443 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 13444 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 13445 return SDValue(); 13446 13447 SmallVector<SDValue, 4> Inputs; 13448 SmallVector<SDValue, 8> BinOps, PromOps; 13449 SmallPtrSet<SDNode *, 16> Visited; 13450 13451 for (unsigned i = 0; i < 2; ++i) { 13452 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13453 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13454 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13455 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13456 isa<ConstantSDNode>(N->getOperand(i))) 13457 Inputs.push_back(N->getOperand(i)); 13458 else 13459 BinOps.push_back(N->getOperand(i)); 13460 13461 if (N->getOpcode() == ISD::TRUNCATE) 13462 break; 13463 } 13464 13465 // Visit all inputs, collect all binary operations (and, or, xor and 13466 // select) that are all fed by extensions. 13467 while (!BinOps.empty()) { 13468 SDValue BinOp = BinOps.pop_back_val(); 13469 13470 if (!Visited.insert(BinOp.getNode()).second) 13471 continue; 13472 13473 PromOps.push_back(BinOp); 13474 13475 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13476 // The condition of the select is not promoted. 13477 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13478 continue; 13479 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13480 continue; 13481 13482 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13483 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13484 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13485 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13486 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13487 Inputs.push_back(BinOp.getOperand(i)); 13488 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13489 BinOp.getOperand(i).getOpcode() == ISD::OR || 13490 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13491 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13492 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 13493 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13494 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13495 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13496 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 13497 BinOps.push_back(BinOp.getOperand(i)); 13498 } else { 13499 // We have an input that is not an extension or another binary 13500 // operation; we'll abort this transformation. 13501 return SDValue(); 13502 } 13503 } 13504 } 13505 13506 // Make sure that this is a self-contained cluster of operations (which 13507 // is not quite the same thing as saying that everything has only one 13508 // use). 13509 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13510 if (isa<ConstantSDNode>(Inputs[i])) 13511 continue; 13512 13513 for (const SDNode *User : Inputs[i].getNode()->uses()) { 13514 if (User != N && !Visited.count(User)) 13515 return SDValue(); 13516 13517 // Make sure that we're not going to promote the non-output-value 13518 // operand(s) or SELECT or SELECT_CC. 13519 // FIXME: Although we could sometimes handle this, and it does occur in 13520 // practice that one of the condition inputs to the select is also one of 13521 // the outputs, we currently can't deal with this. 13522 if (User->getOpcode() == ISD::SELECT) { 13523 if (User->getOperand(0) == Inputs[i]) 13524 return SDValue(); 13525 } else if (User->getOpcode() == ISD::SELECT_CC) { 13526 if (User->getOperand(0) == Inputs[i] || 13527 User->getOperand(1) == Inputs[i]) 13528 return SDValue(); 13529 } 13530 } 13531 } 13532 13533 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13534 for (const SDNode *User : PromOps[i].getNode()->uses()) { 13535 if (User != N && !Visited.count(User)) 13536 return SDValue(); 13537 13538 // Make sure that we're not going to promote the non-output-value 13539 // operand(s) or SELECT or SELECT_CC. 13540 // FIXME: Although we could sometimes handle this, and it does occur in 13541 // practice that one of the condition inputs to the select is also one of 13542 // the outputs, we currently can't deal with this. 13543 if (User->getOpcode() == ISD::SELECT) { 13544 if (User->getOperand(0) == PromOps[i]) 13545 return SDValue(); 13546 } else if (User->getOpcode() == ISD::SELECT_CC) { 13547 if (User->getOperand(0) == PromOps[i] || 13548 User->getOperand(1) == PromOps[i]) 13549 return SDValue(); 13550 } 13551 } 13552 } 13553 13554 // Replace all inputs with the extension operand. 13555 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13556 // Constants may have users outside the cluster of to-be-promoted nodes, 13557 // and so we need to replace those as we do the promotions. 13558 if (isa<ConstantSDNode>(Inputs[i])) 13559 continue; 13560 else 13561 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 13562 } 13563 13564 std::list<HandleSDNode> PromOpHandles; 13565 for (auto &PromOp : PromOps) 13566 PromOpHandles.emplace_back(PromOp); 13567 13568 // Replace all operations (these are all the same, but have a different 13569 // (i1) return type). DAG.getNode will validate that the types of 13570 // a binary operator match, so go through the list in reverse so that 13571 // we've likely promoted both operands first. Any intermediate truncations or 13572 // extensions disappear. 13573 while (!PromOpHandles.empty()) { 13574 SDValue PromOp = PromOpHandles.back().getValue(); 13575 PromOpHandles.pop_back(); 13576 13577 if (PromOp.getOpcode() == ISD::TRUNCATE || 13578 PromOp.getOpcode() == ISD::SIGN_EXTEND || 13579 PromOp.getOpcode() == ISD::ZERO_EXTEND || 13580 PromOp.getOpcode() == ISD::ANY_EXTEND) { 13581 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 13582 PromOp.getOperand(0).getValueType() != MVT::i1) { 13583 // The operand is not yet ready (see comment below). 13584 PromOpHandles.emplace_front(PromOp); 13585 continue; 13586 } 13587 13588 SDValue RepValue = PromOp.getOperand(0); 13589 if (isa<ConstantSDNode>(RepValue)) 13590 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 13591 13592 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 13593 continue; 13594 } 13595 13596 unsigned C; 13597 switch (PromOp.getOpcode()) { 13598 default: C = 0; break; 13599 case ISD::SELECT: C = 1; break; 13600 case ISD::SELECT_CC: C = 2; break; 13601 } 13602 13603 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13604 PromOp.getOperand(C).getValueType() != MVT::i1) || 13605 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13606 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13607 // The to-be-promoted operands of this node have not yet been 13608 // promoted (this should be rare because we're going through the 13609 // list backward, but if one of the operands has several users in 13610 // this cluster of to-be-promoted nodes, it is possible). 13611 PromOpHandles.emplace_front(PromOp); 13612 continue; 13613 } 13614 13615 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13616 PromOp.getNode()->op_end()); 13617 13618 // If there are any constant inputs, make sure they're replaced now. 13619 for (unsigned i = 0; i < 2; ++i) 13620 if (isa<ConstantSDNode>(Ops[C+i])) 13621 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13622 13623 DAG.ReplaceAllUsesOfValueWith(PromOp, 13624 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13625 } 13626 13627 // Now we're left with the initial truncation itself. 13628 if (N->getOpcode() == ISD::TRUNCATE) 13629 return N->getOperand(0); 13630 13631 // Otherwise, this is a comparison. The operands to be compared have just 13632 // changed type (to i1), but everything else is the same. 13633 return SDValue(N, 0); 13634 } 13635 13636 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13637 DAGCombinerInfo &DCI) const { 13638 SelectionDAG &DAG = DCI.DAG; 13639 SDLoc dl(N); 13640 13641 // If we're tracking CR bits, we need to be careful that we don't have: 13642 // zext(binary-ops(trunc(x), trunc(y))) 13643 // or 13644 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13645 // such that we're unnecessarily moving things into CR bits that can more 13646 // efficiently stay in GPRs. Note that if we're not certain that the high 13647 // bits are set as required by the final extension, we still may need to do 13648 // some masking to get the proper behavior. 13649 13650 // This same functionality is important on PPC64 when dealing with 13651 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13652 // the return values of functions. Because it is so similar, it is handled 13653 // here as well. 13654 13655 if (N->getValueType(0) != MVT::i32 && 13656 N->getValueType(0) != MVT::i64) 13657 return SDValue(); 13658 13659 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13660 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13661 return SDValue(); 13662 13663 if (N->getOperand(0).getOpcode() != ISD::AND && 13664 N->getOperand(0).getOpcode() != ISD::OR && 13665 N->getOperand(0).getOpcode() != ISD::XOR && 13666 N->getOperand(0).getOpcode() != ISD::SELECT && 13667 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13668 return SDValue(); 13669 13670 SmallVector<SDValue, 4> Inputs; 13671 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13672 SmallPtrSet<SDNode *, 16> Visited; 13673 13674 // Visit all inputs, collect all binary operations (and, or, xor and 13675 // select) that are all fed by truncations. 13676 while (!BinOps.empty()) { 13677 SDValue BinOp = BinOps.pop_back_val(); 13678 13679 if (!Visited.insert(BinOp.getNode()).second) 13680 continue; 13681 13682 PromOps.push_back(BinOp); 13683 13684 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13685 // The condition of the select is not promoted. 13686 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13687 continue; 13688 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13689 continue; 13690 13691 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13692 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13693 Inputs.push_back(BinOp.getOperand(i)); 13694 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13695 BinOp.getOperand(i).getOpcode() == ISD::OR || 13696 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13697 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13698 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13699 BinOps.push_back(BinOp.getOperand(i)); 13700 } else { 13701 // We have an input that is not a truncation or another binary 13702 // operation; we'll abort this transformation. 13703 return SDValue(); 13704 } 13705 } 13706 } 13707 13708 // The operands of a select that must be truncated when the select is 13709 // promoted because the operand is actually part of the to-be-promoted set. 13710 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13711 13712 // Make sure that this is a self-contained cluster of operations (which 13713 // is not quite the same thing as saying that everything has only one 13714 // use). 13715 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13716 if (isa<ConstantSDNode>(Inputs[i])) 13717 continue; 13718 13719 for (SDNode *User : Inputs[i].getNode()->uses()) { 13720 if (User != N && !Visited.count(User)) 13721 return SDValue(); 13722 13723 // If we're going to promote the non-output-value operand(s) or SELECT or 13724 // SELECT_CC, record them for truncation. 13725 if (User->getOpcode() == ISD::SELECT) { 13726 if (User->getOperand(0) == Inputs[i]) 13727 SelectTruncOp[0].insert(std::make_pair(User, 13728 User->getOperand(0).getValueType())); 13729 } else if (User->getOpcode() == ISD::SELECT_CC) { 13730 if (User->getOperand(0) == Inputs[i]) 13731 SelectTruncOp[0].insert(std::make_pair(User, 13732 User->getOperand(0).getValueType())); 13733 if (User->getOperand(1) == Inputs[i]) 13734 SelectTruncOp[1].insert(std::make_pair(User, 13735 User->getOperand(1).getValueType())); 13736 } 13737 } 13738 } 13739 13740 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13741 for (SDNode *User : PromOps[i].getNode()->uses()) { 13742 if (User != N && !Visited.count(User)) 13743 return SDValue(); 13744 13745 // If we're going to promote the non-output-value operand(s) or SELECT or 13746 // SELECT_CC, record them for truncation. 13747 if (User->getOpcode() == ISD::SELECT) { 13748 if (User->getOperand(0) == PromOps[i]) 13749 SelectTruncOp[0].insert(std::make_pair(User, 13750 User->getOperand(0).getValueType())); 13751 } else if (User->getOpcode() == ISD::SELECT_CC) { 13752 if (User->getOperand(0) == PromOps[i]) 13753 SelectTruncOp[0].insert(std::make_pair(User, 13754 User->getOperand(0).getValueType())); 13755 if (User->getOperand(1) == PromOps[i]) 13756 SelectTruncOp[1].insert(std::make_pair(User, 13757 User->getOperand(1).getValueType())); 13758 } 13759 } 13760 } 13761 13762 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13763 bool ReallyNeedsExt = false; 13764 if (N->getOpcode() != ISD::ANY_EXTEND) { 13765 // If all of the inputs are not already sign/zero extended, then 13766 // we'll still need to do that at the end. 13767 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13768 if (isa<ConstantSDNode>(Inputs[i])) 13769 continue; 13770 13771 unsigned OpBits = 13772 Inputs[i].getOperand(0).getValueSizeInBits(); 13773 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13774 13775 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13776 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13777 APInt::getHighBitsSet(OpBits, 13778 OpBits-PromBits))) || 13779 (N->getOpcode() == ISD::SIGN_EXTEND && 13780 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13781 (OpBits-(PromBits-1)))) { 13782 ReallyNeedsExt = true; 13783 break; 13784 } 13785 } 13786 } 13787 13788 // Replace all inputs, either with the truncation operand, or a 13789 // truncation or extension to the final output type. 13790 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13791 // Constant inputs need to be replaced with the to-be-promoted nodes that 13792 // use them because they might have users outside of the cluster of 13793 // promoted nodes. 13794 if (isa<ConstantSDNode>(Inputs[i])) 13795 continue; 13796 13797 SDValue InSrc = Inputs[i].getOperand(0); 13798 if (Inputs[i].getValueType() == N->getValueType(0)) 13799 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13800 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13801 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13802 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13803 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13804 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13805 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13806 else 13807 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13808 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13809 } 13810 13811 std::list<HandleSDNode> PromOpHandles; 13812 for (auto &PromOp : PromOps) 13813 PromOpHandles.emplace_back(PromOp); 13814 13815 // Replace all operations (these are all the same, but have a different 13816 // (promoted) return type). DAG.getNode will validate that the types of 13817 // a binary operator match, so go through the list in reverse so that 13818 // we've likely promoted both operands first. 13819 while (!PromOpHandles.empty()) { 13820 SDValue PromOp = PromOpHandles.back().getValue(); 13821 PromOpHandles.pop_back(); 13822 13823 unsigned C; 13824 switch (PromOp.getOpcode()) { 13825 default: C = 0; break; 13826 case ISD::SELECT: C = 1; break; 13827 case ISD::SELECT_CC: C = 2; break; 13828 } 13829 13830 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13831 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13832 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13833 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13834 // The to-be-promoted operands of this node have not yet been 13835 // promoted (this should be rare because we're going through the 13836 // list backward, but if one of the operands has several users in 13837 // this cluster of to-be-promoted nodes, it is possible). 13838 PromOpHandles.emplace_front(PromOp); 13839 continue; 13840 } 13841 13842 // For SELECT and SELECT_CC nodes, we do a similar check for any 13843 // to-be-promoted comparison inputs. 13844 if (PromOp.getOpcode() == ISD::SELECT || 13845 PromOp.getOpcode() == ISD::SELECT_CC) { 13846 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13847 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13848 (SelectTruncOp[1].count(PromOp.getNode()) && 13849 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13850 PromOpHandles.emplace_front(PromOp); 13851 continue; 13852 } 13853 } 13854 13855 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13856 PromOp.getNode()->op_end()); 13857 13858 // If this node has constant inputs, then they'll need to be promoted here. 13859 for (unsigned i = 0; i < 2; ++i) { 13860 if (!isa<ConstantSDNode>(Ops[C+i])) 13861 continue; 13862 if (Ops[C+i].getValueType() == N->getValueType(0)) 13863 continue; 13864 13865 if (N->getOpcode() == ISD::SIGN_EXTEND) 13866 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13867 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13868 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13869 else 13870 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13871 } 13872 13873 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13874 // truncate them again to the original value type. 13875 if (PromOp.getOpcode() == ISD::SELECT || 13876 PromOp.getOpcode() == ISD::SELECT_CC) { 13877 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13878 if (SI0 != SelectTruncOp[0].end()) 13879 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13880 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13881 if (SI1 != SelectTruncOp[1].end()) 13882 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13883 } 13884 13885 DAG.ReplaceAllUsesOfValueWith(PromOp, 13886 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13887 } 13888 13889 // Now we're left with the initial extension itself. 13890 if (!ReallyNeedsExt) 13891 return N->getOperand(0); 13892 13893 // To zero extend, just mask off everything except for the first bit (in the 13894 // i1 case). 13895 if (N->getOpcode() == ISD::ZERO_EXTEND) 13896 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13897 DAG.getConstant(APInt::getLowBitsSet( 13898 N->getValueSizeInBits(0), PromBits), 13899 dl, N->getValueType(0))); 13900 13901 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13902 "Invalid extension type"); 13903 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13904 SDValue ShiftCst = 13905 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13906 return DAG.getNode( 13907 ISD::SRA, dl, N->getValueType(0), 13908 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13909 ShiftCst); 13910 } 13911 13912 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13913 DAGCombinerInfo &DCI) const { 13914 assert(N->getOpcode() == ISD::SETCC && 13915 "Should be called with a SETCC node"); 13916 13917 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13918 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13919 SDValue LHS = N->getOperand(0); 13920 SDValue RHS = N->getOperand(1); 13921 13922 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13923 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13924 LHS.hasOneUse()) 13925 std::swap(LHS, RHS); 13926 13927 // x == 0-y --> x+y == 0 13928 // x != 0-y --> x+y != 0 13929 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13930 RHS.hasOneUse()) { 13931 SDLoc DL(N); 13932 SelectionDAG &DAG = DCI.DAG; 13933 EVT VT = N->getValueType(0); 13934 EVT OpVT = LHS.getValueType(); 13935 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13936 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13937 } 13938 } 13939 13940 return DAGCombineTruncBoolExt(N, DCI); 13941 } 13942 13943 // Is this an extending load from an f32 to an f64? 13944 static bool isFPExtLoad(SDValue Op) { 13945 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13946 return LD->getExtensionType() == ISD::EXTLOAD && 13947 Op.getValueType() == MVT::f64; 13948 return false; 13949 } 13950 13951 /// Reduces the number of fp-to-int conversion when building a vector. 13952 /// 13953 /// If this vector is built out of floating to integer conversions, 13954 /// transform it to a vector built out of floating point values followed by a 13955 /// single floating to integer conversion of the vector. 13956 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13957 /// becomes (fptosi (build_vector ($A, $B, ...))) 13958 SDValue PPCTargetLowering:: 13959 combineElementTruncationToVectorTruncation(SDNode *N, 13960 DAGCombinerInfo &DCI) const { 13961 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13962 "Should be called with a BUILD_VECTOR node"); 13963 13964 SelectionDAG &DAG = DCI.DAG; 13965 SDLoc dl(N); 13966 13967 SDValue FirstInput = N->getOperand(0); 13968 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13969 "The input operand must be an fp-to-int conversion."); 13970 13971 // This combine happens after legalization so the fp_to_[su]i nodes are 13972 // already converted to PPCSISD nodes. 13973 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13974 if (FirstConversion == PPCISD::FCTIDZ || 13975 FirstConversion == PPCISD::FCTIDUZ || 13976 FirstConversion == PPCISD::FCTIWZ || 13977 FirstConversion == PPCISD::FCTIWUZ) { 13978 bool IsSplat = true; 13979 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13980 FirstConversion == PPCISD::FCTIWUZ; 13981 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13982 SmallVector<SDValue, 4> Ops; 13983 EVT TargetVT = N->getValueType(0); 13984 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13985 SDValue NextOp = N->getOperand(i); 13986 if (NextOp.getOpcode() != PPCISD::MFVSR) 13987 return SDValue(); 13988 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13989 if (NextConversion != FirstConversion) 13990 return SDValue(); 13991 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13992 // This is not valid if the input was originally double precision. It is 13993 // also not profitable to do unless this is an extending load in which 13994 // case doing this combine will allow us to combine consecutive loads. 13995 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13996 return SDValue(); 13997 if (N->getOperand(i) != FirstInput) 13998 IsSplat = false; 13999 } 14000 14001 // If this is a splat, we leave it as-is since there will be only a single 14002 // fp-to-int conversion followed by a splat of the integer. This is better 14003 // for 32-bit and smaller ints and neutral for 64-bit ints. 14004 if (IsSplat) 14005 return SDValue(); 14006 14007 // Now that we know we have the right type of node, get its operands 14008 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 14009 SDValue In = N->getOperand(i).getOperand(0); 14010 if (Is32Bit) { 14011 // For 32-bit values, we need to add an FP_ROUND node (if we made it 14012 // here, we know that all inputs are extending loads so this is safe). 14013 if (In.isUndef()) 14014 Ops.push_back(DAG.getUNDEF(SrcVT)); 14015 else { 14016 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 14017 MVT::f32, In.getOperand(0), 14018 DAG.getIntPtrConstant(1, dl)); 14019 Ops.push_back(Trunc); 14020 } 14021 } else 14022 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 14023 } 14024 14025 unsigned Opcode; 14026 if (FirstConversion == PPCISD::FCTIDZ || 14027 FirstConversion == PPCISD::FCTIWZ) 14028 Opcode = ISD::FP_TO_SINT; 14029 else 14030 Opcode = ISD::FP_TO_UINT; 14031 14032 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 14033 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 14034 return DAG.getNode(Opcode, dl, TargetVT, BV); 14035 } 14036 return SDValue(); 14037 } 14038 14039 /// Reduce the number of loads when building a vector. 14040 /// 14041 /// Building a vector out of multiple loads can be converted to a load 14042 /// of the vector type if the loads are consecutive. If the loads are 14043 /// consecutive but in descending order, a shuffle is added at the end 14044 /// to reorder the vector. 14045 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 14046 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14047 "Should be called with a BUILD_VECTOR node"); 14048 14049 SDLoc dl(N); 14050 14051 // Return early for non byte-sized type, as they can't be consecutive. 14052 if (!N->getValueType(0).getVectorElementType().isByteSized()) 14053 return SDValue(); 14054 14055 bool InputsAreConsecutiveLoads = true; 14056 bool InputsAreReverseConsecutive = true; 14057 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 14058 SDValue FirstInput = N->getOperand(0); 14059 bool IsRoundOfExtLoad = false; 14060 14061 if (FirstInput.getOpcode() == ISD::FP_ROUND && 14062 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 14063 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 14064 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 14065 } 14066 // Not a build vector of (possibly fp_rounded) loads. 14067 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 14068 N->getNumOperands() == 1) 14069 return SDValue(); 14070 14071 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 14072 // If any inputs are fp_round(extload), they all must be. 14073 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 14074 return SDValue(); 14075 14076 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 14077 N->getOperand(i); 14078 if (NextInput.getOpcode() != ISD::LOAD) 14079 return SDValue(); 14080 14081 SDValue PreviousInput = 14082 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 14083 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 14084 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 14085 14086 // If any inputs are fp_round(extload), they all must be. 14087 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 14088 return SDValue(); 14089 14090 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 14091 InputsAreConsecutiveLoads = false; 14092 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 14093 InputsAreReverseConsecutive = false; 14094 14095 // Exit early if the loads are neither consecutive nor reverse consecutive. 14096 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 14097 return SDValue(); 14098 } 14099 14100 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 14101 "The loads cannot be both consecutive and reverse consecutive."); 14102 14103 SDValue FirstLoadOp = 14104 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 14105 SDValue LastLoadOp = 14106 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 14107 N->getOperand(N->getNumOperands()-1); 14108 14109 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 14110 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 14111 if (InputsAreConsecutiveLoads) { 14112 assert(LD1 && "Input needs to be a LoadSDNode."); 14113 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 14114 LD1->getBasePtr(), LD1->getPointerInfo(), 14115 LD1->getAlignment()); 14116 } 14117 if (InputsAreReverseConsecutive) { 14118 assert(LDL && "Input needs to be a LoadSDNode."); 14119 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 14120 LDL->getBasePtr(), LDL->getPointerInfo(), 14121 LDL->getAlignment()); 14122 SmallVector<int, 16> Ops; 14123 for (int i = N->getNumOperands() - 1; i >= 0; i--) 14124 Ops.push_back(i); 14125 14126 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 14127 DAG.getUNDEF(N->getValueType(0)), Ops); 14128 } 14129 return SDValue(); 14130 } 14131 14132 // This function adds the required vector_shuffle needed to get 14133 // the elements of the vector extract in the correct position 14134 // as specified by the CorrectElems encoding. 14135 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 14136 SDValue Input, uint64_t Elems, 14137 uint64_t CorrectElems) { 14138 SDLoc dl(N); 14139 14140 unsigned NumElems = Input.getValueType().getVectorNumElements(); 14141 SmallVector<int, 16> ShuffleMask(NumElems, -1); 14142 14143 // Knowing the element indices being extracted from the original 14144 // vector and the order in which they're being inserted, just put 14145 // them at element indices required for the instruction. 14146 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14147 if (DAG.getDataLayout().isLittleEndian()) 14148 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 14149 else 14150 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 14151 CorrectElems = CorrectElems >> 8; 14152 Elems = Elems >> 8; 14153 } 14154 14155 SDValue Shuffle = 14156 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 14157 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 14158 14159 EVT VT = N->getValueType(0); 14160 SDValue Conv = DAG.getBitcast(VT, Shuffle); 14161 14162 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 14163 Input.getValueType().getVectorElementType(), 14164 VT.getVectorNumElements()); 14165 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 14166 DAG.getValueType(ExtVT)); 14167 } 14168 14169 // Look for build vector patterns where input operands come from sign 14170 // extended vector_extract elements of specific indices. If the correct indices 14171 // aren't used, add a vector shuffle to fix up the indices and create 14172 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 14173 // during instruction selection. 14174 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 14175 // This array encodes the indices that the vector sign extend instructions 14176 // extract from when extending from one type to another for both BE and LE. 14177 // The right nibble of each byte corresponds to the LE incides. 14178 // and the left nibble of each byte corresponds to the BE incides. 14179 // For example: 0x3074B8FC byte->word 14180 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 14181 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 14182 // For example: 0x000070F8 byte->double word 14183 // For LE: the allowed indices are: 0x0,0x8 14184 // For BE: the allowed indices are: 0x7,0xF 14185 uint64_t TargetElems[] = { 14186 0x3074B8FC, // b->w 14187 0x000070F8, // b->d 14188 0x10325476, // h->w 14189 0x00003074, // h->d 14190 0x00001032, // w->d 14191 }; 14192 14193 uint64_t Elems = 0; 14194 int Index; 14195 SDValue Input; 14196 14197 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 14198 if (!Op) 14199 return false; 14200 if (Op.getOpcode() != ISD::SIGN_EXTEND && 14201 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 14202 return false; 14203 14204 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 14205 // of the right width. 14206 SDValue Extract = Op.getOperand(0); 14207 if (Extract.getOpcode() == ISD::ANY_EXTEND) 14208 Extract = Extract.getOperand(0); 14209 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14210 return false; 14211 14212 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 14213 if (!ExtOp) 14214 return false; 14215 14216 Index = ExtOp->getZExtValue(); 14217 if (Input && Input != Extract.getOperand(0)) 14218 return false; 14219 14220 if (!Input) 14221 Input = Extract.getOperand(0); 14222 14223 Elems = Elems << 8; 14224 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 14225 Elems |= Index; 14226 14227 return true; 14228 }; 14229 14230 // If the build vector operands aren't sign extended vector extracts, 14231 // of the same input vector, then return. 14232 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14233 if (!isSExtOfVecExtract(N->getOperand(i))) { 14234 return SDValue(); 14235 } 14236 } 14237 14238 // If the vector extract indicies are not correct, add the appropriate 14239 // vector_shuffle. 14240 int TgtElemArrayIdx; 14241 int InputSize = Input.getValueType().getScalarSizeInBits(); 14242 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 14243 if (InputSize + OutputSize == 40) 14244 TgtElemArrayIdx = 0; 14245 else if (InputSize + OutputSize == 72) 14246 TgtElemArrayIdx = 1; 14247 else if (InputSize + OutputSize == 48) 14248 TgtElemArrayIdx = 2; 14249 else if (InputSize + OutputSize == 80) 14250 TgtElemArrayIdx = 3; 14251 else if (InputSize + OutputSize == 96) 14252 TgtElemArrayIdx = 4; 14253 else 14254 return SDValue(); 14255 14256 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 14257 CorrectElems = DAG.getDataLayout().isLittleEndian() 14258 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 14259 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 14260 if (Elems != CorrectElems) { 14261 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 14262 } 14263 14264 // Regular lowering will catch cases where a shuffle is not needed. 14265 return SDValue(); 14266 } 14267 14268 // Look for the pattern of a load from a narrow width to i128, feeding 14269 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node 14270 // (LXVRZX). This node represents a zero extending load that will be matched 14271 // to the Load VSX Vector Rightmost instructions. 14272 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { 14273 SDLoc DL(N); 14274 14275 // This combine is only eligible for a BUILD_VECTOR of v1i128. 14276 if (N->getValueType(0) != MVT::v1i128) 14277 return SDValue(); 14278 14279 SDValue Operand = N->getOperand(0); 14280 // Proceed with the transformation if the operand to the BUILD_VECTOR 14281 // is a load instruction. 14282 if (Operand.getOpcode() != ISD::LOAD) 14283 return SDValue(); 14284 14285 auto *LD = cast<LoadSDNode>(Operand); 14286 EVT MemoryType = LD->getMemoryVT(); 14287 14288 // This transformation is only valid if the we are loading either a byte, 14289 // halfword, word, or doubleword. 14290 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || 14291 MemoryType == MVT::i32 || MemoryType == MVT::i64; 14292 14293 // Ensure that the load from the narrow width is being zero extended to i128. 14294 if (!ValidLDType || 14295 (LD->getExtensionType() != ISD::ZEXTLOAD && 14296 LD->getExtensionType() != ISD::EXTLOAD)) 14297 return SDValue(); 14298 14299 SDValue LoadOps[] = { 14300 LD->getChain(), LD->getBasePtr(), 14301 DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; 14302 14303 return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, 14304 DAG.getVTList(MVT::v1i128, MVT::Other), 14305 LoadOps, MemoryType, LD->getMemOperand()); 14306 } 14307 14308 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 14309 DAGCombinerInfo &DCI) const { 14310 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14311 "Should be called with a BUILD_VECTOR node"); 14312 14313 SelectionDAG &DAG = DCI.DAG; 14314 SDLoc dl(N); 14315 14316 if (!Subtarget.hasVSX()) 14317 return SDValue(); 14318 14319 // The target independent DAG combiner will leave a build_vector of 14320 // float-to-int conversions intact. We can generate MUCH better code for 14321 // a float-to-int conversion of a vector of floats. 14322 SDValue FirstInput = N->getOperand(0); 14323 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 14324 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 14325 if (Reduced) 14326 return Reduced; 14327 } 14328 14329 // If we're building a vector out of consecutive loads, just load that 14330 // vector type. 14331 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 14332 if (Reduced) 14333 return Reduced; 14334 14335 // If we're building a vector out of extended elements from another vector 14336 // we have P9 vector integer extend instructions. The code assumes legal 14337 // input types (i.e. it can't handle things like v4i16) so do not run before 14338 // legalization. 14339 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 14340 Reduced = combineBVOfVecSExt(N, DAG); 14341 if (Reduced) 14342 return Reduced; 14343 } 14344 14345 // On Power10, the Load VSX Vector Rightmost instructions can be utilized 14346 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR 14347 // is a load from <valid narrow width> to i128. 14348 if (Subtarget.isISA3_1()) { 14349 SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); 14350 if (BVOfZLoad) 14351 return BVOfZLoad; 14352 } 14353 14354 if (N->getValueType(0) != MVT::v2f64) 14355 return SDValue(); 14356 14357 // Looking for: 14358 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 14359 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 14360 FirstInput.getOpcode() != ISD::UINT_TO_FP) 14361 return SDValue(); 14362 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 14363 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 14364 return SDValue(); 14365 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 14366 return SDValue(); 14367 14368 SDValue Ext1 = FirstInput.getOperand(0); 14369 SDValue Ext2 = N->getOperand(1).getOperand(0); 14370 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 14371 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14372 return SDValue(); 14373 14374 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 14375 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 14376 if (!Ext1Op || !Ext2Op) 14377 return SDValue(); 14378 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 14379 Ext1.getOperand(0) != Ext2.getOperand(0)) 14380 return SDValue(); 14381 14382 int FirstElem = Ext1Op->getZExtValue(); 14383 int SecondElem = Ext2Op->getZExtValue(); 14384 int SubvecIdx; 14385 if (FirstElem == 0 && SecondElem == 1) 14386 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 14387 else if (FirstElem == 2 && SecondElem == 3) 14388 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 14389 else 14390 return SDValue(); 14391 14392 SDValue SrcVec = Ext1.getOperand(0); 14393 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 14394 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 14395 return DAG.getNode(NodeType, dl, MVT::v2f64, 14396 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 14397 } 14398 14399 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 14400 DAGCombinerInfo &DCI) const { 14401 assert((N->getOpcode() == ISD::SINT_TO_FP || 14402 N->getOpcode() == ISD::UINT_TO_FP) && 14403 "Need an int -> FP conversion node here"); 14404 14405 if (useSoftFloat() || !Subtarget.has64BitSupport()) 14406 return SDValue(); 14407 14408 SelectionDAG &DAG = DCI.DAG; 14409 SDLoc dl(N); 14410 SDValue Op(N, 0); 14411 14412 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 14413 // from the hardware. 14414 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 14415 return SDValue(); 14416 if (!Op.getOperand(0).getValueType().isSimple()) 14417 return SDValue(); 14418 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 14419 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 14420 return SDValue(); 14421 14422 SDValue FirstOperand(Op.getOperand(0)); 14423 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 14424 (FirstOperand.getValueType() == MVT::i8 || 14425 FirstOperand.getValueType() == MVT::i16); 14426 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 14427 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 14428 bool DstDouble = Op.getValueType() == MVT::f64; 14429 unsigned ConvOp = Signed ? 14430 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 14431 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 14432 SDValue WidthConst = 14433 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 14434 dl, false); 14435 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 14436 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 14437 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 14438 DAG.getVTList(MVT::f64, MVT::Other), 14439 Ops, MVT::i8, LDN->getMemOperand()); 14440 14441 // For signed conversion, we need to sign-extend the value in the VSR 14442 if (Signed) { 14443 SDValue ExtOps[] = { Ld, WidthConst }; 14444 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 14445 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 14446 } else 14447 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 14448 } 14449 14450 14451 // For i32 intermediate values, unfortunately, the conversion functions 14452 // leave the upper 32 bits of the value are undefined. Within the set of 14453 // scalar instructions, we have no method for zero- or sign-extending the 14454 // value. Thus, we cannot handle i32 intermediate values here. 14455 if (Op.getOperand(0).getValueType() == MVT::i32) 14456 return SDValue(); 14457 14458 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 14459 "UINT_TO_FP is supported only with FPCVT"); 14460 14461 // If we have FCFIDS, then use it when converting to single-precision. 14462 // Otherwise, convert to double-precision and then round. 14463 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14464 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 14465 : PPCISD::FCFIDS) 14466 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 14467 : PPCISD::FCFID); 14468 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14469 ? MVT::f32 14470 : MVT::f64; 14471 14472 // If we're converting from a float, to an int, and back to a float again, 14473 // then we don't need the store/load pair at all. 14474 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 14475 Subtarget.hasFPCVT()) || 14476 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 14477 SDValue Src = Op.getOperand(0).getOperand(0); 14478 if (Src.getValueType() == MVT::f32) { 14479 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 14480 DCI.AddToWorklist(Src.getNode()); 14481 } else if (Src.getValueType() != MVT::f64) { 14482 // Make sure that we don't pick up a ppc_fp128 source value. 14483 return SDValue(); 14484 } 14485 14486 unsigned FCTOp = 14487 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 14488 PPCISD::FCTIDUZ; 14489 14490 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 14491 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 14492 14493 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 14494 FP = DAG.getNode(ISD::FP_ROUND, dl, 14495 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 14496 DCI.AddToWorklist(FP.getNode()); 14497 } 14498 14499 return FP; 14500 } 14501 14502 return SDValue(); 14503 } 14504 14505 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 14506 // builtins) into loads with swaps. 14507 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 14508 DAGCombinerInfo &DCI) const { 14509 SelectionDAG &DAG = DCI.DAG; 14510 SDLoc dl(N); 14511 SDValue Chain; 14512 SDValue Base; 14513 MachineMemOperand *MMO; 14514 14515 switch (N->getOpcode()) { 14516 default: 14517 llvm_unreachable("Unexpected opcode for little endian VSX load"); 14518 case ISD::LOAD: { 14519 LoadSDNode *LD = cast<LoadSDNode>(N); 14520 Chain = LD->getChain(); 14521 Base = LD->getBasePtr(); 14522 MMO = LD->getMemOperand(); 14523 // If the MMO suggests this isn't a load of a full vector, leave 14524 // things alone. For a built-in, we have to make the change for 14525 // correctness, so if there is a size problem that will be a bug. 14526 if (MMO->getSize() < 16) 14527 return SDValue(); 14528 break; 14529 } 14530 case ISD::INTRINSIC_W_CHAIN: { 14531 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14532 Chain = Intrin->getChain(); 14533 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 14534 // us what we want. Get operand 2 instead. 14535 Base = Intrin->getOperand(2); 14536 MMO = Intrin->getMemOperand(); 14537 break; 14538 } 14539 } 14540 14541 MVT VecTy = N->getValueType(0).getSimpleVT(); 14542 14543 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 14544 // aligned and the type is a vector with elements up to 4 bytes 14545 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14546 VecTy.getScalarSizeInBits() <= 32) { 14547 return SDValue(); 14548 } 14549 14550 SDValue LoadOps[] = { Chain, Base }; 14551 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 14552 DAG.getVTList(MVT::v2f64, MVT::Other), 14553 LoadOps, MVT::v2f64, MMO); 14554 14555 DCI.AddToWorklist(Load.getNode()); 14556 Chain = Load.getValue(1); 14557 SDValue Swap = DAG.getNode( 14558 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 14559 DCI.AddToWorklist(Swap.getNode()); 14560 14561 // Add a bitcast if the resulting load type doesn't match v2f64. 14562 if (VecTy != MVT::v2f64) { 14563 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 14564 DCI.AddToWorklist(N.getNode()); 14565 // Package {bitcast value, swap's chain} to match Load's shape. 14566 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 14567 N, Swap.getValue(1)); 14568 } 14569 14570 return Swap; 14571 } 14572 14573 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 14574 // builtins) into stores with swaps. 14575 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 14576 DAGCombinerInfo &DCI) const { 14577 SelectionDAG &DAG = DCI.DAG; 14578 SDLoc dl(N); 14579 SDValue Chain; 14580 SDValue Base; 14581 unsigned SrcOpnd; 14582 MachineMemOperand *MMO; 14583 14584 switch (N->getOpcode()) { 14585 default: 14586 llvm_unreachable("Unexpected opcode for little endian VSX store"); 14587 case ISD::STORE: { 14588 StoreSDNode *ST = cast<StoreSDNode>(N); 14589 Chain = ST->getChain(); 14590 Base = ST->getBasePtr(); 14591 MMO = ST->getMemOperand(); 14592 SrcOpnd = 1; 14593 // If the MMO suggests this isn't a store of a full vector, leave 14594 // things alone. For a built-in, we have to make the change for 14595 // correctness, so if there is a size problem that will be a bug. 14596 if (MMO->getSize() < 16) 14597 return SDValue(); 14598 break; 14599 } 14600 case ISD::INTRINSIC_VOID: { 14601 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14602 Chain = Intrin->getChain(); 14603 // Intrin->getBasePtr() oddly does not get what we want. 14604 Base = Intrin->getOperand(3); 14605 MMO = Intrin->getMemOperand(); 14606 SrcOpnd = 2; 14607 break; 14608 } 14609 } 14610 14611 SDValue Src = N->getOperand(SrcOpnd); 14612 MVT VecTy = Src.getValueType().getSimpleVT(); 14613 14614 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 14615 // aligned and the type is a vector with elements up to 4 bytes 14616 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14617 VecTy.getScalarSizeInBits() <= 32) { 14618 return SDValue(); 14619 } 14620 14621 // All stores are done as v2f64 and possible bit cast. 14622 if (VecTy != MVT::v2f64) { 14623 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 14624 DCI.AddToWorklist(Src.getNode()); 14625 } 14626 14627 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 14628 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 14629 DCI.AddToWorklist(Swap.getNode()); 14630 Chain = Swap.getValue(1); 14631 SDValue StoreOps[] = { Chain, Swap, Base }; 14632 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14633 DAG.getVTList(MVT::Other), 14634 StoreOps, VecTy, MMO); 14635 DCI.AddToWorklist(Store.getNode()); 14636 return Store; 14637 } 14638 14639 // Handle DAG combine for STORE (FP_TO_INT F). 14640 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14641 DAGCombinerInfo &DCI) const { 14642 14643 SelectionDAG &DAG = DCI.DAG; 14644 SDLoc dl(N); 14645 unsigned Opcode = N->getOperand(1).getOpcode(); 14646 14647 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14648 && "Not a FP_TO_INT Instruction!"); 14649 14650 SDValue Val = N->getOperand(1).getOperand(0); 14651 EVT Op1VT = N->getOperand(1).getValueType(); 14652 EVT ResVT = Val.getValueType(); 14653 14654 if (!isTypeLegal(ResVT)) 14655 return SDValue(); 14656 14657 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14658 bool ValidTypeForStoreFltAsInt = 14659 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14660 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14661 14662 if (ResVT == MVT::f128 && !Subtarget.hasP9Vector()) 14663 return SDValue(); 14664 14665 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14666 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14667 return SDValue(); 14668 14669 // Extend f32 values to f64 14670 if (ResVT.getScalarSizeInBits() == 32) { 14671 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14672 DCI.AddToWorklist(Val.getNode()); 14673 } 14674 14675 // Set signed or unsigned conversion opcode. 14676 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14677 PPCISD::FP_TO_SINT_IN_VSR : 14678 PPCISD::FP_TO_UINT_IN_VSR; 14679 14680 Val = DAG.getNode(ConvOpcode, 14681 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14682 DCI.AddToWorklist(Val.getNode()); 14683 14684 // Set number of bytes being converted. 14685 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14686 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14687 DAG.getIntPtrConstant(ByteSize, dl, false), 14688 DAG.getValueType(Op1VT) }; 14689 14690 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14691 DAG.getVTList(MVT::Other), Ops, 14692 cast<StoreSDNode>(N)->getMemoryVT(), 14693 cast<StoreSDNode>(N)->getMemOperand()); 14694 14695 DCI.AddToWorklist(Val.getNode()); 14696 return Val; 14697 } 14698 14699 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14700 // Check that the source of the element keeps flipping 14701 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14702 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14703 for (int i = 1, e = Mask.size(); i < e; i++) { 14704 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14705 return false; 14706 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14707 return false; 14708 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14709 } 14710 return true; 14711 } 14712 14713 static bool isSplatBV(SDValue Op) { 14714 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14715 return false; 14716 SDValue FirstOp; 14717 14718 // Find first non-undef input. 14719 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14720 FirstOp = Op.getOperand(i); 14721 if (!FirstOp.isUndef()) 14722 break; 14723 } 14724 14725 // All inputs are undef or the same as the first non-undef input. 14726 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14727 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14728 return false; 14729 return true; 14730 } 14731 14732 static SDValue isScalarToVec(SDValue Op) { 14733 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14734 return Op; 14735 if (Op.getOpcode() != ISD::BITCAST) 14736 return SDValue(); 14737 Op = Op.getOperand(0); 14738 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14739 return Op; 14740 return SDValue(); 14741 } 14742 14743 // Fix up the shuffle mask to account for the fact that the result of 14744 // scalar_to_vector is not in lane zero. This just takes all values in 14745 // the ranges specified by the min/max indices and adds the number of 14746 // elements required to ensure each element comes from the respective 14747 // position in the valid lane. 14748 // On little endian, that's just the corresponding element in the other 14749 // half of the vector. On big endian, it is in the same half but right 14750 // justified rather than left justified in that half. 14751 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14752 int LHSMaxIdx, int RHSMinIdx, 14753 int RHSMaxIdx, int HalfVec, 14754 unsigned ValidLaneWidth, 14755 const PPCSubtarget &Subtarget) { 14756 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14757 int Idx = ShuffV[i]; 14758 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14759 ShuffV[i] += 14760 Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth; 14761 } 14762 } 14763 14764 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14765 // the original is: 14766 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14767 // In such a case, just change the shuffle mask to extract the element 14768 // from the permuted index. 14769 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG, 14770 const PPCSubtarget &Subtarget) { 14771 SDLoc dl(OrigSToV); 14772 EVT VT = OrigSToV.getValueType(); 14773 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14774 "Expecting a SCALAR_TO_VECTOR here"); 14775 SDValue Input = OrigSToV.getOperand(0); 14776 14777 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14778 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14779 SDValue OrigVector = Input.getOperand(0); 14780 14781 // Can't handle non-const element indices or different vector types 14782 // for the input to the extract and the output of the scalar_to_vector. 14783 if (Idx && VT == OrigVector.getValueType()) { 14784 unsigned NumElts = VT.getVectorNumElements(); 14785 assert( 14786 NumElts > 1 && 14787 "Cannot produce a permuted scalar_to_vector for one element vector"); 14788 SmallVector<int, 16> NewMask(NumElts, -1); 14789 unsigned ResultInElt = NumElts / 2; 14790 ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1; 14791 NewMask[ResultInElt] = Idx->getZExtValue(); 14792 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14793 } 14794 } 14795 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14796 OrigSToV.getOperand(0)); 14797 } 14798 14799 // On little endian subtargets, combine shuffles such as: 14800 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14801 // into: 14802 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14803 // because the latter can be matched to a single instruction merge. 14804 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14805 // to put the value into element zero. Adjust the shuffle mask so that the 14806 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14807 // On big endian targets, this is still useful for SCALAR_TO_VECTOR 14808 // nodes with elements smaller than doubleword because all the ways 14809 // of getting scalar data into a vector register put the value in the 14810 // rightmost element of the left half of the vector. 14811 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14812 SelectionDAG &DAG) const { 14813 SDValue LHS = SVN->getOperand(0); 14814 SDValue RHS = SVN->getOperand(1); 14815 auto Mask = SVN->getMask(); 14816 int NumElts = LHS.getValueType().getVectorNumElements(); 14817 SDValue Res(SVN, 0); 14818 SDLoc dl(SVN); 14819 bool IsLittleEndian = Subtarget.isLittleEndian(); 14820 14821 // On big endian targets this is only useful for subtargets with direct moves. 14822 // On little endian targets it would be useful for all subtargets with VSX. 14823 // However adding special handling for LE subtargets without direct moves 14824 // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8) 14825 // which includes direct moves. 14826 if (!Subtarget.hasDirectMove()) 14827 return Res; 14828 14829 // If this is not a shuffle of a shuffle and the first element comes from 14830 // the second vector, canonicalize to the commuted form. This will make it 14831 // more likely to match one of the single instruction patterns. 14832 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14833 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14834 std::swap(LHS, RHS); 14835 Res = DAG.getCommutedVectorShuffle(*SVN); 14836 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14837 } 14838 14839 // Adjust the shuffle mask if either input vector comes from a 14840 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14841 // form (to prevent the need for a swap). 14842 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14843 SDValue SToVLHS = isScalarToVec(LHS); 14844 SDValue SToVRHS = isScalarToVec(RHS); 14845 if (SToVLHS || SToVRHS) { 14846 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14847 : SToVRHS.getValueType().getVectorNumElements(); 14848 int NumEltsOut = ShuffV.size(); 14849 // The width of the "valid lane" (i.e. the lane that contains the value that 14850 // is vectorized) needs to be expressed in terms of the number of elements 14851 // of the shuffle. It is thereby the ratio of the values before and after 14852 // any bitcast. 14853 unsigned ValidLaneWidth = 14854 SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() / 14855 LHS.getValueType().getScalarSizeInBits() 14856 : SToVRHS.getValueType().getScalarSizeInBits() / 14857 RHS.getValueType().getScalarSizeInBits(); 14858 14859 // Initially assume that neither input is permuted. These will be adjusted 14860 // accordingly if either input is. 14861 int LHSMaxIdx = -1; 14862 int RHSMinIdx = -1; 14863 int RHSMaxIdx = -1; 14864 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14865 14866 // Get the permuted scalar to vector nodes for the source(s) that come from 14867 // ISD::SCALAR_TO_VECTOR. 14868 // On big endian systems, this only makes sense for element sizes smaller 14869 // than 64 bits since for 64-bit elements, all instructions already put 14870 // the value into element zero. Since scalar size of LHS and RHS may differ 14871 // after isScalarToVec, this should be checked using their own sizes. 14872 if (SToVLHS) { 14873 if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64) 14874 return Res; 14875 // Set up the values for the shuffle vector fixup. 14876 LHSMaxIdx = NumEltsOut / NumEltsIn; 14877 SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget); 14878 if (SToVLHS.getValueType() != LHS.getValueType()) 14879 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14880 LHS = SToVLHS; 14881 } 14882 if (SToVRHS) { 14883 if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64) 14884 return Res; 14885 RHSMinIdx = NumEltsOut; 14886 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14887 SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget); 14888 if (SToVRHS.getValueType() != RHS.getValueType()) 14889 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14890 RHS = SToVRHS; 14891 } 14892 14893 // Fix up the shuffle mask to reflect where the desired element actually is. 14894 // The minimum and maximum indices that correspond to element zero for both 14895 // the LHS and RHS are computed and will control which shuffle mask entries 14896 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14897 // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted. 14898 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14899 HalfVec, ValidLaneWidth, Subtarget); 14900 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14901 14902 // We may have simplified away the shuffle. We won't be able to do anything 14903 // further with it here. 14904 if (!isa<ShuffleVectorSDNode>(Res)) 14905 return Res; 14906 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14907 } 14908 14909 SDValue TheSplat = IsLittleEndian ? RHS : LHS; 14910 // The common case after we commuted the shuffle is that the RHS is a splat 14911 // and we have elements coming in from the splat at indices that are not 14912 // conducive to using a merge. 14913 // Example: 14914 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14915 if (!isSplatBV(TheSplat)) 14916 return Res; 14917 14918 // We are looking for a mask such that all even elements are from 14919 // one vector and all odd elements from the other. 14920 if (!isAlternatingShuffMask(Mask, NumElts)) 14921 return Res; 14922 14923 // Adjust the mask so we are pulling in the same index from the splat 14924 // as the index from the interesting vector in consecutive elements. 14925 if (IsLittleEndian) { 14926 // Example (even elements from first vector): 14927 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14928 if (Mask[0] < NumElts) 14929 for (int i = 1, e = Mask.size(); i < e; i += 2) 14930 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14931 // Example (odd elements from first vector): 14932 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14933 else 14934 for (int i = 0, e = Mask.size(); i < e; i += 2) 14935 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14936 } else { 14937 // Example (even elements from first vector): 14938 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1 14939 if (Mask[0] < NumElts) 14940 for (int i = 0, e = Mask.size(); i < e; i += 2) 14941 ShuffV[i] = ShuffV[i + 1] - NumElts; 14942 // Example (odd elements from first vector): 14943 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1 14944 else 14945 for (int i = 1, e = Mask.size(); i < e; i += 2) 14946 ShuffV[i] = ShuffV[i - 1] - NumElts; 14947 } 14948 14949 // If the RHS has undefs, we need to remove them since we may have created 14950 // a shuffle that adds those instead of the splat value. 14951 SDValue SplatVal = 14952 cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue(); 14953 TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal); 14954 14955 if (IsLittleEndian) 14956 RHS = TheSplat; 14957 else 14958 LHS = TheSplat; 14959 return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14960 } 14961 14962 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14963 LSBaseSDNode *LSBase, 14964 DAGCombinerInfo &DCI) const { 14965 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14966 "Not a reverse memop pattern!"); 14967 14968 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14969 auto Mask = SVN->getMask(); 14970 int i = 0; 14971 auto I = Mask.rbegin(); 14972 auto E = Mask.rend(); 14973 14974 for (; I != E; ++I) { 14975 if (*I != i) 14976 return false; 14977 i++; 14978 } 14979 return true; 14980 }; 14981 14982 SelectionDAG &DAG = DCI.DAG; 14983 EVT VT = SVN->getValueType(0); 14984 14985 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14986 return SDValue(); 14987 14988 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14989 // See comment in PPCVSXSwapRemoval.cpp. 14990 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14991 if (!Subtarget.hasP9Vector()) 14992 return SDValue(); 14993 14994 if(!IsElementReverse(SVN)) 14995 return SDValue(); 14996 14997 if (LSBase->getOpcode() == ISD::LOAD) { 14998 // If the load return value 0 has more than one user except the 14999 // shufflevector instruction, it is not profitable to replace the 15000 // shufflevector with a reverse load. 15001 for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end(); 15002 UI != UE; ++UI) 15003 if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE) 15004 return SDValue(); 15005 15006 SDLoc dl(LSBase); 15007 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 15008 return DAG.getMemIntrinsicNode( 15009 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 15010 LSBase->getMemoryVT(), LSBase->getMemOperand()); 15011 } 15012 15013 if (LSBase->getOpcode() == ISD::STORE) { 15014 // If there are other uses of the shuffle, the swap cannot be avoided. 15015 // Forcing the use of an X-Form (since swapped stores only have 15016 // X-Forms) without removing the swap is unprofitable. 15017 if (!SVN->hasOneUse()) 15018 return SDValue(); 15019 15020 SDLoc dl(LSBase); 15021 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 15022 LSBase->getBasePtr()}; 15023 return DAG.getMemIntrinsicNode( 15024 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 15025 LSBase->getMemoryVT(), LSBase->getMemOperand()); 15026 } 15027 15028 llvm_unreachable("Expected a load or store node here"); 15029 } 15030 15031 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 15032 DAGCombinerInfo &DCI) const { 15033 SelectionDAG &DAG = DCI.DAG; 15034 SDLoc dl(N); 15035 switch (N->getOpcode()) { 15036 default: break; 15037 case ISD::ADD: 15038 return combineADD(N, DCI); 15039 case ISD::SHL: 15040 return combineSHL(N, DCI); 15041 case ISD::SRA: 15042 return combineSRA(N, DCI); 15043 case ISD::SRL: 15044 return combineSRL(N, DCI); 15045 case ISD::MUL: 15046 return combineMUL(N, DCI); 15047 case ISD::FMA: 15048 case PPCISD::FNMSUB: 15049 return combineFMALike(N, DCI); 15050 case PPCISD::SHL: 15051 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 15052 return N->getOperand(0); 15053 break; 15054 case PPCISD::SRL: 15055 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 15056 return N->getOperand(0); 15057 break; 15058 case PPCISD::SRA: 15059 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 15060 if (C->isZero() || // 0 >>s V -> 0. 15061 C->isAllOnes()) // -1 >>s V -> -1. 15062 return N->getOperand(0); 15063 } 15064 break; 15065 case ISD::SIGN_EXTEND: 15066 case ISD::ZERO_EXTEND: 15067 case ISD::ANY_EXTEND: 15068 return DAGCombineExtBoolTrunc(N, DCI); 15069 case ISD::TRUNCATE: 15070 return combineTRUNCATE(N, DCI); 15071 case ISD::SETCC: 15072 if (SDValue CSCC = combineSetCC(N, DCI)) 15073 return CSCC; 15074 LLVM_FALLTHROUGH; 15075 case ISD::SELECT_CC: 15076 return DAGCombineTruncBoolExt(N, DCI); 15077 case ISD::SINT_TO_FP: 15078 case ISD::UINT_TO_FP: 15079 return combineFPToIntToFP(N, DCI); 15080 case ISD::VECTOR_SHUFFLE: 15081 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 15082 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 15083 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 15084 } 15085 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 15086 case ISD::STORE: { 15087 15088 EVT Op1VT = N->getOperand(1).getValueType(); 15089 unsigned Opcode = N->getOperand(1).getOpcode(); 15090 15091 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 15092 SDValue Val= combineStoreFPToInt(N, DCI); 15093 if (Val) 15094 return Val; 15095 } 15096 15097 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 15098 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 15099 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 15100 if (Val) 15101 return Val; 15102 } 15103 15104 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 15105 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 15106 N->getOperand(1).getNode()->hasOneUse() && 15107 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 15108 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 15109 15110 // STBRX can only handle simple types and it makes no sense to store less 15111 // two bytes in byte-reversed order. 15112 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 15113 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 15114 break; 15115 15116 SDValue BSwapOp = N->getOperand(1).getOperand(0); 15117 // Do an any-extend to 32-bits if this is a half-word input. 15118 if (BSwapOp.getValueType() == MVT::i16) 15119 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 15120 15121 // If the type of BSWAP operand is wider than stored memory width 15122 // it need to be shifted to the right side before STBRX. 15123 if (Op1VT.bitsGT(mVT)) { 15124 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 15125 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 15126 DAG.getConstant(Shift, dl, MVT::i32)); 15127 // Need to truncate if this is a bswap of i64 stored as i32/i16. 15128 if (Op1VT == MVT::i64) 15129 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 15130 } 15131 15132 SDValue Ops[] = { 15133 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 15134 }; 15135 return 15136 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 15137 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 15138 cast<StoreSDNode>(N)->getMemOperand()); 15139 } 15140 15141 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 15142 // So it can increase the chance of CSE constant construction. 15143 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 15144 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 15145 // Need to sign-extended to 64-bits to handle negative values. 15146 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 15147 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 15148 MemVT.getSizeInBits()); 15149 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 15150 15151 // DAG.getTruncStore() can't be used here because it doesn't accept 15152 // the general (base + offset) addressing mode. 15153 // So we use UpdateNodeOperands and setTruncatingStore instead. 15154 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 15155 N->getOperand(3)); 15156 cast<StoreSDNode>(N)->setTruncatingStore(true); 15157 return SDValue(N, 0); 15158 } 15159 15160 // For little endian, VSX stores require generating xxswapd/lxvd2x. 15161 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15162 if (Op1VT.isSimple()) { 15163 MVT StoreVT = Op1VT.getSimpleVT(); 15164 if (Subtarget.needsSwapsForVSXMemOps() && 15165 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 15166 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 15167 return expandVSXStoreForLE(N, DCI); 15168 } 15169 break; 15170 } 15171 case ISD::LOAD: { 15172 LoadSDNode *LD = cast<LoadSDNode>(N); 15173 EVT VT = LD->getValueType(0); 15174 15175 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15176 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15177 if (VT.isSimple()) { 15178 MVT LoadVT = VT.getSimpleVT(); 15179 if (Subtarget.needsSwapsForVSXMemOps() && 15180 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 15181 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 15182 return expandVSXLoadForLE(N, DCI); 15183 } 15184 15185 // We sometimes end up with a 64-bit integer load, from which we extract 15186 // two single-precision floating-point numbers. This happens with 15187 // std::complex<float>, and other similar structures, because of the way we 15188 // canonicalize structure copies. However, if we lack direct moves, 15189 // then the final bitcasts from the extracted integer values to the 15190 // floating-point numbers turn into store/load pairs. Even with direct moves, 15191 // just loading the two floating-point numbers is likely better. 15192 auto ReplaceTwoFloatLoad = [&]() { 15193 if (VT != MVT::i64) 15194 return false; 15195 15196 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 15197 LD->isVolatile()) 15198 return false; 15199 15200 // We're looking for a sequence like this: 15201 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 15202 // t16: i64 = srl t13, Constant:i32<32> 15203 // t17: i32 = truncate t16 15204 // t18: f32 = bitcast t17 15205 // t19: i32 = truncate t13 15206 // t20: f32 = bitcast t19 15207 15208 if (!LD->hasNUsesOfValue(2, 0)) 15209 return false; 15210 15211 auto UI = LD->use_begin(); 15212 while (UI.getUse().getResNo() != 0) ++UI; 15213 SDNode *Trunc = *UI++; 15214 while (UI.getUse().getResNo() != 0) ++UI; 15215 SDNode *RightShift = *UI; 15216 if (Trunc->getOpcode() != ISD::TRUNCATE) 15217 std::swap(Trunc, RightShift); 15218 15219 if (Trunc->getOpcode() != ISD::TRUNCATE || 15220 Trunc->getValueType(0) != MVT::i32 || 15221 !Trunc->hasOneUse()) 15222 return false; 15223 if (RightShift->getOpcode() != ISD::SRL || 15224 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 15225 RightShift->getConstantOperandVal(1) != 32 || 15226 !RightShift->hasOneUse()) 15227 return false; 15228 15229 SDNode *Trunc2 = *RightShift->use_begin(); 15230 if (Trunc2->getOpcode() != ISD::TRUNCATE || 15231 Trunc2->getValueType(0) != MVT::i32 || 15232 !Trunc2->hasOneUse()) 15233 return false; 15234 15235 SDNode *Bitcast = *Trunc->use_begin(); 15236 SDNode *Bitcast2 = *Trunc2->use_begin(); 15237 15238 if (Bitcast->getOpcode() != ISD::BITCAST || 15239 Bitcast->getValueType(0) != MVT::f32) 15240 return false; 15241 if (Bitcast2->getOpcode() != ISD::BITCAST || 15242 Bitcast2->getValueType(0) != MVT::f32) 15243 return false; 15244 15245 if (Subtarget.isLittleEndian()) 15246 std::swap(Bitcast, Bitcast2); 15247 15248 // Bitcast has the second float (in memory-layout order) and Bitcast2 15249 // has the first one. 15250 15251 SDValue BasePtr = LD->getBasePtr(); 15252 if (LD->isIndexed()) { 15253 assert(LD->getAddressingMode() == ISD::PRE_INC && 15254 "Non-pre-inc AM on PPC?"); 15255 BasePtr = 15256 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15257 LD->getOffset()); 15258 } 15259 15260 auto MMOFlags = 15261 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 15262 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 15263 LD->getPointerInfo(), LD->getAlignment(), 15264 MMOFlags, LD->getAAInfo()); 15265 SDValue AddPtr = 15266 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 15267 BasePtr, DAG.getIntPtrConstant(4, dl)); 15268 SDValue FloatLoad2 = DAG.getLoad( 15269 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 15270 LD->getPointerInfo().getWithOffset(4), 15271 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 15272 15273 if (LD->isIndexed()) { 15274 // Note that DAGCombine should re-form any pre-increment load(s) from 15275 // what is produced here if that makes sense. 15276 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 15277 } 15278 15279 DCI.CombineTo(Bitcast2, FloatLoad); 15280 DCI.CombineTo(Bitcast, FloatLoad2); 15281 15282 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 15283 SDValue(FloatLoad2.getNode(), 1)); 15284 return true; 15285 }; 15286 15287 if (ReplaceTwoFloatLoad()) 15288 return SDValue(N, 0); 15289 15290 EVT MemVT = LD->getMemoryVT(); 15291 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 15292 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 15293 if (LD->isUnindexed() && VT.isVector() && 15294 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 15295 // P8 and later hardware should just use LOAD. 15296 !Subtarget.hasP8Vector() && 15297 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 15298 VT == MVT::v4f32))) && 15299 LD->getAlign() < ABIAlignment) { 15300 // This is a type-legal unaligned Altivec load. 15301 SDValue Chain = LD->getChain(); 15302 SDValue Ptr = LD->getBasePtr(); 15303 bool isLittleEndian = Subtarget.isLittleEndian(); 15304 15305 // This implements the loading of unaligned vectors as described in 15306 // the venerable Apple Velocity Engine overview. Specifically: 15307 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 15308 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 15309 // 15310 // The general idea is to expand a sequence of one or more unaligned 15311 // loads into an alignment-based permutation-control instruction (lvsl 15312 // or lvsr), a series of regular vector loads (which always truncate 15313 // their input address to an aligned address), and a series of 15314 // permutations. The results of these permutations are the requested 15315 // loaded values. The trick is that the last "extra" load is not taken 15316 // from the address you might suspect (sizeof(vector) bytes after the 15317 // last requested load), but rather sizeof(vector) - 1 bytes after the 15318 // last requested vector. The point of this is to avoid a page fault if 15319 // the base address happened to be aligned. This works because if the 15320 // base address is aligned, then adding less than a full vector length 15321 // will cause the last vector in the sequence to be (re)loaded. 15322 // Otherwise, the next vector will be fetched as you might suspect was 15323 // necessary. 15324 15325 // We might be able to reuse the permutation generation from 15326 // a different base address offset from this one by an aligned amount. 15327 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 15328 // optimization later. 15329 Intrinsic::ID Intr, IntrLD, IntrPerm; 15330 MVT PermCntlTy, PermTy, LDTy; 15331 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15332 : Intrinsic::ppc_altivec_lvsl; 15333 IntrLD = Intrinsic::ppc_altivec_lvx; 15334 IntrPerm = Intrinsic::ppc_altivec_vperm; 15335 PermCntlTy = MVT::v16i8; 15336 PermTy = MVT::v4i32; 15337 LDTy = MVT::v4i32; 15338 15339 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 15340 15341 // Create the new MMO for the new base load. It is like the original MMO, 15342 // but represents an area in memory almost twice the vector size centered 15343 // on the original address. If the address is unaligned, we might start 15344 // reading up to (sizeof(vector)-1) bytes below the address of the 15345 // original unaligned load. 15346 MachineFunction &MF = DAG.getMachineFunction(); 15347 MachineMemOperand *BaseMMO = 15348 MF.getMachineMemOperand(LD->getMemOperand(), 15349 -(long)MemVT.getStoreSize()+1, 15350 2*MemVT.getStoreSize()-1); 15351 15352 // Create the new base load. 15353 SDValue LDXIntID = 15354 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 15355 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 15356 SDValue BaseLoad = 15357 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15358 DAG.getVTList(PermTy, MVT::Other), 15359 BaseLoadOps, LDTy, BaseMMO); 15360 15361 // Note that the value of IncOffset (which is provided to the next 15362 // load's pointer info offset value, and thus used to calculate the 15363 // alignment), and the value of IncValue (which is actually used to 15364 // increment the pointer value) are different! This is because we 15365 // require the next load to appear to be aligned, even though it 15366 // is actually offset from the base pointer by a lesser amount. 15367 int IncOffset = VT.getSizeInBits() / 8; 15368 int IncValue = IncOffset; 15369 15370 // Walk (both up and down) the chain looking for another load at the real 15371 // (aligned) offset (the alignment of the other load does not matter in 15372 // this case). If found, then do not use the offset reduction trick, as 15373 // that will prevent the loads from being later combined (as they would 15374 // otherwise be duplicates). 15375 if (!findConsecutiveLoad(LD, DAG)) 15376 --IncValue; 15377 15378 SDValue Increment = 15379 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 15380 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 15381 15382 MachineMemOperand *ExtraMMO = 15383 MF.getMachineMemOperand(LD->getMemOperand(), 15384 1, 2*MemVT.getStoreSize()-1); 15385 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 15386 SDValue ExtraLoad = 15387 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15388 DAG.getVTList(PermTy, MVT::Other), 15389 ExtraLoadOps, LDTy, ExtraMMO); 15390 15391 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15392 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 15393 15394 // Because vperm has a big-endian bias, we must reverse the order 15395 // of the input vectors and complement the permute control vector 15396 // when generating little endian code. We have already handled the 15397 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 15398 // and ExtraLoad here. 15399 SDValue Perm; 15400 if (isLittleEndian) 15401 Perm = BuildIntrinsicOp(IntrPerm, 15402 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 15403 else 15404 Perm = BuildIntrinsicOp(IntrPerm, 15405 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 15406 15407 if (VT != PermTy) 15408 Perm = Subtarget.hasAltivec() 15409 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 15410 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 15411 DAG.getTargetConstant(1, dl, MVT::i64)); 15412 // second argument is 1 because this rounding 15413 // is always exact. 15414 15415 // The output of the permutation is our loaded result, the TokenFactor is 15416 // our new chain. 15417 DCI.CombineTo(N, Perm, TF); 15418 return SDValue(N, 0); 15419 } 15420 } 15421 break; 15422 case ISD::INTRINSIC_WO_CHAIN: { 15423 bool isLittleEndian = Subtarget.isLittleEndian(); 15424 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 15425 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15426 : Intrinsic::ppc_altivec_lvsl); 15427 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 15428 SDValue Add = N->getOperand(1); 15429 15430 int Bits = 4 /* 16 byte alignment */; 15431 15432 if (DAG.MaskedValueIsZero(Add->getOperand(1), 15433 APInt::getAllOnes(Bits /* alignment */) 15434 .zext(Add.getScalarValueSizeInBits()))) { 15435 SDNode *BasePtr = Add->getOperand(0).getNode(); 15436 for (SDNode *U : BasePtr->uses()) { 15437 if (U->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15438 cast<ConstantSDNode>(U->getOperand(0))->getZExtValue() == IID) { 15439 // We've found another LVSL/LVSR, and this address is an aligned 15440 // multiple of that one. The results will be the same, so use the 15441 // one we've just found instead. 15442 15443 return SDValue(U, 0); 15444 } 15445 } 15446 } 15447 15448 if (isa<ConstantSDNode>(Add->getOperand(1))) { 15449 SDNode *BasePtr = Add->getOperand(0).getNode(); 15450 for (SDNode *U : BasePtr->uses()) { 15451 if (U->getOpcode() == ISD::ADD && 15452 isa<ConstantSDNode>(U->getOperand(1)) && 15453 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 15454 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue()) % 15455 (1ULL << Bits) == 15456 0) { 15457 SDNode *OtherAdd = U; 15458 for (SDNode *V : OtherAdd->uses()) { 15459 if (V->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15460 cast<ConstantSDNode>(V->getOperand(0))->getZExtValue() == 15461 IID) { 15462 return SDValue(V, 0); 15463 } 15464 } 15465 } 15466 } 15467 } 15468 } 15469 15470 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 15471 // Expose the vabsduw/h/b opportunity for down stream 15472 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 15473 (IID == Intrinsic::ppc_altivec_vmaxsw || 15474 IID == Intrinsic::ppc_altivec_vmaxsh || 15475 IID == Intrinsic::ppc_altivec_vmaxsb)) { 15476 SDValue V1 = N->getOperand(1); 15477 SDValue V2 = N->getOperand(2); 15478 if ((V1.getSimpleValueType() == MVT::v4i32 || 15479 V1.getSimpleValueType() == MVT::v8i16 || 15480 V1.getSimpleValueType() == MVT::v16i8) && 15481 V1.getSimpleValueType() == V2.getSimpleValueType()) { 15482 // (0-a, a) 15483 if (V1.getOpcode() == ISD::SUB && 15484 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 15485 V1.getOperand(1) == V2) { 15486 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 15487 } 15488 // (a, 0-a) 15489 if (V2.getOpcode() == ISD::SUB && 15490 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 15491 V2.getOperand(1) == V1) { 15492 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15493 } 15494 // (x-y, y-x) 15495 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 15496 V1.getOperand(0) == V2.getOperand(1) && 15497 V1.getOperand(1) == V2.getOperand(0)) { 15498 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15499 } 15500 } 15501 } 15502 } 15503 15504 break; 15505 case ISD::INTRINSIC_W_CHAIN: 15506 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15507 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15508 if (Subtarget.needsSwapsForVSXMemOps()) { 15509 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15510 default: 15511 break; 15512 case Intrinsic::ppc_vsx_lxvw4x: 15513 case Intrinsic::ppc_vsx_lxvd2x: 15514 return expandVSXLoadForLE(N, DCI); 15515 } 15516 } 15517 break; 15518 case ISD::INTRINSIC_VOID: 15519 // For little endian, VSX stores require generating xxswapd/stxvd2x. 15520 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15521 if (Subtarget.needsSwapsForVSXMemOps()) { 15522 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15523 default: 15524 break; 15525 case Intrinsic::ppc_vsx_stxvw4x: 15526 case Intrinsic::ppc_vsx_stxvd2x: 15527 return expandVSXStoreForLE(N, DCI); 15528 } 15529 } 15530 break; 15531 case ISD::BSWAP: { 15532 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 15533 // For subtargets without LDBRX, we can still do better than the default 15534 // expansion even for 64-bit BSWAP (LOAD). 15535 bool Is64BitBswapOn64BitTgt = 15536 Subtarget.isPPC64() && N->getValueType(0) == MVT::i64; 15537 bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) && 15538 N->getOperand(0).hasOneUse(); 15539 if (IsSingleUseNormalLd && 15540 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 15541 (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) { 15542 SDValue Load = N->getOperand(0); 15543 LoadSDNode *LD = cast<LoadSDNode>(Load); 15544 // Create the byte-swapping load. 15545 SDValue Ops[] = { 15546 LD->getChain(), // Chain 15547 LD->getBasePtr(), // Ptr 15548 DAG.getValueType(N->getValueType(0)) // VT 15549 }; 15550 SDValue BSLoad = 15551 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 15552 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 15553 MVT::i64 : MVT::i32, MVT::Other), 15554 Ops, LD->getMemoryVT(), LD->getMemOperand()); 15555 15556 // If this is an i16 load, insert the truncate. 15557 SDValue ResVal = BSLoad; 15558 if (N->getValueType(0) == MVT::i16) 15559 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 15560 15561 // First, combine the bswap away. This makes the value produced by the 15562 // load dead. 15563 DCI.CombineTo(N, ResVal); 15564 15565 // Next, combine the load away, we give it a bogus result value but a real 15566 // chain result. The result value is dead because the bswap is dead. 15567 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 15568 15569 // Return N so it doesn't get rechecked! 15570 return SDValue(N, 0); 15571 } 15572 // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only 15573 // before legalization so that the BUILD_PAIR is handled correctly. 15574 if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt || 15575 !IsSingleUseNormalLd) 15576 return SDValue(); 15577 LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0)); 15578 15579 // Can't split volatile or atomic loads. 15580 if (!LD->isSimple()) 15581 return SDValue(); 15582 SDValue BasePtr = LD->getBasePtr(); 15583 SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, 15584 LD->getPointerInfo(), LD->getAlignment()); 15585 Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo); 15586 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15587 DAG.getIntPtrConstant(4, dl)); 15588 MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand( 15589 LD->getMemOperand(), 4, 4); 15590 SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO); 15591 Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi); 15592 SDValue Res; 15593 if (Subtarget.isLittleEndian()) 15594 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo); 15595 else 15596 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 15597 SDValue TF = 15598 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15599 Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1)); 15600 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF); 15601 return Res; 15602 } 15603 case PPCISD::VCMP: 15604 // If a VCMP_rec node already exists with exactly the same operands as this 15605 // node, use its result instead of this node (VCMP_rec computes both a CR6 15606 // and a normal output). 15607 // 15608 if (!N->getOperand(0).hasOneUse() && 15609 !N->getOperand(1).hasOneUse() && 15610 !N->getOperand(2).hasOneUse()) { 15611 15612 // Scan all of the users of the LHS, looking for VCMP_rec's that match. 15613 SDNode *VCMPrecNode = nullptr; 15614 15615 SDNode *LHSN = N->getOperand(0).getNode(); 15616 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 15617 UI != E; ++UI) 15618 if (UI->getOpcode() == PPCISD::VCMP_rec && 15619 UI->getOperand(1) == N->getOperand(1) && 15620 UI->getOperand(2) == N->getOperand(2) && 15621 UI->getOperand(0) == N->getOperand(0)) { 15622 VCMPrecNode = *UI; 15623 break; 15624 } 15625 15626 // If there is no VCMP_rec node, or if the flag value has a single use, 15627 // don't transform this. 15628 if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) 15629 break; 15630 15631 // Look at the (necessarily single) use of the flag value. If it has a 15632 // chain, this transformation is more complex. Note that multiple things 15633 // could use the value result, which we should ignore. 15634 SDNode *FlagUser = nullptr; 15635 for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); 15636 FlagUser == nullptr; ++UI) { 15637 assert(UI != VCMPrecNode->use_end() && "Didn't find user!"); 15638 SDNode *User = *UI; 15639 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 15640 if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { 15641 FlagUser = User; 15642 break; 15643 } 15644 } 15645 } 15646 15647 // If the user is a MFOCRF instruction, we know this is safe. 15648 // Otherwise we give up for right now. 15649 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 15650 return SDValue(VCMPrecNode, 0); 15651 } 15652 break; 15653 case ISD::BRCOND: { 15654 SDValue Cond = N->getOperand(1); 15655 SDValue Target = N->getOperand(2); 15656 15657 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15658 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 15659 Intrinsic::loop_decrement) { 15660 15661 // We now need to make the intrinsic dead (it cannot be instruction 15662 // selected). 15663 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 15664 assert(Cond.getNode()->hasOneUse() && 15665 "Counter decrement has more than one use"); 15666 15667 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 15668 N->getOperand(0), Target); 15669 } 15670 } 15671 break; 15672 case ISD::BR_CC: { 15673 // If this is a branch on an altivec predicate comparison, lower this so 15674 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 15675 // lowering is done pre-legalize, because the legalizer lowers the predicate 15676 // compare down to code that is difficult to reassemble. 15677 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 15678 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 15679 15680 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 15681 // value. If so, pass-through the AND to get to the intrinsic. 15682 if (LHS.getOpcode() == ISD::AND && 15683 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 15684 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 15685 Intrinsic::loop_decrement && 15686 isa<ConstantSDNode>(LHS.getOperand(1)) && 15687 !isNullConstant(LHS.getOperand(1))) 15688 LHS = LHS.getOperand(0); 15689 15690 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15691 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 15692 Intrinsic::loop_decrement && 15693 isa<ConstantSDNode>(RHS)) { 15694 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 15695 "Counter decrement comparison is not EQ or NE"); 15696 15697 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15698 bool isBDNZ = (CC == ISD::SETEQ && Val) || 15699 (CC == ISD::SETNE && !Val); 15700 15701 // We now need to make the intrinsic dead (it cannot be instruction 15702 // selected). 15703 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 15704 assert(LHS.getNode()->hasOneUse() && 15705 "Counter decrement has more than one use"); 15706 15707 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 15708 N->getOperand(0), N->getOperand(4)); 15709 } 15710 15711 int CompareOpc; 15712 bool isDot; 15713 15714 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15715 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 15716 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 15717 assert(isDot && "Can't compare against a vector result!"); 15718 15719 // If this is a comparison against something other than 0/1, then we know 15720 // that the condition is never/always true. 15721 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15722 if (Val != 0 && Val != 1) { 15723 if (CC == ISD::SETEQ) // Cond never true, remove branch. 15724 return N->getOperand(0); 15725 // Always !=, turn it into an unconditional branch. 15726 return DAG.getNode(ISD::BR, dl, MVT::Other, 15727 N->getOperand(0), N->getOperand(4)); 15728 } 15729 15730 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 15731 15732 // Create the PPCISD altivec 'dot' comparison node. 15733 SDValue Ops[] = { 15734 LHS.getOperand(2), // LHS of compare 15735 LHS.getOperand(3), // RHS of compare 15736 DAG.getConstant(CompareOpc, dl, MVT::i32) 15737 }; 15738 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15739 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 15740 15741 // Unpack the result based on how the target uses it. 15742 PPC::Predicate CompOpc; 15743 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15744 default: // Can't happen, don't crash on invalid number though. 15745 case 0: // Branch on the value of the EQ bit of CR6. 15746 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15747 break; 15748 case 1: // Branch on the inverted value of the EQ bit of CR6. 15749 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15750 break; 15751 case 2: // Branch on the value of the LT bit of CR6. 15752 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15753 break; 15754 case 3: // Branch on the inverted value of the LT bit of CR6. 15755 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15756 break; 15757 } 15758 15759 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15760 DAG.getConstant(CompOpc, dl, MVT::i32), 15761 DAG.getRegister(PPC::CR6, MVT::i32), 15762 N->getOperand(4), CompNode.getValue(1)); 15763 } 15764 break; 15765 } 15766 case ISD::BUILD_VECTOR: 15767 return DAGCombineBuildVector(N, DCI); 15768 case ISD::ABS: 15769 return combineABS(N, DCI); 15770 case ISD::VSELECT: 15771 return combineVSelect(N, DCI); 15772 } 15773 15774 return SDValue(); 15775 } 15776 15777 SDValue 15778 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15779 SelectionDAG &DAG, 15780 SmallVectorImpl<SDNode *> &Created) const { 15781 // fold (sdiv X, pow2) 15782 EVT VT = N->getValueType(0); 15783 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15784 return SDValue(); 15785 if ((VT != MVT::i32 && VT != MVT::i64) || 15786 !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2())) 15787 return SDValue(); 15788 15789 SDLoc DL(N); 15790 SDValue N0 = N->getOperand(0); 15791 15792 bool IsNegPow2 = Divisor.isNegatedPowerOf2(); 15793 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15794 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15795 15796 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15797 Created.push_back(Op.getNode()); 15798 15799 if (IsNegPow2) { 15800 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15801 Created.push_back(Op.getNode()); 15802 } 15803 15804 return Op; 15805 } 15806 15807 //===----------------------------------------------------------------------===// 15808 // Inline Assembly Support 15809 //===----------------------------------------------------------------------===// 15810 15811 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15812 KnownBits &Known, 15813 const APInt &DemandedElts, 15814 const SelectionDAG &DAG, 15815 unsigned Depth) const { 15816 Known.resetAll(); 15817 switch (Op.getOpcode()) { 15818 default: break; 15819 case PPCISD::LBRX: { 15820 // lhbrx is known to have the top bits cleared out. 15821 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15822 Known.Zero = 0xFFFF0000; 15823 break; 15824 } 15825 case ISD::INTRINSIC_WO_CHAIN: { 15826 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15827 default: break; 15828 case Intrinsic::ppc_altivec_vcmpbfp_p: 15829 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15830 case Intrinsic::ppc_altivec_vcmpequb_p: 15831 case Intrinsic::ppc_altivec_vcmpequh_p: 15832 case Intrinsic::ppc_altivec_vcmpequw_p: 15833 case Intrinsic::ppc_altivec_vcmpequd_p: 15834 case Intrinsic::ppc_altivec_vcmpequq_p: 15835 case Intrinsic::ppc_altivec_vcmpgefp_p: 15836 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15837 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15838 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15839 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15840 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15841 case Intrinsic::ppc_altivec_vcmpgtsq_p: 15842 case Intrinsic::ppc_altivec_vcmpgtub_p: 15843 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15844 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15845 case Intrinsic::ppc_altivec_vcmpgtud_p: 15846 case Intrinsic::ppc_altivec_vcmpgtuq_p: 15847 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15848 break; 15849 } 15850 break; 15851 } 15852 case ISD::INTRINSIC_W_CHAIN: { 15853 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 15854 default: 15855 break; 15856 case Intrinsic::ppc_load2r: 15857 // Top bits are cleared for load2r (which is the same as lhbrx). 15858 Known.Zero = 0xFFFF0000; 15859 break; 15860 } 15861 break; 15862 } 15863 } 15864 } 15865 15866 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15867 switch (Subtarget.getCPUDirective()) { 15868 default: break; 15869 case PPC::DIR_970: 15870 case PPC::DIR_PWR4: 15871 case PPC::DIR_PWR5: 15872 case PPC::DIR_PWR5X: 15873 case PPC::DIR_PWR6: 15874 case PPC::DIR_PWR6X: 15875 case PPC::DIR_PWR7: 15876 case PPC::DIR_PWR8: 15877 case PPC::DIR_PWR9: 15878 case PPC::DIR_PWR10: 15879 case PPC::DIR_PWR_FUTURE: { 15880 if (!ML) 15881 break; 15882 15883 if (!DisableInnermostLoopAlign32) { 15884 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15885 // so that we can decrease cache misses and branch-prediction misses. 15886 // Actual alignment of the loop will depend on the hotness check and other 15887 // logic in alignBlocks. 15888 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15889 return Align(32); 15890 } 15891 15892 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15893 15894 // For small loops (between 5 and 8 instructions), align to a 32-byte 15895 // boundary so that the entire loop fits in one instruction-cache line. 15896 uint64_t LoopSize = 0; 15897 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15898 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15899 LoopSize += TII->getInstSizeInBytes(*J); 15900 if (LoopSize > 32) 15901 break; 15902 } 15903 15904 if (LoopSize > 16 && LoopSize <= 32) 15905 return Align(32); 15906 15907 break; 15908 } 15909 } 15910 15911 return TargetLowering::getPrefLoopAlignment(ML); 15912 } 15913 15914 /// getConstraintType - Given a constraint, return the type of 15915 /// constraint it is for this target. 15916 PPCTargetLowering::ConstraintType 15917 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15918 if (Constraint.size() == 1) { 15919 switch (Constraint[0]) { 15920 default: break; 15921 case 'b': 15922 case 'r': 15923 case 'f': 15924 case 'd': 15925 case 'v': 15926 case 'y': 15927 return C_RegisterClass; 15928 case 'Z': 15929 // FIXME: While Z does indicate a memory constraint, it specifically 15930 // indicates an r+r address (used in conjunction with the 'y' modifier 15931 // in the replacement string). Currently, we're forcing the base 15932 // register to be r0 in the asm printer (which is interpreted as zero) 15933 // and forming the complete address in the second register. This is 15934 // suboptimal. 15935 return C_Memory; 15936 } 15937 } else if (Constraint == "wc") { // individual CR bits. 15938 return C_RegisterClass; 15939 } else if (Constraint == "wa" || Constraint == "wd" || 15940 Constraint == "wf" || Constraint == "ws" || 15941 Constraint == "wi" || Constraint == "ww") { 15942 return C_RegisterClass; // VSX registers. 15943 } 15944 return TargetLowering::getConstraintType(Constraint); 15945 } 15946 15947 /// Examine constraint type and operand type and determine a weight value. 15948 /// This object must already have been set up with the operand type 15949 /// and the current alternative constraint selected. 15950 TargetLowering::ConstraintWeight 15951 PPCTargetLowering::getSingleConstraintMatchWeight( 15952 AsmOperandInfo &info, const char *constraint) const { 15953 ConstraintWeight weight = CW_Invalid; 15954 Value *CallOperandVal = info.CallOperandVal; 15955 // If we don't have a value, we can't do a match, 15956 // but allow it at the lowest weight. 15957 if (!CallOperandVal) 15958 return CW_Default; 15959 Type *type = CallOperandVal->getType(); 15960 15961 // Look at the constraint type. 15962 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15963 return CW_Register; // an individual CR bit. 15964 else if ((StringRef(constraint) == "wa" || 15965 StringRef(constraint) == "wd" || 15966 StringRef(constraint) == "wf") && 15967 type->isVectorTy()) 15968 return CW_Register; 15969 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15970 return CW_Register; // just hold 64-bit integers data. 15971 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15972 return CW_Register; 15973 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15974 return CW_Register; 15975 15976 switch (*constraint) { 15977 default: 15978 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15979 break; 15980 case 'b': 15981 if (type->isIntegerTy()) 15982 weight = CW_Register; 15983 break; 15984 case 'f': 15985 if (type->isFloatTy()) 15986 weight = CW_Register; 15987 break; 15988 case 'd': 15989 if (type->isDoubleTy()) 15990 weight = CW_Register; 15991 break; 15992 case 'v': 15993 if (type->isVectorTy()) 15994 weight = CW_Register; 15995 break; 15996 case 'y': 15997 weight = CW_Register; 15998 break; 15999 case 'Z': 16000 weight = CW_Memory; 16001 break; 16002 } 16003 return weight; 16004 } 16005 16006 std::pair<unsigned, const TargetRegisterClass *> 16007 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 16008 StringRef Constraint, 16009 MVT VT) const { 16010 if (Constraint.size() == 1) { 16011 // GCC RS6000 Constraint Letters 16012 switch (Constraint[0]) { 16013 case 'b': // R1-R31 16014 if (VT == MVT::i64 && Subtarget.isPPC64()) 16015 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 16016 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 16017 case 'r': // R0-R31 16018 if (VT == MVT::i64 && Subtarget.isPPC64()) 16019 return std::make_pair(0U, &PPC::G8RCRegClass); 16020 return std::make_pair(0U, &PPC::GPRCRegClass); 16021 // 'd' and 'f' constraints are both defined to be "the floating point 16022 // registers", where one is for 32-bit and the other for 64-bit. We don't 16023 // really care overly much here so just give them all the same reg classes. 16024 case 'd': 16025 case 'f': 16026 if (Subtarget.hasSPE()) { 16027 if (VT == MVT::f32 || VT == MVT::i32) 16028 return std::make_pair(0U, &PPC::GPRCRegClass); 16029 if (VT == MVT::f64 || VT == MVT::i64) 16030 return std::make_pair(0U, &PPC::SPERCRegClass); 16031 } else { 16032 if (VT == MVT::f32 || VT == MVT::i32) 16033 return std::make_pair(0U, &PPC::F4RCRegClass); 16034 if (VT == MVT::f64 || VT == MVT::i64) 16035 return std::make_pair(0U, &PPC::F8RCRegClass); 16036 } 16037 break; 16038 case 'v': 16039 if (Subtarget.hasAltivec() && VT.isVector()) 16040 return std::make_pair(0U, &PPC::VRRCRegClass); 16041 else if (Subtarget.hasVSX()) 16042 // Scalars in Altivec registers only make sense with VSX. 16043 return std::make_pair(0U, &PPC::VFRCRegClass); 16044 break; 16045 case 'y': // crrc 16046 return std::make_pair(0U, &PPC::CRRCRegClass); 16047 } 16048 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 16049 // An individual CR bit. 16050 return std::make_pair(0U, &PPC::CRBITRCRegClass); 16051 } else if ((Constraint == "wa" || Constraint == "wd" || 16052 Constraint == "wf" || Constraint == "wi") && 16053 Subtarget.hasVSX()) { 16054 // A VSX register for either a scalar (FP) or vector. There is no 16055 // support for single precision scalars on subtargets prior to Power8. 16056 if (VT.isVector()) 16057 return std::make_pair(0U, &PPC::VSRCRegClass); 16058 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 16059 return std::make_pair(0U, &PPC::VSSRCRegClass); 16060 return std::make_pair(0U, &PPC::VSFRCRegClass); 16061 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 16062 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 16063 return std::make_pair(0U, &PPC::VSSRCRegClass); 16064 else 16065 return std::make_pair(0U, &PPC::VSFRCRegClass); 16066 } else if (Constraint == "lr") { 16067 if (VT == MVT::i64) 16068 return std::make_pair(0U, &PPC::LR8RCRegClass); 16069 else 16070 return std::make_pair(0U, &PPC::LRRCRegClass); 16071 } 16072 16073 // Handle special cases of physical registers that are not properly handled 16074 // by the base class. 16075 if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') { 16076 // If we name a VSX register, we can't defer to the base class because it 16077 // will not recognize the correct register (their names will be VSL{0-31} 16078 // and V{0-31} so they won't match). So we match them here. 16079 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 16080 int VSNum = atoi(Constraint.data() + 3); 16081 assert(VSNum >= 0 && VSNum <= 63 && 16082 "Attempted to access a vsr out of range"); 16083 if (VSNum < 32) 16084 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 16085 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 16086 } 16087 16088 // For float registers, we can't defer to the base class as it will match 16089 // the SPILLTOVSRRC class. 16090 if (Constraint.size() > 3 && Constraint[1] == 'f') { 16091 int RegNum = atoi(Constraint.data() + 2); 16092 if (RegNum > 31 || RegNum < 0) 16093 report_fatal_error("Invalid floating point register number"); 16094 if (VT == MVT::f32 || VT == MVT::i32) 16095 return Subtarget.hasSPE() 16096 ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass) 16097 : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass); 16098 if (VT == MVT::f64 || VT == MVT::i64) 16099 return Subtarget.hasSPE() 16100 ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass) 16101 : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass); 16102 } 16103 } 16104 16105 std::pair<unsigned, const TargetRegisterClass *> R = 16106 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 16107 16108 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 16109 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 16110 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 16111 // register. 16112 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 16113 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 16114 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 16115 PPC::GPRCRegClass.contains(R.first)) 16116 return std::make_pair(TRI->getMatchingSuperReg(R.first, 16117 PPC::sub_32, &PPC::G8RCRegClass), 16118 &PPC::G8RCRegClass); 16119 16120 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 16121 if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) { 16122 R.first = PPC::CR0; 16123 R.second = &PPC::CRRCRegClass; 16124 } 16125 // FIXME: This warning should ideally be emitted in the front end. 16126 const auto &TM = getTargetMachine(); 16127 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) { 16128 if (((R.first >= PPC::V20 && R.first <= PPC::V31) || 16129 (R.first >= PPC::VF20 && R.first <= PPC::VF31)) && 16130 (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass)) 16131 errs() << "warning: vector registers 20 to 32 are reserved in the " 16132 "default AIX AltiVec ABI and cannot be used\n"; 16133 } 16134 16135 return R; 16136 } 16137 16138 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 16139 /// vector. If it is invalid, don't add anything to Ops. 16140 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 16141 std::string &Constraint, 16142 std::vector<SDValue>&Ops, 16143 SelectionDAG &DAG) const { 16144 SDValue Result; 16145 16146 // Only support length 1 constraints. 16147 if (Constraint.length() > 1) return; 16148 16149 char Letter = Constraint[0]; 16150 switch (Letter) { 16151 default: break; 16152 case 'I': 16153 case 'J': 16154 case 'K': 16155 case 'L': 16156 case 'M': 16157 case 'N': 16158 case 'O': 16159 case 'P': { 16160 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 16161 if (!CST) return; // Must be an immediate to match. 16162 SDLoc dl(Op); 16163 int64_t Value = CST->getSExtValue(); 16164 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 16165 // numbers are printed as such. 16166 switch (Letter) { 16167 default: llvm_unreachable("Unknown constraint letter!"); 16168 case 'I': // "I" is a signed 16-bit constant. 16169 if (isInt<16>(Value)) 16170 Result = DAG.getTargetConstant(Value, dl, TCVT); 16171 break; 16172 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 16173 if (isShiftedUInt<16, 16>(Value)) 16174 Result = DAG.getTargetConstant(Value, dl, TCVT); 16175 break; 16176 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 16177 if (isShiftedInt<16, 16>(Value)) 16178 Result = DAG.getTargetConstant(Value, dl, TCVT); 16179 break; 16180 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 16181 if (isUInt<16>(Value)) 16182 Result = DAG.getTargetConstant(Value, dl, TCVT); 16183 break; 16184 case 'M': // "M" is a constant that is greater than 31. 16185 if (Value > 31) 16186 Result = DAG.getTargetConstant(Value, dl, TCVT); 16187 break; 16188 case 'N': // "N" is a positive constant that is an exact power of two. 16189 if (Value > 0 && isPowerOf2_64(Value)) 16190 Result = DAG.getTargetConstant(Value, dl, TCVT); 16191 break; 16192 case 'O': // "O" is the constant zero. 16193 if (Value == 0) 16194 Result = DAG.getTargetConstant(Value, dl, TCVT); 16195 break; 16196 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 16197 if (isInt<16>(-Value)) 16198 Result = DAG.getTargetConstant(Value, dl, TCVT); 16199 break; 16200 } 16201 break; 16202 } 16203 } 16204 16205 if (Result.getNode()) { 16206 Ops.push_back(Result); 16207 return; 16208 } 16209 16210 // Handle standard constraint letters. 16211 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 16212 } 16213 16214 // isLegalAddressingMode - Return true if the addressing mode represented 16215 // by AM is legal for this target, for a load/store of the specified type. 16216 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 16217 const AddrMode &AM, Type *Ty, 16218 unsigned AS, 16219 Instruction *I) const { 16220 // Vector type r+i form is supported since power9 as DQ form. We don't check 16221 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 16222 // imm form is preferred and the offset can be adjusted to use imm form later 16223 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 16224 // max offset to check legal addressing mode, we should be a little aggressive 16225 // to contain other offsets for that LSRUse. 16226 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 16227 return false; 16228 16229 // PPC allows a sign-extended 16-bit immediate field. 16230 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 16231 return false; 16232 16233 // No global is ever allowed as a base. 16234 if (AM.BaseGV) 16235 return false; 16236 16237 // PPC only support r+r, 16238 switch (AM.Scale) { 16239 case 0: // "r+i" or just "i", depending on HasBaseReg. 16240 break; 16241 case 1: 16242 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 16243 return false; 16244 // Otherwise we have r+r or r+i. 16245 break; 16246 case 2: 16247 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 16248 return false; 16249 // Allow 2*r as r+r. 16250 break; 16251 default: 16252 // No other scales are supported. 16253 return false; 16254 } 16255 16256 return true; 16257 } 16258 16259 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 16260 SelectionDAG &DAG) const { 16261 MachineFunction &MF = DAG.getMachineFunction(); 16262 MachineFrameInfo &MFI = MF.getFrameInfo(); 16263 MFI.setReturnAddressIsTaken(true); 16264 16265 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 16266 return SDValue(); 16267 16268 SDLoc dl(Op); 16269 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 16270 16271 // Make sure the function does not optimize away the store of the RA to 16272 // the stack. 16273 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 16274 FuncInfo->setLRStoreRequired(); 16275 bool isPPC64 = Subtarget.isPPC64(); 16276 auto PtrVT = getPointerTy(MF.getDataLayout()); 16277 16278 if (Depth > 0) { 16279 // The link register (return address) is saved in the caller's frame 16280 // not the callee's stack frame. So we must get the caller's frame 16281 // address and load the return address at the LR offset from there. 16282 SDValue FrameAddr = 16283 DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16284 LowerFRAMEADDR(Op, DAG), MachinePointerInfo()); 16285 SDValue Offset = 16286 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 16287 isPPC64 ? MVT::i64 : MVT::i32); 16288 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 16289 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 16290 MachinePointerInfo()); 16291 } 16292 16293 // Just load the return address off the stack. 16294 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 16295 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 16296 MachinePointerInfo()); 16297 } 16298 16299 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 16300 SelectionDAG &DAG) const { 16301 SDLoc dl(Op); 16302 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 16303 16304 MachineFunction &MF = DAG.getMachineFunction(); 16305 MachineFrameInfo &MFI = MF.getFrameInfo(); 16306 MFI.setFrameAddressIsTaken(true); 16307 16308 EVT PtrVT = getPointerTy(MF.getDataLayout()); 16309 bool isPPC64 = PtrVT == MVT::i64; 16310 16311 // Naked functions never have a frame pointer, and so we use r1. For all 16312 // other functions, this decision must be delayed until during PEI. 16313 unsigned FrameReg; 16314 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 16315 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 16316 else 16317 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 16318 16319 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 16320 PtrVT); 16321 while (Depth--) 16322 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16323 FrameAddr, MachinePointerInfo()); 16324 return FrameAddr; 16325 } 16326 16327 // FIXME? Maybe this could be a TableGen attribute on some registers and 16328 // this table could be generated automatically from RegInfo. 16329 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 16330 const MachineFunction &MF) const { 16331 bool isPPC64 = Subtarget.isPPC64(); 16332 16333 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 16334 if (!is64Bit && VT != LLT::scalar(32)) 16335 report_fatal_error("Invalid register global variable type"); 16336 16337 Register Reg = StringSwitch<Register>(RegName) 16338 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 16339 .Case("r2", isPPC64 ? Register() : PPC::R2) 16340 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 16341 .Default(Register()); 16342 16343 if (Reg) 16344 return Reg; 16345 report_fatal_error("Invalid register name global variable"); 16346 } 16347 16348 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 16349 // 32-bit SVR4 ABI access everything as got-indirect. 16350 if (Subtarget.is32BitELFABI()) 16351 return true; 16352 16353 // AIX accesses everything indirectly through the TOC, which is similar to 16354 // the GOT. 16355 if (Subtarget.isAIXABI()) 16356 return true; 16357 16358 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 16359 // If it is small or large code model, module locals are accessed 16360 // indirectly by loading their address from .toc/.got. 16361 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 16362 return true; 16363 16364 // JumpTable and BlockAddress are accessed as got-indirect. 16365 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 16366 return true; 16367 16368 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 16369 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 16370 16371 return false; 16372 } 16373 16374 bool 16375 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 16376 // The PowerPC target isn't yet aware of offsets. 16377 return false; 16378 } 16379 16380 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 16381 const CallInst &I, 16382 MachineFunction &MF, 16383 unsigned Intrinsic) const { 16384 switch (Intrinsic) { 16385 case Intrinsic::ppc_atomicrmw_xchg_i128: 16386 case Intrinsic::ppc_atomicrmw_add_i128: 16387 case Intrinsic::ppc_atomicrmw_sub_i128: 16388 case Intrinsic::ppc_atomicrmw_nand_i128: 16389 case Intrinsic::ppc_atomicrmw_and_i128: 16390 case Intrinsic::ppc_atomicrmw_or_i128: 16391 case Intrinsic::ppc_atomicrmw_xor_i128: 16392 case Intrinsic::ppc_cmpxchg_i128: 16393 Info.opc = ISD::INTRINSIC_W_CHAIN; 16394 Info.memVT = MVT::i128; 16395 Info.ptrVal = I.getArgOperand(0); 16396 Info.offset = 0; 16397 Info.align = Align(16); 16398 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 16399 MachineMemOperand::MOVolatile; 16400 return true; 16401 case Intrinsic::ppc_atomic_load_i128: 16402 Info.opc = ISD::INTRINSIC_W_CHAIN; 16403 Info.memVT = MVT::i128; 16404 Info.ptrVal = I.getArgOperand(0); 16405 Info.offset = 0; 16406 Info.align = Align(16); 16407 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 16408 return true; 16409 case Intrinsic::ppc_atomic_store_i128: 16410 Info.opc = ISD::INTRINSIC_VOID; 16411 Info.memVT = MVT::i128; 16412 Info.ptrVal = I.getArgOperand(2); 16413 Info.offset = 0; 16414 Info.align = Align(16); 16415 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; 16416 return true; 16417 case Intrinsic::ppc_altivec_lvx: 16418 case Intrinsic::ppc_altivec_lvxl: 16419 case Intrinsic::ppc_altivec_lvebx: 16420 case Intrinsic::ppc_altivec_lvehx: 16421 case Intrinsic::ppc_altivec_lvewx: 16422 case Intrinsic::ppc_vsx_lxvd2x: 16423 case Intrinsic::ppc_vsx_lxvw4x: 16424 case Intrinsic::ppc_vsx_lxvd2x_be: 16425 case Intrinsic::ppc_vsx_lxvw4x_be: 16426 case Intrinsic::ppc_vsx_lxvl: 16427 case Intrinsic::ppc_vsx_lxvll: { 16428 EVT VT; 16429 switch (Intrinsic) { 16430 case Intrinsic::ppc_altivec_lvebx: 16431 VT = MVT::i8; 16432 break; 16433 case Intrinsic::ppc_altivec_lvehx: 16434 VT = MVT::i16; 16435 break; 16436 case Intrinsic::ppc_altivec_lvewx: 16437 VT = MVT::i32; 16438 break; 16439 case Intrinsic::ppc_vsx_lxvd2x: 16440 case Intrinsic::ppc_vsx_lxvd2x_be: 16441 VT = MVT::v2f64; 16442 break; 16443 default: 16444 VT = MVT::v4i32; 16445 break; 16446 } 16447 16448 Info.opc = ISD::INTRINSIC_W_CHAIN; 16449 Info.memVT = VT; 16450 Info.ptrVal = I.getArgOperand(0); 16451 Info.offset = -VT.getStoreSize()+1; 16452 Info.size = 2*VT.getStoreSize()-1; 16453 Info.align = Align(1); 16454 Info.flags = MachineMemOperand::MOLoad; 16455 return true; 16456 } 16457 case Intrinsic::ppc_altivec_stvx: 16458 case Intrinsic::ppc_altivec_stvxl: 16459 case Intrinsic::ppc_altivec_stvebx: 16460 case Intrinsic::ppc_altivec_stvehx: 16461 case Intrinsic::ppc_altivec_stvewx: 16462 case Intrinsic::ppc_vsx_stxvd2x: 16463 case Intrinsic::ppc_vsx_stxvw4x: 16464 case Intrinsic::ppc_vsx_stxvd2x_be: 16465 case Intrinsic::ppc_vsx_stxvw4x_be: 16466 case Intrinsic::ppc_vsx_stxvl: 16467 case Intrinsic::ppc_vsx_stxvll: { 16468 EVT VT; 16469 switch (Intrinsic) { 16470 case Intrinsic::ppc_altivec_stvebx: 16471 VT = MVT::i8; 16472 break; 16473 case Intrinsic::ppc_altivec_stvehx: 16474 VT = MVT::i16; 16475 break; 16476 case Intrinsic::ppc_altivec_stvewx: 16477 VT = MVT::i32; 16478 break; 16479 case Intrinsic::ppc_vsx_stxvd2x: 16480 case Intrinsic::ppc_vsx_stxvd2x_be: 16481 VT = MVT::v2f64; 16482 break; 16483 default: 16484 VT = MVT::v4i32; 16485 break; 16486 } 16487 16488 Info.opc = ISD::INTRINSIC_VOID; 16489 Info.memVT = VT; 16490 Info.ptrVal = I.getArgOperand(1); 16491 Info.offset = -VT.getStoreSize()+1; 16492 Info.size = 2*VT.getStoreSize()-1; 16493 Info.align = Align(1); 16494 Info.flags = MachineMemOperand::MOStore; 16495 return true; 16496 } 16497 default: 16498 break; 16499 } 16500 16501 return false; 16502 } 16503 16504 /// It returns EVT::Other if the type should be determined using generic 16505 /// target-independent logic. 16506 EVT PPCTargetLowering::getOptimalMemOpType( 16507 const MemOp &Op, const AttributeList &FuncAttributes) const { 16508 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 16509 // We should use Altivec/VSX loads and stores when available. For unaligned 16510 // addresses, unaligned VSX loads are only fast starting with the P8. 16511 if (Subtarget.hasAltivec() && Op.size() >= 16 && 16512 (Op.isAligned(Align(16)) || 16513 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 16514 return MVT::v4i32; 16515 } 16516 16517 if (Subtarget.isPPC64()) { 16518 return MVT::i64; 16519 } 16520 16521 return MVT::i32; 16522 } 16523 16524 /// Returns true if it is beneficial to convert a load of a constant 16525 /// to just the constant itself. 16526 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 16527 Type *Ty) const { 16528 assert(Ty->isIntegerTy()); 16529 16530 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 16531 return !(BitSize == 0 || BitSize > 64); 16532 } 16533 16534 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 16535 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 16536 return false; 16537 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 16538 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 16539 return NumBits1 == 64 && NumBits2 == 32; 16540 } 16541 16542 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 16543 if (!VT1.isInteger() || !VT2.isInteger()) 16544 return false; 16545 unsigned NumBits1 = VT1.getSizeInBits(); 16546 unsigned NumBits2 = VT2.getSizeInBits(); 16547 return NumBits1 == 64 && NumBits2 == 32; 16548 } 16549 16550 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 16551 // Generally speaking, zexts are not free, but they are free when they can be 16552 // folded with other operations. 16553 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 16554 EVT MemVT = LD->getMemoryVT(); 16555 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 16556 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 16557 (LD->getExtensionType() == ISD::NON_EXTLOAD || 16558 LD->getExtensionType() == ISD::ZEXTLOAD)) 16559 return true; 16560 } 16561 16562 // FIXME: Add other cases... 16563 // - 32-bit shifts with a zext to i64 16564 // - zext after ctlz, bswap, etc. 16565 // - zext after and by a constant mask 16566 16567 return TargetLowering::isZExtFree(Val, VT2); 16568 } 16569 16570 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 16571 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 16572 "invalid fpext types"); 16573 // Extending to float128 is not free. 16574 if (DestVT == MVT::f128) 16575 return false; 16576 return true; 16577 } 16578 16579 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 16580 return isInt<16>(Imm) || isUInt<16>(Imm); 16581 } 16582 16583 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 16584 return isInt<16>(Imm) || isUInt<16>(Imm); 16585 } 16586 16587 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align, 16588 MachineMemOperand::Flags, 16589 bool *Fast) const { 16590 if (DisablePPCUnaligned) 16591 return false; 16592 16593 // PowerPC supports unaligned memory access for simple non-vector types. 16594 // Although accessing unaligned addresses is not as efficient as accessing 16595 // aligned addresses, it is generally more efficient than manual expansion, 16596 // and generally only traps for software emulation when crossing page 16597 // boundaries. 16598 16599 if (!VT.isSimple()) 16600 return false; 16601 16602 if (VT.isFloatingPoint() && !VT.isVector() && 16603 !Subtarget.allowsUnalignedFPAccess()) 16604 return false; 16605 16606 if (VT.getSimpleVT().isVector()) { 16607 if (Subtarget.hasVSX()) { 16608 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 16609 VT != MVT::v4f32 && VT != MVT::v4i32) 16610 return false; 16611 } else { 16612 return false; 16613 } 16614 } 16615 16616 if (VT == MVT::ppcf128) 16617 return false; 16618 16619 if (Fast) 16620 *Fast = true; 16621 16622 return true; 16623 } 16624 16625 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 16626 SDValue C) const { 16627 // Check integral scalar types. 16628 if (!VT.isScalarInteger()) 16629 return false; 16630 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 16631 if (!ConstNode->getAPIntValue().isSignedIntN(64)) 16632 return false; 16633 // This transformation will generate >= 2 operations. But the following 16634 // cases will generate <= 2 instructions during ISEL. So exclude them. 16635 // 1. If the constant multiplier fits 16 bits, it can be handled by one 16636 // HW instruction, ie. MULLI 16637 // 2. If the multiplier after shifted fits 16 bits, an extra shift 16638 // instruction is needed than case 1, ie. MULLI and RLDICR 16639 int64_t Imm = ConstNode->getSExtValue(); 16640 unsigned Shift = countTrailingZeros<uint64_t>(Imm); 16641 Imm >>= Shift; 16642 if (isInt<16>(Imm)) 16643 return false; 16644 uint64_t UImm = static_cast<uint64_t>(Imm); 16645 if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || 16646 isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) 16647 return true; 16648 } 16649 return false; 16650 } 16651 16652 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 16653 EVT VT) const { 16654 return isFMAFasterThanFMulAndFAdd( 16655 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 16656 } 16657 16658 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 16659 Type *Ty) const { 16660 switch (Ty->getScalarType()->getTypeID()) { 16661 case Type::FloatTyID: 16662 case Type::DoubleTyID: 16663 return true; 16664 case Type::FP128TyID: 16665 return Subtarget.hasP9Vector(); 16666 default: 16667 return false; 16668 } 16669 } 16670 16671 // FIXME: add more patterns which are not profitable to hoist. 16672 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 16673 if (!I->hasOneUse()) 16674 return true; 16675 16676 Instruction *User = I->user_back(); 16677 assert(User && "A single use instruction with no uses."); 16678 16679 switch (I->getOpcode()) { 16680 case Instruction::FMul: { 16681 // Don't break FMA, PowerPC prefers FMA. 16682 if (User->getOpcode() != Instruction::FSub && 16683 User->getOpcode() != Instruction::FAdd) 16684 return true; 16685 16686 const TargetOptions &Options = getTargetMachine().Options; 16687 const Function *F = I->getFunction(); 16688 const DataLayout &DL = F->getParent()->getDataLayout(); 16689 Type *Ty = User->getOperand(0)->getType(); 16690 16691 return !( 16692 isFMAFasterThanFMulAndFAdd(*F, Ty) && 16693 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 16694 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 16695 } 16696 case Instruction::Load: { 16697 // Don't break "store (load float*)" pattern, this pattern will be combined 16698 // to "store (load int32)" in later InstCombine pass. See function 16699 // combineLoadToOperationType. On PowerPC, loading a float point takes more 16700 // cycles than loading a 32 bit integer. 16701 LoadInst *LI = cast<LoadInst>(I); 16702 // For the loads that combineLoadToOperationType does nothing, like 16703 // ordered load, it should be profitable to hoist them. 16704 // For swifterror load, it can only be used for pointer to pointer type, so 16705 // later type check should get rid of this case. 16706 if (!LI->isUnordered()) 16707 return true; 16708 16709 if (User->getOpcode() != Instruction::Store) 16710 return true; 16711 16712 if (I->getType()->getTypeID() != Type::FloatTyID) 16713 return true; 16714 16715 return false; 16716 } 16717 default: 16718 return true; 16719 } 16720 return true; 16721 } 16722 16723 const MCPhysReg * 16724 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 16725 // LR is a callee-save register, but we must treat it as clobbered by any call 16726 // site. Hence we include LR in the scratch registers, which are in turn added 16727 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 16728 // to CTR, which is used by any indirect call. 16729 static const MCPhysReg ScratchRegs[] = { 16730 PPC::X12, PPC::LR8, PPC::CTR8, 0 16731 }; 16732 16733 return ScratchRegs; 16734 } 16735 16736 Register PPCTargetLowering::getExceptionPointerRegister( 16737 const Constant *PersonalityFn) const { 16738 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 16739 } 16740 16741 Register PPCTargetLowering::getExceptionSelectorRegister( 16742 const Constant *PersonalityFn) const { 16743 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 16744 } 16745 16746 bool 16747 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 16748 EVT VT , unsigned DefinedValues) const { 16749 if (VT == MVT::v2i64) 16750 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 16751 16752 if (Subtarget.hasVSX()) 16753 return true; 16754 16755 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 16756 } 16757 16758 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 16759 if (DisableILPPref || Subtarget.enableMachineScheduler()) 16760 return TargetLowering::getSchedulingPreference(N); 16761 16762 return Sched::ILP; 16763 } 16764 16765 // Create a fast isel object. 16766 FastISel * 16767 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 16768 const TargetLibraryInfo *LibInfo) const { 16769 return PPC::createFastISel(FuncInfo, LibInfo); 16770 } 16771 16772 // 'Inverted' means the FMA opcode after negating one multiplicand. 16773 // For example, (fma -a b c) = (fnmsub a b c) 16774 static unsigned invertFMAOpcode(unsigned Opc) { 16775 switch (Opc) { 16776 default: 16777 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 16778 case ISD::FMA: 16779 return PPCISD::FNMSUB; 16780 case PPCISD::FNMSUB: 16781 return ISD::FMA; 16782 } 16783 } 16784 16785 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 16786 bool LegalOps, bool OptForSize, 16787 NegatibleCost &Cost, 16788 unsigned Depth) const { 16789 if (Depth > SelectionDAG::MaxRecursionDepth) 16790 return SDValue(); 16791 16792 unsigned Opc = Op.getOpcode(); 16793 EVT VT = Op.getValueType(); 16794 SDNodeFlags Flags = Op.getNode()->getFlags(); 16795 16796 switch (Opc) { 16797 case PPCISD::FNMSUB: 16798 if (!Op.hasOneUse() || !isTypeLegal(VT)) 16799 break; 16800 16801 const TargetOptions &Options = getTargetMachine().Options; 16802 SDValue N0 = Op.getOperand(0); 16803 SDValue N1 = Op.getOperand(1); 16804 SDValue N2 = Op.getOperand(2); 16805 SDLoc Loc(Op); 16806 16807 NegatibleCost N2Cost = NegatibleCost::Expensive; 16808 SDValue NegN2 = 16809 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 16810 16811 if (!NegN2) 16812 return SDValue(); 16813 16814 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 16815 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 16816 // These transformations may change sign of zeroes. For example, 16817 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 16818 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 16819 // Try and choose the cheaper one to negate. 16820 NegatibleCost N0Cost = NegatibleCost::Expensive; 16821 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 16822 N0Cost, Depth + 1); 16823 16824 NegatibleCost N1Cost = NegatibleCost::Expensive; 16825 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 16826 N1Cost, Depth + 1); 16827 16828 if (NegN0 && N0Cost <= N1Cost) { 16829 Cost = std::min(N0Cost, N2Cost); 16830 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 16831 } else if (NegN1) { 16832 Cost = std::min(N1Cost, N2Cost); 16833 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 16834 } 16835 } 16836 16837 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 16838 if (isOperationLegal(ISD::FMA, VT)) { 16839 Cost = N2Cost; 16840 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 16841 } 16842 16843 break; 16844 } 16845 16846 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 16847 Cost, Depth); 16848 } 16849 16850 // Override to enable LOAD_STACK_GUARD lowering on Linux. 16851 bool PPCTargetLowering::useLoadStackGuardNode() const { 16852 if (!Subtarget.isTargetLinux()) 16853 return TargetLowering::useLoadStackGuardNode(); 16854 return true; 16855 } 16856 16857 // Override to disable global variable loading on Linux and insert AIX canary 16858 // word declaration. 16859 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 16860 if (Subtarget.isAIXABI()) { 16861 M.getOrInsertGlobal(AIXSSPCanaryWordName, 16862 Type::getInt8PtrTy(M.getContext())); 16863 return; 16864 } 16865 if (!Subtarget.isTargetLinux()) 16866 return TargetLowering::insertSSPDeclarations(M); 16867 } 16868 16869 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const { 16870 if (Subtarget.isAIXABI()) 16871 return M.getGlobalVariable(AIXSSPCanaryWordName); 16872 return TargetLowering::getSDagStackGuard(M); 16873 } 16874 16875 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 16876 bool ForCodeSize) const { 16877 if (!VT.isSimple() || !Subtarget.hasVSX()) 16878 return false; 16879 16880 switch(VT.getSimpleVT().SimpleTy) { 16881 default: 16882 // For FP types that are currently not supported by PPC backend, return 16883 // false. Examples: f16, f80. 16884 return false; 16885 case MVT::f32: 16886 case MVT::f64: 16887 if (Subtarget.hasPrefixInstrs()) { 16888 // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP. 16889 return true; 16890 } 16891 LLVM_FALLTHROUGH; 16892 case MVT::ppcf128: 16893 return Imm.isPosZero(); 16894 } 16895 } 16896 16897 // For vector shift operation op, fold 16898 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16899 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16900 SelectionDAG &DAG) { 16901 SDValue N0 = N->getOperand(0); 16902 SDValue N1 = N->getOperand(1); 16903 EVT VT = N0.getValueType(); 16904 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16905 unsigned Opcode = N->getOpcode(); 16906 unsigned TargetOpcode; 16907 16908 switch (Opcode) { 16909 default: 16910 llvm_unreachable("Unexpected shift operation"); 16911 case ISD::SHL: 16912 TargetOpcode = PPCISD::SHL; 16913 break; 16914 case ISD::SRL: 16915 TargetOpcode = PPCISD::SRL; 16916 break; 16917 case ISD::SRA: 16918 TargetOpcode = PPCISD::SRA; 16919 break; 16920 } 16921 16922 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16923 N1->getOpcode() == ISD::AND) 16924 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16925 if (Mask->getZExtValue() == OpSizeInBits - 1) 16926 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16927 16928 return SDValue(); 16929 } 16930 16931 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16932 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16933 return Value; 16934 16935 SDValue N0 = N->getOperand(0); 16936 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16937 if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || 16938 N0.getOpcode() != ISD::SIGN_EXTEND || 16939 N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || 16940 N->getValueType(0) != MVT::i64) 16941 return SDValue(); 16942 16943 // We can't save an operation here if the value is already extended, and 16944 // the existing shift is easier to combine. 16945 SDValue ExtsSrc = N0.getOperand(0); 16946 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16947 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16948 return SDValue(); 16949 16950 SDLoc DL(N0); 16951 SDValue ShiftBy = SDValue(CN1, 0); 16952 // We want the shift amount to be i32 on the extswli, but the shift could 16953 // have an i64. 16954 if (ShiftBy.getValueType() == MVT::i64) 16955 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 16956 16957 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 16958 ShiftBy); 16959 } 16960 16961 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 16962 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16963 return Value; 16964 16965 return SDValue(); 16966 } 16967 16968 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 16969 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16970 return Value; 16971 16972 return SDValue(); 16973 } 16974 16975 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 16976 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 16977 // When C is zero, the equation (addi Z, -C) can be simplified to Z 16978 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 16979 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 16980 const PPCSubtarget &Subtarget) { 16981 if (!Subtarget.isPPC64()) 16982 return SDValue(); 16983 16984 SDValue LHS = N->getOperand(0); 16985 SDValue RHS = N->getOperand(1); 16986 16987 auto isZextOfCompareWithConstant = [](SDValue Op) { 16988 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 16989 Op.getValueType() != MVT::i64) 16990 return false; 16991 16992 SDValue Cmp = Op.getOperand(0); 16993 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 16994 Cmp.getOperand(0).getValueType() != MVT::i64) 16995 return false; 16996 16997 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 16998 int64_t NegConstant = 0 - Constant->getSExtValue(); 16999 // Due to the limitations of the addi instruction, 17000 // -C is required to be [-32768, 32767]. 17001 return isInt<16>(NegConstant); 17002 } 17003 17004 return false; 17005 }; 17006 17007 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 17008 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 17009 17010 // If there is a pattern, canonicalize a zext operand to the RHS. 17011 if (LHSHasPattern && !RHSHasPattern) 17012 std::swap(LHS, RHS); 17013 else if (!LHSHasPattern && !RHSHasPattern) 17014 return SDValue(); 17015 17016 SDLoc DL(N); 17017 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 17018 SDValue Cmp = RHS.getOperand(0); 17019 SDValue Z = Cmp.getOperand(0); 17020 auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1)); 17021 int64_t NegConstant = 0 - Constant->getSExtValue(); 17022 17023 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 17024 default: break; 17025 case ISD::SETNE: { 17026 // when C == 0 17027 // --> addze X, (addic Z, -1).carry 17028 // / 17029 // add X, (zext(setne Z, C))-- 17030 // \ when -32768 <= -C <= 32767 && C != 0 17031 // --> addze X, (addic (addi Z, -C), -1).carry 17032 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 17033 DAG.getConstant(NegConstant, DL, MVT::i64)); 17034 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 17035 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 17036 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 17037 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 17038 SDValue(Addc.getNode(), 1)); 17039 } 17040 case ISD::SETEQ: { 17041 // when C == 0 17042 // --> addze X, (subfic Z, 0).carry 17043 // / 17044 // add X, (zext(sete Z, C))-- 17045 // \ when -32768 <= -C <= 32767 && C != 0 17046 // --> addze X, (subfic (addi Z, -C), 0).carry 17047 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 17048 DAG.getConstant(NegConstant, DL, MVT::i64)); 17049 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 17050 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 17051 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 17052 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 17053 SDValue(Subc.getNode(), 1)); 17054 } 17055 } 17056 17057 return SDValue(); 17058 } 17059 17060 // Transform 17061 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 17062 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 17063 // In this case both C1 and C2 must be known constants. 17064 // C1+C2 must fit into a 34 bit signed integer. 17065 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 17066 const PPCSubtarget &Subtarget) { 17067 if (!Subtarget.isUsingPCRelativeCalls()) 17068 return SDValue(); 17069 17070 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 17071 // If we find that node try to cast the Global Address and the Constant. 17072 SDValue LHS = N->getOperand(0); 17073 SDValue RHS = N->getOperand(1); 17074 17075 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 17076 std::swap(LHS, RHS); 17077 17078 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 17079 return SDValue(); 17080 17081 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 17082 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 17083 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 17084 17085 // Check that both casts succeeded. 17086 if (!GSDN || !ConstNode) 17087 return SDValue(); 17088 17089 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 17090 SDLoc DL(GSDN); 17091 17092 // The signed int offset needs to fit in 34 bits. 17093 if (!isInt<34>(NewOffset)) 17094 return SDValue(); 17095 17096 // The new global address is a copy of the old global address except 17097 // that it has the updated Offset. 17098 SDValue GA = 17099 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 17100 NewOffset, GSDN->getTargetFlags()); 17101 SDValue MatPCRel = 17102 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 17103 return MatPCRel; 17104 } 17105 17106 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 17107 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 17108 return Value; 17109 17110 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 17111 return Value; 17112 17113 return SDValue(); 17114 } 17115 17116 // Detect TRUNCATE operations on bitcasts of float128 values. 17117 // What we are looking for here is the situtation where we extract a subset 17118 // of bits from a 128 bit float. 17119 // This can be of two forms: 17120 // 1) BITCAST of f128 feeding TRUNCATE 17121 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 17122 // The reason this is required is because we do not have a legal i128 type 17123 // and so we want to prevent having to store the f128 and then reload part 17124 // of it. 17125 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 17126 DAGCombinerInfo &DCI) const { 17127 // If we are using CRBits then try that first. 17128 if (Subtarget.useCRBits()) { 17129 // Check if CRBits did anything and return that if it did. 17130 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 17131 return CRTruncValue; 17132 } 17133 17134 SDLoc dl(N); 17135 SDValue Op0 = N->getOperand(0); 17136 17137 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 17138 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 17139 EVT VT = N->getValueType(0); 17140 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17141 return SDValue(); 17142 SDValue Sub = Op0.getOperand(0); 17143 if (Sub.getOpcode() == ISD::SUB) { 17144 SDValue SubOp0 = Sub.getOperand(0); 17145 SDValue SubOp1 = Sub.getOperand(1); 17146 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 17147 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 17148 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 17149 SubOp1.getOperand(0), 17150 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 17151 } 17152 } 17153 } 17154 17155 // Looking for a truncate of i128 to i64. 17156 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 17157 return SDValue(); 17158 17159 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 17160 17161 // SRL feeding TRUNCATE. 17162 if (Op0.getOpcode() == ISD::SRL) { 17163 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 17164 // The right shift has to be by 64 bits. 17165 if (!ConstNode || ConstNode->getZExtValue() != 64) 17166 return SDValue(); 17167 17168 // Switch the element number to extract. 17169 EltToExtract = EltToExtract ? 0 : 1; 17170 // Update Op0 past the SRL. 17171 Op0 = Op0.getOperand(0); 17172 } 17173 17174 // BITCAST feeding a TRUNCATE possibly via SRL. 17175 if (Op0.getOpcode() == ISD::BITCAST && 17176 Op0.getValueType() == MVT::i128 && 17177 Op0.getOperand(0).getValueType() == MVT::f128) { 17178 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 17179 return DCI.DAG.getNode( 17180 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 17181 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 17182 } 17183 return SDValue(); 17184 } 17185 17186 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 17187 SelectionDAG &DAG = DCI.DAG; 17188 17189 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 17190 if (!ConstOpOrElement) 17191 return SDValue(); 17192 17193 // An imul is usually smaller than the alternative sequence for legal type. 17194 if (DAG.getMachineFunction().getFunction().hasMinSize() && 17195 isOperationLegal(ISD::MUL, N->getValueType(0))) 17196 return SDValue(); 17197 17198 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 17199 switch (this->Subtarget.getCPUDirective()) { 17200 default: 17201 // TODO: enhance the condition for subtarget before pwr8 17202 return false; 17203 case PPC::DIR_PWR8: 17204 // type mul add shl 17205 // scalar 4 1 1 17206 // vector 7 2 2 17207 return true; 17208 case PPC::DIR_PWR9: 17209 case PPC::DIR_PWR10: 17210 case PPC::DIR_PWR_FUTURE: 17211 // type mul add shl 17212 // scalar 5 2 2 17213 // vector 7 2 2 17214 17215 // The cycle RATIO of related operations are showed as a table above. 17216 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 17217 // scalar and vector type. For 2 instrs patterns, add/sub + shl 17218 // are 4, it is always profitable; but for 3 instrs patterns 17219 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 17220 // So we should only do it for vector type. 17221 return IsAddOne && IsNeg ? VT.isVector() : true; 17222 } 17223 }; 17224 17225 EVT VT = N->getValueType(0); 17226 SDLoc DL(N); 17227 17228 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 17229 bool IsNeg = MulAmt.isNegative(); 17230 APInt MulAmtAbs = MulAmt.abs(); 17231 17232 if ((MulAmtAbs - 1).isPowerOf2()) { 17233 // (mul x, 2^N + 1) => (add (shl x, N), x) 17234 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 17235 17236 if (!IsProfitable(IsNeg, true, VT)) 17237 return SDValue(); 17238 17239 SDValue Op0 = N->getOperand(0); 17240 SDValue Op1 = 17241 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 17242 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 17243 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 17244 17245 if (!IsNeg) 17246 return Res; 17247 17248 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 17249 } else if ((MulAmtAbs + 1).isPowerOf2()) { 17250 // (mul x, 2^N - 1) => (sub (shl x, N), x) 17251 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 17252 17253 if (!IsProfitable(IsNeg, false, VT)) 17254 return SDValue(); 17255 17256 SDValue Op0 = N->getOperand(0); 17257 SDValue Op1 = 17258 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 17259 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 17260 17261 if (!IsNeg) 17262 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 17263 else 17264 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 17265 17266 } else { 17267 return SDValue(); 17268 } 17269 } 17270 17271 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 17272 // in combiner since we need to check SD flags and other subtarget features. 17273 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 17274 DAGCombinerInfo &DCI) const { 17275 SDValue N0 = N->getOperand(0); 17276 SDValue N1 = N->getOperand(1); 17277 SDValue N2 = N->getOperand(2); 17278 SDNodeFlags Flags = N->getFlags(); 17279 EVT VT = N->getValueType(0); 17280 SelectionDAG &DAG = DCI.DAG; 17281 const TargetOptions &Options = getTargetMachine().Options; 17282 unsigned Opc = N->getOpcode(); 17283 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 17284 bool LegalOps = !DCI.isBeforeLegalizeOps(); 17285 SDLoc Loc(N); 17286 17287 if (!isOperationLegal(ISD::FMA, VT)) 17288 return SDValue(); 17289 17290 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 17291 // since (fnmsub a b c)=-0 while c-ab=+0. 17292 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 17293 return SDValue(); 17294 17295 // (fma (fneg a) b c) => (fnmsub a b c) 17296 // (fnmsub (fneg a) b c) => (fma a b c) 17297 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 17298 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 17299 17300 // (fma a (fneg b) c) => (fnmsub a b c) 17301 // (fnmsub a (fneg b) c) => (fma a b c) 17302 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 17303 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 17304 17305 return SDValue(); 17306 } 17307 17308 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 17309 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 17310 if (!Subtarget.is64BitELFABI()) 17311 return false; 17312 17313 // If not a tail call then no need to proceed. 17314 if (!CI->isTailCall()) 17315 return false; 17316 17317 // If sibling calls have been disabled and tail-calls aren't guaranteed 17318 // there is no reason to duplicate. 17319 auto &TM = getTargetMachine(); 17320 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 17321 return false; 17322 17323 // Can't tail call a function called indirectly, or if it has variadic args. 17324 const Function *Callee = CI->getCalledFunction(); 17325 if (!Callee || Callee->isVarArg()) 17326 return false; 17327 17328 // Make sure the callee and caller calling conventions are eligible for tco. 17329 const Function *Caller = CI->getParent()->getParent(); 17330 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 17331 CI->getCallingConv())) 17332 return false; 17333 17334 // If the function is local then we have a good chance at tail-calling it 17335 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 17336 } 17337 17338 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 17339 if (!Subtarget.hasVSX()) 17340 return false; 17341 if (Subtarget.hasP9Vector() && VT == MVT::f128) 17342 return true; 17343 return VT == MVT::f32 || VT == MVT::f64 || 17344 VT == MVT::v4f32 || VT == MVT::v2f64; 17345 } 17346 17347 bool PPCTargetLowering:: 17348 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 17349 const Value *Mask = AndI.getOperand(1); 17350 // If the mask is suitable for andi. or andis. we should sink the and. 17351 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 17352 // Can't handle constants wider than 64-bits. 17353 if (CI->getBitWidth() > 64) 17354 return false; 17355 int64_t ConstVal = CI->getZExtValue(); 17356 return isUInt<16>(ConstVal) || 17357 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 17358 } 17359 17360 // For non-constant masks, we can always use the record-form and. 17361 return true; 17362 } 17363 17364 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 17365 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 17366 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 17367 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 17368 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 17369 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 17370 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 17371 assert(Subtarget.hasP9Altivec() && 17372 "Only combine this when P9 altivec supported!"); 17373 EVT VT = N->getValueType(0); 17374 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17375 return SDValue(); 17376 17377 SelectionDAG &DAG = DCI.DAG; 17378 SDLoc dl(N); 17379 if (N->getOperand(0).getOpcode() == ISD::SUB) { 17380 // Even for signed integers, if it's known to be positive (as signed 17381 // integer) due to zero-extended inputs. 17382 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 17383 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 17384 if ((SubOpcd0 == ISD::ZERO_EXTEND || 17385 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 17386 (SubOpcd1 == ISD::ZERO_EXTEND || 17387 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 17388 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17389 N->getOperand(0)->getOperand(0), 17390 N->getOperand(0)->getOperand(1), 17391 DAG.getTargetConstant(0, dl, MVT::i32)); 17392 } 17393 17394 // For type v4i32, it can be optimized with xvnegsp + vabsduw 17395 if (N->getOperand(0).getValueType() == MVT::v4i32 && 17396 N->getOperand(0).hasOneUse()) { 17397 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17398 N->getOperand(0)->getOperand(0), 17399 N->getOperand(0)->getOperand(1), 17400 DAG.getTargetConstant(1, dl, MVT::i32)); 17401 } 17402 } 17403 17404 return SDValue(); 17405 } 17406 17407 // For type v4i32/v8ii16/v16i8, transform 17408 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 17409 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 17410 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 17411 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 17412 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 17413 DAGCombinerInfo &DCI) const { 17414 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 17415 assert(Subtarget.hasP9Altivec() && 17416 "Only combine this when P9 altivec supported!"); 17417 17418 SelectionDAG &DAG = DCI.DAG; 17419 SDLoc dl(N); 17420 SDValue Cond = N->getOperand(0); 17421 SDValue TrueOpnd = N->getOperand(1); 17422 SDValue FalseOpnd = N->getOperand(2); 17423 EVT VT = N->getOperand(1).getValueType(); 17424 17425 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 17426 FalseOpnd.getOpcode() != ISD::SUB) 17427 return SDValue(); 17428 17429 // ABSD only available for type v4i32/v8i16/v16i8 17430 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17431 return SDValue(); 17432 17433 // At least to save one more dependent computation 17434 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 17435 return SDValue(); 17436 17437 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 17438 17439 // Can only handle unsigned comparison here 17440 switch (CC) { 17441 default: 17442 return SDValue(); 17443 case ISD::SETUGT: 17444 case ISD::SETUGE: 17445 break; 17446 case ISD::SETULT: 17447 case ISD::SETULE: 17448 std::swap(TrueOpnd, FalseOpnd); 17449 break; 17450 } 17451 17452 SDValue CmpOpnd1 = Cond.getOperand(0); 17453 SDValue CmpOpnd2 = Cond.getOperand(1); 17454 17455 // SETCC CmpOpnd1 CmpOpnd2 cond 17456 // TrueOpnd = CmpOpnd1 - CmpOpnd2 17457 // FalseOpnd = CmpOpnd2 - CmpOpnd1 17458 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 17459 TrueOpnd.getOperand(1) == CmpOpnd2 && 17460 FalseOpnd.getOperand(0) == CmpOpnd2 && 17461 FalseOpnd.getOperand(1) == CmpOpnd1) { 17462 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 17463 CmpOpnd1, CmpOpnd2, 17464 DAG.getTargetConstant(0, dl, MVT::i32)); 17465 } 17466 17467 return SDValue(); 17468 } 17469 17470 /// getAddrModeForFlags - Based on the set of address flags, select the most 17471 /// optimal instruction format to match by. 17472 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const { 17473 // This is not a node we should be handling here. 17474 if (Flags == PPC::MOF_None) 17475 return PPC::AM_None; 17476 // Unaligned D-Forms are tried first, followed by the aligned D-Forms. 17477 for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm)) 17478 if ((Flags & FlagSet) == FlagSet) 17479 return PPC::AM_DForm; 17480 for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm)) 17481 if ((Flags & FlagSet) == FlagSet) 17482 return PPC::AM_DSForm; 17483 for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm)) 17484 if ((Flags & FlagSet) == FlagSet) 17485 return PPC::AM_DQForm; 17486 for (auto FlagSet : AddrModesMap.at(PPC::AM_PrefixDForm)) 17487 if ((Flags & FlagSet) == FlagSet) 17488 return PPC::AM_PrefixDForm; 17489 // If no other forms are selected, return an X-Form as it is the most 17490 // general addressing mode. 17491 return PPC::AM_XForm; 17492 } 17493 17494 /// Set alignment flags based on whether or not the Frame Index is aligned. 17495 /// Utilized when computing flags for address computation when selecting 17496 /// load and store instructions. 17497 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet, 17498 SelectionDAG &DAG) { 17499 bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR)); 17500 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N); 17501 if (!FI) 17502 return; 17503 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 17504 unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value(); 17505 // If this is (add $FI, $S16Imm), the alignment flags are already set 17506 // based on the immediate. We just need to clear the alignment flags 17507 // if the FI alignment is weaker. 17508 if ((FrameIndexAlign % 4) != 0) 17509 FlagSet &= ~PPC::MOF_RPlusSImm16Mult4; 17510 if ((FrameIndexAlign % 16) != 0) 17511 FlagSet &= ~PPC::MOF_RPlusSImm16Mult16; 17512 // If the address is a plain FrameIndex, set alignment flags based on 17513 // FI alignment. 17514 if (!IsAdd) { 17515 if ((FrameIndexAlign % 4) == 0) 17516 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17517 if ((FrameIndexAlign % 16) == 0) 17518 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17519 } 17520 } 17521 17522 /// Given a node, compute flags that are used for address computation when 17523 /// selecting load and store instructions. The flags computed are stored in 17524 /// FlagSet. This function takes into account whether the node is a constant, 17525 /// an ADD, OR, or a constant, and computes the address flags accordingly. 17526 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet, 17527 SelectionDAG &DAG) { 17528 // Set the alignment flags for the node depending on if the node is 17529 // 4-byte or 16-byte aligned. 17530 auto SetAlignFlagsForImm = [&](uint64_t Imm) { 17531 if ((Imm & 0x3) == 0) 17532 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17533 if ((Imm & 0xf) == 0) 17534 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17535 }; 17536 17537 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 17538 // All 32-bit constants can be computed as LIS + Disp. 17539 const APInt &ConstImm = CN->getAPIntValue(); 17540 if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants. 17541 FlagSet |= PPC::MOF_AddrIsSImm32; 17542 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17543 setAlignFlagsForFI(N, FlagSet, DAG); 17544 } 17545 if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants. 17546 FlagSet |= PPC::MOF_RPlusSImm34; 17547 else // Let constant materialization handle large constants. 17548 FlagSet |= PPC::MOF_NotAddNorCst; 17549 } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) { 17550 // This address can be represented as an addition of: 17551 // - Register + Imm16 (possibly a multiple of 4/16) 17552 // - Register + Imm34 17553 // - Register + PPCISD::Lo 17554 // - Register + Register 17555 // In any case, we won't have to match this as Base + Zero. 17556 SDValue RHS = N.getOperand(1); 17557 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) { 17558 const APInt &ConstImm = CN->getAPIntValue(); 17559 if (ConstImm.isSignedIntN(16)) { 17560 FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates. 17561 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17562 setAlignFlagsForFI(N, FlagSet, DAG); 17563 } 17564 if (ConstImm.isSignedIntN(34)) 17565 FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates. 17566 else 17567 FlagSet |= PPC::MOF_RPlusR; // Register. 17568 } else if (RHS.getOpcode() == PPCISD::Lo && 17569 !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue()) 17570 FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo. 17571 else 17572 FlagSet |= PPC::MOF_RPlusR; 17573 } else { // The address computation is not a constant or an addition. 17574 setAlignFlagsForFI(N, FlagSet, DAG); 17575 FlagSet |= PPC::MOF_NotAddNorCst; 17576 } 17577 } 17578 17579 static bool isPCRelNode(SDValue N) { 17580 return (N.getOpcode() == PPCISD::MAT_PCREL_ADDR || 17581 isValidPCRelNode<ConstantPoolSDNode>(N) || 17582 isValidPCRelNode<GlobalAddressSDNode>(N) || 17583 isValidPCRelNode<JumpTableSDNode>(N) || 17584 isValidPCRelNode<BlockAddressSDNode>(N)); 17585 } 17586 17587 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute 17588 /// the address flags of the load/store instruction that is to be matched. 17589 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N, 17590 SelectionDAG &DAG) const { 17591 unsigned FlagSet = PPC::MOF_None; 17592 17593 // Compute subtarget flags. 17594 if (!Subtarget.hasP9Vector()) 17595 FlagSet |= PPC::MOF_SubtargetBeforeP9; 17596 else { 17597 FlagSet |= PPC::MOF_SubtargetP9; 17598 if (Subtarget.hasPrefixInstrs()) 17599 FlagSet |= PPC::MOF_SubtargetP10; 17600 } 17601 if (Subtarget.hasSPE()) 17602 FlagSet |= PPC::MOF_SubtargetSPE; 17603 17604 // Check if we have a PCRel node and return early. 17605 if ((FlagSet & PPC::MOF_SubtargetP10) && isPCRelNode(N)) 17606 return FlagSet; 17607 17608 // If the node is the paired load/store intrinsics, compute flags for 17609 // address computation and return early. 17610 unsigned ParentOp = Parent->getOpcode(); 17611 if (Subtarget.isISA3_1() && ((ParentOp == ISD::INTRINSIC_W_CHAIN) || 17612 (ParentOp == ISD::INTRINSIC_VOID))) { 17613 unsigned ID = cast<ConstantSDNode>(Parent->getOperand(1))->getZExtValue(); 17614 if ((ID == Intrinsic::ppc_vsx_lxvp) || (ID == Intrinsic::ppc_vsx_stxvp)) { 17615 SDValue IntrinOp = (ID == Intrinsic::ppc_vsx_lxvp) 17616 ? Parent->getOperand(2) 17617 : Parent->getOperand(3); 17618 computeFlagsForAddressComputation(IntrinOp, FlagSet, DAG); 17619 FlagSet |= PPC::MOF_Vector; 17620 return FlagSet; 17621 } 17622 } 17623 17624 // Mark this as something we don't want to handle here if it is atomic 17625 // or pre-increment instruction. 17626 if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent)) 17627 if (LSB->isIndexed()) 17628 return PPC::MOF_None; 17629 17630 // Compute in-memory type flags. This is based on if there are scalars, 17631 // floats or vectors. 17632 const MemSDNode *MN = dyn_cast<MemSDNode>(Parent); 17633 assert(MN && "Parent should be a MemSDNode!"); 17634 EVT MemVT = MN->getMemoryVT(); 17635 unsigned Size = MemVT.getSizeInBits(); 17636 if (MemVT.isScalarInteger()) { 17637 assert(Size <= 128 && 17638 "Not expecting scalar integers larger than 16 bytes!"); 17639 if (Size < 32) 17640 FlagSet |= PPC::MOF_SubWordInt; 17641 else if (Size == 32) 17642 FlagSet |= PPC::MOF_WordInt; 17643 else 17644 FlagSet |= PPC::MOF_DoubleWordInt; 17645 } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors. 17646 if (Size == 128) 17647 FlagSet |= PPC::MOF_Vector; 17648 else if (Size == 256) { 17649 assert(Subtarget.pairedVectorMemops() && 17650 "256-bit vectors are only available when paired vector memops is " 17651 "enabled!"); 17652 FlagSet |= PPC::MOF_Vector; 17653 } else 17654 llvm_unreachable("Not expecting illegal vectors!"); 17655 } else { // Floating point type: can be scalar, f128 or vector types. 17656 if (Size == 32 || Size == 64) 17657 FlagSet |= PPC::MOF_ScalarFloat; 17658 else if (MemVT == MVT::f128 || MemVT.isVector()) 17659 FlagSet |= PPC::MOF_Vector; 17660 else 17661 llvm_unreachable("Not expecting illegal scalar floats!"); 17662 } 17663 17664 // Compute flags for address computation. 17665 computeFlagsForAddressComputation(N, FlagSet, DAG); 17666 17667 // Compute type extension flags. 17668 if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) { 17669 switch (LN->getExtensionType()) { 17670 case ISD::SEXTLOAD: 17671 FlagSet |= PPC::MOF_SExt; 17672 break; 17673 case ISD::EXTLOAD: 17674 case ISD::ZEXTLOAD: 17675 FlagSet |= PPC::MOF_ZExt; 17676 break; 17677 case ISD::NON_EXTLOAD: 17678 FlagSet |= PPC::MOF_NoExt; 17679 break; 17680 } 17681 } else 17682 FlagSet |= PPC::MOF_NoExt; 17683 17684 // For integers, no extension is the same as zero extension. 17685 // We set the extension mode to zero extension so we don't have 17686 // to add separate entries in AddrModesMap for loads and stores. 17687 if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) { 17688 FlagSet |= PPC::MOF_ZExt; 17689 FlagSet &= ~PPC::MOF_NoExt; 17690 } 17691 17692 // If we don't have prefixed instructions, 34-bit constants should be 17693 // treated as PPC::MOF_NotAddNorCst so they can match D-Forms. 17694 bool IsNonP1034BitConst = 17695 ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) & 17696 FlagSet) == PPC::MOF_RPlusSImm34; 17697 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR && 17698 IsNonP1034BitConst) 17699 FlagSet |= PPC::MOF_NotAddNorCst; 17700 17701 return FlagSet; 17702 } 17703 17704 /// SelectForceXFormMode - Given the specified address, force it to be 17705 /// represented as an indexed [r+r] operation (an XForm instruction). 17706 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp, 17707 SDValue &Base, 17708 SelectionDAG &DAG) const { 17709 17710 PPC::AddrMode Mode = PPC::AM_XForm; 17711 int16_t ForceXFormImm = 0; 17712 if (provablyDisjointOr(DAG, N) && 17713 !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) { 17714 Disp = N.getOperand(0); 17715 Base = N.getOperand(1); 17716 return Mode; 17717 } 17718 17719 // If the address is the result of an add, we will utilize the fact that the 17720 // address calculation includes an implicit add. However, we can reduce 17721 // register pressure if we do not materialize a constant just for use as the 17722 // index register. We only get rid of the add if it is not an add of a 17723 // value and a 16-bit signed constant and both have a single use. 17724 if (N.getOpcode() == ISD::ADD && 17725 (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) || 17726 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 17727 Disp = N.getOperand(0); 17728 Base = N.getOperand(1); 17729 return Mode; 17730 } 17731 17732 // Otherwise, use R0 as the base register. 17733 Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17734 N.getValueType()); 17735 Base = N; 17736 17737 return Mode; 17738 } 17739 17740 bool PPCTargetLowering::splitValueIntoRegisterParts( 17741 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 17742 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 17743 EVT ValVT = Val.getValueType(); 17744 // If we are splitting a scalar integer into f64 parts (i.e. so they 17745 // can be placed into VFRC registers), we need to zero extend and 17746 // bitcast the values. This will ensure the value is placed into a 17747 // VSR using direct moves or stack operations as needed. 17748 if (PartVT == MVT::f64 && 17749 (ValVT == MVT::i32 || ValVT == MVT::i16 || ValVT == MVT::i8)) { 17750 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); 17751 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Val); 17752 Parts[0] = Val; 17753 return true; 17754 } 17755 return false; 17756 } 17757 17758 SDValue PPCTargetLowering::lowerToLibCall(const char *LibCallName, SDValue Op, 17759 SelectionDAG &DAG) const { 17760 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 17761 TargetLowering::CallLoweringInfo CLI(DAG); 17762 EVT RetVT = Op.getValueType(); 17763 SDValue Callee = 17764 DAG.getExternalSymbol(LibCallName, TLI.getPointerTy(DAG.getDataLayout())); 17765 bool SignExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, false); 17766 TargetLowering::ArgListTy Args; 17767 TargetLowering::ArgListEntry Entry; 17768 for (const SDValue &N : Op->op_values()) { 17769 EVT ArgVT = N.getValueType(); 17770 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 17771 Entry.Node = N; 17772 Entry.Ty = ArgTy; 17773 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, SignExtend); 17774 Entry.IsZExt = !Entry.IsSExt; 17775 Args.push_back(Entry); 17776 } 17777 CLI.setDebugLoc(SDLoc(Op)) 17778 .setChain(DAG.getEntryNode()) 17779 .setLibCallee(CallingConv::C, RetVT.getTypeForEVT(*DAG.getContext()), 17780 Callee, std::move(Args)) 17781 .setTailCall(true) 17782 .setSExtResult(SignExtend) 17783 .setZExtResult(!SignExtend) 17784 .setIsPostTypeLegalization(true); 17785 return TLI.LowerCallTo(CLI).first; 17786 } 17787 17788 SDValue PPCTargetLowering::lowerLibCallBasedOnType( 17789 const char *LibCallFloatName, const char *LibCallDoubleName, SDValue Op, 17790 SelectionDAG &DAG) const { 17791 if (Op.getValueType() == MVT::f32) 17792 return lowerToLibCall(LibCallFloatName, Op, DAG); 17793 17794 if (Op.getValueType() == MVT::f64) 17795 return lowerToLibCall(LibCallDoubleName, Op, DAG); 17796 17797 return SDValue(); 17798 } 17799 17800 bool PPCTargetLowering::isLowringToMASSFiniteSafe(SDValue Op) const { 17801 SDNodeFlags Flags = Op.getNode()->getFlags(); 17802 return isLowringToMASSSafe(Op) && Flags.hasNoSignedZeros() && 17803 Flags.hasNoNaNs() && Flags.hasNoInfs(); 17804 } 17805 17806 bool PPCTargetLowering::isLowringToMASSSafe(SDValue Op) const { 17807 return Op.getNode()->getFlags().hasApproximateFuncs(); 17808 } 17809 17810 SDValue PPCTargetLowering::lowerLibCallBase(const char *LibCallDoubleName, 17811 const char *LibCallFloatName, 17812 const char *LibCallDoubleNameFinite, 17813 const char *LibCallFloatNameFinite, 17814 SDValue Op, 17815 SelectionDAG &DAG) const { 17816 if (!isLowringToMASSSafe(Op)) 17817 return SDValue(); 17818 17819 if (!isLowringToMASSFiniteSafe(Op)) 17820 return lowerLibCallBasedOnType(LibCallFloatName, LibCallDoubleName, Op, 17821 DAG); 17822 17823 return lowerLibCallBasedOnType(LibCallFloatNameFinite, 17824 LibCallDoubleNameFinite, Op, DAG); 17825 } 17826 17827 SDValue PPCTargetLowering::lowerPow(SDValue Op, SelectionDAG &DAG) const { 17828 return lowerLibCallBase("__xl_pow", "__xl_powf", "__xl_pow_finite", 17829 "__xl_powf_finite", Op, DAG); 17830 } 17831 17832 SDValue PPCTargetLowering::lowerSin(SDValue Op, SelectionDAG &DAG) const { 17833 return lowerLibCallBase("__xl_sin", "__xl_sinf", "__xl_sin_finite", 17834 "__xl_sinf_finite", Op, DAG); 17835 } 17836 17837 SDValue PPCTargetLowering::lowerCos(SDValue Op, SelectionDAG &DAG) const { 17838 return lowerLibCallBase("__xl_cos", "__xl_cosf", "__xl_cos_finite", 17839 "__xl_cosf_finite", Op, DAG); 17840 } 17841 17842 SDValue PPCTargetLowering::lowerLog(SDValue Op, SelectionDAG &DAG) const { 17843 return lowerLibCallBase("__xl_log", "__xl_logf", "__xl_log_finite", 17844 "__xl_logf_finite", Op, DAG); 17845 } 17846 17847 SDValue PPCTargetLowering::lowerLog10(SDValue Op, SelectionDAG &DAG) const { 17848 return lowerLibCallBase("__xl_log10", "__xl_log10f", "__xl_log10_finite", 17849 "__xl_log10f_finite", Op, DAG); 17850 } 17851 17852 SDValue PPCTargetLowering::lowerExp(SDValue Op, SelectionDAG &DAG) const { 17853 return lowerLibCallBase("__xl_exp", "__xl_expf", "__xl_exp_finite", 17854 "__xl_expf_finite", Op, DAG); 17855 } 17856 17857 // If we happen to match to an aligned D-Form, check if the Frame Index is 17858 // adequately aligned. If it is not, reset the mode to match to X-Form. 17859 static void setXFormForUnalignedFI(SDValue N, unsigned Flags, 17860 PPC::AddrMode &Mode) { 17861 if (!isa<FrameIndexSDNode>(N)) 17862 return; 17863 if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) || 17864 (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16))) 17865 Mode = PPC::AM_XForm; 17866 } 17867 17868 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode), 17869 /// compute the address flags of the node, get the optimal address mode based 17870 /// on the flags, and set the Base and Disp based on the address mode. 17871 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent, 17872 SDValue N, SDValue &Disp, 17873 SDValue &Base, 17874 SelectionDAG &DAG, 17875 MaybeAlign Align) const { 17876 SDLoc DL(Parent); 17877 17878 // Compute the address flags. 17879 unsigned Flags = computeMOFlags(Parent, N, DAG); 17880 17881 // Get the optimal address mode based on the Flags. 17882 PPC::AddrMode Mode = getAddrModeForFlags(Flags); 17883 17884 // If the address mode is DS-Form or DQ-Form, check if the FI is aligned. 17885 // Select an X-Form load if it is not. 17886 setXFormForUnalignedFI(N, Flags, Mode); 17887 17888 // Set the mode to PC-Relative addressing mode if we have a valid PC-Rel node. 17889 if ((Mode == PPC::AM_XForm) && isPCRelNode(N)) { 17890 assert(Subtarget.isUsingPCRelativeCalls() && 17891 "Must be using PC-Relative calls when a valid PC-Relative node is " 17892 "present!"); 17893 Mode = PPC::AM_PCRel; 17894 } 17895 17896 // Set Base and Disp accordingly depending on the address mode. 17897 switch (Mode) { 17898 case PPC::AM_DForm: 17899 case PPC::AM_DSForm: 17900 case PPC::AM_DQForm: { 17901 // This is a register plus a 16-bit immediate. The base will be the 17902 // register and the displacement will be the immediate unless it 17903 // isn't sufficiently aligned. 17904 if (Flags & PPC::MOF_RPlusSImm16) { 17905 SDValue Op0 = N.getOperand(0); 17906 SDValue Op1 = N.getOperand(1); 17907 int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue(); 17908 if (!Align || isAligned(*Align, Imm)) { 17909 Disp = DAG.getTargetConstant(Imm, DL, N.getValueType()); 17910 Base = Op0; 17911 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) { 17912 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17913 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 17914 } 17915 break; 17916 } 17917 } 17918 // This is a register plus the @lo relocation. The base is the register 17919 // and the displacement is the global address. 17920 else if (Flags & PPC::MOF_RPlusLo) { 17921 Disp = N.getOperand(1).getOperand(0); // The global address. 17922 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 17923 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 17924 Disp.getOpcode() == ISD::TargetConstantPool || 17925 Disp.getOpcode() == ISD::TargetJumpTable); 17926 Base = N.getOperand(0); 17927 break; 17928 } 17929 // This is a constant address at most 32 bits. The base will be 17930 // zero or load-immediate-shifted and the displacement will be 17931 // the low 16 bits of the address. 17932 else if (Flags & PPC::MOF_AddrIsSImm32) { 17933 auto *CN = cast<ConstantSDNode>(N); 17934 EVT CNType = CN->getValueType(0); 17935 uint64_t CNImm = CN->getZExtValue(); 17936 // If this address fits entirely in a 16-bit sext immediate field, codegen 17937 // this as "d, 0". 17938 int16_t Imm; 17939 if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) { 17940 Disp = DAG.getTargetConstant(Imm, DL, CNType); 17941 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17942 CNType); 17943 break; 17944 } 17945 // Handle 32-bit sext immediate with LIS + Addr mode. 17946 if ((CNType == MVT::i32 || isInt<32>(CNImm)) && 17947 (!Align || isAligned(*Align, CNImm))) { 17948 int32_t Addr = (int32_t)CNImm; 17949 // Otherwise, break this down into LIS + Disp. 17950 Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32); 17951 Base = 17952 DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32); 17953 uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8; 17954 Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0); 17955 break; 17956 } 17957 } 17958 // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable. 17959 Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout())); 17960 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 17961 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17962 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 17963 } else 17964 Base = N; 17965 break; 17966 } 17967 case PPC::AM_PrefixDForm: { 17968 int64_t Imm34 = 0; 17969 unsigned Opcode = N.getOpcode(); 17970 if (((Opcode == ISD::ADD) || (Opcode == ISD::OR)) && 17971 (isIntS34Immediate(N.getOperand(1), Imm34))) { 17972 // N is an Add/OR Node, and it's operand is a 34-bit signed immediate. 17973 Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); 17974 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 17975 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17976 else 17977 Base = N.getOperand(0); 17978 } else if (isIntS34Immediate(N, Imm34)) { 17979 // The address is a 34-bit signed immediate. 17980 Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); 17981 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 17982 } 17983 break; 17984 } 17985 case PPC::AM_PCRel: { 17986 // When selecting PC-Relative instructions, "Base" is not utilized as 17987 // we select the address as [PC+imm]. 17988 Disp = N; 17989 break; 17990 } 17991 case PPC::AM_None: 17992 break; 17993 default: { // By default, X-Form is always available to be selected. 17994 // When a frame index is not aligned, we also match by XForm. 17995 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N); 17996 Base = FI ? N : N.getOperand(1); 17997 Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17998 N.getValueType()) 17999 : N.getOperand(0); 18000 break; 18001 } 18002 } 18003 return Mode; 18004 } 18005 18006 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC, 18007 bool Return, 18008 bool IsVarArg) const { 18009 switch (CC) { 18010 case CallingConv::Cold: 18011 return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS); 18012 default: 18013 return CC_PPC64_ELF_FIS; 18014 } 18015 } 18016 18017 TargetLowering::AtomicExpansionKind 18018 PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 18019 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 18020 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128) 18021 return AtomicExpansionKind::MaskedIntrinsic; 18022 return TargetLowering::shouldExpandAtomicRMWInIR(AI); 18023 } 18024 18025 TargetLowering::AtomicExpansionKind 18026 PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const { 18027 unsigned Size = AI->getNewValOperand()->getType()->getPrimitiveSizeInBits(); 18028 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128) 18029 return AtomicExpansionKind::MaskedIntrinsic; 18030 return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI); 18031 } 18032 18033 static Intrinsic::ID 18034 getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) { 18035 switch (BinOp) { 18036 default: 18037 llvm_unreachable("Unexpected AtomicRMW BinOp"); 18038 case AtomicRMWInst::Xchg: 18039 return Intrinsic::ppc_atomicrmw_xchg_i128; 18040 case AtomicRMWInst::Add: 18041 return Intrinsic::ppc_atomicrmw_add_i128; 18042 case AtomicRMWInst::Sub: 18043 return Intrinsic::ppc_atomicrmw_sub_i128; 18044 case AtomicRMWInst::And: 18045 return Intrinsic::ppc_atomicrmw_and_i128; 18046 case AtomicRMWInst::Or: 18047 return Intrinsic::ppc_atomicrmw_or_i128; 18048 case AtomicRMWInst::Xor: 18049 return Intrinsic::ppc_atomicrmw_xor_i128; 18050 case AtomicRMWInst::Nand: 18051 return Intrinsic::ppc_atomicrmw_nand_i128; 18052 } 18053 } 18054 18055 Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic( 18056 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 18057 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 18058 assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && 18059 "Only support quadword now"); 18060 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 18061 Type *ValTy = Incr->getType(); 18062 assert(ValTy->getPrimitiveSizeInBits() == 128); 18063 Function *RMW = Intrinsic::getDeclaration( 18064 M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation())); 18065 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 18066 Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo"); 18067 Value *IncrHi = 18068 Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi"); 18069 Value *Addr = 18070 Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); 18071 Value *LoHi = Builder.CreateCall(RMW, {Addr, IncrLo, IncrHi}); 18072 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 18073 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 18074 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 18075 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 18076 return Builder.CreateOr( 18077 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 18078 } 18079 18080 Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 18081 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 18082 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 18083 assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && 18084 "Only support quadword now"); 18085 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 18086 Type *ValTy = CmpVal->getType(); 18087 assert(ValTy->getPrimitiveSizeInBits() == 128); 18088 Function *IntCmpXchg = 18089 Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128); 18090 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 18091 Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo"); 18092 Value *CmpHi = 18093 Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi"); 18094 Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo"); 18095 Value *NewHi = 18096 Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi"); 18097 Value *Addr = 18098 Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); 18099 emitLeadingFence(Builder, CI, Ord); 18100 Value *LoHi = 18101 Builder.CreateCall(IntCmpXchg, {Addr, CmpLo, CmpHi, NewLo, NewHi}); 18102 emitTrailingFence(Builder, CI, Ord); 18103 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 18104 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 18105 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 18106 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 18107 return Builder.CreateOr( 18108 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 18109 } 18110